WO2014141527A1 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
WO2014141527A1
WO2014141527A1 PCT/JP2013/079354 JP2013079354W WO2014141527A1 WO 2014141527 A1 WO2014141527 A1 WO 2014141527A1 JP 2013079354 W JP2013079354 W JP 2013079354W WO 2014141527 A1 WO2014141527 A1 WO 2014141527A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
voltage
voltage command
current
inverter
Prior art date
Application number
PCT/JP2013/079354
Other languages
English (en)
French (fr)
Inventor
健治 ▲高▼橋
古谷 真一
直人 法名
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201380074580.2A priority Critical patent/CN105075105B/zh
Priority to JP2015505226A priority patent/JP5932136B2/ja
Priority to US14/760,338 priority patent/US9614467B2/en
Publication of WO2014141527A1 publication Critical patent/WO2014141527A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor

Definitions

  • the present invention relates to a motor control device having means for suddenly decelerating or braking the motor, and more particularly to a control technique for rapidly increasing the motor loss for realizing rapid deceleration or sudden braking.
  • the control for increasing the loss is simply referred to as rapid deceleration control.
  • Patent Document 2 temporarily stops the increase in voltage amplitude when the current exceeds a predetermined value and overcurrent detection is detected during sudden deceleration control. In some cases, it is not possible to suppress the overshoot of the current only by temporarily stopping the increase. Furthermore, chattering may occur and the current may be greatly disturbed by repeating sudden deceleration control pause due to overcurrent detection and sudden deceleration control restart due to overcurrent state cancellation. In this state, not only overcurrent can be prevented, but also appropriate rapid deceleration control may not be possible. In addition, no consideration has been given to the rate of increase in voltage amplitude.
  • the technique disclosed in Patent Document 3 has a problem that the voltage output from the inverter cannot be accurately grasped and cannot be controlled during the rapid motor deceleration control. For this reason, an excessive voltage may be applied to the motor depending on the operating conditions, and an excessive current may be applied to the motor, resulting in fatigue or damage to the motor or inverter.
  • the output voltage of the inverter is determined by the product of the voltage of the DC circuit unit and the duty command to the inverter.
  • the duty command to the inverter is not changed even during sudden deceleration control, and the change in the output voltage of the inverter is determined by the voltage of the DC circuit section.
  • the voltage of this DC circuit section is not limited to the electric circuit constant of the motor, the inertia moment value of the load machine, the smoothing capacitor capacity value, etc. It is generated by a non-linear system that summarizes the phenomenon of charging / discharging of the smoothing capacitor of the inverter, and it is not possible to accurately grasp the amount of change during motor rapid deceleration control. For this reason, the rising change of the DC circuit section becomes remarkable depending on the operating conditions, and the above-mentioned excessive voltage output problem occurs.
  • Patent Document 3 also includes a mechanism that detects the current and adjusts the amplitude of the voltage command to suppress overcurrent.
  • the DC circuit unit that cannot accurately control the path of the signal to be adjusted Therefore, there is a problem that it is difficult to adjust the gain of the overcurrent suppressing mechanism.
  • the motor control device includes: Motor deceleration control means for controlling the deceleration of the motor by inputting a deceleration processing execution command for controlling the deceleration of the motor using an inverter and a voltage command amplitude commanded to the inverter,
  • the motor deceleration control means includes Excitation control means for calculating the first voltage command amplitude amplification factor used for control for rapid motor deceleration by inputting the deceleration processing execution command and the voltage signal of the DC circuit portion of the inverter; Input the inverter current amplitude limit value, which is the limit value of the current that can be applied to the inverter, and the motor current signal, and calculate the second voltage command amplitude amplification factor used for control for motor overcurrent suppression.
  • An adding means for adding the first voltage command amplitude amplification factor and the second voltage command amplitude amplification factor to output a third voltage command amplitude amplification factor used for motor rapid deceleration control;
  • Multiplication means for multiplying and outputting the voltage command amplitude and the third voltage command amplitude amplification factor, And controlling the inverter in accordance with a voltage command amplitude after multiplication by the multiplication means.
  • the ratio of the voltage command amplitude amplification is determined based on the voltage of the inverter DC circuit unit.
  • current control is performed so that the motor current amplitude is within the limit value, and in parallel with the above-described voltage command amplitude amplification processing, smooth current amplitude suppression is achieved, and stable motor suddenness is achieved.
  • deceleration processing there is an effect of realizing deceleration processing.
  • Embodiment 1 of this invention It is explanatory drawing of the apparatus which concerns on Embodiment 1 of this invention. It is a figure which shows an example of the calculation method of the 1st voltage command amplitude gain in Embodiment 1 of this invention. It is a figure which shows an example of the calculation method of the 2nd voltage command amplitude gain in Embodiment 1 of this invention. It is a modeling figure of the design of the control system in Embodiment 1 of this invention.
  • Embodiment 1 FIG. The first embodiment of the present invention will be described below with reference to the drawings.
  • an inverter, a motor, a current detector, etc. are also shown.
  • the motor is an induction motor
  • V / f control in which the ratio of the frequency command to the motor and the voltage command amplitude is constant will be described as an example.
  • other types of motors and control systems can be applied without any problem.
  • a diode converter that cannot process regenerative power is often used for the DC power source 1 that outputs DC power.
  • the inverter 3 converts the DC power from the DC power source 1 into AC power having an amplitude and frequency suitable for driving the motor 5 and supplies the AC power.
  • the smoothing capacitor 2 smoothes the voltage in the DC circuit section between the DC power source 1 and the inverter 3.
  • the motor control means 6 (the larger one of the rectangular frames shown by dotted lines in the figure) used in the present invention will be described.
  • the frequency command 8 output from the frequency command generation means 7 is input to the V / f conversion means 9 and converted into a voltage command amplitude 10.
  • the motor deceleration control means 14 (the smaller one of the rectangular frames indicated by dotted lines in the figure) increases the voltage command amplitude 10 when the motor is suddenly decelerated with respect to the voltage command amplitude 10 to increase the voltage command. Compensation processing for outputting the amplitude 17 is performed, but this is only when the motor is suddenly decelerated. Normally, no compensation processing is performed. At that time, the voltage command amplitude 10 and the voltage command amplitude 17 have the same value. Become.
  • a pulse width modulation means (hereinafter abbreviated as PWM means) 12 receives a voltage command amplitude 17 and a frequency command 8 to generate a voltage command, and also outputs a voltage signal from the smoothing capacitor 2 (“voltage signal of the inverter DC circuit section”). The same is true of “.” The same applies hereinafter. 11 is converted into a duty command, and further PWM processing such as triangular wave comparison is performed, and a switching command 13 is output.
  • the voltage value obtained by averaging the output voltage of the inverter 3 over one period of the triangular wave coincides with the voltage command.
  • the duty command indicates the ON / OFF ratio of the switching element of the inverter 3.
  • the output terminal voltage of the inverter 3 outputs both the high potential side voltage and the low potential side voltage of the DC circuit section by the action of the switching element. That is, the previous duty command indicates the time ratio of the output of these two voltage values.
  • the inverter 3 outputs a desired voltage in a pseudo manner by changing the time ratio between the two voltage values. At this time, if the voltage of the DC circuit unit can be grasped, the time ratio can be accurately determined.
  • the average output voltage in a section of about one triangular wave period can be matched with the voltage command.
  • f * corresponds to the frequency command 8.
  • is a voltage command phase
  • Vamp * is a voltage command amplitude 17
  • Vu * is a U-phase voltage command
  • Vv * is a V-phase voltage command
