WO2014148577A1 - リチウムイオン二次電池多孔膜用スラリー及びその製造方法、リチウムイオン二次電池用セパレータ並びにリチウムイオン二次電池 - Google Patents
リチウムイオン二次電池多孔膜用スラリー及びその製造方法、リチウムイオン二次電池用セパレータ並びにリチウムイオン二次電池 Download PDFInfo
- Publication number
- WO2014148577A1 WO2014148577A1 PCT/JP2014/057609 JP2014057609W WO2014148577A1 WO 2014148577 A1 WO2014148577 A1 WO 2014148577A1 JP 2014057609 W JP2014057609 W JP 2014057609W WO 2014148577 A1 WO2014148577 A1 WO 2014148577A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- secondary battery
- lithium ion
- slurry
- ion secondary
- conductive particles
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/42—Acrylic resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/423—Polyamide resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/457—Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a slurry for a lithium ion secondary battery porous membrane, a method for producing the same, a separator for a lithium ion secondary battery using the slurry, and a lithium ion secondary battery.
- lithium ion secondary batteries exhibit a high energy density, and are often used especially for small electronics. Lithium ion secondary batteries are also expected to be used for automobiles in addition to compact applications.
- Such a lithium ion secondary battery generally includes a positive electrode and a negative electrode, a separator, and an electrolytic solution.
- a separator what is provided with the organic separator layer formed with resin, such as an extending
- Patent Document 1 a separator having a porous film containing nonconductive particles such as an inorganic filler has been proposed.
- the present invention was devised in view of the above problems, and a slurry for a porous membrane of a lithium ion secondary battery capable of realizing a lithium ion secondary battery excellent in both high temperature cycle characteristics and safety, and a manufacturing method thereof; high temperature cycle To provide a lithium ion secondary battery separator capable of realizing a lithium ion secondary battery excellent in both characteristics and safety; and to provide a lithium ion secondary battery excellent in both high temperature cycle characteristics and safety To do.
- the inventor is a slurry containing non-conductive particles, a water-soluble polymer having a monomer unit containing an acidic group, and a particulate polymer.
- a porous film using a water-soluble polymer in a predetermined range and a non-conductive particle having a BET specific surface area in a predetermined range, both high temperature cycle characteristics and safety are obtained.
- the present invention was completed by finding that a lithium ion secondary battery excellent in the above can be realized. That is, the present invention is as follows.
- Non-conductive particles a water-soluble polymer having an acidic group-containing monomer unit, and a particulate polymer, The amount of the water-soluble polymer is 0.05 to 2 parts by weight with respect to 100 parts by weight of the non-conductive particles, A slurry for a lithium ion secondary battery porous membrane, wherein the non-conductive particles have a BET specific surface area of 5 m 2 / g to 10 m 2 / g.
- the particle diameter from which the cumulative volume from the small diameter side is 10% is D10
- the particle diameter from which the cumulative volume from the small diameter side is 50% is D50
- the particle diameter with a cumulative volume of 90% is D90
- D10 is 0.2 ⁇ m to 0.4 ⁇ m
- D50 is 0.5 ⁇ m to 0.9 ⁇ m
- the slurry for lithium ion secondary battery porous membrane according to [1] wherein D90 is 1.0 ⁇ m to 3.0 ⁇ m.
- Non-conductive particles, a water-soluble polymer having an acidic group-containing monomer unit, and water having an electric conductivity of 0.5 ⁇ S / cm to 30 ⁇ S / cm are mixed to obtain a solid content concentration of 40 wt% to 60 wt%.
- a lithium ion secondary battery comprising a positive electrode, a negative electrode, a separator for a lithium ion secondary battery according to [7], and an electrolytic solution.
- a lithium ion secondary battery excellent in both high-temperature cycle characteristics and safety can be realized.
- a slurry for a lithium ion secondary battery porous membrane capable of realizing a lithium ion secondary battery excellent in both high-temperature cycle characteristics and safety can be produced.
- a separator for a lithium ion secondary battery of the present invention a lithium ion secondary battery excellent in both high-temperature cycle characteristics and safety can be realized.
- the lithium ion secondary battery of the present invention is excellent in both high-temperature cycle characteristics and safety.
- (meth) acrylic acid means acrylic acid or methacrylic acid.
- (meth) acrylate means an acrylate or a methacrylate.
- (meth) acrylonitrile means acrylonitrile or methacrylonitrile.
- a certain substance is water-soluble means that an insoluble content is less than 1.0% by weight when 0.5 g of the substance is dissolved in 100 g of water at 25 ° C.
- a certain substance is water-insoluble means that an insoluble content is 90% by weight or more when 0.5 g of the substance is dissolved in 100 g of water at 25 ° C.
- the solubility of a substance in water varies depending on the pH of water, if there is a pH range in which the substance becomes water-soluble, the substance is included in the water-soluble one.
- the proportion of the structural unit formed by polymerizing a certain monomer in the polymer is usually that unless otherwise specified. This coincides with the ratio (preparation ratio) of the certain monomer in the total monomers used for polymerization of the polymer.
- the slurry for a lithium ion secondary battery porous membrane of the present invention (hereinafter sometimes referred to as “slurry for porous membrane” as appropriate) includes non-conductive particles, a water-soluble polymer, and a particulate polymer. Moreover, this slurry for porous films usually contains a solvent. When the porous membrane slurry contains a solvent, the non-conductive particles and the particulate polymer are usually dispersed in the solvent, and the water-soluble polymer is dissolved in the solvent.
- Non-conductive particles As electrically non-conducting particles, BET specific surface area of the porous membrane for in the slurry is usually 5 m 2 / g or more and usually 10 m 2 / g or less, preferably 9m 2 / g or less, more preferably 8m 2 / g or less non-conductive particles are used.
- non-conductive particles having a BET specific surface area equal to or greater than the lower limit of the above range the non-conductive particles can be densely packed, so that the mechanical strength of the porous membrane can be improved, and usually heat resistance Can be improved. Therefore, it is possible to improve the safety of the lithium ion secondary battery.
- non-conductive particles having a BET specific surface area equal to or less than the upper limit of the above range electrical characteristics such as high-temperature cycle characteristics of the lithium ion secondary battery can be improved. Therefore, by keeping the BET specific surface area of the non-conductive particles in the above range, the safety of the lithium ion secondary battery and the battery characteristics such as the high-temperature cycle characteristics can be improved with good balance.
- the BET specific surface area of the nonconductive particles in the slurry for the porous membrane can be measured by a wet specific surface area measuring device.
- D10 of the nonconductive particles in the slurry for the porous membrane is preferably 0.2 ⁇ m or more, more preferably 0.3 ⁇ m or more, and preferably 0.4 ⁇ m or less.
- D10 indicates a particle diameter in which the cumulative volume from the small diameter side is 10% in the cumulative particle size distribution of the non-conductive particles.
- D50 of the nonconductive particles in the slurry for the porous membrane is preferably 0.5 ⁇ m or more, more preferably 0.7 ⁇ m or more, and preferably 0.9 ⁇ m or less.
- D50 indicates a particle diameter in which the cumulative volume from the small diameter side is 50% in the cumulative particle size distribution of the non-conductive particles.
- D90 of the nonconductive particles in the slurry for the porous membrane is preferably 1.0 ⁇ m or more, more preferably 1.2 ⁇ m or more, preferably 3.0 ⁇ m or less, more preferably 2.0 ⁇ m or less, and still more preferably. It is 1.5 ⁇ m or less.
- D90 indicates a particle diameter in which the cumulative volume from the small diameter side is 90% in the cumulative particle size distribution of the non-conductive particles.
- the reason why the battery characteristics can be improved by reducing the amount of excessively small particles as described above is not clear, according to the study of the present inventor, it is presumed as follows. That is, by reducing excessively small particles, the resistance when ions pass through the porous film can be reduced. Moreover, since the surface area of the porous film containing the particles can be reduced by reducing excessively small particles, the amount of water adsorbed on the surface of the porous film can also be reduced. This water is decomposed by charge and discharge to become hydrogen, which can corrode the electrode and increase the resistance, so reducing the excessively small particles improves the electrical characteristics of lithium ion secondary batteries, especially at high temperatures Can be made. For these reasons, it is presumed that battery characteristics can be improved by reducing the amount of excessively small particles.
- the reason why the mechanical strength and heat resistance of the porous film can be improved by reducing the amount of excessively large particles as described above is not clear, but according to the study by the present inventors, the following inference is made. Is done. That is, by reducing excessively large particles, non-conductive particles can be densely filled in the porous film. Usually, since non-conductive particles are excellent in mechanical strength, heat resistance, and electrical insulation, it is considered that the mechanical strength and heat resistance of the porous film can be improved if the non-conductive particles can be densely packed as described above. For these reasons, it is presumed that the mechanical strength of the porous film can be improved by reducing excessively large particles, and further, the heat resistance can be improved normally.
- the D10, D50, and D90 of the nonconductive particles in the slurry for the porous film can be obtained by measuring the cumulative particle size distribution of the nonconductive particles. Further, the cumulative particle size distribution of the nonconductive particles in the porous film can be measured by a laser diffraction method.
- D10, D50, and D90 of the nonconductive particles there is no limitation on the means for keeping D10, D50, and D90 of the nonconductive particles within the above-mentioned range.
- the particle diameter, the particle shape, and the degree of aggregation of the nonconductive particles can be appropriately adjusted.
- D10, D50, and D90 can be included in the above range by classifying any non-conductive particles including commercially available products.
- non-conductive particles inorganic particles or organic particles may be used.
- Inorganic particles are excellent in dispersion stability in a solvent, hardly settle in a slurry for a porous membrane, and can usually maintain a uniform slurry state for a long time. Moreover, when inorganic particles are used, the heat resistance of the porous film can usually be effectively increased.
- an electrochemically stable material is preferable.
- inorganic materials for non-conductive particles include aluminum oxide (alumina), aluminum oxide hydrate (boehmite (AlOOH), aluminum hydroxide (Al (OH) 3 ), oxidation Silicon, magnesium oxide (magnesia), magnesium hydroxide, calcium oxide, titanium oxide (titania), oxide particles such as BaTiO 3 , ZrO, alumina-silica composite oxide; nitride particles such as aluminum nitride and boron nitride; silicon And covalently bonded crystal particles such as diamond, sparingly soluble ionic crystal particles such as barium sulfate, calcium fluoride and barium fluoride, clay fine particles such as talc and montmorillonite, etc.
- Oxide particles are preferable from the viewpoint of stability and potential stability.
- Barium sulfate, titanium oxide, aluminum oxide, aluminum oxide hydrate, magnesium oxide and magnesium hydroxide are more preferred from the viewpoint of low properties and excellent heat resistance (for example, resistance to high temperatures of 180 ° C. or higher).
- Barium sulfate and aluminum oxide Aluminum oxide hydrate, magnesium oxide and magnesium hydroxide are more preferable, and barium sulfate and aluminum oxide are particularly preferable.
- Polymer particles are usually used as the organic particles.
- the organic particles can control the affinity for water by adjusting the type and amount of the functional group on the surface of the organic particles, and thus can control the amount of water contained in the porous film.
- Organic particles are excellent in that they usually have less metal ion elution.
- the organic material for the non-conductive particles include various polymer compounds such as polystyrene, polyethylene, polyimide, melamine resin, and phenol resin.
- the polymer compound forming the particles may be used, for example, as a mixture, a modified product, a derivative, a random copolymer, an alternating copolymer, a graft copolymer, a block copolymer, a crosslinked product, or the like.
- the organic particles may be formed of a mixture of two or more polymer compounds.
- the glass transition temperature may not be present, but when the polymer compound forming the organic particles has a glass transition temperature, the glass transition temperature is preferably 150 ° C. or higher. More preferably, it is 200 ° C. or more, particularly preferably 250 ° C. or more, and usually 500 ° C. or less.
- Non-conductive particles may be subjected to, for example, element substitution, surface treatment, solid solution, and the like as necessary. Further, the non-conductive particles may include one kind of the above materials alone in one particle, or may contain two or more kinds in combination at an arbitrary ratio. . Further, the non-conductive particles may be used in combination of two or more kinds of particles formed of different materials. Therefore, for example, inorganic particles and organic particles may be used in combination as non-conductive particles, but it is particularly preferable to use inorganic particles.
- the aspect ratio of the nonconductive particles is usually 1 or more, preferably 5 or less, more preferably 3 or less.
- Examples of the shape of the nonconductive particles include a spherical shape, an elliptical spherical shape, and a polygonal shape. Among these, a polygonal shape is preferable from the viewpoint of keeping the BET specific surface area of the nonconductive particles in the above range.
- the amount of non-conductive particles is preferably set so that the amount of non-conductive particles in the porous membrane falls within a predetermined range.
- the specific range of the amount of non-conductive particles in the porous film is preferably 86% by weight or more, more preferably 88% by weight or more, particularly preferably 90% by weight or more, preferably 99% by weight or less. Is 97% by weight or less, particularly preferably 95% by weight or less.
- water-soluble polymer As the water-soluble polymer, a water-soluble polymer having an acidic group-containing monomer unit is used.
- the acidic group-containing monomer unit refers to a structural unit having a structure formed by polymerizing an acidic group-containing monomer.
- an acidic group containing monomer shows the monomer containing an acidic group.
- the water-soluble polymer having an acidic group-containing monomer unit also contains an acidic group. Due to the action of the acidic group, the dispersibility of the nonconductive particles in the slurry for the porous membrane can be improved. The reason why such an advantage is obtained is not necessarily clear, but according to the study of the present inventor, it is presumed as follows. In general, D10, D50, and D90 of the non-conductive particles are different before the slurry for the porous film is prepared and the state contained in the slurry for the porous film. This is presumably because the nonconductive particles tend to aggregate in the slurry for the porous membrane.
- the water-soluble polymer can be adsorbed on the surface of the non-conductive particles. Therefore, it is speculated that the dispersibility of the non-conductive particles in the slurry for the porous film can be increased, and as a result, the dispersibility of the non-conductive particles in the porous film can be increased.
- the slurry for porous membrane contains an aqueous solvent such as water
- the water-soluble polymer is dissolved in the aqueous solvent in the slurry for porous membrane.
- the non-conductive particles can be prevented from agglomerating due to the good dispersibility of the non-conductive particles in this way, so the BET specific surface area of the non-conductive particles in the slurry for the porous membrane , D10, D50, and D90 can be easily accommodated in the preferred range.
- non-conductive particles can be prevented from agglomerating, damage to the porous membrane and the organic separator layer due to the large particles that can occur due to the aggregation can be prevented. Therefore, a short circuit can be prevented and the safety of the lithium ion secondary battery can be improved.
- Examples of the acidic group include —COOH group (carboxylic acid group); —SO 3 H group (sulfonic acid group); —PO 3 H 2 group and —PO (OH) (OR) group (R represents a hydrocarbon group).
- a phosphoric acid group such as Therefore, as an acidic group containing monomer, the monomer which has these acidic groups is mentioned, for example. Further, for example, a monomer capable of generating the acidic group by hydrolysis is also exemplified as the acidic group-containing monomer. Specific examples of such acidic group-containing monomers include acid anhydrides that can generate carboxylic acid groups by hydrolysis.
- Examples of the monomer having a carboxylic acid group include monocarboxylic acids, dicarboxylic acids, dicarboxylic acid anhydrides, and derivatives thereof.
- Examples of the monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid, 2-ethylacrylic acid, and isocrotonic acid.
- Examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid, and methylmaleic acid.
- Examples of the acid anhydride of dicarboxylic acid include maleic anhydride, acrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride and the like. Among these, monocarboxylic acid is preferable, and acrylic acid and methacrylic acid are more preferable.
