WO2020261751A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2020261751A1
WO2020261751A1 PCT/JP2020/018053 JP2020018053W WO2020261751A1 WO 2020261751 A1 WO2020261751 A1 WO 2020261751A1 JP 2020018053 W JP2020018053 W JP 2020018053W WO 2020261751 A1 WO2020261751 A1 WO 2020261751A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
conversion device
power conversion
control
current
Prior art date
Application number
PCT/JP2020/018053
Other languages
English (en)
French (fr)
Inventor
戸張 和明
アグネス ハディナタ
敦彦 中村
渡邊 弘
雄作 小沼
卓也 杉本
義行 田口
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to US17/422,509 priority Critical patent/US11575338B2/en
Priority to CN202080009330.0A priority patent/CN113302832B/zh
Priority to EP20833682.6A priority patent/EP3993251A4/en
Publication of WO2020261751A1 publication Critical patent/WO2020261751A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/047V/F converter, wherein the voltage is controlled proportionally with the frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/26Rotor flux based control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/01Asynchronous machines

Definitions

  • the present invention relates to a power conversion device.
  • Patent Document 1 is available as a high-efficiency control method for an induction motor. According to Patent Document 1, in the hydraulic unit, the exciting current related to vector control is forcibly changed according to the discharge pressure of the hydraulic pump or the torque of the induction motor to minimize the current of the supply power with respect to the discharge pressure or torque. Is described.
  • the vector control unit determines the minimum value of the supply current of the induction motor that satisfies the required torque corresponding to the torque command value, and provides a table regarding the pressure and the current so that the supply current to the induction motor is minimized. There is a description to set the excitation current command value in.
  • the minimum value of the supply current of the induction motor is determined based on the torque command value and the exciting current command value from the exciting current calculation unit.
  • it is required to detect the current flowing through the motor and perform highly efficient control so as to reduce the current based on the detected current.
  • Patent Document 1 it is necessary to prepare a pressure / current table for each hydraulic unit, and there is a problem that it cannot be applied to a general-purpose inverter that does not have a pressure / current table or the like.
  • An object of the present invention is to provide a power conversion device having highly efficient control characteristics.
  • a preferred example of the present invention includes a power converter having a switching element and a control unit that controls the power converter, and the control unit has a torque current detection value and an excitation current detection value from a current flowing through an external device.
  • the control unit has a torque current detection value and an excitation current detection value from a current flowing through an external device.
  • the power conversion device controls so that the excitation current detection value follows the torque current detection value.
  • FIG. 6 is a system configuration diagram including a power conversion device and an induction motor according to the first embodiment.
  • FIG. 6 is a system configuration diagram including a power conversion device and an induction motor in the second embodiment.
  • FIG. FIG. 5 is a system configuration diagram including a power conversion device and an induction motor in the third embodiment.
  • FIG. FIG. 6 is a configuration diagram of an induction motor drive system including a power conversion device and an induction motor according to the fourth embodiment.
  • FIG. 1 is a system configuration diagram including the power conversion device and the induction motor 1 which is an external device in the first embodiment.
  • the induction motor 1 generates torque by the magnetic flux generated by the exciting current of the magnetic flux axis (d-axis) component and the torque current of the torque axis (q-axis) component orthogonal to the magnetic flux axis.
  • the power converter 2 includes a semiconductor element as a switching element.
  • Power converter 2 the voltage command value of three-phase AC v u *, v v *, v enter a w *, the voltage command value of three-phase AC v u *, v v *, v voltage proportional to w * Create a value and output it.
  • the output voltage value and output frequency value of the induction motor 1 can be made variable based on the output of the power converter 2.
  • An IGBT may be used as the switching element.
  • the DC power supply 3 supplies a DC voltage to the power converter 2.
  • the current detector 4 outputs i uc , i vc , i w c , which are the detected values of the three-phase alternating currents i u , i v , and i w of the induction motor 1.
  • the current detector 4 is provided inside the power conversion device, but it may be provided outside the power conversion device.
  • the control unit includes a coordinate conversion unit 5, a V / f control calculation unit 6, a voltage command correction calculation unit 7, a phase calculation unit 8, an addition unit 9, and a coordinate conversion unit 10 described below. Then, the control unit controls the power converter 2.
  • the control unit is composed of semiconductor integrated circuits (arithmetic control means) such as a microcomputer (microcomputer) and a DSP (Digital Signal Processor).
  • semiconductor integrated circuits such as a microcomputer (microcomputer) and a DSP (Digital Signal Processor).
  • the coordinate conversion unit 5 has three-phase AC currents i u , i v , i w AC current detection values i uc , i vc , i w c and phase calculation values ⁇ dc to d-axis current detection values i dc and q-axis. Calculates and outputs the current detection value i qc of.
  • the V / f control calculation unit 6 outputs a voltage command value v dc * on the d-axis, which is a zero value, and a voltage command value v qc * on the q-axis, which is proportional to the frequency command value ⁇ r * .
  • the voltage command correction calculation unit 7 outputs the q-axis voltage correction value ⁇ v qc * calculated based on the q-axis current detection value i qc and the d-axis current detection value i dc .
  • the phase calculation unit 8 integrates the frequency command value ⁇ r * and outputs the phase calculation value ⁇ dc .
  • the adder 9 adds the q-axis voltage command value v qc * and the q-axis voltage correction value ⁇ v qc * , and outputs the second q-axis voltage command value v qc ** .
  • the coordinate conversion unit 10 uses the d-axis voltage command value v dc * , the q-axis voltage command value v qc **, and the phase calculation value ⁇ dc to the three-phase AC voltage command values v u * , v v * , v. Output w * .
  • ⁇ r_max is the base angular frequency
  • the phase calculation unit 8 calculates the phase ⁇ dc of the magnetic flux axis of the induction motor 1 according to (Equation 2).
  • FIG. 2 is a diagram showing a functional block of the voltage command correction calculation unit 7 in the first embodiment.
  • the absolute value calculating section 71 an absolute value of i qc current detection value i qc of the q-axis is input
  • the subtraction unit 72 the absolute value of i qc
  • the current deviation ⁇ i is the proportional calculation unit 73 having a constant of proportional gain K p and the integration calculation unit having a constant of K i. It is input to 74.