  • Vw * is a W-phase voltage command
  • Du * is a U-phase duty command
  • Dv * Indicates a V-phase duty command
  • Dw * indicates a W-phase duty command.
  • the inverter 3 performs a power conversion operation based on the switching command 13.
  • the operation of each component shown above is very general and will not be described in detail.
  • the motor deceleration control means 14 at the time of motor rapid deceleration control will be described in detail.
  • a voltage command amplification mechanism for rapid motor deceleration will be described.
  • the voltage command amplitude amplification factor A1 (14b) before filtering at the time of sudden deceleration control is calculated by the voltage command amplitude amplification factor setting function 14a using the voltage signal 11 of the inverter DC circuit unit.
  • the voltage command amplitude gain 14c indicates a pre-filtering voltage command amplitude gain A2 when the rapid deceleration control is not performed, and is 1.
  • the selection unit 14d selects the pre-filtering voltage command amplitude amplification factor A1 (14b) when the deceleration process execution command 16 is input and the rapid deceleration control is performed, and the pre-filtering voltage when the rapid deceleration control is not performed.
  • the command amplitude amplification factor A2 (14c) is selected and output.
  • the deceleration processing execution command 16 is output from the deceleration processing execution command output means 26.
  • the deceleration processing execution command output means 26 makes such a determination and outputs a deceleration processing execution command 16.
  • FIG. since it is not the essence of this invention about a specific judgment system and the detail, description is abbreviate
  • the low-pass filter (LPF) 14e suppresses a sudden change in the voltage command amplitude amplification factor output from the selection unit 14d due to the start of the motor rapid deceleration control by the processing of the selection unit 14d, and the first voltage command It has the function of outputting the amplitude amplification factor (14f) and has the effect of suppressing disturbances such as overshoot of the motor current as described in the problem to be solved by the invention.
  • the cutoff frequency of the low-pass filter is set to a value that can sufficiently remove the resonance frequency component of the secondary transfer function from the voltage of the motor to the current, any order may be used.
  • the inverter DC circuit is calculated by calculating the voltage command amplitude amplification factor based on the voltage signal 11 of the inverter DC circuit section by the excitation control means 14o indicated by the one-dot chain line on the left side of FIG. 1 as a whole.
  • Motor rapid deceleration control according to the voltage of the part can be realized. For example, when the DC circuit section voltage is close to the overvoltage level and there is no margin, the voltage command amplitude amplification factor is quickly increased, the motor current is increased to increase the regenerative energy consumption in the motor, and the overvoltage in the DC circuit section is prevented. .
  • the operating voltage range is determined for the components constituting the inverter, and such overvoltage causes fatigue and destruction of the components. By preventing overvoltage, it is possible to prevent deterioration and breakage of the inverter components.
  • FIG. 2 shows an example of the configuration of the voltage command amplitude amplification factor setting function 14a at this time.
  • the horizontal axis corresponds to the voltage Vdc (11) of the inverter DC circuit section to be input, and the vertical axis corresponds to the pre-filtering voltage command amplitude amplification factor A1 (14b) to be output.
  • Vdc exceeds the threshold voltage Vth
  • the voltage command amplitude amplification factor is increased.
  • the voltage command amplitude 17 can be increased rapidly in accordance with the voltage Vdc (11), and the above-described overvoltage can be ensured. There is an effect that can be prevented.
  • a current amplitude signal 14h is calculated from the detected current signal 15 output from the current detecting means 4 by the current amplitude calculating means 14g.
  • iu, iv, and iw correspond to the detected current signal 15.
  • iamp corresponds to the current amplitude signal 14h.
  • i ⁇ , i ⁇ , and iamp indicate the ⁇ direction component of the current on the two-phase stationary coordinates ( ⁇ , ⁇ ), the ⁇ direction component of the current on the two-phase stationary coordinates ( ⁇ , ⁇ ), and the current amplitude, respectively. .
  • the PI controller 14j inputs the difference between the current amplitude signal 14h and the current amplitude limit value 14i and outputs the second voltage command amplitude amplification factor (14k).
  • the purpose of the PI controller is to prevent motor overcurrent.
  • the PI controller has an upper limit of 0 at the integrator and PI controller output so that it does not operate below the current limit value, and the current amplitude signal 14h is greater than the current amplitude limit value 14i. When it is small, the second voltage command amplitude amplification factor (14k) is zero.
  • the configuration of the PI controller is as shown in FIG. As described above, since the control for directly limiting the current amplitude is performed using the PI controller, there is a sure overcurrent suppressing effect.
  • the first voltage command amplitude gain (14f) and the second voltage command amplitude gain (14k) obtained as described above are added by the adder 14l, and the third voltage command amplitude gain ( 14m) is obtained.
  • the voltage command amplitude 17 is obtained by multiplying the third voltage command amplitude amplification factor (14 m) by the voltage command amplitude 10.
  • the time constant order of the electric circuit system of the motor and the time constant order of the mechanical torque transmission system are greatly different.
  • the transfer characteristic from the applied voltage of the motor to the motor current is a first-order lag characteristic, and when the induction motor parameters shown in Non-Patent Document 1 are used, the time constant Tcst_ele of the current change is expressed by the equation (11).
  • the primary resistance and primary leakage inductance are 0.00853 [sec]. This shows the time until the motor current reaches approximately 63% of its saturation value when a step voltage is applied to the electric circuit of the motor.
  • the frequency transfer characteristic from the motor torque to the rotational speed of the motor is an integral characteristic.
  • the time Tcst_mec until accelerating to about 63% of the rated speed is 0.11236 [ sec].
  • is a leakage coefficient
  • L s is a primary inductance
  • R s is a primary resistance
  • W r is a rated speed
  • T q is a rated torque
  • J m is a mechanical moment of inertia value.
  • the motor speed and frequency command of the motor can be handled as constants because of the slow time change of the system when viewed from the electric circuit system.
  • FIG. 4 shows the details of the modeling, and is a model showing the minute fluctuation amount of each physical quantity in the vicinity of a certain operating point.
  • the motor rotation speed Wrm0 and the voltage Vdc0 of the smoothing capacitor 2 in the inverter DC circuit section are used as operating points.
  • the Vdc0 indicates the same physical quantity as the voltage Vdc (11) of the inverter DC circuit unit, but for the convenience of analysis, it is necessary to indicate a value near the operating point, and the subscript 0 is added for the distinction.
  • the control system is designed based on FIG. 4 given the same reference numerals as those in FIG.
  • the purpose is to analyze each physical quantity and signal minute fluctuation amount in a motor, an inverter, or a control system.
  • the inverter 3 does not have time characteristics (transient characteristics) except for the smoothing capacitor 2 of the DC circuit section, and does not have an essential influence on the analysis in FIG.
  • the inverter 3 is omitted as one that outputs a voltage according to the voltage command.
  • the expression “small fluctuation amount” is added in parentheses.
  • means a ⁇ b> 1 surrounded by a dotted rectangle indicates the motor current control means 14 p in the motor deceleration control means 14.
  • the current amplitude limit value 14i corresponds to a target command value in the PI controller 14j.
  • the stability of the control system can be ensured by designing the control system so that the main signal to be handled is a minute fluctuation amount and each signal in the control feedback loop converges to zero.
  • the current amplitude limit value 14i which is a target command, is not a signal that causes minute fluctuations, and is simply zero here.
  • the set value of the target command has no essential influence on the control system design.
  • FIG. 4 (a) means a2 surrounded by a dotted rectangle indicates multiplication of the third voltage command amplification factor (small fluctuation amount) 14m and the voltage command amplitude 10 by V / f control.
  • an induction motor is described as an example of a connection form to an inverter.
  • a circuit model 18 of the induction motor is introduced in FIG. 4.
