WO2014123005A1 - 新規アリル化合物及びその製造方法 - Google Patents

新規アリル化合物及びその製造方法 Download PDF

Info

Publication number
WO2014123005A1
WO2014123005A1 PCT/JP2014/051471 JP2014051471W WO2014123005A1 WO 2014123005 A1 WO2014123005 A1 WO 2014123005A1 JP 2014051471 W JP2014051471 W JP 2014051471W WO 2014123005 A1 WO2014123005 A1 WO 2014123005A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
formula
carbon atoms
compound represented
Prior art date
Application number
PCT/JP2014/051471
Other languages
English (en)
French (fr)
Inventor
越後 雅敏
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020157021399A priority Critical patent/KR102094211B1/ko
Priority to US14/766,391 priority patent/US9464068B2/en
Priority to EP14749296.1A priority patent/EP2955169B1/en
Priority to JP2014560715A priority patent/JP6183790B2/ja
Priority to CN201480007361.7A priority patent/CN104968637B/zh
Publication of WO2014123005A1 publication Critical patent/WO2014123005A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/215Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring having unsaturation outside the six-membered aromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/232Carbonates

Definitions

  • the present invention relates to a novel allyl compound and a method for producing the same.
  • an allyl compound having a bisphenol skeleton is useful as a component of a photoresist, a resin raw material or a resin curing agent for use in materials for electrical and electronic parts and structural materials (for example, Patent Documents 1 to 6). reference).
  • JP 2004-137200 A JP 2009-51780 A JP 2012-131749 A JP 2012-068652 A JP 2012-093784 A JP 2012-118551 A
  • an object of the present invention is to provide a novel allyl compound having high heat resistance useful as a curable resin component such as a photoresist component or bismaleimide.
  • ring Z 1 is a naphthalene ring
  • ring Z 2 is a benzene ring or a naphthalene ring
  • X is a hydrogen atom or a monovalent substituent having 1 to 18 carbon atoms
  • R is Each independently represents an alkyl group having 1 to 4 carbon atoms or a halogen atom
  • m is 1 or 2
  • n is each independently an integer of 0 to 5, and when m is 1, ring Z 1 and ring Z 2 are bonded to each other through an oxygen atom.
  • a method for producing an allyl compound according to the above [1] comprising a step of reacting a compound represented by the following general formula ( ⁇ ) with an allyl group introduction reagent in the presence of a base catalyst.
  • Ring Z 1 is a naphthalene ring
  • Ring Z 2 is a benzene ring or a naphthalene ring
  • X is a hydrogen atom or a monovalent substituent having 1 to 18 carbon atoms
  • R is Each independently represents an alkyl group having 1 to 4 carbon atoms or a halogen atom
  • m is 1 or 2
  • n is each independently an integer of 0 to 5, and when m is 1, ring Z 1 and ring Z 2 are bonded to each other through an oxygen atom.
  • X is a hydrogen atom or a monovalent substituent having 1 to 18 carbon atoms
  • R 1 is independently an alkyl group having 1 to 4 carbon atoms or a halogen atom
  • n Are each independently an integer of 0 to 5, and q is 0 or 1.
  • X is a hydrogen atom or a monovalent substituent having 1 to 18 carbon atoms
  • R 1 is independently an alkyl group having 1 to 4 carbon atoms or a halogen atom
  • n Are each independently an integer of 0 to 5, and q is 0 or 1.
  • X is a hydrogen atom or a monovalent substituent having 1 to 18 carbon atoms
  • R 3 is each independently an alkyl group having 1 to 4 carbon atoms or a halogen atom.
  • X is a hydrogen atom or a monovalent substituent having 1 to 18 carbon atoms
  • R 3 is each independently an alkyl group having 1 to 4 carbon atoms or a halogen atom.
  • N are each independently an integer of 0 to 5, and q is 0 or 1.
  • the allyl compound of the present invention has a polycyclic aromatic structure, it has excellent heat resistance and is useful as a component such as a photoresist or a curable resin component such as bismaleimide.
  • the allyl compound of this embodiment is represented by the general formula ( ⁇ ).
  • ring Z 1 is a naphthalene ring
  • ring Z 2 is a benzene ring or a naphthalene ring
  • X is a hydrogen atom or a monovalent substituent having 1 to 18 carbon atoms
  • R is Each independently represents an alkyl group having 1 to 4 carbon atoms or a halogen atom
  • m is 1 or 2
  • n is each independently an integer of 0 to 5, and when m is 1, ring Z 1 and ring Z 2 are bonded to each other through an oxygen atom.
  • the allyl compound of this embodiment includes a step of reacting a compound represented by the following general formula ( ⁇ ) with an allyl group introduction reagent in the presence of a base catalyst.
  • a compound represented by the following general formula ( ⁇ ) Ring Z 1 is a naphthalene ring, Ring Z 2 is a benzene ring or a naphthalene ring, X is a hydrogen atom or a monovalent substituent having 1 to 18 carbon atoms, and R is Each independently represents an alkyl group having 1 to 4 carbon atoms or a halogen atom, m is 1 or 2, n is each independently an integer of 0 to 5, and when m is 1, ring Z 1 and ring Z 2 are bonded to each other through an oxygen atom.
  • allyl compound and the production method thereof according to the present embodiment will be described in detail by taking an allyl compound represented by a specific formula as an example.
  • the allyl compound of the present embodiment is preferably an allyl compound represented by the following general formula (1).
  • X is a hydrogen atom or a monovalent substituent having 1 to 18 carbon atoms
  • R 1 is independently an alkyl group having 1 to 4 carbon atoms or a halogen atom
  • n Are each independently an integer of 0 to 5, and q is 0 or 1.
  • X in the general formula (1) is a hydrogen atom or a monovalent substituent having 1 to 18 carbon atoms.
  • the monovalent substituent having 1 to 18 carbon atoms is not particularly limited, and examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group.
  • octadecyl group cyclopropyl group, cyclohexyl group, adamantyl group, phenyl group, tosyl group, dimethylphenyl group, ethylphenyl group, propylphenyl group, butylphenyl group, cyclohexylphenyl group, biphenyl group, terphenyl group, naphthyl group , Anthracyl group, phenanthryl group, and pyrenyl group.
  • a phenyl group having an aromatic ring skeleton tosyl group, dimethylphenyl group, ethylphenyl group, propylphenyl group, butylphenyl group, cyclohexylphenyl group, biphenyl group, terphenyl group, naphthyl group ,
  • Anthracyl group, phenanthryl group, pyrenyl group are preferable, among which phenyl group, tosyl group, dimethylphenyl group, ethylphenyl group, propylphenyl group, butylphenyl group, cyclohexylphenyl group, biphenyl group, terphenyl group, naphthyl group Anthracyl group, phenanthryl group, and pyrenyl group are more preferable.
  • each R 1 is independently an alkyl group having 1 to 4 carbon atoms or a halogen atom.
  • the alkyl group having 1 to 4 carbon atoms is not particularly limited, and examples thereof include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned.
  • the allyl compound represented by the general formula (1) is preferably an allyl compound represented by the following general formula (1-1).
  • R 1 , X, n, and q are the same as those in the formula (1).
  • the method for producing an allyl compound represented by the general formula (1) includes, for example, a step of reacting a compound represented by the following general formula (2) with an allyl group introduction reagent in the presence of a base catalyst. Is mentioned.
  • the production method preferably includes a step of obtaining the allyl compound represented by the general formula (1) from the reaction solution obtained in the step by a separation and purification operation such as crystallization. This method is particularly preferable because there are few by-products and the allyl compound represented by the general formula (1) can be efficiently produced.
  • X is a hydrogen atom or a monovalent substituent having 1 to 18 carbon atoms
  • R 1 is independently an alkyl group having 1 to 4 carbon atoms or a halogen atom
  • n Are each independently an integer of 0 to 5, and q is 0 or 1.
  • the compound represented by the general formula (2) is preferably a compound represented by the following general formula (2-1).
  • R 1 , X, n and q are the same as those in the formula (2).
  • the compound represented by the general formula (2) used in the present embodiment includes, for example, a compound represented by the following general formula (5) and an aldehyde having 1 to 19 carbon atoms in the presence of an acid catalyst at a relatively high temperature. It can be made to react.
  • the method for producing a compound represented by the following general formula (5) by reacting an aldehyde having 1 to 19 carbon atoms with a relatively high temperature of 60 to 120 ° C. in the presence of an acid catalyst The compound represented by the general formula (2) can be efficiently produced with a small amount.
  • the structure of the substituent X in the general formula (2) to be produced is determined depending on what is used as the aldehyde.
  • R 1 is an alkyl group having 1 to 4 carbon atoms or a halogen atom
  • n is an integer of 0 to 5
  • q is 0 or 1.
  • the compound represented by the general formula (5) is preferably a compound having a dihydroxynaphthalene skeleton.
  • An allyl compound derived using a compound having a dihydroxynaphthalene skeleton can be expected to have improved performance in terms of heat resistance compared to an allyl compound derived using only a dihydroxy compound having a benzene ring skeleton.
  • the compound having a dihydroxynaphthalene skeleton is not particularly limited. Is mentioned. These are readily available as reagents.
  • one type or two or more types can be used as the compound having a dihydroxynaphthalene skeleton.
  • the above-mentioned compound having a dihydroxynaphthalene skeleton and a dihydroxy compound having a benzene ring skeleton can be used in combination.
  • the dihydroxy compound having a benzene ring skeleton used in combination is not particularly limited.
  • Diols are mentioned.
  • the aldehyde having 1 to 19 carbon atoms is not particularly limited.
  • benzaldehyde having an aromatic ring from the viewpoint of heat resistance, methylbenzaldehyde, dimethylbenzaldehyde, ethylbenzaldehyde, propylbenzaldehyde, butylbenzaldehyde, cyclohexylbenzaldehyde, biphenylcarboxaldehyde, terphenylcarboxaldehyde, naphthalenecarboxaldehyde, anthracenecarboxaldehyde, Phenanthrene carboxaldehyde and pyrene carboxaldehyde are preferable, and among them, biphenyl carboxaldehyde, terphenyl carboxaldehyde, naphthalene carboxaldehyde, anthracene carboxaldehyde, phenanthrene carboxaldehyde, and pyrene carboxaldehyde are more preferable.
  • Aldehydes having 1 to 19 carbon atoms are easily available as industrial products or reagents.
  • aldehydes having 1 to 19 carbon atoms can be used.
  • the allyl group introduction reagent used in the present embodiment if the allyl group represented by the following formula (6) can be introduced into the hydroxyl group of the compound represented by the general formula (2) (the hydroxyl group of the compound represented by the general formula (2) As long as the hydrogen atom can be substituted with an allyl group), it is not particularly limited, and examples thereof include allyl chloride, allyl bromide, and allyl iodide.
  • 1 type, or 2 or more types can be used as an allyl introduction reagent.
  • the base catalyst used for the reaction of the compound represented by the general formula (2) and the allyl group introduction reagent can be appropriately selected from known base catalysts, and is not particularly limited.
  • Metal hydroxides alkali metal or alkaline earth metal hydroxides such as sodium hydroxide and potassium hydroxide
  • metal carbonates alkaline metal or alkaline earth metal carbonates such as sodium carbonate and potassium carbonate
  • Inorganic bases such as alkali metal or alkaline earth metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate, amines (eg, tertiary amines (trialkylamines such as triethylamine, N, N-dimethylaniline, etc.)
  • one type or two or more types can be used as the base catalyst.
  • the reaction is preferably carried out, for example, using 1 mol to excess of the allyl group introduction reagent and 0.001 to 1 mol of the base catalyst with respect to 1 mol of the compound represented by the general formula (2).
  • the reaction pressure is preferably normal pressure
  • the reaction temperature is preferably 20 to 150 ° C.
  • the reaction time is preferably 20 minutes to 100 hours.
  • the target product can be purified by a known method. Although it does not specifically limit as the said refinement
  • the crude crystals are dissolved in an organic solvent, a strong base is added to the resulting solution, and the reaction is carried out, for example, at 20 to 150 ° C. for 20 minutes to 100 hours at normal pressure.