  • the output signals of the proportional calculation unit 73 and the integration calculation unit 74 are input to the addition unit 75.
  • the correction value ⁇ v qc * of the voltage command value v qc * on the q axis is calculated from the calculation shown in ( Equation 3).
  • the q-axis voltage command value v qc * is controlled so that the d-axis current detection value i dc follows the absolute value of the q-axis current detection value i qc .
  • K p1 is the proportional gain
  • K i 1 is the integral gain.
  • FIG. 3 is a diagram showing a current vector of the induction motor 1.
  • the direction of the magnetic flux generated by the exciting current i d is called the d-axis
  • the direction ⁇ / 2 ahead of it is called the q-axis, which is the torque axis
  • the phase angle between the motor current i 1 and the exciting current i d is ⁇ i.
  • the exciting current i d and the torque current i q are given by Eq. (4).
  • the motor current i 1 may be a peak value of any of the AC current detection values i uc , i vc , and i w c .
  • Pm is pole pairs (1/2 value of the number of motor poles)
  • M is the mutual inductance
  • L 2 is a secondary inductance
  • phi 2q in secondary flux in the q-axis is there.
  • the absolute value of the torque current i q is calculated, and the voltage command value v q c * on the q axis is modified so that the exciting current i d follows. ..
  • FIG. 4 is a diagram showing current control characteristics of Example 1 and Comparative Example.
  • FIG. 4A is a diagram showing a current control characteristic in a state where the voltage command correction calculation unit 7 is not operated by V / f control.
  • FIG. 4B is a diagram showing current control characteristics in a state where the voltage command correction calculation unit 7 is operating.
  • control unit controls to correct the q-axis voltage command value v qc * so that the d-axis current detection value i dc follows the absolute value of the q-axis current detection value i qc. Therefore, the current value is smaller than that of the current characteristic of V / f control, and a highly efficient current characteristic can be realized.
  • FIG. 5 is a diagram showing a modified example of the first embodiment, and is a function of the voltage command correction calculation unit 7a that changes the gains (K p , K i ) of the proportional calculation and the integral calculation according to the frequency command value ⁇ r *. It is a figure which shows a block.
  • the voltage command correction calculation unit 7a in FIG. 5 is a modification of the voltage command correction calculation unit 7 in FIG. Further, 7a1 and 7a2 in FIG. 5 are the same as the absolute value calculation unit 71 and the subtraction unit 72 in FIG.
  • ⁇ i which is the deviation between the absolute value
  • the output value of the proportional calculation unit 7a3 and the output value of the integration calculation unit 7a4 are added by the addition unit 7a5, and are output as a correction value ⁇ v qc ** of the voltage command value v qc * on the q axis.
  • FIG. 6 is a diagram illustrating a verification method when this embodiment is adopted.
  • the current detector 21 is attached to the power conversion device 20 that drives the induction motor 1, and the encoder 22 is attached to the shaft of the induction motor 1.
  • the vector current component calculation unit 23 is input with the three-phase alternating current current detection values (i uc , i vc , i wc ) that are the outputs of the current detector 21 and the position ⁇ that is the output of the encoder.
  • the d-axis current detection value i dc and the q-axis current detection value i q c are output.
  • the observation section 24 of each unit waveform, and FIG. 4 (b) is large current detection value i qc of the q-axis than the current detection value i dc of the d-axis as shown in the figure, the current detection value i dc of d-axis q-axis If the current detection value i qc of is followed, it becomes clear that this embodiment is adopted.
  • FIG. 7 is a diagram showing a configuration of a system including a power conversion device and an induction motor 1 in the second embodiment.
  • the absolute value of the torque current i q is calculated and the exciting current i d is followed, but in this embodiment, the absolute value of the active power
  • the induction motor 1, the power converter 2, the current detector 4, the coordinate conversion unit 5, the V / f control calculation unit 6, the phase calculation unit 8, the addition unit 9, and the coordinate conversion unit 10 are the same as those in FIG. Is.
  • the voltage command correction calculation unit 7b included in the control unit has a voltage command value v qc * on the q-axis based on the absolute value
  • the correction value ⁇ v qc *** is output.
  • FIG. 8 shows the configuration of the voltage command correction calculation unit 7b.
  • Reference numeral 7b3 indicates a proportional calculation unit.
  • Reference numeral 7b4 indicates an integral calculation unit.
  • Reference numeral 7b5 indicates an addition unit 75.
  • the q-axis voltage command value v qc ** and the q-axis current detection value i qc are input to the multiplication unit 7b6, and the active power calculation value P c , which is the multiplication value thereof, is output.
  • the absolute value calculation unit 7b7, the absolute value of the active power calculated value P c which is the output of the multiplication unit 7b6 is input P c
  • the q-axis voltage command value v qc ** and the d-axis current detection value i dc are input to the multiplication unit 7b8, and the reactive power calculation value Q c , which is the multiplication value thereof, is output.
  • the subtraction unit 7b2 the absolute value of P c
  • K p2 is the proportional gain and K i 2 is the integral gain.
  • FIG. 9 is a system configuration diagram including the power conversion device and the induction motor in the third embodiment.
  • the induction motor 1 is V / f controlled, but in the third embodiment, the speed control, the current control, and the vector control are calculated.
  • the induction motor 1, the power converter 2, the DC power supply 3, the current detector 4, the coordinate conversion unit 5, the phase calculation unit 8, and the coordinate conversion unit 10 are the same as those in FIG.
  • the control unit includes a coordinate conversion unit 5, a phase calculation unit 8, a coordinate conversion unit 10, a feedback control calculation unit 11, an exciting current command calculation unit 12, and a frequency estimation calculation unit 13. Then, the control unit controls the power converter 2.
  • the feedback control calculation unit 11 inputs the second excitation current command i d ** , the d-axis current detection value i dc , the q-axis current detection value i qc , the estimated frequency ⁇ r ⁇ , and the output frequency ⁇ 1 * . To do. Inside the feedback control calculation unit 11, feedback control of speed control, current control, and vector control is calculated. The estimated frequency ⁇ r ⁇ is used as the velocity estimate.
  • the second d-axis current command value i d ** which is the second exciting current command, becomes a variable value, and a variable d-axis secondary magnetic flux ⁇ 2 d is generated inside the induction motor 1.
  • the q-axis current command value i q * which is a torque current command, is calculated according to (Equation 16) by proportional control and integral control so that the estimated frequency ⁇ r ⁇ follows the frequency command value ⁇ r *. ..
  • K sp is the proportional gain of speed control