  • the circuit equation of the induction motor in vector notation for the circuit model 18 of the induction motor is expressed by equation (13).
  • I and J are represented by the following formula (14).
  • means a5 surrounded by a dotted rectangle indicates the excitation control means 14o in the motor deceleration control means 14.
  • the configuration is such that the voltage signal 11 (small fluctuation amount) of the inverter DC circuit section is fed back, the difference is taken with respect to the value of the predetermined command (14q), and the first voltage command amplification factor 14f (small fluctuation amount) is output.
  • the command 14q is a command for the voltage signal 11 (small fluctuation amount) of the inverter DC circuit unit.
  • the value is simply described here as zero.
  • FIG. 4B is a diagram showing the result of linear approximation of FIG.
  • the frequency command 8 can be regarded as a constant value at a location corresponding to the means a2 surrounded by a dotted rectangle, so the product of the frequency command f * at the start of the motor rapid deceleration control and the V / f coefficient.
  • the gain is 23.
  • the frequency corresponding to the means a3 enclosed by the dotted rectangle is assumed to be a frequency on the order of the time constant of the electric circuit system. It becomes very small and can be ignored. Accordingly, the gain 24 is the product of the motor rotation speed Wrm0 and the torque constant Kt at the start of the motor rapid deceleration control.
  • the smoothing capacitor has a sufficiently large capacitance, the charging voltage of the smoothing capacitor at the start of the motor rapid deceleration control, that is, the inverter DC circuit
  • the voltage Vdc0 of the part is often sufficiently larger than the voltage signal 11 (small fluctuation amount) of the inverter DC circuit part. Therefore, the division unit for the voltage signal 11 (a small fluctuation amount) is substantially unnecessary, and the voltage model of the DC circuit unit is a simple integrator and gain as shown in the rightmost block 25 in FIG. It becomes a combination.
  • FIG. 4A the current amplitude signal (minute fluctuation amount) 14h fed back to the motor overcurrent suppression mechanism in the motor deceleration control means 14 of the means a1 surrounded by a dotted rectangle is a minute fluctuation amount. This is almost equivalent to the signal (small fluctuation amount) 15.
  • FIG. 4A can be linearly approximated as shown in FIG.
  • FIG. 4B is a model that handles minute fluctuations, and is a linear approximation in the vicinity of a predetermined operating point of the model shown in FIG.
  • a classically used transfer function-based design theory can be applied.
  • the open loop transfer characteristic is calculated from the X point to the Y point in FIG. 4B, and the gain of the PI controller 14j is designed so that the gain margin and phase margin at this time are within appropriate predetermined ranges. Or finely adjusting the cutoff frequency of the low-pass filter 14e.
  • the motor deceleration control means 14 has a good view of the entire system, and various quantities such as the electric circuit constant of the motor, the moment of inertia of the load machine, and the smoothing capacitor capacity value If it is possible to grasp, there is an advantage that it is easy to design and adjust.
  • the voltage command amplitude amplification factor A1 (Ga1) is configured to increase in a linear function when the threshold voltage Vth is exceeded. As described above, the voltage command is promptly increased and the motor loss is increased to suppress the overvoltage of the DC circuit unit. In addition, the gain of the control system can be easily designed.
  • the reciprocal of the DC circuit section voltage Vdc0 is inserted as a coefficient. Is done. That is, the open loop transfer characteristic changes from the X point to the Y point depending on the value of the DC circuit section voltage. As shown in FIG.
  • the voltage command amplitude amplification factor A1 is increased according to the DC circuit unit voltage by 14a (voltage command amplitude amplification factor setting function) in FIG. 4B, so that Vdc0 of the integrator is increased.
  • the reciprocal characteristic can be canceled.
  • the open loop characteristics in FIG. 4B are kept constant even when the DC circuit section voltage changes, and as a result, there is an effect that the gain adjustment of the control system can be facilitated.
  • the motor rotation speed (indicated as Wrm0 in FIG. 4), which is a reference for designing the control system, may be a value at the start of the motor rapid deceleration control as described above. This is because the motor rotation energy of the motor is large at the start of sudden motor deceleration and the regenerative energy to the inverter is large.If nothing is devised, there is a high possibility of overvoltage and overcurrent. This is because the overvoltage and inverter overcurrent of the DC circuit section can be prevented if designed. For this reason, the maximum rotational speed specification value of the motor may be used as a design criterion, and in that case, more reliable overvoltage and overcurrent can be prevented.
  • the motor rotation speed can be substituted by the frequency command 8.
  • the voltage Vdc0 of the inverter DC circuit section may be a value at the start of the motor rapid deceleration control.
  • the control system design in the motor deceleration control means 14 does not use the moment of inertia value (Jm) that is a parameter of the mechanical torque transmission system. Therefore, there is a merit that adjustment work corresponding to the moment of inertia value which is necessary in the technique shown in Patent Document 3 is not required.
  • the inverter determines the voltage command amplification ratio based on the voltage of the inverter DC circuit unit.
  • current control is performed so that the motor current amplitude is within the limit value, and in parallel with the above voltage command amplification processing, smooth current amplitude suppression is achieved, and stable motor rapid deceleration There is an effect of realizing processing.
  • Embodiment 2 FIG.
  • the motor rotation speed at the start of the motor rapid deceleration control and the voltage value of the DC circuit unit are applied to the design, but they are appropriately changed according to the motor rotation speed. It is good also as a structure.
  • the product (24) of the torque constant Kt and the motor rotation speed Wrm0 is a direct gain, the gain to be controlled decreases when the motor rotation speed decreases.
  • the voltage Vdc0 of the inverter DC circuit section is appropriately changed according to the value at the time of the motor rapid deceleration control, thereby preventing the overvoltage of the DC circuit section of the inverter 3 and the overcurrent of the inverter, and promptly driving the motor suddenly. Deceleration control can be achieved.
  • the circuit model 18 of the induction motor has an electrical angular frequency ⁇ as a parameter as shown in the equation (17).
  • the electrical angular frequency ⁇ corresponds to an addition value of a value obtained by multiplying the slip frequency ⁇ se and the motor rotation speed by the number of motor pole pairs. Therefore, the value of the electrical angular frequency ⁇ changes according to the motor rotation speed, and the frequency transfer characteristic of the circuit model 18 of the induction motor expressed by the equation (17) changes according to the motor rotation speed. For this reason, by quickly changing the setting of the control system according to the motor rotation speed or frequency command, rapid motor rapid deceleration control can be achieved while preventing overvoltage of the DC circuit portion of the inverter 3 and overcurrent of the inverter. .
  • the motor is an induction motor in particular, but the motor deceleration control means 14 according to the present invention can be applied to other types of motors.
  • the motor deceleration control means 14 according to the present invention can be applied to other types of motors.
  • the secondary magnetic flux is established by the permanent magnet and does not change with time.
  • the primary (stator side) circuit model structure of the permanent magnet synchronous motor is the same as that of the induction motor, it is expressed by equation (18) based on equation (17).
  • R is the armature resistance of the motor
  • L is the armature inductance of the motor.
  • Embodiment 4 the operation of increasing the motor loss is performed for the rapid deceleration control of the motor shown in the motor deceleration control means 14, but the following usage method can also be used. That is, the warm-up operation of the motor can be performed by taking advantage of the feature of rapidly increasing the motor loss.
  • the induction motor parameter values that vary depending on the motor temperature, such as the primary resistance value and the secondary resistance value of the induction motor, are used for slip frequency calculation and secondary magnetic flux estimation. Also in a permanent magnet synchronous motor or the like, the primary resistance value is a parameter required for construction of a sensorless control system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Stopping Of Electric Motors (AREA)
  • Inverter Devices (AREA)

