WO2023178690A1 - 粘结剂及相关的隔离膜、极片、电池、电池模块、电池包和用电装置 - Google Patents

粘结剂及相关的隔离膜、极片、电池、电池模块、电池包和用电装置 Download PDF

Info

Publication number
WO2023178690A1
WO2023178690A1 PCT/CN2022/083171 CN2022083171W WO2023178690A1 WO 2023178690 A1 WO2023178690 A1 WO 2023178690A1 CN 2022083171 W CN2022083171 W CN 2022083171W WO 2023178690 A1 WO2023178690 A1 WO 2023178690A1
Authority
WO
WIPO (PCT)
Prior art keywords
optionally
binder
battery
acrylate
methacrylate
Prior art date
Application number
PCT/CN2022/083171
Other languages
English (en)
French (fr)
Inventor
康海杨
郑义
孙成栋
於洋
欧阳楚英
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to JP2023567203A priority Critical patent/JP2024519417A/ja
Priority to CN202280030673.4A priority patent/CN117280009A/zh
Priority to EP22932751.5A priority patent/EP4317348A4/en
Priority to KR1020247001256A priority patent/KR20240021275A/ko
Priority to PCT/CN2022/083171 priority patent/WO2023178690A1/zh
Priority to CN202310132188.4A priority patent/CN116804139A/zh
Priority to KR1020237039177A priority patent/KR20230170750A/ko
Priority to CN202380011329.5A priority patent/CN117256072A/zh
Priority to JP2023570404A priority patent/JP2024518586A/ja
Priority to PCT/CN2023/075964 priority patent/WO2023179248A1/zh
Priority to EP23773499.1A priority patent/EP4395042A1/en
Priority to PCT/CN2023/079397 priority patent/WO2023179333A1/zh
Priority to CN202380011330.8A priority patent/CN117397109A/zh
Priority to KR1020237038616A priority patent/KR20230167125A/ko
Priority to JP2023570444A priority patent/JP2024517980A/ja
Priority to EP23773584.0A priority patent/EP4318776A1/en
Priority to PCT/CN2023/080602 priority patent/WO2023179373A1/zh
Priority to JP2023570405A priority patent/JP2024517973A/ja
Priority to KR1020237039011A priority patent/KR20230170739A/ko
Priority to CN202380011331.2A priority patent/CN117397112A/zh
Priority to EP23773622.8A priority patent/EP4318779A4/en
Priority to CN202380011326.1A priority patent/CN117378086A/zh
Priority to EP23774023.8A priority patent/EP4354627A1/en
Priority to PCT/CN2023/083849 priority patent/WO2023179780A1/zh
Priority to JP2024506254A priority patent/JP2024528159A/ja
Priority to KR1020247003322A priority patent/KR20240027097A/ko
Publication of WO2023178690A1 publication Critical patent/WO2023178690A1/zh
Priority to US18/409,818 priority patent/US20240145864A1/en
Priority to US18/419,353 priority patent/US20240162566A1/en
Priority to US18/631,365 priority patent/US20240274978A1/en
Priority to US18/658,920 priority patent/US20240304945A1/en
Priority to US18/657,806 priority patent/US20240313352A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1812C12-(meth)acrylate, e.g. lauryl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/281Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/062Copolymers with monomers not covered by C09J133/06
    • C09J133/066Copolymers with monomers not covered by C09J133/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/18Homopolymers or copolymers of nitriles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/18Homopolymers or copolymers of nitriles
    • C09J133/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/24Homopolymers or copolymers of amides or imides
    • C09J133/26Homopolymers or copolymers of acrylamide or methacrylamide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/33Applications of adhesives in processes or use of adhesives in the form of films or foils for batteries or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of lithium batteries, and in particular to a binder, a separator film and an electrode plate containing the binder, as well as related secondary batteries, battery modules, battery packs and electrical devices.
  • lithium-ion batteries are widely used in energy storage power systems such as hydraulic, thermal, wind and solar power stations, as well as power tools, electric bicycles, electric motorcycles, electric vehicles, Military equipment, aerospace and other fields.
  • battery adhesives used in the prior art have shortcomings such as high melting point and poor bonding performance, which results in inability to effectively bond battery components, thereby deteriorating the dynamic performance of the battery and causing safety issues. Therefore, how to develop a binder suitable for battery systems is still an issue that researchers need to solve urgently.
  • This application was made in view of the above problems, and its purpose is to provide a binder that can provide good bonding performance under conditions suitable for battery processing, thereby helping to improve the power of the battery. academic performance and safety performance.
  • the present application provides an adhesive, a separator film and an electrode plate containing the same, as well as related secondary batteries, battery modules, battery packs and electrical devices.
  • a first aspect of the present application provides a binder, including an organic polymer and an inorganic substance, wherein the organic polymer is polymerized by at least the following monomers:
  • the first polymer monomer has at least one ester bond, which can be selected from methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, isobutyl acrylate, sec-butyl acrylate, tert-butyl acrylate, Cyclohexyl acrylate, lauryl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, methyl methacrylate, ethyl methacrylate, n-methacrylate Butyl ester, 2-ethylhexyl methacrylate, isobornyl methacrylate, lauryl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, vinyl acetate , one or more of trifluoroethyl methacrylate, glycidyl methacrylate or trimethylolprop
  • the second polymer monomer has at least one nitrile bond, and can be selected from one or more of acrylonitrile, methacrylonitrile, and ethacrylonitrile, and can be further selected from acrylonitrile and methacrylonitrile. one or more;
  • the third polymer monomer which has at least one amide bond, can be one or more of acrylamide, N-methylolacrylamide, N-butoxymethacrylamide, and can be more optionally propylene.
  • the weight ratio of the first polymer monomer: the second polymer monomer: the third polymer monomer is 1:0-0.8:0-0.15, optionally 1:0.05-0.2:0.05-0.1.
  • the resulting binder When the organic polymer is polymerized from the above-mentioned polymer monomers, the resulting binder has good bonding properties and a low glass transition temperature, making it suitable for full use under battery conditions. Its bonding properties, in turn, help improve the dynamic performance and safety performance of the battery.
  • the content of the first polymer monomer is 60-100% by weight, optionally 60-90% by weight;
  • the content of the second polymer monomer is 0-30% by weight, optionally 5-15% by weight;
  • the content of the third polymer monomer is 0-40% by weight, optionally 0-25% by weight.
  • the volume average particle diameters D10, D50 and D90 of the binder satisfy (D90-D10)/D50 ⁇ 2.5, optionally ⁇ 2, and more optionally ⁇ 1.8.
  • the content of the organic polymer particles is 50-99.9%, optionally 60-99%, more optionally 70-99%, based on the total dry content of the binder. Recount;
  • the content of the inorganic matter is 0.1-50%, optionally 1-40%, more optionally 1-30%, based on the total dry weight of the binder.
  • the weight ratio of the organic polymer to the inorganic substance is 99:1 to 1:1, optionally 70:30 to 1:1.
  • the inorganic substance is selected from one or more of silicon, aluminum, calcium, zinc, magnesium oxides, sodium sulfate, sodium benzoate, calcium carbonate and modified materials thereof, It can be selected from one or more of silica, silica sol, alumina, zinc oxide, magnesium oxide, and sodium benzoate. It can also be selected from one or more of fumed silica, silica powder, alumina, and sodium benzoate. Kind or variety.
  • the surface of the binder particles is uneven and evenly distributed with inorganic oxide clusters with a particle size of 10-200 nm.
  • the binder has a glass transition temperature of -20°C to 30°C.
  • a second aspect of the application provides an isolation film, including the adhesive described in the first aspect of the application.
  • a third aspect of the application provides an electrode pole piece, including the adhesive described in the first aspect of the application.
  • a fourth aspect of the present application provides a secondary battery, including at least one of the binder of the first aspect of the present application, the separator according to the second aspect of the present application, or the electrode pole piece according to the third aspect of the present application.
  • a fifth aspect of the present application provides a battery module including the secondary battery of the third aspect of the present application.
  • a sixth aspect of the present application provides a battery pack, including the battery module of the fourth aspect of the present application.
  • a seventh aspect of the present application provides an electrical device, including at least one selected from the secondary battery of the fourth aspect of the present application, the battery module of the fifth aspect of the present application, or the battery pack of the sixth aspect of the present application. kind.
  • the organic polymer is obtained by polymerizing the first polymer monomer, the second polymer monomer and the third polymer monomer with different functional groups in a certain proportion.
  • the obtained organic polymer can give full play to the advantages of each polymer monomer, so that the binder polymer containing it has good bonding properties and a low glass transition temperature, making it suitable for giving full play to its bonding under battery conditions. performance, thereby helping to improve the dynamic performance and safety performance of secondary batteries.
  • the binder when the binder is applied to the isolation film, it helps to reduce the resistance of the isolation film and increase the ionic conductivity of the isolation film, thereby improving battery performance.
  • the battery modules, battery packs and electrical devices of the present application include the secondary battery provided by the present application, and thus have at least the same advantages as the secondary battery.
  • Figure 1 is a scanning electron microscope image at different magnifications of the adhesive prepared in Example 1 of the present application.
  • FIG. 2 is a schematic diagram of a secondary battery according to an embodiment of the present application.
  • FIG. 3 is an exploded view of the secondary battery according to the embodiment of the present application shown in FIG. 2 .
  • Figure 4 is a schematic diagram of a battery module according to an embodiment of the present application.
  • Figure 5 is a schematic diagram of a battery pack according to an embodiment of the present application.
  • FIG. 6 is an exploded view of the battery pack according to an embodiment of the present application shown in FIG. 5 .
  • FIG. 7 is a schematic diagram of a power consumption device using a secondary battery as a power source according to an embodiment of the present application.
  • Ranges disclosed herein are defined in terms of lower and upper limits. A given range is defined by selecting a lower limit and an upper limit that define the boundaries of the particular range. Ranges defined in this manner may be inclusive or exclusive of the endpoints, and may be arbitrarily combined, that is, any lower limit may be combined with any upper limit to form a range. For example, if ranges of 60-120 and 80-110 are listed for a particular parameter, understand that ranges of 60-110 and 80-120 are also expected. Furthermore, if the minimum range values 1 and 2 are listed, and if the maximum range values 3, 4, and 5 are listed, then the following ranges are all expected: 1-3, 1-4, 1-5, 2- 3, 2-4 and 2-5.
  • the numerical range “a-b” represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
  • the numerical range “0-5" means that all real numbers between "0-5" have been listed in this article, and "0-5" is just an abbreviation of these numerical combinations.
  • a certain parameter is an integer ⁇ 2
  • the method includes steps (a) and (b), which means that the method may include steps (a) and (b) performed sequentially, or may include steps (b) and (a) performed sequentially.
  • step (c) means that step (c) may be added to the method in any order.
  • the method may include steps (a), (b) and (c). , may also include steps (a), (c) and (b), may also include steps (c), (a) and (b), etc.
  • the words “include” and “include” mentioned in this application represent open expressions, which may also be closed expressions.
  • the words “include” and “include” may mean that other components not listed may also be included or included, or only the listed components may be included or included.
  • condition "A or B” is satisfied by any of the following conditions: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists) ; Or both A and B are true (or exist).
  • the inventor found that the organic polymer obtained by polymerizing polymer monomers containing specific functional groups at a certain weight ratio has good bonding properties and is suitable for use under battery operating conditions. Give full play to its bonding properties, thereby helping to improve the dynamic performance and safety performance of secondary batteries.
  • the binder when applied to the isolation film, it helps to reduce the resistance of the isolation film and increase the ionic conductivity of the isolation film, thereby improving battery performance.
  • a first aspect of the present application provides a binder, including an organic polymer and an inorganic substance, wherein the organic polymer is polymerized by at least the following monomers:
  • the first polymer monomer has at least one ester bond, which can be selected from methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, isobutyl acrylate, sec-butyl acrylate, tert-butyl acrylate, Cyclohexyl acrylate, lauryl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, methyl methacrylate, ethyl methacrylate, n-methacrylate Butyl ester, 2-ethylhexyl methacrylate, isobornyl methacrylate, lauryl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, vinyl acetate , one or more of trifluoroethyl methacrylate, glycidyl methacrylate or trimethylolprop
  • the second polymer monomer has at least one nitrile bond, and can be selected from one or more of acrylonitrile, methacrylonitrile, and ethacrylonitrile, and can be further selected from acrylonitrile and methacrylonitrile. one or more;
  • the third polymer monomer which has at least one amide bond, can be one or more of acrylamide, N-methylolacrylamide, N-butoxymethacrylamide, and can be more optionally propylene.
  • the weight ratio of the first polymer monomer: the second polymer monomer: the third polymer monomer is 1:0-0.8:0-0.15, optionally 1:0.05-0.2:0.05-0.1.
  • the binder of the present application includes an organic polymer, which is composed of a first polymer monomer with an ester bond, a second polymer monomer with a nitrile bond, and a third polymer monomer with an amide bond. It is polymerized at a certain weight ratio, which is conducive to giving full play to the synergistic advantages brought by each monomer, so that the prepared organic polymer has good bonding properties and a suitable glass transition temperature, making it suitable for Under battery operating conditions, its bonding performance can be fully utilized to improve the dynamic performance and safety performance of secondary batteries.
  • the binder of the present application also contains inorganic substances, which helps to improve the flame retardant performance of the binder, thereby improving the safety performance of the secondary battery. In addition, when the binder is applied to the isolation film, it helps to reduce the resistance of the isolation film and increase the ionic conductivity of the isolation film, thereby improving battery performance.
  • the content of the first polymer monomer is 60-100% by weight, optionally 60-90% by weight; the content of the second polymer monomer is 0-30% % by weight, optionally 5-15% by weight; and the content of the third polymer monomer is 0-40% by weight, optionally 0-25% by weight, based on the total weight of the organic polymer.
  • the organic polymer prepared from the polymer monomer within the above range has an appropriate glass transition temperature, which helps To provide sufficient adhesion under battery conditions.
  • the volume average particle diameter D50 of the binder satisfies 3 ⁇ D50 ⁇ 10 ⁇ m, and may optionally be 5-8 ⁇ m.
  • the particle size of the binder is too small, when applied to the separator, it may block the pores of the separator, causing the internal resistance of the battery to increase and deteriorating the dynamic performance. If the particle size of the binder is too large, the binder may not be used in the preparation of battery cores.
  • the volume average particle diameters D10, D50 and D90 of the binder satisfy (D90-D10)/D50 ⁇ 2.5, optionally ⁇ 2, and more optionally ⁇ 1.8.
  • the content of the organic polymer particles is 50-99.9%, optionally 60-99%, more optionally 70-99%, based on the total dry content of the binder. Recount;
  • the content of the inorganic matter is 0.1-50%, optionally 1-40%, more optionally 1-30%, based on the total dry weight of the binder.
  • the overall bonding performance of the binder may be insufficient, or even the organic polymer and inorganic matter cannot be kept as a whole.
  • the flame retardant properties of the binder may be poor.
  • the weight ratio of the organic polymer to inorganic matter is 99:1 to 1:1, optionally 70:30 to 1:1.
  • the inorganic substance is selected from one or more of silicon, aluminum, calcium, zinc, magnesium oxides, sodium sulfate, sodium benzoate, calcium carbonate and modified materials thereof, It can be selected from one or more of silica, silica sol, alumina, zinc oxide, magnesium oxide, and sodium benzoate. It can also be selected from one or more of fumed silica, silica powder, alumina, and sodium benzoate. Kind or variety.
  • the surface of the binder particles is uneven and evenly distributed with inorganic oxide clusters with a particle size of 10-200 nm.
  • the inventor discovered during research that when the surface of the binder particles meets the above conditions, it helps to uniformly disperse the organic polymer, thereby improving the bonding performance of the binder.
  • the weight average molecular weight of the organic polymer is 500,000-1.2 million, optionally 800,000-1 million.
  • the molecular weight of the organic polymer can be measured using methods commonly used in the art, for example, it can be measured by gel permeation chromatography with reference to GB/T 21863-2008.
  • the binder has a glass transition temperature of -20°C to 30°C.
  • the glass transition temperature can be measured by methods commonly used in this field, for example, it can be tested by differential scanning calorimetry with reference to GB/T 19466.2.
  • the binder When the glass transition temperature of the binder is within the above range, under the operating conditions of the battery, the binder can fully exert its bonding performance, provide sufficient bonding force for battery components, and avoid failure due to component separation or falling off. Deteriorating the dynamic performance of the battery and causing safety issues.
  • This application also provides a method for preparing the adhesive described in the first aspect of this application, which at least includes the following steps:
  • Step 1 Provide a first polymer monomer, a second polymer monomer and a third polymer monomer, wherein the weight ratio of the first polymer monomer: the second polymer monomer: the third polymer monomer is 1:0-0.8:0-0.15, optional 1:0.05-0.2:0.05-0.1;
  • Step 2 polymerize the polymer monomer to obtain an organic polymer
  • Step 3 Add organic solvent and inorganic matter to the organic polymer in Step 2, and obtain a mixed slurry after stirring;
  • Step 4 Dry the mixed slurry in Step 3, grind and pulverize to obtain the binder described in this application.
  • polymerization of the polymer monomer can be carried out by polymerization methods commonly used in the art, for example, the polymerization can be carried out by emulsion polymerization or suspension polymerization.
  • additives such as emulsifiers such as sodium lauryl sulfate and polymerization initiators such as ammonium persulfate, may also be added to the polymerization system of the polymer monomer.
  • a second aspect of the application provides an isolation film, which includes the adhesive described in the first aspect of the application.
  • the binder of the first aspect of the present application When the binder of the first aspect of the present application is applied to the isolation film, it helps to reduce the resistance of the isolation film and increase the ionic conductivity of the isolation film, thereby improving battery performance.
  • isolation membrane base material there is no particular restriction on the type of isolation membrane base material in this application. Any well-known porous structure isolation membrane base material with good chemical stability and mechanical stability can be selected.
  • the isolation film substrate can be selected from at least one of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the isolation film can be a single-layer film or a multi-layer composite film, with no special restrictions.
  • the materials of each layer can be the same or different, and there is no particular limitation.
  • the isolation film described in this application can be prepared using conventional methods for isolation films in this field.
  • the binder described in the first aspect of the present application can be dissolved in an organic solvent to obtain a slurry, and then the slurry is coated on the isolation film material, and then the organic solvent is removed by dry weight to obtain the adhesive described in the present application. isolation film.
  • the coating density of the adhesive on the isolation film substrate is 0.3-1.0g/m 2 , optionally 0.3-0.8g/m 2 .
  • a third aspect of the present application provides an electrode pole piece, which includes the adhesive described in the first aspect of the present application.
  • the electrode pole pieces can be prepared by methods commonly used in the art.
  • the electrode piece described in this application may be a positive electrode piece or a negative electrode piece.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode film layer disposed on at least one surface of the positive electrode current collector.
  • the positive electrode film layer includes the binder of the first aspect of the present application.
  • the positive electrode current collector has two surfaces facing each other in its own thickness direction, and the positive electrode film layer is disposed on any one or both of the two opposite surfaces of the positive electrode current collector.
  • the positive electrode current collector may be a metal foil or a composite current collector.
  • the metal foil aluminum foil can be used.
  • the composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material base layer.
  • the composite current collector can be formed by forming metal materials (aluminum, aluminum alloys, nickel, nickel alloys, titanium, titanium alloys, silver and silver alloys, etc.) on polymer material substrates (such as polypropylene (PP), polyterephthalate It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the cathode active material may be a cathode active material known in the art for batteries.
  • the cathode active material may include at least one of the following materials: an olivine-structured lithium-containing phosphate, a lithium transition metal oxide, and their respective modified compounds.
  • the present application is not limited to these materials, and other traditional materials that can be used as positive electrode active materials of batteries can also be used. Only one type of these positive electrode active materials may be used alone, or two or more types may be used in combination.
  • lithium transition metal oxides may include, but are not limited to, lithium cobalt oxides (such as LiCoO 2 ), lithium nickel oxides (such as LiNiO 2 ), lithium manganese oxides (such as LiMnO 2 , LiMn 2 O 4 ), lithium Nickel cobalt oxide, lithium manganese cobalt oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide (such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 (also referred to as NCM 333 ), LiNi 0.5 Co 0.2 Mn 0.3 O 2 (can also be abbreviated to NCM 523 ), LiNi 0.5 Co 0.25 Mn 0.25 O 2 (can also be abbreviated to NCM 211 ), LiNi 0.6 Co 0.2 Mn 0.2 O 2 (can also be abbreviated to NCM 622 ), LiNi At least one of 0.8 Co 0.1 Mn 0.1 O 2 (also referred to as NCM 811 ), lithium nickel cobalt aluminum oxide (such as Li Li
  • the olivine structure contains Examples of lithium phosphates may include, but are not limited to, lithium iron phosphate (such as LiFePO 4 (also referred to as LFP)), composites of lithium iron phosphate and carbon, lithium manganese phosphate (such as LiMnPO 4 ), lithium manganese phosphate and carbon. At least one of composite materials, lithium iron manganese phosphate, and composite materials of lithium iron manganese phosphate and carbon.
  • lithium iron phosphate such as LiFePO 4 (also referred to as LFP)
  • composites of lithium iron phosphate and carbon such as LiMnPO 4
  • LiMnPO 4 lithium manganese phosphate and carbon.
  • At least one of composite materials, lithium iron manganese phosphate, and composite materials of lithium iron manganese phosphate and carbon At least one of composite materials, lithium iron manganese phosphate, and composite materials of lithium iron manganese phosphate and carbon.
  • the positive electrode film layer optionally further includes a conductive agent.
  • the conductive agent may include at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the positive electrode sheet can be prepared in the following manner: using the above-mentioned components for preparing the positive electrode sheet, such as the positive active material, the conductive agent, the binder described in the first aspect of the application, and any other The components are dispersed in a solvent (such as N-methylpyrrolidone) to form a positive electrode slurry; the positive electrode slurry is coated on the positive electrode current collector, and after drying, cold pressing and other processes, the positive electrode piece can be obtained.
  • a solvent such as N-methylpyrrolidone
  • the amount of the binder described in the first aspect of the application in the positive electrode sheet is 1-3%, based on the total weight of the positive electrode film layer.
  • the electrode piece described in this application may also be a negative electrode piece.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode film layer disposed on at least one surface of the negative electrode current collector.
  • the negative electrode film layer includes the binder described in the first aspect of the present application.
  • the negative electrode current collector has two opposite surfaces in its own thickness direction, and the negative electrode film layer is disposed on any one or both of the two opposite surfaces of the negative electrode current collector.
  • the negative electrode current collector may be a metal foil or a composite current collector.
  • the composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material base material.
  • the composite current collector can be formed by forming metal materials (copper, copper alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as polypropylene (PP), polyterephthalate It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the negative active material may be a negative active material known in the art for batteries.
  • the negative active material may include at least one of the following materials: artificial graphite, natural graphite, soft carbon, hard carbon, silicon-based materials, tin-based materials, lithium titanate, and the like.
  • the silicon-based material may be selected from at least one of elemental silicon, silicon oxide compounds, silicon carbon composites, silicon nitrogen composites and silicon alloys.
  • the tin-based material may be selected from at least one of elemental tin, tin oxide compounds and tin alloys.
  • the present application is not limited to these materials, and other traditional materials that can be used as battery negative electrode active materials can also be used. Only one type of these negative electrode active materials may be used alone, or two or more types may be used in combination.
  • the negative electrode film layer optionally further includes a conductive agent.
  • the conductive agent may be selected from at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the negative electrode film layer optionally includes other auxiliaries, such as thickeners (such as sodium carboxymethylcellulose (CMC-Na)) and the like.
  • thickeners such as sodium carboxymethylcellulose (CMC-Na)
  • the negative electrode sheet can be prepared by using the above-mentioned components for preparing the negative electrode sheet, such as the negative active material, the conductive agent, the binder described in the first aspect of the application, and any other components.
  • the particles are dispersed in a solvent (such as deionized water) to form a negative electrode slurry; the negative electrode slurry is coated on the negative electrode current collector, and after drying, cold pressing and other processes, the negative electrode piece can be obtained.
  • a solvent such as deionized water
  • the amount of the binder described in the first aspect of the application in the negative electrode sheet is 1-3%, based on the total weight of the negative electrode film layer.
  • a fourth aspect of the application provides a secondary battery, including at least one of the binder described in the first aspect of the application, the separator described in the second aspect of the application, or the pole piece described in the third aspect of the application. A sort of.
  • a secondary battery typically includes a positive electrode plate, a negative electrode plate, an electrolyte and a separator.
  • active ions are inserted and detached back and forth between the positive and negative electrodes.
  • the electrolyte plays a role in conducting ions between the positive and negative electrodes.
  • the isolation film is placed between the positive electrode piece and the negative electrode piece. It mainly prevents the positive and negative electrodes from short-circuiting and allows ions to pass through.
  • the preparation of the secondary battery can be carried out by methods commonly used in the art.
  • the positive electrode sheet, the negative electrode sheet and the separator can be made into an electrode assembly through a winding process or a lamination process, and then the electrolyte is injected into the electrode assembly. and sealed to prepare a secondary battery.
  • the electrolyte plays a role in conducting ions between the positive and negative electrodes.
  • the type of electrolyte in this application can be selected according to needs.
  • the electrolyte can be liquid, gel, or completely solid.
  • the electrolyte is an electrolyte solution.
  • the electrolyte solution includes electrolyte salts and solvents.
  • the electrolyte salt may be selected from the group consisting of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium hexafluoroarsenate, lithium bisfluorosulfonimide, lithium bistrifluoromethanesulfonimide, trifluoromethane At least one of lithium sulfonate, lithium difluorophosphate, lithium difluoroborate, lithium dioxaloborate, lithium difluorodioxalate phosphate and lithium tetrafluoroxalate phosphate.
  • the solvent may be selected from the group consisting of ethylene carbonate, propylene carbonate, methylethyl carbonate, diethyl carbonate, dimethyl carbonate, dipropyl carbonate, methylpropyl carbonate, ethylpropyl carbonate, Butylene carbonate, fluoroethylene carbonate, methyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, ethyl butyrate At least one of ester, 1,4-butyrolactone, sulfolane, dimethyl sulfone, methyl ethyl sulfone and diethyl sulfone.
  • the electrolyte optionally further includes additives.
  • additives may include negative electrode film-forming additives, positive electrode film-forming additives, and may also include additives that can improve certain properties of the battery, such as additives that improve battery overcharge performance, additives that improve battery high-temperature or low-temperature performance, etc.
  • a fifth aspect of the present application provides a battery module including the secondary battery of the third aspect of the present application.
  • the battery module can be prepared by methods commonly used in the art.
  • a sixth aspect of the present application provides a battery pack, including the battery module of the fourth aspect of the present application.
  • the battery pack can be prepared by methods commonly used in the art.
  • a seventh aspect of the present application provides an electrical device, including at least one selected from the secondary battery of the fourth aspect of the present application, the battery module of the fifth aspect of the present application, or the battery pack of the sixth aspect of the present application. kind.
  • the secondary battery may include an outer packaging.
  • the outer packaging can be used to package the above-mentioned electrode assembly and electrolyte.
  • the outer packaging of the secondary battery may be a hard shell, such as a hard plastic shell, an aluminum shell, a steel shell, etc.
  • the outer packaging of the secondary battery may also be a soft bag, such as a bag-type soft bag.
  • the material of the soft bag may be plastic, and examples of the plastic include polypropylene, polybutylene terephthalate, polybutylene succinate, and the like.
  • FIG. 2 shows a square-structured secondary battery 5 as an example.
  • the outer package may include a housing 51 and a cover 53 .
  • the housing 51 may include a bottom plate and side plates connected to the bottom plate, and the bottom plate and the side plates enclose a receiving cavity.
  • the housing 51 has an opening communicating with the accommodation cavity, and the cover plate 53 can cover the opening to close the accommodation cavity.
  • the positive electrode piece, the negative electrode piece and the isolation film can be formed into the electrode assembly 52 through a winding process or a lamination process.
  • the electrode assembly 52 is packaged in the containing cavity.
  • the electrolyte soaks into the electrode assembly 52 .
  • the number of electrode assemblies 52 contained in the secondary battery 5 can be one or more, and those skilled in the art can select according to specific actual needs.
  • secondary batteries can be assembled into battery modules, and the number of secondary batteries contained in the battery module can be one or more. Those skilled in the art can select the specific number according to the application and capacity of the battery module.
  • FIG. 4 is a battery module 3 as an example.
  • a plurality of secondary batteries 5 may be arranged in sequence along the length direction of the battery module 4 .
  • the plurality of secondary batteries 5 can be fixed by fasteners.
  • the battery module 4 may further include a housing having a receiving space in which a plurality of secondary batteries 5 are received.
  • the above-mentioned battery modules can also be assembled into a battery pack.
  • the number of battery modules contained in the battery pack can be one or more. Those skilled in the art can select the specific number according to the application and capacity of the battery pack.
  • the battery pack 1 may include a battery box and a plurality of battery modules 4 disposed in the battery box.
  • the battery box includes an upper box 2 and a lower box 3 .
  • the upper box 2 can be covered with the lower box 3 and form a closed space for accommodating the battery module 4 .
  • Multiple battery modules 4 can be arranged in the battery box in any manner.
  • the present application also provides an electrical device, which includes at least one of the secondary battery, battery module, or battery pack provided by the present application.
  • the secondary battery, battery module, or battery pack may be used as a power source for the electrical device, or may be used as an energy storage unit for the electrical device.
  • the electric device may include mobile devices (such as mobile phones, laptops, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, and electric golf carts). , electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc., but are not limited to these.
  • a secondary battery, a battery module or a battery pack can be selected according to its usage requirements.
  • Fig. 7 is an electrical device as an example.
  • the electric device is a pure electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, etc.
  • a battery pack or battery module can be used.
  • the device may be a mobile phone, a tablet, a laptop, etc.
  • the device is usually required to be thin and light, and a secondary battery can be used as a power source.
  • the proportions of 50% by weight of 2-hydroxyethyl acrylate, 40% by weight of n-butyl acrylate, 5% by weight of methyl methacrylate, and 5% by weight of trimethylolpropane triacrylate The monomers need to be stirred and mixed evenly. Add 100g of mixed monomers, 3g of sodium dodecyl sulfate emulsifier, 1g of ammonium persulfate initiator, and 120g of deionized water into a 500mL four-necked flask equipped with a mechanical stirring device, a thermometer and a condenser tube. Stir and emulsify at 1600 rpm for 30 minutes.
  • binder 1-1 Take 1kg of organic polymer 1, add 450g of silica (by dry weight) and 1kg of deionized water, stir for 1 hour and mix thoroughly, then spray-dry to remove the solvent to prepare binder powder. Then, it is ground and pulverized to obtain a binder 1-1 with a D50 particle size of 6 ⁇ m and a particle size distribution of 1.78.
  • a commercially available PP-PE copolymer microporous film with a thickness of 20 ⁇ m and an average pore diameter of 80 nm was used as the isolation membrane substrate. Dissolve the prepared binder 1 in N-methylpyrrolidone (NMP), stir and mix evenly to obtain a slurry. The slurry was then coated on a PP-PE copolymer microporous membrane. The organic solvent is then removed by drying, so that the coating density of the adhesive 1 on the isolation film is 0.5g/m 2 , thereby obtaining the isolation film 1-1.
  • NMP N-methylpyrrolidone
  • the positive active material lithium iron phosphate (calculated as LiFePO 4 ), the conductive agent acetylene black, and the binder PVDF at a mass ratio of 96.5:2:1.5, dissolve it in the solvent N-methylpyrrolidone (i.e., NMP), and mix thoroughly Stir and mix evenly to obtain positive electrode slurry. Then, the positive electrode slurry is evenly coated on the aluminum foil, dried, cold pressed, and cut to obtain the positive electrode piece.
  • the surface density of the obtained positive electrode active material layer was 19.5 mg/cm 2 and the compacted density was 2.4 g/cm 3 .
  • the negative electrode slurry is evenly coated on the negative electrode current collector copper foil, and then dried, cold pressed, and cut to obtain negative electrode sheets.
  • the obtained negative active material layer had an area density of 9.8 mg/cm 2 and a compacted density of 1.65 g/cm 3 .
  • the separator 2-1 prepared in Example 1 of the present application was used as a separator for a secondary battery.
  • the positive electrode piece, the isolation film 2-1, and the negative electrode piece in order so that the isolation film is between the positive and negative electrodes for isolation, and wind them to obtain a bare cell.
  • the bare battery core is placed in the outer package, the above-mentioned electrolyte is injected and packaged to obtain a secondary battery.
  • Reference standard GB/T 19077-2016/ISO 13320:2009 particle size distribution laser diffraction method Use a laser particle size analyzer (Malvern 3000, MasterSizer 3000) to test, and use a helium-neon red light source as the main light source. Take a clean small beaker, add 1g of the sample to be tested, add a drop of surfactant, add 20ml of deionized water (sample concentration ensures opacity of 8 to 12%), and ultrasonic at 53KHz/120W for 5 minutes to ensure that the sample is completely dispersed. Turn on the laser particle size analyzer, clean the optical system, and automatically test the background. Stir the ultrasonicated solution to be tested to make it disperse evenly, put it into the sample pool as required, and start measuring the particle size. The measurement results can be read from the instrument.
  • a laser particle size analyzer Malvern 3000, MasterSizer 3000
  • represents the ionic conductivity
  • A represents the area of the test isolation film
  • the unit is cm 2
  • L represents the thickness of the test isolation film
  • the unit is ⁇ m
  • R represents the resistance of the test isolation film.
  • the glass transition temperature is measured by differential scanning calorimetry (DSC).
  • the solid content can be tested according to GB/T 1725-2007 "Determination of non-volatile content of paints, varnishes and plastics".
  • the isolation films made from the adhesives of Examples 1-8 have higher ion conductivity than the isolation films made from the adhesives of Comparative Examples 1 and 2.
  • the ionic conductivity of the isolation membrane can be further improved by adjusting the proportion of each polymer monomer and the dry weight ratio of the organic polymer to the dry weight of the inorganic matter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本申请提供一种粘结剂及包含其的隔离膜、电极极片,以及相关的二次电池、电池模块、电池包和用电装置;其中所述粘结剂包含有机聚合物和无机物,所述有机聚合物由具有酯键的第一聚合物单体、具有腈键的第二聚合物单体和具有酰胺键的第三聚合物单体聚合而得,其中第一聚合物单体:第二聚合物单体:第三聚合物单体的重量比为1:0-0.8:0-0.15,可选为1:0.05-0.2:0.05-0.1当所述粘结剂应用于隔离膜时,有助于降低隔离膜的电阻,提升隔离膜的离子电导率,从而改善电池性能。

Description

粘结剂及相关的隔离膜、极片、电池、电池模块、电池包和用电装置 技术领域
本申请涉及锂电池技术领域,尤其涉及一种粘结剂及包含其的隔离膜、电极极片,以及相关的二次电池、电池模块、电池包和用电装置。
背景技术
近年来,随着锂离子电池的应用范围越来越广泛,锂离子电池广泛应用于水力、火力、风力和太阳能电站等储能电源系统,以及电动工具、电动自行车、电动摩托车、电动汽车、军事装备、航空航天等多个领域。然而,现有技术中使用的电池用粘结剂存在熔点较高、粘结性能差等缺点,进而导致不能有效粘结电池部件,从而恶化电池的动力学性能并引发安全问题。因此,如何开发出一种适合电池体系的粘结剂仍是研发人员亟需解决的一个课题。
发明内容
本申请是鉴于上述课题而进行的,其目的在于,提供一种粘结剂,所述粘结剂可在适于电池加工的条件下提供良好的粘结性能,从而有助于提升电池的动力学性能和安全性能。
为达到上述目的,本申请提供了一种粘结剂及包含其的隔离膜、电极极片,以及相关的二次电池、电池模块、电池包和用电装置。
本申请的第一方面提供一种粘结剂,包含有机聚合物和无机物,其中所述有机聚合物至少由以下单体聚合而成:
第一聚合物单体,其具有至少一个酯键,可选为丙烯酸甲酯、丙烯酸乙酯、丙烯酸正丙酯、丙烯酸正丁酯、丙烯酸异丁酯、丙烯酸仲丁酯、丙烯酸叔丁酯、丙烯酸环己酯、丙烯酸月桂酯、丙烯酸-2-乙基 己酯、丙烯酸-2-羟基乙酯、丙烯酸-2-羟基丙酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸正丁酯、甲基丙烯酸-2-乙基己酯、甲基丙烯酸异冰片酯、甲基丙烯酸月桂酯、甲基丙烯酸-2-羟基乙酯、甲基丙烯酸-2-羟基丙酯、乙酸乙烯酯、甲基丙烯酸三氟乙酯、甲基丙烯酸缩水甘油酯或三羟甲基丙烷三丙烯酸酯中的一种或多种,更可选为甲基丙烯酸甲酯、丙烯酸月桂酯、甲基丙烯酸月桂酯或三羟甲基丙烷三丙烯酸酯中的一种或多种;
第二聚合物单体,其具有至少一个腈键,可选为丙烯腈、甲基丙烯腈、乙基丙烯腈中的一种或多种,更可选为丙烯腈、甲基丙烯腈中的一种或多种;
第三聚合物单体,其具有至少一个酰胺键,可选为丙烯酰胺、N-羟甲基丙烯酰胺、N-丁氧基甲基丙烯酰胺中的一种或多种,更可选为丙烯酰胺、N-羟甲基丙烯酰胺中的一种或多种;
其中第一聚合物单体∶第二聚合物单体∶第三聚合物单体的重量比为1∶0-0.8∶0-0.15,可选为1∶0.05-0.2∶0.05-0.1。
当有机聚合物由上述聚合物单体聚合而成时,所制得的粘结剂具备良好的粘结性能,同时也具备较低的玻璃化转变温度,从而适于在电池工况下充分发挥其粘结性能,进而有助于改善电池的动力学性能和安全性能。
在任意实施方式中,可选地,基于有机聚合物的总重量计,所述第一聚合物单体的含量为60-100重量%,可选为60-90重量%;
所述第二聚合物单体的含量为0-30重量%,可选为5-15重量%;和
所述第三聚合物单体的含量为0-40重量%,可选为0-25重量%。
在任意实施方式中,可选地,所述粘结剂的体积平均粒径D10、D50和D90满足(D90-D10)/D50<2.5,可选为<2,更可选<1.8。
在任意实施方式中,可选地,所述有机聚合物颗粒的含量为50-99.9%,可选为60-99%,更可选为70-99%,基于所述粘结剂的总干重计;
所述无机物的含量为0.1-50%,可选为1-40%,更可选为1-30%,基于所述粘结剂的总干重计。
在任意实施方式中,可选地,所述有机聚合物与无机物的重量比为99∶1至1∶1,可选为70∶30至1∶1。
在任意实施方式中,可选地,所述无机物选自硅、铝、钙、锌、镁的氧化物以及硫酸钠、苯甲酸钠、碳酸钙及其改性材料中的一种或几种,可选为二氧化硅、硅溶胶、氧化铝、氧化锌、氧化镁、苯甲酸钠中的一种或多种,更可选为气相法二氧化硅、硅微粉、氧化铝、苯甲酸钠中的一种或多种。
在任意实施方式中,可选地,所述粘结剂颗粒表面凹凸不平,均匀分布有粒径为10-200nm的无机氧化物团簇。
在任意实施方式中,可选地,所述粘结剂的玻璃化温度为-20℃至30℃。
本申请的第二方面提供一种隔离膜,包括本申请第一方面所述的粘结剂。
本申请的第三方面提供一种电极极片,包括本申请第一方面所述的粘结剂。
本申请的第四方面提供一种二次电池,包括本申请第一方面的粘结剂、根据本申请第二方面的隔离膜或根据本申请第三方面的电极极片中的至少一种。
本申请的第五方面提供一种电池模块,包括本申请的第三方面的二次电池。
本申请的第六方面提供一种电池包,包括本申请的第四方面的电池模块。
本申请的第七方面提供一种用电装置,包括选自本申请的第四方面的二次电池、本申请的第五方面的电池模块或本申请的第六方面的电池包中的至少一种。
[有益效果]
在本申请的粘结剂中,有机聚合物由具备不同官能团的第一聚合 物单体、第二聚合物单体和第三聚合物单体按照一定的比例聚合而得,所获得的有机聚合物可充分发挥各聚合物单体的优势,使得包含其的粘结剂聚合物良好的粘结性能,同时具备较低的玻璃化转变温度,从而适于在电池工况下充分发挥其粘结性能,进而有助于提升二次电池的动力学性能和安全性能。此外,当所述粘结剂应用于隔离膜时,有助于降低隔离膜的电阻,提升隔离膜的离子电导率,从而改善电池性能。
本申请的电池模块、电池包和用电装置包括本申请提供的二次电池,因而至少具有与所述二次电池相同的优势。
附图说明
图1为本申请实施例1制得的粘结剂在不同放大倍率下的扫描电镜图。
图2是本申请一实施方式的二次电池的示意图。
图3是图2所示的本申请一实施方式的二次电池的分解图。
图4是本申请一实施方式的电池模块的示意图。
图5是本申请一实施方式的电池包的示意图。
图6是图5所示的本申请一实施方式的电池包的分解图。
图7是本申请一实施方式的二次电池用作电源的用电装置的示意图。
附图标记说明:
1电池包;2上箱体;3下箱体;4电池模块;5二次电池;51壳体;52电极组件;53顶盖组件
具体实施方式
以下,适当地参照附图详细说明具体公开了本申请的粘结剂及其相关的隔离膜、极片、二次电池、电池模块、电池包和用电装置的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。 此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,优选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的 组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
发明人在实际工作中发现,现有技术中使用的电池用粘结剂有的粘结性能较差,有的熔点较高,在电池作业条件下难以充分发挥其粘结作用,不能有效粘结电池部件,从而导致部件在使用过程中分离或脱落,恶化电池的动力学性能并造成安全隐患。
出人意料地,发明人在进行大量实验后发现,通过将包含特定官能团的聚合物单体以一定的重量比进行聚合而获得的有机聚合物具备良好的粘结性能,并且适于在电池作业条件下充分发挥其粘结性能,从而有助于提升二次电池的动力学性能和安全性能。此外,当所述粘结剂应用于隔离膜时,有助于降低隔离膜的电阻,提升隔离膜的离子电导率,从而改善电池性能。
[粘结剂]
本申请的第一方面提供一种粘结剂,包含有机聚合物和无机物,其中所述有机聚合物至少由以下单体聚合而成:
第一聚合物单体,其具有至少一个酯键,可选为丙烯酸甲酯、丙烯酸乙酯、丙烯酸正丙酯、丙烯酸正丁酯、丙烯酸异丁酯、丙烯酸仲丁酯、丙烯酸叔丁酯、丙烯酸环己酯、丙烯酸月桂酯、丙烯酸-2-乙基己酯、丙烯酸-2-羟基乙酯、丙烯酸-2-羟基丙酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸正丁酯、甲基丙烯酸-2-乙基己酯、甲基丙烯酸异冰片酯、甲基丙烯酸月桂酯、甲基丙烯酸-2-羟基乙酯、甲基丙烯酸-2-羟基丙酯、乙酸乙烯酯、甲基丙烯酸三氟乙酯、甲基丙烯酸缩水甘油酯或三羟甲基丙烷三丙烯酸酯中的一种或多种,更可选为甲基丙烯酸甲酯、丙烯酸月桂酯、甲基丙烯酸月桂酯或三羟甲基丙烷三 丙烯酸酯中的一种或多种;
第二聚合物单体,其具有至少一个腈键,可选为丙烯腈、甲基丙烯腈、乙基丙烯腈中的一种或多种,更可选为丙烯腈、甲基丙烯腈中的一种或多种;
第三聚合物单体,其具有至少一个酰胺键,可选为丙烯酰胺、N-羟甲基丙烯酰胺、N-丁氧基甲基丙烯酰胺中的一种或多种,更可选为丙烯酰胺、N-羟甲基丙烯酰胺中的一种或多种;
其中第一聚合物单体∶第二聚合物单体∶第三聚合物单体的重量比为1∶0-0.8∶0-0.15,可选为1∶0.05-0.2∶0.05-0.1。
本申请的粘结剂包含有机聚合物,所述有机聚合物由具备酯键的第一聚合物单体、具备腈键的第二聚合物单体和具备酰胺键的第三聚合物单体按照一定的重量比聚合而得,这有利于充分发挥各单体所带来的协同优势,使得制得的有机聚合物具备良好的粘结性能,同时具备适宜的玻璃化转变温度,从而适于在电池作业条件下充分发挥其粘结性能,提升二次电池的动力学性能和安全性能。本申请的粘结剂还包含无机物,这有助于提升粘结剂的阻燃性能,从而提升二次电池的安全性能。此外,当所述粘结剂应用于隔离膜时,有助于降低隔离膜的电阻,提升隔离膜的离子电导率,从而改善电池性能。
在一些实施方式中,可选地,所述第一聚合物单体的含量为60-100重量%,可选为60-90重量%;所述第二聚合物单体的含量为0-30重量%,可选为5-15重量%;和所述第三聚合物单体的含量为0-40重量%,可选为0-25重量%,基于有机聚合物的总重量计。
当各聚合物单体的含量在上述范围内时,有利于改善粘结剂的粘结性能,同时由上述范围内的聚合物单体制得的有机聚合物具备适宜的玻璃化转变温度,有助于在电池工况下提供充足的粘结力。
在一些实施方式中,可选地,所述粘结剂的体积平均粒径D50满足3<D50≤10μm,可选为5-8μm。
如果粘结剂的粒径过小,则在应用于隔离膜中时,可能阻塞隔离膜的孔隙,导致电池内阻增大,恶化动力学性能。如果粘结剂的粒径 过大,则可能导致粘结剂无法应用于电芯的制备。
在一些实施方式中,可选地,所述粘结剂的体积平均粒径D10、D50和D90满足(D90-D10)/D50<2.5,可选为<2,更可选<1.8。
粘结剂的粒径分布越窄,表明所制得的粘结剂大小越均匀,这有助于充分发挥粘结剂的粘结作用。
在一些实施方式中,可选地,所述有机聚合物颗粒的含量为50-99.9%,可选为60-99%,更可选为70-99%,基于所述粘结剂的总干重计;
所述无机物的含量为0.1-50%,可选为1-40%,更可选为1-30%,基于所述粘结剂的总干重计。
有机聚合物的含量过少或无机物的含量过多,可能导致粘结剂整体的粘结性能不足,甚至无法保持有机聚合物和无机物为一个整体。当无机物的含量过少时,粘结剂的阻燃性能可能较差。
在一些实施方式中,可选地,所述有机聚合物与无机物的重量比为99∶1至1∶1,可选为70∶30至1∶1。
当有机聚合物和无机物的重量比在上述范围内,有利于充分发挥有机聚合物和无机物的协同功能,使得粘结剂具备良好的粘结性能和阻燃性能。
在一些实施方式中,可选地,所述无机物选自硅、铝、钙、锌、镁的氧化物以及硫酸钠、苯甲酸钠、碳酸钙及其改性材料中的一种或几种,可选为二氧化硅、硅溶胶、氧化铝、氧化锌、氧化镁、苯甲酸钠中的一种或多种,更可选为气相法二氧化硅、硅微粉、氧化铝、苯甲酸钠中的一种或多种。
在一些实施方式中,可选地,所述粘结剂颗粒表面凹凸不平,均匀分布有粒径为10-200nm的无机氧化物团簇。
发明人在研究中以外发现,当粘结剂颗粒表面满足上述情况时,有助于使有机聚合物均匀分散,进而改善粘结剂的粘结性能。
在一些实施方式中,可选地,所述有机聚合物的重均分子量为50-120万,可选为80-100万。有机聚合物的分子量可采用本领域通 常使用的方法进行测量,例如可参考GB/T 21863-2008通过凝胶渗透色谱法进行测量。
在一些实施方式中,可选地,所述粘结剂的玻璃化温度为-20℃至30℃。玻璃化转变温度可通过本领域通常使用的方法进行测量,例如可参考GB/T 19466.2通过差示扫描量热法进行测试。
当粘结剂的玻璃化转变温度在上述范围内时,在电池的工作条件下,粘结剂可充分发挥其粘结性能,为电池部件提供充分的粘结力,避免因部件分离或脱落而恶化电池的动力学性能和产生安全问题。
本申请还提供一种制备本申请第一方面所述粘结剂的方法,至少包括以下步骤:
步骤1:提供第一聚合物单体、第二聚合物单体和第三聚合物单体,其中第一聚合物单体∶第二聚合物单体∶第三聚合物单体的重量比为1∶0-0.8∶0-0.15,可选为1∶0.05-0.2∶0.05-0.1;
步骤2:使聚合物单体聚合,获得有机聚合物;
步骤3:向步骤2的有机聚合物中加入有机溶剂和无机物,搅拌后获得混合浆料;和
步骤4:将步骤3的混合浆料干燥,经研磨、粉碎后获得本申请所述粘结剂。
需要说明的是,聚合物单体的聚合可通过本领域通常使用的聚合方法进行,例如可通过乳液聚合或悬浮聚合进行聚合。
在一些实施方式中,可选地,还可向聚合物单体的聚合体系中加入添加剂,例如乳化剂如十二烷基硫酸钠,聚合引发剂例如过硫酸铵。
[隔离膜]
本申请的第二方面提供一种隔离膜,其包括本申请第一方面所述的粘结剂。当本申请第一方面的粘结剂应用于隔离膜时,有助于降低隔离膜的电阻,提升隔离膜的离子电导率,从而改善电池性能。
本申请对隔离膜基材的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜基材。
在一些实施方式中,隔离膜基材可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
本申请所述隔离膜可采用本领域隔离膜的常规方法制备。例如,可将本申请第一方面所述的粘结剂溶于有机溶剂中,得到浆液,然后将浆液涂布在隔离膜材质上,随后经干重除去有机溶剂,即可得到本申请所述的隔离膜。
在一些实施方式中,可选地,粘结剂在隔离膜基材上的涂布密度为0.3-1.0g/m 2,可选为0.3-0.8g/m 2
[极片]
本申请的第三方面提供一种电极极片,其包括本申请第一方面所述的粘结剂。电极极片可通过本领域通常使用的方法制备。
需要说明的是,本申请所述电极极片可以是正极极片或负极极片。
正极极片包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包括本申请第一方面的粘结剂。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极膜层设置在正极集流体相对的两个表面的其中任意一者或两者上。
在一些实施方式中,所述正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,正极活性材料可采用本领域公知的用于电池的正极活性材料。作为示例,正极活性材料可包括以下材料中的至少 一种:橄榄石结构的含锂磷酸盐、锂过渡金属氧化物及其各自的改性化合物。但本申请并不限定于这些材料,还可以使用其他可被用作电池正极活性材料的传统材料。这些正极活性材料可以仅单独使用一种,也可以将两种以上组合使用。其中,锂过渡金属氧化物的示例可包括但不限于锂钴氧化物(如LiCoO 2)、锂镍氧化物(如LiNiO 2)、锂锰氧化物(如LiMnO 2、LiMn 2O 4)、锂镍钴氧化物、锂锰钴氧化物、锂镍锰氧化物、锂镍钴锰氧化物(如LiNi 1/3Co 1/3Mn 1/3O 2(也可以简称为NCM 333)、LiNi 0.5Co 0.2Mn 0.3O 2(也可以简称为NCM 523)、LiNi 0.5Co 0.25Mn 0.25O 2(也可以简称为NCM 211)、LiNi 0.6Co 0.2Mn 0.2O 2(也可以简称为NCM 622)、LiNi 0.8Co 0.1Mn 0.1O 2(也可以简称为NCM 811)、锂镍钴铝氧化物(如LiNi 0.85Co 0.15Al 0.05O 2)及其改性化合物等中的至少一种。橄榄石结构的含锂磷酸盐的示例可包括但不限于磷酸铁锂(如LiFePO 4(也可以简称为LFP))、磷酸铁锂与碳的复合材料、磷酸锰锂(如LiMnPO 4)、磷酸锰锂与碳的复合材料、磷酸锰铁锂、磷酸锰铁锂与碳的复合材料中的至少一种。
在一些实施方式中,正极膜层还可选地包括导电剂。作为示例,所述导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,可以通过以下方式制备正极极片:将上述用于制备正极极片的组分,例如正极活性材料、导电剂、本申请第一方面所述的粘结剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极极片。
在一些实施方式中,可选地,本申请第一方面所述的粘结剂在正极极片中的用量为1-3%,基于正极膜层的总重量计。
类似地,本申请所述电极极片也可以是负极极片。负极极片包括负极集流体以及设置在负极集流体至少一个表面上的负极膜层,所述负极膜层包括本申请第一方面所述的粘结剂。
作为示例,负极集流体具有在其自身厚度方向相对的两个表面, 负极膜层设置在负极集流体相对的两个表面中的任意一者或两者上。
在一些实施方式中,所述负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,负极活性材料可采用本领域公知的用于电池的负极活性材料。作为示例,负极活性材料可包括以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。所述锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申请并不限定于这些材料,还可以使用其他可被用作电池负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
在一些实施方式中,负极膜层还可选地包括导电剂。导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,负极膜层还可选地包括其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na))等。
在一些实施方式中,可以通过以下方式制备负极极片:将上述用于制备负极极片的组分,例如负极活性材料、导电剂、本申请第一方面所述的粘结剂和任意其他组分分散于溶剂(例如去离子水)中,形成负极浆料;将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,即可得到负极极片。
在一些实施方式中,可选地,本申请第一方面所述的粘结剂在负极极片中的用量为1-3%,基于负极膜层的总重量计。
[二次电池]
本申请的第四方面提供一种二次电池,包括本申请第一方面所述的粘结剂、本申请第二方面所述的隔离膜或本申请第三方面所述的极片中的至少一种。
通常情况下,二次电池包括正极极片、负极极片、电解质和隔离膜。在电池充放电过程中,活性离子在正极极片和负极极片之间往返嵌入和脱出。电解质在正极极片和负极极片之间起到传导离子的作用。隔离膜设置在正极极片和负极极片之间,主要起到防止正负极短路的作用,同时可以使离子通过。
二次电池的制备可通过本领域通常使用的方法进行,例如,可将正极极片、负极极片和隔离膜通过卷绕工艺或叠片工艺制成电极组件,然后向电极组件中注入电解液并密封而制得二次电池。
[电解质]
电解质在正极极片和负极极片之间起到传导离子的作用。本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可以是液态的、凝胶态的或全固态的。
在一些实施方式中,所述电解质采用电解液。所述电解液包括电解质盐和溶剂。
在一些实施方式中,电解质盐可选自六氟磷酸锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂、双氟磺酰亚胺锂、双三氟甲磺酰亚胺锂、三氟甲磺酸锂、二氟磷酸锂、二氟草酸硼酸锂、二草酸硼酸锂、二氟二草酸磷酸锂及四氟草酸磷酸锂中的至少一种。
在一些实施方式中,溶剂可选自碳酸亚乙酯、碳酸亚丙酯、碳酸甲乙酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚丁酯、氟代碳酸亚乙酯、甲酸甲酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、丁酸乙酯、1,4-丁内酯、环丁砜、二甲砜、甲乙砜及二乙砜中的至少一种。
在一些实施方式中,所述电解液还可选地包括添加剂。例如添加 剂可以包括负极成膜添加剂、正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温或低温性能的添加剂等。
[电池模块、电池包和用电装置]
本申请的第五方面提供一种电池模块,包括本申请的第三方面的二次电池。电池模块的制备可采用本领域通常使用的方法。
本申请的第六方面提供一种电池包,包括本申请的第四方面的电池模块。电池包的制备可采用本领域通常使用的方法。
本申请的第七方面提供一种用电装置,包括选自本申请的第四方面的二次电池、本申请的第五方面的电池模块或本申请的第六方面的电池包中的至少一种。
另外,以下适当参照附图对本申请的二次电池、电池模块、电池包和用电装置进行说明。
在一些实施方式中,二次电池可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,二次电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。二次电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。例如,图2是作为一个示例的方形结构的二次电池5。
在一些实施方式中,参照图3,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极组件52封装于所述容纳腔内。电解液浸润于电极组件52中。二次电池5所含电极组件52的数 量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
在一些实施方式中,二次电池可以组装成电池模块,电池模块所含二次电池的数量可以为一个或多个,具体数量本领域技术人员可根据电池模块的应用和容量进行选择。
图4是作为一个示例的电池模块3。参照图4,在电池模块4中,多个二次电池5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个二次电池5进行固定。
可选地,电池模块4还可以包括具有容纳空间的外壳,多个二次电池5容纳于该容纳空间。
在一些实施方式中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可以为一个或多个,具体数量本领域技术人员可根据电池包的应用和容量进行选择。
图5和图6是作为一个示例的电池包1。参照图5和图6,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。
另外,本申请还提供一种用电装置,所述用电装置包括本申请提供的二次电池、电池模块、或电池包中的至少一种。所述二次电池、电池模块、或电池包可以用作所述用电装置的电源,也可以用作所述用电装置的能量存储单元。所述用电装置可以包括移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等,但不限于此。
作为所述用电装置,可以根据其使用需求来选择二次电池、电池模块或电池包。
图7是作为一个示例的用电装置。该用电装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置对二 次电池的高功率和高能量密度的需求,可以采用电池包或电池模块。
作为另一个示例的装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用二次电池作为电源。
实施例
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
一、隔离膜
对比例1
有机聚合物1-1的制备
在室温下,按照重量百分比丙烯酸-2-羟基乙酯50重量%、丙烯酸正丁酯40重量%、甲基丙烯酸甲酯5重量%、三羟甲基丙烷三丙烯酸酯5重量%的比例将所需单体搅拌混合均匀。向装有机械搅拌装置、温度计和冷凝管的500mL四口烧瓶中加入100g混合单体,3g十二烷基硫酸钠乳化剂,1g过硫酸铵引发剂,120g去离子水。以1600rpm的转速搅拌乳化30min。然后在氮气保护下升温至75℃,反应4h后,调节pH=6-8,立即降温至40℃以下出料,即得乳液状态的有机聚合物1-1,其固含量约45%。
粘结剂1-1的制备
取1kg有机聚合物1,加入二氧化硅(以干重计)450g,去离子水1kg,搅拌1h充分混合后,经喷雾干燥除去溶剂,制得粘结剂粉末。然后经研磨粉碎,得到D50粒径为6μm,粒径分布为1.78的粘结剂1-1。
隔离膜1-1的制备
使用市售的厚度为20μm、平均孔径为80nm的PP-PE共聚物微孔薄膜(来自卓高电子科技公司,型号20)作为隔离膜基材。将制得的粘结剂1溶于N-甲基吡咯烷酮(即NMP)中,搅拌混合均匀,得到浆液。然后将所述浆液涂布在PP-PE共聚物微孔隔膜上。随后经干燥除去有机溶剂,使得粘结剂1在隔离膜上的涂布密度为0.5g/m 2,即得隔离膜1-1。
对比例2及实施例1-8
除使用的聚合物单体和无机物的类型及用量不同以外,对比例2及实施例1-8的其他步骤与对比例1相同,具体请参照表1。
二、二次电池
正极极片的制备
将正极活性物质磷酸铁锂(以LiFePO 4计)、导电剂乙炔黑、粘结剂PVDF以96.5∶2∶1.5的质量比混合,溶解在溶剂N-甲基吡咯烷酮(即NMP)中,并充分搅拌混合均匀,得到正极浆料。然后将正极浆料均匀涂覆于铝箔上,经烘干、冷压、分切,得到正极极片。所得正极活性物质层的面密度为19.5mg/cm 2,压实密度为2.4g/cm 3
负极极片的制备
将石墨、导电剂乙炔黑、粘结剂PVDF、增稠剂羧甲基纤维素钠(CMC)按照质量比96.5重量份∶0.7重量份∶1.8重量份∶1重量份溶于溶剂去离子水中,并充分搅拌混合均匀,得到负极浆料。将负极浆料均匀涂覆在负极集流体铜箔上,经过烘干、冷压、分切得到负极极片。所得负极活性材料层的面密度为9.8mg/cm 2,压实密度为1.65g/cm 3
电解液的制备
将有机溶剂碳酸亚乙酯(EC)/碳酸甲乙酯(EMC)按照重量比 50/50混合均匀,加入LiPF 6溶解于上述有机溶剂中,搅拌均匀,使LiPF 6的浓度为1.1mol/L,得到电解液。
隔离膜
使用本申请实施例1制得的隔离膜2-1作为二次电池的隔离膜。
二次电池
将正极极片、隔离膜2-1、负极极片按顺序叠好,使隔离膜处于正负极中间起到隔离的作用,并卷绕得到裸电芯。将裸电芯置于外包装中,注入上述电解液并封装,得到二次电池。
相关参数测试方法
1.扫描电镜测试
将适量待测磷酸铁锂颗粒制样,使用ZEISS sigma 300扫描电子显微镜参照标准JY/T010-1996,对样品形貌进行观测。
2.体积平均粒径测试
参考标准GB/T 19077-2016/ISO 13320:2009粒度分布激光衍射法。使用激光粒度仪(马尔文3000,MasterSizer 3000)测试,主光源使用氦氖红光光源。取一洁净小烧杯加入待测样品1g,加入一滴表面活性剂,加入20ml去离子水(样品浓度保证遮光度为8~12%),以53KHz/120W超声5min,确保样品完全分散。打开激光粒度仪,清洗光路系统后,自动测试背景。搅拌已超声的待测溶液,使其分散均匀,按要求放入样品池中,开始测量粒径。从仪器中即可读得测量结果。
3.离子电导率测试
将隔离膜裁成40mm×20mm×9μm的试片,将裁好的隔离膜叠放4层为一组,使用商业化电解液将隔离膜完全润湿,然后在手套 箱中组装成测试用对称电池。用电化学工作站测试其隔离膜阻抗R,测量范围为1Hz到100000Hz之间,施加的交流信号偏振5mV。通过交流阻抗的测试结果可以计算离子电导率,公式如下:
δ=1000L/RA
其中,δ表示离子电导率,单位:mS/cm;A表示测试隔离膜的面积,单位是cm 2,L表示测试隔离膜的厚度,单位为μm,R表示测试隔离膜的电阻。
4.玻璃化温度测试
参考标准GB/T 19466.2,通过差示扫描量热法(DSC)测量玻璃化转变温度。
5.固含量测试
固含量可参照GB/T 1725-2007《色漆、清漆和塑料不挥发物含量的测定》进行测试。
Figure PCTCN2022083171-appb-000001
根据上述结果可知,相对于由对比例1和2的粘结剂制得的隔离膜,由实施例1-8的粘结剂制得的隔离膜具备更高的离子电导率。特别地,通过调节各聚合物单体的比例以及有机聚合物的干重与无机物的干重比,可进一步改善隔离膜的离子电导率。
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。

Claims (14)

  1. 一种粘结剂,包含有机聚合物和无机物,其中
    所述有机聚合物至少由以下单体聚合而成:
    第一聚合物单体,其具有至少一个酯键,可选为丙烯酸甲酯、丙烯酸乙酯、丙烯酸正丙酯、丙烯酸正丁酯、丙烯酸异丁酯、丙烯酸仲丁酯、丙烯酸叔丁酯、丙烯酸环己酯、丙烯酸月桂酯、丙烯酸-2-乙基己酯、丙烯酸-2-羟基乙酯、丙烯酸-2-羟基丙酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸正丁酯、甲基丙烯酸-2-乙基己酯、甲基丙烯酸异冰片酯、甲基丙烯酸月桂酯、甲基丙烯酸-2-羟基乙酯、甲基丙烯酸-2-羟基丙酯、乙酸乙烯酯、甲基丙烯酸三氟乙酯、甲基丙烯酸缩水甘油酯或三羟甲基丙烷三丙烯酸酯中的一种或多种,更可选为甲基丙烯酸甲酯、丙烯酸月桂酯、甲基丙烯酸月桂酯或三羟甲基丙烷三丙烯酸酯中的一种或多种;
    第二聚合物单体,其具有至少一个腈键,可选为丙烯腈、甲基丙烯腈、乙基丙烯腈中的一种或多种,更可选为丙烯腈、甲基丙烯腈中的一种或多种;
    第三聚合物单体,其具有至少一个酰胺键,可选为丙烯酰胺、N-羟甲基丙烯酰胺、N-丁氧基甲基丙烯酰胺中的一种或多种,更可选为丙烯酰胺、N-羟甲基丙烯酰胺中的一种或多种;
    其中第一聚合物单体:第二聚合物单体:第三聚合物单体的重量比为1:0-0.8:0-0.15,可选为1:0.05-0.2:0.05-0.1。
  2. 根据权利要求1所述的粘结剂,其中基于有机聚合物的总重量计,
    所述第一聚合物单体的含量为60-100重量%,可选为60-90重量%;
    所述第二聚合物单体的含量为0-30重量%,可选为5-15重量%;和
    所述第三聚合物单体的含量为0-40重量%,可选为0-25重量%。
  3. 根据权利要求1或2所述的粘结剂,其中所述粘结剂的体积 平均粒径D10、D50和D90满足(D90-D10)/D50<2.5,可选为<2,更可选<1.8。
  4. 根据权利要求1至3中任一项所述的粘结剂,其中
    所述有机聚合物颗粒的含量为50-99.9%,可选为60-99%,更可选为70-99%,基于所述粘结剂的总干重计;
    所述无机物的含量为0.1-50%,可选为1-40%,更可选为1-30%,基于所述粘结剂的总干重计。
  5. 根据权利要求1至4中任一项所述的粘结剂,其中所述有机聚合物与无机物的重量比为99:1至1:1,可选为70:30至1:1。
  6. 根据权利要求1至5中任一项所述的粘结剂,其中
    所述无机物选自硅、铝、钙、锌、镁的氧化物以及硫酸钠、苯甲酸钠、碳酸钙及其改性材料中的一种或几种,可选为二氧化硅、硅溶胶、氧化铝、氧化锌、氧化镁、苯甲酸钠中的一种或多种,更可选为气相法二氧化硅、硅微粉、氧化铝、苯甲酸钠中的一种或多种。
  7. 根据权利要求1至6中任一项所述的粘结剂,其中
    所述粘结剂颗粒表面凹凸不平,均匀分布有粒径为10-200nm的无机氧化物团簇。
  8. 根据权利要求1至7中任一项所述的粘结剂,其中所述粘结剂的玻璃化温度为-20℃至30℃。
  9. 一种隔离膜,包括根据权利要求1至8中任一项所述的粘结剂。
  10. 一种极片,包括根据权利要求1至8中任一项所述的粘结剂。
  11. 一种二次电池,包括根据权利要求1至8中任一项所述的粘结剂、根据权利要求9所述的隔离膜或根据权利要求10所述的极片中的至少一种。
  12. 一种电池模块,包括权利要求11所述的二次电池。
  13. 一种电池包,包括权利要求12所述的电池模块。
  14. 一种用电装置,包括选自权利要求11所述的二次电池、权利要求12所述的电池模块或权利要求13所述的电池包中的至少一种。
PCT/CN2022/083171 2022-03-25 2022-03-25 粘结剂及相关的隔离膜、极片、电池、电池模块、电池包和用电装置 WO2023178690A1 (zh)

Priority Applications (31)

Application Number Priority Date Filing Date Title
JP2023567203A JP2024519417A (ja) 2022-03-25 2022-03-25 バインダ及び関連するセパレータ、極板、電池、電池モジュール、電池パック並びに電力消費装置
CN202280030673.4A CN117280009A (zh) 2022-03-25 2022-03-25 粘结剂及相关的隔离膜、极片、电池、电池模块、电池包和用电装置
EP22932751.5A EP4317348A4 (en) 2022-03-25 2022-03-25 BINDER AND RELATED SEPARATOR, ELECTRODE SHEET, BATTERY, BATTERY MODULE, BATTERY PACK AND ELECTRICAL DEVICE
KR1020247001256A KR20240021275A (ko) 2022-03-25 2022-03-25 바인더 및 관련된 세퍼레이터, 극판, 전지, 전지 모듈, 전지 팩 및 전기 장치
PCT/CN2022/083171 WO2023178690A1 (zh) 2022-03-25 2022-03-25 粘结剂及相关的隔离膜、极片、电池、电池模块、电池包和用电装置
CN202310132188.4A CN116804139A (zh) 2022-03-25 2023-02-12 粘结剂、隔离膜、极片、电极组件、电池单体、电池及用电装置
KR1020237039177A KR20230170750A (ko) 2022-03-25 2023-02-14 분리막 및 이의 제조 방법, 배터리 및 전기기기
CN202380011329.5A CN117256072A (zh) 2022-03-25 2023-02-14 隔离膜及其制备方法、电池和用电装置
JP2023570404A JP2024518586A (ja) 2022-03-25 2023-02-14 セパレータ及びその製造方法、電池と電力消費装置
PCT/CN2023/075964 WO2023179248A1 (zh) 2022-03-25 2023-02-14 隔离膜及其制备方法、电池和用电装置
EP23773499.1A EP4395042A1 (en) 2022-03-25 2023-02-14 Separator and preparation method therefor, battery, and electric device
EP23773584.0A EP4318776A1 (en) 2022-03-25 2023-03-02 Separator and preparation method therefor, battery, and electric apparatus
CN202380011330.8A CN117397109A (zh) 2022-03-25 2023-03-02 隔离膜及其制备方法、电池和用电装置
KR1020237038616A KR20230167125A (ko) 2022-03-25 2023-03-02 분리막 및 그 제조 방법, 전지 및 전기 장치
JP2023570444A JP2024517980A (ja) 2022-03-25 2023-03-02 セパレータ及びその製造方法、電池と電力消費装置
PCT/CN2023/079397 WO2023179333A1 (zh) 2022-03-25 2023-03-02 隔离膜及其制备方法、电池和用电装置
PCT/CN2023/080602 WO2023179373A1 (zh) 2022-03-25 2023-03-09 隔离膜及其制备方法、电池和用电装置
JP2023570405A JP2024517973A (ja) 2022-03-25 2023-03-09 セパレータ及びその製造方法、電池と電力消費装置
KR1020237039011A KR20230170739A (ko) 2022-03-25 2023-03-09 분리막 및 이의 제조 방법, 배터리 및 전기기기
CN202380011331.2A CN117397112A (zh) 2022-03-25 2023-03-09 隔离膜及其制备方法、电池和用电装置
EP23773622.8A EP4318779A4 (en) 2022-03-25 2023-03-09 SEPARATOR AND ITS MANUFACTURING METHOD, BATTERY, AND ELECTRIC DEVICE
EP23774023.8A EP4354627A1 (en) 2022-03-25 2023-03-24 Isolation film and preparation method therefor, battery, and electrical apparatus
CN202380011326.1A CN117378086A (zh) 2022-03-25 2023-03-24 隔离膜及其制备方法、电池和用电装置
PCT/CN2023/083849 WO2023179780A1 (zh) 2022-03-25 2023-03-24 隔离膜及其制备方法、电池和用电装置
JP2024506254A JP2024528159A (ja) 2022-03-25 2023-03-24 セパレータ及びその製造方法、電池と電力消費装置
KR1020247003322A KR20240027097A (ko) 2022-03-25 2023-03-24 분리막 및 이의 제조 방법, 전지 및 전기기기
US18/409,818 US20240145864A1 (en) 2022-03-25 2024-01-11 Binder and related separator, electrode plate, battery, battery module, battery pack, and electrical device
US18/419,353 US20240162566A1 (en) 2022-03-25 2024-01-22 Separator and preparation method therefor, battery, and electric apparatus
US18/631,365 US20240274978A1 (en) 2022-03-25 2024-04-10 Separator and preparation method thereof, battery, and electric apparatus
US18/658,920 US20240304945A1 (en) 2022-03-25 2024-05-08 Separator and preparation method therefor, battery, and electric apparatus
US18/657,806 US20240313352A1 (en) 2022-03-25 2024-05-08 Separator and preparation method therefor, battery, and electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/083171 WO2023178690A1 (zh) 2022-03-25 2022-03-25 粘结剂及相关的隔离膜、极片、电池、电池模块、电池包和用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/409,818 Continuation US20240145864A1 (en) 2022-03-25 2024-01-11 Binder and related separator, electrode plate, battery, battery module, battery pack, and electrical device

Publications (1)

Publication Number Publication Date
WO2023178690A1 true WO2023178690A1 (zh) 2023-09-28

Family

ID=88078673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083171 WO2023178690A1 (zh) 2022-03-25 2022-03-25 粘结剂及相关的隔离膜、极片、电池、电池模块、电池包和用电装置

Country Status (6)

Country Link
US (1) US20240145864A1 (zh)
EP (1) EP4317348A4 (zh)
JP (1) JP2024519417A (zh)
KR (1) KR20240021275A (zh)
CN (2) CN117280009A (zh)
WO (1) WO2023178690A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4421143A1 (en) * 2023-01-04 2024-08-28 Contemporary Amperex Technology Co., Limited Binder, separator, electrode sheet, electrode assembly, battery cell, battery, and electric device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098380A1 (ja) * 2009-02-25 2010-09-02 日本ゼオン株式会社 リチウムイオン二次電池用電極
CN102893427A (zh) * 2010-03-17 2013-01-23 株式会社Lg化学 隔膜及包含该隔膜的电化学装置
CN103509500A (zh) * 2012-06-26 2014-01-15 湖州欧美化学有限公司 用于锂离子二次电池的水性粘合剂
JP2015185530A (ja) * 2014-03-26 2015-10-22 日本ゼオン株式会社 二次電池多孔膜用バインダー、二次電池多孔膜用スラリー組成物、二次電池用多孔膜及び二次電池
CN105778834A (zh) * 2016-03-21 2016-07-20 福建蓝海黑石科技有限公司 锂离子电池陶瓷隔膜用粘合剂及其制备方法
US20200067082A1 (en) * 2018-08-23 2020-02-27 Sumitomo Osaka Cement Co., Ltd. Method of producing positive electrode material for lithium-ion secondary batteries, positive electrode material for lithium-ion secondary batteries, positive electrode for lithium-ion secondary batteries, and lithium-ion secondary battery
CN113583532A (zh) * 2021-07-13 2021-11-02 上海恩捷新材料科技有限公司 一种锂电池陶瓷隔膜用耐高温粘结剂及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148577A1 (ja) * 2013-03-21 2014-09-25 日本ゼオン株式会社 リチウムイオン二次電池多孔膜用スラリー及びその製造方法、リチウムイオン二次電池用セパレータ並びにリチウムイオン二次電池
WO2015129408A1 (ja) * 2014-02-27 2015-09-03 日本ゼオン株式会社 二次電池多孔膜用バインダー組成物、二次電池多孔膜用スラリー、二次電池用多孔膜及び二次電池
CN105131875B (zh) * 2015-08-26 2017-07-07 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池用水性粘合剂、制备方法及其用途
CN111916624B (zh) * 2019-05-08 2022-02-01 宁德新能源科技有限公司 隔离膜和电化学装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098380A1 (ja) * 2009-02-25 2010-09-02 日本ゼオン株式会社 リチウムイオン二次電池用電極
CN102893427A (zh) * 2010-03-17 2013-01-23 株式会社Lg化学 隔膜及包含该隔膜的电化学装置
CN103509500A (zh) * 2012-06-26 2014-01-15 湖州欧美化学有限公司 用于锂离子二次电池的水性粘合剂
JP2015185530A (ja) * 2014-03-26 2015-10-22 日本ゼオン株式会社 二次電池多孔膜用バインダー、二次電池多孔膜用スラリー組成物、二次電池用多孔膜及び二次電池
CN105778834A (zh) * 2016-03-21 2016-07-20 福建蓝海黑石科技有限公司 锂离子电池陶瓷隔膜用粘合剂及其制备方法
US20200067082A1 (en) * 2018-08-23 2020-02-27 Sumitomo Osaka Cement Co., Ltd. Method of producing positive electrode material for lithium-ion secondary batteries, positive electrode material for lithium-ion secondary batteries, positive electrode for lithium-ion secondary batteries, and lithium-ion secondary battery
CN113583532A (zh) * 2021-07-13 2021-11-02 上海恩捷新材料科技有限公司 一种锂电池陶瓷隔膜用耐高温粘结剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4317348A4 *

Also Published As

Publication number Publication date
EP4317348A4 (en) 2024-07-31
US20240145864A1 (en) 2024-05-02
JP2024519417A (ja) 2024-05-13
CN116804139A (zh) 2023-09-26
EP4317348A1 (en) 2024-02-07
KR20240021275A (ko) 2024-02-16
CN117280009A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
WO2022041259A1 (zh) 二次电池及其制备方法与包含二次电池的电池模块、电池包及装置
WO2021108981A1 (zh) 二次电池、装置、人造石墨及制备方法
WO2021088718A1 (zh) 二次电池及含有该二次电池的电池模组、电池包、装置
WO2024012166A1 (zh) 二次电池及用电装置
WO2024011350A1 (zh) 复合材料及其制备方法、电极、二次电池及用电装置
US20240145864A1 (en) Binder and related separator, electrode plate, battery, battery module, battery pack, and electrical device
WO2024221337A1 (zh) 一种正极极片、电池及用电装置
WO2024031519A1 (zh) 隔离膜、其制备方法及其相关的二次电池、电池模块、电池包和用电装置
WO2024011511A1 (zh) 正极浆料及其制备方法、正极极片、二次电池、电池模块、电池包及用电装置
WO2023044866A1 (zh) 硅碳负极材料、负极极片、二次电池、电池模块、电池包和用电装置
WO2023108352A1 (zh) 一种正极活性材料及其相关的极片、二次电池、电池模块、电池包和装置
WO2022246630A1 (zh) 二次电池、其制备方法和包含其的装置、以及粘结剂配方
WO2023283960A1 (zh) 正极极片、二次电池及其制备方法与包含该二次电池的电池模块、电池包和用电装置
WO2023230985A1 (zh) 锂离子电池正极极片、包含其的锂离子电池及用电装置
WO2024146064A1 (zh) 粘结剂、隔离膜、极片、电极组件、电池单体、电池及用电装置
WO2024146062A1 (zh) 粘结剂及其制备方法、隔离膜、极片、电极组件、电池单体、电池及用电装置
WO2023133881A1 (zh) 正极极片、二次电池、电池模块、电池包和用电装置
WO2024065402A1 (zh) 一种二次电池及用电装置
US20240347857A1 (en) Binder for secondary batteries and preparation method thereof, as well as separator, battery cell, battery and electrical apparatus
WO2024216596A1 (zh) 一种二次电池以及用电装置
WO2024020985A1 (zh) 电极极片、二次电池及用电装置
WO2023193166A1 (zh) 电极组件以及包含其的二次电池、电池模块、电池包及用电装置
WO2023216241A1 (zh) 二次电池及其制备方法、电池模块、电池包和用电装置
WO2024045126A1 (zh) 一种粘结剂、隔膜及使用该隔膜的锂离子电池
WO2023044625A1 (zh) 复合人造石墨及其制备方法及包含所述复合人造石墨的二次电池和用电装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280030673.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022932751

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2023567203

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022932751

Country of ref document: EP

Effective date: 20231031

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932751

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247001256

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247001256

Country of ref document: KR