  • K si is the integrated gain of speed control
  • Vector control is performed by the second excitation current command, the d-axis current command value i d ** , the q-axis current command value i q *, and the electric circuit constants of the induction motor 1 (R 1 , L ⁇ , M, Using L 2 ), the secondary magnetic flux command value ⁇ 2d * on the d-axis, and the output frequency ⁇ 1 * , calculate the voltage command values v dc * and v qc * according to ( Equation 17).
  • T acr is the time constant corresponding to the current control delay
  • R 1 is the primary resistance value
  • L ⁇ is the leakage inductance value
  • M is the mutual inductance value
  • L 2 is the secondary side inductance value.
  • the current command value i d ** on the second d-axis and the current command value i q * on the q-axis are combined with the current detection value i dc on the d-axis and the current detection value i qc on the q-axis.
  • the voltage correction value ⁇ v dc on the d-axis and the voltage correction value ⁇ v qc on the q-axis are calculated according to ( Equation 18) by proportional control and integral control so that the current follows.
  • K pd is a proportional gain of the current control of the d-axis
  • K id is an integral gain of the current control in the d-axis
  • K pq is a proportional gain of the current control of the q-axis
  • K iq is an integral gain of the current control of the q-axis Is.
  • FIG. 10 shows a functional block diagram of the exciting current command calculation unit 12.
  • a current command value of q-axis i q * is inputted i q * of the absolute value
  • the addition unit 122 adds the current command value i d * of the first d-axis and the correction current command ⁇ i d *, and outputs the current command value i d ** of the second d-axis.
  • and the second current command value i d ** of the d-axis is input and outputs a current command deviation .DELTA.i *.
  • the current command deviation ⁇ i * is input to the proportional calculation unit 124 having a constant of proportional gain K p3 and the integral calculation unit 125 having a constant of K i3 , and their output signals are input to the addition unit 126.
  • the addition unit 122 outputs the current command value id ** of the second d-axis from the calculation shown in (Equation 20).
  • the frequency estimation calculation unit 13 calculates the speed estimation value (estimated frequency) ⁇ r ⁇ and the output frequency ⁇ 1 * of the induction motor 1 by (Equation 21).
  • R * the sum of the primary resistance value and the secondary resistance converted to the primary side
  • T obs the observer time constant
  • T 2 the secondary time constant value
  • the current command value i d ** on the second d-axis is the current command value i q * on the q-axis. Control to follow the absolute value.
  • the estimated speed value (estimated frequency) ⁇ r ⁇ is calculated, but an encoder may be attached to the induction motor 1 to detect the speed detection value ⁇ r ⁇ .
  • FIG. 11 is a configuration diagram of an induction motor drive system including the power conversion device and the induction motor 1 in the fourth embodiment. This embodiment is an application of this embodiment to an induction motor drive system.
  • the induction motor 1, the coordinate conversion unit 5, the V / f control calculation unit 6, the voltage command correction calculation unit 7, the phase calculation unit 8, the addition unit 9, and the coordinate conversion unit 10 of the components are the same as those in FIG. It is a thing.
  • the induction motor 1, which is a component of FIG. 1, is driven by the power conversion device 20.
  • the power conversion device 20 includes a coordinate conversion unit 5 in FIG. 1, a V / f control calculation unit 6, a voltage command correction calculation unit 7, a phase calculation unit 8, an addition unit 9, and a coordinate conversion unit 10 in software 20a, FIG.
  • the power converter 2, the DC power supply 3, and the current detector 4 are implemented as hardware.
  • a predetermined proportional gain 25 and a predetermined integrated gain 26 are set / changed in the voltage command correction calculation unit 7 of the software 20a by a higher-level device such as a digital operator 20b, a personal computer 28, a tablet 29, or a smartphone 30. Can be done.
  • the proportional gain 25 which is a predetermined parameter and the integral gain 26 which is a predetermined parameter may be set on the fieldbus of the programmable logic controller, the local area network connected to the computer, or the control device.
  • Example 1 Example 2 or Example 3 may be used.
  • Examples 1 and 2 up to this point have been a method of controlling V / f.
  • the voltage is corrected from the second d-axis current command value i d ** , the q-axis current command value i q * , the d-axis current detection value i dc , and the q-axis current detection value i q c.
  • the values ⁇ v dc and ⁇ v qc were created, and the calculation shown in ( Equation 19) was performed by adding the voltage correction value and the voltage command value of vector control.
  • the current command value i d ** on the second d-axis, the current command value i q * on the q-axis and the current detection values i dc , i qc are used for vector control calculation ( Equation 22).
  • the vector control operation shown in (Equation 23) may be performed using the output frequency value ⁇ 1 * and the electric circuit constant of the induction motor 1.
  • K pd1 is the proportional gain of d-axis current control
  • K id1 is the integrated gain of d-axis current control
  • K pq1 is the proportional gain of q-axis current control
  • K iq 1 is the integrated gain of q-axis current control
  • T d is the d-axis electrical time constant (L ⁇ / R)
  • T q is the q-axis electrical time constant (L ⁇ / R).
  • the current command value i d ** on the second d-axis, the current command value i q * on the q- axis, the current detection value i dc on the d-axis, and the current detection value i qc on the q-axis are used for vector control calculation.
  • the correction value ⁇ v q_i * is created by (Equation 24). Then, the vector control operation shown in (Equation 25) using the output frequency value ⁇ 1 * and the electric circuit constant of the induction motor 1 may be performed.
  • K pd2 is the proportional gain of d-axis current control
  • K id2 is the integral gain of d-axis current control
  • K pq2 is the proportional gain of q-axis current control
  • K iq2 is the integral gain of q-axis current control. Is.
  • i qctd is a signal that has passed i qc through a first-order lag filter.
  • the frequency estimation calculation unit 13 has calculated the estimated frequency ⁇ r ⁇ (velocity estimated value) and the output frequency ⁇ 1 * according to (Equation 21), but the q-axis current. A method in which current control and speed estimation are used together for control may also be used.
  • the velocity estimate ⁇ r ⁇ is calculated as shown in (Equation 28).
  • K pq 3 is the proportional gain of current control
  • K iq 3 is the integrated gain of current control.
  • the speed estimation value is calculated according to (Equation 21) or (Equation 28), but the encoder is attached to the induction motor 1 and the speed detection value is calculated from the encoder signal. The method may be used.
  • the switching element constituting the power converter 2 is a Si (silicon) semiconductor element, it is wide such as SiC (silicon carbide) or GaN (galium nitride). It may be a bandgap semiconductor element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