- Examples of the monomer having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, (meth) acrylic acid-2-ethyl sulfonate, 2-acrylamide-2. -Methylpropanesulfonic acid, 3-allyloxy-2-hydroxypropanesulfonic acid, 2- (N-acryloyl) amino-2-methyl-1,3-propane-disulfonic acid and the like. Of these, 2-acrylamido-2-methylpropanesulfonic acid is preferred.
- Monomers having a phosphate group such as —PO 3 H 2 group and —PO (OH) (OR) group include, for example, 2- (meth) acryloyloxyphosphate Examples thereof include ethyl, phosphoric acid methyl-2- (meth) acryloyloxyethyl phosphate, and ethyl phosphate- (meth) acryloyloxyethyl.
- the salt of the monomer mentioned above can also be used as an acidic group-containing monomer.
- monomers having a carboxylic acid group and monomers having a sulfonic acid group are preferred.
- the adsorptivity of the water-soluble polymer to the nonconductive particles can be effectively improved, and the dispersibility of the nonconductive particles can be further increased.
- the acidic group-containing monomer may be used alone or in combination of two or more at any ratio.
- different types of monomers containing the same type of acidic group may be used in combination.
- monomers containing different types of acidic groups may be used in combination.
- a combination of a monomer having a sulfonic acid group and a monomer having a carboxylic acid group is particularly preferable because the dispersibility of the non-conductive particles can be effectively increased.
- the weight ratio represented by “monomer having a sulfonic acid group / monomer having a carboxylic acid group” is Preferably, it is 1/999 or more, more preferably 0.01 or more, preferably 1 or less, more preferably 0.5 or less, and particularly preferably 0.3 or less. Therefore, the weight ratio of the structural unit containing a sulfonic acid group to the structural unit containing a carboxylic acid group in the water-soluble polymer is preferably within the above range.
- the weight ratio By setting the weight ratio to be equal to or higher than the lower limit of the above range, an increase in viscosity due to aggregation of the water-soluble polymer can be suppressed, and thus the stability of the nonconductive particles can be improved. Moreover, since the adsorptivity of the water-soluble polymer to the non-conductive particles can be increased by setting the upper limit value or less, the dispersibility of the non-conductive particles can be increased.
- the water-soluble polymer may contain an arbitrary structural unit in addition to the acidic group-containing monomer unit.
- the monomer constituting an arbitrary structural unit include (meth) acrylic such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and (2-ethylhexyl) (meth) acrylate.
- Acid alkyl esters ⁇ , ⁇ -unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; hydroxyalkyl acrylates such as 2-hydroxyethyl acrylate, 2-hydroxy methacrylate and 2-hydroxypropyl acrylate; monoaryls of allyl alcohol and polyhydric alcohol Allyl ether; a hydroxyl group-containing monomer such as vinyl alcohol.
- the proportion of the acidic group-containing monomer unit in the water-soluble polymer is preferably 40% by weight or more, more preferably 60% by weight or more, and particularly preferably 80% by weight or more and usually 100% by weight or less.
- water-soluble polymer one type may be used alone, or two or more types may be used in combination at any ratio.
- the weight average molecular weight of the water-soluble polymer is preferably 1000 or more, more preferably 1500 or more, preferably 15000 or less, more preferably 10,000 or less.
- the weight average molecular weight of the water-soluble polymer can be measured as a value in terms of polystyrene by gel permeation chromatography (GPC) using N, N-dimethylformamide (DMF) as a developing solution.
- GPC gel permeation chromatography
- DMF N, N-dimethylformamide
- the method for producing the water-soluble polymer having an acidic group-containing monomer unit is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, or an emulsion polymerization method may be used.
- the emulsion polymerization method and the suspension polymerization method are preferable because they can be polymerized in water and used as they are as the material for the slurry for the porous membrane.
- a monomer composition containing an acidic group-containing monomer and, if necessary, a monomer constituting an arbitrary structural unit can be produced by addition polymerization in an aqueous solvent.
- an aqueous dispersion containing a water-soluble polymer having an acidic group-containing monomer unit in the aqueous solvent is obtained.
- the water-soluble polymer may be taken out from the aqueous dispersion thus obtained, and may be used as it is for the preparation of the slurry for the porous membrane.
- the above dispersion containing a water-soluble polymer having an acidic group-containing monomer unit in an aqueous solvent is usually acidic. Therefore, it may be alkalized to pH 7 to pH 13 as necessary. Thereby, the handleability of a solution can be improved and the coating property of the slurry for porous films can be improved.
- Examples of the method for alkalinizing to pH 7 to pH 13 include alkali metal aqueous solutions such as lithium hydroxide aqueous solution, sodium hydroxide aqueous solution and potassium hydroxide aqueous solution; alkaline earth metal aqueous solutions such as calcium hydroxide aqueous solution and magnesium hydroxide aqueous solution; The method of mixing aqueous alkali solution, such as aqueous ammonia solution, is mentioned.
- One kind of the alkaline aqueous solution may be used alone, or two or more kinds may be used in combination at any ratio.
- the amount of the water-soluble polymer is usually 0.05 parts by weight or more, preferably 0.1 parts by weight or more, and usually 2 parts by weight or less, preferably 1 part by weight or less with respect to 100 parts by weight of the non-conductive particles. More preferably, it is 0.8 parts by weight or less.
- the particulate polymer is usually dispersed in the form of particles in the slurry for a porous membrane. Therefore, when the slurry for a porous membrane contains an aqueous solvent such as water as a solvent, the particulate polymer is usually a water-insoluble polymer. In addition, the particulate polymer can function as a binder in the porous film. Accordingly, in the porous film, the particulate polymer usually exhibits a function of binding nonconductive particles to each other, and also exhibits a function of binding nonconductive particles and the organic separator layer.
- the particulate polymer examples include a styrene / butadiene copolymer (SBR), an acrylonitrile / butadiene copolymer (NBR), a hydrogenated SBR, a hydrogenated NBR, and a styrene-isoprene-styrene block copolymer (SIS) and acrylic polymers.
- SBR styrene / butadiene copolymer
- NBR acrylonitrile / butadiene copolymer
- SIS styrene-isoprene-styrene block copolymer
- acrylic polymers is more preferable because of excellent versatility. That is, the particulate polymer is more preferably a particulate acrylic polymer.
- An acrylic polymer means the polymer containing a (meth) acrylic acid ester monomer unit.
- the (meth) acrylic acid ester monomer unit represents a structural unit having a structure formed by polymerizing a (meth) acrylic acid ester monomer.
- R 2 represents a hydrogen atom or a methyl group
- R 3 represents an alkyl group or a cycloalkyl group.
- Examples of (meth) acrylate monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, acrylic N-amyl acid, isoamyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, 2-methoxyethyl acrylate, 2-ethoxyethyl acrylate, hexyl acrylate, nonyl acrylate, lauryl acrylate, acrylic Acrylates such as stearyl acid and benzyl acrylate; methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, n-a
- acrylate is preferable, and n-butyl acrylate and 2-ethylhexyl acrylate are particularly preferable in that the strength of the porous film can be improved. Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
- the proportion of the (meth) acrylic acid ester monomer unit in the acrylic polymer is preferably 35% by weight or more, more preferably 45% by weight or more, preferably 99% by weight or less, more preferably 98% by weight or less. is there.
- the ratio of the (meth) acrylic acid ester monomer unit is equal to or higher than the lower limit of the above range, the flexibility of the porous film can be increased. Thereby, even if it pressurizes a porous film at the time of manufacture of a lithium ion secondary battery, a porous film can be made hard to break.
- the dispersibility of the slurry for porous membranes can be made favorable by setting it to the upper limit value or less.
- the acrylic polymer preferably contains a nitrile group-containing monomer unit.
- the nitrile group-containing monomer unit represents a structural unit having a structure formed by polymerizing a monomer containing a nitrile group. Since an acrylic polymer containing a combination of a (meth) acrylic acid ester monomer unit and a nitrile group-containing monomer unit is stable against a redox reaction, it is easy to obtain a battery having a long life.
- nitrile group-containing monomer examples include acrylonitrile, methacrylonitrile, fumaronitrile, ⁇ -chloroacrylonitrile, ⁇ -cyanoethylacrylonitrile and the like.
- acrylonitrile is preferable because it can effectively enhance the binding property of the acrylic polymer.
- a nitrile group containing monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the ratio of the nitrile group-containing monomer unit in the acrylic polymer is preferably 1% by weight or more, more preferably 2% by weight or more, preferably 30% by weight or less, more preferably 25% by weight or less.
- a porous film can be made hard to peel from an organic separator layer.
- the acrylic polymer may contain an ethylenically unsaturated acid monomer unit.
- An ethylenically unsaturated acid monomer unit represents a structural unit having a structure formed by polymerizing an ethylenically unsaturated acid monomer.
- an ethylenically unsaturated acid monomer represents the monomer which has an ethylenically unsaturated bond and has an acidic group.
- Examples of the ethylenically unsaturated acid monomer include the same examples as those exemplified for the acidic group-containing monomer mentioned in the description of the water-soluble polymer. Among them, a monomer having a carboxylic acid group, a monomer having a sulfonic acid group, and a monomer having a phosphoric acid group are preferable, and a monomer having a carboxylic acid group and a monomer having a sulfonic acid group are more preferable. preferable. These can effectively enhance the slurry property of the slurry for the porous membrane. Moreover, an ethylenically unsaturated acid monomer unit may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the ratio of the ethylenically unsaturated acid monomer unit in the acrylic polymer is preferably 0.5% by weight or more, more preferably 1% by weight or more, preferably 10% by weight or less, more preferably 5% by weight or less. It is.
- the acrylic polymer can contain a crosslinkable monomer unit.
- the crosslinkable monomer unit is a structural unit having a structure formed by polymerizing a crosslinkable monomer.
- the crosslinkable monomer is a monomer that can form a crosslinked structure during or after polymerization by heating or energy ray irradiation.
- the acrylic polymer contains a crosslinkable monomer unit, the mechanical strength of the acrylic polymer can be increased, or the swelling property of the acrylic polymer with respect to the electrolytic solution can be suppressed.
- crosslinkable monomer examples include a monomer having thermal crosslinkability. More specifically, for example, a monofunctional crosslinkable monomer having a thermally crosslinkable crosslinkable group and one olefinic double bond per molecule; two or more olefinic double bonds per molecule The polyfunctional crosslinkable monomer which has is mentioned.
- thermally crosslinkable groups examples include epoxy groups, N-methylolamide groups, oxetanyl groups, oxazoline groups, and combinations thereof.
- an epoxy group is more preferable in terms of easy adjustment of crosslinking and crosslinking density.
- One of these may be used alone, or two or more of these may be used in combination at any ratio.
- crosslinkable monomer having an epoxy group as a thermally crosslinkable group and having an olefinic double bond examples include vinyl glycidyl ether, allyl glycidyl ether, butenyl glycidyl ether, o-allylphenyl glycidyl.
- Unsaturated glycidyl ethers such as ether; butadiene monoepoxide, chloroprene monoepoxide, 4,5-epoxy-2-pentene, 3,4-epoxy-1-vinylcyclohexene, 1,2-epoxy-5,9-cyclododecadiene Monoepoxides of dienes or polyenes such as; alkenyl epoxides such as 3,4-epoxy-1-butene, 1,2-epoxy-5-hexene, 1,2-epoxy-9-decene; and glycidyl acrylate, glycidyl methacrylate, Glycidyl crotonate, Unsaturated carboxylic acids such as glycidyl-4-heptenoate, glycidyl sorbate, glycidyl linoleate, glycidyl-4-methyl-3-pentenoate, glycidyl este
- crosslinkable monomer having an N-methylolamide group as a thermally crosslinkable group and having an olefinic double bond have a methylol group such as N-methylol (meth) acrylamide (meta ) Acrylamides.
- crosslinkable monomer having an oxetanyl group as a thermally crosslinkable group and having an olefinic double bond examples include 3-((meth) acryloyloxymethyl) oxetane, 3-((meth) Acryloyloxymethyl) -2-trifluoromethyloxetane, 3-((meth) acryloyloxymethyl) -2-phenyloxetane, 2-((meth) acryloyloxymethyl) oxetane, and 2-((meth) acryloyloxymethyl) ) -4-Trifluoromethyloxetane.
- crosslinkable monomer having an oxazoline group as a heat crosslinkable group and having an olefinic double bond examples include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2- Oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline, and 2-isopropenyl-5-ethyl-2-oxazoline.
- crosslinkable monomers having two or more olefinic double bonds per molecule examples include allyl (meth) acrylate, ethylene di (meth) acrylate, diethylene glycol di (meth) acrylate, and triethylene glycol di (meth).
- N-methylolacrylamide, allyl methacrylate, ethylene dimethacrylate, allyl glycidyl ether, and glycidyl methacrylate are particularly preferable as the crosslinkable monomer.
- crosslinked monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the proportion of the crosslinkable monomer unit in the acrylic polymer is preferably 0.5% by weight or more, more preferably 0.7% by weight or more, particularly preferably 1% by weight or more, preferably 10% by weight or less, More preferably, it is 8 weight% or less, Most preferably, it is 6 weight% or less.
- the acrylic polymer may have an arbitrary structural unit other than the structural units described above.
- monomers corresponding to such arbitrary structural units include aromatic vinyl monomers, ethylenically unsaturated carboxylic acid amide monomers, and the like.
- Examples of the aromatic vinyl monomer include styrene, ⁇ -methylstyrene, vinyltoluene, chlorostyrene, and hydroxymethylstyrene.
- Examples of the ethylenically unsaturated carboxylic acid amide monomer include (meth) acrylamide, N-methoxymethyl (meth) acrylamide and the like. One of these may be used alone, or two or more of these may be used in combination at any ratio. Moreover, the ratio of the arbitrary structural unit in an acrylic polymer becomes like this. Preferably it is 10 weight% or less, More preferably, it is 8 weight% or less, Most preferably, it is 5 weight% or less.
- particulate polymer may be used alone, or two or more kinds of particulate polymers may be used in combination at any ratio.
- the weight average molecular weight of the particulate polymer is preferably 10,000 or more, more preferably 20,000 or more, preferably 1,000,000 or less, more preferably 500,000 or less.
- the weight average molecular weight of the particulate polymer can be measured as a value in terms of polystyrene by gel permeation chromatography (GPC) using tetrahydrofuran as a developing solvent.
- the glass transition temperature of the particulate polymer is preferably ⁇ 60 ° C. or higher, more preferably ⁇ 55 ° C. or higher, particularly preferably ⁇ 50 ° C. or higher, preferably 20 ° C. or lower, more preferably 15 ° C. or lower, particularly preferably. Is 5 ° C. or lower.
- the particulate polymer can function as a binder in the porous film. Moreover, since the shape of the particulate polymer is particulate, the particulate polymer can be bound to the non-conductive particles by a point rather than a surface. For this reason, since the space
- the volume average particle diameter of the particulate polymer is preferably 50 nm or more, more preferably 70 nm or more, preferably 500 nm or less, more preferably 400 nm or less.
- the volume average particle diameter of the particulate polymer is in the above range, the strength and flexibility of the obtained porous film can be improved.
- the volume average particle diameter represents a particle diameter in which the cumulative volume from the small diameter side is 50% in the cumulative particle size distribution.
- the amount of the particulate polymer is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight or more, particularly preferably 1 part by weight or more, preferably 100 parts by weight of non-conductive particles. It is 10 parts by weight or less, more preferably 8 parts by weight or less, and particularly preferably 6 parts by weight or less.
- gap of a porous film can be increased by making it below an upper limit, it can make it easy to pass ion through a porous film and can reduce resistance of a lithium ion secondary battery. Therefore, by keeping the amount of the particulate polymer within the above range, both the ion permeability and the binding property of the porous membrane can be improved.
- the production method of the particulate polymer is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method may be used.
- the emulsion polymerization method and the suspension polymerization method are preferable because they can be polymerized in water and used as they are as the material for the slurry for the porous membrane.
- an aqueous solvent is preferably used.