Abstract

 モータ急減速制御時の電圧の増幅率をインバータ直流回路部の電圧を参照して所定関数とローパスフィルタにて計算した電圧増幅率と、インバータ電流を参照しPI制御にて計算した電圧増幅率とを加算して得た値とする。また、両者を並行して動作させる。

Description

モータ制御装置
 この発明は、モータを急減速もしくは急制動させる手段を備えたモータの制御装置に関するもので、特に急減速あるいは急制動の実現のためモータ損失を急激に増やす制御技術に関する。以後この損失を増加させる制御を単に急減速制御と記載する。
 モータを所望の出力や回転数で回転させるための電力供給手段としてインバータが用いられる。インバータでは系統電源の電力を整流して直流に変換しさらにモータ駆動に適した電圧・周波数を持つ交流電力に変換して供給する動作が実施される。前記インバータの直流回路部には直流電圧平滑用コンデンサやモータからの回生エネルギーを処理するための抵抗器が接続される。モータの可変速運転を行う場合、減速時は回生動作となるが、モータに接続された機械負荷の慣性モーメントが大きい、または急速な減速を行う場合には、回生エネルギーにより前記平滑用コンデンサの電圧が急上昇する。特に前記抵抗器の許容電力容量が十分でない場合、この現象が顕著である。このモータ回生動作時の直流部過電圧による装置の破損を防ぐため、平滑用コンデンサの端子電圧を検出し、検出電圧が所定値を超えた場合には自動的に減速動作を停止する過電圧保護手段を備えた回転機の制御装置が広く使用されている。
 このようなモータ制御装置において、インバータ直流回路部の過電圧状態に陥らずに急減速を実現する手段として、モータ損失を増大させて、インバータ側へ向かう回生エネルギー量を抑制する方法が知られている。例えば、減速時にモータに印加する電圧の振幅を増大させ、モータの電流およびそれに伴うモータ磁束を増加させ、これによりモータ銅損やモータ鉄損を増加させ、モータ損失を増大させるものが知られている(特許文献1参照)。
 ところが、上記特許文献1に示す技術では、モータに印加する電圧振幅を増加させた直後に電流がオーバーシュートする場合があり、その対策を示したものがある(特許文献2参照)。この文献もモータ急減速制御技術を記したものであるが、モータやインバータの保護のため、電流のオーバーシュートすなわち過電流を検知した場合には、急減速制御を一時停止する技術を記載している。これによりモータ急減速制御時の電圧振幅増加が抑制されて過電流抑制が実現できる。
 ところで、一般的に電圧指令に相当するインバータへのデューティ指令を生成する際には、直流回路部の電圧を検出して、それで電圧指令を除算する必要がある。この直流回路部の電圧を検出する方法として、急減速制御時に直流回路部の電圧検出のフィルタの時定数を変化させ、急減速制御に伴う直流回路部電圧の過渡的な上昇変化分を除去するものが知られている。この方法を使用すると、デューティ指令の振幅を維持して、高い電圧をモータに印加することができ急減速制御が実現できている(特許文献3参照)。
特許第1660499号公報 特開2012-044835号公報 特許第4461877号公報
杉本、「ACサーボシステムの理論と設計の実際」、総合電子出版、1997年、p.106
 特許文献1に示す技術では急減速制御時にモータに印加する電圧の振幅を増大させるが、モータの電圧から電流への伝達特性は2次の特性を持ち、電気時定数などのモータパラメータや回転速度条件などによっては減衰係数が小さくなり、単純に電圧の振幅を増大させると電流オーバーシュートが生じて過電流になることがある。
 特許文献2に示す技術は急減速制御時に、電流が所定値以上となり過電流検知が検知された場合に電圧振幅の増加を一時停止させるものであるが、前記のモータ特性により、単純に電圧振幅の増加を一時停止させるだけでは、電流のオーバーシュートが抑制できない場合がある。さらには過電流検知による急減速制御一時停止と過電流状態解除による急減速制御再開を繰り返して、チャタリングが発生し電流が大きく乱れる場合があった。この状態となると過電流の防止もできないばかりか、適切な急減速制御もできない場合がある。
また、電圧振幅の増加割合については何ら考慮がなされておらず、インバータ直流回路部の電圧が高く回生エネルギーを受け入れる余地がない場合、モータ損失増加が不十分となり、回生エネルギーが平滑コンデンサに蓄積してインバータ直流回路部の過電圧が発生する場合があった。
 また、特許文献3に示す技術ではモータ急減速制御時にインバータが出力する電圧が正確に把握できず、かつ制御できない問題があった。このため運転条件によっては過大な電圧をモータに印加する場合があり、モータに過剰な電流を流し、モータやインバータの疲労あるいは破損に至る場合があった。インバータの出力電圧は直流回路部の電圧とインバータへのデューティ指令の積で決定される。特許文献3に示す技術では急減速制御時でもインバータへのデューティ指令は変化させない構成をとり、インバータの出力電圧の変化は直流回路部の電圧で決定される。
 ところが、この直流回路部の電圧は、モータの電気回路定数や負荷機械の慣性モーメント値、平滑コンデンサ容量値など諸量が把握できていても、モータの電気回路、モータと機械負荷のトルク伝達系、インバータの平滑コンデンサの充放電と言った現象をとりまとめた非線形システムにより生み出され、モータ急減速制御時の上昇変化分が正確に把握することができない。このため、運転条件によっては、直流回路部の上昇変化が顕著となり、前述の過大な電圧の出力問題が発生する。
 また、モータ急減速制御時の直流回路部の電圧の上昇変化において、そのピーク値のみならず、時間変化分についても予め把握することは困難であるため、直流回路部の電圧検出フィルタの時定数の調整が困難であるという問題があった。また特許文献3に示す技術でも過電流抑制のため、電流を検出して電圧指令の振幅を調整する機構を備えているが、上記の調整する信号の経路に、正確な制御ができない直流回路部の電圧値との積算が存在するため前記過電流抑制機構のゲイン調整等が困難であるといった問題があった。
 本発明に係るモータ制御装置は、
インバータを用いてモータを減速制御する減速処理実施指令と前記インバータに指令する電圧指令振幅とを入力して前記モータを減速制御するモータ減速制御手段を有し、
前記モータ減速制御手段は、
前記減速処理実施指令と、前記インバータの直流回路部の電圧信号と、を入力して、モータ急減速のための制御に用いる第一の電圧指令振幅増幅率を計算する励磁制御手段、
前記インバータに印加可能な電流の制限値であるインバータ電流振幅制限値と、モータ電流信号と、を入力して、モータの過電流抑制のための制御に用いる第二の電圧指令振幅増幅率を計算する電流制御手段、
前記第一の電圧指令振幅増幅率と、前記第二の電圧指令振幅増幅率と、を加算して、モータ急減速制御に用いる第三の電圧指令振幅増幅率を出力する加算手段、
前記電圧指令振幅と、前記第三の電圧指令振幅増幅率と、を乗算し出力する乗算手段、
を備え、前記乗算手段により乗算した後の電圧指令振幅に従って前記インバータを制御するものである。
 本発明によれば、減速制御時に電圧指令振幅を増幅してモータの損失を増やして急減速する場合に、インバータ直流回路部の電圧に基づいて電圧指令振幅増幅の割合を決定するため、インバータ直流回路部への回生エネルギーを適切に抑制して過電圧を防止する効果がある。また、モータ電流振幅が制限値以内となるように電流制御を実施し、かつ上記の電圧指令振幅増幅の処理と並列して実施するため、滑らかな電流振幅抑制を実現して、安定したモータ急減速処理を実現する効果がある。
 また、特許文献3の技術とは異なり、直流回路部電圧がもたらす非線形性の影響が制御ループ内部に介在しないので、制御ループの設計および調整が容易になり、調整の労力を削減する効果がある。
本発明の実施の形態1に係る装置の説明図である。 本発明の実施の形態1における第一の電圧指令振幅増幅率の計算方法の一例を示す図である。 本発明の実施の形態1における第二の電圧指令振幅増幅率の計算方法の一例を示す図である。 本発明の実施の形態1における制御系の設計のモデリング図である。
 この発明に係るモータ制御装置の好適な実施の形態について、以下、図面を参照して説明する。なお、各図間において、同一符号は、同一あるいは相当のものであることを表す。また、下記の実施の形態によって、この発明が限定されるものではない。
実施の形態1.
 以下、図を用いて本発明の実施の形態1を説明する。説明の都合上、インバータやモータ、電流検出器なども併記する。ここではモータを誘導電動機とし、モータへの周波数指令と電圧指令振幅の比を一定とするV/f制御を例にとり説明するが、他の種類のモータや制御系などでも問題なく適用できる。
 まず、図1において、直流電力を出力する直流電源1には、回生電力の処理ができないダイオードコンバータが使用されることが多い。インバータ3はこの直流電源1からの直流電力をモータ5の駆動に適した振幅および周波数の交流電力に変換して供給する。また、平滑コンデンサ2は、直流電源1とインバータ3間の直流回路部における電圧の平滑を行う。
 次に、本発明で用いられるモータ制御手段6(図中、点線で示した矩形の枠のうち、大きい方)について説明する。周波数指令発生手段7から出力された周波数指令8はV/f変換手段9に入力され、電圧指令振幅10に変換される。モータ減速制御手段14(図中、点線で示した矩形の枠のうち、小さい方)は、この電圧指令振幅10に対してモータを急減速させる場合に、電圧指令振幅10を増大させて電圧指令振幅17を出力する補償処理を実施するが、これはモータを急減速させるときのみであり、通常は何も補償処理はなされず、その時は電圧指令振幅10と電圧指令振幅17は同一の値となる。パルス幅変調手段(以下、PWM手段と略記する)12は、電圧指令振幅17と周波数指令8を入力して電圧指令を生成すると共に、平滑コンデンサ2の電圧信号(「インバータ直流回路部の電圧信号」と同じ意味。以下同様)11を用いてデューティ指令に変換され、さらに三角波比較などのPWM処理を行い、スイッチング指令13を出力する。
 ここで、直流回路部の電圧値を用いてデューティ指令を生成することにより、インバータ3の出力電圧を三角波一周期で平均した電圧値は電圧指令と一致する。デューティ指令はインバータ3のスイッチング素子のオン・オフの比率を示すものである。インバータ3の出力端子電圧はスイッチング素子の働きにより、直流回路部の高電位側電圧または低電位側電圧の両者を出力する。すなわち先のデューティ指令は、これら前記の両電圧値の出力の時間割合を示している。インバータ3は前記の両電圧値の時間割合を変化させることで擬似的に所望の電圧を出力する。このとき直流回路部の電圧が把握できていれば、前記の時間割合を正確に決めることができ、例えば三角波一周期程度の区間における平均出力電圧を、電圧指令と一致させることができる。数式で具体的に表現すると以下となる。f*は周波数指令8に相当する。
Figure JPOXMLDOC01-appb-M000001

Figure JPOXMLDOC01-appb-M000002

Figure JPOXMLDOC01-appb-M000003

Figure JPOXMLDOC01-appb-M000004

Figure JPOXMLDOC01-appb-M000005

Figure JPOXMLDOC01-appb-M000006

Figure JPOXMLDOC01-appb-M000007


ここで、θは電圧指令位相、Vamp*は電圧指令振幅17、Vu*はU相電圧指令、Vv*はV相電圧指令、Vw*はW相電圧指令、Du*はU相デューティ指令、Dv*はV相デューティ指令、Dw*はW相デューティ指令を示す。
また、インバータ3はこのスイッチング指令13に基づいて電力変換動作を行う。以上に示した各構成要素の動作はごく一般的なものであり、詳細な説明は省略する。
 次に、モータ急減速制御時のモータ減速制御手段14について詳細を説明する。まず、モータ急減速のための電圧指令増幅機構について説明する。インバータ直流回路部の電圧信号11を用いて急減速制御時のフィルター処理前電圧指令振幅増幅率A1(14b)を電圧指令振幅増幅率設定関数14aにより計算する。電圧指令振幅増幅率14cは急減速制御を実施しないときのフィルター処理前電圧指令振幅増幅率A2を示しており1となる。選択手段14dは減速処理実施指令16を入力して急減速制御を実施するときは、フィルター処理前電圧指令振幅増幅率A1(14b)を選択し、急減速制御を実施しないときはフィルター処理前電圧指令振幅増幅率A2(14c)を選択して出力する。
 なお、本実施の形態1では、減速処理実施指令16は減速処理実施指令出力手段26より出力する構成とした。モータ急減速制御が必要な場合として、インバータやモータ制御装置自身の異常発生時や、モータに接続された機械負荷の故障時など、モータ駆動の継続により好ましくない事象の発生が想定される場合が挙げられる。減速処理実施指令出力手段26では、このような判断を行い、減速処理実施指令16を出力する。またモータ制御装置の外部より通信にてモータ停止支持を受け取り、減速処理実施指令16を出力する構成としてもよい。なお、具体的な判断方式やその詳細については、本発明の本質ではないので説明は省略する。
 ローパスフィルタ(LPF)14eは、選択手段14dの処理により、モータ急減速制御の始動に伴う、選択手段14dから出力される電圧指令振幅増幅率の急激な変化を抑制して、第一の電圧指令振幅増幅率(14f)を出力する働きを持ち、発明が解決しようとする課題にて説明したように、モータ電流のオーバーシュートなどの乱れを抑制する効果がある。ローパスフィルタのカットオフ周波数は、モータの電圧から電流への2次伝達関数の共振周波数成分が十分除去できるような値に設定すれば、特に次数等は何でもよい。
 このようにして、全体として図1の左側の矩形の一点鎖線で示した励磁制御手段14oにより、インバータ直流回路部の電圧信号11を基に電圧指令振幅増幅率を計算することで、インバータ直流回路部の電圧に応じたモータ急減速制御が実現できる。例えば直流回路部電圧が過電圧レベルに近く、余裕がない場合に電圧指令振幅増幅率を速やかに増加させ、モータ電流を増やしてモータでの回生エネルギー消費を増やし、直流回路部での過電圧を防止する。インバータを構成する部品は使用電圧範囲が定まっており、このような過電圧は部品の疲労や破壊を招く。過電圧を防止することでインバータ構成部品の劣化や破損を防止することができる。
 このときの電圧指令振幅増幅率設定関数14aの構成の一例が図2となる。横軸が入力となるインバータ直流回路部の電圧Vdc(11)、縦軸が出力となるフィルター処理前電圧指令振幅増幅率A1(14b)に相当する。Vdcが閾値電圧Vthを超えると電圧指令振幅増幅率を増加させる。また、インバータ直流回路部の電圧Vdcに対して1次関数的に増加させることで、上記電圧Vdc(11)に応じて、急激に電圧指令振幅17を増加させることができ、前述の過電圧を確実に防止することができる効果がある。
 次にモータ減速制御手段14におけるモータ過電流抑制機構について、図1の右側の矩形の一点鎖線で示したモータ電流制御手段14pの内容として以下詳しく説明する。電流検出手段4より出力した検出電流信号15から電流振幅演算手段14gにより電流振幅信号14hを計算する。方法は幾つかあるが、例えば下記の式にて計算できる。ここで、iu、iv、iwが検出電流信号15に相当する。iampが電流振幅信号14hに相当する。
Figure JPOXMLDOC01-appb-M000008

Figure JPOXMLDOC01-appb-M000009

Figure JPOXMLDOC01-appb-M000010

ここで、iα、iβ、iampは、各々、2相静止座標(α、β)上の電流のα方向成分、2相静止座標(α、β)上の電流のβ方向成分、電流振幅を示す。
 PI制御器14jは電流振幅信号14hと電流振幅制限値14iとの差分を入力して第二の電圧指令振幅増幅率(14k)を出力する。PI制御器はモータ過電流を防止することが目的であり、電流制限値以下では動作しないよう積分器とPI制御器出力に上限0のリミッタを持ち、電流振幅信号14hが電流振幅制限値14iより小さい場合、第二の電圧指令振幅増幅率(14k)はゼロとなる。以上をまとめるとPI制御器の構成は図3となる。このようにPI制御器を用いて直接的に電流振幅を制限する制御を行うので、確実な過電流抑制効果がある。
 以上のようにして求められた第一の電圧指令振幅増幅率(14f)と第二の電圧指令振幅増幅率(14k)は、加算器14lにて加算され、第三の電圧指令振幅増幅率(14m)が得られる。この第三の電圧指令振幅増幅率(14m)と電圧指令振幅10を乗算し、電圧指令振幅17を得る。このように、モータ急減速のための制御と、モータの過電流抑制のための制御を並行かつ同時に行うことで、チャタリング等を発生することなく、滑らか、かつ安定にモータ急減速制御を実現できる。
 最後に、以上説明したモータ減速制御手段14におけるゲイン設計や調整について説明する。本発明によるモータ減速制御手段14では、前記のようにモータ過電流抑制機構はモータの電流値をフィードバックしてモータに印加する電圧を調整する系であるため、系の時定数は数10Hz~数kHzといった電気回路系の時定数オーダの現象となる。
 また、モータ急減速のための電圧指令増幅機構では、モータに印加する電圧が変化→モータ電流が変化→モータ電力が変化→平滑コンデンサ電力が変化→直流回路部の電圧が変化…、といった順で現象が発生し、モータ電流の変化がモータ電力の変化に直結するため、結局、前記諸現象の中で最も高速なものは、電気回路系の時定数オーダを持つ。従って制御系の安定設計には、この電気回路系の時定数オーダに着目すればよい。
 一般に、モータの電気回路系の時定数オーダと機械トルク伝達系の時定数オーダは大きく異なる。例えばモータの印加電圧からモータの電流までの伝達特性は一次遅れ特性となり、非特許文献1に示す誘導電動機パラメータを用いると、前記電流変化の時定数Tcst_eleは、(11)式に示すようにモータの1次抵抗と1次もれインダクタンスで表現され、0.00853[sec]となる。これはモータの電気回路にステップ電圧を与えたとき、モータ電流がその飽和値の約63[%]に到達するまでの時間を示している。一方、モータのトルクからモータの回転速度までの周波数伝達特性は積分特性となる。従って単純な比較はできないものの、モータ単体の機械慣性モーメントに対し一定の定格トルクにて定格速度まで加速する場合、定格速度の約63[%]までに加速するまでの時間Tcst_mecは0.11236[sec]となる。
Figure JPOXMLDOC01-appb-M000011

Figure JPOXMLDOC01-appb-M000012

ここで、σはもれ係数、Lは一次インダクタンス、Rは一次抵抗、Wは定格速度、Tは定格トルク、Jは機械慣性モーメント値である。なお(12)式の計算において、定格速度は角周波数の単位([rad/sec])に変換している。このため、モータの機械速度や周波数指令は電気回路系から見ると系の時間変化の遅さのため、定数として取り扱うことができる。これを利用することでモータ減速制御手段14やモータや直流回路部電圧などを線形近似してモデリングすることができ、容易に制御系の設計が実現できる。
 図4は、そのモデリングの詳細を示しており、ある動作点近傍の各物理量の微小変動量を示したモデルである。この図4ではモータ回転速度Wrm0、インバータ直流回路部における平滑コンデンサ2の電圧Vdc0を動作点としている。なお、前記Vdc0はインバータ直流回路部の電圧Vdc(11)と同じ物理量を指すが、解析の都合上、動作点近傍の値を記す必要があり、その区別のため添字0と付記している。制御系の設計においては動作点近傍の各物理量の微小変動量に着目して設計を行うことが一般的であるため、図4に基づいて制御系の設計を行う。図4において図1と同一の符号を与えたものは同じ働きであるので、説明を省略する。また、図4では、前述の通り、モータやインバータまた制御系における各物理量や信号の微小変動量の解析を目的としている。インバータ3はその直流回路部の平滑コンデンサ2を除けば、時間特性(過渡特性)を持つものではなく、図4での解析に対して本質的な影響を与えるものではないので、図4においてはインバータ3は電圧指令どおりの電圧を出力するものとして省略されている。以下の説明においては、括弧書で微小変動量との表現を付記する。
 図4(a)において、点線の矩形で囲った手段a1は、モータ減速制御手段14におけるモータ電流制御手段14pを示している。
 ここで、電流振幅制限値14iはPI制御器14jにおける目標指令値に相当する。取り扱う主な信号が微小変動量であり、制御フィードバックループ内の各信号がゼロに収束するような制御系の設計を行えば、制御系の安定が確保できる。また目標指令である電流振幅制限値14iは微小変動が発生するような信号ではないため、ここでは単にゼロとしている。なお、この目標指令の設定値は制御系の設計に対して本質的な影響は与えない。
 図4(a)において、点線の矩形で囲った手段a2は、第三の電圧指令増幅率(微小変動量)14mと、V/f制御による電圧指令振幅10との乗算を示している。図1ではインバータへの接続形態の一例として誘導電動機を記載したが、図4では誘導電動機は解析における一構成要素となるため、図4では誘導電動機の回路モデル18を導入する。誘導電動機の回路モデル18についてのベクトル表記の誘導電動機の回路方程式は(13)式となる。
Figure JPOXMLDOC01-appb-M000013

ここで、I、Jは、次式(14)で表される。
Figure JPOXMLDOC01-appb-M000014

また、Rs:1次抵抗、σ:もれ係数、
Ls:1次インダクタンス、M:相互インダクタンス、p:微分演算子
Lr:2次インダクタンス、Rr:2次抵抗、Vs:1次電圧、is:1次電流、
   Φr:2次磁束、ω:電気角周波数、ωse:すべり周波数、である。
 一般的に、2次磁束の時定数は非常に遅いため、1次側の回路のみに着目すればよく、回路方程式は(15)式となる。(15)式をdq軸(誘導電動機や同期電動機など交流モータを制御する際に一般的に用いられる同期回転座標の座標軸)上のそれぞれの成分で記載すると(16)式となる。
Figure JPOXMLDOC01-appb-M000015

Figure JPOXMLDOC01-appb-M000016

また、誘導電動機の2次磁束をd軸とすると、誘導電動機の電圧の主成分はd軸と直交するq軸となる場合が多く、2次磁束が確立している状態で電圧振幅信号(微小変動量)17を調整することはq軸方向の電圧を調整することに相当する。これに伴い電流(微小変動量)15もq軸の成分となる。
 従って、(16)式のq軸電圧からq軸電流までの関係に着目し、伝達関数表記を行うと、図4(a)で、誘導電動機の回路モデル18は(17)式で表される。
Figure JPOXMLDOC01-appb-M000017

ここで、s:ラプラス変数である。
 図4(a)において、点線の矩形で囲った手段a3はモータおよび機械負荷のトルク伝達系を示しており、Ktはトルク定数、Jmはモータと機械負荷の慣性モーメント、Wrm0はモータ減速制御開始時のモータ回転速度である。機械モデル19は積分特性であり、電流(微小変動量)15を入力してモータ回転速度(微小変動量)20を出力する。モータ損失を無視するとモータ電力(微小変動量)21はモータ機械出力に相当し、これは、モータ回転速度(微小変動量)20とモータ回転速度Wrm0の和とモータトルクとの積算値となる。
 図4(a)において、点線の矩形で囲った手段a4は直流回路部における平滑コンデンサ2のモデルであり、モータ電力(微小変動量)21によるインバータ直流回路部電圧の変化を示している。平滑コンデンサ2の電圧は平滑コンデンサ2に流入する電流に対して積分相当の特性を持つため、前記平滑コンデンサ2へ流れる電流が計算できれば、平滑コンデンサ2の電圧が計算できる。一般に図1において平滑コンデンサ2へ流れる電流は、モータ5の電流がインバータ3のスイッチング素子の動作によって合成された電流となるが、その合成された電流はPWM処理における三角波の2倍の周波数成分を含み詳細な取り扱いは困難である。そこで平滑コンデンサ2に流入する電力に着目して、その電力を平滑コンデンサ2の電圧で除算することで、前記合成電流の代用とする。以上の想定のもとモータ電力(微小変動量)21をインバータ直流回路部電圧で除算して平滑コンデンサ電流(微小変動量)22が求められ、平滑コンデンサの積分特性で、インバータ直流回路部の電圧信号11(微小変動量)となる。除算に用いるインバータ直流回路部電圧は、モータ急減速制御開始時の平滑コンデンサの電圧Vdc0とインバータ直流回路部の電圧信号11(微小変動量)との和となる。
 図4(a)において、点線の矩形で囲った手段a5は、モータ減速制御手段14における励磁制御手段14oを示している。インバータ直流回路部の電圧信号11(微小変動量)をフィードバックし、所定の指令(14q)の値に対して差分を取り、第一の電圧指令増幅率14f(微小変動量)を出力する構成をとる。ここで上記指令14qは、インバータ直流回路部の電圧信号11(微小変動量)に対する指令となるが、図4の手段a1と同様に微小変動の発生が望ましくない信号となるので、この指令14qの値は、ここでは単にゼロと記載している。
 図4(b)は、図4(a)を線形近似した結果を示す図である。図4(a)において、点線の矩形で囲った手段a2に相当する箇所では、周波数指令8が一定値と見なせるため、モータ急減速制御開始時の周波数指令fとV/f係数との積のゲイン23となる。同様に図4(a)において、点線の矩形で囲った手段a3に相当する箇所では、電気回路系の時定数のオーダの周波数を想定することから、モータ回転速度(微小変動量)20は、非常に小さくなり無視できる。従って、モータ急減速制御開始時のモータ回転速度Wrm0とトルク定数Ktとの積のゲイン24となる。
 また、図4(a)において、点線の矩形で囲った手段a4に相当する箇所では、平滑コンデンサの静電容量が十分大きければモータ急減速制御開始時の平滑コンデンサの充電電圧、すなわちインバータ直流回路部の電圧Vdc0は、インバータ直流回路部の電圧信号11(微小変動量)より十分大きくなることが多い。従って、この電圧信号11(微小変動量)に関する割算部が実質上不要となり、直流回路部の電圧モデルは図4(b)において、右端のブロック25に示すような単純な積分器とゲインの組み合わせとなる。
 なお、図4(a)において、点線の矩形で囲った手段a1のモータ減速制御手段14におけるモータ過電流抑制機構へフィードバックされる電流振幅信号(微小変動量)14hは微小変動量であるため電流信号(微小変動量)15とほぼ等価となる。以上をまとめると図4(a)は図4(b)のように線形近似できる。
 以上説明したように、図4(b)は微小変動量を取り扱うモデルであり、さらに図4(a)に示すモデルの所定の動作点近傍における線形近似となる。図4(b)を見ると明らかなようにゲインや積分器といった線形のブロックで構成されるため、一般的に用いられている古典的な伝達関数ベースの設計理論が適用できる。例えば、図4(b)のX点からY点までオープンループ伝達特性を計算し、このときのゲイン余裕や位相余裕が適切な所定範囲内となるように、PI制御器14jのゲインを設計したり、ローパスフィルタ14eのカットオフ周波数の微調整を実施するなどが考えられる。このため、特許文献3に示す技術と比較して本発明によるモータ減速制御手段14は系全体の見通しが良く、モータの電気回路定数や負荷機械の慣性モーメント値、平滑コンデンサ容量値などの諸量が把握できていれば、設計や調整がしやすくなるメリットがある。