電力変換装置は、スイッチング素子を有する電力変換器と、電力変換器を制御する制御部とを有し、制御部は、外部装置に流れる電流からトルク電流検出値および励磁電流検出値を算出し、トルク電流検出値の絶対値が励磁電流検出値以上の場合には、トルク電流検出値に励磁電流検出値が追従するように制御する。

Description

電力変換装置
 本発明は、電力変換装置に関する。
 誘導モータの高効率制御方法としては、特許文献1がある。特許文献1には、油圧ユニットにおいて、油圧ポンプの吐出圧力または誘導モータのトルクに応じてベクトル制御に係る励磁電流を強制的に変更し、吐出圧力またはトルクに対する供給電力の電流を最小にすることが記載されている。
 そして、ベクトル制御部は、トルク指令値に対応する必要トルクを満たす誘導モータの供給電流の最小値を決定すること、および圧力と電流に関するテーブルを設け、誘導モータへの供給電流が最小となるように励磁電流指令値を設定する記載がある。
特開2013-78169
 特許文献1では、トルク指令値や、励磁電流演算部からの励磁電流指令値に基づいて、誘導モータの供給電流の最小値を決定している。しかし、モータに流れる電流を検出し、検出電流に基づいて、電流を低減するように高効率の制御をすることが求められる。
 また、特許文献1では、油圧ユニットごとに圧力/電流テーブルを準備する必要があり、圧力/電流テーブルなどは持たない汎用インバータには適用できない問題があった。
 本発明の目的は、高効率な制御特性の電力変換装置を提供することにある。
 本発明の好ましい一例は、スイッチング素子を有する電力変換器と、前記電力変換器を制御する制御部とを有し、前記制御部は、外部装置に流れる電流からトルク電流検出値および励磁電流検出値を算出し、前記トルク電流検出値の絶対値が前記励磁電流検出値以上の場合には、前記トルク電流検出値に前記励磁電流検出値が追従するように制御する電力変換装置である。
 本発明によれば、高効率な制御特性を実現することができる。
実施例1における電力変換装置と誘導モータを含むシステム構成図。 実施例1における電圧指令修正演算部の構成を示す図。 誘導モータの電流ベクトルを示す図。 電流制御特性を示す図。 実施例1の電圧指令修正演算部の変形例を示す図。 検証方法を説明する図。 実施例2における電力変換装置と誘導モータを含むシステム構成図。 実施例2における電圧指令修正演算部の構成を示す図。 実施例3における電力変換装置と誘導モータを含むシステム構成図。 実施例3における励磁電流指令演算部の構成を示す図。 実施例4における電力変換装置と誘導モータを含む誘導モータ駆動システムの構成図。
 以下、図面を用いて実施例を詳細に説明する。
 図1は、実施例1における電力変換装置と外部装置である誘導モータ1を含むシステム構成図である。誘導モータ1は、磁束軸(d軸)成分の励磁電流により発生する磁束と、磁束軸に直交するトルク軸(q軸)成分のトルク電流によりトルクを発生する。
 電力変換器2は、スイッチング素子としての半導体素子を備える。電力変換器2は、3相交流の電圧指令値vu *、vv *、vw *を入力し、3相交流の電圧指令値vu *、vv *、vw *に比例した電圧値を作成して出力する。電力変換器2の出力に基づいて、誘導モータ1の出力電圧値と出力周波数値は可変にできる。スイッチング素子としてIGBTを使うようにしてもよい。
 直流電源3は、電力変換器2に直流電圧を供給する。
 電流検出器4は、誘導モータ1の3相の交流電流iu、iv、iwの検出値であるiuc、ivc、iwcを出力する。電流検出器4は、誘導モータ1の3相の内の2相、例えば、u相とw相の線電流を検出し、v相の線電流は、交流条件(iu+iv+iw=0)から、iv=-(iu+iw)として求めてもよい。
 本実施例では、電流検出器4は、電力変換装置内に設けた例を示したが、電力変換装置の外部に設けてもよい。
 制御部は、以下に説明する座標変換部5、V/f制御演算部6、電圧指令修正演算部7、位相演算部8、加算部9、座標変換部10を備える。そして、制御部は、電力変換器2を制御する。
 制御部は、マイコン(マイクロコンピュータ)やDSP(Digital Signal Processor)などの半導体集積回路(演算制御手段)によって構成される。
 次に、電力変換器2を制御する制御部の各構成要素について、説明する。
  座標変換部5は、3相の交流電流iu、iv、iwの交流電流検出値iuc、ivc、iwcと位相演算値θdcからd軸の電流検出値idcおよびq軸の電流検出値iqcを算出して出力する。
 V/f制御演算部6は、零の値であるd軸の電圧指令値vdc *と周波数指令値ωr *に比例したq軸の電圧指令値vqc *を出力する。
 電圧指令修正演算部7は、q軸の電流検出値iqcとd軸の電流検出値idcに基づいて演算したq軸の電圧修正値Δvqc *を出力する。
 位相演算部8は、周波数指令値ωr *を積分して位相演算値θdcを出力する。
 加算部9は、q軸の電圧指令値vqc *とq軸の電圧修正値Δvqc *を加算して第2のq軸の電圧指令値vqc **を出力する。
 座標変換部10は、d軸の電圧指令値vdc *とq軸の電圧指令値vqc **と、位相演算値θdcから3相交流の電圧指令値vu *、vv *、vw *を出力する。
 最初に、本実施例の特徴である電圧指令修正演算部7を用いた場合のV/f制御方式の基本動作について説明する。
 V/f制御演算部6では、零の値であるd軸の電圧指令値vdc *と周波数指令値ωr *と直流電圧EDCを用いて(数1)に従いq軸の電圧指令値vqc *を出力する。
Figure JPOXMLDOC01-appb-M000001
 ここで、ωr_maxは基底角周波数である。
 位相演算部8では(数2)に従い誘導モータ1の磁束軸の位相θdcを演算する。
Figure JPOXMLDOC01-appb-M000002
 図2は、実施例1における電圧指令修正演算部7の機能ブロックを示す図である。
  絶対値演算部71では、q軸の電流検出値iqcが入力されiqcの絶対値|iqc|を出力する。
 減算部72では、iqcの絶対値|iqc|とd軸の電流検出値idcが入力され電流偏差Δiを出力する。トルク電流検出値の絶対値|iqc|が励磁電流検出値idc以上の場合における電流偏差Δiは、比例ゲインKpの定数を持つ比例演算部73と、Kiの定数を持つ積分演算部74に入力される。比例演算部73と積分演算部74の出力信号は加算部75に入力される。その結果(数3)に示す演算よりq軸の電圧指令値vqc *の修正値Δvqc *が演算される。このように、q軸の電流検出値iqcの絶対値にd軸の電流検出値idcが追従するようにq軸の電圧指令値vqc *を修正する制御をしている。ここでKp1は比例ゲイン、Ki1は積分ゲインである。
Figure JPOXMLDOC01-appb-M000003
 本実施例が高効率となる原理について説明する。図3は、誘導モータ1の電流ベクトルを示す図である。励磁電流idにより発生する磁束の方向をd軸、それよりπ/2進んだ方向をトルク軸であるq軸とよび、モータ電流i1と励磁電流idとの位相角をθiとすると、励磁電流id、トルク電流iqは(4)式で与えられる。ここで、モータ電流i1は交流電流検出値iuc、ivc、iwcのいずれかのピーク値としてよい。
Figure JPOXMLDOC01-appb-M000004
 (数4)において位相角θi =π/4のとき、同一トルクにおいてモータ電流i1は(数5)の関係で最小となる。
Figure JPOXMLDOC01-appb-M000005
  誘導モータ1のトルクτは(数6)で与えられる。
Figure JPOXMLDOC01-appb-M000006
 ここで、Pmは極対数(モータ極数の1/2値)、Mは相互インダクタンス、L2は二次インダクタンス、φ2dはd軸の二次磁束、φ2qはq軸の二次磁束である。
 ここでモータ制御における磁束の理想条件は(数7)であり、
Figure JPOXMLDOC01-appb-M000007
 (数7)を(数6)に代入すると(数8)が得られる。
Figure JPOXMLDOC01-appb-M000008
 さらに(数5)を(数8)に代入するとモータ電流が最小におけるトルク式である(数9)が得られる。
Figure JPOXMLDOC01-appb-M000009