- the aqueous solvent include water; ketones such as diacetone alcohol and ⁇ -butyrolactone; alcohols such as ethyl alcohol, isopropyl alcohol and normal propyl alcohol; propylene glycol monomethyl ether, methyl cellosolve, ethyl cellosolve, and ethylene glycol tertiary.
- Glycol ethers such as butyl ether, butyl cellosolve, 3-methoxy-3-methyl-1-butanol, ethylene glycol monopropyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, dipropylene glycol monomethyl ether; 1,3-dioxolane, 1 , 4-dioxolane, ethers such as tetrahydrofuran; and the like.
- These solvents may be used alone or in combination of two or more at any ratio.
- water is preferable from the viewpoint that it is not flammable and can reduce the cost required for recycling.
- the amount of the solvent is such that the solid content concentration of the slurry for the porous membrane is preferably 35% by weight or more, more preferably 38% by weight or more, and preferably 50% by weight or less, more preferably 48% by weight or less.
- the amount of the solvent in such a range, the dispersibility of the nonconductive particles in the slurry for the porous membrane can be made particularly good.
- the solid content of the composition means a component that remains without being evaporated when the composition is dried to remove the solvent.
- the slurry for a porous film may contain an optional component in addition to the non-conductive particles, the water-soluble polymer, the particulate polymer and the solvent described above.
- Such arbitrary components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the slurry for a porous membrane can contain a thickener.
- a thickener By including a thickener, the viscosity of the slurry for porous films can be increased, and the applicability of the slurry for porous films can be improved.
- the thickener usually remains in the porous film and can also function to bind non-conductive particles.
- Examples of the thickener include water-soluble polysaccharides, and among them, a cellulose semisynthetic polymer compound is preferably used.
- Examples of the cellulose semisynthetic polymer compound include nonionic cellulose semisynthetic polymer compounds, anionic cellulose semisynthetic polymer compounds, and cationic cellulose semisynthetic polymer compounds. Is mentioned.
- Nonionic cellulose-based semisynthetic polymer compounds include, for example, alkylcelluloses such as methylcellulose, methylethylcellulose, ethylcellulose, and microcrystalline cellulose; hydroxyethylcellulose, hydroxybutylmethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, And hydroxyalkylcelluloses such as hydroxypropylmethylcellulose stearoxy ether, carboxymethylhydroxyethylcellulose, alkylhydroxyethylcellulose, and nonoxynylhydroxyethylcellulose;
- anionic cellulose semisynthetic polymer compound examples include alkyl celluloses obtained by substituting the above nonionic cellulose semisynthetic polymer compound with various derivatizing groups, and sodium salts and ammonium salts thereof. Specific examples include sodium cellulose sulfate, methyl cellulose, methyl ethyl cellulose, ethyl cellulose, carboxymethyl cellulose (CMC) and salts thereof.
- Examples of the cationic cellulose semisynthetic polymer compound include low nitrogen hydroxyethyl cellulose dimethyl diallyl ammonium chloride (polyquaternium-4), O- [2-hydroxy-3- (trimethylammonio) propyl] hydroxyethyl cellulose ( And polyquaternium-10), O- [2-hydroxy-3- (lauryldimethylammonio) propyl] hydroxyethylcellulose (polyquaternium-24), and the like.
- a thickener may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
- the degree of etherification of the cellulose semisynthetic polymer compound is preferably 0.5 or more, more preferably 0.6 or more, preferably 1.0 or less, more preferably 0.8 or less.
- the degree of etherification refers to the degree of substitution of hydroxyl groups (three) per anhydroglucose unit in cellulose with a substitution product such as a carboxymethyl group.
- the degree of etherification can theoretically take a value of 0-3.
- the degree of etherification is in the above range, the cellulose semi-synthetic polymer compound is adsorbed on the surface of the non-conductive particles and is compatible with water. Can be highly dispersed.
- the average degree of polymerization of the thickener calculated from the intrinsic viscosity obtained from the Ubbelohde viscometer is preferably 500 or more, more preferably 1000 or more, preferably 2500. Below, it is more preferably 2000 or less, particularly preferably 1500 or less.
- the average degree of polymerization of the thickener may affect the fluidity of the slurry for the porous membrane, the membrane uniformity of the porous membrane, and the process on the process. By setting the average degree of polymerization within the above range, the stability of the slurry for the porous film with time can be improved, and coating without agglomerates and thickness unevenness can be achieved.
- the amount of the thickener is preferably 0.03 parts by weight or more, more preferably 0.05 parts by weight or more, particularly preferably 1 part by weight or more, preferably 5 parts by weight with respect to 100 parts by weight of the non-conductive particles. It is not more than parts by weight, more preferably not more than 4 parts by weight, particularly preferably not more than 3 parts by weight.
- the weight ratio of the thickener to the water-soluble polymer is preferably 0.5 or more, more preferably 0.8 or more, particularly preferably 1 or more, preferably 5 or less, more preferably 4 or less, particularly preferably 3 or less.
- the slurry for the porous membrane can contain a surfactant. Since the slurry for the porous membrane contains a surfactant, the applicability of the slurry for the porous membrane can be improved, thus preventing the repelling when applying the slurry for the porous membrane and improving the smoothness of the porous membrane. Can be.
- the surfactant examples include alkyl surfactants, silicon surfactants, fluorine surfactants, metal surfactants, and the like. Among these, alkyl surfactants and fluorine surfactants are preferable, alkyl surfactants are more preferable, and nonionic alkyl surfactants are particularly preferable.
- nonionic alkyl surfactants include polyoxyethylene nonylphenyl ether, polyethylene glycol monostearate, ethylene oxide / propylene oxide copolymer, sorbitan monostearate and the like.
- surfactant may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
- the amount of the surfactant is preferably 0.01 parts by weight or more, more preferably 0.05 parts by weight or more, particularly preferably 0.1 parts by weight or more, preferably 100 parts by weight of the non-conductive particles. Is 2 parts by weight or less, more preferably 1 part by weight or less, and particularly preferably 0.7 parts by weight or less.
- the slurry for the porous membrane can contain a chelating agent.
- a chelating agent is a compound containing a ligand (usually a multidentate ligand) that can bind to a metal ion to form a chelate compound.
- transition metal ions in the slurry for porous membrane can be captured, so that the iron ion concentration of the slurry for porous membrane can be easily reduced.
- chelating agents include aminocarboxylic acid chelating compounds, phosphonic acid chelating compounds, gluconic acid, citric acid, malic acid, and tartaric acid.
- a chelating agent capable of selectively capturing a transition metal ion without capturing lithium ions is preferable, and an aminocarboxylic acid chelate compound and a phosphonic acid chelate compound are particularly preferable.
- aminocarboxylic acid chelate compounds include ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), trans-1,2-diaminocyclohexanetetraacetic acid (CyDTA), diethylene-triaminepentaacetic acid (DTPA), bis- (Aminoethyl) glycol ether-N, N, N ′, N′-tetraacetic acid (EGTA), N- (2-hydroxyethyl) ethylenediamine-N, N ′, N′-triacetic acid (HEDTA) and dihydroxyethylglycine (DHEG) and the like.
- the phosphonic chelate compound include 1-hydroxyethane-1,1, -diphosphonic acid (HEDP).
- a chelating agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the amount of the chelating agent is preferably 0 part by weight or more, preferably 10 parts by weight or less, more preferably 5 parts by weight or less, and particularly preferably 3 parts by weight or less with respect to 100 parts by weight of the non-conductive particles. .
- the amount of the chelating agent is preferably not more than the upper limit of the above range, it is possible to prevent the high temperature cycle characteristics from being deteriorated by the chelating agent.
- the slurry for porous film of the present invention is excellent in dispersibility of non-conductive particles. Therefore, it can prevent that nonelectroconductive particle aggregates and a giant particle is formed. Therefore, it is possible to prevent the organic separator layer from being damaged by the giant particles, thereby preventing a short circuit of the lithium ion secondary battery and improving safety.
- the iron ion concentration of the slurry for a porous membrane is preferably 500 ppm or less, more preferably 100 ppm or less, and particularly preferably 50 ppm or less on a weight basis.
- the lower limit is preferably 5 ppm or more, more preferably 6 ppm or more, and particularly preferably 7 ppm or more.
- both the improvement of the cycle characteristics of the lithium ion secondary battery and the improvement of the dispersibility of the slurry for the porous film can be realized by keeping the iron ion concentration of the slurry for the porous film within the above range. Furthermore, by reducing the iron ion concentration of the slurry for the porous membrane as described above, it is possible to prevent the separator from being damaged by the precipitation of iron and further improve the safety of the lithium ion secondary battery.
- the slurry for a porous membrane of the present invention can be prepared by, for example, mixing non-conductive particles, a water-soluble polymer and a particulate polymer, and a solvent and optional components used as necessary at the same time or in any order. Can be manufactured.
- the slurry for porous membrane is obtained by mixing (i) non-conductive particles, a water-soluble polymer and water to obtain a dispersion of non-conductive particles having a predetermined concentration.
- Manufactured by a manufacturing method including a step, (ii) a step of dispersing a dispersion of non-conductive particles under a predetermined condition, and (iii) a step of mixing the dispersion of non-conductive particles and a particulate polymer. It is preferable to do.
- the water preferably has an electric conductivity of 30 ⁇ S / cm or less, more preferably 20 ⁇ S / cm.
- water of 15 ⁇ S / cm or less is particularly preferably used.
- the resistance by a porous film can be lowered
- the iron ion concentration of the slurry for porous membranes can be lowered.
- it is 0.5 microsiemens / cm or more.
- the state of the water-soluble polymer when mixed with the non-conductive particles and water may be, for example, an aqueous solution dissolved in water or a solid state containing no water.
- the water-soluble polymer is usually produced in an aqueous solution state. Therefore, from the viewpoint of improving the production efficiency by omitting the step of taking out the water-soluble polymer from the aqueous solution, the water-soluble polymer is preferably mixed with the non-conductive particles and water in the state of the aqueous solution.
- a dispersion of non-conductive particles can be obtained by mixing non-conductive particles, a water-soluble polymer, and water.
- the solid content concentration of the dispersion of the non-conductive particles is preferably 40% by weight or more, more preferably 43% by weight or more, particularly preferably 45% by weight or more, and preferably 60% by weight or less, more preferably It is 55% by weight or less, particularly preferably 50% by weight or less.
- the dispersion is dispersed. Thereby, the lump of the nonelectroconductive particle which was aggregated can be crushed, and a nonelectroconductive particle can be disperse
- the dispersion treatment is performed with an energy of preferably 2 Wh or more, more preferably 3 Wh or more, particularly preferably 4 Wh or more, preferably 8 Wh or less, more preferably 7 Wh or less per 1 kg of the dispersion of non-conductive particles.
- the nonconductive particles can be efficiently dispersed. Also, by making the amount lower than the upper limit, the non-conductive particles can be prevented from being crushed and the surface area of the non-conductive particles can be prevented from becoming excessively large, so that the high-temperature cycle characteristics of the lithium ion secondary battery can be improved. Can do. Furthermore, by performing the dispersion treatment with such low energy, it is possible to suppress the outflow of iron ions from the dispersion apparatus, so that the iron ion concentration of the porous membrane slurry can be lowered.
- the dispersion device used for the dispersion treatment may be any dispersion device as long as it can break up the aggregate of non-conductive fine particles and disperse the non-conductive fine particles.
- a ball mill, a bead mill, a sand mill, a medialess type disperser, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, a Hobart mixer, or the like may be used.
- the medialess type disperser is preferable in that the specific surface area of the nonconductive fine particles can be within a predetermined range.
- the manufacturing method of the slurry for porous films may contain arbitrary processes other than the process mentioned above.
- the process for keeping the iron ion concentration of the slurry for the porous film within a desired range is not particularly limited.
- a process of removing the magnetic substance by magnetism is preferable, and a process of removing the magnetic substance using a magnet is more preferable.
- the step of removing the magnetic substance using a bar magnet is more preferable. In this step, the magnetic force of the bar magnet and the number of bar magnets can be appropriately set according to the magnetic substance to be removed.
- the magnetic substance in the slurry for the porous film adheres to the bar magnet, and the magnetic substance can be removed from the slurry for the porous film.
- Magnetic substance removal devices using bar magnets are sold under the name of magnetic separators by Nippon Magnetics, Inc., or under the name of magnetic filters by Tok Engineering.
- a slurry for a porous film As a magnet, a slurry for a porous film; and a raw material liquid for the slurry for a porous film, such as a dispersion of non-conductive particles, an aqueous solution of a water-soluble polymer, an aqueous dispersion of a particulate polymer, and a solvent; What can form the magnetic field of the magnetic flux density which can collect the magnetic substance which may be mixed can be used.
- the specific magnetic flux density is preferably 100 gauss or more from the viewpoint of appropriately adsorbing and removing the magnetic substance when the magnetic substance is contained in the porous membrane slurry and the raw material liquid.
- the magnetic flux density is more preferably 1000 gauss or more from the viewpoint of improving the removal efficiency of the magnetic substance.
- the magnetic flux density is more preferably 5000 gauss or more, and particularly preferably 8000 gauss or more from the viewpoint of removing a substance having weak magnetism.
- the separator for a lithium ion secondary battery of the present invention includes an organic separator layer and a porous film.
- Organic separator layer for example, a porous substrate having fine pores can be used. By using such an organic separator layer, it is possible to prevent short-circuiting of electrodes without hindering charging / discharging of the battery in the secondary battery.
- the organic separator layer include a microporous film or a nonwoven fabric containing a polyolefin resin such as a polyethylene resin or a polypropylene resin, an aromatic polyamide resin, or the like.
- the thickness of the organic separator layer is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, and particularly preferably 10 ⁇ m or less. Within this range, the resistance due to the organic separator layer in the secondary battery is reduced, and the workability during battery production is excellent.
- porous film is obtained by applying and drying the slurry for porous film of the present invention on the organic separator layer. At this time, the porous film may be formed on one surface of the organic separator layer or on both surfaces.
- Examples of the method for applying the slurry for the porous film include a doctor blade method, a dip method, a die coating method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
- the coating amount of the slurry for the porous film is usually in a range where a porous film having a desired thickness can be obtained.
- the membrane After forming a porous membrane slurry on the organic separator layer, the membrane is dried. By drying, the solvent is removed from the membrane of the slurry for the porous membrane, and a porous membrane is obtained.
- drying method include drying with warm air, hot air, low-humidity air or the like; vacuum drying; drying method by irradiation with energy rays such as infrared rays, far infrared rays and electron beams.
- the temperature during drying is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, particularly preferably 45 ° C. or higher, preferably 90 ° C. or lower, more preferably 80 ° C. or lower, particularly preferably 70 ° C. or lower. .
- the drying temperature is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, particularly preferably 45 ° C. or higher, preferably 90 ° C. or lower, more preferably 80 ° C. or lower, particularly preferably 70 ° C. or lower.
- the drying time is preferably 5 seconds or more, more preferably 10 seconds or more, particularly preferably 15 seconds or more, preferably 5 minutes or less, more preferably 4 minutes or less, and particularly preferably 3 minutes or less.
- the porous film may be subjected to pressure treatment by a pressing method such as a mold press and a roll press.
- a pressing method such as a mold press and a roll press.
- the pressure treatment By performing the pressure treatment, the binding property between the organic separator layer and the porous film can be improved.
- the pressure treatment is excessively performed, the porosity of the porous film may be impaired. Therefore, it is preferable to appropriately control the pressure and the pressure time.
- the porous film thus obtained, voids between non-conductive particles form pores. Therefore, the porous film has a porous structure. Therefore, since the porous membrane has liquid permeability, the movement of ions is not hindered by the porous membrane. Therefore, in the lithium ion secondary battery, the battery reaction is not inhibited by the porous film. In addition, since the non-conductive particles do not have conductivity, the porous film has insulating properties.