 なお図2において電圧指令振幅増幅率A1(Ga1)は閾値電圧Vthを超えると一次関数的に増加させる構成をとっている。前記したように速やかな電圧指令の増加を行い、モータ損失を増加させて直流回路部の過電圧を抑制する効果があるが、その他に制御系のゲイン設計を容易にする効果を持つ。モータおよび機械負荷のトルク伝達系を示す図4(b)のY点手前には直流回路部電圧の伝達特性を模擬する積分器があるが、ここでは係数として直流回路部電圧Vdc0の逆数が挿入される。すなわち、直流回路部電圧の値により、X点からY点までオープンループ伝達特性が変化することになる。図2に示すように、図4(b)における14a(電圧指令振幅増幅率設定関数)により、電圧指令振幅増幅率A1を直流回路部電圧に応じて上昇させることで、前記積分器におけるVdc0の逆数の特性をキャンセルできる。これにより直流回路部電圧が変化しても図4(b)におけるオープンループ特性は一定に保たれるので、結果として制御系のゲイン調整を容易できる効果がある。 
 また、制御系の設計の基準となるモータ回転速度(図4中、Wrm0と記載)は、前記したようにモータ急減速制御開始時の値とすればよい。これは、モータ急減速開始時がモータの持つ機械回転エネルギーが大きく、インバータへの回生エネルギーが大きいため、何も工夫しない場合、過電圧や過電流になる可能性が高く、この運転領域をターゲットとして設計すれば、直流回路部の過電圧やインバータ過電流が防止できるからである。このためモータの最高回転速度仕様値を設計基準として用いてもよく、その場合は、より確実な過電圧や過電流の防止ができる。本実施の形態1は誘導電動機をV/f制御するモータ制御装置としているので、上記モータ回転速度は、周波数指令8で代用できる。インバータ直流回路部の電圧Vdc0についても同様にモータ急減速制御開始時の値とすればよい。
 また、図4(b)からも明らかなように、モータ減速制御手段14における制御系の設計では、機械トルク伝達系のパラメータである慣性モーメント値(Jm)を用いていない。
従って特許文献3に示す技術で必要となる、慣性モーメント値に応じた調整作業が不要となるメリットがある。
 以上、本発明によれば、減速制御時に電圧指令振幅を増幅してモータの損失を増やして急減速する場合に、インバータ直流回路部の電圧に基づいて電圧指令増幅の割合を決定するため、インバータ直流回路部への回生エネルギーを適切に抑制して過電圧を防止する効果がある。また、モータ電流振幅が制限値以内となるように電流制御を実施し、かつ上記の電圧指令増幅の処理と並列して実施するため、滑らかな電流振幅抑制を実現して、安定したモータ急減速処理を実現する効果がある。
 また、特許文献3の技術とは異なり、直流回路部電圧がもたらす非線形性の影響が制御ループ内部に介在しないので、制御ループの設計および調整が容易になり、調整の労力を削減する効果がある。
 実施の形態2.
 実施の形態1では、図4(b)に示すようにモータ急減速制御開始時のモータ回転速度や、直流回路部の電圧値を設計に適用したが、モータの回転速度に応じて適宜変更する構成としてもよい。特に図4(b)に示すように、トルク定数Ktとモータ回転速度Wrm0の積(24)が直達ゲインとなるため、モータ回転速度が低下した場合に制御対象のゲインが低下する。インバータ直流回路部の電圧Vdc0についても、同様にモータ急減速制御時の値に応じて適宜変更することで、インバータ3の直流回路部の過電圧やインバータの過電流を防止しつつ、速やかなモータ急減速制御が達成できる。
 また、誘導電動機の回路モデル18は(17)式に示すように、電気角周波数ωをパラメータとして持つ。この電気角周波数ωは、すべり周波数ωseとモータ回転速度をモータ極対数倍した値の加算値に相当する。従って電気角周波数ωはモータ回転速度に応じて値が変化し、さらにモータ回転速度に合わせて(17)式で示す誘導電動機の回路モデル18は、その周波数伝達特性が変化する。このため、モータ回転速度または周波数指令に合わせて制御系の設定を適宜変更することで、インバータ3の直流回路部の過電圧やインバータの過電流を防止しつつ、速やかなモータ急減速制御が達成できる。
 実施の形態3.
 実施の形態1では特にモータを誘導電動機としたが、他の種類のモータでも本発明によるモータ減速制御手段14は適用できる。ここ永久磁石同期電動機における、図4の誘導電動機の回路モデル18に相当するモデルを考えると、永久磁石同期モータの場合、2次磁束は永久磁石により確立して時間変化しない。また永久磁石同期モータの1次側(固定子側)回路モデル構造は誘導電動機と同じであるため、(17)式をベースに(18)式で表現される。
Figure JPOXMLDOC01-appb-M000018

ここで、R:モータの電機子抵抗、L:モータの電機子インダクタンス、である。
 このため、誘導電動機で確立したモータ減速制御手段14における各制御系の設計手順とほぼ同一の議論で適用ができる。以上、本発明により減速制御時に電圧指令を増幅してモータの損失を増やして急減速する場合に、モータの機種を問わずに適用可能なメリットがある。
 実施の形態4.
 実施の形態1ではモータ減速制御手段14に示したモータの急減速制御のため、モータ損失を増加させる動作を行ったが、次のような使用方法もできる。すなわちモータ損失を急増させるという特徴を生かしてモータの暖機運転を実施することができる。誘導電動機では、すべり周波数計算や2次磁束推定などに、誘導電動機の1次抵抗値や2次抵抗値など、モータ温度によって変化するパラメータ値を用いる。また永久磁石同期モータなどでも、1次抵抗値はセンサレス制御系の構築などに要するパラメータとなる。
 その理由は以下の通りである。一般にこれらの値は、所定室温のモータ定常動作時を想定し、その条件での値が用いられる。例えば冬季のモータ始動時などはモータ筐体が冷えており、前記の抵抗値はコントローラ内部に持つ想定した値よりも小さくなり、誤差が生じる。これにより、誘導電動機のトルク誤差や2次磁束推定誤差、永久磁石同期モータではセンサレス制御系の推定速度に誤差が生じるなどの不具合が発生する場合がある。特に2次磁束推定を行う場合、コントローラで把握している1次抵抗値や2次抵抗値よりもモータでの値が小さくなると制御系全体の安定性が損なわれる場合がある。このため本運転の前に予めモータ減速制御手段14にてモータ損失を増加させて暖機運転を行うことで、前記の不具合状態を解消することができる。
なお、本発明は、その発明の範囲内において、各実施の形態を自由に組合わせたり、各実施の形態を適宜、変形、省略することが可能である。
1 直流電源、2 平滑コンデンサ、3 インバータ、4 電流検出手段、
5 モータ、6 モータ制御手段、7 周波数指令発生手段、
8 周波数指令、9 V/f変換手段、10 電圧指令振幅(補償前)、
11 インバータ直流回路部の電圧信号、12 PWM手段、
13 スイッチング指令、14 モータ減速制御手段、
14a 電圧指令振幅増幅率設定関数、
14b フィルター処理前電圧指令振幅増幅率(減速制御時)A1、
14c フィルター処理前電圧指令振幅増幅率(非減速制御時)A2、
14d 選択手段、14e ローパスフィルタ、
14f 第一の電圧指令振幅増幅率、14g 電流振幅演算手段、
14h 電流振幅信号、14i 電流振幅制限値、14j PI制御器、
14k 第二の電圧指令振幅増幅率、14l 加算器、
14m 第三の電圧指令増幅率、14n 乗算器、
14o 励磁制御手段 、14p モータ電流制御手段、
14q 直流回路部電圧信号(微小変動量)指令、
15 検出電流信号、16 減速処理実施指令、
17 電圧指令振幅(補償後)、18 誘導電動機の回路モデル、
19 機械モデル、20 モータ回転速度(微小変動量)、
21 モータ電力(微小変動量)、
22 平滑コンデンサ電流(微小変動量)、23 ゲイン、24 ゲイン、
25 直流回路部の電圧モデル、26 減速処理実施指令出力手段。

Claims (7)

  1. インバータを用いてモータを減速制御する減速処理実施指令と前記インバータに指令する電圧指令振幅とを入力して前記モータを減速制御するモータ減速制御手段を有し、
    前記モータ減速制御手段は、
    前記減速処理実施指令と、前記インバータの直流回路部の電圧信号と、を入力して、モータ急減速のための制御に用いる第一の電圧指令振幅増幅率を計算する励磁制御手段、
    前記インバータに印加可能な電流の制限値であるインバータ電流振幅制限値と、モータ電流信号と、を入力して、モータの過電流抑制のための制御に用いる第二の電圧指令振幅増幅率を計算する電流制御手段、
    前記第一の電圧指令振幅増幅率と、前記第二の電圧指令振幅増幅率と、を加算して、モータ急減速制御に用いる第三の電圧指令振幅増幅率を出力する加算手段、
    前記電圧指令振幅と、前記第三の電圧指令振幅増幅率と、を乗算し出力する乗算手段、
    を備え、前記乗算手段により乗算した後の電圧指令振幅に従って前記インバータを制御することを特徴とするモータ制御装置。
  2. 前記励磁制御手段は、
    前記減速処理実施指令により減速制御を実施する場合には、前記インバータの直流回路部の電圧信号の関数の出力となる減速用のフィルター処理前電圧指令増幅率を選択し、
    減速制御を実施しない場合には、非減速制御時用のフィルター処理前電圧指令増幅率を選択するとともに、
    選択後のフィルター処理前電圧指令振幅増幅率にローパスフィルタ処理を行って、前記第一の電圧指令振幅増幅率として出力することを特徴とする請求項1に記載のモータ制御装置。
  3. 前記電流制御手段は、
    モータ電流信号の振幅を計算する電流振幅計算手段、
    前記電流振幅計算手段で計算された電流振幅信号と、前記インバータ電流振幅制限値との差分を入力するPI制御手段、を備え、
    前記PI制御手段の出力を前記第二の電圧指令振幅増幅率として出力することを特徴とする請求項1に記載のモータ制御装置。
  4. 前記励磁制御手段、及び前記電流制御手段の制御系の設定は、
    モータ減速制御開始時のモータ回転速度または周波数指令に基づいて実施されることを特徴とする請求項2または3に記載のモータ制御装置。
  5. 前記励磁制御手段、及び前記電流制御手段の制御系の設定は、
    モータの最高回転速度仕様値に基づいて実施されることを特徴とする請求項2または3に記載のモータ制御装置。
  6. 前記励磁制御手段、及び前記電流制御手段の制御系の設定は、
    モータ回転速度または周波数指令に基づいて前記モータの減速制御中に逐次実施されることを特徴とする請求項2または3に記載のモータ制御装置。
  7. モータ減速手段を用いてモータ損失を増加させ前記モータの暖機運転を実施することを特徴とする請求項1~6のいずれか1項に記載のモータ制御装置。
PCT/JP2013/079354 2013-03-12 2013-10-30 モータ制御装置 WO2014141527A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380074580.2A CN105075105B (zh) 2013-03-12 2013-10-30 电动机控制装置
JP2015505226A JP5932136B2 (ja) 2013-03-12 2013-10-30 モータ制御装置
US14/760,338 US9614467B2 (en) 2013-03-12 2013-10-30 Motor control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013048626 2013-03-12
JP2013-048626 2013-03-12

Publications (1)

Publication Number Publication Date
WO2014141527A1 true WO2014141527A1 (ja) 2014-09-18

Family

ID=51536214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079354 WO2014141527A1 (ja) 2013-03-12 2013-10-30 モータ制御装置

Country Status (4)

Country Link
US (1) US9614467B2 (ja)
JP (1) JP5932136B2 (ja)
CN (1) CN105075105B (ja)
WO (1) WO2014141527A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020250429A1 (ja) * 2019-06-14 2020-12-17 東芝三菱電機産業システム株式会社 電力変換装置及び電動機制動方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI626459B (zh) 2016-08-17 2018-06-11 財團法人工業技術研究院 使用狀態觀察器之濾波電容電流無感測器偵測方法與裝置
FR3091072B1 (fr) * 2018-12-21 2020-11-27 Schneider Toshiba Inverter Europe Sas Adaptation de la décélération d’un moteur en fonction d’une tension redressée moyenne

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05130707A (ja) * 1991-10-31 1993-05-25 Hitachi Ltd 電気車用制御装置
JPH077981A (ja) * 1993-06-18 1995-01-10 Fuji Electric Co Ltd インバータ装置による電動機制動方法
JPH07264709A (ja) * 1994-03-24 1995-10-13 Mitsubishi Electric Corp 電気自動車の電動機制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58116095A (ja) * 1981-12-28 1983-07-11 Fuji Electric Co Ltd インバ−タ装置
JPS58165695A (ja) 1982-03-24 1983-09-30 Toshiba Corp インバ−タ装置
JPH1066385A (ja) * 1996-08-22 1998-03-06 Hitachi Ltd インバータの制御装置
JP2001103774A (ja) * 1999-09-30 2001-04-13 Meidensha Corp 誘導電動機の可変速装置
JP4446284B2 (ja) * 2004-02-19 2010-04-07 株式会社安川電機 誘導電動機の制御装置
WO2005091488A1 (ja) * 2004-03-19 2005-09-29 Mitsubishi Denki Kabushiki Kaisha 電動機制御装置
JP4461877B2 (ja) * 2004-03-31 2010-05-12 株式会社安川電機 インバータ装置
WO2006004037A1 (ja) * 2004-07-06 2006-01-12 Kabushiki Kaisha Yaskawa Denki インバータ装置および交流電動機の減速方法
US7135833B2 (en) * 2004-11-30 2006-11-14 Rockwell Automation Technologies, Inc. Motor control for flux-reduced braking
US8076896B2 (en) * 2006-06-28 2011-12-13 Kabushiki Kaisha Yaskawa Denki Inverter controller and method for operating the same
JP2008154335A (ja) * 2006-12-15 2008-07-03 Yaskawa Electric Corp インバータ装置と過電圧抑制方法
TW201037961A (en) * 2009-01-14 2010-10-16 Panasonic Corp Motor driving device and electric equipment using same
US8736206B2 (en) * 2009-04-27 2014-05-27 Mitsubishi Electric Corporation Power converting apparatus
US8786219B2 (en) * 2010-01-27 2014-07-22 Mitsubishi Electric Corporation Motor control device
JP5616164B2 (ja) 2010-08-23 2014-10-29 東芝シュネデール・インバータ株式会社 インバータ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05130707A (ja) * 1991-10-31 1993-05-25 Hitachi Ltd 電気車用制御装置
JPH077981A (ja) * 1993-06-18 1995-01-10 Fuji Electric Co Ltd インバータ装置による電動機制動方法
JPH07264709A (ja) * 1994-03-24 1995-10-13 Mitsubishi Electric Corp 電気自動車の電動機制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020250429A1 (ja) * 2019-06-14 2020-12-17 東芝三菱電機産業システム株式会社 電力変換装置及び電動機制動方法
JPWO2020250429A1 (ja) * 2019-06-14 2021-09-13 東芝三菱電機産業システム株式会社 電力変換装置及び電動機制動方法
JP7004838B2 (ja) 2019-06-14 2022-01-21 東芝三菱電機産業システム株式会社 電力変換装置及び電動機制動方法

Also Published As

Publication number Publication date
US9614467B2 (en) 2017-04-04
JPWO2014141527A1 (ja) 2017-02-16
JP5932136B2 (ja) 2016-06-08
US20150357945A1 (en) 2015-12-10
CN105075105A (zh) 2015-11-18
CN105075105B (zh) 2018-01-05

Similar Documents

Publication Publication Date Title
JP5948613B2 (ja) モータの制御装置
KR101738670B1 (ko) 모터 제어 장치
JP2008167566A (ja) 永久磁石モータの高応答制御装置
JPWO2016129338A1 (ja) モータ駆動制御装置
JP4797074B2 (ja) 永久磁石モータのベクトル制御装置、永久磁石モータのベクトル制御システム、及びスクリュー圧縮器
WO2014174865A1 (ja) 電力変換装置および電力変換装置の制御方法
JP5932136B2 (ja) モータ制御装置
JP2005151678A (ja) 永久磁石同期電動機のV/f制御装置
WO2012144000A1 (ja) 交流電動機の制御装置
WO2020261751A1 (ja) 電力変換装置
JP7329735B2 (ja) モータ制御装置
JP4300831B2 (ja) インバータ駆動誘導電動機の制動方法及びインバータ装置
JP5131725B2 (ja) 電力変換器の制御装置
CA2714698C (en) Method and system for braking an ac motor
JP6358834B2 (ja) ベクトル制御装置、それを組み込んだインバータ及びそれを組み込んだインバータとモータとのセット装置
JP6095561B2 (ja) モータ駆動制御装置
JP7536418B2 (ja) 電力変換装置およびその制御方法
JP2007282300A (ja) モーター制御装置
JP2008167630A (ja) 電力変換器の制御装置
WO2021193278A1 (ja) 電力変換システム
JP5713850B2 (ja) モータ制御装置
JP2015029396A (ja) 電力変換装置および制御方法
JP5325556B2 (ja) モータ制御装置
JP4051601B2 (ja) 電動機の可変速制御装置
JP6381889B2 (ja) 電力変換装置および誘導電動機の制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380074580.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877842

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505226

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14760338

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877842

Country of ref document: EP

Kind code of ref document: A1