 本実施例では、力行/回生運転の両方に対応するため、トルク電流iqの絶対値を演算し、励磁電流idが追従するようにq軸の電圧指令値vqc *を修正している。
 図4は、実施例1と比較例の電流制御特性を示す図である。図4(a)はV/f制御で電圧指令修正演算部7を動作させていない状態の電流制御特性を示す図である。図4(b)は電圧指令修正演算部7を動作させている状態の電流制御特性を示す図である。
 図4(a)と図4(b)ともにランプ状の負荷トルクを図中のA点から与え始め、図中のB点で定格トルクの大きさとなり、B点より右以降は定格トルクを与えたままの状態である。図4(a)の電流値を100%とすると図4(b)の電流値は88.6%であり約11.4%低減していることがわかる。本実施例の効果は明白である。
 本実施例では、制御部が、q軸の電流検出値iqcの絶対値にd軸の電流検出値idcが追従するようにq軸の電圧指令値vqc *を修正する制御をすることで、V/f制御の電流特性に比べ、電流値がより少なく高効率な電流特性を実現することができている。
 また、本実施例では、電圧指令修正演算部7において、比例演算と積分演算のゲイン(Kp、Ki)は固定値としているが、図5に示すように周波数指令値ωr *に応じて変化させてもよい。図5は、実施例1の変形例を示す図であり、周波数指令値ωr *に応じて比例演算と積分演算のゲイン(Kp、Ki)を変化させる電圧指令修正演算部7aの機能ブロックを示す図である。
 図5における電圧指令修正演算部7aは、図2における電圧指令修正演算部7の変形例である。また図5における7a1、7a2は図2の絶対値演算部71、減算部72と同一物である。
 図5に示すように、q軸の電流検出値iqcの絶対値|iqc|とd軸の電流検出値idcの偏差であるΔiは、周波数指令値ωr *の大きさに応じて変化する比例演算のゲインKp1を持つ比例演算部7a3と、周波数指令値ωr *の大きさに応じて変化する積分演算のゲインKi1を持つ積分演算部7a4に入力される。比例演算部7a3の出力値と積分演算部7a4の出力値は、加算部7a5で加算され、q軸の電圧指令値vqc *の修正値Δvqc **として出力される。
 図5において、周波数指令値ωr *の大きさに略比例して、Kp1、Ki1を変化させることで、q軸の電流検出値iqcの絶対値|iqc|にd軸の電流検出値idcが追従する作用は周波数に応じて変化する。つまり低速域から高速域において、高効率制御に係わるフィードバック・ループの安定性を向上することができ、より短時間でモータ電流値の最小化を実現することができる。
 図6は、本実施例を採用した場合の検証方法を説明する図である。誘導モータ1を駆動する電力変換装置20に電流検出器21を取り付け、誘導モータ1のシャフトにエンコーダ22を取り付ける。
 ベクトル電流成分の計算部23には、電流検出器21の出力である三相交流の電流検出値(iuc、ivc、iwc)とエンコーダの出力である位置θが入力され、ベクトル電流成分のd軸の電流検出値idc、q軸の電流検出値iqcを出力する。
 各部波形の観測部24では、図4(b)図中のようにd軸の電流検出値idcよりq軸の電流検出値iqcが大きい場合、d軸の電流検出値idcがq軸の電流検出値iqcに追従していれば、本実施例を採用していることが明白となる。
 図7は、実施例2における電力変換装置と誘導モータ1を含むシステムの構成を示す図である。実施例1では、トルク電流iqの絶対値を演算し、励磁電流idを追従させる方式としたが、本実施例は有効電力の絶対値|Pc|に無効電力の絶対値|Qc|を追従させる方式である。
 図7において、誘導モータ1、電力変換器2、電流検出器4、座標変換部5、V/f制御演算部6、位相演算部8、加算部9、座標変換部10は図1と同一物である。制御部に含まれる電圧指令修正演算部7bは、有効電力演算値の絶対値|Pc|と無効電力演算値の絶対値|Qc|に基づいて、q軸の電圧指令値vqc *の修正値Δvqc ***を出力する。
 図8は、電圧指令修正演算部7bの構成を示す。7b3は比例演算部を示す。7b4は積分演算部を示す。7b5は加算部75を示す。乗算部7b6には、q軸の電圧指令値vqc **とq軸の電流検出値iqcが入力され、それらの乗算値である有効電力演算値Pcを出力する。絶対値演算部7b7には、乗算部7b6の出力である有効電力演算値Pcが入力されPcの絶対値|Pc|を出力する。
 乗算部7b8には、q軸の電圧指令値vqc **とd軸の電流検出値idcが入力され、それらの乗算値である無効電力演算値Qcを出力する。絶対値演算部7b9には、乗算部7b8の出力である無効電力演算値Qcが入力されQcの絶対値|Qc|を出力する。
 減算部7b2では、Pcの絶対値|Pc|とQcの絶対値|Qc|が入力され電力偏差Δpを出力する。電力偏差Δpは比例ゲインKpの定数を持つ比例演算部7b3と、Kiの定数を持つ積分演算部7b4に入力され、それらの出力信号は加算部7b5に入力される。(数10)に示す演算よりq軸の電圧指令値vqc *の修正値Δvqc ***が演算される。
Figure JPOXMLDOC01-appb-M000010
 ここでKp2は比例ゲイン、Ki2は積分ゲインである。
 ここで本実施例が高効率となる原理について説明する。d軸の電圧指令値vdc *=0のとき制御軸上で演算される有効電力Pcは(数11)で与えられる。
Figure JPOXMLDOC01-appb-M000011
 有効電力Pcの絶対値は(数12)である。
Figure JPOXMLDOC01-appb-M000012
 また制御軸上で演算される無効電力Qcは(数13)で与えられる。
Figure JPOXMLDOC01-appb-M000013
 無効電力Qcの絶対値は(数14)である。
Figure JPOXMLDOC01-appb-M000014
 |Pc|と|Q|を用いてq軸の電圧指令値vqc *を修正する。(数12)=(数14)となるように制御すると次式が与えられる。
Figure JPOXMLDOC01-appb-M000015
 その結果、実施例1は直接的であったが、実施例2では間接的にidc(d軸の電流検出値)=iqc(q軸の電流検出値)とすることで高効率な運転を実現できる。
 実施例2において、図5の例と同様に、周波数指令値ωr *の大きさに略比例して、比例演算のゲインKp1、積分演算のゲインKi1を変化させることで、低速域から高速域において、高効率制御に係わるフィードバック・ループの安定性を向上することができ、より短時間でモータ電流値の最小化を実現することができる。
 図9は、実施例3における電力変換装置と誘導モータを含むシステム構成図である。実施例1および実施例2では、誘導モータ1をV/f制御する方式であったが、実施例3は、速度制御と電流制御およびベクトル制御の演算をする方式である。
 図9において誘導モータ1、電力変換器2、直流電源3、電流検出器4、座標変換部5、位相演算部8、座標変換部10は、図1と同一物である。
 制御部は、座標変換部5、位相演算部8、座標変換部10、フィードバック制御演算部11、励磁電流指令演算部12、周波数推定演算部13を備える。そして、制御部は、電力変換器2を制御する。
 フィードバック制御演算部11は、第2の励磁電流指令id **、d軸の電流検出値idc、q軸の電流検出値iqcと、推定周波数ωr ^および出力周波数ω1 *を入力する。フィードバック制御演算部11の内部では、速度制御と電流制御およびベクトル制御のフィードバック制御を演算する。推定周波数ωr ^は速度推定値として用いられる。
 第2の励磁電流指令である第2のd軸の電流指令値id **は可変値となり、誘導モータ1内部に可変するd軸の二次磁束φ2dを発生させる。
速度制御は、周波数指令値ωr *に推定周波数ωr ^が追従するように、比例制御と積分制御により(数16)に従いトルク電流指令であるq軸の電流指令値iq *を演算する。
Figure JPOXMLDOC01-appb-M000016
 ここで、Kspは速度制御の比例ゲイン、Ksiは速度制御の積分ゲインである。
 ベクトル制御は、第2の励磁電流指令であるd軸の電流指令値id **とq軸の電流指令値iq *と、誘導モータ1の電気回路定数(R1、Lσ、M、L2)、d軸の二次磁束指令値φ2d *および出力周波数ω *を用いて、(数17)に従い電圧指令値vdc *、vqc *を演算する。
Figure JPOXMLDOC01-appb-M000017
 ここで、Tacrは電流制御遅れ相当の時定数、R1は一次抵抗値、Lσは漏れインダクタンス値、Mは相互インダクタンス値、L2は二次側インダクタンス値である。
 電流制御は、第2のd軸の電流指令値id **およびq軸の電流指令値iq *に、各成分であるd軸の電流検出値idc、q軸の電流検出値iqcが追従するよう比例制御と積分制御により(数18)に従い、d軸の電圧補正値Δvdcとq軸の電圧補正値Δvqcを演算する。
Figure JPOXMLDOC01-appb-M000018
 ここで、Kpdはd軸の電流制御の比例ゲイン、Kidはd軸の電流制御の積分ゲイン、Kpqはq軸の電流制御の比例ゲイン、Kiqはq軸の電流制御の積分ゲインである。
  さらに(数19)に従い、d軸の電圧指令値vdc **とq軸の電圧指令値vqc **を演算する。
Figure JPOXMLDOC01-appb-M000019
 図10は、励磁電流指令演算部12の機能ブロック図を示す。
  絶対値演算部121では、q軸の電流指令値iq *が入力されiq *の絶対値|iq *|を出力する。加算部122では、第1のd軸の電流指令値id *と修正電流指令Δid *が加算され第2のd軸の電流指令値id **を出力する。
 減算部123では、iq *の絶対値|iq *|と第2のd軸の電流指令値id **が入力され電流指令偏差Δi*を出力する。電流指令偏差Δi*は比例ゲインKp3の定数を持つ比例演算部124と、Ki3の定数を持つ積分演算部125に入力され、それらの出力信号は加算部126に入力される。
 加算部122では(数20)に示す演算より、第2のd軸の電流指令値id **が出力される。
Figure JPOXMLDOC01-appb-M000020
 周波数推定演算部13では、(数21)により誘導モータ1の速度推定値(推定周波数)ωr ^と出力周波数ω1 *を演算する。
Figure JPOXMLDOC01-appb-M000021
 ここで、R*:一次抵抗値と二次抵抗の一次側換算の加算値、Tobs:オブザーバ時定数、T2:二次時定数値である。
 V/f制御の代わりに、速度制御と電流制御およびベクトル制御を演算するような本実施例でも、第2のd軸の電流指令値id **をq軸の電流指令値iq *の絶対値に追従するように制御する。
 そのような制御をすることで、高効率な運転を実現することができる。なお、本実施例では速度推定値(推定周波数)ωr ^を演算しているが、誘導モータ1にエンコーダを取り付けて、速度検出値ωrを検出するようにしてもよい。
 実施例3において、図5の例と同様に、周波数指令値ωr *の大きさに略比例して、比例演算のゲインKp1、積分演算のゲインKi1を変化させることで、低速域から高速域において、高効率制御に係わるフィードバック・ループの安定性を向上することができ、より短時間でモータ電流値の最小化を実現することができる。
 図11は、実施例4における電力変換装置と誘導モータ1を含む誘導モータ駆動システムの構成図である。
  本実施例は、誘導モータ駆動システムに本実施例を適用したものである。
 図11において、構成要素の誘導モータ1、座標変換部5、V/f制御演算部6、電圧指令修正演算部7、位相演算部8、加算部9、座標変換部10は、図1と同一物である。
 図1の構成要素である誘導モータ1は、電力変換装置20により駆動される。電力変換装置20には、図1の座標変換部5、V/f制御演算部6、電圧指令修正演算部7、位相演算部8、加算部9、座標変換部10はソフトウェア20a、図1の電力変換器2、直流電源3、電流検出器4はハードウェアとして実装されている。
 またデジタル・オペレータ20b、パーソナル・コンピュータ28、タブレット29、スマートフォン30などの上位装置により、ソフトウェア20aの電圧指令修正演算部7に、所定の比例ゲイン25と所定の積分ゲイン26を設定・変更することができる。
 本実施例を誘導モータ駆動システムに適用すれば、V/f制御や速度センサレスベクトル制御において高効率な運転を実現することができる。また所定のパラメータである比例ゲイン25、所定のパラメータである積分ゲイン26はプログラマブル・ロジック・コントローラ、コンピュータと接続するローカル・エリア・ネットワーク、制御装置のフィールドバス上で設定してもよい。
 さらに本実施例では実施例1を用いて開示してあるが、実施例2もしくは実施例3を用いても良い。ここまでの実施例1および実施例2はV/f制御をする方式であった。
 実施例3においては、第2のd軸の電流指令値id **、q軸の電流指令値iq *とd軸の電流検出値idc、q軸の電流検出値iqcから電圧補正値Δvdc、Δvqcを作成し、この電圧補正値とベクトル制御の電圧指令値を加算する(数19)に示す演算を行った。
 その他の手法としては、第2のd軸の電流指令値id **、q軸の電流指令値iq *と電流検出値idc、iqcからベクトル制御演算に使用する(数22)に示す中間的な電流指令値id ***、iq **を作成する。そして、出力周波数値ω1 *および誘導モータ1の電気回路定数を用いて(数23)に示すベクトル制御演算を行ってもよい。
Figure JPOXMLDOC01-appb-M000022
  ここで、Kpd1はd軸の電流制御の比例ゲイン、Kid1はd軸の電流制御の積分ゲイン、Kpq1はq軸の電流制御の比例ゲイン、Kiq1はq軸の電流制御の積分ゲイン、Tdはd軸の電気時定数(Lσ/R)、Tqはq軸の電気時定数(Lσ/R)である。
Figure JPOXMLDOC01-appb-M000023
 あるいは第2のd軸の電流指令値id **、q軸の電流指令値iq *にd軸の電流検出値idc、q軸の電流検出値iqcから、ベクトル制御演算に使用するd軸の比例演算成分の電圧修正値Δvd_p *、d軸の積分演算成分の電圧修正値Δvd_i *、q軸の比例演算成分の電圧修正値Δvq_p *、q軸の積分演算成分の電圧修正値Δvq_i *を(数24)により作成する。そして、出力周波数値ω1 *および誘導モータ1の電気回路定数を用いた(数25)に示すベクトル制御演算を行ってもよい。
Figure JPOXMLDOC01-appb-M000024
 ここで、Kpd2はd軸の電流制御の比例ゲイン、Kid2はd軸の電流制御の積分ゲイン、Kpq2はq軸の電流制御の比例ゲイン、Kiq2はq軸の電流制御の積分ゲインである。
Figure JPOXMLDOC01-appb-M000025
 また第2のd軸の電流指令値id **およびq軸の電流検出値iqcの一次遅れ信号iqctdおよび周波数指令値ωr *および誘導モータ1の電気回路定数を用いて(数26)に示す出力周波数指令値ω1 **と(数27)に示すベクトル制御演算を行ってもよい。
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
 ここで、iqctdはiqcを一次遅れフィルタに通した信号である。
  ここまでの実施例1から実施例3においては、周波数推定演算部13では(数21)に従い推定周波数ωr ^(速度推定値)、出力周波数ω1 *を演算していたが、q軸電流制御で電流制御と速度推定を併用する方式でも良い。(数28)に示すように速度推定値ωr ^^を演算する。
Figure JPOXMLDOC01-appb-M000028
 ここで、Kpq3は電流制御の比例ゲイン、Kiq3は電流制御の積分ゲインである。
  さらに、実施例3におけるフィードバック制御演算部11において、(数21)あるいは(数28)に従い速度推定値を演算していたが、誘導モータ1にエンコーダを取りつけ、エンコーダ信号から速度検出値を演算する方式でも良い。
 なお実施例1から実施例4において、電力変換器2を構成するスイッチング素子としては、Si(シリコン)半導体素子であっても、SiC(シリコンカーバイト)やGaN(ガリュームナイトライド)などのワイドバンドギャップ半導体素子であってもよい。
1…誘導モータ、2…電力変換器、3…直流電源、4…電流検出器、5…座標変換部、6…V/f制御演算部、7…電圧指令修正演算部、8…位相演算部、9…加算部、10…座標変換部、11…フィードバック制御演算部、12…励磁電流指令演算部、13…周波数推定演算部、20…電力変換装置

Claims (14)

  1. スイッチング素子を有する電力変換器と、
    前記電力変換器を制御する制御部とを有し、
    前記制御部は、
    外部装置に流れる電流からトルク電流検出値および励磁電流検出値を算出し、
    前記トルク電流検出値の絶対値が前記励磁電流検出値以上の場合には、前記トルク電流検出値に前記励磁電流検出値が追従するように制御することを特徴とする電力変換装置。
  2. 請求項1に記載の電力変換装置において、
    前記制御部は、
    前記前記トルク電流検出値に前記励磁電流検出値が追従するように、トルク軸の電圧指令値を制御することを特徴とする電力変換装置。
  3. スイッチング素子を有する電力変換器と、
    前記電力変換器を制御する制御部とを有し、
    前記制御部は、
    外部装置に流れる電流からトルク電流検出値および励磁電流検出値を算出し、有効電力と無効電力の絶対値を算出し、
    前記有効電力の絶対値が前記無効電力の絶対値以上の場合、前記有効電力の絶対値に前記無効電力の絶対値が追従するように制御することを特徴とする電力変換装置。
  4. 請求項3に記載の電力変換装置において、
    前記制御部は、
    前記有効電力の絶対値に前記無効電力の絶対値が追従するようにトルク軸の電圧指令値を制御することを特徴とする電力変換装置。
  5. 請求項1に記載の電力変換装置において、
    前記制御部は、
    磁束軸の電圧指令値は零であり、
    周波数指令値に比例したトルク軸の電圧指令値を出力するV/f制御演算部を有することを特徴とする電力変換装置。
  6. 請求項2に記載の電力変換装置において、
    前記制御部は、
    前記トルク電流検出値の絶対値と前記励磁電流検出値の偏差を零とするように比例制御と積分制御により、前記トルク軸の電圧指令値を演算することを特徴とする電力変換装置。
  7. 請求項4に記載の電力変換装置において、
    前記制御部は、
    前記有効電力の絶対値と前記無効電力の絶対値の偏差を零とするように比例制御と積分制御により、前記トルク軸の電圧指令値を演算することを特徴とする電力変換装置。
  8. 請求項6に記載の電力変換装置において、
    前記外部装置は、誘導モータであり、
    前記誘導モータの周波数指令値に基づいて、前記比例制御と前記積分制御の制御ゲインを修正することを特徴とする電力変換装置。
  9. 請求項7に記載の電力変換装置において、
    前記外部装置は、誘導モータであり、
    前記誘導モータの周波数指令値に基づいて、前記比例制御と前記積分制御の制御ゲインを修正することを特徴とする電力変換装置。
  10. スイッチング素子を有する電力変換器と、
    前記電力変換器を制御する制御部とを有し、
    前記制御部は、
    外部装置に流れる電流からトルク電流検出値および励磁電流検出値を算出し、
    前記外部装置の速度検出値もしくは速度推定値と、前記トルク電流検出値および前記励磁電流検出値に基づいて、
    磁束軸の電圧指令値およびトルク軸の電圧指令値を演算し、
    トルク電流指令値の絶対値が第1の励磁電流指令値以上の場合、前記トルク電流指令値の絶対値に第2の励磁電流指令値が追従するように、前記第1の励磁電流指令値を修正することを特徴とする電力変換装置。
  11. 請求項10に記載の電力変換装置において、
    前記制御部は、
    前記トルク電流指令値の絶対値と第2の励磁電流指令値の偏差を零とするように、比例制御と積分制御により、修正電流指令を演算することを特徴とする電力変換装置。
  12. 請求項11に記載の電力変換装置において、
    前記外部装置は、誘導モータであり、
    前記誘導モータの周波数指令値に基づいて、前記比例制御と前記積分制御の制御ゲインを修正することを特徴とする電力変換装置。
  13. 請求項1に記載の電力変換装置において、
    前記制御部のパラメータを記録する記録部を有し、
    デジタル・オペレータやパーソナル・コンピュータあるいはタブレット、スマートフォン機器と接続し、
    前記パラメータを設定もしくは変更することを特徴とする電力変換装置。
  14. 請求項1に記載の電力変換装置において、
    前記外部装置の電流を検出する電流検出器を有することを特徴とする電力変換装置。
PCT/JP2020/018053 2019-06-25 2020-04-28 電力変換装置 WO2020261751A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/422,509 US11575338B2 (en) 2019-06-25 2020-04-28 Power conversion device
CN202080009330.0A CN113302832B (zh) 2019-06-25 2020-04-28 电力转换装置
EP20833682.6A EP3993251A4 (en) 2019-06-25 2020-04-28 Power conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019117692A JP7479128B2 (ja) 2019-06-25 2019-06-25 電力変換装置
JP2019-117692 2019-06-25

Publications (1)

Publication Number Publication Date
WO2020261751A1 true WO2020261751A1 (ja) 2020-12-30

Family

ID=74060225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018053 WO2020261751A1 (ja) 2019-06-25 2020-04-28 電力変換装置

Country Status (5)

Country Link
US (1) US11575338B2 (ja)
EP (1) EP3993251A4 (ja)
JP (1) JP7479128B2 (ja)
CN (1) CN113302832B (ja)
WO (1) WO2020261751A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115208262A (zh) * 2021-04-08 2022-10-18 台达电子工业股份有限公司 马达控制装置及马达控制方法
WO2023286272A1 (ja) * 2021-07-16 2023-01-19 三菱電機株式会社 モータ制御装置およびモータ制御方法、電気回路定数測定装置および電気回路定数測定方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272891A (ja) * 1986-05-19 1987-11-27 Mitsubishi Electric Corp 誘導電動機の制御方法
JPH03218291A (ja) * 1990-01-24 1991-09-25 Mitsubishi Electric Corp 誘導電動機の制御装置
JP2000308400A (ja) * 1999-04-20 2000-11-02 Meidensha Corp エレベータ用誘導電動機のベクトル制御装置
JP2007014080A (ja) * 2005-06-29 2007-01-18 Hitachi Industrial Equipment Systems Co Ltd 電力変換装置の機能設定方法およびそれを用いる電力変換装置
JP2008061477A (ja) * 2006-09-04 2008-03-13 Yaskawa Electric Corp インバータ装置とその制御方法
JP2013078169A (ja) 2011-09-29 2013-04-25 Daikin Ind Ltd 油圧ユニット
WO2013115240A1 (ja) * 2012-01-30 2013-08-08 三菱電機株式会社 モータ制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870598A (ja) * 1994-08-29 1996-03-12 Meidensha Corp 誘導電動機の速度センサレスベクトル制御装置
CN1331306C (zh) * 2003-08-28 2007-08-08 三菱电机株式会社 旋转机械的控制装置
US7339344B2 (en) * 2005-08-25 2008-03-04 International Rectifier Corporation Self tuning method and apparatus for permanent magnet sensorless control
JP2009106102A (ja) * 2007-10-24 2009-05-14 Fuji Electric Systems Co Ltd 誘導電動機の制御装置
JP4797074B2 (ja) * 2009-01-20 2011-10-19 株式会社日立産機システム 永久磁石モータのベクトル制御装置、永久磁石モータのベクトル制御システム、及びスクリュー圧縮器
CN101989831B (zh) * 2009-07-31 2012-07-11 上海三菱电梯有限公司 感应电动机控制装置及应用
JP5466478B2 (ja) * 2009-10-26 2014-04-09 株式会社日立産機システム モータ制御装置、及びモータ制御システム
WO2013132660A1 (ja) * 2012-03-09 2013-09-12 三菱電機株式会社 モータ制御装置
JP2019080419A (ja) * 2017-10-24 2019-05-23 株式会社日立産機システム 電力変換装置およびその制御方法
JP6641445B2 (ja) * 2018-10-26 2020-02-05 株式会社日立産機システム 電力変換装置の制御方法および電力変換装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272891A (ja) * 1986-05-19 1987-11-27 Mitsubishi Electric Corp 誘導電動機の制御方法
JPH03218291A (ja) * 1990-01-24 1991-09-25 Mitsubishi Electric Corp 誘導電動機の制御装置
JP2000308400A (ja) * 1999-04-20 2000-11-02 Meidensha Corp エレベータ用誘導電動機のベクトル制御装置
JP2007014080A (ja) * 2005-06-29 2007-01-18 Hitachi Industrial Equipment Systems Co Ltd 電力変換装置の機能設定方法およびそれを用いる電力変換装置
JP2008061477A (ja) * 2006-09-04 2008-03-13 Yaskawa Electric Corp インバータ装置とその制御方法
JP2013078169A (ja) 2011-09-29 2013-04-25 Daikin Ind Ltd 油圧ユニット
WO2013115240A1 (ja) * 2012-01-30 2013-08-08 三菱電機株式会社 モータ制御装置

Also Published As

Publication number Publication date
EP3993251A1 (en) 2022-05-04
CN113302832A (zh) 2021-08-24
JP2021005922A (ja) 2021-01-14
US20220094291A1 (en) 2022-03-24
CN113302832B (zh) 2023-09-12
US11575338B2 (en) 2023-02-07
EP3993251A4 (en) 2023-06-28
JP7479128B2 (ja) 2024-05-08

Similar Documents

Publication Publication Date Title
KR100666812B1 (ko) 모터 제어 장치
TWI654827B (zh) 換流器控制裝置及馬達驅動系統
CN109874396B (zh) 逆变器控制装置以及电动机驱动系统
US7106017B2 (en) Motor control device
JP5084973B1 (ja) モータ制御装置
WO2016121237A1 (ja) インバータ制御装置及びモータ駆動システム
WO2020255988A1 (ja) 回転電機制御システム
WO2020261751A1 (ja) 電力変換装置
JP6984399B2 (ja) 電力変換器制御装置
US10784803B2 (en) Position control device
JP5230682B2 (ja) 同期電動機の制御装置
JP2013187931A (ja) モータ制御装置
JP2006254618A (ja) モータ制御装置
JP2003088194A (ja) 電動機駆動システム
JP6641445B2 (ja) 電力変換装置の制御方法および電力変換装置
JP2018042315A (ja) インバータ制御装置
JP2009284598A (ja) 交流電動機の制御装置
WO2019082441A1 (ja) 電力変換装置およびその制御方法
WO2021117279A1 (ja) 電力変換装置
WO2024111148A1 (ja) 電力変換装置
JP2020058231A (ja) 電力変換装置の制御方法および電力変換装置
JP4051601B2 (ja) 電動機の可変速制御装置
JP7012931B2 (ja) インバータ制御装置および電動機駆動システム
JP2019017218A (ja) 同期電動機を駆動するインバータの制御装置および制御方法
JP7013847B2 (ja) モータの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020833682

Country of ref document: EP

Effective date: 20220125