- the porous film thus obtained has excellent mechanical strength. Therefore, even when some external force is applied to the battery, the separator can be hardly damaged. Moreover, such a porous film is difficult to break even when pressed or bent in the manufacturing process. Furthermore, even if the organic separator layer contracts due to a temperature change, the porous film can resist the contraction stress, so that deformation of the separator can be prevented. Further, this porous film usually has excellent heat resistance. Therefore, the separator of the present invention provided with this porous film can stably prevent a short circuit even at a high temperature. Therefore, in a secondary battery provided with this porous film, safety can be improved.
- this porous membrane usually has a low water content. Therefore, since it is difficult to reduce battery characteristics such as high-temperature cycle characteristics of the lithium ion secondary battery due to moisture, a high-performance lithium ion secondary battery can be realized.
- the thickness of the porous membrane is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, particularly preferably 0.3 ⁇ m or more, preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
- the lithium ion secondary battery of this invention is equipped with a positive electrode, a negative electrode, the separator of this invention, and electrolyte solution.
- the lithium ion secondary battery of the present invention includes a positive electrode, a separator of the present invention, and a negative electrode in this order, and further includes an electrolyte.
- the lithium ion secondary battery of the present invention is excellent in both safety and high temperature cycle characteristics.
- Each of the positive electrode and the negative electrode as an electrode usually includes a current collector and an electrode active material layer provided on the current collector.
- the current collector a material having electrical conductivity and electrochemical durability can be used.
- metal materials such as iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, and platinum are preferable from the viewpoint of excellent heat resistance.
- aluminum is particularly preferable as the positive electrode current collector
- copper is particularly preferable as the negative electrode current collector.
- the shape of the current collector is not particularly limited, but a sheet shape having a thickness of 0.001 mm to 0.5 mm is preferable.
- the current collector is preferably used after roughening in advance.
- the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
- the mechanical polishing method for example, an abrasive cloth paper to which abrasive particles are fixed, a grindstone, an emery buff, a wire brush provided with a steel wire, or the like can be used.
- an intermediate layer may be formed on the current collector surface in order to increase the adhesive strength and conductivity with the electrode active material layer.
- the electrode active material layer is a layer containing an electrode active material.
- an electrode active material a material capable of reversibly inserting and releasing lithium ions by applying a potential in an electrolytic solution can be used.
- an inorganic compound or an organic compound may be used.
- the positive electrode active material is roughly classified into those made of inorganic compounds and those made of organic compounds.
- Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, composite oxides of lithium and transition metals, and transition metal sulfides.
- Examples of the transition metal include Fe, Co, Ni, and Mn.
- inorganic compounds used for the positive electrode active material include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4, and other lithium-containing composite metal oxides; TiS 2 , TiS 3 , non- Transition metal sulfides such as crystalline MoS 2 ; transition metal oxides such as Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13, etc. Can be mentioned.
- examples of the positive electrode active material made of an organic compound include conductive polymers such as polyacetylene and poly-p-phenylene.
- the positive electrode active material which consists of a composite material which combined the inorganic compound and the organic compound.
- a composite material covered with a carbon material may be produced by reducing and firing an iron-based oxide in the presence of a carbon source material, and the composite material may be used as a positive electrode active material.
- Iron-based oxides tend to have poor electrical conductivity, but can be used as a high-performance positive electrode active material by using a composite material as described above.
- you may use as a positive electrode active material what carried out the element substitution of the said compound partially.
- These positive electrode active materials may be used alone or in combination of two or more at any ratio.
- the particle size of the positive electrode active material is appropriately selected in consideration of other constituent requirements of the secondary battery.
- the volume average particle diameter of the positive electrode active material is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less. It is. When the volume average particle diameter of the positive electrode active material is within this range, a battery having a large charge / discharge capacity can be obtained, and handling in producing the slurry for active material layer and the electrode is easy.
- the negative electrode active material examples include carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads, and pitch-based carbon fibers; and conductive polymers such as polyacene.
- metals such as silicon, tin, zinc, manganese, iron and nickel, and alloys thereof; oxides of the metals or alloys; sulfates of the metals or alloys; Further, metallic lithium; lithium alloys such as Li—Al, Li—Bi—Cd, and Li—Sn—Cd; lithium transition metal nitride; silicon and the like may be used.
- an electrode active material having a conductive material attached to the surface by a mechanical modification method may be used. These negative electrode active materials may be used alone or in combination of two or more at any ratio.
- the particle size of the negative electrode active material is appropriately selected in consideration of other constituent requirements of the lithium ion secondary battery.
- the volume average particle diameter of the negative electrode active material is preferably 1 ⁇ m or more, more preferably 15 ⁇ m or more, preferably 50 ⁇ m or less, more preferably 30 ⁇ m. It is as follows.
- the electrode active material layer preferably contains an electrode binder in addition to the electrode active material.
- an electrode binder By including the electrode binder, the binding property of the electrode active material layer in the electrode is improved, and the strength against the mechanical force is increased in the process of winding the electrode. Further, since the electrode active material layer in the electrode is difficult to be detached, the possibility of a short circuit due to the desorbed material is reduced.
- a polymer can be used as the binder for the electrode.
- a polymer can be used.
- polyethylene polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, polyacrylonitrile derivatives, and the like may be used.
- PTFE polytetrafluoroethylene
- PVDF polyvinylidene fluoride
- FEP tetrafluoroethylene-hexafluoropropylene copolymer
- polyacrylic acid derivatives polyacrylonitrile derivatives, and the like
- the binder for the porous film may be used.
- the binder for electrodes one type may be used alone, or two or more types may be used in combination at any ratio.
- the amount of the binder for the electrode in the electrode active material layer is preferably 0.1 parts by weight or more, more preferably 0.2 parts by weight or more, particularly preferably 0.5 parts by weight or more with respect to 100 parts by weight of the electrode active material. It is preferably 5 parts by weight or less, more preferably 4 parts by weight or less, and particularly preferably 3 parts by weight or less. When the amount of the electrode binder is within the above range, it is possible to prevent the electrode active material from dropping from the electrode without inhibiting the battery reaction.
- the electrode active material layer may contain any component other than the electrode active material and the electrode binder as long as the effects of the present invention are not significantly impaired. Examples thereof include a conductive material and a reinforcing material.
- arbitrary components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- Examples of the conductive material include conductive carbon such as acetylene black, ketjen black, carbon black, graphite, vapor-grown carbon fiber, and carbon nanotube; carbon powder such as graphite; fiber and foil of various metals; .
- conductive carbon such as acetylene black, ketjen black, carbon black, graphite, vapor-grown carbon fiber, and carbon nanotube
- carbon powder such as graphite
- fiber and foil of various metals .
- the reinforcing material for example, various inorganic and organic spherical, plate, rod or fiber fillers can be used.
- the amount of the conductive material and the reinforcing agent used is usually 0 part by weight or more, preferably 1 part by weight or more, preferably 20 parts by weight or less, more preferably 10 parts by weight, with respect to 100 parts by weight of the electrode active material. It is as follows.
- the thickness of the electrode active material layer is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, preferably 300 ⁇ m or less, more preferably 250 ⁇ m or less for both the positive electrode and the negative electrode.
- the method for producing the electrode active material layer is not particularly limited.
- the electrode active material layer can be produced, for example, by applying an electrode active material and a solvent, and, if necessary, an electrode active material layer slurry containing an electrode binder and optional components on a current collector and drying it.
- the solvent either water or an organic solvent can be used.
- Electrolyte As the electrolytic solution, for example, a solution obtained by dissolving a lithium salt as a supporting electrolyte in a non-aqueous solvent can be used.
- the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
- LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferably used.
- One of these may be used alone, or two or more of these may be used in combination at any ratio.
- the amount of the supporting electrolyte is preferably 1% by weight or more, more preferably 5% by weight or more, preferably 30% by weight or less, more preferably 20% by weight or less with respect to the electrolytic solution. By keeping the amount of the supporting electrolyte within this range, the ionic conductivity can be increased, and the charging characteristics and discharging characteristics of the lithium ion secondary battery can be improved.
- a solvent capable of dissolving the supporting electrolyte can be used.
- the solvent include alkyl carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), methyl ethyl carbonate (MEC); Esters such as butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide;
- DMC dimethyl carbonate
- EC ethylene carbonate
- DEC diethyl carbonate
- PC propylene carbonate
- BC butylene carbonate
- MEC methyl ethyl carbonate
- Esters such as butyrolactone and methyl formate
- ethers such as 1,2-dimethoxyethane and tetrahydrofuran
- sulfur-containing compounds such as sulfolane
- the electrolytic solution may contain an additive as necessary.
- an additive for example, carbonate compounds such as vinylene carbonate (VC) are preferable.
- An additive may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
- a method for producing a lithium ion secondary battery for example, an electrode and a separator are appropriately combined and stacked, and according to the shape of the battery, it is wound and folded into a battery container, and an electrolytic solution is injected into the battery container and sealed. The method of doing is mentioned.
- an overcurrent prevention element such as a fuse or a PTC element, a lead plate, an expanded metal, or the like may be inserted to prevent overcharging / discharging or an increase in pressure inside the battery.
- the shape of the battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
- the BET specific surface area is a value determined by the BET method.
- the BET specific surface area of the non-conductive particles was measured with a wet specific surface area measuring device (“Flowsorb III 2305” manufactured by Shimadzu Corporation).
- the slurry for the porous membrane was measured with a laser diffraction particle size distribution analyzer (“SALD-2000” manufactured by Shimadzu Corporation) to determine D10, D50 and D90 of the non-conductive particles.
- SALD-2000 laser diffraction particle size distribution analyzer
- Method for measuring the aspect ratio of non-conductive particles Fifty particles were selected from a transmission electron microscope (SEM) photograph, image analysis was performed, and the aspect ratio of each particle was measured. And the average value was calculated
- the porous film slurry obtained in the examples and comparative examples is filtered through a magnetic filter (manufactured by Tok Engineering Co., Ltd.) at room temperature and a magnetic flux density of 16000 gauss, and the particulate metal remaining in the magnetic filter is acidified. To obtain a sample solution. Using this sample solution, the concentration of iron ions contained in the slurry for the porous membrane was measured by ICP (Inductively Coupled Plasma).
- the calculated ratio W1 / W2 was evaluated according to the following criteria. The smaller the difference between W1 and W2, the smaller the moisture content of the porous membrane. When the water content of the porous film is small, curling of the separator in the dry room where the battery is manufactured can be suppressed. Further, it is preferable that the amount of water in the porous film is small because side reactions in the secondary battery due to moisture do not occur and battery characteristics such as high-temperature cycle characteristics do not deteriorate.
- A: W1 / W2 is less than 1.5.
- B: W1 / W2 is 1.5 or more and less than 2.0.
- C: W1 / W2 is 2.0 or more and less than 2.5.
- D: W1 / W2 is 2.5 or more and less than 3.0.
- E: W1 / W2 is 3.0 or more.
- a separator provided with a porous film was cut into a rectangle having a width of 1 cm and a length of 5 cm to obtain a test piece. Place the test piece on the surface with the porous membrane side facing up, and place a stainless steel rod with a diameter of 1 mm in the short direction on the surface of the organic separator layer at the center in the length direction (position 2.5 cm from the end). Lay on the floor. The test piece was bent 180 ° around the stainless steel bar so that the porous membrane was on the outside. The above test was performed on 10 test pieces, and the presence or absence of cracks or powder falling was observed in the bent portion of the porous film of each test piece, and the determination was made according to the following criteria.
- powder falling means that non-conductive particles fall off from the porous film. It shows that the porous film formed on the organic separator layer is excellent in the powder-off property as the number of cracks and powder-off is small.
- E Cracking or powder falling is observed in all 10 sheets.
- D50 of the non-conductive particles of the prepared slurry for the porous membrane was determined. By determining this D50 according to the following criteria, the dispersibility of the slurry for a porous membrane was evaluated. It shows that it is excellent in dispersibility, so that D50 of the nonelectroconductive particle in the slurry for porous films is near the primary particle diameter of a nonelectroconductive particle.
- D50 of the nonconductive particles in the slurry for the porous membrane is less than 1.2 times the primary particle diameter of the nonconductive particles.
- D50 of the nonconductive particles in the slurry for the porous membrane is 1.2 times or more and less than 1.4 times the primary particle diameter of the nonconductive particles.
- C: D50 of the nonconductive particles in the slurry for the porous film is 1.4 times or more and less than 1.6 times the primary particle diameter of the nonconductive particles.
- D: D50 of the nonconductive particles in the slurry for the porous film is 1.6 times or more and less than 1.8 times the primary particle diameter of the nonconductive particles.
- E: D50 of the nonconductive particles in the slurry for the porous membrane is 1.8 times or more the primary particle diameter of the nonconductive particles.
- the primary particle diameter of the non-conductive particles was measured as follows by SEM observation. That is, non-conductive particles were photographed at a magnification of 25000 times with a field emission scanning electron microscope (“Hitachi S-4700” manufactured by Hitachi High-Tech), and 200 particles were arbitrarily selected from the photographed photographs.
- Hitachi S-4700 a field emission scanning electron microscope
- the longest side of the particle image is La and the shortest side is Lb
- (La + Lb) / 2 is the particle diameter
- the number average particle diameter is calculated as an average of 200 particles. The value of the number average particle diameter was adopted as the primary particle diameter of the nonconductive particles.
- Capacity maintenance rate is 95% or more.
- B Capacity maintenance rate is 90% or more and less than 95%.
- C Capacity maintenance rate is 85% or more and less than 90%.
- D Capacity maintenance rate is 80% or more and less than 85%.
- E Capacity maintenance rate is less than 80%.
- Example 1 [1.1. Production of alumina particles]
- Aluminum hydroxide having a volume average particle diameter of 2.8 ⁇ m obtained by the Bayer method was charged into a box-shaped mortar at a charging density of 0.61 g / cm 3 .
- This box-shaped mortar was placed in a furnace of a stationary electric furnace (“Siliconit Furnace” manufactured by Siliconit Takao Kogyo Co., Ltd.) and fired at a firing temperature of 1180 ° C. for 10 hours. Thereafter, the produced ⁇ -alumina particles were taken out of the furnace.
- a vibrating ball mill (“Vibrating Mill” manufactured by Chuo Kako Co., Ltd.) in which 7.8 kg of alumina balls having a diameter of 15 mm were accommodated in a 6-liter pot was prepared.
- the pot was filled with 1.0 kg of the above ⁇ -alumina particles and 15 g of ethanol and pulverized for 36 hours to obtain ⁇ -alumina particles having a volume average particle diameter of 0.6 ⁇ m.
- the volume average particle diameter of the ⁇ -alumina particles was measured using a nanoparticle distribution measuring device (“SALD-7100” manufactured by Shimadzu Corporation).
- SALD-7100 nanoparticle distribution measuring device
- the aspect ratio and primary particle diameter of the ⁇ -alumina particles obtained were measured as described above.
- a reactor equipped with a stirrer is supplied with 70 parts of ion exchange water, 0.15 part of sodium lauryl sulfate (“Emar 2F” manufactured by Kao Chemical Co., Ltd.) as an emulsifier and 0.5 part of ammonium persulfate, and the gas phase part is nitrogen gas.
- the temperature was raised to 60 ° C.
- the reaction was carried out at 60 ° C. After completion of the addition, the mixture was further stirred at 70 ° C. for 3 hours, and then the reaction was terminated to produce an aqueous dispersion of the particulate polymer A.
- the nonionic surfactant is a surfactant obtained by polymerizing propylene oxide and ethylene oxide at a polymerization ratio of 50:50.
- the obtained dispersion After filtering the obtained dispersion with a prefilter (aperture 20 ⁇ m), it is further filtered through a magnetic filter (manufactured by Tok Engineering Co., Ltd.) at room temperature and a magnetic flux density of 8000 gauss to obtain a slurry for a porous membrane.
- a magnetic filter manufactured by Tok Engineering Co., Ltd.