  • the target product can be isolated by a known method. Although it does not specifically limit as the said isolation method, For example, the following method is mentioned. First, the reaction solution is concentrated, and pure water is added to precipitate a reaction product. The reaction solution in which the reaction product is precipitated is cooled to room temperature and then filtered to separate a solid. After the obtained solid is dried, it is separated and purified from by-products by column chromatography, and the target compound represented by the general formula (1) can be obtained by evaporating the solvent, filtering and drying.
  • the allyl compound of the present embodiment is preferably an allyl compound represented by the following general formula (1 ').
  • X is a hydrogen atom or a monovalent substituent having 1 to 18 carbon atoms
  • R 3 is each independently an alkyl group having 1 to 4 carbon atoms or a halogen atom
  • n is each independently an integer of 0 to 5
  • q is 0 or 1.
  • X in the general formula (1 ′) is a hydrogen atom or a monovalent substituent having 1 to 18 carbon atoms.
  • the monovalent substituent having 1 to 18 carbon atoms is not particularly limited, and examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group.
  • octadecyl group cyclopropyl group, cyclohexyl group, adamantyl group, phenyl group, tosyl group, dimethylphenyl group, ethylphenyl group, propylphenyl group, butylphenyl group, cyclohexylphenyl group, biphenyl group, terphenyl group, naphthyl group , Anthracyl group, phenanthryl group, and pyrenyl group.
  • a phenyl group having an aromatic ring skeleton tosyl group, dimethylphenyl group, ethylphenyl group, propylphenyl group, butylphenyl group, cyclohexylphenyl group, biphenyl group, terphenyl group, naphthyl group ,
  • Anthracyl group, phenanthryl group, pyrenyl group are preferable, among which phenyl group, tosyl group, dimethylphenyl group, ethylphenyl group, propylphenyl group, butylphenyl group, cyclohexylphenyl group, biphenyl group, terphenyl group, naphthyl group Anthracyl group, phenanthryl group, and pyrenyl group are more preferable.
  • each R 3 independently represents an alkyl group having 1 to 4 carbon atoms or a halogen atom.
  • the alkyl group having 1 to 4 carbon atoms is not particularly limited, and examples thereof include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned.
  • the allyl compound represented by the general formula (1 ′) is preferably an allyl compound represented by the following general formula (1′-1).
  • R 3 , X, n and q are the same as those in the formula (1 ′).
  • the method for producing an allyl compound represented by the general formula (1 ′) includes, for example, a step of reacting a compound represented by the following general formula (2 ′) with an allyl group introduction reagent in the presence of a base catalyst.
  • a manufacturing method is mentioned.
  • the production method preferably includes a step of obtaining the allyl compound represented by the general formula (1 ′) from the reaction solution obtained in the above step by a separation and purification operation such as crystallization. This method is particularly preferable because there are few by-products and the allyl compound represented by the general formula (1 ′) can be efficiently produced.
  • X is a hydrogen atom or a monovalent substituent having 1 to 18 carbon atoms
  • R 3 is each independently an alkyl group having 1 to 4 carbon atoms or a halogen atom
  • n is each independently an integer of 0 to 5
  • q is 0 or 1.
  • the compound represented by the general formula (2 ′) is preferably a compound represented by the following general formula (2′-1).
  • R 3 , X, n and q are the same as those in the formula (2 ′)).
  • the compound represented by the general formula (2 ′) used in the present embodiment includes, for example, a compound represented by the following general formula (5 ′) and an aldehyde having 1 to 19 carbon atoms at a relatively low temperature of 20 to 60 ° C.
  • the reaction can be carried out in the presence of an acid catalyst.
  • a method for producing a compound represented by the following formula (5 ′) by reacting an aldehyde having 1 to 19 carbon atoms with a relatively low temperature in the presence of an acid catalyst is particularly efficient with few by-products.
  • a compound represented by the formula (2 ′) can be produced. In the production method, the structure of the substituent X in the produced general formula (2 ′) is determined depending on what is used as the aldehyde.
  • a compound represented by the above formula (3 ′) can be produced by reacting 2,6-naphthalenediol and 4-biphenylcarboxaldehyde at 30 ° C. in the presence of a sulfuric acid catalyst.
  • R 3 is an alkyl group having 1 to 4 carbon atoms or a halogen atom, n is an integer of 0 to 5, and q is 0 or 1.
  • the compound represented by the general formula (5 ′) used in the present embodiment is preferably a compound having a dihydroxynaphthalene skeleton.
  • An allyl compound derived using a compound having a dihydroxynaphthalene skeleton can be expected to have improved performance in terms of heat resistance compared to an allyl compound derived using only a dihydroxy compound having a benzene ring skeleton.
  • the compound having a dihydroxynaphthalene skeleton is not particularly limited. Is mentioned. These are readily available as reagents.
  • one type or two or more types can be used as the compound having a dihydroxynaphthalene skeleton.
  • the above-mentioned compound having a dihydroxynaphthalene skeleton and a dihydroxy compound having a benzene ring skeleton can be used in combination.
  • the dihydroxy compound having a benzene ring skeleton used in combination is not particularly limited.
  • a diol is used.
  • the structure of the substituent X in the general formula (2 ′) to be produced is determined depending on what is used as the aldehyde having 1 to 19 carbon atoms.
  • the aldehyde is not particularly limited.
  • Adamantyl carboxaldehyde, benzaldehyde, methyl benzaldehyde, dimethyl benzaldehyde, ethyl benzaldehyde, propyl benzaldehyde, butyl benzaldehyde, cyclohexyl benzaldehyde, biphenyl carboxaldehyde, terphenyl carboxaldehyde, naphthalene carboxaldehyde, anthracene carboxaldehyde, phenane Ren carboxaldehyde include pyrene carboxaldehyde.
  • benzaldehyde having an aromatic ring from the viewpoint of heat resistance, methylbenzaldehyde, dimethylbenzaldehyde, ethylbenzaldehyde, propylbenzaldehyde, butylbenzaldehyde, cyclohexylbenzaldehyde, biphenylcarboxaldehyde, terphenylcarboxaldehyde, naphthalenecarboxaldehyde, anthracenecarboxaldehyde, Phenanthrene carboxaldehyde and pyrene carboxaldehyde are preferable, and among them, biphenyl carboxaldehyde, terphenyl carboxaldehyde, naphthalene carboxaldehyde, anthracene carboxaldehyde, phenanthrene carboxaldehyde, and pyrene carboxaldehyde are more preferable.
  • Aldehydes having 1 to 19 carbon atoms are easily available as industrial products or reagents.
  • aldehydes having 1 to 19 carbon atoms can be used.
  • the allyl group introduction reagent used in the present embodiment is represented by the general formula (2 ′) if the allyl group represented by the general formula (6 ′) can be introduced into the hydroxyl group of the compound represented by the general formula (2 ′). If the hydrogen atom of the hydroxyl group of the compound can be substituted with an allyl group), it is not particularly limited, and examples thereof include allyl chloride, allyl bromide, allyl iodide and the like.
  • 1 type, or 2 or more types can be used as an allyl group introduction
  • the base catalyst used for the reaction between the general formula (2 ′) and the allyl group introduction reagent can be appropriately selected from known base catalysts, and is not particularly limited.
  • Oxides alkali metals or alkaline earth metal hydroxides such as sodium hydroxide and potassium hydroxide
  • metal carbonates alkali metals or alkaline earth metal carbonates such as sodium carbonate and potassium carbonate
  • Inorganic bases such as alkali metals or alkaline earth metal hydrogen carbonates such as sodium and potassium hydrogen carbonate, amines (eg, tertiary amines (trialkylamines such as triethylamine, aromatics such as N, N-dimethylaniline) Tertiary amines, heterocyclic tertiary amines such as 1-methylimidazole), carboxylic acid metal salts (sodium acetate, calcium acetate) From the viewpoint of production of organic bases. Easiness and handling easiness of availability such as
  • one type or two or more types can be used as the base catalyst.
  • the reaction is preferably carried out, for example, using 1 mol to excess of the allyl group introduction reagent and 0.001 to 1 mol of the base catalyst with respect to 1 mol of the compound represented by the general formula (2 ').
  • the reaction pressure is preferably normal pressure
  • the reaction temperature is preferably 20 to 150 ° C.
  • the reaction time is preferably 20 minutes to 100 hours.
  • the target product can be purified by a known method. Although it does not specifically limit as the said refinement
  • the crude crystals are dissolved in an organic solvent, a strong base is added to the resulting solution, and the reaction is carried out, for example, at 20 to 150 ° C. for 20 minutes to 100 hours at normal pressure.
  • the target product can be isolated by a known method. Although it does not specifically limit as the said isolation method, For example, the following method is mentioned. First, the reaction solution is concentrated, and pure water is added to precipitate a reaction product. The reaction solution in which the reaction product is precipitated is cooled to room temperature and then filtered to separate a solid. The obtained solid is filtered and dried, and then separated and purified from by-products by column chromatography, and the target compound represented by the general formula (1 ′) is obtained by performing solvent distillation, filtration and drying. Can do.
  • the evaluation method of the compound is as follows.
  • thermal decomposition temperature of the compound was measured as follows. About 5 mg of a sample was placed in an aluminum non-sealed container, and the container was installed in the apparatus and heated to 500 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen gas (30 mL / min) air stream. At that time, the temperature at which the reduced portion appears in the baseline was defined as the thermal decomposition temperature.
  • reaction solution was concentrated, and 50 g of pure water was added to precipitate the reaction product, which was cooled to room temperature. Thereafter, filtration was performed to separate the reaction solution into a filtrate and a solid. After the obtained solid was dried, separation and purification by column chromatography was performed, and 3.05 g of a compound represented by the following formula (3) was obtained. It was confirmed by 400 MHz- 1 H-NMR that the obtained compound had a chemical structure of the following formula (3) as follows.
  • Example 1 5.8 g (12.4 mmol) of the compound represented by the formula (3) obtained above and 4 g (28 mmol) of potassium carbonate were dissolved in 100 mL of acetone in a container with an internal volume of 200 mL equipped with a stirrer, a condenser and a burette. Then, 3.3 g (27 mmol) of allyl bromide and 0.8 g of 10-crown-6 were added, and the resulting reaction solution was stirred for 7 hours under reflux to carry out the reaction. Next, the reaction solution was cooled in an ice bath, and the reaction solution was concentrated to precipitate a solid.
  • the obtained compound had a thermal decomposition temperature of 380 ° C. and was confirmed to be highly heat resistant.
  • reaction solution was concentrated, and 50 g of pure water was added to precipitate the reaction product, which was cooled to room temperature. Thereafter, filtration was performed to separate the reaction solution into a filtrate and a solid. After the obtained solid was dried, separation and purification by column chromatography was performed, and 0.2 g of the target compound represented by the following formula (3 ′) was obtained. It was confirmed by 400 MHz- 1 H-NMR that the obtained compound had a chemical structure represented by the following formula (3 ′) as follows.
  • Example 2 Dissolve 2.9 g (6.2 mmol) of the compound represented by the formula (3 ′) obtained above and 4 g (28 mmol) of potassium carbonate in 100 mL acetone in a container having an internal volume of 200 mL equipped with a stirrer, a condenser tube and a burette. Then, 3.3 g (27 mmol) of allyl bromide and 0.8 g of 10-crown-6 were added, and the resulting reaction solution was stirred for 7 hours under reflux to carry out the reaction. Next, the reaction solution was cooled in an ice bath, and the reaction solution was concentrated to precipitate a solid.
  • the obtained compound had a thermal decomposition temperature of 240 ° C. and was confirmed to be highly heat resistant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Pyrane Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 本発明のアリル化合物は、一般式(α)で示される。 (式(α)中、環Zはナフタレン環であり、環Zはベンゼン環又はナフタレン環であり、Xは、水素原子又は炭素数1~18の一価の置換基であり、Rはそれぞれ独立して、炭素数1~4のアルキル基又はハロゲン原子であり、mは1又は2であり、nはそれぞれ独立して、0~5の整数であり、mが1の場合、環Zと環Zとは酸素原子を介して互いに結合している。)

Description

新規アリル化合物及びその製造方法
 本発明は、新規アリル化合物及びその製造方法に関する。
 フォトレジストの成分や、電気及び電子部品用材料や構造用材料用途向け樹脂原料または樹脂硬化剤として、ビスフェノール骨格を有するアリル化合物が有用であることが知られている(例えば、特許文献1~6参照)。
特開2004-137200号公報 特開2009-51780号公報 特開2012-131749号公報 特開2012-068652号公報 特開2012-093784号公報 特開2012-118551号公報
 近年では、フォトレジストの成分や、電気及び電子部品用材料や構造用材料用途向け樹脂原料または樹脂硬化剤として、種々の特性(光学特性、耐熱性、耐水性、耐湿性、耐薬品性、電気特性、機械特性、寸法安定性等)の一段の向上が求められるため、当該要求を満たす新規アリル化合物の開発が望まれている。
 そこで、本発明の目的は、例えば、フォトレジストの成分やビスマレイミド等の硬化性樹脂成分として有用な高耐熱性の新規アリル化合物を提供することにある。
 本発明者は上記課題を解決するため鋭意検討した結果、特定構造を有する新規アリル化合物が上記課題を解決し得ることを見出し本発明に到った。
 すなわち、本発明は次の通りである。
[1]
 一般式(α)で示されるアリル化合物。
Figure JPOXMLDOC01-appb-C000009
(式(α)中、環Zはナフタレン環であり、環Zはベンゼン環又はナフタレン環であり、Xは、水素原子又は炭素数1~18の一価の置換基であり、Rはそれぞれ独立して、炭素数1~4のアルキル基又はハロゲン原子であり、mは1又は2であり、nはそれぞれ独立して、0~5の整数であり、mが1の場合、環Zと環Zとは酸素原子を介して互いに結合している。)
[2]
 上記[1]に記載のアリル化合物の製造方法であって、下記一般式(β)で示される化合物と、アリル基導入試剤とを、塩基触媒存在下にて反応させる工程を含む製造方法。
Figure JPOXMLDOC01-appb-C000010
(式(β)中、環Zはナフタレン環であり、環Zはベンゼン環又はナフタレン環であり、Xは、水素原子又は炭素数1~18の一価の置換基であり、Rはそれぞれ独立して、炭素数1~4のアルキル基又はハロゲン原子であり、mは1又は2であり、nはそれぞれ独立して、0~5の整数であり、mが1の場合、環Zと環Zとは酸素原子を介して互いに結合している。)
[3]
 前記一般式(α)で示されるアリル化合物が、下記一般式(1)で示されるアリル化合物である上記[1]に記載のアリル化合物。
Figure JPOXMLDOC01-appb-C000011
(式(1)中、Xは、水素原子又は炭素数1~18の一価の置換基であり、Rはそれぞれ独立して、炭素数1~4のアルキル基又はハロゲン原子であり、nはそれぞれ独立して、0~5の整数であり、qは0又は1である。)
[4]
 前記一般式(1)で示されるアリル化合物が、下記一般式(1-1)で示される化合物である上記[3]に記載のアリル化合物。
Figure JPOXMLDOC01-appb-C000012
(式(1-1)中、R、X、n、qは、前記式(1)の場合と同様である。)
[5]
 上記[3]に記載のアリル化合物の製造方法であって、下記一般式(2)で示される化合物と、アリル基導入試剤とを、塩基触媒存在下にて反応させる工程を含む製造方法。
Figure JPOXMLDOC01-appb-C000013
(式(2)中、Xは、水素原子又は炭素数1~18の一価の置換基であり、Rはそれぞれ独立して、炭素数1~4のアルキル基又はハロゲン原子であり、nはそれぞれ独立して、0~5の整数であり、qは0又は1である。)
[6]
 前記一般式(α)で示されるアリル化合物が、下記一般式(1’)で示されるアリル化合物である上記[1]に記載のアリル化合物。
Figure JPOXMLDOC01-appb-C000014
(式(1’)中、Xは、水素原子又は炭素数1~18の一価の置換基であり、Rは、それぞれ独立して、炭素数1~4のアルキル基又はハロゲン原子であり、nは、それぞれ独立して、0~5の整数であり、qは0又は1である。)
[7]
 前記一般式(1’)で示されるアリル化合物が、下記一般式(1’-1)で示される化合物である上記[6]に記載のアリル化合物。
Figure JPOXMLDOC01-appb-C000015
(式(1’-1)中、R、X、n、qは、前記式(1’)の場合と同様である。)
[8]
 上記[6]に記載のアリル化合物の製造方法であって、下記一般式(2’)で示される化合物と、アリル基導入試剤とを、塩基触媒存在下にて反応させる工程を含む製造方法。
Figure JPOXMLDOC01-appb-C000016
(式(2’)中、Xは、水素原子又は炭素数1~18の一価の置換基であり、Rは、それぞれ独立して、炭素数1~4のアルキル基又はハロゲン原子であり、nは、それぞれ独立して、0~5の整数であり、qは0又は1である。)
 本発明のアリル化合物は、多環芳香族構造を有するため、耐熱性に優れ、フォトレジスト等の成分やビスマレイミド等の硬化性樹脂成分として有用である。
 以下、本発明の実施の形態(以下「本実施形態」とも記す。)について詳細に説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。
 本実施形態のアリル化合物は、一般式(α)で示される。
Figure JPOXMLDOC01-appb-C000017
(式(α)中、環Zはナフタレン環であり、環Zはベンゼン環又はナフタレン環であり、Xは、水素原子又は炭素数1~18の一価の置換基であり、Rはそれぞれ独立して、炭素数1~4のアルキル基又はハロゲン原子であり、mは1又は2であり、nはそれぞれ独立して、0~5の整数であり、mが1の場合、環Zと環Zとは酸素原子を介して互いに結合している。)
 本実施形態のアリル化合物は、下記一般式(β)で示される化合物と、アリル基導入試剤とを、塩基触媒存在下にて反応させる工程を含む。
Figure JPOXMLDOC01-appb-C000018
(式(β)中、環Zはナフタレン環であり、環Zはベンゼン環又はナフタレン環であり、Xは、水素原子又は炭素数1~18の一価の置換基であり、Rはそれぞれ独立して、炭素数1~4のアルキル基又はハロゲン原子であり、mは1又は2であり、nはそれぞれ独立して、0~5の整数であり、mが1の場合、環Zと環Zとは酸素原子を介して互いに結合している。)
 以下、本実施形態のアリル化合物及びその製造方法を、特定の式で示されるアリル化合物を例にとって詳細に説明する。
 本実施形態のアリル化合物は、下記一般式(1)で示されるアリル化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000019
(式(1)中、Xは、水素原子又は炭素数1~18の一価の置換基であり、Rはそれぞれ独立して、炭素数1~4のアルキル基又はハロゲン原子であり、nはそれぞれ独立して、0~5の整数であり、qは0又は1である。)
 上記一般式(1)のXは、水素原子又は炭素数1~18の一価の置換基である。当該炭素数1~18の一価の置換基としては、特に限定されないが、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、オクタデシル基、シクロプロピル基、シクロヘキシル基、アダマンチル基、フェニル基、トシル基、ジメチルフェニル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、シクロヘキシルフェニル基、ビフェニル基、ターフェニル基、ナフチル基、アントラシル基、フェナントリル基、ピレニル基が挙げられる。これらのうち、耐熱性の観点から、芳香環骨格を有するフェニル基、トシル基、ジメチルフェニル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、シクロヘキシルフェニル基、ビフェニル基、ターフェニル基、ナフチル基、アントラシル基、フェナントリル基、ピレニル基が好ましく、その中でも特にフェニル基、トシル基、ジメチルフェニル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、シクロヘキシルフェニル基、ビフェニル基、ターフェニル基、ナフチル基、アントラシル基、フェナントリル基、ピレニル基がより好ましい。
 上記一般式(1)中、Rはそれぞれ独立して、炭素数1~4のアルキル基又はハロゲン原子である。当該炭素数1~4のアルキル基としては、特に限定されないが、例えば、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。当該ハロゲン原子としては、特に限定されないが、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 耐熱性の点から、本実施形態において、前記一般式(1)で示されるアリル化合物は、下記一般式(1-1)で示されるアリル化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000020
(式(1-1)中、R、X、n、qは、前記式(1)の場合と同様である。)
 前記一般式(1)で示されるアリル化合物の製造方法は、例えば、下記一般式(2)で示される化合物と、アリル基導入試剤とを、塩基触媒存在下にて反応させる工程を含む製造方法が挙げられる。当該製造方法は、前記工程で得られた反応液から、晶析等の分離精製操作により一般式(1)で示されるアリル化合物を得る工程を含むことが好ましい。本方法は、特に副生成物が少なく、効率良く一般式(1)で示されるアリル化合物を製造することができるので好ましい。
Figure JPOXMLDOC01-appb-C000021
(式(2)中、Xは、水素原子又は炭素数1~18の一価の置換基であり、Rはそれぞれ独立して、炭素数1~4のアルキル基又はハロゲン原子であり、nはそれぞれ独立して、0~5の整数であり、qは0又は1である。)
 耐熱性の点から、本実施形態において、前記一般式(2)で示される化合物は、下記一般式(2-1)で示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000022
(式(2-1)中、R、X、n、qは、前記式(2)の場合と同様である。)
 以下、本実施形態のアリル化合物の製造方法の一例として、下記式(4)で示される化合物の製造方法を具体的に説明する。下記式(3)で示される化合物1モル、臭化アリル2.6モル、炭酸カリウム5.2モルを3Lフラスコに入れてジメチルホルムアミド溶媒中、オイルバスで加熱しながら90℃にて反応させる。その後、反応溶液を冷却させて粗結晶を晶析することにより取り出す。得られた粗結晶及び水酸化ナトリウムをメタノール溶媒にて4時間還流し、空冷により冷却し、結晶を析出させる。析出した結晶を濾過、リンスすることにより下記式(4)で示される化合物を製造することができる。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 本実施形態に用いる一般式(2)で示される化合物は、例えば、下記一般式(5)で示される化合物と、炭素数1~19のアルデヒドとを、比較的高温で酸触媒存在下にて反応させて製造することができる。下記一般式(5)で示される化合物と、炭素数1~19のアルデヒドとを、60~120℃という比較的高温で酸触媒存在下にて反応させて製造する方法は、特に副生成物が少なく、効率よく一般式(2)で示される化合物を製造することができる。当該製造方法において、アルデヒドとして何を用いるかによって、製造される一般式(2)中の置換基Xの構造が決定される。具体的に例示すると、2,6-ナフタレンジオールと4-ビフェニルカルボキシアルデヒドとを硫酸触媒存在下に100℃にて反応させることにより、上記式(3)で示される化合物を製造することができる。
Figure JPOXMLDOC01-appb-C000025
(式(5)中、Rは、炭素数1~4のアルキル基又はハロゲン原子であり、nは0~5の整数であり、qは0又は1である。)
 一般式(5)で示される化合物としては、ジヒドロキシナフタレン骨格を有する化合物であることが好ましい。ジヒドロキシナフタレン骨格を有する化合物を用いて誘導されたアリル化合物は、ベンゼン環骨格を有するジヒドロキシ化合物のみを用いて誘導されたアリル化合物よりも耐熱性の点で性能が向上することが期待できる。ジヒドロキシナフタレン骨格を有する化合物としては、特に限定されないが、例えば、ナフタレンジオール、メチルナフタレンジオール、エチルナフタレンジオール、プロピルナフタレンジオール、ブチルナフタレンジオール、フルオロナフタレンジオール、クロロナフタレンジオール、ブロモナフタレンジオール、ヨードナフタレンジオールが挙げられる。これらは試薬にて容易に入手可能である。
 また、ジヒドロキシナフタレン骨格を有する化合物として1種類又は2種類以上を用いることができる。
 さらに、上記ジヒドロキシナフタレン骨格を有する化合物とベンゼン環骨格を有するジヒドロキシ化合物とを併用することもできる。併用するベンゼン環骨格を有するジヒドロキシ化合物としては、特に限定されないが、例えば、ベンゼンジオール、メチルベンゼンジオール、エチルベンゼンジオール、プロピルベンゼンジオール、ブチルベンゼンジオール、フルオロベンゼンジオール、クロロベンゼンジオール、ブロモベンゼンジオール、ヨードベンゼンジオールが挙げられる。
 上記ジヒドロキシナフタレン骨格を有する化合物とベンゼン環骨格を有するジヒドロキシ化合物とを併用することにより、最終的に得られる上記式(1)で示される化合物において、一方がナフタレン骨格、他方がベンゼン骨格の化合物に誘導することができる。
 前記炭素数1~19のアルデヒドとしては、特に限定されないが、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、ペンチルアルデヒド、ヘキシルアルデヒド、ヘプチルアルデヒド、オクチルアルデヒド、ノニルアルデヒド、デシルアルデヒド、オクタデシルアルデヒド、シクロプロピルアルデヒド、シクロヘキシルアルデヒド、アダマンチルカルボキシアルデヒド、ベンズアルデヒド、メチルベンズアルデヒド、ジメチルベンズアルデヒド、エチルベンズアルデヒド、プロピルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ビフェニルカルボキシアルデヒド、ターフェニルカルボキシアルデヒド、ナフタレンカルボキシアルデヒド、アントラセンカルボキシアルデヒド、フェナントレンカルボキシアルデヒド、ピレンカルボキシアルデヒドが挙げられる。これらの内、耐熱性の観点から芳香環を有するベンズアルデヒド、メチルベンズアルデヒド、ジメチルベンズアルデヒド、エチルベンズアルデヒド、プロピルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ビフェニルカルボキシアルデヒド、ターフェニルカルボキシアルデヒド、ナフタレンカルボキシアルデヒド、アントラセンカルボキシアルデヒド、フェナントレンカルボキシアルデヒド、ピレンカルボキシアルデヒドが好ましく、その中でも特にビフェニルカルボキシアルデヒド、ターフェニルカルボキシアルデヒド、ナフタレンカルボキシアルデヒド、アントラセンカルボキシアルデヒド、フェナントレンカルボキシアルデヒド、ピレンカルボキシアルデヒドがより好ましい。
 炭素数1~19のアルデヒドは工業製品又は試薬として、容易に入手可能である。
 また、炭素数1~19のアルデヒドとして1種類又は2種類以上を用いることができる。
 本実施形態に用いるアリル基導入試剤としては、一般式(2)で示される化合物の水酸基に下記式(6)で示されるアリル基が導入できれば(一般式(2)で示される化合物の水酸基の水素原子がアリル基で置換できれば)、特に限定されないが、例えば、塩化アリル、臭化アリル、ヨウ化アリル等が挙げられる。
 また、アリル導入試剤として1種類又は2種類以上を用いることができる。
Figure JPOXMLDOC01-appb-C000026
 本実施形態の製造方法において、一般式(2)で示される化合物とアリル基導入試剤との反応に用いられる塩基触媒は、周知の塩基触媒より適宜選択することができ、特に限定されないが、例えば、金属水酸化物(水酸化ナトリウム、水酸化カリウム等のアルカリ金属又はアルカリ土類金属水酸化物等)、金属炭酸塩(炭酸ナトリウム、炭酸カリウム等のアルカリ金属又はアルカリ土類金属炭酸塩等)、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属又はアルカリ土類金属炭酸水素塩等の無機塩基、アミン類(例えば、第3級アミン類(トリエチルアミン等のトリアルキルアミン、N,N-ジメチルアニリン等の芳香族第3級アミン、1-メチルイミダゾール等の複素環式第3級アミン)等、カルボン酸金属塩(酢酸ナトリウム、酢酸カルシウム等の酢酸アルカリ金属又はアルカリ土類金属塩等)等の有機塩基が挙げられる。入手の容易さや取り扱い易さ等の製造上の観点から、炭酸ナトリウム、炭酸カリウムが好ましい。
 また、塩基触媒として1種類又は2種類以上を用いることができる。
 次に、一般式(2)で示される化合物と、アリル基導入試剤との反応条件について詳細に説明する。
 当該反応は、例えば、一般式(2)で示される化合物1モルに対し、アリル基導入試剤を1モル~過剰量、及び塩基触媒を0.001~1モル使用して行うことが好ましい。また、当該反応圧力は、常圧であることが好ましく、当該反応温度は、20~150℃であることが好ましく、当該反応時間は20分~100時間であることが好ましい。当該反応後、公知の方法により目的物を精製することができる。当該精製方法としては、特に限定されないが、例えば氷水等で冷却させ結晶を析出、単離して粗結晶を得る方法が挙げられる。
 続いて、粗結晶を有機溶媒に溶解させ、得られた溶液に強塩基を加え、例えば、常圧で、20~150℃で20分~100時間程度反応させることが好ましい。当該反応後、公知の方法により目的物を単離することができる。当該単離方法としては、特に限定されないが、例えば、以下の方法が挙げられる。まず、前記反応液を濃縮し、純水を加えて反応生成物を析出させる。反応生成物を析出させた反応液を、室温まで冷却した後、濾過を行って固形物を分離する。得られた固形物を乾燥させた後、カラムクロマトにより、副生成物と分離精製し、溶媒留去、濾過、乾燥を行って一般式(1)で示される目的化合物を得ることができる。
 本実施形態のアリル化合物は、下記一般式(1’)で示されるアリル化合物であることが好ましい。
 以下、下記一般式(1’)で示されるアリル化合物について詳細に説明する。
Figure JPOXMLDOC01-appb-C000027
(式(1’)中、Xは、水素原子又は炭素数1~18の一価の置換基であり、Rはそれぞれ独立して、炭素数1~4のアルキル基又はハロゲン原子であり、nはそれぞれ独立して、0~5の整数であり、qは0又は1である。)
 上記一般式(1’)のXは、水素原子又は炭素数1~18の一価の置換基である。当該炭素数1~18の一価の置換基としては、特に限定されないが、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、オクタデシル基、シクロプロピル基、シクロヘキシル基、アダマンチル基、フェニル基、トシル基、ジメチルフェニル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、シクロヘキシルフェニル基、ビフェニル基、ターフェニル基、ナフチル基、アントラシル基、フェナントリル基、ピレニル基が挙げられる。これらのうち、耐熱性の観点から、芳香環骨格を有するフェニル基、トシル基、ジメチルフェニル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、シクロヘキシルフェニル基、ビフェニル基、ターフェニル基、ナフチル基、アントラシル基、フェナントリル基、ピレニル基が好ましく、その中でも特にフェニル基、トシル基、ジメチルフェニル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、シクロヘキシルフェニル基、ビフェニル基、ターフェニル基、ナフチル基、アントラシル基、フェナントリル基、ピレニル基がより好ましい。
 上記一般式(1’)中、Rはそれぞれ独立して、炭素数1~4のアルキル基又はハロゲン原子である。当該炭素数1~4のアルキル基としては、特に限定されないが、例えば、メチル基、エチル基、プロピル基、ブチル基が挙げられる。当該ハロゲン原子としては、特に限定されないが、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 耐熱性の点から、本実施形態において、前記一般式(1’)で示されるアリル化合物は、下記一般式(1’-1)で示されるアリル化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000028
(式(1’-1)中、R、X、n、qは、前記式(1’)の場合と同様である。)
 前記一般式(1’)で示されるアリル化合物の製造方法は、例えば、下記一般式(2’)で示される化合物と、アリル基導入試剤とを、塩基触媒存在下にて反応させる工程を含む製造方法が挙げられる。当該製造方法は、前記工程で得られた反応液から、晶析等の分離精製操作により一般式(1’)で示されるアリル化合物を得る工程を含むことが好ましい。本方法は、特に副生成物が少なく、効率良く一般式(1’)で示されるアリル化合物を製造することができるので好ましい。
Figure JPOXMLDOC01-appb-C000029
(式(2’)中、Xは、水素原子又は炭素数1~18の一価の置換基であり、Rはそれぞれ独立して、炭素数1~4のアルキル基又はハロゲン原子であり、nはそれぞれ独立して、0~5の整数であり、qは0又は1である。)
 耐熱性の点から、本実施形態において、前記一般式(2’)で示される化合物は、下記一般式(2’-1)で示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000030
(式(2’-1)中、R、X、n、qは、前記式(2’)の場合と同様である。)
 以下、本実施形態のアリル化合物の製造方法の一例として、下記式(4’)で示される化合物の製造方法を具体的に説明する。下記式(3’)で示される化合物1モル、臭化アリル5.2モル、炭酸カリウム10.4モルを3Lフラスコに入れてジメチルホルムアミド溶媒中、オイルバスで加熱しながら90℃にて反応させる。その後、反応溶液を冷却させて粗結晶を晶析することにより取り出す。得られた粗結晶及び水酸化ナトリウムをメタノール溶媒にて4時間還流し、空冷により冷却し、結晶を析出させる。析出した結晶を濾過、リンスすることにより下記式(4’)で示される化合物を製造することができる。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 本実施形態に用いる一般式(2’)で示される化合物は、例えば、下記一般式(5’)で示される化合物と、炭素数1~19のアルデヒドとを、20~60℃という比較的低温で酸触媒存在下にて反応させて製造することができる。下記式(5’)で示される化合物と、炭素数1~19のアルデヒドとを、比較的低温で酸触媒存在下にて反応させて製造する方法は、特に副生成物が少なく、効率よく一般式(2’)で示される化合物を製造することができる。当該製造方法において、アルデヒドとして何を用いるかによって、製造される一般式(2’)中の置換基Xの構造が決定される。具体的に例示すると、2,6-ナフタレンジオールと4-ビフェニルカルボキシアルデヒドとを硫酸触媒存在下に30℃にて反応させることにより、上記式(3’)で示される化合物を製造することができる。
Figure JPOXMLDOC01-appb-C000033
(式(5’)中、Rは、炭素数1~4のアルキル基又はハロゲン原子であり、nは0~5の整数であり、qは0又は1である。)
 本実施形態に用いる一般式(5’)で示される化合物は、ジヒドロキシナフタレン骨格を有する化合物であることが好ましい。ジヒドロキシナフタレン骨格を有する化合物を用いて誘導されたアリル化合物は、ベンゼン環骨格を有するジヒドロキシ化合物のみを用いて誘導されたアリル化合物よりも耐熱性の点で性能が向上することが期待できる。ジヒドロキシナフタレン骨格を有する化合物としては、特に限定されないが、例えば、ナフタレンジオール、メチルナフタレンジオール、エチルナフタレンジオール、プロピルナフタレンジオール、ブチルナフタレンジオール、フルオロナフタレンジオール、クロロナフタレンジオール、ブロモナフタレンジオール、ヨードナフタレンジオールが挙げられる。これらは試薬にて容易に入手可能である。
 また、ジヒドロキシナフタレン骨格を有する化合物として1種類又は2種類以上を用いることができる。
 さらに、上記ジヒドロキシナフタレン骨格を有する化合物とベンゼン環骨格を有するジヒドロキシ化合物とを併用することもできる。併用するベンゼン環骨格を有するジヒドロキシ化合物としては、特に限定されないが、例えば、ベンゼンジオール、メチルベンゼンジオール、エチルベンゼンジオール、プロピルベンゼンジオール、ブチルベンゼンジオール、フルオロベンゼンジオール、クロロベンゼンジオール、ブロモベンゼンジオール、ヨードベンゼンジオールが用いられる。
 上記ジヒドロキシナフタレン骨格を有する化合物とベンゼン環骨格を有するジヒドロキシ化合物とを併用することにより、最終的に得られる上記式(1’)で示される化合物において、一方がナフタレン骨格、他方がベンゼン骨格の化合物に誘導することができる。
 本実施形態の製造方法において、炭素数1~19のアルデヒドとして何を用いるかによって、製造される一般式(2’)中の置換基Xの構造が決定される。該アルデヒドとしては、特に限定されないが、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、ペンチルアルデヒド、ヘキシルアルデヒド、ヘプチルアルデヒド、オクチルアルデヒド、ノニルアルデヒド、デシルアルデヒド、オクタデシルアルデヒド、シクロプロピルアルデヒド、シクロヘキシルアルデヒド、アダマンチルカルボキシアルデヒド、ベンズアルデヒド、メチルベンズアルデヒド、ジメチルベンズアルデヒド、エチルベンズアルデヒド、プロピルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ビフェニルカルボキシアルデヒド、ターフェニルカルボキシアルデヒド、ナフタレンカルボキシアルデヒド、アントラセンカルボキシアルデヒド、フェナントレンカルボキシアルデヒド、ピレンカルボキシアルデヒドが挙げられる。これらの内、耐熱性の観点から芳香環を有するベンズアルデヒド、メチルベンズアルデヒド、ジメチルベンズアルデヒド、エチルベンズアルデヒド、プロピルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ビフェニルカルボキシアルデヒド、ターフェニルカルボキシアルデヒド、ナフタレンカルボキシアルデヒド、アントラセンカルボキシアルデヒド、フェナントレンカルボキシアルデヒド、ピレンカルボキシアルデヒドが好ましく、その中でも特にビフェニルカルボキシアルデヒド、ターフェニルカルボキシアルデヒド、ナフタレンカルボキシアルデヒド、アントラセンカルボキシアルデヒド、フェナントレンカルボキシアルデヒド、ピレンカルボキシアルデヒドがより好ましい。
 炭素数1~19のアルデヒドは工業製品又は試薬として、容易に入手可能である。
 また、炭素数1~19のアルデヒドとして1種類又は2種類以上を用いることができる。
 本実施形態に用いるアリル基導入試剤としては、上記一般式(2’)で示される化合物の水酸基に一般式(6’)で示されるアリル基が導入できれば(一般式(2’)で示される化合物の水酸基の水素原子がアリル基で置換できれば)、特に限定されないが、例えば、塩化アリル、臭化アリル、ヨウ化アリル等が挙げられる。
 また、アリル基導入試剤として1種類又は2種類以上を用いることができる。
Figure JPOXMLDOC01-appb-C000034
 本実施形態の製造方法において、一般式(2’)とアリル基導入試剤との反応に用いられる塩基触媒は、周知の塩基触媒より適宜選択することができ、特に限定されないが、例えば、金属水酸化物(水酸化ナトリウム、水酸化カリウム等のアルカリ金属又はアルカリ土類金属水酸化物等)、金属炭酸塩(炭酸ナトリウム、炭酸カリウム等のアルカリ金属又はアルカリ土類金属炭酸塩等)、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属又はアルカリ土類金属炭酸水素塩等の無機塩基、アミン類(例えば、第3級アミン類(トリエチルアミン等のトリアルキルアミン、N,N-ジメチルアニリン等の芳香族第3級アミン、1-メチルイミダゾール等の複素環式第3級アミン)等、カルボン酸金属塩(酢酸ナトリウム、酢酸カルシウム等の酢酸アルカリ金属又はアルカリ土類金属塩等)等の有機塩基が挙げられる。入手の容易さや取り扱い易さ等の製造上の観点から、炭酸ナトリウム、炭酸カリウムが好ましい。
 また、塩基触媒として1種類又は2種類以上を用いることができる。
 次に、一般式(2’)で示される化合物と、アリル基導入試剤との反応条件について詳細に説明する。
 当該反応は、例えば、一般式(2’)で示される化合物1モルに対し、アリル基導入試剤を1モル~過剰量、及び塩基触媒を0.001~1モル使用して行うことが好ましい。また、当該反応圧力は、常圧であることが好ましく、当該反応温度は、20~150℃であることが好ましく、当該反応時間は、20分~100時間であることが好ましい。当該反応後、公知の方法により目的物を精製することができる。当該精製方法としては、特に限定されないが、例えば氷水等で冷却させ結晶を析出、単離して粗結晶を得る方法が挙げられる。
 続いて、粗結晶を有機溶媒に溶解させ、得られた溶液に強塩基を加え、例えば、常圧で、20~150℃で20分~100時間程度反応させることが好ましい。当該反応後、公知の方法により目的物を単離することができる。当該単離方法としては、特に限定されないが、例えば、以下の方法が挙げられる。まず、前記反応液を濃縮し、純水を加えて反応生成物を析出させる。反応生成物を析出させた反応液を、室温まで冷却した後、濾過を行って固形物を分離する。得られた固形物を濾過し、乾燥させた後、カラムクロマトにより、副生成物と分離精製し、溶媒留去、濾過、乾燥を行って一般式(1’)で示される目的化合物を得ることができる。
 以下、実施例を挙げて、本発明の実施の形態をさらに具体的に説明する。但し、本発明は、これらの実施例に特に限定はされない。
 化合物の評価方法は次の通りである。
 <熱分解温度の測定>
 エスアイアイ・ナノテクノロジー社製EXSTAR6000DSC装置を使用し、化合物の熱分解温度を以下のとおり測定した。試料約5mgをアルミニウム製非密封容器に入れ、該容器を前記装置に設置して窒素ガス(30mL/min)気流中、昇温速度10℃/minで500℃まで昇温した。その際、ベースラインに減少部分が現れる温度を熱分解温度とした。
 <合成例1>
 攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に2,6-ナフタレンジオール(シグマ-アルドリッチ社製試薬)3.20g(20mmol)と4-ビフェニルカルボキシアルデヒド(三菱瓦斯化学社製)1.82g(10mmol)とを30mLメチルイソブチルケトンに溶解させた溶液を仕込み、さらに95%の硫酸5mLを加えて、得られた反応液を100℃で6時間撹拌して反応を行った。次に反応液を濃縮し、純水50gを加えて反応生成物を析出させ、室温まで冷却した。その後、濾過を行って反応液を濾液と固形物とに分離した。得られた固形物を乾燥させた後、カラムクロマトによる分離精製を行い、下記式(3)で示される化合物が3.05g得られた。得られた化合物が下記式(3)の化学構造を有することは、400MHz-H-NMRにより以下のとおり確認した。
H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.7(2H,O-H)、7.2~8.5(19H,Ph-H)、6.6(1H,C-H)
 尚、2,6-ナフタレンジオールの置換位置が1位であることは、3位及び4位のプロトンのシグナルがダブレットであることから確認した。
Figure JPOXMLDOC01-appb-C000035
 <実施例1>
 攪拌機、冷却管及びビュレットを備えた内容積200mLの容器に上記で得られた式(3)で示される化合物5.8g(12.4mmol)と炭酸カリウム4g(28mmol)とを100mLアセトンに溶解させた溶液を仕込み、さらに臭化アリルを3.3g(27mmol)、及び10-クラウン-6を0.8g加えて、得られた反応液を還流下で7時間撹拌して反応を行った。次に反応液を氷浴で冷却し、反応液を濃縮し固形物を析出させた。析出した固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式(4)で示される目的化合物が2.0g得られた。得られた化合物が下記式(4)の化学構造を有することは、400MHz-H-NMRにより以下のとおり確認した。
H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)7.2~7.8(19H,Ph-H)、6.7(1H,C-H)、6.1(2H,-CH-CH)、5.4~5.5(4H,-CH-CH)、4.7(4H,-O-CH-)
 得られた化合物は、熱分解温度が380℃であり、高耐熱性であることが確認できた。
Figure JPOXMLDOC01-appb-C000036
 <合成例2>
 攪拌機、冷却管及びビュレットを備えた内容積100mlの容器に2,6-ナフタレンジオール(シグマ-アルドリッチ社製試薬)3.20g(20mmol)と4-ビフェニルカルボキシアルデヒド(三菱瓦斯化学社製)1.82g(10mmol)とを30mlメチルイソブチルケトンに溶解させた溶液を仕込み、さらに95%の硫酸5mlを加えて、得られた反応液を30℃で6時間撹拌して反応を行った。次に反応液を濃縮し、純水50gを加えて反応生成物を析出させ、室温まで冷却した。その後、濾過を行って反応液を濾液と固形物とに分離した。得られた固形物を乾燥させた後、カラムクロマトによる分離精製を行い、下記式(3’)で示される目的化合物が0.2g得られた。得られた化合物が下記式(3’)の化学構造を有することは、400MHz-H-NMRにより以下のとおり確認した。
H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.3~9.4(4H,O-H)、7.0~8.1(19H,Ph-H)、6.8(1H,C-H)
 尚、2,6-ナフタレンジオールの置換位置が1位であることは、3位及び4位のプロトンのシグナルがダブレットであることから確認した。
Figure JPOXMLDOC01-appb-C000037
 <実施例2>
 攪拌機、冷却管及びビュレットを備えた内容積200mLの容器に上記で得られた式(3’)で示される化合物2.9g(6.2mmol)と炭酸カリウム4g(28mmol)とを100mLアセトンに溶解させた溶液を仕込み、さらに臭化アリルを3.3g(27mmol)、及び10-クラウン-6を0.8g加えて、得られた反応液を還流下で7時間撹拌して反応を行った。次に反応液を氷浴で冷却し、反応液を濃縮し固形物を析出させた。析出した固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式(4’)で示される目的化合物が0.5g得られた。得られた化合物が下記式(4’)の化学構造を有することは、400MHz-H-NMRにより以下のとおり確認した。
H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm):7.0~8.0(19H,Ph-H)、6.8(1H,C-H)、6.1(4H,-CH-CH)、5.4~5.5(8H,-CH-CH)、4.7(8H,-O-CH-)
 得られた化合物は、熱分解温度が240℃であり、高耐熱性であることが確認できた。
Figure JPOXMLDOC01-appb-C000038

Claims (8)

  1.  一般式(α)で示されるアリル化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式(α)中、環Zはナフタレン環であり、環Zはベンゼン環又はナフタレン環であり、Xは、水素原子又は炭素数1~18の一価の置換基であり、Rはそれぞれ独立して、炭素数1~4のアルキル基又はハロゲン原子であり、mは1又は2であり、nはそれぞれ独立して、0~5の整数であり、mが1の場合、環Zと環Zとは酸素原子を介して互いに結合している。)
  2.  請求項1に記載のアリル化合物の製造方法であって、下記一般式(β)で示される化合物と、アリル基導入試剤とを、塩基触媒存在下にて反応させる工程を含む製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式(β)中、環Zはナフタレン環であり、環Zはベンゼン環又はナフタレン環であり、Xは、水素原子又は炭素数1~18の一価の置換基であり、Rはそれぞれ独立して、炭素数1~4のアルキル基又はハロゲン原子であり、mは1又は2であり、nはそれぞれ独立して、0~5の整数であり、mが1の場合、環Zと環Zとは酸素原子を介して互いに結合している。)
  3.  前記一般式(α)で示されるアリル化合物が、下記一般式(1)で示されるアリル化合物である請求項1に記載のアリル化合物。
    Figure JPOXMLDOC01-appb-C000003
    (式(1)中、Xは、水素原子又は炭素数1~18の一価の置換基であり、Rはそれぞれ独立して、炭素数1~4のアルキル基又はハロゲン原子であり、nはそれぞれ独立して、0~5の整数であり、qは0又は1である。)
  4.  前記一般式(1)で示されるアリル化合物が、下記一般式(1-1)で示される化合物である請求項3に記載のアリル化合物。
    Figure JPOXMLDOC01-appb-C000004
    (式(1-1)中、R、X、n、qは、前記式(1)の場合と同様である。)
  5.  請求項3に記載のアリル化合物の製造方法であって、下記一般式(2)で示される化合物と、アリル基導入試剤とを、塩基触媒存在下にて反応させる工程を含む製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (式(2)中、Xは、水素原子又は炭素数1~18の一価の置換基であり、Rはそれぞれ独立して、炭素数1~4のアルキル基又はハロゲン原子であり、nはそれぞれ独立して、0~5の整数であり、qは0又は1である。)
  6.  前記一般式(α)で示されるアリル化合物が、下記一般式(1’)で示されるアリル化合物である請求項1に記載のアリル化合物。
    Figure JPOXMLDOC01-appb-C000006
    (式(1’)中、Xは、水素原子又は炭素数1~18の一価の置換基であり、Rは、それぞれ独立して、炭素数1~4のアルキル基又はハロゲン原子であり、nは、それぞれ独立して、0~5の整数であり、qは0又は1である。)
  7.  前記一般式(1’)で示されるアリル化合物が、下記一般式(1’-1)で示される化合物である請求項6に記載のアリル化合物。
    Figure JPOXMLDOC01-appb-C000007
    (式(1’-1)中、R、X、n、qは、前記式(1’)の場合と同様である。)
  8.  請求項6に記載のアリル化合物の製造方法であって、下記一般式(2’)で示される化合物と、アリル基導入試剤とを、塩基触媒存在下にて反応させる工程を含む製造方法。
    Figure JPOXMLDOC01-appb-C000008
    (式(2’)中、Xは、水素原子又は炭素数1~18の一価の置換基であり、Rは、それぞれ独立して、炭素数1~4のアルキル基又はハロゲン原子であり、nは、それぞれ独立して、0~5の整数であり、qは0又は1である。)
PCT/JP2014/051471 2013-02-08 2014-01-24 新規アリル化合物及びその製造方法 WO2014123005A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157021399A KR102094211B1 (ko) 2013-02-08 2014-01-24 신규 알릴 화합물 및 그 제조방법
US14/766,391 US9464068B2 (en) 2013-02-08 2014-01-24 Allyl compound and method for producing the same
EP14749296.1A EP2955169B1 (en) 2013-02-08 2014-01-24 Novel allyl compound and method for producing the same
JP2014560715A JP6183790B2 (ja) 2013-02-08 2014-01-24 新規アリル化合物及びその製造方法
CN201480007361.7A CN104968637B (zh) 2013-02-08 2014-01-24 烯丙基化合物及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013023689 2013-02-08
JP2013-023689 2013-02-08

Publications (1)

Publication Number Publication Date
WO2014123005A1 true WO2014123005A1 (ja) 2014-08-14

Family

ID=51299602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051471 WO2014123005A1 (ja) 2013-02-08 2014-01-24 新規アリル化合物及びその製造方法

Country Status (7)

Country Link
US (1) US9464068B2 (ja)
EP (1) EP2955169B1 (ja)
JP (1) JP6183790B2 (ja)
KR (1) KR102094211B1 (ja)
CN (1) CN104968637B (ja)
TW (1) TWI602805B (ja)
WO (1) WO2014123005A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018052026A1 (ja) * 2016-09-13 2018-03-22 三菱瓦斯化学株式会社 化合物、樹脂、組成物、並びにレジストパターン形成方法及び回路パターン形成方法
WO2018052028A1 (ja) * 2016-09-13 2018-03-22 三菱瓦斯化学株式会社 化合物、樹脂、組成物及びパターン形成方法
WO2018135498A1 (ja) 2017-01-18 2018-07-26 三菱瓦斯化学株式会社 化合物、樹脂、組成物及びパターン形成方法
WO2018155495A1 (ja) 2017-02-23 2018-08-30 三菱瓦斯化学株式会社 化合物、樹脂、組成物、パターン形成方法及び精製方法
KR20190034213A (ko) 2016-07-21 2019-04-01 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 화합물, 수지, 조성물 및 패턴 형성방법
KR20190057060A (ko) 2016-09-20 2019-05-27 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 화합물, 수지, 조성물, 그리고 레지스트 패턴 형성방법 및 회로패턴 형성방법
KR20190057062A (ko) 2016-09-20 2019-05-27 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 화합물, 수지, 조성물, 그리고 레지스트 패턴 형성방법 및 패턴 형성방법
JP2019172885A (ja) * 2018-03-29 2019-10-10 Dic株式会社 硬化性組成物及びその硬化物
US10550068B2 (en) 2015-07-23 2020-02-04 Mitsubishi Gas Chemical Company, Inc. Compound and method for producing same
US10723690B2 (en) 2015-07-23 2020-07-28 Mitsubishi Gas Chemical Company, Inc. (Meth)acryloyl compound and method for producing same
KR20210113990A (ko) 2019-01-11 2021-09-17 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 막형성용 조성물, 레지스트 조성물, 감방사선성 조성물, 아모퍼스막의 제조방법, 레지스트 패턴 형성방법, 리소그래피용 하층막 형성용 조성물, 리소그래피용 하층막의 제조방법 및 회로패턴 형성방법
US11130724B2 (en) 2015-12-25 2021-09-28 Mitsubishi Gas Chemical Company, Inc. Compound, resin, composition, resist pattern formation method, and circuit pattern formation method
KR20230035520A (ko) 2020-07-08 2023-03-14 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 막형성용 조성물, 레지스트 조성물, 감방사선성 조성물, 아몰퍼스막의 제조방법, 레지스트패턴 형성방법, 리소그래피용 하층막형성용 조성물, 리소그래피용 하층막의 제조방법 및 회로패턴 형성방법, 광학부재형성용 조성물, 막형성용 수지, 레지스트 수지, 감방사선성 수지, 리소그래피용 하층막형성용 수지
KR20230038652A (ko) 2020-07-15 2023-03-21 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 다환 폴리페놀 수지, 조성물, 다환 폴리페놀 수지의 제조방법, 막형성용 조성물, 레지스트 조성물, 레지스트패턴 형성방법, 감방사선성 조성물, 리소그래피용 하층막형성용 조성물, 리소그래피용 하층막의 제조방법, 회로패턴 형성방법, 및 광학부재형성용 조성물
KR20230038645A (ko) 2020-07-15 2023-03-21 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 중합체, 조성물, 중합체의 제조방법, 조성물, 막형성용 조성물, 레지스트 조성물, 감방사선성 조성물, 리소그래피용 하층막형성용 조성물, 레지스트패턴 형성방법, 리소그래피용 하층막의 제조방법, 회로패턴 형성방법, 및 광학부재형성용 조성물
WO2023058524A1 (ja) * 2021-10-04 2023-04-13 群栄化学工業株式会社 化合物、樹脂、硬化性組成物、硬化物および光学部材
KR20230129974A (ko) 2021-01-19 2023-09-11 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 중합체, 조성물, 중합체의 제조방법, 막형성용 조성물, 레지스트 조성물, 레지스트패턴 형성방법, 감방사선성 조성물, 리소그래피용 하층막형성용 조성물, 리소그래피용 하층막의 제조방법, 회로패턴 형성방법, 광학부재형성용 조성물

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014123032A1 (ja) * 2013-02-08 2014-08-14 三菱瓦斯化学株式会社 レジスト組成物、レジストパターン形成方法及びそれに用いるポリフェノール誘導体
EP2955577B1 (en) 2013-02-08 2018-01-31 Mitsubishi Gas Chemical Company, Inc. Compound, material for forming underlayer film for lithography, underlayer film for lithography, and pattern forming method
KR102154109B1 (ko) 2013-02-08 2020-09-09 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 화합물, 리소그래피용 하층막 형성재료, 리소그래피용 하층막 및 패턴 형성방법
JP7026439B2 (ja) 2014-12-25 2022-02-28 三菱瓦斯化学株式会社 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜、パターン形成方法及び精製方法
US11256170B2 (en) 2015-03-31 2022-02-22 Mitsubishi Gas Chemical Company, Inc. Compound, resist composition, and method for forming resist pattern using it
EP3279190B1 (en) * 2015-03-31 2020-08-12 Mitsubishi Gas Chemical Company, Inc. Resist composition, method for forming resist pattern, and polyphenol compound used therein
KR20180048799A (ko) 2015-08-31 2018-05-10 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 리소그래피용 하층막 형성재료, 리소그래피용 하층막 형성용 조성물, 리소그래피용 하층막 및 그 제조방법, 그리고 레지스트 패턴형성방법
JP6919838B2 (ja) 2015-08-31 2021-08-18 三菱瓦斯化学株式会社 リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びその製造方法、パターン形成方法、樹脂、並びに精製方法
JP6848869B2 (ja) 2015-09-10 2021-03-24 三菱瓦斯化学株式会社 化合物、樹脂、レジスト組成物又は感放射線性組成物、レジストパターン形成方法、アモルファス膜の製造方法、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、回路パターンの形成方法、及び、精製方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137200A (ja) 2002-10-17 2004-05-13 Jfe Chemical Corp フルオレニリデンジアリルフェノールの製造方法
JP2009051780A (ja) 2007-08-28 2009-03-12 Asahi Organic Chem Ind Co Ltd テトラキス(アリルオキシフェニル)炭化水素化合物の製造方法
JP2010006770A (ja) * 2008-06-30 2010-01-14 Sanyo Chem Ind Ltd ジプロペニルエーテル化合物、その製造方法及び光カチオン重合性組成物
WO2011078060A1 (ja) * 2009-12-24 2011-06-30 昭和電工株式会社 グリシジルエーテル化合物の製造方法及びモノアリルモノグリシジルエーテル化合物
JP2011225644A (ja) * 2010-04-15 2011-11-10 Osaka Gas Chem Kk 熱可塑性樹脂およびその製造方法
JP2011236415A (ja) * 2010-04-15 2011-11-24 Osaka Gas Chem Kk 熱可塑性樹脂およびその製造方法
JP2012068652A (ja) 2005-06-06 2012-04-05 Mitsubishi Gas Chemical Co Inc レジスト用化合物およびレジスト組成物
JP2012131749A (ja) 2010-12-22 2012-07-12 Asahi Organic Chemicals Industry Co Ltd アントラセン誘導体、硬化性組成物、硬化物及びアントラセン誘導体の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3635805B2 (ja) * 1996-09-11 2005-04-06 日立化成工業株式会社 不飽和モノイソシアネート変性ポリアミド系樹脂の製造法
JP5756134B2 (ja) * 2013-01-08 2015-07-29 信越化学工業株式会社 金属酸化物含有膜形成用組成物及びパターン形成方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137200A (ja) 2002-10-17 2004-05-13 Jfe Chemical Corp フルオレニリデンジアリルフェノールの製造方法
JP2012068652A (ja) 2005-06-06 2012-04-05 Mitsubishi Gas Chemical Co Inc レジスト用化合物およびレジスト組成物
JP2012093784A (ja) 2005-06-06 2012-05-17 Mitsubishi Gas Chemical Co Inc レジスト用化合物およびレジスト組成物
JP2012118551A (ja) 2005-06-06 2012-06-21 Mitsubishi Gas Chemical Co Inc レジスト用化合物およびレジスト組成物
JP2009051780A (ja) 2007-08-28 2009-03-12 Asahi Organic Chem Ind Co Ltd テトラキス(アリルオキシフェニル)炭化水素化合物の製造方法
JP2010006770A (ja) * 2008-06-30 2010-01-14 Sanyo Chem Ind Ltd ジプロペニルエーテル化合物、その製造方法及び光カチオン重合性組成物
WO2011078060A1 (ja) * 2009-12-24 2011-06-30 昭和電工株式会社 グリシジルエーテル化合物の製造方法及びモノアリルモノグリシジルエーテル化合物
JP2011225644A (ja) * 2010-04-15 2011-11-10 Osaka Gas Chem Kk 熱可塑性樹脂およびその製造方法
JP2011236415A (ja) * 2010-04-15 2011-11-24 Osaka Gas Chem Kk 熱可塑性樹脂およびその製造方法
JP2012131749A (ja) 2010-12-22 2012-07-12 Asahi Organic Chemicals Industry Co Ltd アントラセン誘導体、硬化性組成物、硬化物及びアントラセン誘導体の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
K. DAYANANDA ET AL.: "Photochemical attachment of polymers on planar surfaces with a covalently anchored monolayer of a novel naphthyl ketone photochemical radical generator", JOURNAL OF POLYMER SCIENCE , PART A: POLYMER CHEMISTRY, vol. 42, no. 21, 2004, pages 5413 - 5423, XP055269786 *
See also references of EP2955169A4 *
Y. NAKAMURA ET AL.: "INTERNE PHOTOCYCLISIERUNGEN VON BI-1,2-DIHYDRO- ISOCHINOLINEN UND EINES METHYLEN-BIS- NAPHTHALINONS", HETEROCYCLES, vol. 5, no. 1, 1976, pages 427 - 443, XP008180129 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10723690B2 (en) 2015-07-23 2020-07-28 Mitsubishi Gas Chemical Company, Inc. (Meth)acryloyl compound and method for producing same
US10550068B2 (en) 2015-07-23 2020-02-04 Mitsubishi Gas Chemical Company, Inc. Compound and method for producing same
US11130724B2 (en) 2015-12-25 2021-09-28 Mitsubishi Gas Chemical Company, Inc. Compound, resin, composition, resist pattern formation method, and circuit pattern formation method
KR20190034213A (ko) 2016-07-21 2019-04-01 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 화합물, 수지, 조성물 및 패턴 형성방법
WO2018052026A1 (ja) * 2016-09-13 2018-03-22 三菱瓦斯化学株式会社 化合物、樹脂、組成物、並びにレジストパターン形成方法及び回路パターン形成方法
WO2018052028A1 (ja) * 2016-09-13 2018-03-22 三菱瓦斯化学株式会社 化合物、樹脂、組成物及びパターン形成方法
JP2022130463A (ja) * 2016-09-13 2022-09-06 三菱瓦斯化学株式会社 化合物、樹脂、組成物、並びにレジストパターン形成方法及び回路パターン形成方法
KR20190049731A (ko) 2016-09-13 2019-05-09 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 화합물, 수지, 조성물, 그리고 레지스트패턴 형성방법 및 회로패턴 형성방법
KR20190053187A (ko) 2016-09-13 2019-05-17 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 화합물, 수지, 조성물 및 패턴 형성방법
KR20190057060A (ko) 2016-09-20 2019-05-27 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 화합물, 수지, 조성물, 그리고 레지스트 패턴 형성방법 및 회로패턴 형성방법
KR20190057062A (ko) 2016-09-20 2019-05-27 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 화합물, 수지, 조성물, 그리고 레지스트 패턴 형성방법 및 패턴 형성방법
JPWO2018135498A1 (ja) * 2017-01-18 2019-11-07 三菱瓦斯化学株式会社 化合物、樹脂、組成物及びパターン形成方法
WO2018135498A1 (ja) 2017-01-18 2018-07-26 三菱瓦斯化学株式会社 化合物、樹脂、組成物及びパターン形成方法
KR20190104348A (ko) 2017-01-18 2019-09-09 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 화합물, 수지, 조성물 및 패턴 형성방법
JP7083455B2 (ja) 2017-01-18 2022-06-13 三菱瓦斯化学株式会社 化合物、樹脂、組成物及びパターン形成方法
KR20190123732A (ko) 2017-02-23 2019-11-01 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 화합물, 수지, 조성물, 패턴형성방법 및 정제방법
WO2018155495A1 (ja) 2017-02-23 2018-08-30 三菱瓦斯化学株式会社 化合物、樹脂、組成物、パターン形成方法及び精製方法
JP2019172885A (ja) * 2018-03-29 2019-10-10 Dic株式会社 硬化性組成物及びその硬化物
JP7014006B2 (ja) 2018-03-29 2022-02-15 Dic株式会社 硬化性組成物及びその硬化物
KR20210113990A (ko) 2019-01-11 2021-09-17 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 막형성용 조성물, 레지스트 조성물, 감방사선성 조성물, 아모퍼스막의 제조방법, 레지스트 패턴 형성방법, 리소그래피용 하층막 형성용 조성물, 리소그래피용 하층막의 제조방법 및 회로패턴 형성방법
KR20230035520A (ko) 2020-07-08 2023-03-14 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 막형성용 조성물, 레지스트 조성물, 감방사선성 조성물, 아몰퍼스막의 제조방법, 레지스트패턴 형성방법, 리소그래피용 하층막형성용 조성물, 리소그래피용 하층막의 제조방법 및 회로패턴 형성방법, 광학부재형성용 조성물, 막형성용 수지, 레지스트 수지, 감방사선성 수지, 리소그래피용 하층막형성용 수지
KR20230038652A (ko) 2020-07-15 2023-03-21 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 다환 폴리페놀 수지, 조성물, 다환 폴리페놀 수지의 제조방법, 막형성용 조성물, 레지스트 조성물, 레지스트패턴 형성방법, 감방사선성 조성물, 리소그래피용 하층막형성용 조성물, 리소그래피용 하층막의 제조방법, 회로패턴 형성방법, 및 광학부재형성용 조성물
KR20230038645A (ko) 2020-07-15 2023-03-21 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 중합체, 조성물, 중합체의 제조방법, 조성물, 막형성용 조성물, 레지스트 조성물, 감방사선성 조성물, 리소그래피용 하층막형성용 조성물, 레지스트패턴 형성방법, 리소그래피용 하층막의 제조방법, 회로패턴 형성방법, 및 광학부재형성용 조성물
KR20230129974A (ko) 2021-01-19 2023-09-11 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 중합체, 조성물, 중합체의 제조방법, 막형성용 조성물, 레지스트 조성물, 레지스트패턴 형성방법, 감방사선성 조성물, 리소그래피용 하층막형성용 조성물, 리소그래피용 하층막의 제조방법, 회로패턴 형성방법, 광학부재형성용 조성물
WO2023058524A1 (ja) * 2021-10-04 2023-04-13 群栄化学工業株式会社 化合物、樹脂、硬化性組成物、硬化物および光学部材

Also Published As

Publication number Publication date
TW201446717A (zh) 2014-12-16
EP2955169A1 (en) 2015-12-16
US20150368224A1 (en) 2015-12-24
JPWO2014123005A1 (ja) 2017-02-02
EP2955169B1 (en) 2017-03-15
JP6183790B2 (ja) 2017-08-23
US9464068B2 (en) 2016-10-11
KR20150113005A (ko) 2015-10-07
CN104968637B (zh) 2017-12-26
KR102094211B1 (ko) 2020-03-27
TWI602805B (zh) 2017-10-21
EP2955169A4 (en) 2016-06-22
CN104968637A (zh) 2015-10-07

Similar Documents

Publication Publication Date Title
JP6183790B2 (ja) 新規アリル化合物及びその製造方法
JP5958734B2 (ja) 新規エポキシ化合物及びその製造方法
EP3051350B1 (en) Alcoholic compound and method for producing alcoholic compound
JP2008063314A (ja) 環境調和型超原子価ヨウ素試剤
CN107245029B (zh) 一种酮类化合物及其合成方法
Lindwall et al. Preparation of certain brominated cinchophens
JP5090107B2 (ja) テトラキス(アリルオキシフェニル)炭化水素化合物の製造方法
JP5092140B2 (ja) 非対称型ビス(ターピリジン)化合物の合成方法
TWI652256B (zh) Method for producing halogen compound
CN105152903A (zh) 一种脂肪族二元羧酸的制备方法
JP2008285544A (ja) フルオレン環を含むエポキシ化合物およびその製造方法
JP6950686B2 (ja) 多環芳香族アミノフェノール化合物および樹脂組成物の製造方法、並びに前記多環芳香族アミノフェノール化合物、樹脂組成物、および硬化物
JP5899110B2 (ja) ジアリール誘導体の製造方法、新規ビナフチル誘導体、アレーン誘導体の製造方法、及び新規アレーン誘導体
JP2006001888A (ja) イソシアヌル酸化合物
JP2009209117A (ja) エポキシ化合物、及びその製造方法ならびにエポキシ樹脂組成物、及びその硬化体
JP5081146B2 (ja) 原子移動ラジカルカップリング反応を用いる1,2−フェニルエタン系化合物の製造方法
WO2019117019A1 (ja) ジオールの製造方法
JP4234623B2 (ja) 1,1’−ビナフチル−6,6’−イレン骨格を有する芳香族ポリケトン及び芳香族ポリケトン前駆体並びにこれらの製造方法
JP2010083809A (ja) 3,3’−ジニトロベンジジン化合物又は3,3’−ジアミノベンジジン化合物の製造方法
JP6024410B2 (ja) ヒドロキシアダマンタンポリカルボン酸化合物の製造方法
KR101511235B1 (ko) 2,6-다이아미노-9,10-다이하이드로안트라센을 고순도로 정제하는 방법
TW202302509A (zh) 具有三苯基烷骨架的新穎參烯丙基醚化合物
CN114685415A (zh) 一种曲酸二聚体的合成方法
JP2014005224A (ja) 芳香族ジアルデヒド化合物及びオリゴビニレンフェニレン化合物の製造方法
JP2009057352A (ja) 脂環式ビニルエーテル化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749296

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014560715

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014749296

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014749296

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14766391

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157021399

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE