WO2023230985A1 - 锂离子电池正极极片、包含其的锂离子电池及用电装置 - Google Patents

锂离子电池正极极片、包含其的锂离子电池及用电装置 Download PDF

Info

Publication number
WO2023230985A1
WO2023230985A1 PCT/CN2022/096833 CN2022096833W WO2023230985A1 WO 2023230985 A1 WO2023230985 A1 WO 2023230985A1 CN 2022096833 W CN2022096833 W CN 2022096833W WO 2023230985 A1 WO2023230985 A1 WO 2023230985A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
cathode
particles
lithium
Prior art date
Application number
PCT/CN2022/096833
Other languages
English (en)
French (fr)
Inventor
沈重亨
桓书星
罗东升
王帮润
吴奇
陈强
柳娜
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/096833 priority Critical patent/WO2023230985A1/zh
Priority to KR1020237038271A priority patent/KR20230168282A/ko
Priority to EP22929218.0A priority patent/EP4312288A1/en
Priority to US18/490,759 priority patent/US20240055579A1/en
Publication of WO2023230985A1 publication Critical patent/WO2023230985A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of lithium batteries, and in particular to a lithium-ion battery positive electrode plate, a lithium-ion battery including the same, and an electrical device.
  • lithium-ion batteries are widely used in energy storage power systems such as hydraulic, thermal, wind and solar power stations, as well as power tools, electric bicycles, electric motorcycles, electric vehicles, Military equipment, aerospace and other fields. Due to the great development of lithium-ion batteries, higher requirements have been put forward for their energy density, processing performance, etc.
  • This application was made in view of the above-mentioned issues, and its purpose is to provide a lithium-ion battery positive electrode plate that can still achieve high electrode plate pressure at low electrode plate elongation under a relatively high active material loading. real density.
  • the first aspect of the present application provides a lithium-ion battery positive electrode sheet, including a positive electrode current collector and a positive electrode film layer disposed on at least one surface of the positive electrode current collector.
  • the positive electrode film layer contains the following substances:
  • Polycrystalline particles of the first positive electrode active material with a particle size of 11.0 to 20.0 ⁇ m;
  • Second positive electrode active material polycrystalline particles with a particle size of 6.0 to 10.5 ⁇ m
  • the number of polycrystalline particles of the first cathode active material is a
  • the number of polycrystalline particles of the second cathode active material is b
  • the number of single crystal particles of the third cathode active material is c
  • (a+ b):c is in the range of 5.7:4.3 ⁇ 7.7:2.3.
  • this application combines three cathode active materials with different particle sizes in a specific ratio, so that the cathode plate can still obtain high compaction density at low elongation under a higher cathode material loading.
  • (a+b):c is in the range of 6.1:3.9 to 7.2:2.8.
  • the first polycrystalline particles of cathode active material, the polycrystalline particles of second cathode active material, and the single crystal particles of third cathode active material are all ternary cathode active materials.
  • the first positive electrode active material polycrystalline particles, the second positive electrode active material polycrystalline particles and the third positive electrode active material single crystal particles each have the same or different chemical compositions, and all have the chemical formula LiNi a Co b M ( 1-ab) O 2 , where: 0.8 ⁇ a ⁇ 1.0, 0 ⁇ b ⁇ 0.2, and a+b ⁇ 1.0, M is selected from Mn, Al, B, Zr, Sr, Y, Sb, W, Ti, Mg , one or more of Nb.
  • the pore volume of the positive electrode film layer is in the range of 1.2 mm 3 /g to 4.0 mm 3 /g.
  • the shear stress of the positive electrode piece is in the range of 0.65MPa ⁇ 0.85MPa. This kind of positive electrode piece can ensure that the electrode piece has good toughness after being stretched under high rolling pressure and is not easy to be brittle.
  • the Dv50 of the first positive active material polycrystalline particles is 12-16 ⁇ m, and the total mass is A; the Dv50 of the second positive active material polycrystalline particles is 8 to 10 ⁇ m, and the total mass is B; the Dv50 of the third positive electrode active material single crystal particle is 2.5 to 4 ⁇ m, and the total mass is C; (A+B):C is in the range of 6:4 to 8:2 Within, optionally within the range of 6.5:3.5 ⁇ 7.5:2.5.
  • the compacted density CPD-IT of the positive active material mixture under a pressure of 1 ton is in the range of 3.0g/cm 3 to 3.2g/cm 3 .
  • the BET specific surface area of the positive active material mixture is in the range of 0.5 m 2 /g to 0.7 m 2 /g.
  • the positive active material mixture has a Dv99 in the range of 18 ⁇ m to 21 ⁇ m.
  • the Dv99 of the positive electrode active material mixture By controlling the Dv99 of the positive electrode active material mixture to be within the above range, the compacted density of the positive electrode sheet can be increased.
  • the SPAN value of the first positive active material polycrystalline particles satisfies SPAN ⁇ 1.20, optionally, 0.50 ⁇ SPAN ⁇ 1.00.
  • the SPAN value of the polycrystalline particles of the second cathode active material satisfies SPAN ⁇ 1.20, optionally, 1.30 ⁇ SPAN ⁇ 1.50.
  • the SPAN value of the third positive electrode active material single crystal particle satisfies SPAN ⁇ 1.70, optionally, 1.10 ⁇ SPAN ⁇ 1.40.
  • the tap density TPD of the third cathode active material single crystal particle is ⁇ 1.8g/cm 3 , optionally, 1.2g/cm 3 ⁇ TPD ⁇ 1.5g/cm 3 .
  • the tap density of the third cathode active material single crystal particles is within the above range, it has a highly dispersible morphology, thereby further improving the space utilization of the cathode plate and increasing the compaction density of the cathode plate. .
  • a second aspect of the application also provides a lithium ion battery, which includes the positive electrode sheet of the first aspect of the application.
  • a third aspect of the present application provides a battery module, including the lithium-ion battery of the second aspect of the present application.
  • a fourth aspect of the application provides a battery pack, including the battery module of the third aspect of the application.
  • a fifth aspect of the present application provides an electrical device, including at least one selected from the lithium ion battery of the second aspect of the present application, the battery module of the third aspect of the present application, or the battery pack of the fourth aspect of the present application. kind.
  • Figure 1 is a scanning electron microscope image of the positive electrode plate of Example 1.
  • FIG. 2 is a schematic diagram of a lithium-ion battery according to an embodiment of the present application.
  • FIG. 3 is an exploded view of the lithium ion battery according to one embodiment of the present application shown in FIG. 2 .
  • Figure 4 is a schematic diagram of a battery module according to an embodiment of the present application.
  • Figure 5 is a schematic diagram of a battery pack according to an embodiment of the present application.
  • FIG. 6 is an exploded view of the battery pack according to an embodiment of the present application shown in FIG. 5 .
  • FIG. 7 is a schematic diagram of an electrical device using a lithium-ion battery as a power source according to an embodiment of the present application.
  • Ranges disclosed herein are defined in terms of lower and upper limits. A given range is defined by selecting a lower limit and an upper limit that define the boundaries of the particular range. Ranges defined in this manner may be inclusive or exclusive of the endpoints, and may be arbitrarily combined, that is, any lower limit may be combined with any upper limit to form a range. For example, if ranges of 60-120 and 80-110 are listed for a particular parameter, understand that ranges of 60-110 and 80-120 are also expected. Furthermore, if the minimum range values 1 and 2 are listed, and if the maximum range values 3, 4, and 5 are listed, then the following ranges are all expected: 1-3, 1-4, 1-5, 2- 3, 2-4 and 2-5.
  • the numerical range “a-b” represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
  • the numerical range “0-5" means that all real numbers between "0-5" have been listed in this article, and "0-5" is just an abbreviation of these numerical combinations.
  • a certain parameter is an integer ⁇ 2
  • the method includes steps (a) and (b), which means that the method may include steps (a) and (b) performed sequentially, or may include steps (b) and (a) performed sequentially.
  • step (c) means that step (c) may be added to the method in any order.
  • the method may include steps (a), (b) and (c). , may also include steps (a), (c) and (b), may also include steps (c), (a) and (b), etc.
  • condition "A or B” is satisfied by any of the following conditions: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists) ; Or both A and B are true (or exist).
  • the gram capacity of the positive active material can be increased, and on the other hand, the compaction density of the positive electrode sheet under high active material loading can be increased.
  • the compaction density of the positive electrode sheet is simply increased by increasing the pressure of the roller, phenomena such as pulverization and particle slippage of the positive active material particles will easily occur, resulting in a larger lengthwise elongation of the positive electrode sheet, such as greater than equal to 0.8%. Excessive pole piece elongation can easily lead to problems such as brittle fracture of the pole piece during winding or hot pressing. Therefore, it is still necessary to develop lithium-ion battery cathode sheets with low elongation and high compaction density under higher active material loading.
  • the inventor of the present application found that when two polycrystalline particles of positive electrode active material in a specific particle size range are mixed with a single crystal particle of positive electrode active material in a specific particle size range in a specific ratio as the positive electrode active material, the resulting positive electrode sheet Able to achieve high compaction density at low elongation.
  • Single crystal and “polycrystalline” described in this application have common meanings in the technical field of positive active materials.
  • polycrystalline particles of cathode active materials refer to spherical agglomerates formed by the accumulation of multiple small crystal grains
  • single crystal particles of cathode active materials refer to single crystal grains with clear boundaries formed individually or by the accumulation of several particles. agglomerates or quasi-agglomerates.
  • Single crystal and “polycrystalline” can be confirmed by methods well known in the art, such as observing the particle morphology through scanning electron microscopy.
  • the present application provides a lithium-ion battery positive electrode sheet, including a positive electrode current collector and a positive electrode film layer disposed on at least one surface of the positive electrode current collector.
  • the positive electrode film layer includes the following substances: Cathode active material mixture:
  • Polycrystalline particles of the first positive electrode active material with a particle size of 11.0 to 20.0 ⁇ m;
  • Second positive electrode active material polycrystalline particles with a particle size of 6.0 to 10.5 ⁇ m
  • the number of polycrystalline particles of the first cathode active material is a
  • the number of polycrystalline particles of the second cathode active material is b
  • the number of single crystal particles of the third cathode active material is c
  • (a+ b):c is in the range of 5.7:4.3 ⁇ 7.7:2.3.
  • the particle size of a particle refers to the distance between the two farthest points on the particle in a scanning electron microscope (SEM) photograph.
  • SEM scanning electron microscope
  • the particle size of the particles can be tested using equipment and methods known in the art. For example, use a scanning electron microscope (such as ZEISS Sigma 300) and refer to JY/T010-1996 to obtain a scanning electron microscope photo of the positive electrode plate.
  • the number of particles of one type is determined by randomly selecting 10 areas on the positive electrode sheet and taking SEM photos of each area. It is obtained by counting the number of particles that match the particle size range in each test area through SEM photos, and calculating the average number of particles in each test area.
  • the polycrystalline particles of the first cathode active material with a particle size of 11.0 to 20.0 ⁇ m serve as the skeleton of the cathode film layer. If the particle size is too large, cracks at the edges of the particles will easily occur, and the gram capacity of the particles will be limited.
  • Polycrystalline particles of the second cathode active material with a particle size of 6.0 to 10.5 ⁇ m are used as primary fillers to improve space utilization and improve gram capacity.
  • the third cathode active material single crystal particles with a particle size of 1.1 to 5.2 ⁇ m are used as secondary fillers. Because of their high dispersion and pressure resistance, they can fully fill the first cathode active material polycrystalline particles and the second cathode active material. The pores left by the polycrystalline particles of a material.
  • setting the numerical ratio of the three (a+b):c in the range of 5.7:4.3 ⁇ 7.7:2.3 can maximize the balance between gram capacity and compaction density.
  • (a+b):c ranges from 6.1:3.9 to 7.2:2.8, such as 6.2:3.8.
  • the ratio between the number a of the polycrystalline particles of the first cathode active material and the number b of the polycrystalline particles of the second cathode active material can be arbitrarily selected by those skilled in the art according to actual needs.
  • a:b can be between 1:9 and 7.5. : Within the range of 2.5.
  • the first positive electrode active material polycrystalline particles, the second positive electrode active material polycrystalline particles, and the third positive electrode active material single crystal particles may have a chemical composition of a conventional positive electrode active material in the art.
  • the cathode active material may include at least one of the following materials: an olivine-structured lithium-containing phosphate, a lithium transition metal oxide, and their respective modified compounds.
  • the present application is not limited to these materials, and other traditional materials that can be used as positive electrode active materials of batteries can also be used. Only one type of these positive electrode active materials may be used alone, or two or more types may be used in combination.
  • lithium transition metal oxides may include, but are not limited to, lithium cobalt oxides (such as LiCoO 2 ), lithium nickel oxides (such as LiNiO 2 ), lithium manganese oxides (such as LiMnO 2 , LiMn 2 O 4 ), lithium Nickel cobalt oxide, lithium manganese cobalt oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide (such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 (also referred to as NCM 333 ), LiNi 0.5 Co 0.2 Mn 0.3 O 2 (can also be abbreviated to NCM 523 ), LiNi 0.5 Co 0.25 Mn 0.25 O 2 (can also be abbreviated to NCM 211 ), LiNi 0.6 Co 0.2 Mn 0.2 O 2 (can also be abbreviated to NCM 622 ), LiNi At least one of 0.8 Co 0.1 Mn 0.1 O 2 (also referred to as NCM 811 ), lithium nickel cobalt aluminum oxide (such as Li Li
  • the olivine structure contains Examples of lithium phosphates may include, but are not limited to, lithium iron phosphate (such as LiFePO 4 (also referred to as LFP)), composites of lithium iron phosphate and carbon, lithium manganese phosphate (such as LiMnPO 4 ), lithium manganese phosphate and carbon. At least one of composite materials, lithium iron manganese phosphate, and composite materials of lithium iron manganese phosphate and carbon.
  • lithium iron phosphate such as LiFePO 4 (also referred to as LFP)
  • composites of lithium iron phosphate and carbon such as LiMnPO 4
  • LiMnPO 4 lithium manganese phosphate and carbon.
  • At least one of composite materials, lithium iron manganese phosphate, and composite materials of lithium iron manganese phosphate and carbon At least one of composite materials, lithium iron manganese phosphate, and composite materials of lithium iron manganese phosphate and carbon.
  • the first polycrystalline particles of cathode active material, the polycrystalline particles of second cathode active material, and the single crystal particles of third cathode active material are all ternary cathode active materials.
  • the first positive electrode active material polycrystalline particles, the second positive electrode active material polycrystalline particles and the third positive electrode active material single crystal particles each have the same or different chemical compositions, and all have the chemical formula LiNi a Co b M ( 1-ab) O 2 , where: 0.8 ⁇ a ⁇ 1.0, 0 ⁇ b ⁇ 0.2, and a+b ⁇ 1.0, M is selected from Mn, Al, B, Zr, Sr, Y, Sb, W, Ti, Mg , one or more of Nb.
  • the pore volume of the positive electrode film layer is in the range of 1.2mm 3 /g ⁇ 4.0mm 3 /g, optionally in the range of 1.2mm 3 /g ⁇ 2.0mm 3 /g.
  • Pore volume has a meaning well known in the art.
  • the pore volume of the positive electrode film layer can be measured using methods known in the art.
  • the shear stress of the positive electrode piece is in the range of 0.65MPa to 0.85MPa.
  • the greater tensile strength of such positive electrode pieces can ensure that the electrode pieces obtain better toughness after being stretched under high rolling pressure and are not prone to brittle fracture.
  • Shear stress has a meaning well known in the art.
  • the shear stress is measured by the following method: take the pole piece to be measured and cut out a sample with a width of 0.02m and a length of 0.1m. The edge of the sample has an exposed current collector for welding the tab.
  • the Dv50 of the first positive active material polycrystalline particles is 12 to 16 ⁇ m, such as 12 to 13 ⁇ m, 13 to 16 ⁇ m, and the total mass is A; the second The Dv50 of the polycrystalline particles of the positive active material is 8 to 10 ⁇ m, such as 8 to 9 ⁇ m, 9 to 10 ⁇ m, and the total mass is B; the Dv50 of the third single crystal particle of the positive active material is 2.5 to 4 ⁇ m, such as 2.5 to 3 ⁇ m, 3 ⁇ 4 ⁇ m, and the total mass is C; (A+B):C is in the range of 6:4 ⁇ 8:2, optionally in the range of 6.5:3.5 ⁇ 7.5:2.5.
  • the ratio between the total mass A of the polycrystalline particles of the first cathode active material and the total mass B of the polycrystalline particles of the second cathode active material can be arbitrarily selected by those skilled in the art according to actual needs.
  • A:B can be in the range of 2:8 ⁇ 7:3 range.
  • the volume distribution particle size Dv50 of the positive electrode active material particles and the Dv10, Dv90, and Dv99 mentioned below are well-known concepts in the art.
  • Dv10 is the particle size that reaches 10% of the cumulative volume from the small particle size side in the volume-based particle size distribution of particles.
  • Dv50 is the particle size that reaches 50% of the cumulative volume from the small particle size side in the volume-based particle size distribution of particles.
  • Dv90 is the particle size that reaches 90% of the cumulative volume from the small particle size side in the volume-based particle size distribution of particles.
  • Dv99 is the particle size that reaches 99% of the cumulative volume from the small particle size side in the volume-based particle size distribution of particles.
  • the testing methods of particle volume distribution particle size Dv10, Dv50, Dv90, and Dv99 can adopt methods known in the art. As an example, you can refer to GB/T 19077-2016/ISO 13320:2009 Particle Size Distribution Laser Diffraction Method, measured using equipment Malvern 3000.
  • the compacted density CPD-1T of the positive active material mixture under a pressure of 1 ton is in the range of 3.0g/cm 3 to 3.2g/cm 3 , optionally in the range of 3.1g/cm 3 to 3.2 g/cm 3 range.
  • the test method for the compacted density CPD-1T (Compression Density) of the positive active material mixture under 1 ton of pressure can adopt methods known in the art.
  • the BET specific surface area of the positive active material mixture is in the range of 0.5 m 2 /g to 0.7 m 2 /g, optionally in the range of 0.59 m 2 /g to 0.63 m 2 /g.
  • the BET specific surface area of the positive electrode active material mixture can be measured using methods known in the art. As an example, you can refer to GB/T 19587-2017 "Determination of specific surface area of solid materials by gas adsorption BET method", using the equipment TriStar II 3020 for measurement.
  • the SPAN value of the positive active material mixture is in the range of 1.75 to 2.10.
  • the positive active material mixture has a Dv99 in the range of 18 ⁇ m to 21 ⁇ m, optionally in the range of 19.5 ⁇ m to 21 ⁇ m.
  • the Dv99 of the positive electrode active material mixture By controlling the Dv99 of the positive electrode active material mixture to be within the above range, the compacted density of the positive electrode sheet can be increased.
  • the SPAN value of the first positive active material polycrystalline particles satisfies SPAN ⁇ 1.20, optionally, 0.50 ⁇ SPAN ⁇ 1.00.
  • the SPAN value of the polycrystalline particles of the second cathode active material satisfies SPAN ⁇ 1.20, optionally, 1.30 ⁇ SPAN ⁇ 1.50.
  • the SPAN value of the third cathode active material single crystal particle satisfies SPAN ⁇ 1.70, optionally, 1.10 ⁇ SPAN ⁇ 1.40.
  • the tap density TPD of the third cathode active material single crystal particle is ⁇ 1.8g/cm 3 , optionally, 1.2g/cm 3 ⁇ TPD ⁇ 1.5g/cm 3 .
  • the tap density of the third cathode active material single crystal particles is within the above range, it has a highly dispersible morphology, thereby further improving the space utilization of the cathode plate and increasing the compaction density of the cathode plate. .
  • the testing method of the tap density TPD (Tap Density) of the positive electrode active material particles can adopt methods known in the art.
  • TPD Tap Density
  • a lithium ion battery is provided.
  • lithium-ion batteries typically include positive electrode plates, negative electrode plates, electrolytes and separators.
  • active ions are inserted and detached back and forth between the positive and negative electrodes.
  • the electrolyte plays a role in conducting ions between the positive and negative electrodes.
  • the isolation film is placed between the positive electrode piece and the negative electrode piece. It mainly prevents the positive and negative electrodes from short-circuiting and allows ions to pass through.
  • the positive electrode sheet is as defined above and includes a positive electrode current collector and a positive electrode film layer disposed on at least one surface of the positive electrode current collector.
  • the positive electrode current collector has two surfaces facing each other in its own thickness direction, and the positive electrode film layer is disposed on any one or both of the two opposite surfaces of the positive electrode current collector.
  • the positive electrode current collector may be a metal foil or a composite current collector.
  • the metal foil aluminum foil can be used.
  • the composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material base layer.
  • the composite current collector can be formed by forming metal materials (aluminum, aluminum alloys, nickel, nickel alloys, titanium, titanium alloys, silver and silver alloys, etc.) on polymer material substrates (such as polypropylene (PP), polyterephthalate It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the positive electrode film layer optionally further includes a binder.
  • the binder may include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene-propylene terpolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene At least one of ethylene terpolymer, tetrafluoroethylene-hexafluoropropylene copolymer and fluorine-containing acrylate resin.
  • the positive electrode film layer optionally further includes a conductive agent.
  • the conductive agent may include at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the positive electrode sheet can be prepared by dispersing the above-mentioned components for preparing the positive electrode sheet, such as positive active material, conductive agent, binder and any other components in a solvent (such as N -methylpyrrolidone) to form a positive electrode slurry; the positive electrode slurry is coated on the positive electrode current collector, and after drying, cold pressing and other processes, the positive electrode piece can be obtained.
  • a solvent such as N -methylpyrrolidone
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode film layer disposed on at least one surface of the negative electrode current collector, where the negative electrode film layer includes a negative electrode active material.
  • the negative electrode current collector has two opposite surfaces in its own thickness direction, and the negative electrode film layer is disposed on any one or both of the two opposite surfaces of the negative electrode current collector.
  • the negative electrode current collector may be a metal foil or a composite current collector.
  • the composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material base material.
  • the composite current collector can be formed by forming metal materials (copper, copper alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as polypropylene (PP), polyterephthalate It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the negative active material may be a negative active material known in the art for batteries.
  • the negative active material may include at least one of the following materials: artificial graphite, natural graphite, soft carbon, hard carbon, silicon-based materials, tin-based materials, lithium titanate, and the like.
  • the silicon-based material may be selected from at least one of elemental silicon, silicon oxide compounds, silicon carbon composites, silicon nitrogen composites and silicon alloys.
  • the tin-based material may be selected from at least one of elemental tin, tin oxide compounds and tin alloys.
  • the present application is not limited to these materials, and other traditional materials that can be used as battery negative electrode active materials can also be used. Only one type of these negative electrode active materials may be used alone, or two or more types may be used in combination.
  • the negative electrode film layer optionally further includes a binder.
  • the binder can be selected from styrene-butadiene rubber (SBR), polyacrylic acid (PAA), polysodium acrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA), poly At least one of methacrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • the negative electrode film layer optionally further includes a conductive agent.
  • the conductive agent may be selected from at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the negative electrode film layer optionally includes other auxiliaries, such as thickeners (such as sodium carboxymethylcellulose (CMC-Na)) and the like.
  • thickeners such as sodium carboxymethylcellulose (CMC-Na)
  • the negative electrode sheet can be prepared by dispersing the above-mentioned components for preparing the negative electrode sheet, such as negative active materials, conductive agents, binders and any other components in a solvent (such as deionized water) to form a negative electrode slurry; the negative electrode slurry is coated on the negative electrode current collector, and after drying, cold pressing and other processes, the negative electrode piece can be obtained.
  • a solvent such as deionized water
  • the electrolyte plays a role in conducting ions between the positive and negative electrodes.
  • the type of electrolyte in this application can be selected according to needs.
  • the electrolyte can be liquid, gel, or completely solid.
  • the electrolyte is an electrolyte solution.
  • the electrolyte solution includes electrolyte salts and solvents.
  • the electrolyte salt may be selected from the group consisting of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium hexafluoroarsenate, lithium bisfluorosulfonimide, lithium bistrifluoromethanesulfonimide, trifluoromethane At least one of lithium sulfonate, lithium difluorophosphate, lithium difluoroborate, lithium dioxaloborate, lithium difluorodioxalate phosphate and lithium tetrafluoroxalate phosphate.
  • the solvent may be selected from the group consisting of ethylene carbonate, propylene carbonate, methylethyl carbonate, diethyl carbonate, dimethyl carbonate, dipropyl carbonate, methylpropyl carbonate, ethylpropyl carbonate, Butylene carbonate, fluoroethylene carbonate, methyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, ethyl butyrate At least one of ester, 1,4-butyrolactone, sulfolane, dimethyl sulfone, methyl ethyl sulfone and diethyl sulfone.
  • the electrolyte optionally further includes additives.
  • additives may include negative electrode film-forming additives, positive electrode film-forming additives, and may also include additives that can improve certain properties of the battery, such as additives that improve battery overcharge performance, additives that improve battery high-temperature or low-temperature performance, etc.
  • a separator film is further included in the lithium ion battery.
  • isolation membrane There is no particular restriction on the type of isolation membrane in this application. Any well-known porous structure isolation membrane with good chemical stability and mechanical stability can be used.
  • the material of the isolation membrane can be selected from at least one of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the isolation film can be a single-layer film or a multi-layer composite film, with no special restrictions. When the isolation film is a multi-layer composite film, the materials of each layer can be the same or different, and there is no particular limitation.
  • the positive electrode piece, the negative electrode piece and the separator film can be made into an electrode assembly through a winding process or a lamination process.
  • a lithium-ion battery may include an outer packaging.
  • the outer packaging can be used to package the above-mentioned electrode assembly and electrolyte.
  • the outer packaging of the lithium-ion battery may be a hard shell, such as a hard plastic shell, an aluminum shell, a steel shell, etc.
  • the outer packaging of lithium-ion batteries can also be soft bags, such as bag-type soft bags.
  • the material of the soft bag may be plastic, and examples of the plastic include polypropylene, polybutylene terephthalate, polybutylene succinate, and the like.
  • FIG. 2 shows a lithium-ion battery 5 with a square structure as an example.
  • the outer package may include a housing 51 and a cover 53 .
  • the housing 51 may include a bottom plate and side plates connected to the bottom plate, and the bottom plate and the side plates enclose a receiving cavity.
  • the housing 51 has an opening communicating with the accommodation cavity, and the cover plate 53 can cover the opening to close the accommodation cavity.
  • the positive electrode piece, the negative electrode piece and the isolation film can be formed into the electrode assembly 52 through a winding process or a lamination process.
  • the electrode assembly 52 is packaged in the containing cavity.
  • the electrolyte soaks into the electrode assembly 52 .
  • the number of electrode assemblies 52 included in the lithium ion battery 5 can be one or more, and those skilled in the art can select according to specific actual needs.
  • lithium-ion batteries can be assembled into battery modules, and the number of lithium-ion batteries contained in the battery module can be one or more. The specific number can be selected by those skilled in the art according to the application and capacity of the battery module.
  • FIG. 4 is a battery module 4 as an example.
  • a plurality of lithium-ion batteries 5 may be arranged in sequence along the length direction of the battery module 4 .
  • the plurality of lithium ion batteries 5 can be fixed by fasteners.
  • the battery module 4 may also include a housing having a receiving space in which a plurality of lithium-ion batteries 5 are received.
  • the above-mentioned battery modules can also be assembled into a battery pack.
  • the number of battery modules contained in the battery pack can be one or more. Those skilled in the art can select the specific number according to the application and capacity of the battery pack.
  • the battery pack 1 may include a battery box and a plurality of battery modules 4 disposed in the battery box.
  • the battery box includes an upper box 2 and a lower box 3 .
  • the upper box 2 can be covered with the lower box 3 and form a closed space for accommodating the battery module 4 .
  • Multiple battery modules 4 can be arranged in the battery box in any manner.
  • the present application also provides an electrical device, which includes at least one of the lithium-ion battery, battery module, or battery pack provided by the present application.
  • the lithium-ion battery, battery module, or battery pack can be used as a power source for the electrical device, or can also be used as an energy storage unit for the electrical device.
  • the electric device may include mobile devices (such as mobile phones, laptops, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, and electric golf carts). , electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc., but are not limited to these.
  • a lithium-ion battery, a battery module or a battery pack can be selected according to its usage requirements.
  • Fig. 7 is an electrical device as an example.
  • the electric device is a pure electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, etc.
  • battery packs or battery modules can be used.
  • the device may be a mobile phone, a tablet, a laptop, etc.
  • the device is usually required to be thin and light, and can use lithium-ion batteries as a power source.
  • the first positive electrode active material polycrystalline particles with Dv50 of 13 ⁇ m, the second positive electrode active material polycrystalline particles with Dv50 of 9 ⁇ m, and the third positive electrode active material single crystal particles with Dv50 of 3 ⁇ m are calculated according to the masses A, B, and C of the three.
  • the three cathode active material particles used all have the chemical formula LiNi 0.92 Co 0.06 Mn 0.02 O 2 .
  • the slurry is evenly coated on both sides of an aluminum foil with a thickness of 12 ⁇ m.
  • the coated pole piece is dried in an oven at 100-130°C for half an hour and then taken out.
  • the positive active material loading capacity of the pole piece is 21.5 mg/cm 2 .
  • the removed positive electrode pieces were cold-pressed by rollers and tested to obtain data on compaction density, lengthwise elongation, pore volume, and shear stress.
  • Figure 1 shows a scanning electron microscope image of the positive electrode plate of Example 1. It can be clearly seen from the figure that the positive active material particles have three different sizes, and the small particles fully fill the gaps between the large particles.
  • the three cathode active material particles used all have the chemical formula LiNi 0.92 Co 0.06 Mn 0.02 O 2 .
  • the slurry is evenly coated on both sides of an aluminum foil with a thickness of 12 ⁇ m.
  • the coated pole piece is dried in an oven at 100-130°C for half an hour and then taken out.
  • the positive active material loading capacity of the pole piece is 21.5 mg/cm 2 .
  • the removed positive electrode pieces were cold-pressed by rollers and tested to obtain data on compaction density and lengthwise elongation.
  • Randomly select 10 areas on the positive electrode plate use a scanning electron microscope ZEISS Sigma 300, refer to JY/T010-1996, and obtain scanning electron microscope photos of each area. In the scanning electron microscope (SEM) photo, the distance between the two furthest points on the particle is measured as the particle size.
  • SEM scanning electron microscope
  • M is the mass of the small disc with a diameter of 40mm cut out from the positive electrode piece, and the average value is taken by weighing 10 times;
  • d is the thickness of the positive electrode piece, and the average thickness is taken by measuring the thickness 10 times;
  • A is the diameter of 40mm. The area of the small disc.
  • L1 is the distance between the marks before cold pressing, which is 1000mm
  • L2 is the distance between the marks after cold pressing.
  • the mark is formed as follows: in the central area of the pole piece, take three 1000mm long line segments extending in the length direction of the pole piece at different positions in the width direction of the pole piece, and mark the two endpoints of the line segments.
  • L2 is recorded as the average value of the actual measured distance between the two end points of each line segment after cold pressing.
  • the edge of the sample has an exposed current collector area for welding the tab; cut a sample with a width of 0.02m and a length of 0.09m.
  • the double-sided tape is attached to a steel plate with a width of 0.02m and a length of 0.2m, with one end of the double-sided tape flush with the end of the steel plate; attach the pole piece sample to the double-sided tape, with one end of the sample aligned with the double-sided tape.
  • One end of the tape should be flush; a paper tape with a width of 0.02m and a length of 0.15m should be fixed on the exposed current collector surface of the pole piece sample; the end of the steel plate that is not attached to the pole piece should be fixed with the lower clamp of the tensile machine, and the paper Fold the belt upward, fix it with the upper clamp, turn on the tensile machine, and perform 180° continuous stretching at a stretching speed of 0.05m/min; record the maximum load displayed by the tensile machine when the pole piece breaks, and record it as the maximum load of the pole piece. shear stress.
  • Examples 1 to 12 all achieve high compaction density at a pole piece length direction elongation of less than 0.8%, so that the compaction density can basically exceed 3.6g/cm 3 .
  • Comparative Example 2 only used two positive electrode active material particles. Although it obtained a compacted density of 3.62g/ cm3 , the elongation rate in the length direction of the pole piece was as high as 0.85%. Although Comparative Examples 1, 3, and 4 also used a mixture of two polycrystalline particles with a larger particle size and a single crystal particle with a smaller particle size, the Dv50 value of each particle did not fall within the scope of this application. , so the elongation in the length direction of the pole piece when obtaining high compaction density is higher than 0.8%. Even if the (A+B):C values of Comparative Examples 3 and 4 fall within the scope of the present application, a compacted density higher than 3.6g/ cm3 cannot be achieved at a pole piece lengthwise elongation of less than 0.8%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请提供一种锂离子电池正极极片,包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包含由以下物质组成的正极活性材料混合物:粒径为11.0~20.0μm的第一正极活性材料多晶颗粒;粒径为6.0~10.5μm的第二正极活性材料多晶颗粒;以及粒径为1.1~5.2μm的第三正极活性材料单晶颗粒,其中,所述第一正极活性材料多晶颗粒的数量为a,所述第二正极活性材料多晶颗粒的数量为b,所述第三正极活性材料单晶颗粒的数量为c,(a+b)∶c在5.7∶4.3~7.7∶2.3的范围内。本申请还提供包含该正极极片的锂离子电池、电池模块、电池包及用电装置。

Description

锂离子电池正极极片、包含其的锂离子电池及用电装置 技术领域
本申请涉及锂电池技术领域,尤其涉及一种锂离子电池正极极片、包含其的锂离子电池及用电装置。
背景技术
近年来,随着锂离子电池的应用范围越来越广泛,锂离子电池广泛应用于水力、火力、风力和太阳能电站等储能电源系统,以及电动工具、电动自行车、电动摩托车、电动汽车、军事装备、航空航天等多个领域。由于锂离子电池取得了极大的发展,因此对其能量密度、加工性能等也提出了更高的要求。
现有的锂离子电池正极极片中正极活性材料的压实密度与正极活性材料的极限压实密度仍有一定差距。如果单纯通过提高辊的压力来提高正极极片的压实密度,则在较高的活性材料负载量下,极片的延展率可能过大。过大的极片延展率容易导致极片在卷绕或者热压过程中出现脆断等问题。因此,仍需开发在较高的活性材料负载量下,延展率低且压实密度高的锂离子电池正极极片。
发明内容
本申请是鉴于上述课题而进行的,其目的在于,提供一种锂离子电池正极极片,其在较高的活性材料负载量下,仍能在低极片延展率下实现高的极片压实密度。
为了达到上述目的,本申请的第一方面提供了一种锂离子电池正极极片,包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包含由以下物质组成的正极活性材料混合物:
粒径为11.0~20.0μm的第一正极活性材料多晶颗粒;
粒径为6.0~10.5μm的第二正极活性材料多晶颗粒;以及
粒径为1.1~5.2μm的第三正极活性材料单晶颗粒,
其中,所述第一正极活性材料多晶颗粒的数量为a,所述第二正极活性材料多晶颗粒的数量为b,所述第三正极活性材料单晶颗粒的数量为c,(a+b)∶c在5.7∶4.3~7.7∶2.3的范围内。
由此,本申请通过将三种不同粒径的正极活性材料以特定比例组合,使得所述正极极片在较高的正极材料负载量下,仍然能够在低延展率下获得高压实密度。
在任意实施方式中,(a+b)∶c在6.1∶3.9~7.2∶2.8的范围内。通过进一步选择三种正极活性材料颗粒的数量比例,能够进一步提高正极极片的压实密度。
在任意实施方式中,所述第一正极活性材料多晶颗粒、所述第二正极活性材料多晶颗粒和所述第三正极活性材料单晶颗粒均为三元正极活性材料,可选地,所述第一正极活性材料多晶颗粒、所述第二正极活性材料多晶颗粒和所述第三正极活性材料单晶颗粒各自的化学组成相同或不同,并且均具有化学式LiNi aCo bM (1-a-b)O 2,其中:0.8≤a<1.0,0<b<0.2,且a+b<1.0,M选自Mn、Al、B、Zr、Sr、Y、Sb、W、Ti、Mg、Nb中的一种或者多种。通过将正极活性材料选择为三元材料,以及选择特定的化学组成,有利于获得较高的克容量和首次库伦效率,以及电池的循环寿命。
在任意实施方式中,所述正极膜层的孔隙体积在1.2mm 3/g~4.0mm 3/g的范围内。通过控制正极膜层的孔隙体积,能够确保正极极片在低延展率下具有较高的压实密度。
在任意实施方式中,所述正极极片的剪切应力在0.65MPa~0.85MPa的范围内。这样的正极极片可以保证在高的辊压下极片延展后获得较好的韧性,不易脆断。
在任意实施方式中,所述正极活性材料混合物中,所述第一正极活性材料多晶颗粒的Dv50为12~16μm,且总质量为A;所述第二正极活性材料多晶颗粒的Dv50为8~10μm,且总质量为B;所述第三正极活性材料单晶颗粒的Dv50为2.5~4μm,且总质量为C; (A+B)∶C在6∶4~8∶2的范围内,可选地在6.5∶3.5~7.5∶2.5的范围内。通过控制这三种正极活性材料颗粒的质量比例,能够确保正极极片在低延展率下具有较高的压实密度。
在任意实施方式中,所述正极活性材料混合物在1吨压力下的压实密度CPD-1T在3.0g/cm 3~3.2g/cm 3范围内。通过控制所述正极活性材料混合物在1吨压力下的压实密度在上述范围内,能够确保正极极片在低延展率下具有较高的压实密度。
在任意实施方式中,所述正极活性材料混合物的BET比表面积在0.5m 2/g~0.7m 2/g范围内。通过控制所述正极活性材料混合物的BET比表面积在上述范围内,能够确保正极极片在低延展率下具有较高的压实密度。
在任意实施方式中,所述正极活性材料混合物的SPAN值在1.70~2.20范围内,其中SPAN=(Dv90-Dv10)/Dv50。通过控制所述正极活性材料混合物的SPAN值在上述范围内,能够确保正极极片在低延展率下具有较高的压实密度。
在任意实施方式中,所述正极活性材料混合物的Dv99在18μm~21μm范围内。通过控制所述正极活性材料混合物的Dv99在上述范围内,能够提高正极极片的压实密度。
在任意实施方式中,所述第一正极活性材料多晶颗粒的SPAN值满足SPAN≤1.20,可选地,0.50≤SPAN≤1.00。通过控制所述第一正极活性材料多晶颗粒的SPAN值在上述范围内,可以提供充分的填充空间并为正极极片提供较高的克容量发挥。
在任意实施方式中,所述第二正极活性材料多晶颗粒的SPAN值满足SPAN≥1.20,可选地,1.30≤SPAN≤1.50。通过控制所述第二正极活性材料多晶颗粒的SPAN值在上述范围内,可以充分地填补孔隙与空间,提高正极极片的压实密度。
在任意实施方式中,所述第三正极活性材料单晶颗粒的SPAN值满足SPAN≤1.70,可选地,1.10≤SPAN≤1.40。通过控制所述第三正极活性材料单晶颗粒的SPAN值在上述范围内,可以为正极极片提 供较高的抗压性。
在任意实施方式中,所述第三正极活性材料单晶颗粒的振实密度TPD≤1.8g/cm 3,可选地,1.2g/cm 3≤TPD≤1.5g/cm 3。当所述第三正极活性材料单晶颗粒的振实密度在上述范围内时,其具有分散性较高的形貌,从而能够进一步提高正极极片的空间利用率,提高极片的压实密度。
本申请的第二方面还提供一种锂离子电池,其包括本申请第一方面的正极极片。
本申请的第三方面提供一种电池模块,包括本申请的第二方面的锂离子电池。
本申请的第四方面提供一种电池包,包括本申请的第三方面的电池模块。
本申请的第五方面提供一种用电装置,包括选自本申请的第二方面的锂离子电池、本申请的第三方面的电池模块或本申请的第四方面的电池包中的至少一种。
附图说明
图1为实施例1的正极极片的扫描电镜图。
图2是本申请一实施方式的锂离子电池的示意图。
图3是图2所示的本申请一实施方式的锂离子电池的分解图。
图4是本申请一实施方式的电池模块的示意图。
图5是本申请一实施方式的电池包的示意图。
图6是图5所示的本申请一实施方式的电池包的分解图。
图7是本申请一实施方式的锂离子电池用作电源的用电装置的示意图。
附图标记说明:
1电池包;2上箱体;3下箱体;4电池模块;5锂离子电池;51壳体;52电极组件;53顶盖组件
具体实施方式
以下,适当地参照附图详细说明具体公开了本申请的锂离子电池正极极片、包含其的锂离子电池、电池模块、电池包和用电装置的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,优选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、 (b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
为了实现高的电芯质量与体积能量密度,一方面可以提高正极活性材料的克容量,另一方面可以提高正极极片在高活性材料负载量下的压实密度。然而,如果单纯通过提高辊的压力来提高正极极片的压实密度,则容易出现正极活性材料颗粒粉碎、颗粒滑移等现象,从而导致正极极片出现较大的长度方向延展率,例如大于等于0.8%。过大的极片延展率容易导致极片在卷绕或者热压过程中出现脆断等问题。因此,仍需开发在较高的活性材料负载量下,延展率低且压实密度高的锂离子电池正极极片。
本申请的发明人发现,当将两种特定粒径范围的正极活性材料多晶颗粒与一种特定粒径范围的正极活性材料单晶颗粒以特定比例混合作为正极活性材料时,所得正极极片能够在低延展率下实现高压实密度。
本申请中所述的“单晶”和“多晶”具有正极活性材料技术领域中通用的含义。一般而言,正极活性材料多晶颗粒指的是由多数个小晶粒堆积形成的类球形团聚体,正极活性材料单晶颗粒指的是边界清晰的小晶粒单独或者几颗堆积形成的单体或者类团聚体。“单晶”和“多晶”可通过本领域公知的方法例如通过扫描电镜观察颗粒形貌来确认。
本申请的一个实施方式中,本申请提供了一种锂离子电池正极极片,包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包含由以下物质组成的正极活性材料混合物:
粒径为11.0~20.0μm的第一正极活性材料多晶颗粒;
粒径为6.0~10.5μm的第二正极活性材料多晶颗粒;以及
粒径为1.1~5.2μm的第三正极活性材料单晶颗粒,
其中,所述第一正极活性材料多晶颗粒的数量为a,所述第二正极活性材料多晶颗粒的数量为b,所述第三正极活性材料单晶颗粒的数量为c,(a+b)∶c在5.7∶4.3~7.7∶2.3的范围内。
本申请中,颗粒的粒径是指在扫描电子显微镜(SEM)照片中,颗粒上相隔最远的两点间的距离。颗粒的粒径可以采用本领域已知的设备和方法进行测试。例如,使用扫描电子显微镜(例如ZEISS Sigma 300),参考JY/T010-1996,获取正极极片的扫描电子显微镜照片。
本申请中,一种颗粒的数量是通过在正极极片上随机选取10个区域,分别对各区域拍摄SEM照片。通过SEM照片统计各测试区域中符合所述粒径范围的该颗粒的数量,并计算各测试区域的该颗粒数量的平均值得到的。
虽然机理尚不明确,但本申请人意外地发现:通过将两种不同粒径的多晶正极活性材料和一种单晶正极活性材料以特定比例组合,能够充分地提高颗粒间的孔隙与体积利用率,并提高该正极极片的抗压能力。因此,所述正极极片在较高的正极活性材料负载量下,仍然能够在低延展率下获得高压实密度。不希望囿于理论,现认为粒径为11.0~20.0μm的第一正极活性材料多晶颗粒作为正极膜层的骨架,粒径过大容易出现颗粒边缘的裂纹,同时限制克容量的发挥,粒径过小则没有骨架的作用。粒径为6.0~10.5μm的第二正极活性材料多晶颗粒作为一级填充物,提高空间利用率,同时提高克容量的发挥。粒径为1.1~5.2μm的第三正极活性材料单晶颗粒作为次级填充物,因为其较高的分散性和抗压性,能充分填充第一正极活性材料多晶颗粒与第二正极活性材料多晶颗粒留下的孔隙。并且,将三者的数量比 (a+b)∶c设定在5.7∶4.3~7.7∶2.3的范围内可以最大程度地兼顾克容量与压实密度,这样的密实堆积不容易产生高压下的颗粒位移/滑移,从而避免极片产生较大的延展而导致脆性提高。如果上述比例过小的话会影响电池容量,如果过大则难以起到提高压实密度的作用。
在一些实施方式中,(a+b)∶c在6.1∶3.9~7.2∶2.8范围内,例如为6.2∶3.8。通过进一步选择三种正极活性材料颗粒的数量比例,能够进一步提高正极极片的压实密度。
第一正极活性材料多晶颗粒的数量a和第二正极活性材料多晶颗粒的数量b之间的比例可由本领域技术人员根据实际需要任意选择,例如,a∶b可在1∶9~7.5∶2.5范围内。
所述第一正极活性材料多晶颗粒、所述第二正极活性材料多晶颗粒和所述第三正极活性材料单晶颗粒可具有本领域中常规的正极活性材料的化学组成。作为示例,正极活性材料可包括以下材料中的至少一种:橄榄石结构的含锂磷酸盐、锂过渡金属氧化物及其各自的改性化合物。但本申请并不限定于这些材料,还可以使用其他可被用作电池正极活性材料的传统材料。这些正极活性材料可以仅单独使用一种,也可以将两种以上组合使用。其中,锂过渡金属氧化物的示例可包括但不限于锂钴氧化物(如LiCoO 2)、锂镍氧化物(如LiNiO 2)、锂锰氧化物(如LiMnO 2、LiMn 2O 4)、锂镍钴氧化物、锂锰钴氧化物、锂镍锰氧化物、锂镍钴锰氧化物(如LiNi 1/3Co 1/3Mn 1/3O 2(也可以简称为NCM 333)、LiNi 0.5Co 0.2Mn 0.3O 2(也可以简称为NCM 523)、LiNi 0.5Co 0.25Mn 0.25O 2(也可以简称为NCM 211)、LiNi 0.6Co 0.2Mn 0.2O 2(也可以简称为NCM 622)、LiNi 0.8Co 0.1Mn 0.1O 2(也可以简称为NCM 811)、锂镍钴铝氧化物(如LiNi 0.85Co 0.15Al 0.05O 2)及其改性化合物等中的至少一种。橄榄石结构的含锂磷酸盐的示例可包括但不限于磷酸铁锂(如LiFePO 4(也可以简称为LFP))、磷酸铁锂与碳的复合材料、磷酸锰锂(如LiMnPO 4)、磷酸锰锂与碳的复合材料、磷酸锰铁锂、磷酸锰铁锂与碳的复合材料中的至少一种。
在一些实施方式中,所述第一正极活性材料多晶颗粒、所述第二 正极活性材料多晶颗粒和所述第三正极活性材料单晶颗粒均为三元正极活性材料,可选地,所述第一正极活性材料多晶颗粒、所述第二正极活性材料多晶颗粒和所述第三正极活性材料单晶颗粒各自的化学组成相同或不同,并且均具有化学式LiNi aCo bM (1-a-b)O 2,其中:0.8≤a<1.0,0<b<0.2,且a+b<1.0,M选自Mn、Al、B、Zr、Sr、Y、Sb、W、Ti、Mg、Nb中的一种或者多种。通过将正极活性材料选择为三元材料,以及选择特定的化学组成,有利于获得较高的克容量和首次库伦效率,以及电池的循环寿命。
在一些实施方式中,所述正极膜层的孔隙体积在1.2mm 3/g~4.0mm 3/g的范围内,可选地在1.2mm 3/g~2.0mm 3/g的范围内。通过控制正极膜层的孔隙体积,能够确保正极极片在低延展率下具有较高的压实密度。
孔隙体积具有本领域中公知的含义。本申请中,所述正极膜层的孔隙体积可以采用本领域公知的方法测量。作为示例,可以参考GB/T 21650.2-2008/ISO 15901-2:2006《压汞法和气体吸附法测定固体材料孔径分布和孔隙度》的第二部分:气体吸附法分析介孔和大孔,采用设备AccuPyc II 1340真密度仪进行测定。
在一些实施方式中,所述正极极片的剪切应力在0.65MPa~0.85MPa的范围内。这样的正极极片较大的抗拉伸强度,可以保证在高的辊压下极片延展后获得较好的韧性,不易脆断。
剪切应力具有本领域中公知的含义。本申请中,剪切应力通过下述方法测量:取待测的极片,截取宽度为0.02m、长度为0.1m的试样,所述试样边缘具有用于焊接极耳的裸露的集流体区域;将宽度为0.02m、长度为0.09m的双面胶带贴于宽度为0.02m、长度为0.2m的钢板上,其中双面胶带的一端与钢板的一端平齐;将极片试样贴在双面胶带上,试样的一端与双面胶带的一端平齐;将宽度为0.02m、长度为0.15m的纸带固定在极片试样的裸露的集流体表面;将钢板未贴极片的一端用拉力机的下夹具固定,将纸带向上翻折,用上夹具固定,开启拉力机,以0.05m/min的拉伸速度进行180°连续拉伸;记录 极片断裂时,拉力机所显示的最大载荷,记为该极片的剪切应力。
在一些实施方式中,所述正极活性材料混合物中,所述第一正极活性材料多晶颗粒的Dv50为12~16μm,例如12~13μm、13~16μm,且总质量为A;所述第二正极活性材料多晶颗粒的Dv50为8~10μm,例如8~9μm、9~10μm,且总质量为B;所述第三正极活性材料单晶颗粒的Dv50为2.5~4μm,例如2.5~3μm、3~4μm,且总质量为C;(A+B)∶C在6∶4~8∶2的范围内,可选地在6.5∶3.5~7.5∶2.5的范围内。通过控制这三种正极活性材料颗粒的质量比例,能够确保正极极片在低延展率下具有较高的压实密度。
第一正极活性材料多晶颗粒的总质量A和第二正极活性材料多晶颗粒的总质量B之间的比例可由本领域技术人员根据实际需要任意选择,例如,A∶B可在2∶8~7∶3范围内。
本申请中,正极活性材料颗粒的体积分布粒度Dv50以及下文提到的Dv10、Dv90、Dv99为本领域的公知概念。具体地,Dv10为颗粒以体积为基准的粒度分布中,从小粒径侧起、达到体积累计10%的粒径。Dv50为颗粒以体积为基准的粒度分布中,从小粒径侧起、达到体积累计50%的粒径。Dv90为颗粒以体积为基准的粒度分布中,从小粒径侧起、达到体积累计90%的粒径。Dv99为颗粒以体积为基准的粒度分布中,从小粒径侧起、达到体积累计99%的粒径。颗粒体积分布粒度Dv10、Dv50、Dv90、Dv99的测试方法可以采用本领域公知的方法。作为示例,可以参考GB/T 19077-2016/ISO 13320:2009粒度分布激光衍射法,采用设备马尔文3000进行测定。
在一些实施方式中,所述正极活性材料混合物在1吨压力下的压实密度CPD-1T在3.0g/cm 3~3.2g/cm 3范围内,可选地在3.1g/cm 3~3.2g/cm 3范围内。通过控制所述正极活性材料混合物在1吨压力下的压实密度在上述范围内,能够确保正极极片在低延展率下具有较高的压实密度。
本申请中,正极活性材料混合物在1吨压力下的压实密度CPD-1T(Compression Density)的测试方法可以采用本领域公知的 方法。作为示例,可以参考GB/T 5162-2006《锂离子电池石墨类负极材料》,采用设备UTM7305电子压力试验机进行测定。
在一些实施方式中,所述正极活性材料混合物的BET比表面积在0.5m 2/g~0.7m 2/g范围内,可选地在0.59m 2/g~0.63m 2/g范围内。通过控制所述正极活性材料混合物的BET比表面积在上述范围内,能够确保正极极片在低延展率下具有较高的压实密度。
本申请中,正极活性材料混合物的BET比表面积的测试方法可以采用本领域公知的方法。作为示例,可以参考GB/T 19587-2017《气体吸附BET法测定固态物质比表面积》,采用设备TriStar II 3020进行测定。
在一些实施方式中,所述正极活性材料混合物的SPAN值在1.70~2.20范围内,其中SPAN=(Dv90-Dv10)/Dv50。可选地,所述正极活性材料混合物的SPAN值在1.75~2.10范围内。通过控制所述正极活性材料混合物的SPAN值在上述范围内,能够确保正极极片在低延展率下具有较高的压实密度。
在一些实施方式中,所述正极活性材料混合物的Dv99在18μm~21μm范围内,可选地在19.5μm~21μm范围内。通过控制所述正极活性材料混合物的Dv99在上述范围内,能够提高正极极片的压实密度。
在一些实施方式中,所述第一正极活性材料多晶颗粒的SPAN值满足SPAN≤1.20,可选地,0.50≤SPAN≤1.00。通过控制所述第一正极活性材料多晶颗粒的SPAN值在上述范围内,可以提供充分的填充空间并为正极极片提供较高的克容量发挥。
在一些实施方式中,所述第二正极活性材料多晶颗粒的SPAN值满足SPAN≥1.20,可选地,1.30≤SPAN≤1.50。通过控制所述第二正极活性材料多晶颗粒的SPAN值在上述范围内,可以充分地填补孔隙与空间,提高正极极片的压实密度。
在一些实施方式中,所述第三正极活性材料单晶颗粒的SPAN值满足SPAN≤1.70,可选地,1.10≤SPAN≤1.40。通过控制所述第三 正极活性材料单晶颗粒的SPAN值在上述范围内,可以为正极极片提供较高的抗压性,从而提高正极极片的压实密度。
在一些实施方式中,所述第三正极活性材料单晶颗粒的振实密度TPD≤1.8g/cm 3,可选地,1.2g/cm 3≤TPD≤1.5g/cm 3。当所述第三正极活性材料单晶颗粒的振实密度在上述范围内时,其具有分散性较高的形貌,从而能够进一步提高正极极片的空间利用率,提高极片的压实密度。
本申请中,正极活性材料颗粒的振实密度TPD(Tap Density)的测试方法可以采用本领域公知的方法。作为示例,可以参考GB/T 24533-2009《金属粉末振实密度的测定》,采用设备丹东百特BT-300型号振实密度仪进行测定。
另外,以下适当参照附图对本申请的锂离子电池、电池模块、电池包和用电装置进行说明。
本申请的一个实施方式中,提供一种锂离子电池。
通常情况下,锂离子电池包括正极极片、负极极片、电解质和隔离膜。在电池充放电过程中,活性离子在正极极片和负极极片之间往返嵌入和脱出。电解质在正极极片和负极极片之间起到传导离子的作用。隔离膜设置在正极极片和负极极片之间,主要起到防止正负极短路的作用,同时可以使离子通过。
[正极极片]
正极极片如上文所定义,包括正极集流体以及设置在正极集流体至少一个表面的正极膜层。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极膜层设置在正极集流体相对的两个表面的其中任意一者或两者上。
在一些实施方式中,所述正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及 银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,正极膜层还可选地包括粘结剂。作为示例,所述粘结剂可以包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂中的至少一种。
在一些实施方式中,正极膜层还可选地包括导电剂。作为示例,所述导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,可以通过以下方式制备正极极片:将上述用于制备正极极片的组分,例如正极活性材料、导电剂、粘结剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极极片。
[负极极片]
负极极片包括负极集流体以及设置在负极集流体至少一个表面上的负极膜层,所述负极膜层包括负极活性材料。
作为示例,负极集流体具有在其自身厚度方向相对的两个表面,负极膜层设置在负极集流体相对的两个表面中的任意一者或两者上。
在一些实施方式中,所述负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,负极活性材料可采用本领域公知的用于电池 的负极活性材料。作为示例,负极活性材料可包括以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。所述锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申请并不限定于这些材料,还可以使用其他可被用作电池负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
在一些实施方式中,负极膜层还可选地包括粘结剂。所述粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。
在一些实施方式中,负极膜层还可选地包括导电剂。导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,负极膜层还可选地包括其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na))等。
在一些实施方式中,可以通过以下方式制备负极极片:将上述用于制备负极极片的组分,例如负极活性材料、导电剂、粘结剂和任意其他组分分散于溶剂(例如去离子水)中,形成负极浆料;将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,即可得到负极极片。
[电解质]
电解质在正极极片和负极极片之间起到传导离子的作用。本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可以是液态的、凝胶态的或全固态的。
在一些实施方式中,所述电解质采用电解液。所述电解液包括电解质盐和溶剂。
在一些实施方式中,电解质盐可选自六氟磷酸锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂、双氟磺酰亚胺锂、双三氟甲磺酰亚胺锂、三氟甲磺酸锂、二氟磷酸锂、二氟草酸硼酸锂、二草酸硼酸锂、二氟二 草酸磷酸锂及四氟草酸磷酸锂中的至少一种。
在一些实施方式中,溶剂可选自碳酸亚乙酯、碳酸亚丙酯、碳酸甲乙酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚丁酯、氟代碳酸亚乙酯、甲酸甲酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、丁酸乙酯、1,4-丁内酯、环丁砜、二甲砜、甲乙砜及二乙砜中的至少一种。
在一些实施方式中,所述电解液还可选地包括添加剂。例如添加剂可以包括负极成膜添加剂、正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温或低温性能的添加剂等。
[隔离膜]
在一些实施方式中,锂离子电池中还包括隔离膜。本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,锂离子电池可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,锂离子电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。锂离子电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。
本申请对锂离子电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。例如,图2是作为一个示例的方形结构的锂离子电池5。
在一些实施方式中,参照图3,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极组件52封装于所述容纳腔内。电解液浸润于电极组件52中。锂离子电池5所含电极组件52的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
在一些实施方式中,锂离子电池可以组装成电池模块,电池模块所含锂离子电池的数量可以为一个或多个,具体数量本领域技术人员可根据电池模块的应用和容量进行选择。
图4是作为一个示例的电池模块4。参照图4,在电池模块4中,多个锂离子电池5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个锂离子电池5进行固定。
可选地,电池模块4还可以包括具有容纳空间的外壳,多个锂离子电池5容纳于该容纳空间。
在一些实施方式中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可以为一个或多个,具体数量本领域技术人员可根据电池包的应用和容量进行选择。
图5和图6是作为一个示例的电池包1。参照图5和图6,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。
另外,本申请还提供一种用电装置,所述用电装置包括本申请提供的锂离子电池、电池模块、或电池包中的至少一种。所述锂离子电池、电池模块、或电池包可以用作所述用电装置的电源,也可以用作所述用电装置的能量存储单元。所述用电装置可以包括移动设备(例 如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等,但不限于此。
作为所述用电装置,可以根据其使用需求来选择锂离子电池、电池模块或电池包。
图7是作为一个示例的用电装置。该用电装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置对锂离子电池的高功率和高能量密度的需求,可以采用电池包或电池模块。
作为另一个示例的装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用锂离子电池作为电源。
实施例
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1
将Dv50为13μm的第一正极活性材料多晶颗粒、Dv50为9μm的第二正极活性材料多晶颗粒以及Dv50为3μm的第三正极活性材料单晶颗粒按照三者的质量A、B、C为(A+B)∶C=7∶3且A∶B为2.5∶7.7的比例依次投入5L搅拌罐中,混合10min后取样检测混合物的SPAN值、Dv99、CPD-1T和BET比表面积。所用的三种正极活性材料颗粒均具有化学式LiNi 0.92Co 0.06Mn 0.02O 2
然后加入导电剂乙炔黑(SP)与粘结剂聚偏氟乙烯(PVDF)进行30min的预混合。最后加入溶剂N-甲基吡咯烷酮(NMP)在抽真空的条件下进行快速搅拌,形成浆料。其中,正极活性材料混合物∶乙炔黑∶聚偏氟乙烯的质量比=96∶2∶2,浆料的固含量为70重量%。将浆料均匀涂覆于厚度为12μm的铝箔的双面上,涂覆后的极片在 100-130℃的烘箱干燥半小时后取出。其中,极片的正极活性材料负载量为21.5mg/cm 2。取出的正极极片过辊冷压后测试得到压实密度、长度方向延展率、孔隙体积、剪切应力的数据。
图1示出了实施例1的正极极片的扫描电镜图。由图中可以清楚地看出正极活性材料颗粒有三种不同大小,且小颗粒充分填充了大颗粒间的空隙。
对比例1
将Dv50为11μm的第一正极活性材料多晶颗粒、Dv50为6.5μm的第二正极活性材料多晶颗粒以及Dv50为4.5μm的第三正极活性材料单晶颗粒按照三者的质量A、B、C为(A+B)∶C=3∶7的比例依次投入5L搅拌罐中。混合10min后取样检测混合物的SPAN值、Dv99、CPD-1T和BET比表面积。所用的三种正极活性材料颗粒均具有化学式LiNi 0.92Co 0.06Mn 0.02O 2
然后加入导电剂乙炔黑(SP)与粘结剂聚偏氟乙烯(PVDF)进行30min的预混合。最后加入溶剂N-甲基吡咯烷酮(NMP)在抽真空的条件下进行快速搅拌,形成浆料。其中,正极活性材料混合物∶乙炔黑∶聚偏氟乙烯的质量比=96∶2∶2,浆料的固含量为70重量%。将浆料均匀涂覆于厚度为12μm的铝箔的双面上,涂覆后的极片在100-130℃烘箱干燥半小时后取出。其中,极片的正极活性材料负载量为21.5mg/cm 2。取出的正极极片过辊冷压后测试得到压实密度、长度方向延展率的数据。
实施例2至12以及对比例2至4
分别如表1所示改变第一正极活性材料多晶颗粒、第二正极活性材料多晶颗粒以及第三正极活性材料单晶颗粒的大小和用量,以与实施例1相同的方式制备正极极片并进行检测。
测试方法:
1.正极活性材料颗粒粒径和数量
在正极极片上随机选取10个区域,使用扫描电子显微镜ZEISS  Sigma 300,参考JY/T010-1996,获取各区域的扫描电子显微镜照片。在扫描电子显微镜(SEM)照片中,测量颗粒上相隔最远的两点间的距离作为颗粒粒径。
通过颗粒粒径判断SEM照片中的颗粒属于哪种正极活性材料颗粒。通过SEM照片统计各测试区域中每种颗粒的数量,并计算各测试区域的该颗粒数量的平均值,作为该正极活性材料颗粒的数量,从而计算比例(a+b)∶c。
2.压实密度
正极极片的压实密度PD是通过公式PD=M/(d×A)计算得到的。式中,M为在正极极片上切割出的直径40mm小圆片的质量,通过10次称重取平均值;d为正极极片厚度,通过10次测量厚度取平均值;A为该直径40mm小圆片的面积。
3.长度方向的延展率
极片冷压后的长度方向延展率通过公式ΔEL%=(L2-L1)/L1×100%计算得到。式中,L1为冷压前标记之间的距离,为1000mm,L2为冷压后标记之间的距离。所述标记通过如下方式形成:在极片的中心区域,在极片宽度方向上的不同位置分别取三段在极片长度方向上延伸的1000mm长的线段,并标记线段的两个端点。L2记为冷压后各线段两端点之间距离的实测值的平均值。
4.孔隙体积
参考GB/T 21650.2-2008/ISO 15901-2:2006《压汞法和气体吸附法测定固体材料孔径分布和孔隙度》的第二部分:气体吸附法分析介孔和大孔,采用设备AccuPyc II 1340真密度仪进行测定。
5.剪切应力
取待测的极片,截取宽度为0.02m、长度为0.1m的试样,所述试样边缘具有用于焊接极耳的裸露的集流体区域;将宽度为0.02m、长度为0.09m的双面胶带贴于宽度为0.02m、长度为0.2m的钢板上,其中双面胶带的一端与钢板的一端平齐;将极片试样贴在双面胶带上,试样的一端与双面胶带的一端平齐;将宽度为0.02m、长度为0.15m 的纸带固定在极片试样的裸露的集流体表面;将钢板未贴极片的一端用拉力机的下夹具固定,将纸带向上翻折,用上夹具固定,开启拉力机,以0.05m/min的拉伸速度进行180°连续拉伸;记录极片断裂时,拉力机所显示的最大载荷,记为该极片的剪切应力。
6.颗粒体积分布粒度Dv10、Dv50、Dv90、Dv99
参考GB/T 19077-2016/ISO 13320:2009粒度分布激光衍射法,采用设备马尔文3000进行测定。
7.CPD-1T
参考GB/T 5162-2006《锂离子电池石墨类负极材料》,采用设备UTM7305电子压力试验机进行测定。
8.BET比表面积
参考GB/T 19587-2017《气体吸附BET法测定固态物质比表面积》,采用设备TriStar II 3020进行测定。
9.TPD
参考GB/T 24533-2009《金属粉末振实密度的测定》,采用设备丹东百特BT-300型号振实密度仪进行测定。
实施例1至12和对比例1至4的各参数测量结果显示在下表1中。
Figure PCTCN2022096833-appb-000001
Figure PCTCN2022096833-appb-000002
根据上述结果可知,实施例1-12均在低于0.8%的极片长度方向延展率下实现了高压实密度,使得压实密度基本上可超过3.6g/cm 3
相比之下,对比例2仅使用两种正极活性材料颗粒,其虽然获得了3.62g/cm 3的压实密度,但极片长度方向延展率已高达0.85%。对比例1、3、4虽然也使用了两种粒径较大的多晶颗粒和一种粒径较小的单晶颗粒的混合物,但各颗粒的Dv50值均未落入本申请的范围内,因此获得高压实密度时的极片长度方向延展率均高于0.8%。即使对比例3、4的(A+B)∶C数值落入本申请范围,也未能在低于0.8%的极片长度方向延展率下实现高于3.6g/cm 3的压实密度。
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。

Claims (18)

  1. 一种锂离子电池正极极片,包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包含由以下物质组成的正极活性材料混合物:
    粒径为11.0~20.0μm的第一正极活性材料多晶颗粒;
    粒径为6.0~10.5μm的第二正极活性材料多晶颗粒;以及
    粒径为1.1~5.2μm的第三正极活性材料单晶颗粒,
    其中,所述第一正极活性材料多晶颗粒的数量为a,所述第二正极活性材料多晶颗粒的数量为b,所述第三正极活性材料单晶颗粒的数量为c,(a+b)∶c在5.7∶4.3~7.7∶2.3的范围内。
  2. 根据权利要求1所述的正极极片,其中,(a+b)∶c在6.1∶3.9~7.2∶2.8的范围内。
  3. 根据权利要求1或2所述的正极极片,其中,所述第一正极活性材料多晶颗粒、所述第二正极活性材料多晶颗粒和所述第三正极活性材料单晶颗粒均为三元正极活性材料,可选地,所述第一正极活性材料多晶颗粒、所述第二正极活性材料多晶颗粒和所述第三正极活性材料单晶颗粒各自的化学组成相同或不同,并且均具有化学式LiNi aCo bM (1-a-b)O 2,其中:0.8≤a<1.0,0<b<0.2,且a+b<1.0,M选自Mn、Al、B、Zr、Sr、Y、Sb、W、Ti、Mg、Nb中的一种或者多种。
  4. 根据权利要求1-3中任一项所述的正极极片,其中所述正极膜层的孔隙体积在1.2mm 3/g~4.0mm 3/g的范围内。
  5. 根据权利要求1-4中任一项所述的正极极片,其剪切应力在0.65MPa~0.85MPa的范围内。
  6. 根据权利要求1-5中任一项所述的正极极片,其中,所述正极活性材料混合物中,所述第一正极活性材料多晶颗粒的Dv50为12~16μm,且总质量为A;所述第二正极活性材料多晶颗粒的Dv50为8~10μm,且总质量为B;所述第三正极活性材料单晶颗粒的Dv50为2.5~4μm,且总质量为C;(A+B)∶C在6∶4~8∶2的范围内,可选地在6.5∶3.5~7.5∶2.5的范围内。
  7. 根据权利要求1-6中任一项所述的正极极片,其中,所述正极活性材料混合物在1吨压力下的压实密度CPD-1T在3.0g/cm 3~3.2g/cm 3范围内。
  8. 根据权利要求1-7中任一项所述的正极极片,其中,所述正极活性材料混合物的BET比表面积在0.5m 2/g~0.7m 2/g范围内。
  9. 根据权利要求1-8中任一项所述的正极极片,其中,所述正极活性材料混合物的SPAN值在1.70~2.20范围内,其中SPAN=(Dv90-Dv10)/Dv50。
  10. 根据权利要求1-9中任一项所述的正极极片,其中,所述正极活性材料混合物的Dv99在18μm~21μm范围内。
  11. 根据权利要求1-10中任一项所述的正极极片,其中,所述第一正极活性材料多晶颗粒的SPAN值满足SPAN≤1.20,可选地,0.50≤SPAN≤1.00。
  12. 根据权利要求1-11中任一项所述的正极极片,其中,所述第二正极活性材料多晶颗粒的SPAN值满足SPAN≥1.20,可选地,1.30≤SPAN≤1.50。
  13. 根据权利要求1-12中任一项所述的正极极片,其中,所述第三正极活性材料单晶颗粒的SPAN值满足SPAN≤1.70,可选地,1.10≤SPAN≤1.40。
  14. 根据权利要求1-13中任一项所述的正极极片,其中,所述第三正极活性材料单晶颗粒的振实密度TPD≤1.8g/cm 3,可选地,1.2g/cm 3≤TPD≤1.5g/cm 3
  15. 一种锂离子电池,其特征在于,包括权利要求1~14中任一项所述的正极极片。
  16. 一种电池模块,其特征在于,包括权利要求15所述的锂离子电池。
  17. 一种电池包,其特征在于,包括权利要求16所述的电池模块。
  18. 一种用电装置,其特征在于,包括选自权利要求15所述的锂离子电池、权利要求16所述的电池模块或权利要求17所述的电池包中的至少一种。
PCT/CN2022/096833 2022-06-02 2022-06-02 锂离子电池正极极片、包含其的锂离子电池及用电装置 WO2023230985A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2022/096833 WO2023230985A1 (zh) 2022-06-02 2022-06-02 锂离子电池正极极片、包含其的锂离子电池及用电装置
KR1020237038271A KR20230168282A (ko) 2022-06-02 2022-06-02 리튬 이온 전지용 양극판, 이를 포함하는 리튬 이온 전지 및 전기 장치
EP22929218.0A EP4312288A1 (en) 2022-06-02 2022-06-02 Lithium-ion battery positive electrode plate, and lithium-ion battery and electric device comprising same
US18/490,759 US20240055579A1 (en) 2022-06-02 2023-10-20 Lithium-ion battery positive electrode plate, lithium-ion battery with same, and electrical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/096833 WO2023230985A1 (zh) 2022-06-02 2022-06-02 锂离子电池正极极片、包含其的锂离子电池及用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/490,759 Continuation US20240055579A1 (en) 2022-06-02 2023-10-20 Lithium-ion battery positive electrode plate, lithium-ion battery with same, and electrical apparatus

Publications (1)

Publication Number Publication Date
WO2023230985A1 true WO2023230985A1 (zh) 2023-12-07

Family

ID=89026791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096833 WO2023230985A1 (zh) 2022-06-02 2022-06-02 锂离子电池正极极片、包含其的锂离子电池及用电装置

Country Status (4)

Country Link
US (1) US20240055579A1 (zh)
EP (1) EP4312288A1 (zh)
KR (1) KR20230168282A (zh)
WO (1) WO2023230985A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070099087A1 (en) * 2004-06-16 2007-05-03 Seimi Chemical Co., Ltd. Cathode active material powder for lithium secondary battery
CN102447107A (zh) * 2011-10-17 2012-05-09 江苏科捷锂电池有限公司 高密度锂离子电池正极材料钴酸锂及其制备方法
CN108431998A (zh) * 2015-12-09 2018-08-21 株式会社村田制作所 正极活性物质、正极、电池、电池组、电子设备、电动车辆、蓄电装置及电力系统
CN110098403A (zh) * 2019-06-11 2019-08-06 邓丽萍 一种三元材料电极浆料的制备方法
CN111384372A (zh) * 2018-12-29 2020-07-07 宁德时代新能源科技股份有限公司 一种高压实密度正极材料及电化学储能装置
CN113921782A (zh) * 2021-09-26 2022-01-11 宁波容百新能源科技股份有限公司 一种高压实和高能量密度的超高镍三元正极材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070099087A1 (en) * 2004-06-16 2007-05-03 Seimi Chemical Co., Ltd. Cathode active material powder for lithium secondary battery
CN102447107A (zh) * 2011-10-17 2012-05-09 江苏科捷锂电池有限公司 高密度锂离子电池正极材料钴酸锂及其制备方法
CN108431998A (zh) * 2015-12-09 2018-08-21 株式会社村田制作所 正极活性物质、正极、电池、电池组、电子设备、电动车辆、蓄电装置及电力系统
CN111384372A (zh) * 2018-12-29 2020-07-07 宁德时代新能源科技股份有限公司 一种高压实密度正极材料及电化学储能装置
CN110098403A (zh) * 2019-06-11 2019-08-06 邓丽萍 一种三元材料电极浆料的制备方法
CN113921782A (zh) * 2021-09-26 2022-01-11 宁波容百新能源科技股份有限公司 一种高压实和高能量密度的超高镍三元正极材料

Also Published As

Publication number Publication date
EP4312288A1 (en) 2024-01-31
KR20230168282A (ko) 2023-12-13
US20240055579A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
WO2022032624A1 (zh) 二次电池及其制备方法与包含二次电池的电池模块、电池包及装置
WO2021217576A1 (zh) 二次电池、其制备方法及含有该二次电池的装置
WO2021108981A1 (zh) 二次电池、装置、人造石墨及制备方法
WO2022041259A1 (zh) 二次电池及其制备方法与包含二次电池的电池模块、电池包及装置
WO2022141302A1 (zh) 二次电池及其制备方法、含有该二次电池的电池模块、电池包和装置
WO2021189424A1 (zh) 二次电池和含有该二次电池的装置
CN115810718A (zh) 负极极片及包含其的二次电池
WO2024012166A1 (zh) 二次电池及用电装置
WO2021189423A1 (zh) 二次电池和含有该二次电池的装置
WO2023134340A1 (zh) 负极活性材料、负极极片、二次电池、电池模块、电池包及其用电装置
WO2023108352A1 (zh) 一种正极活性材料及其相关的极片、二次电池、电池模块、电池包和装置
WO2023122890A1 (zh) 二次电池以及包含其的用电装置
WO2023060529A1 (zh) 锂离子电池
WO2023044866A1 (zh) 硅碳负极材料、负极极片、二次电池、电池模块、电池包和用电装置
WO2021217628A1 (zh) 二次电池、其制备方法及含有该二次电池的装置
WO2023230985A1 (zh) 锂离子电池正极极片、包含其的锂离子电池及用电装置
WO2024065402A1 (zh) 一种二次电池及用电装置
WO2023133881A1 (zh) 正极极片、二次电池、电池模块、电池包和用电装置
WO2023130976A1 (zh) 正极极片、二次电池、电池模块、电池包和用电装置
WO2023133844A1 (zh) 正极极片、二次电池、电池模块、电池包和用电装置
CN219591429U (zh) 阴极极片、电极组件、电芯、电池单体、电池和用电装置
WO2023044625A1 (zh) 复合人造石墨及其制备方法及包含所述复合人造石墨的二次电池和用电装置
WO2023178690A1 (zh) 粘结剂及相关的隔离膜、极片、电池、电池模块、电池包和用电装置
WO2023115509A1 (zh) 人造石墨及其制备方法及包含所述人造石墨的二次电池和用电装置
WO2023133882A1 (zh) 隔膜及其相关的二次电池、电池模块、电池包和用电装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022929218

Country of ref document: EP

Effective date: 20230907

ENP Entry into the national phase

Ref document number: 20237038271

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023569724

Country of ref document: JP

Kind code of ref document: A