- the D10, D50, D90, and BET specific surface areas of the nonconductive particles contained in the slurry for the porous membrane, and the dispersibility of the slurry for the porous membrane were as described above.
- the iron ion concentration of the slurry for porous films was measured as described above.
- a planetary mixer with a disper 70 parts of artificial graphite (volume average particle diameter: 24.5 ⁇ m) having a specific surface area of 4 m 2 / g as a negative electrode active material and 30 parts of SiOx (manufactured by Shin-Etsu Chemical Co., Ltd .; volume average particle diameter 5 ⁇ m)
- a dispersant 1 part of a 1% aqueous solution of carboxymethyl cellulose (“BSH-12” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was added as a dispersant, and the solid content was adjusted to 55% with ion-exchanged water. Then, it mixed for 60 minutes at 25 degreeC.
- the solid content concentration was adjusted to 52% with ion-exchanged water. Thereafter, the mixture was further stirred at 25 ° C. for 15 minutes to obtain a mixed solution.
- 1.0 part by weight of the aqueous dispersion containing the negative electrode polymer is added in terms of solid content, and ion-exchanged water is added to adjust the final solid content concentration to 50%, and further for 10 minutes. Stir. This was defoamed under reduced pressure to obtain a negative electrode slurry having good fluidity.
- the negative electrode slurry was applied onto a copper foil having a thickness of 20 ⁇ m, which was a current collector, with a comma coater so that the film thickness after drying was about 150 ⁇ m and dried. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Then, the negative electrode original fabric was obtained by heat-processing at 120 degreeC for 2 minute (s). This negative electrode raw material was rolled with a roll press to obtain a negative electrode having a negative electrode active material layer having a thickness of 80 ⁇ m.
- the positive electrode obtained in the step [1.8] was cut into a width of 40 mm and a length of 40 mm to obtain a square positive electrode.
- the negative electrode obtained in the step [1.9] was cut into a width of 42 mm and a length of 42 mm to obtain a square negative electrode.
- the separator manufactured by the said process [1.7] was prepared, this separator was cut out to width 46mm x length 46mm, and the square separator was obtained.
- a square separator was disposed on the surface of the square positive electrode on the positive electrode active material layer side. Furthermore, a square negative electrode was placed on the separator so that the surface on the negative electrode active material layer side faces the separator. Thereby, the laminated body provided with a positive electrode, a separator, and a negative electrode in this order was obtained.
- the laminate was placed in an aluminum wrapping material.
- the electrolytic solution was poured into the aluminum packaging material so that no air remained. Furthermore, by performing heat sealing at 150 ° C., the opening of the aluminum packaging material was sealed to manufacture a laminate type lithium ion secondary battery.
- the electrolytic solution one obtained by adding 2% by volume of vinylene carbonate (VC) to a LiPF 6 solution having a concentration of 1.0 M was used.
- VC vinylene carbonate
- EC ethylene carbonate
- DEC diethyl carbonate
- Example 2 The amount of energy applied during dispersion of the dispersion of non-conductive particles in step [1.5] was changed to 6 Wh / kg.
- a lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1 except for the above items.
- Example 3 The amount of acrylonitrile was changed to 19.85 parts, 77.95 parts of 2-ethylhexyl acrylate was used instead of butyl acrylate as the (meth) acrylic acid ester monomer, and allyl glycidyl ether was not used. And an aqueous dispersion of the particulate polymer B was produced in the same manner as in Step [1.2] of Example 1 except that 0.2 part of allyl methacrylate was used instead of N-methylolacrylamide. did.
- the aqueous dispersion of the particulate polymer B was used in place of the aqueous dispersion of the particulate polymer A.
- a lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1 except for the above items.
- Example 4 Step [1.2] of Example 1 except that the amount of acrylonitrile was changed to 20 parts, the amount of butyl acrylate was changed to 73.8 parts, and the amount of methacrylic acid was changed to 4 parts. In the same manner, an aqueous dispersion of the particulate polymer C was produced.
- the aqueous dispersion of the particulate polymer C was used in place of the aqueous dispersion of the particulate polymer A.
- a lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1 except for the above items.
- Example 5 In the step [1.4], instead of the aqueous solution of the water-soluble polymer A, a 10% by weight aqueous solution of a polycarboxylic acid polymer (“SN Dispersant 5020” manufactured by San Nopco) was used. A lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1 except for the above items.
- SN Dispersant 5020 a polycarboxylic acid polymer manufactured by San Nopco
- Example 6 A 1 L 4-neck flask equipped with a reflux condenser was charged with 142 g of pure water and stirred at 90 ° C., while stirring at 90 ° C., 600 g of a 30% aqueous solution of sodium acrylate, 60% of sodium 3-allyloxy-2-hydroxypropanesulfonate An aqueous solution of water-soluble polymer B was obtained by adding 38 g of an aqueous solution and 200 g of a 3% aqueous solution of ammonium persulfate dropwise over 3.5 hours to cause a copolymerization reaction. When the unreacted monomer was measured by a bromine addition method and a polarographic method, the polymerization rate was 96%. The number average molecular weight of this water-soluble polymer B measured by gel permeation chromatography was 6000.
- the aqueous solution of the water-soluble polymer B was used in place of the water-soluble polymer A.
- a lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1 except for the above items.
- Example 7 To a reactor equipped with a stirrer, 70 parts of ion-exchanged water, 0.15 part of sodium lauryl sulfate (“Emar 2F” manufactured by Kao Chemical Co., Ltd.) as an emulsifier and 0.5 part of ammonium persulfate were respectively supplied. The gas was replaced with gas, and the temperature was raised to 60 ° C.
- Emar 2F sodium lauryl sulfate
- the aqueous solution of the water-soluble polymer C was used in place of the water-soluble polymer A.
- a lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1 except for the above items.
- Example 8 In the step [1.4], the amount of the aqueous solution of the water-soluble polymer A was changed to 2 parts by the amount of the water-soluble polymer A.
- a lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1 except for the above items.
- Example 9 An aqueous solution of water-soluble polymer D was obtained in the same manner as in the above step [1.3] except that the amount of the 30% sodium persulfate aqueous solution was changed to 1.0 part by the amount of sodium persulfate.
- the obtained water-soluble polymer had a weight average molecular weight of 12,000.
- the aqueous solution of the water-soluble polymer D was used in place of the water-soluble polymer A.
- a lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1 except for the above items.
- Example 10 In the step [1.4], ⁇ -alumina particles were classified, and then ⁇ -alumina particles were mixed. A lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1 except for the above items.
- Example 11 In the step [1.4], water having an electric conductivity of 100 ⁇ S / cm was used instead of water having an electric conductivity of 10 ⁇ S / cm.
- a lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1 except for the above items.
- Example 12 Butyl acrylate, acrylonitrile, allyl glycidyl ether and N-methylol acrylamide were not used. Instead, 46.7 parts of styrene, 49.5 parts of butadiene and 0.5 parts of acrylic acid were used, and the amount of methacrylic acid was An aqueous dispersion of particulate polymer D was produced in the same manner as in step [1.2] of Example 1 except that the amount was changed to 3.3 parts.
- the aqueous dispersion of the particulate polymer D was used in place of the aqueous dispersion of the particulate polymer A.
- a lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1 except for the above items.
- Example 13 In the step [1.4], barium sulfate (primary particle diameter 0.5 ⁇ m, specific surface area 3.5 g / m 2 ) was used instead of ⁇ -alumina particles. A lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1 except for the above items.
- Example 14 In the step [1.4], barium sulfate (primary particle diameter 0.6 ⁇ m, specific surface area 3.0 g / m 2 ) was used instead of ⁇ -alumina particles. A lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 1 except for the above items.
- a lithium ion secondary battery excellent in high-temperature cycle characteristics is obtained.
- the non-conductive particles are excellent in dispersibility. Therefore, since non-conductive particles can be densely filled in the porous film, it has been confirmed that the heat resistance and mechanical strength of the porous film can be improved and the safety of the lithium ion secondary battery can be improved.
- the non-conductive particles are highly dispersible, it is possible to prevent the non-conductive particles from aggregating in the porous film to generate giant particles, thus preventing the occurrence of short circuits due to the giant particles breaking through the organic separator layer. Is possible.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Cell Separators (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
すなわち、本発明は以下の通りである。
前記水溶性重合体の量が、前記非導電性粒子100重量部に対して、0.05重量部~2重量部であり、
前記非導電性粒子のBET比表面積が、5m2/g~10m2/gである、リチウムイオン二次電池多孔膜用スラリー。
〔2〕 前記非導電性粒子の累積粒度分布において、小径側からの累積体積が10%である粒子径をD10、小径側からの累積体積が50%である粒子径をD50、小径側からの累積体積が90%である粒子径をD90としたとき、
D10が、0.2μm~0.4μmであり、
D50が、0.5μm~0.9μmであり、
D90が、1.0μm~3.0μmである、〔1〕記載のリチウムイオン二次電池多孔膜用スラリー。
〔3〕 鉄イオン濃度が5ppm~500ppmである、〔1〕又は〔2〕記載のリチウムイオン二次電池多孔膜用スラリー。
〔4〕 前記粒子状重合体が、粒子状アクリル重合体である、〔1〕~〔3〕のいずれか一項に記載のリチウムイオン二次電池多孔膜用スラリー。
〔5〕 固形分濃度が35重量%~50重量%である、〔1〕~〔4〕のいずれか一項に記載のリチウムイオン二次電池多孔膜用スラリー。
〔6〕 〔1〕~〔5〕のいずれか一項に記載のリチウムイオン二次電池多孔膜用スラリーの製造方法であって、
非導電性粒子と、酸性基含有単量体単位を有する水溶性重合体と、電気伝導度0.5μS/cm~30μS/cmの水とを混合して、固形分濃度40重量%~60重量%の非導電性粒子の分散体を得る工程、
前記非導電性粒子の分散体を、2Wh/kg~8Wh/kgの条件で分散させる工程、及び、
前記非導電性粒子の分散体と粒子状重合体とを混合する工程を含む、リチウムイオン二次電池多孔膜用スラリーの製造方法。
〔7〕 有機セパレータ層と、〔1〕~〔5〕のいずれか一項に記載のリチウムイオン二次電池多孔膜用スラリーを前記有機セパレータ層上に塗布及び乾燥して得られる多孔膜層とを備える、リチウムイオン二次電池用セパレータ。
〔8〕 正極、負極、〔7〕記載のリチウムイオン二次電池用セパレータ、及び電解液を備える、リチウムイオン二次電池。
本発明のリチウムイオン二次電池多孔膜用スラリーの製造方法によれば、高温サイクル特性及び安全性の両方に優れたリチウムイオン二次電池を実現できるリチウムイオン二次電池多孔膜用スラリーを製造できる。
本発明のリチウムイオン二次電池用セパレータによれば、高温サイクル特性及び安全性の両方に優れたリチウムイオン二次電池を実現できる。
本発明のリチウムイオン二次電池は、高温サイクル特性及び安全性の両方に優れる。
本発明のリチウムイオン二次電池多孔膜用スラリー(以下、適宜「多孔膜用スラリー」ということがある。)は、非導電性粒子、水溶性重合体及び粒子状重合体を含む。また、この多孔膜用スラリーは、通常、溶媒を含む。多孔膜用スラリーが溶媒を含む場合、通常は、非導電性粒子及び粒子状重合体は溶媒中に分散しており、水溶性重合体は溶媒に溶解している。
非導電性粒子としては、多孔膜用スラリー中におけるBET比表面積が、通常5m2/g以上であり、また、通常10m2/g以下、好ましくは9m2/g以下、より好ましくは8m2/g以下の非導電性粒子を用いる。前記範囲の下限値以上のBET比表面積を有する非導電性粒子を用いることにより、非導電性粒子の充填を密にできるので、多孔膜の機械的強度を向上させることができ、更に通常は耐熱性を向上させることができる。そのため、リチウムイオン二次電池の安全性を高めることが可能である。また、前記範囲の上限値以下のBET比表面積を有する非導電性粒子を用いることにより、リチウムイオン二次電池の高温サイクル特性等の電気特性を向上させることができる。したがって、非導電性粒子のBET比表面積を前記の範囲に収めることにより、リチウムイオン二次電池の安全性と高温サイクル特性等の電池特性とをバランス良く良好にできる。
水溶性重合体としては、酸性基含有単量体単位を有する水溶性の重合体を用いる。ここで、酸性基含有単量体単位とは、酸性基含有単量体を重合して形成される構造を有する構造単位を示す。また、酸性基含有単量体とは、酸性基を含む単量体を示す。
本発明の多孔膜用スラリーでは、このように非導電性粒子の分散性が良好であることにより、非導電性粒子の凝集を防止できるので、多孔膜用スラリーにおける非導電性粒子のBET比表面積、D10、D50及びD90を前記の好適な範囲に容易に収めることができる。また、非導電性粒子の凝集を防止できるので、凝集で生じうる巨大粒子による多孔膜及び有機セパレータ層の破損を防止できる。そのため、短絡を防止してリチウムイオン二次電池の安全性を向上させることができる。
また、上述した単量体の塩も、酸性基含有単量体として用いうる。
ここで、水溶性重合体の重量平均分子量は、展開液をN,N-ジメチルホルムアミド(DMF)とするゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレン換算の値として測定しうる。
粒子状重合体は、通常、多孔膜用スラリーにおいては粒子状で分散している。したがって、多孔膜用スラリーが溶媒として水等の水系溶媒を含む場合、通常は、粒子状重合体は非水溶性の重合体である。また、粒子状重合体は、多孔膜においてはバインダーとして機能できるようになっている。したがって、多孔膜において粒子状重合体は、通常、非導電性粒子同士を結着させる機能を発揮し、また、非導電性粒子と有機セパレータ層とを結着させる機能を発揮する。
また、架橋性単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
溶媒としては、水系溶媒を用いることが好ましい。水系溶媒としては、例えば、水;ダイアセトンアルコール、γ-ブチロラクトン等のケトン類;エチルアルコール、イソプロピルアルコール、ノルマルプロピルアルコール等のアルコール類;プロピレングリコールモノメチルエーテル、メチルセロソルブ、エチルセロソルブ、エチレングリコールターシャリーブチルエーテル、ブチルセロソルブ、3-メトキシ-3-メチル-1-ブタノール、エチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル等のグリコールエーテル類;1,3-ジオキソラン、1,4-ジオキソラン、テトラヒドロフラン等のエーテル類;などが挙げられる。また、これらの溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。中でも水は、可燃性がなく、リサイクルに要する費用を低減できるという観点から、好ましい。
多孔膜用スラリーは、上述した非導電性粒子、水溶性重合体、粒子状重合体及び溶媒以外に、任意の成分を含みうる。このような任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
また、増粘剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
また、界面活性剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
ホスホン系キレート化合物としては、例えば、1-ヒドロキシエタン-1,1,-ジホスホン酸(HEDP)が挙げられる。
また、キレート剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
本発明の多孔膜用スラリーは、非導電性粒子の分散性に優れる。そのため、非導電性粒子が凝集して巨大粒子が形成されることを防止できる。したがって、巨大粒子による有機セパレータ層の破損を防止できるので、リチウムイオン二次電池の短絡を防止して安全性を高めることが可能となっている。
本発明の多孔膜用スラリーは、例えば、非導電性粒子、水溶性重合体及び粒子状重合体、並びに、必要に応じて用いられる溶媒及び任意の成分を同時に又は任意の順番で混合することにより、製造しうる。中でも、溶媒として水を含む場合には、多孔膜用スラリーは、(i)非導電性粒子と水溶性重合体と水とを混合して、所定の濃度の非導電性粒子の分散体を得る工程、(ii)非導電性粒子の分散体を所定の条件で分散させる工程、及び、(iii)非導電性粒子の分散体と粒子状重合体とを混合する工程、を含む製造方法により製造することが好ましい。
多孔膜用スラリーの鉄イオン濃度を所望の範囲に収めるための工程は、特に限定はされないが、例えば、磁気により磁性物質を除去する工程が好ましく、磁石を用いて磁性物質を除去する工程がより好ましく、中でも棒磁石を用いて磁性物質を除去する工程がさらに好ましい。この工程では、棒磁石の磁力及び棒磁石の本数を、除去する磁性物質に合わせて適切に設定しうる。例えば、多孔膜用スラリーに棒磁石を通過させることで、その多孔膜用スラリー中の磁性物質が棒磁石に付着して、多孔膜用スラリーから磁性物質を除去できる。棒磁石を用いた磁性物質除去装置は、例えば、日本マグネティックス社よりマグネットセパレータという名称で販売されていたり、トック・エンジニアリング社よりマグネットフィルターという名称で販売されている。
本発明のリチウムイオン二次電池用セパレータ(以下、適宜「セパレータ」ということがある。)は、有機セパレータ層と多孔膜とを備える。
有機セパレータ層としては、例えば、微細な孔を有する多孔性基材を用いうる。このような有機セパレータ層を用いることにより、二次電池において電池の充放電を妨げることなく電極の短絡を防止することができる。有機セパレータ層の具体例を挙げると、ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂、芳香族ポリアミド樹脂などを含む微孔膜または不織布などが挙げられる。
多孔膜は、本発明の多孔膜用スラリーを前記有機セパレータ層上に塗布及び乾燥して得られる。この際、多孔膜は、有機セパレータ層の片方の面に形成してもよく、両方の面に形成してもよい。
また、この多孔膜は、通常、優れた耐熱性を有する。そのため、この多孔膜を備えた本発明のセパレータは、高温になっても短絡を安定して防止できる。
したがって、この多孔膜を備える二次電池において、安全性を高めることができる。
本発明のリチウムイオン二次電池は、正極、負極、本発明のセパレータ、及び電解液を備える。具体的には、本発明のリチウムイオン二次電池は、正極、本発明のセパレータ及び負極をこの順に備え、更に電解液を備える。本発明のリチウムイオン二次電池は、安全性及び高温サイクル特性のいずれにも優れる。
電極としての正極及び負極は、いずれも、通常、集電体と、その集電体上に設けられた電極活物質層とを備える。
集電体は、電極活物質層との接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、例えば、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、例えば、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用されうる。
また、電極活物質層との接着強度や導電性を高めるために、集電体表面に中間層を形成してもよい。
また、例えば、鉄系酸化物を炭素源物質の存在下において還元焼成することで、炭素材料で覆われた複合材料を作製し、この複合材料を正極活物質として用いてもよい。鉄系酸化物は電気伝導性に乏しい傾向があるが、前記のような複合材料にすることにより、高性能な正極活物質として使用できる。
さらに、前記の化合物を部分的に元素置換したものを正極活物質として用いてもよい。
これらの正極活物質は、1種類だけを用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。また、前述の無機化合物と有機化合物との混合物を正極活物質として用いてもよい。
電解液としては、例えば、非水系の溶媒に支持電解質としてリチウム塩を溶解したものを使用しうる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C4F9SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO2)2NLi、(C2F5SO2)NLiなどが挙げられる。特に溶媒に溶けやすく高い解離度を示すLiPF6、LiClO4、CF3SO3Liは好適に用いられる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
リチウムイオン二次電池の製造方法としては、例えば、電極及びセパレータを適切に組み合わせて重ね、電池形状に応じて、巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する方法が挙げられる。また、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、リード板、エキスパンドメタルなどを入れ、過充放電の防止、電池内部の圧力上昇の防止をしてもよい。電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
(非導電性粒子のBET比表面積の測定方法)
BET比表面積は、BET法により求められる値である。湿式比表面積測定装置(島津製作所社製「フローソーブIII 2305」)により、非導電性粒子のBET比表面積を測定した。
多孔膜用スラリーをレーザー回折式粒度分布測定装置(島津製作所社製「SALD-2000」)により測定して、非導電性粒子のD10、D50及びD90を求めた。
透過型電子顕微鏡(SEM)の写真から50個の粒子の選び出し、画像解析を行い、各粒子のアスペクト比を測定した。そして、その平均値を、非導電性粒子のアスペクト比として求めた。具体的には倍率100倍で全体像が観察できる非導電性粒子像を大きなものから順に50個の粒子を選び、その一つ一つを倍率1000倍で観察し、印刷した写真から非導電性粒子のアスペクト比を測定した。
実施例及び比較例で得た多孔膜用スラリーに対し、磁気フィルター(トックエンジニアリング株式会社製)を介し、室温、磁束密度16000ガウスの条件でろ過し、磁気フィルター内に残った粒子状金属を酸で溶解させ、試料溶液を得た。この試料溶液を用いて、ICP(Inductively Coupled Plasma)により、多孔膜用スラリーに含まれる鉄イオンの濃度を測定した。
多孔膜を備えるセパレータを、幅10cm×長さ10cmの大きさで切り出して、試験片とした。この試験片を、温度25℃、湿度50%で24時間放置した。その後、電量滴定式水分計を用い、カールフィッシャー法(JIS K-0068(2001)水分気化法、気化温度150℃)により、試験片の水分量を測定した。この水分量(W1)とする。
次に、温度25℃、露点-60℃、湿度0.05%で24時間放置した試験片を、上記と同様にして水分量を測定した。この水分量(W2)とする。
こうして求めた水分量W1及びW2から、比W1/W2を算出した。
A:W1/W2が、1.5未満。
B:W1/W2が、1.5以上2.0未満。
C:W1/W2が、2.0以上2.5未満。
D:W1/W2が、2.5以上3.0未満。
E:W1/W2が、3.0以上。
多孔膜を備えるセパレータを、幅1cm×長さ5cmの矩形に切って、試験片とした。この試験片の多孔膜側の面を上にして机上に置き、長さ方向の中央(端部から2.5cmの位置)の有機セパレータ層側の面に、直径1mmのステンレス棒を短手方向に横たえて設置した。このステンレス棒を中心にして、試験片を多孔膜が外側になるように180°折り曲げた。以上の試験を10枚の試験片について行い、各試験片の多孔膜の折り曲げた部分について、ひび割れまたは粉落ちの有無を観察し、下記の基準により判定した。ここで粉落ちとは、多孔膜からの非導電性粒子の脱落のことをいう。ひび割れ及び粉落ちが少ないほど、有機セパレータ層上に形成した多孔膜が粉落ち性に優れることを示す。
A:10枚中全てに、ひび割れ及び粉落ちがみられない。
B:10枚中1~3枚に、ひび割れまたは粉落ちがみられる。
C:10枚中4~6枚に、ひび割れまたは粉落ちがみられる。
D:10枚中7~9枚に、ひび割れまたは粉落ちがみられる。
E:10枚中全てに、ひび割れまたは粉落ちがみられる。
レーザー回折式粒度分布測定装置(島津製作所社製「SALD-2000」)を用いて、調製後の多孔膜用スラリーの非導電性粒子のD50を求めた。このD50を下記の基準で判定することにより、多孔膜用スラリーの分散性を評価した。多孔膜用スラリー中の非導電性粒子のD50が非導電性粒子の一次粒子径に近いほど、分散性に優れることを示す。
A:多孔膜用スラリー中の非導電性粒子のD50が、非導電性粒子の一次粒子径の1.2倍未満である。
B:多孔膜用スラリー中の非導電性粒子のD50が、非導電性粒子の一次粒子径の1.2倍以上1.4倍未満である。
C:多孔膜用スラリー中の非導電性粒子のD50が、非導電性粒子の一次粒子径の1.4倍以上1.6倍未満である。
D:多孔膜用スラリー中の非導電性粒子のD50が、非導電性粒子の一次粒子径の1.6倍以上1.8倍未満である。
E:多孔膜用スラリー中の非導電性粒子のD50が、非導電性粒子の一次粒子径の1.8倍以上である。
ラミネート型のリチウムイオン二次電池について、45℃、0.2Cで3Vから4.3Vまで充電し、次いで0.2Cで4.3Vから3Vまで放電する充放電を、100サイクル繰り返した。2サイクル目の放電容量に対する100サイクル目の放電容量の割合を百分率で算出した値を容量維持率とした。この容量維持率を、下記の基準で判断した。この容量維持率の値が大きいほど、放電容量の低下が少なく、高温サイクル特性に優れていると判断できる。
A:容量維持率が、95%以上。
B:容量維持率が、90%以上、95%未満。
C:容量維持率が、85%以上、90%未満。
D:容量維持率が、80%以上、85%未満。
E:容量維持率が、80%未満。
[1.1.アルミナ粒子の製造]
バイヤー法で得られた体積平均粒子径2.8μmの水酸化アルミニウムを、0.61g/cm3の仕込み密度で箱型匣鉢に仕込んだ。この箱型匣鉢を、定置型電気炉(シリコニット高熱工業株式会社製「シリコニット炉」)の炉内に設置し、焼成温度1180℃で10時間焼成した。その後、生成したαアルミナの粒子を炉内から取り出した。
得られたαアルミナ粒子のアスペクト比及び一次粒子径を、上述した要領で測定した。
攪拌機を備えた反応器に、イオン交換水70部、乳化剤としてラウリル硫酸ナトリウム(花王ケミカル社製「エマール2F」)0.15部及び過硫酸アンモニウム0.5部を供給し、気相部を窒素ガスで置換し、60℃に昇温した。
水50部、アクリル酸80部、アクリルアミド-2-メチルプロパンスルホン酸19.92部及び2-(N-アクリロイル)アミノ-2-メチル-1,3-プロパン-ジスルホン酸0.08部を混合して、単量体組成物を得た。
前記工程[1.1]で得たαアルミナ粒子100部、前記工程[1.3]で得た水溶性重合体Aの水溶液を水溶性重合体Aの量で0.5部、及び、カルボキシメチルセルロースの4%水溶液37.5部(カルボキシメチルセルロースの量で1.5部)を混合し、更に電気伝導度が10μS/cmの水を添加して固形分濃度を50重量%に調整することにより、非導電性粒子の分散体を得た。
前記工程[1.4]で得た非導電性粒子の分散体を、メディアレス分散装置(IKA社製、「インライン型粉砕機MKO」)によって4000回転、5.4Wh/kgのエネルギーで1時間分散させた。
前記工程[1.5]で分散処理を施した非導電性粒子の分散体、前記工程[1.2]で得た粒子状重合体Aの水分散液を13.3部(粒子状重合体Aの量で6部)、及び、ノニオン系界面活性剤の水溶液を固形分換算で0.5部混合し、分散体を得た。前記のノニオン系界面活性剤は、プロピレンオキサイドとエチレンオキサイドを重合比50:50で重合させた界面活性剤である。
得られた分散体に対しプレフィルター(目開き20μm)でろ過した後、さらに磁気フィルター(トックエンジニアリング株式会社製)を介し、室温、磁束密度8000ガウスの条件で、ろ過して、多孔膜用スラリーを得た。
得られた多孔膜用スラリーを用いて、その多孔膜用スラリーに含まれる非導電性粒子のD10、D50、D90、及びBET比表面積、並びに、その多孔膜用スラリーの分散性を、上述した要領で測定した。また、上述した要領で、多孔膜用スラリーの鉄イオン濃度を測定した。
ポリエチレン製の多孔基材からなる有機セパレータ層(厚み16μm、ガーレー値210s/100cc)を用意した。用意した有機セパレータ層の両面に、前記の多孔膜用スラリーを塗布し、50℃で3分間乾燥させた。これにより、有機セパレータ層及び厚み3μmの多孔膜を備えるセパレータを製造した。得られたセパレータを用いて、セパレータの水分量及び多孔膜の粉落ち性を評価した。
正極活物質としての95部のLiCoO2に、正極用のバインダーとしてPVDF(ポリフッ化ビニリデン、呉羽化学社製「KF-1100」)を固形分換算量で3部となるように加え、さらに、導電材としてアセチレンブラック2部及び溶媒としてN-メチルピロリドン20部を加えて、これらをプラネタリーミキサーで混合して、正極用スラリーを得た。この正極用スラリーを厚さ18μmのアルミニウム箔の片面に塗布し、120℃で3時間乾燥した。その後ロールプレスで圧延して、正極活物質層を有する全厚みが100μmの正極を得た。
攪拌機を備えた反応器に、ドデシルベンゼンスルホン酸ナトリウム4部、過硫酸カリウム0.5部、単量体として1,3-ブタジエン33部、スチレン63.5部及びイタコン酸3.5部、並びにイオン交換水を200部入れて混合した。これを50℃で12時間重合させた。その後、スチームを導入して未反応の単量体を除去した。これにより、負極用のバインダーとして、粒子状の負極用重合体を含む水分散体を得た。
前記工程[1.8]で得られた正極を幅40mm×長さ40mmに切り出して、正方形の正極を得た。前記工程[1.9]で得られた負極を幅42mm×長さ42mmに切り出して、正方形の負極を得た。また、前記工程[1.7]により製造されたセパレータを用意し、このセパレータを幅46mm×長さ46mmに切り出して、正方形のセパレータを得た。
こうして製造したリチウムイオン二次電池について、上述した要領で、高温サイクル特性を評価した。
前記工程[1.5]における非導電性粒子の分散体の分散の際に加えるエネルギーの大きさを6Wh/kgに変更した。
以上の事項以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。
アクリロニトリルの量を19.85部に変更したこと、(メタ)アクリル酸エステル単量体としてブチルアクリレートの代わりにアクリル酸2-エチルへキシル77.95部を用いたこと、アリルグリシジルエーテルを用いなかったこと、及び、N-メチロールアクリルアミドの代わりにアリルメタクリレート0.2部を用いたこと以外は実施例1の工程[1.2]と同様にして、粒子状重合体Bの水分散液を製造した。
アクリロニトリルの量を20部に変更したこと、ブチルアクリレートの量を73.8部に変更したこと、及び、メタクリル酸の量を4部に変更したこと以外は実施例1の工程[1.2]と同様にして、粒子状重合体Cの水分散液を製造した。
前記工程[1.4]において、水溶性重合体Aの水溶液の代わりに、ポリカルボン酸重合体(サンノプコ製「SNディスパーサント5020」)の10重量%水溶液を用いた。以上の事項以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。
還流冷却器を備えた内容積1Lの4口フラスコに純水142gを仕込み、90℃にて攪拌しながらアクリル酸ナトリウムの30%水溶液600g、3-アリロキシ-2-ヒドロキシプロパンスルホン酸ナトリウムの60%水溶液38g及び過硫酸アンモニウムの3%水溶液200gをそれぞれ3.5時間で滴下して共重合反応させ、水溶性重合体Bの水溶液を得た。未反応モノマーを臭素付加法及びポーラログラフ法で測定したところ、重合率は96%であつた。ゲルパーミエーションクロマトグラフで測定したこの水溶性重合体Bの数平均分子量は、6000であった。
攪拌機を備えた反応器に、イオン交換水70部、乳化剤としてラウリル硫酸ナトリウム(花王ケミカル社製「エマール2F」)0.15部及び過硫酸アンモニウム0.5部をそれぞれ供給し、気相部を窒素ガスで置換し、60℃に昇温した。
一方、別の容器で、イオン交換水50部、ドデシルベンゼンスルホン酸ナトリウム0.5部、並びに、重合性単量体として、アクリル酸エチル35部、アクリル酸ブチル34.2部、メタクリル酸30部及びエチレングリコールメタクリル酸ジエステル0.8部、並びにキレート剤(キレスト社製「キレスト400G」)0.15部を混合して、単量体混合物を得た。この単量体混合物を4時間かけて前記反応器に連続的に添加して、重合を行った。添加中は、60℃で反応を行った。添加終了後、さらに70℃で3時間攪拌して反応を終了し、粒子状重合体の水分散液を製造した。この水分散液を、pH8となるよう水酸化ナトリウム水溶液を添加することにより、粒子状重合体を水に溶かして、水溶性重合体Cの水溶液を得た。
前記工程[1.4]において、水溶性重合体Aの水溶液の量を水溶性重合体Aの量で2部に変更した。以上の事項以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。
30%過硫酸ナトリウム水溶液の量を、過硫酸ナトリウムの量で1.0部に変更したこと以外は前記工程[1.3]と同様にして、水溶性重合体Dの水溶液を得た。得られた水溶性重合体の重量平均分子量は、12000であった。
前記工程[1.4]において、αアルミナ粒子を分級してから、αアルミナ粒子を混合するようにした。
以上の事項以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。
前記工程[1.4]において、電気伝導度が10μS/cmの水の代わりに、電気伝導度が100μS/cmの水を用いた。
以上の事項以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。
ブチルアクリレート、アクリロニトリル、アリルグリシジルエーテル及びN-メチロールアクリルアミドを使用せず、代わりにスチレン46.7部、ブタジエン49.5部及びアクリル酸0.5部を用いたこと、並びに、メタクリル酸の量を3.3部に変更したこと以外は実施例1の工程[1.2]と同様にして、粒子状重合体Dの水分散液を製造した。
前記工程[1.4]において、αアルミナ粒子の代わりに、硫酸バリウム(一次粒子径0.5μm、比表面積3.5g/m2)を用いた。
以上の事項以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。
前記工程[1.4]において、αアルミナ粒子の代わりに、硫酸バリウム(一次粒子径0.6μm、比表面積3.0g/m2)を用いた。
以上の事項以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。
前記工程[1.5]における非導電性粒子の分散体の分散の際に加えるエネルギーの大きさを1Wh/kgに変更した。
以上の事項以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。
前記工程[1.5]における非導電性粒子の分散体の分散の際に加えるエネルギーの大きさを9Wh/kgに変更した。
以上の事項以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。
前記工程[1.4]において、水溶性重合体Aの水溶液の代わりに、酸性基を有さない重合体としてのポリビニルアルコール(クラレ製「PVA102」)の10重量%水溶液を用いた。以上の事項以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。
上述した実施例及び比較例の結果を表1~表4に示す。以下の表において、略称の意味は、以下の通りである。
単量体I:ニトリル基含有単量体
単量体II:(メタ)アクリル酸エステル単量体
単量体III:エチレン性不飽和酸単量体
単量体IV:架橋性単量体
BA:ブチルアクリレート
2EHA:アクリル酸2-エチルへキシル
MAA:メタクリル酸
NMA:N-メチロールアクリルアミド
AMA:アリルメタクリレート
AGE:アリルグリシジルエーテル
PCA:ポリカルボン酸重合体
PVA:ポリビニルアルコール
酸成分比:水溶性重合体におけるスルホン酸/カルボン酸の重合比
Mw:重量平均分子量
CMC:カルボキシメチルセルロース
PO:プロピレンオキサイド
EO:エチレンオキサイド
電気伝導度:非導電性粒子及び水溶性重合体と混合した水の電気伝導度
分散体の固形分濃度:非導電性粒子の分散体の固形分濃度
分散条件:非導電性粒子の分散体を分散させる際に加えたエネルギーの大きさ
鉄イオン濃度:多孔膜用スラリーの鉄イオン濃度
実施例においては、いずれも、高温サイクル特性に優れたリチウムイオン二次電池が得られている。
また、実施例においては、いずれも、非導電性粒子は分散性に優れている。そのため、多孔膜において非導電性粒子を密に充填することができるので、多孔膜の耐熱性及び機械的強度を高め、リチウムイオン二次電池の安全性を向上させられることが確認できた。
また、非導電性粒子の分散性が高いことから、多孔膜において非導電性粒子が凝集して巨大粒子が生じることを防止できるので、巨大粒子が有機セパレータ層を突き破ることによる短絡の発生を防止することが可能である。
Claims (8)
- 非導電性粒子、酸性基含有単量体単位を有する水溶性重合体、及び、粒子状重合体を含み、
前記水溶性重合体の量が、前記非導電性粒子100重量部に対して、0.05重量部~2重量部であり、
前記非導電性粒子のBET比表面積が、5m2/g~10m2/gである、リチウムイオン二次電池多孔膜用スラリー。 - 前記非導電性粒子の累積粒度分布において、小径側からの累積体積が10%である粒子径をD10、小径側からの累積体積が50%である粒子径をD50、小径側からの累積体積が90%である粒子径をD90としたとき、
D10が、0.2μm~0.4μmであり、
D50が、0.5μm~0.9μmであり、
D90が、1.0μm~3.0μmである、請求項1記載のリチウムイオン二次電池多孔膜用スラリー。 - 鉄イオン濃度が5ppm~500ppmである、請求項1又は2記載のリチウムイオン二次電池多孔膜用スラリー。
- 前記粒子状重合体が、粒子状アクリル重合体である、請求項1~3のいずれか一項に記載のリチウムイオン二次電池多孔膜用スラリー。
- 固形分濃度が35重量%~50重量%である、請求項1~4のいずれか一項に記載のリチウムイオン二次電池多孔膜用スラリー。
- 請求項1~5のいずれか一項に記載のリチウムイオン二次電池多孔膜用スラリーの製造方法であって、
非導電性粒子と、酸性基含有単量体単位を有する水溶性重合体と、電気伝導度0.5μS/cm~30μS/cmの水とを混合して、固形分濃度40重量%~60重量%の非導電性粒子の分散体を得る工程、
前記非導電性粒子の分散体を、2Wh/kg~8Wh/kgの条件で分散させる工程、及び、
前記非導電性粒子の分散体と粒子状重合体とを混合する工程を含む、リチウムイオン二次電池多孔膜用スラリーの製造方法。 - 有機セパレータ層と、請求項1~5のいずれか一項に記載のリチウムイオン二次電池多孔膜用スラリーを前記有機セパレータ層上に塗布及び乾燥して得られる多孔膜層とを備える、リチウムイオン二次電池用セパレータ。
- 正極、負極、請求項7記載のリチウムイオン二次電池用セパレータ、及び電解液を備える、リチウムイオン二次電池。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015506838A JP6597303B2 (ja) | 2013-03-21 | 2014-03-19 | リチウムイオン二次電池多孔膜用スラリー、リチウムイオン二次電池用セパレータ並びにリチウムイオン二次電池の製造方法 |
CN201480012725.0A CN105027325A (zh) | 2013-03-21 | 2014-03-19 | 锂离子二次电池多孔膜用浆料及其制造方法、锂离子二次电池用隔板以及锂离子二次电池 |
KR1020157023684A KR20150134327A (ko) | 2013-03-21 | 2014-03-19 | 리튬 이온 2 차 전지 다공막용 슬러리 및 그 제조 방법, 리튬 이온 2 차 전지용 세퍼레이터 그리고 리튬 이온 2 차 전지 |
PL14768616T PL2978045T3 (pl) | 2013-03-21 | 2014-03-19 | Zawiesina do porowatego filmu wtórnej baterii litowo-jonowej, separator do wtórnej baterii litowo-jonowej i wtórna bateria litowo-jonowa |
EP14768616.6A EP2978045B1 (en) | 2013-03-21 | 2014-03-19 | Slurry for lithium ion secondary battery porous film, separator for lithium ion secondary battery, and lithium ion secondary battery |
US14/772,036 US11095000B2 (en) | 2013-03-21 | 2014-03-19 | Slurry for lithium ion secondary battery porous film, production method therefor, separator for lithium ion secondary battery, and lithium ion secondary battery |
KR1020207037483A KR102294244B1 (ko) | 2013-03-21 | 2014-03-19 | 리튬 이온 2 차 전지 다공막용 슬러리 및 그 제조 방법, 리튬 이온 2 차 전지용 세퍼레이터 그리고 리튬 이온 2 차 전지 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-058613 | 2013-03-21 | ||
JP2013058613 | 2013-03-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014148577A1 true WO2014148577A1 (ja) | 2014-09-25 |
Family
ID=51580249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/057609 WO2014148577A1 (ja) | 2013-03-21 | 2014-03-19 | リチウムイオン二次電池多孔膜用スラリー及びその製造方法、リチウムイオン二次電池用セパレータ並びにリチウムイオン二次電池 |
Country Status (8)
Country | Link |
---|---|
US (1) | US11095000B2 (ja) |
EP (1) | EP2978045B1 (ja) |
JP (2) | JP6597303B2 (ja) |
KR (2) | KR102294244B1 (ja) |
CN (1) | CN105027325A (ja) |
HU (1) | HUE046842T2 (ja) |
PL (1) | PL2978045T3 (ja) |
WO (1) | WO2014148577A1 (ja) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014208780A (ja) * | 2013-03-27 | 2014-11-06 | 三菱樹脂株式会社 | 塗工液の製造方法、積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池 |
JP2016072154A (ja) * | 2014-09-30 | 2016-05-09 | 旭化成イーマテリアルズ株式会社 | 蓄電デバイス用セパレータ、セパレータ用スラリー及び非水電解液二次電池 |
JP2016081710A (ja) * | 2014-10-16 | 2016-05-16 | Tdk株式会社 | セパレータ、及びそれを用いたリチウムイオン二次電池 |
JP2017027945A (ja) * | 2015-07-24 | 2017-02-02 | 旭化成株式会社 | 蓄電デバイス用セパレータ |
JP2017059350A (ja) * | 2015-09-15 | 2017-03-23 | 東レバッテリーセパレータフィルム株式会社 | セラミックスラリー及びそれを用いた電池用セパレータ |
US20170338461A1 (en) * | 2016-05-17 | 2017-11-23 | Samsung Sdi Co., Ltd. | Separator for rechargeable battery and rechargeable lithium battery including the same |
CN107615554A (zh) * | 2015-09-16 | 2018-01-19 | 日本瑞翁株式会社 | 全固体二次电池 |
KR20180022670A (ko) * | 2015-06-29 | 2018-03-06 | 니폰 제온 가부시키가이샤 | 2차 전지 다공막용 조성물, 2차 전지용 다공막 및 2차 전지 |
JP2018041733A (ja) * | 2017-10-04 | 2018-03-15 | 住友化学株式会社 | 多孔質膜 |
WO2018079474A1 (ja) * | 2016-10-28 | 2018-05-03 | 東レ株式会社 | 非水電解質電池用セパレータおよび非水電解質電池 |
JP2019003951A (ja) * | 2018-09-26 | 2019-01-10 | 積水化学工業株式会社 | セパレータ及び電気化学デバイス |
JP2019054004A (ja) * | 2018-12-06 | 2019-04-04 | 住友化学株式会社 | 非水電解液二次電池用多孔質膜、非水電解液二次電池用セパレータおよび非水電解液二次電池 |
JP6526359B1 (ja) * | 2018-01-24 | 2019-06-05 | 帝人株式会社 | 非水系二次電池用セパレータ及び非水系二次電池 |
WO2019146155A1 (ja) * | 2018-01-24 | 2019-08-01 | 帝人株式会社 | 非水系二次電池用セパレータ及び非水系二次電池 |
JP2019160792A (ja) * | 2018-03-06 | 2019-09-19 | 三星エスディアイ株式会社Samsung SDI Co., Ltd. | 分離膜、その製造方法、及びそれを含むリチウム電池 |
JPWO2018235722A1 (ja) * | 2017-06-19 | 2020-04-23 | 日本ゼオン株式会社 | 電気化学素子電極用バインダー組成物、電気化学素子電極用組成物、電気化学素子用電極、及び電気化学素子 |
JP2020084038A (ja) * | 2018-11-26 | 2020-06-04 | パナソニックIpマネジメント株式会社 | 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板 |
WO2021006357A1 (ja) | 2019-07-10 | 2021-01-14 | 旭化成株式会社 | 多層多孔膜 |
WO2021039673A1 (ja) * | 2019-08-30 | 2021-03-04 | 日本ゼオン株式会社 | 非水系二次電池耐熱層用バインダー組成物、非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、及び非水系二次電池 |
CN113046002A (zh) * | 2019-12-26 | 2021-06-29 | 琳得科株式会社 | 电池用粘着片及锂离子电池 |
JPWO2021251092A1 (ja) * | 2020-06-11 | 2021-12-16 |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10978748B2 (en) * | 2016-03-24 | 2021-04-13 | Uchicago Argonne, Llc | Materials to improve the performance of lithium and sodium batteries |
US9972838B2 (en) | 2016-07-29 | 2018-05-15 | Blue Current, Inc. | Solid-state ionically conductive composite electrodes |
US10707531B1 (en) | 2016-09-27 | 2020-07-07 | New Dominion Enterprises Inc. | All-inorganic solvents for electrolytes |
US11394084B2 (en) * | 2016-11-18 | 2022-07-19 | Lg Energy Solution, Ltd. | Separator and electrochemical device including the same |
US20180254518A1 (en) | 2017-03-03 | 2018-09-06 | Blue Current, Inc. | Polymerized in-situ hybrid solid ion-conductive compositions |
CN108110193B (zh) * | 2017-12-22 | 2021-03-02 | 武汉惠强新能源材料科技有限公司 | 一种具备铁离子吸附功能的锂电池隔膜涂层及其制备方法 |
CN108305974A (zh) * | 2018-01-05 | 2018-07-20 | 河南惠强新能源材料科技股份有限公司 | 一种基于静电纺丝法的功能型锂离子电池隔膜及其制备方法 |
JP6971193B2 (ja) * | 2018-04-19 | 2021-11-24 | 住友化学株式会社 | アルミナ粉末およびこれを含有するスラリー、アルミナ多孔膜およびこれを備えた積層セパレータ、並びに非水電解液二次電池およびその製造方法 |
CN112154553A (zh) * | 2018-06-20 | 2020-12-29 | 日本瑞翁株式会社 | 二次电池功能层用浆料的制造方法 |
US20210257702A1 (en) * | 2018-08-30 | 2021-08-19 | Panasonic Intellectual Property Management Co., Ltd. | Nonaqueous electrolyte secondary battery |
WO2020137562A1 (ja) * | 2018-12-26 | 2020-07-02 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池 |
US11581570B2 (en) | 2019-01-07 | 2023-02-14 | Blue Current, Inc. | Polyurethane hybrid solid ion-conductive compositions |
KR102342669B1 (ko) * | 2019-01-16 | 2021-12-22 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지 |
CN111584799B (zh) * | 2019-12-20 | 2022-08-16 | 湖南高瑞电源材料有限公司 | 一种锂电池涂覆隔膜的制备方法 |
US11394054B2 (en) | 2019-12-20 | 2022-07-19 | Blue Current, Inc. | Polymer microspheres as binders for composite electrolytes |
EP4078698A4 (en) | 2019-12-20 | 2024-08-14 | Blue Current Inc | COMPOSITE ELECTROLYTES WITH BINDERS |
DE102020109571B4 (de) | 2020-04-06 | 2024-10-02 | Carl Freudenberg Kg | Kompressionsstabiler Batterieseparator |
EP4287298A1 (en) * | 2021-01-29 | 2023-12-06 | Zeon Corporation | Nonaqueous secondary battery |
CN112940650A (zh) * | 2021-02-03 | 2021-06-11 | 深圳好电科技有限公司 | 锂离子电池复合隔膜用水性涂料及锂离子电池复合隔膜及锂离子电池 |
EP4156340A1 (en) | 2021-03-05 | 2023-03-29 | Asahi Kasei Kabushiki Kaisha | Separator for power storage devices, and power storage device |
CN114267923A (zh) * | 2021-12-23 | 2022-04-01 | 中材锂膜有限公司 | 一种电池隔离膜及其制备方法、二次电池 |
WO2023178690A1 (zh) * | 2022-03-25 | 2023-09-28 | 宁德时代新能源科技股份有限公司 | 粘结剂及相关的隔离膜、极片、电池、电池模块、电池包和用电装置 |
CN114709563B (zh) * | 2022-06-07 | 2022-08-05 | 中材锂膜(宁乡)有限公司 | 一种电池隔离膜及其制备方法、二次电池 |
WO2024024574A1 (ja) * | 2022-07-29 | 2024-02-01 | 日本ゼオン株式会社 | 二次電池機能層用バインダー、二次電池機能層用スラリー組成物、二次電池用機能層、及び二次電池 |
CN115693017A (zh) * | 2022-10-25 | 2023-02-03 | 清华大学 | 隔膜浆料及其制备方法和碱性水电解用隔膜 |
WO2024190682A1 (ja) * | 2023-03-15 | 2024-09-19 | 日本ゼオン株式会社 | 非水系二次電池機能層用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用セパレータ、非水系二次電池用電極、および非水系二次電池 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008210541A (ja) * | 2007-02-23 | 2008-09-11 | Hitachi Maxell Ltd | 電池用セパレータおよび非水電解質電池 |
WO2009096528A1 (ja) | 2008-01-30 | 2009-08-06 | Zeon Corporation | 多孔膜および二次電池電極 |
WO2013005796A1 (ja) * | 2011-07-06 | 2013-01-10 | 日本ゼオン株式会社 | 二次電池用多孔膜、二次電池用セパレーター及び二次電池 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5017764B2 (ja) * | 2003-08-06 | 2012-09-05 | 三菱化学株式会社 | 非水系電解液二次電池用セパレータ及びそれを用いた非水系電解液二次電池 |
WO2005015660A1 (ja) | 2003-08-06 | 2005-02-17 | Mitsubishi Chemical Corporation | 非水系電解液二次電池用セパレータ及びそれを用いた非水系電解液二次電池 |
JP4454340B2 (ja) * | 2004-02-23 | 2010-04-21 | パナソニック株式会社 | リチウムイオン二次電池 |
EP2169743B1 (en) * | 2007-06-19 | 2013-06-05 | Teijin Limited | Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery |
JP5370356B2 (ja) * | 2008-03-31 | 2013-12-18 | 日本ゼオン株式会社 | 多孔膜および二次電池電極 |
KR101615792B1 (ko) * | 2009-09-30 | 2016-04-26 | 제온 코포레이션 | 2 차 전지용 다공막 및 2 차 전지 |
KR101902764B1 (ko) * | 2010-08-09 | 2018-10-01 | 제온 코포레이션 | 2 차 전지용 다공막, 제조 방법, 및 용도 |
WO2012029805A1 (ja) * | 2010-08-31 | 2012-03-08 | 日本ゼオン株式会社 | 電池多孔膜用スラリー組成物、二次電池用多孔膜の製造方法、二次電池用多孔膜、二次電池用電極、二次電池用セパレーター及び二次電池 |
JP2012094493A (ja) * | 2010-09-27 | 2012-05-17 | Sumitomo Chemical Co Ltd | スラリー及び該スラリーを使用した非水電解液二次電池用セパレータの製造方法 |
CN103283061B (zh) * | 2010-10-28 | 2015-07-15 | 日本瑞翁株式会社 | 二次电池多孔膜、二次电池多孔膜用浆料以及二次电池 |
JP4977786B1 (ja) * | 2011-02-09 | 2012-07-18 | 三菱エンジニアリングプラスチックス株式会社 | ポリカーボネート樹脂ペレットの製造方法 |
WO2012115252A1 (ja) | 2011-02-25 | 2012-08-30 | 日本ゼオン株式会社 | 二次電池用多孔膜、二次電池多孔膜用スラリー及び二次電池 |
CN102623658B (zh) | 2012-03-12 | 2014-10-08 | 宁德新能源科技有限公司 | 隔膜及其制备方法及锂离子电池 |
-
2014
- 2014-03-19 CN CN201480012725.0A patent/CN105027325A/zh active Pending
- 2014-03-19 KR KR1020207037483A patent/KR102294244B1/ko active IP Right Grant
- 2014-03-19 EP EP14768616.6A patent/EP2978045B1/en active Active
- 2014-03-19 KR KR1020157023684A patent/KR20150134327A/ko active Application Filing
- 2014-03-19 US US14/772,036 patent/US11095000B2/en active Active
- 2014-03-19 PL PL14768616T patent/PL2978045T3/pl unknown
- 2014-03-19 HU HUE14768616A patent/HUE046842T2/hu unknown
- 2014-03-19 JP JP2015506838A patent/JP6597303B2/ja active Active
- 2014-03-19 WO PCT/JP2014/057609 patent/WO2014148577A1/ja active Application Filing
-
2019
- 2019-04-19 JP JP2019080538A patent/JP7022716B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008210541A (ja) * | 2007-02-23 | 2008-09-11 | Hitachi Maxell Ltd | 電池用セパレータおよび非水電解質電池 |
WO2009096528A1 (ja) | 2008-01-30 | 2009-08-06 | Zeon Corporation | 多孔膜および二次電池電極 |
WO2013005796A1 (ja) * | 2011-07-06 | 2013-01-10 | 日本ゼオン株式会社 | 二次電池用多孔膜、二次電池用セパレーター及び二次電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2978045A4 |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014208780A (ja) * | 2013-03-27 | 2014-11-06 | 三菱樹脂株式会社 | 塗工液の製造方法、積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池 |
JP2016072154A (ja) * | 2014-09-30 | 2016-05-09 | 旭化成イーマテリアルズ株式会社 | 蓄電デバイス用セパレータ、セパレータ用スラリー及び非水電解液二次電池 |
JP2016081710A (ja) * | 2014-10-16 | 2016-05-16 | Tdk株式会社 | セパレータ、及びそれを用いたリチウムイオン二次電池 |
KR20180022670A (ko) * | 2015-06-29 | 2018-03-06 | 니폰 제온 가부시키가이샤 | 2차 전지 다공막용 조성물, 2차 전지용 다공막 및 2차 전지 |
KR102569981B1 (ko) * | 2015-06-29 | 2023-08-22 | 니폰 제온 가부시키가이샤 | 2차 전지 다공막용 조성물, 2차 전지용 다공막 및 2차 전지 |
JP2017027945A (ja) * | 2015-07-24 | 2017-02-02 | 旭化成株式会社 | 蓄電デバイス用セパレータ |
JP2017059350A (ja) * | 2015-09-15 | 2017-03-23 | 東レバッテリーセパレータフィルム株式会社 | セラミックスラリー及びそれを用いた電池用セパレータ |
CN107615554A (zh) * | 2015-09-16 | 2018-01-19 | 日本瑞翁株式会社 | 全固体二次电池 |
JP7097674B2 (ja) | 2016-05-17 | 2022-07-08 | 三星エスディアイ株式会社 | 二次電池用分離膜およびこれを含むリチウム二次電池 |
US10840493B2 (en) | 2016-05-17 | 2020-11-17 | Samsung Sdi Co., Ltd. | Separator for rechargeable battery and rechargeable lithium battery including the same |
US20170338461A1 (en) * | 2016-05-17 | 2017-11-23 | Samsung Sdi Co., Ltd. | Separator for rechargeable battery and rechargeable lithium battery including the same |
US11584861B2 (en) | 2016-05-17 | 2023-02-21 | Samsung Sdi Co., Ltd. | Separator for rechargeable battery and rechargeable lithium battery including the same |
JP2017208343A (ja) * | 2016-05-17 | 2017-11-24 | 三星エスディアイ株式会社Samsung SDI Co., Ltd. | 二次電池用分離膜およびこれを含むリチウム二次電池 |
US11312871B2 (en) | 2016-05-17 | 2022-04-26 | Samsung Sdi Co., Ltd. | Separator for secondary battery and lithium secondary battery comprising same |
US10992009B2 (en) | 2016-10-28 | 2021-04-27 | Toray Industries, Inc. | Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery |
JPWO2018079474A1 (ja) * | 2016-10-28 | 2019-06-24 | 東レ株式会社 | 非水電解質電池用セパレータおよび非水電解質電池 |
WO2018079474A1 (ja) * | 2016-10-28 | 2018-05-03 | 東レ株式会社 | 非水電解質電池用セパレータおよび非水電解質電池 |
US11404695B2 (en) | 2017-06-19 | 2022-08-02 | Zeon Corporation | Binder composition for electrochemical device electrode, composition for electrochemical device electrode, electrode for electrochemical device, and electrochemical device |
JPWO2018235722A1 (ja) * | 2017-06-19 | 2020-04-23 | 日本ゼオン株式会社 | 電気化学素子電極用バインダー組成物、電気化学素子電極用組成物、電気化学素子用電極、及び電気化学素子 |
JP7167915B2 (ja) | 2017-06-19 | 2022-11-09 | 日本ゼオン株式会社 | 電気化学素子電極用バインダー組成物、電気化学素子電極用組成物、電気化学素子用電極、及び電気化学素子 |
JP2018041733A (ja) * | 2017-10-04 | 2018-03-15 | 住友化学株式会社 | 多孔質膜 |
JP6526359B1 (ja) * | 2018-01-24 | 2019-06-05 | 帝人株式会社 | 非水系二次電池用セパレータ及び非水系二次電池 |
CN111512471A (zh) * | 2018-01-24 | 2020-08-07 | 帝人株式会社 | 非水系二次电池用隔膜及非水系二次电池 |
WO2019146155A1 (ja) * | 2018-01-24 | 2019-08-01 | 帝人株式会社 | 非水系二次電池用セパレータ及び非水系二次電池 |
JP2019160792A (ja) * | 2018-03-06 | 2019-09-19 | 三星エスディアイ株式会社Samsung SDI Co., Ltd. | 分離膜、その製造方法、及びそれを含むリチウム電池 |
US11502373B2 (en) | 2018-03-06 | 2022-11-15 | Samsung Sdi Co., Ltd. | Separator, method of preparing the same, and lithium battery including the same |
JP2019003951A (ja) * | 2018-09-26 | 2019-01-10 | 積水化学工業株式会社 | セパレータ及び電気化学デバイス |
JP7122570B2 (ja) | 2018-11-26 | 2022-08-22 | パナソニックIpマネジメント株式会社 | 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板 |
JP2020084038A (ja) * | 2018-11-26 | 2020-06-04 | パナソニックIpマネジメント株式会社 | 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板 |
JP2019054004A (ja) * | 2018-12-06 | 2019-04-04 | 住友化学株式会社 | 非水電解液二次電池用多孔質膜、非水電解液二次電池用セパレータおよび非水電解液二次電池 |
WO2021006357A1 (ja) | 2019-07-10 | 2021-01-14 | 旭化成株式会社 | 多層多孔膜 |
KR20220054788A (ko) | 2019-08-30 | 2022-05-03 | 니폰 제온 가부시키가이샤 | 비수계 이차 전지 내열층용 바인더 조성물, 비수계 이차 전지 내열층용 슬러리 조성물, 비수계 이차 전지용 내열층, 및 비수계 이차 전지 |
WO2021039673A1 (ja) * | 2019-08-30 | 2021-03-04 | 日本ゼオン株式会社 | 非水系二次電池耐熱層用バインダー組成物、非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、及び非水系二次電池 |
US12119440B2 (en) | 2019-12-26 | 2024-10-15 | Lintec Corporation | Pressure sensitive adhesive sheet for batteries and lithium-ion battery |
JP2021103675A (ja) * | 2019-12-26 | 2021-07-15 | リンテック株式会社 | 電池用粘着シートおよびリチウムイオン電池 |
JP7403310B2 (ja) | 2019-12-26 | 2023-12-22 | リンテック株式会社 | 電池用粘着シートおよびリチウムイオン電池 |
CN113046002A (zh) * | 2019-12-26 | 2021-06-29 | 琳得科株式会社 | 电池用粘着片及锂离子电池 |
WO2021251092A1 (ja) * | 2020-06-11 | 2021-12-16 | Dic株式会社 | リチウムイオン二次電池セパレータ耐熱層バインダー用水性樹脂組成物 |
JP7151938B2 (ja) | 2020-06-11 | 2022-10-12 | Dic株式会社 | リチウムイオン二次電池セパレータ耐熱層バインダー用水性樹脂組成物 |
JPWO2021251092A1 (ja) * | 2020-06-11 | 2021-12-16 |
Also Published As
Publication number | Publication date |
---|---|
EP2978045A4 (en) | 2016-09-14 |
JP2019140114A (ja) | 2019-08-22 |
KR102294244B1 (ko) | 2021-08-25 |
KR20150134327A (ko) | 2015-12-01 |
KR20200145868A (ko) | 2020-12-30 |
JPWO2014148577A1 (ja) | 2017-02-16 |
EP2978045B1 (en) | 2019-11-06 |
JP6597303B2 (ja) | 2019-10-30 |
JP7022716B2 (ja) | 2022-02-18 |
EP2978045A1 (en) | 2016-01-27 |
US11095000B2 (en) | 2021-08-17 |
HUE046842T2 (hu) | 2020-03-30 |
US20160013465A1 (en) | 2016-01-14 |
CN105027325A (zh) | 2015-11-04 |
PL2978045T3 (pl) | 2020-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7022716B2 (ja) | リチウムイオン二次電池多孔膜用スラリー及びその製造方法、リチウムイオン二次電池用セパレータ並びにリチウムイオン二次電池 | |
JP6451732B2 (ja) | 二次電池多孔膜用バインダー組成物、二次電池多孔膜用スラリー、二次電池用多孔膜及び二次電池 | |
JP6481623B2 (ja) | 二次電池多孔膜用組成物、二次電池用多孔膜、及び二次電池 | |
KR101819067B1 (ko) | 이차 전지용 정극 및 그 제조 방법, 슬러리 조성물, 그리고 이차 전지 | |
JP6601404B2 (ja) | リチウムイオン二次電池多孔膜用組成物、リチウムイオン二次電池用多孔膜およびリチウムイオン二次電池 | |
KR102569981B1 (ko) | 2차 전지 다공막용 조성물, 2차 전지용 다공막 및 2차 전지 | |
JP6191471B2 (ja) | リチウムイオン二次電池用バインダー組成物、その製造方法、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池 | |
WO2014103792A1 (ja) | 二次電池セパレーターの多孔膜用スラリー、二次電池セパレーター用多孔膜及びその製造方法、二次電池用セパレーター並びに二次電池 | |
WO2013005683A1 (ja) | 二次電池用多孔膜、製造方法、及び用途 | |
JP6217129B2 (ja) | 二次電池用多孔膜組成物、二次電池用電極、二次電池用セパレータ及び二次電池 | |
JP6337512B2 (ja) | 非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜、及び二次電池 | |
JP6217133B2 (ja) | 二次電池多孔膜用スラリー、二次電池用セパレータ、二次電池用電極及び二次電池 | |
JP2014032758A (ja) | リチウムイオン二次電池用電極の製造方法、及びリチウムイオン二次電池 | |
JP6233131B2 (ja) | 二次電池多孔膜用組成物、二次電池用多孔膜及び二次電池 | |
JP6233404B2 (ja) | 二次電池セパレーターの多孔膜用スラリー、二次電池セパレーター用多孔膜及びその製造方法、二次電池用セパレーター並びに二次電池 | |
WO2016013223A1 (ja) | リチウムイオン二次電池用多孔膜およびリチウムイオン二次電池 | |
WO2018168612A1 (ja) | 非水系二次電池用機能層および非水系二次電池 | |
JP6304039B2 (ja) | 二次電池セパレーターの多孔膜用スラリー、二次電池セパレーター用多孔膜及びその製造方法、二次電池用セパレーター並びに二次電池 | |
JP6340826B2 (ja) | 二次電池多孔膜用スラリー、製造方法、二次電池用多孔膜、及び二次電池 | |
JP6337900B2 (ja) | 二次電池用多孔膜スラリー組成物、二次電池用セパレータ、二次電池用電極及び二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480012725.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14768616 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015506838 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20157023684 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14772036 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014768616 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |