WO2014109349A1 - 硬化性樹脂組成物及びその硬化物 - Google Patents
硬化性樹脂組成物及びその硬化物 Download PDFInfo
- Publication number
- WO2014109349A1 WO2014109349A1 PCT/JP2014/050190 JP2014050190W WO2014109349A1 WO 2014109349 A1 WO2014109349 A1 WO 2014109349A1 JP 2014050190 W JP2014050190 W JP 2014050190W WO 2014109349 A1 WO2014109349 A1 WO 2014109349A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- resin composition
- curable resin
- silsesquioxane
- ladder
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
- H01L23/293—Organic, e.g. plastic
- H01L23/296—Organo-silicon compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/48—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
- C08G77/50—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3477—Six-membered rings
- C08K5/3492—Triazines
- C08K5/34924—Triazines containing cyanurate groups; Tautomers thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
- C08K5/5435—Silicon-containing compounds containing oxygen containing oxygen in a ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/56—Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J183/00—Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
- C09J183/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/045—Polysiloxanes containing less than 25 silicon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/20—Polysiloxanes containing silicon bound to unsaturated aliphatic groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
- C08K5/5415—Silicon-containing compounds containing oxygen containing at least one Si—O bond
- C08K5/5419—Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
- C08L83/08—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/10—Block- or graft-copolymers containing polysiloxane sequences
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/14—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- a material covering a semiconductor element is generally required to have a heat resistance of about 150 ° C. or higher.
- a material (encapsulant) that covers an optical material such as an optical semiconductor element is required to have excellent physical properties such as transparency and flexibility in addition to heat resistance.
- an epoxy resin material or a silicone resin material is used as a sealing material in a backlight unit of a liquid crystal display.
- Patent Document 1 as a material having high heat resistance and good heat dissipation, at least one first organosilicon polymer having a crosslinked structure of siloxane (Si—O—Si conjugate) and a linear shape of siloxane are disclosed.
- a synthetic polymer compound containing at least one kind of a third organosilicon polymer having a molecular weight of 20,000 to 800,000, which is linked to at least one second organosilicon polymer having a linking structure by a siloxane bond. is disclosed. However, the physical properties of these materials are not yet satisfactory.
- Patent Document 2 discloses a resin composition for sealing an optical element having excellent transparency, UV resistance, and heat resistance coloring property, which contains an aliphatic carbon-carbon unsaturated bond and does not contain an H—Si bond. At least selected from the group consisting of a liquid silsesquioxane of a type structure and a liquid silsesquioxane of a saddle type structure containing an H—Si bond and no aliphatic carbon-carbon unsaturated bond A resin composition for sealing an optical element containing one kind of silsesquioxane as a resin component is disclosed. However, since the cured product of the resin composition containing cage silsesquioxane is relatively hard and lacks flexibility, there is a problem that cracks and cracks are likely to occur.
- Patent Document 3 discloses an organic compound such as triallyl isocyanurate containing at least two carbon-carbon double bonds reactive with SiH groups in one molecule, and at least two SiH groups in one molecule.
- a curable composition containing a chain-containing and / or cyclic polyorganosiloxane-containing compound and a hydrosilylation catalyst as an essential component is disclosed.
- the physical properties such as crack resistance of these materials are still not satisfactory.
- the sealing material of the optical semiconductor element does not cause deterioration even when high-temperature heat is applied in the reflow process at the time of manufacturing the optical semiconductor device, in addition to the various characteristics described above, specifically, There is a demand for characteristics (which may be collectively referred to as “reflow resistance”) that do not easily cause cracks in the sealing material and do not cause defects such as peeling from the package.
- reflow resistance a characteristic in which a crack is unlikely to occur in a sealing material.
- the sealing material for the optical semiconductor element is required to have a high barrier property against a corrosive gas such as SOx gas. This is because metal materials such as electrodes in an optical semiconductor device are easily corroded by corrosive gas, and such corrosion causes a problem that current-carrying characteristics (for example, current-carrying characteristics in a high temperature environment) deteriorate over time. .
- a sealing material using a conventional silicone resin material widely used as a sealing material for optical semiconductor elements has insufficient barrier properties against the corrosive gas, and is described in the above-mentioned Patent Documents 1 to 3. Similarly, the material has a problem that the barrier property against the corrosive gas is insufficient.
- the object of the present invention is to have excellent heat resistance, transparency and flexibility, in particular, excellent reflow resistance (crack resistance in the reflow process, adhesion to the package, etc.) and barrier property against corrosive gas.
- Another object of the present invention is to provide a curable resin composition capable of forming a cured product.
- Another object of the present invention is to provide a cured product having excellent heat resistance, transparency and flexibility, and particularly excellent reflow resistance and barrier properties against corrosive gas.
- the present inventors have found that a curable resin composition in which a ladder type polyorganosilsesquioxane, an isocyanurate compound, and a silane coupling agent are added to polyorganosiloxane having no aryl group has excellent heat resistance.
- the present inventors have found that a cured product having transparency and flexibility, in particular, excellent reflow resistance and barrier property against corrosive gas can be formed.
- the present invention also provides the above curable resin composition comprising a ladder-type silsesquioxane having a Si—H bond in the molecule as the silsesquioxane (B). Moreover, this invention provides said curable resin composition containing the ladder type silsesquioxane which has an aryl group in a molecule
- R 1 and R 2 are the same or different and each represents a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms.
- the curable resin composition comprising the isocyanurate compound represented by the formula: Moreover, this invention provides said curable resin composition in which any one or more among Rx , Ry , Rz in Formula (1) is group represented by Formula (3). Moreover, this invention provides the hardened
- the present invention relates to the following.
- Polyorganosiloxane (A), silsesquioxane (B), isocyanurate compound (C), and silane coupling agent (D) and polyorganosiloxane (A) having no aryl group
- a curable resin composition comprising siloxane and a ladder-type silsesquioxane as silsesquioxane (B).
- polyorganosiloxysilalkylene polyorganosiloxysilalkylene having a structure represented by the following formula (I-1) and polyorganosiloxysilalkylene having a structure represented by the following formula (I-2) And the curable resin composition according to any one of [5] to [7].
- R a to R f each represent a hydrogen atom, a monovalent hydrocarbon group not containing an aryl group, or a monovalent heterocyclic group. However, at least one of R a to R f is a monovalent group containing an aliphatic carbon-carbon unsaturated bond.
- R g represents a divalent hydrocarbon group containing no aryl group.
- R a to R f each represent a hydrogen atom, a monovalent hydrocarbon group not containing an aryl group, or a monovalent heterocyclic group. However, one or more of R a to R f are hydrogen atoms.
- R g represents a divalent hydrocarbon group containing no aryl group.
- s1 and s2 each represent an integer of 1 or more.
- R a to R f in the formula (I-1) are each a hydrogen atom, a linear or branched alkyl group, or a monovalent group containing an aliphatic carbon-carbon unsaturated bond ( Provided that at least one of R a to R f is a monovalent group containing an aliphatic carbon-carbon unsaturated bond), and R a to R f in the formula (I-2) are A hydrogen atom, a linear or branched alkyl group, or a monovalent group containing an aliphatic carbon-carbon unsaturated bond (provided that one or more of R a to R f are hydrogen atoms) [8 ]
- the curable resin composition of description are each a hydrogen atom, a linear or branched alkyl group, or a monovalent group containing an aliphatic carbon-carbon unsaturated bond ( Provided that at least one of R a to R f is a monovalent group containing an aliphatic carbon-carbon unsaturated bond), and
- the content (blending amount) of silsesquioxane (B) is 5 to 45% by weight with respect to the total amount (100% by weight) of the curable resin composition.
- the silsesquioxane (B) includes a ladder-type silsesquioxane (B1) having an aliphatic carbon-carbon double bond in the molecule, according to any one of [1] to [11] Curable resin composition.
- the ratio (by weight) of the aliphatic carbon-carbon double bond contained in the ladder-type silsesquioxane (B1) is 2.0 to 15.0% by weight in terms of vinyl group
- the silsesquioxane (B) includes a ladder-type silsesquioxane (B2) having a Si—H bond in the molecule. Composition.
- the ladder-type silsesquioxane (B2) has a post-described hydrogen atom or a post-Si—H bond group content of 0.01 to 0.5 mmol / g.
- the ratio (total amount) of ladder-type silsesquioxane (B1) and ladder-type silsesquioxane (B2) to the total amount (100% by weight) of silsesquioxane (B) is 60% by weight or more.
- the curable resin composition of the present invention has the above configuration, a cured product having excellent heat resistance, transparency and flexibility can be formed.
- the cured product is excellent in reflow resistance, more specifically, crack resistance in a reflow process, adhesion to a package, and the like, and also has excellent barrier properties against corrosive gases such as SOx gas.
- the curable resin composition of this invention can be preferably used as a sealing agent of an optical semiconductor element (LED element), and an optical semiconductor element is sealed with the hardened
- the optical semiconductor device obtained in this way has excellent quality and durability.
- the curable resin composition of the present invention is useful as a sealant for a next-generation light source that requires heat resistance to an unprecedented high temperature (for example, 180 ° C. or higher).
- the curable resin composition of the present invention is a curable resin composition containing a polyorganosiloxane (A), a silsesquioxane (B), an isocyanurate compound (C), and a silane coupling agent (D).
- the curable resin composition is characterized in that the polyorganosiloxane (A) is a polyorganosiloxane having no aryl group and includes a ladder-type silsesquioxane as the silsesquioxane (B).
- the polyorganosiloxane (A) in the curable resin composition of the present invention is a polyorganosiloxane having a main chain composed of siloxane bonds (Si—O—Si) and having no aryl group. is there.
- a polyorganosiloxane (A) polyorganosiloxane having no aryl group
- a cured product having excellent heat resistance, flexibility and crack resistance can be obtained.
- the polyorganosiloxane (A) may be a polyorganosiloxane having a straight chain or a branched chain.
- the polyorganosiloxane (A) is preferably a polyorganosiloxane having a branched chain from the viewpoint of the strength of the cured product.
- Examples of the substituent of the silicon atom in the polyorganosiloxane (A) include a hydrogen atom, a group having a Si—H bond, a substituted or unsubstituted hydrocarbon group not containing an aryl group (preferably an alkyl group, an alkenyl group, Cycloalkyl group or cycloalkenyl group), hydroxyl group, alkoxy group, alkenyloxy group, acyloxy group, mercapto group (thiol group), alkylthio group, alkenylthio group, carboxyl group, alkoxycarbonyl group, amino group or substituted amino group (Mono or dialkylamino group, acylamino group, etc.), epoxy group, halogen atom and the like.
- an aryl group preferably an alkyl group, an alkenyl group, Cycloalkyl group or cycloalkenyl group
- hydroxyl group preferably an alkyl group, an alkenyl group,
- alkyl group a C 1-10 alkyl group is preferable, and a C 1-4 alkyl group is more preferable.
- the alkenyl group is preferably a C 2-10 alkenyl group, and more preferably a C 2-4 alkenyl group.
- the cycloalkyl group is preferably a C 3-12 cycloalkyl group.
- As the cycloalkenyl group a C 3-12 cycloalkenyl group is preferable.
- alkoxy group a C 1-6 alkoxy group is preferable.
- the alkenyloxy group is preferably a C 1-6 alkenyloxy group.
- acyloxy group a C 1-6 acyloxy group is preferable.
- alkylthio group a C 1-6 alkylthio group is preferable.
- alkenylthio group a C 1-6 alkenylthio group is preferable.
- carboxyl group a C 1-6 carboxyl group is preferable.
- the alkoxycarbonyl group is preferably a C 1-6 alkoxycarbonyl group.
- the substituent is selected from a hydrogen atom, a group having a Si—H bond, and a substituted or unsubstituted hydrocarbon group not containing an aryl group (preferably an alkyl group or an alkenyl group). Particularly preferred is a polyorganosiloxane having at least one substituent.
- the number average molecular weight of the polyorganopolysiloxane (A) is not particularly limited, but is preferably 500 to 20000, more preferably 1000 to 10,000, and still more preferably 2000 to 8000.
- the weight average molecular weight is not particularly limited, but is preferably 500 to 50000, more preferably 5000 to 40000, and still more preferably 10,000 to 30000.
- the number average molecular weight and / or the weight average molecular weight can be calculated as, for example, a molecular weight in terms of polystyrene by gel permeation chromatography.
- the polyorganosiloxane (A) can be used singly or in combination of two or more.
- the content (blending amount) of the polyorganosiloxane (A) in the curable resin composition of the present invention is not particularly limited, but is 55 to 95% by weight with respect to the total amount (100% by weight) of the curable resin composition. It is preferably 60 to 92% by weight, more preferably 65 to 90% by weight. If the content is less than 55% by weight, the crack resistance of the cured product may be lowered. On the other hand, if the content exceeds 95% by weight, gas barrier properties against corrosive gases such as SOx may not be sufficiently obtained.
- polyorganosiloxanes (A) in particular, a polyorgano having a —Si—O— group (siloxy group) as a main chain and a —Si—A— group [silalkylene group; A represents an alkylene group]. It is preferable to use siloxane (hereinafter, the polyorganosiloxane is referred to as “polyorganosiloxysilalkylene”).
- the alkylene group (A) in the silalkylene group of the polyorganosiloxysilalkylene includes, for example, a linear or branched alkylene group having 1 to 12 carbon atoms, preferably 2 to 4 carbon atoms.
- the polyorganosiloxysilalkylene is less likely to produce a low molecular weight ring in the production process than polyorganosiloxane in the narrow sense (polyorganosiloxane whose main chain is composed only of —Si—O— groups), and is not heated. Therefore, a cured product obtained using polyorganosiloxysilalkylene has a low surface tackiness and tends to be more difficult to yellow.
- the polyorganosiloxysilalkylene can be produced, for example, by the method described in JP2012-140617A.
- trade names “GD-1012A”, “GD-1012B” both manufactured by Choko Chemical Industry Co., Ltd.
- examples of the polyorganosiloxysilalkylene include polyorganosiloxysilalkylene having a structure represented by the following formula (I).
- R a , R b , R c , R d , R e , and R f are each a monovalent hydrocarbon group containing no hydrogen atom or aryl group.
- R a to R f representing a monovalent heterocyclic group may be a monovalent group containing a hydrogen atom or an aliphatic carbon-carbon unsaturated bond.
- Examples of the monovalent hydrocarbon group not containing the aryl group include a monovalent aliphatic hydrocarbon group; a monovalent alicyclic hydrocarbon group; an aliphatic hydrocarbon group and an alicyclic hydrocarbon group. And monovalent groups in which the above are bonded.
- Examples of the monovalent heterocyclic group include a pyridyl group, a furyl group, a thienyl group, and the like.
- Examples of the monovalent aliphatic hydrocarbon group include an alkyl group, an alkenyl group, and an alkynyl group.
- Examples of the alkyl group include linear or branched C 1-20 such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, octyl group, isooctyl group, decyl group, and dodecyl group.
- Examples thereof include an alkyl group (preferably a C 1-10 alkyl group, more preferably a C 1-4 alkyl group).
- alkenyl group examples include vinyl group, allyl group, methallyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group and 2-pentenyl group.
- C 2-20 alkenyl groups preferably C 2-10 alkenyl groups, more preferably C 2-4 alkenyl groups
- alkynyl group examples include C 2-20 alkynyl groups such as ethynyl group and propynyl group (preferably C 2-10 alkynyl group, more preferably C 2-4 alkynyl group).
- Examples of the monovalent alicyclic hydrocarbon group include a C 3-12 cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclododecyl group; and a C 3 ⁇ group such as a cyclohexenyl group. 12 cycloalkenyl groups; C 4-15 bridged cyclic hydrocarbon groups such as bicycloheptanyl group and bicycloheptenyl group.
- examples of the group in which an aliphatic hydrocarbon group and an alicyclic hydrocarbon group are bonded include a cyclohexylmethyl group and a methylcyclohexyl group.
- the monovalent hydrocarbon group not containing the aryl group may have a substituent. That is, the monovalent hydrocarbon group not containing the aryl group may be a group in which at least one hydrogen atom of the monovalent hydrocarbon group not containing the aryl group exemplified above is replaced with a substituent.
- the substituent preferably has 0 to 20 carbon atoms, more preferably 0 to 10 carbon atoms.
- substituents include a halogen atom; a hydroxyl group; an alkoxy group; an alkenyloxy group; an acyloxy group; an mercapto group; an alkylthio group; an alkenylthio group; a carboxyl group; Or a dialkylamino group; an acylamino group; an epoxy group-containing group; an oxetanyl group-containing group; an acyl group; an oxo group; an isocyanate group; a group in which two or more of these are bonded via a C 1-6 alkylene group, if necessary. Can be mentioned.
- alkoxy group examples include C 1-6 alkoxy groups (preferably C 1-4 alkoxy groups) such as a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a butoxy group, and an isobutyloxy group.
- alkenyloxy group examples include a C 2-6 alkenyloxy group (preferably a C 2-4 alkenyloxy group) such as an allyloxy group.
- acyloxy group examples include C 1-12 acyloxy groups such as an acetyloxy group, a propionyloxy group, a (meth) acryloyloxy group, and a benzoyloxy group.
- alkylthio group examples include C 1-6 alkylthio groups (preferably C 1-4 alkylthio groups) such as a methylthio group and an ethylthio group.
- alkenylthio group examples include C 2-6 alkenylthio groups (preferably C 2-4 alkenylthio groups) such as an allylthio group.
- alkoxycarbonyl group examples include C 1-6 alkoxy-carbonyl groups such as a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, and a butoxycarbonyl group.
- Examples of the mono- or dialkylamino group include mono- or di-C 1-6 alkylamino groups such as a methylamino group, an ethylamino group, a dimethylamino group, and a diethylamino group.
- Examples of the acylamino group include C 1-11 acylamino groups such as an acetylamino group, a propionylamino group, and a benzoylamino group.
- Examples of the epoxy group-containing group include a glycidyl group, a glycidyloxy group, and a 3,4-epoxycyclohexyl group.
- oxetanyl group containing group an ethyl oxetanyloxy group etc. are mentioned, for example.
- acyl group an acetyl group, a propionyl group, a benzoyl group etc. are mentioned, for example.
- the halogen atom include a chlorine atom, a bromine atom, and an iodine atom.
- the monovalent heterocyclic group may have a substituent.
- substituent the thing similar to the substituent which the said monovalent hydrocarbon group may have is illustrated.
- the monovalent hydrocarbon group and monovalent heterocyclic group not containing the aryl group include, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a hexyl group, and an octyl group.
- decyl group substituted hydrocarbon group (for example, 2- (3,4-epoxycyclohexyl) ethyl group, 3-glycidylpropyl group, 3-methacryloxypropyl group, 3-acryloxypropyl group, N- 2- (aminoethyl) -3-aminopropyl group, 3-aminopropyl group, 3-mercaptopropyl group, 3-isocyanatopropyl group, etc.).
- hydrocarbon group for example, 2- (3,4-epoxycyclohexyl) ethyl group, 3-glycidylpropyl group, 3-methacryloxypropyl group, 3-acryloxypropyl group, N- 2- (aminoethyl) -3-aminopropyl group, 3-aminopropyl group, 3-mercaptopropyl group, 3-isocyanatopropyl group, etc.
- Examples of the group other than the monovalent group containing a hydrogen atom and an aliphatic carbon-carbon unsaturated bond as R a to R f in the above formula (I) include the viewpoint of flexibility and crack resistance of the cured product. And a linear or branched alkyl group is preferred.
- Examples of the monovalent group containing an aliphatic carbon-carbon unsaturated bond include a vinyl group, allyl group, methallyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3- Alkenyl groups such as butenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group and 5-hexenyl group; alkynyl groups such as ethynyl group and propynyl group; cycloalkenyl groups such as cyclohexenyl group Other groups having the above alkenyl group, alkynyl group or cycloalkenyl group (for example, acryl group, methacryl group, 2- (allyloxy) ethyl group, 3- (allyloxy) propyl group, 2,2-bis (allyloxymethyl); ) Aliphatic carbon-carbon such as butyl group, 3-allyloxy-2,2-bis
- R a to R f in the above formula (I) may be the same or different.
- the above formula (I) in the case where one or more of R a to R f is a monovalent group containing an aliphatic carbon-carbon unsaturated bond may be referred to as formula (I-1).
- the above formula (I) when one or more of R a to R f are hydrogen atoms may be referred to as formula (I-2).
- the polyorganosiloxysilalkylene may be a polyorganosiloxysilalkylene having a structure represented by the formula (I-1) or a polyorganosiloxysilalkylene having a structure represented by the formula (I-2).
- Siloxysylalkylene may be used.
- R g represents a divalent hydrocarbon group containing no aryl group.
- the divalent hydrocarbon group not containing the aryl group include, for example, a linear or branched alkylene group (for example, a group represented by — [CH 2 ] t — and the like: t is an integer of 1 or more) And a divalent alicyclic hydrocarbon group.
- the linear or branched alkylene group include a linear or branched alkylene group having 1 to 18 carbon atoms such as a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group. Groups and the like.
- divalent alicyclic hydrocarbon group examples include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group, 1,3-cyclohexene group.
- divalent cycloalkylene groups such as a silylene group, 1,4-cyclohexylene group, and cyclohexylidene group.
- s1 represents an integer of 1 or more.
- subjected s1 may respectively be the same, and may differ.
- the addition form of the structures is not particularly limited, and may be a random type or a block type.
- s2 represents an integer of 1 or more.
- the structure in the parenthesis to which s2 is attached may be the same or different.
- the addition form of the structures is not particularly limited, and may be a random type or a block type.
- the addition form of the structure in parentheses with s1 and the structure in parentheses with s2 is not particularly limited, and may be a random type or a block type. May be.
- the terminal structure of the polyorganosiloxysilalkylene is not particularly limited, and examples thereof include a silanol group, an alkoxysilyl group, and a trialkylsilyl group (for example, a trimethylsilyl group).
- Various groups such as a group containing an aliphatic carbon-carbon unsaturated bond and a hydrosilyl group may be introduced at the terminal of the polyorganosiloxysilalkylene.
- polyorganosiloxysilalkylene represented by the above formula (I) may have a linear or branched chain structure as described above.
- the curable resin composition of the present invention has at least an aliphatic carbon-carbon unsaturated bond in the molecule as the polyorganosiloxysilalkylene (for example, aliphatic carbon-carbon unsaturated in the terminal and / or side chain)
- Polyorganosiloxysilalkylene having a group containing a bond polyorganosiloxysilalkylene having a structure represented by formula (I) having a group containing an aliphatic carbon-carbon unsaturated bond at the terminal and / or side chain, etc.)
- the ratio of polyorganosiloxysilalkylene to the total amount (100% by weight) of polyorganosiloxane (A) in the curable resin composition of the present invention is not particularly limited, but is 60% by weight or more (for example, 60 to 100% by weight). Is preferable, more preferably 80% by weight or more, and still more preferably 90% by weight or more. If the ratio of polyorganosiloxysilalkylene is less than 60% by weight, the cured product tends to yellow, or the surface tends to have tackiness and the handleability tends to decrease.
- the curable resin composition of this invention contains the silsesquioxane (B) which has ladder type silsesquioxane as a main component.
- Ladder-type silsesquioxane is a polysiloxane having a crosslinked three-dimensional structure.
- Polysiloxane is a compound having a main chain composed of siloxane bonds (Si—O—Si), and the basic structural unit thereof is an M unit (a monovalent group in which a silicon atom is bonded to one oxygen atom).
- M unit a monovalent group in which a silicon atom is bonded to one oxygen atom.
- D unit unit consisting of a divalent group in which a silicon atom is bonded to two oxygen atoms
- T unit unit consisting of a trivalent group in which a silicon atom is bonded to three oxygen atoms
- Q unit unit consisting of a tetravalent group in which a silicon atom is bonded to four oxygen atoms).
- Silsesquioxane is a polysiloxane of the T units and basic units, the empirical formula (basic structure) is represented by RSiO 1.5.
- Examples of the structure of the Si—O—Si skeleton of silsesquioxane include a random structure, a cage structure, and a ladder structure.
- a ladder-type silsesquioxane is a silsesquioxane having a structure of a Si—O—Si skeleton having a ladder structure. Sesquioxane.
- Ladder silsesquioxane in the present invention are represented by the empirical formula (Basic Structure) RSiO 1.5, R is hydrogen, a halogen atom, a monovalent organic group, a monovalent oxygen-containing group, monovalent A nitrogen atom-containing group or a monovalent sulfur atom-containing group, and at least a part of the R is a monovalent organic group.
- Said R may be the same respectively, and may differ.
- halogen atom for R examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- monovalent organic group in R examples include, for example, a substituted or unsubstituted hydrocarbon group (monovalent hydrocarbon group), an alkoxy group, an alkenyloxy group, an aryloxy group, an aralkyloxy group, an acyloxy group, and an alkylthio group.
- hydrocarbon group in R examples include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group in which two or more of these are bonded.
- Examples of the aliphatic hydrocarbon group for R include an alkyl group, an alkenyl group, and an alkynyl group.
- Examples of the alkyl group include C 1-20 alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, octyl group, isooctyl group, decyl group, dodecyl group (preferably C 1- 10 alkyl group, more preferably C 1-4 alkyl group).
- alkenyl group examples include a vinyl group, allyl group, methallyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group, 2-pentenyl group, Examples thereof include C 2-20 alkenyl groups (preferably C 2-10 alkenyl groups, more preferably C 2-4 alkenyl groups) such as 3-pentenyl group, 4-pentenyl group, and 5-hexenyl group.
- alkynyl group examples include C 2-20 alkynyl groups such as ethynyl group and propynyl group (preferably C 2-10 alkynyl group, more preferably C 2-4 alkynyl group).
- Examples of the alicyclic hydrocarbon group for R include C 3-12 cycloalkyl groups such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, and cyclododecyl group; and C 3-12 groups such as cyclohexenyl group.
- a C 4-15 bridged cyclic hydrocarbon group such as a bicycloheptanyl group and a bicycloheptenyl group.
- Examples of the aromatic hydrocarbon group for R include C 6-14 aryl groups (particularly, C 6-10 aryl groups) such as a phenyl group and a naphthyl group.
- Examples of the group in which the aliphatic hydrocarbon group and the alicyclic hydrocarbon group in R are bonded to each other include a cyclohexylmethyl group and a methylcyclohexyl group.
- Examples of the group in which the aliphatic hydrocarbon group and the aromatic hydrocarbon group are bonded include, for example, C 7-18 aralkyl groups such as benzyl group and phenethyl group (particularly C 7-10 aralkyl groups), and C such as cinnamyl group.
- Examples thereof include C 1-4 alkyl-substituted aryl groups such as 6-10 aryl-C 2-6 alkenyl groups and tolyl groups, and C 2-4 alkenyl-substituted aryl groups such as styryl groups.
- the hydrocarbon group for R may have a substituent.
- the number of carbon atoms of the substituent in the hydrocarbon group is preferably 0-20, more preferably 0-10.
- the substituent include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; hydroxyl group; alkoxy group such as methoxy group, ethoxy group, propoxy group, isopropyloxy group, butoxy group and isobutyloxy group (Preferably C 1-6 alkoxy group, more preferably C 1-4 alkoxy group); alkenyloxy group such as allyloxy group (preferably C 2-6 alkenyloxy group, more preferably C 2-4 alkenyloxy group)
- the aromatic ring may have a substituent such as a C 1-4 alkyl group, a C 2-4 alkenyl group, a halogen atom, a C 1-4 alkoxy group, such as a phenoxy group, a tolyl
- alkylthio group preferably a C 1-6 alkylthio group, more preferably a C 1-4 alkylthio group
- an alkenylthio group such as an allylthio group (preferably a C 2-6 alkenylthio group, more preferably a C 2-4 alkenyl group).
- Thio group phenylthio group, tolylthio group, naphthylthio group and the like, and aromatic rings have substituents such as C 1-4 alkyl group, C 2-4 alkenyl group, halogen atom, C 1-4 alkoxy group, etc.
- Examples of the monovalent oxygen atom-containing group in R include a hydroxyl group, a hydroperoxy group, an alkenyloxy group, an aryloxy group, an aralkyloxy group, an acyloxy group, an isocyanate group, a sulfo group, and a carbamoyl group. It is done.
- Examples of the monovalent nitrogen atom-containing group include an amino group or a substituted amino group (mono or dialkylamino group, acylamino group, etc.), a cyano group, an isocyanate group, an isothiocyanate group, and a carbamoyl group.
- Examples of the monovalent sulfur atom-containing group include a mercapto group (thiol group), a sulfo group, an alkylthio group, an alkenylthio group, an arylthio group, an aralkylthio group, and an isothiocyanate group.
- the monovalent organic group, the monovalent oxygen atom-containing group, the monovalent nitrogen atom-containing group, and the monovalent sulfur atom-containing group described above can overlap each other.
- R ′ in the above formula (4) represents a hydrogen atom, a halogen atom, a monovalent organic group, a monovalent oxygen atom-containing group, a monovalent nitrogen atom-containing group, or a monovalent sulfur atom-containing group.
- R ′ in the formula (4) represents a hydrogen atom, a halogen atom, a monovalent organic group, a monovalent oxygen atom-containing group, a monovalent nitrogen atom-containing group, or a monovalent sulfur atom-containing group. Examples of the group include the same groups as those exemplified as R above.
- each R ′ is a hydrogen atom, a C 1-10 alkyl group (particularly a C 1-4 alkyl group), a C 2-10 alkenyl group (particularly a C 1-10 group). 2-4 alkyl group), C 3-12 cycloalkyl group, C 3-12 cycloalkenyl group, C 1-4 alkyl group, C 2-4 alkenyl group, halogen atom, C 1-4 alkoxy group on the aromatic ring, etc.
- R is preferably a hydrogen atom or a substituted or unsubstituted hydrocarbon group, more preferably a substituted or unsubstituted hydrocarbon group, still more preferably an aliphatic hydrocarbon group (particularly an alkyl group, An alkenyl group) and an aromatic hydrocarbon group (particularly a phenyl group).
- the ladder type silsesquioxane in this invention is represented by following formula (5), for example.
- R in the formula (5) represents the same as R (hereinafter sometimes referred to as “side chain”), and T represents a terminal group. Examples of T include the same groups as those exemplified as R.
- the ratio of the substituted or unsubstituted hydrocarbon group to the total amount of R is not particularly limited, but is preferably 50 mol% or more, more preferably 80 mol% or more, and 90 mol % Or more is more preferable.
- a substituted or unsubstituted alkyl group (preferably an alkyl group having 1 to 10 carbon atoms, particularly an alkyl group having 1 to 4 carbon atoms such as a methyl group or an ethyl group) with respect to the total amount (100 mol%) of R,
- a substituted or unsubstituted aryl group (preferably an aryl group having 6 to 10 carbon atoms, particularly a phenyl group), a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms (preferably an aralkyl group having 7 to 10 carbon atoms, particularly
- the total amount of (benzyl group) is preferably 50 mol% or more, more preferably 80 mol% or more, and still more preferably 90 mol% or more.
- a part or all of R is preferably a substituted or unsubstituted aryl group. That is, the ladder-type silsesquioxane preferably has at least a substituted or unsubstituted aryl group in the molecule.
- the number average molecular weight and / or weight average molecular weight of the silsesquioxane (B) in the present invention is not particularly limited, but is preferably 100 to 800,000, more preferably 200 to 100,000, still more preferably 300 to 30,000, 500 to 20000 is particularly preferred. If the molecular weight is less than 100, the heat resistance of the cured product may decrease. On the other hand, if the molecular weight exceeds 800,000, the compatibility of the silsesquioxane (B) with other components may be reduced.
- the silsesquioxane (B) may be a mixture having various molecular weights within the above range.
- the number average molecular weight and / or the weight average molecular weight can be calculated as, for example, a molecular weight in terms of polystyrene by gel permeation chromatography.
- the silsesquioxane (B) in the present invention can be produced by a known production method (for example, a hydrolytic condensation method using a trifunctional silane compound as a raw material).
- silsesquioxane (B) can be used alone or in combination of two or more.
- the content (blending amount) of silsesquioxane (B) in the curable resin composition of the present invention is not particularly limited, but is 5 to 45 wt% with respect to the total amount (100 wt%) of the curable resin composition. %, More preferably 7 to 40% by weight, still more preferably 10 to 35% by weight. If the content is less than 5% by weight, gas barrier properties against corrosive gases such as SOx may not be sufficiently obtained. On the other hand, if the content exceeds 45% by weight, the crack resistance of the cured product may be lowered, or the heat resistance may not be sufficiently obtained.
- the curable resin composition of the present invention is a silsesquioxane (B) having a ladder-type silsesquioxane (B1) having an aliphatic carbon-carbon double bond in the molecule (hereinafter simply referred to as “ladder-type silsesquioxane”). May be referred to as “Oxan (B1)”.
- the ladder-type silsesquioxane (B1) is not particularly limited as long as it is a compound having a group having an aliphatic carbon-carbon double bond in the side chain or the terminal group.
- Examples of the group having an aliphatic carbon-carbon double bond include a vinyl group, allyl group, methallyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, C 2-20 alkenyl groups such as 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group and 5-hexenyl group (preferably C 2-10 alkenyl group, more preferably C 2-4 alkenyl group) Group); C 3-12 cycloalkenyl group such as cyclohexenyl group; C 4-15 bridged cyclic unsaturated hydrocarbon group such as bicycloheptenyl group; C 2-4 alkenyl-substituted aryl group such as styryl group; cinnamyl Groups and the like.
- R ′ is the above C 2-20 alkenyl group, C 3 ⁇
- groups such as 12 cycloalkenyl groups, C 4-15 bridged cyclic unsaturated hydrocarbon groups, C 2-4 alkenyl substituted aryl groups, cinnamyl groups, and the like.
- an alkenyl group is preferable, a C 2-20 alkenyl group is more preferable, and a vinyl group is more preferable.
- the number of the aliphatic carbon-carbon double bonds in the molecule (in one molecule) is not particularly limited, but is preferably 2 or more (for example, 2 to 50). 2 to 30 are more preferable.
- the content of the aliphatic carbon-carbon double bond in the ladder-type silsesquioxane (B1) is not particularly limited, but is preferably 0.7 to 5.5 mmol / g, and 1.1 to 4.4 mmol / g is more preferable.
- the ratio (by weight) of the aliphatic carbon-carbon double bond contained in the ladder-type silsesquioxane (B1) is not particularly limited, but is 2.0 to 15.0% by weight in terms of vinyl group. Is preferable, and 3.0 to 12.0% by weight is more preferable.
- the ladder-type silsesquioxane (B1) is not particularly limited, but is preferably liquid at room temperature (about 25 ° C.). More specifically, the viscosity of the ladder-type silsesquioxane (B1) at 23 ° C. is preferably 100 to 100,000 mPa ⁇ s, more preferably 500 to 10,000 mPa ⁇ s, and still more preferably 1000 to 8000 mPa ⁇ s. If the viscosity is less than 100 mPa ⁇ s, the heat resistance of the cured product may decrease. On the other hand, when the viscosity exceeds 100,000 mPa ⁇ s, it may be difficult to prepare and handle the curable resin composition. The viscosity at 23 ° C.
- the curable resin composition of the present invention is a silsesquioxane (B) having a ladder-type silsesquioxane (B2) having a Si—H bond in the molecule (hereinafter simply referred to as “ladder-type silsesquioxane (B2)”. ) ” May be included.
- the ladder-type silsesquioxane (B2) is not particularly limited as long as it is a compound having a hydrogen atom or a group having a Si—H bond in the side chain or the terminal group.
- the group having the Si—H bond is not particularly limited, and examples thereof include a group represented by the above formula (4) in which at least one of three R ′ is a hydrogen atom.
- the number of the hydrogen atom or the group having the Si—H bond in the molecule (in one molecule) is not particularly limited, but two or more (for example, 2 to 50) ) Is preferred, and 2 to 30 are more preferred.
- the heat resistance of the cured product of the curable resin composition tends to be improved.
- the content of the hydrogen atom or the Si-H bond group contained in the ladder-type silsesquioxane (B2) is not particularly limited, but is preferably 0.01 to 0.50 mmol / g, and preferably 0.08 to 0. .28 mmol / g is more preferred. Further, the ratio (weight basis) of the hydrogen atom or the group having the Si—H bond contained in the ladder-type silsesquioxane (B2) is not particularly limited, but H (hydride) in the hydrogen atom or the Si—H bond is not particularly limited. ) In terms of weight (in terms of H), 0.01 to 0.50% by weight is preferable, and 0.08 to 0.28% by weight is more preferable.
- the curable resin composition is cured. It may not progress sufficiently.
- the content of the hydrogen atom or the group having a Si—H bond is too large (for example, exceeding 0.50 mmol / g or exceeding 0.50% by weight in terms of H), the hardness of the cured product is It may become high and break easily.
- the content of the hydrogen atom or the group having the Si—H bond in the ladder-type silsesquioxane (B2) can be measured, for example, by 1 H-NMR.
- the content of the group having the Si—H bond with respect to the total amount (100 mol%) of the hydrogen atom or the group having the Si—H bond in the ladder-type silsesquioxane (B2) is not particularly limited. From the viewpoint of the degree of curing, 50 to 100 mol% is preferable, and 80 to 100 mol% is more preferable.
- the ladder-type silsesquioxane (B2) is not particularly limited, but is preferably liquid at room temperature (about 25 ° C.). More specifically, the viscosity of the ladder-type silsesquioxane (B2) at 23 ° C. is preferably 100 to 100,000 mPa ⁇ s, more preferably 500 to 10,000 mPa ⁇ s, and still more preferably 1000 to 8000 mPa ⁇ s. If the viscosity is less than 100 mPa ⁇ s, the heat resistance of the cured product may decrease. On the other hand, when the viscosity exceeds 100,000 mPa ⁇ s, it may be difficult to prepare and handle the curable resin composition.
- the viscosity at 23 ° C. can be measured, for example, by the same method as that for ladder type silsesquioxane (B1).
- the ratio (total amount) of the ladder-type silsesquioxane (B1) and the ladder-type silsesquioxane (B2) to the total amount (100% by weight) of the silsesquioxane (B) in the curable resin composition of the present invention is: although not particularly limited, it is preferably 60% by weight or more (for example, 60 to 100% by weight), more preferably 80% by weight or more, and still more preferably 90% by weight or more.
- the ratio of the ladder-type silsesquioxane (B1) and the ladder-type silsesquioxane (B2) is less than 60% by weight, the barrier property against the corrosive gas of the cured product tends to be lowered.
- ladder-type silsesquioxanes examples include ladder-type silsesquioxanes (B1) and ladder-type silsesquioxanes other than ladder-type silsesquioxanes (B2) (hereinafter “others”). May be referred to as “ladder-type silsesquioxane”.
- the other ladder-type silsesquioxane is preferably used in combination with ladder-type silsesquioxane (B1) or ladder-type silsesquioxane (B2).
- the other ladder-type silsesquioxane is a ladder-type silsesquioxane that is solid at 25 ° C. and has an aliphatic carbon-carbon double bond (“ladder-type silsesquioxane (S1)”). And a ladder-type silsesquioxane having a hydrosilyl group (sometimes referred to as “ladder-type silsesquioxane (S2)”) is preferable.
- the curable resin composition of the present invention contains ladder-type silsesquioxane (S1) and / or (S2), in particular, the barrier property against a corrosive gas of a cured product formed by curing is improved. Furthermore, toughness (particularly crack resistance) tends to be improved.
- the curable resin composition of the present invention contains an isocyanurate compound (C).
- the curable resin composition of the present invention contains the isocyanurate compound (C), particularly, the barrier property against a corrosive gas of a cured product formed by curing is improved, and the adhesion to an adherend is further improved. There is a tendency to improve.
- the isocyanurate compound (C) preferably contains an isocyanurate compound represented by the above formula (1).
- R x , R y and R z are the same or different and represent a group represented by the above formula (2) or a group represented by the above formula (3).
- any one or more (preferably one or two, more preferably one) of R x , R y and R z in the above formula (1) is a group represented by the above formula (3).
- R 1 and R 2 are the same or different and each represents a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms.
- the linear or branched alkyl group having 1 to 8 carbon atoms include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, pentyl group, hexyl group, heptyl Group, octyl group, ethylhexyl group and the like.
- R 1 and R 2 are each particularly preferably a hydrogen atom.
- the isocyanurate compound (C) is not particularly limited.
- the content of the isocyanurate compound (C) is not particularly limited, but is preferably 0.01 to 10% by weight, preferably 0.05 to 5% by weight with respect to the total amount (100% by weight) of the curable resin composition. Is more preferable, and 0.1 to 3% by weight is still more preferable.
- the content of the isocyanurate compound (C) is less than 0.01% by weight, the barrier property against the corrosive gas of the cured product and the adhesion to the adherend may be deteriorated.
- the content of the isocyanurate compound (C) exceeds 10% by weight, solids may precipitate in the curable resin composition or the cured product may become cloudy.
- the curable resin composition of the present invention contains a silane coupling agent (D).
- a silane coupling agent (D) When the curable resin composition of the present invention contains the silane coupling agent (D), the barrier property against a corrosive gas of a cured product formed by curing is improved, and in particular, the adhesion to an adherend is improved. There is a tendency to improve.
- the silane coupling agent (D) has good compatibility with the silsesquioxane (B), the isocyanurate compound (C) and the like, for example, compatibility with other components of the isocyanurate compound (C)
- compatibility with other components of the isocyanurate compound (C) In order to improve the above, when a composition of an isocyanurate compound (C) and a silane coupling agent (D) is formed in advance and then blended with other components, a uniform curable resin composition is easily obtained.
- silane coupling agent (D) known or commonly used silane coupling agents can be used, and are not particularly limited.
- an epoxy group-containing silane coupling agent (particularly 3-glycidoxypropyltrimethoxysilane) can be preferably used.
- the said silane coupling agent (D) can be used individually by 1 type or in combination of 2 or more types.
- the content of the silane coupling agent (D) is not particularly limited, but is preferably 0.01 to 15% by weight, preferably 0.1 to 10% by weight with respect to the total amount (100% by weight) of the curable resin composition. % Is more preferable, and 0.5 to 5% by weight is still more preferable.
- the content of the silane coupling agent (D) is less than 0.01% by weight, the adhesion to the adherend is lowered, and particularly when the isocyanurate compound (C) is used in a compatible state, A sufficient effect (barrier property against corrosive gas) may not be obtained.
- content of the said silane coupling agent (D) exceeds 15 weight%, hardening will become inadequate and the toughness of a hardened
- the curable resin composition of the present invention may further contain a hydrosilylation catalyst.
- a hydrosilylation catalyst By including the hydrosilylation catalyst, the curable resin composition of the present invention can efficiently advance the curing reaction (hydrosilylation reaction).
- the hydrosilylation catalyst include well-known hydrosilylation catalysts such as platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts.
- platinum catalyst examples include a palladium catalyst or a rhodium catalyst containing a palladium atom or a rhodium atom instead of a platinum atom.
- said hydrosilylation catalyst can be used individually by 1 type or in combination of 2 or more types.
- the content of the hydrosilylation catalyst in the curable resin composition of the present invention is not particularly limited.
- platinum, palladium, or rhodium in the hydrosilylation catalyst is in a range of 0.01 to 1,000 ppm by weight.
- the amount is preferably within the range of 0.1 to 500 ppm. It is preferable for the content of the hydrosilylation catalyst to be in such a range because the crosslinking rate will not be remarkably slowed and the cured product is less likely to cause problems such as coloring.
- the curable resin composition of the present invention may contain a hydrosilylation reaction inhibitor in order to adjust the speed of the curing reaction (hydrosilylation reaction).
- hydrosilylation reaction inhibitor examples include alkyne alcohols such as 3-methyl-1-butyn-3-ol, 3,5-dimethyl-1-hexyn-3-ol, and phenylbutynol; 3-methyl-3 -Enyne compounds such as pentene-1-yne and 3,5-dimethyl-3-hexen-1-yne; and thiazole, benzothiazole, benzotriazole and the like.
- the said hydrosilylation reaction inhibitor can be used individually by 1 type or in combination of 2 or more types.
- the content of the hydrosilylation reaction inhibitor varies depending on the crosslinking conditions of the curable resin composition, but practically, the content in the curable resin composition is preferably in the range of 0.00001 to 5% by weight. .
- the curable resin composition of the present invention may further contain a cyclic siloxane having two or more aliphatic carbon-carbon double bonds in the molecule (in one molecule) as the other siloxane compound.
- the curable resin composition of the present invention may further contain a cyclic siloxane having a group having two or more Si—H bonds in the molecule (in one molecule) as the other siloxane compound.
- the said cyclic siloxane can be used individually by 1 type or in combination of 2 or more types.
- the content (blending amount) of the cyclic siloxane in the curable resin composition of the present invention is not particularly limited, but is preferably 0.01 to 30% by weight with respect to the total amount (100% by weight) of the curable resin composition. 0.1 to 20% by weight is more preferable, and 0.5 to 10% by weight is still more preferable.
- the curable resin composition of the present invention may contain other silane compounds (for example, compounds having a hydrosilyl group).
- the other silane compounds include methyl (trisdimethylsiloxy) silane, tetrakis (dimethylsiloxy) silane, 1,1,3,3-tetramethyldisiloxane, 1,1,3,3,5,5- Hexamethyltrisiloxane, 1,1,1,3,5,5,5-heptamethyltrisiloxane, 1,1,3,3,5,5,7,7-octamethyltetrasiloxane, 1,1, 1,3,5,5,7,7,7-nonamethyltetrasiloxane, 1,1,3,3,5,5,7,7,9,9-decamethylpentasiloxane, 1,1,1,1, Examples thereof include linear or branched siloxanes having Si—H groups such as 3,5,5,7,7,9,9-undecamethylpentasiloxane.
- the said silane compound can be used individually by 1 type or in combination of 2 or more types.
- the content of the silane compound is not particularly limited, but is preferably 0 to 5% by weight or less and more preferably 0 to 1.5% by weight with respect to the total amount (100% by weight) of the curable resin composition.
- the curable resin composition of the present invention may contain a solvent.
- the solvent include conventionally known solvents such as toluene, hexane, isopropanol, methyl isobutyl ketone, cyclopentanone, and propylene glycol monomethyl ether acetate.
- the said solvent can be used individually by 1 type or in combination of 2 or more types.
- the curable resin composition of the present invention includes, as other optional components, precipitated silica, wet silica, fumed silica, calcined silica, titanium oxide, alumina, glass, quartz, aluminosilicate, iron oxide, zinc oxide, calcium carbonate, Inorganic fillers such as carbon black, silicon carbide, silicon nitride, and boron nitride; inorganic fillers obtained by treating these fillers with organosilicon compounds such as organohalosilanes, organoalkoxysilanes, and organosilazanes; silicone resins, epoxy resins, Organic resin fine powders such as fluororesins; fillers such as conductive metal powders such as silver and copper, stabilizers (antioxidants, ultraviolet absorbers, light stabilizers, heat stabilizers, etc.), flame retardants (phosphorus) Flame retardants, halogen flame retardants, inorganic flame retardants, etc.), flame retardant aids, reinforcing materials (other fill
- the curable resin composition of the present invention is not particularly limited, but the aliphatic carbon-carbon double bond is 0.2 to 4 mol per 1 mol of hydrosilyl group present in the curable resin composition. It is preferable that the composition (formulation composition) be 0.5, more preferably 0.5 to 1.5 mol, and still more preferably 0.8 to 1.2 mol. By controlling the ratio of hydrosilyl group and aliphatic carbon-carbon double bond within the above range, the heat resistance, transparency, flexibility, reflow resistance and barrier property against corrosive gas of the cured product are further improved. Tend.
- the curable resin composition of the present invention is not particularly limited, but can be prepared by stirring and mixing each of the above components at room temperature.
- the curable resin composition of the present invention can be used as a one-component composition in which each component is mixed in advance, for example, two or more stored separately. It can also be used as a multi-component (for example, two-component) composition in which the components are mixed at a predetermined ratio before use.
- the curable resin composition of the present invention is not particularly limited, but is preferably liquid at room temperature (about 25 ° C.). More specifically, the curable resin composition of the present invention has a viscosity at 23 ° C. of preferably 300 to 20000 mPa ⁇ s, more preferably 500 to 10000 mPa ⁇ s, and still more preferably 1000 to 8000 mPa ⁇ s. If the viscosity is less than 300 mPa ⁇ s, the heat resistance of the cured product may decrease. On the other hand, when the viscosity exceeds 20000 mPa ⁇ s, it is difficult to prepare and handle the curable resin composition, and bubbles may remain in the cured product. In addition, the viscosity of curable resin composition can be measured by the method similar to the viscosity of the above-mentioned ladder type silsesquioxane (B1), for example.
- B1 ladder type silsesquioxane
- cured product of the present invention By curing the curable resin composition of the present invention by a curing reaction (hydrosilylation reaction), a cured product (hereinafter sometimes referred to as “cured product of the present invention”) can be obtained.
- Conditions for the curing reaction are not particularly limited and can be appropriately selected from conventionally known conditions.
- the temperature (curing temperature) is 25 to 180 ° C. (more preferably 60 ° C.).
- the time (curing time) is preferably 5 to 720 minutes.
- the sealant of the present invention is a sealant containing the curable resin composition of the present invention as an essential component.
- the encapsulant (cured product) obtained by curing the encapsulant of the present invention is excellent in various physical properties such as heat resistance, transparency and flexibility, and further has reflow resistance and barrier properties against corrosive gas. Excellent. Therefore, the encapsulant of the present invention is preferably used as an encapsulant for semiconductor elements in a semiconductor device, particularly as an encapsulant for optical semiconductor elements (especially, high-intensity, short-wavelength optical semiconductor elements) in an optical semiconductor device. Can be used.
- a semiconductor device particularly an optical semiconductor apparatus having excellent durability and quality can be obtained.
- Polyorganosiloxane (A) The following products were used as the polyorganosiloxane (A).
- GD-1012A manufactured by Changkou Chemical Industry Co., Ltd., vinyl group content 1.33% by weight, phenyl group content 0% by weight, SiH group (in terms of hydride) content 0% by weight, number average molecular weight 5108, weight average molecular weight 23385 GD-1012B: manufactured by Changxing Chemical Industry, vinyl group content 1.65% by weight, phenyl group content 0% by weight, SiH group (in terms of hydride) content 0.19% by weight, number average molecular weight 4563, weight average molecular weight 21873 KER-2500A: manufactured by Shin-Etsu Chemical Co., Ltd., vinyl group content 1.53% by weight, phenyl group content 0% by weight, SiH group (hydride conversion) content 0.03% by weight, number average molecular weight 4453, weight Average molecular weight 19355 KER-2500B: manufactured by
- the ladder-type silsesquioxane has a weight average molecular weight (Mw) of 5000, a vinyl group content (average content) per molecule of 11.68% by weight, and a methyl group / vinyl group (molar ratio) is 60/40.
- Mw weight average molecular weight
- the 1 H-NMR spectrum of the ladder-type silsesquioxane was as follows. 1 H-NMR (JEOL ECA500 (500 MHz, CDCl 3 )) ⁇ : 0 to 0.3 ppm (br), 5.8 to 6.1 ppm (br)
- the temperature of the reaction vessel was raised to 70 ° C., and when the temperature reached 70 ° C., 606 mmol (10.91 g) of water was added, and the polycondensation reaction was performed under nitrogen for 9 hours. Furthermore, 6.25 g of vinyltriethoxysilane was added and reacted for 3 hours. Subsequently, 15.0 g of hexamethyldisiloxane was added to the reaction solution, and a silylation reaction was performed at 70 ° C. for 3 hours. Thereafter, the reaction solution was cooled, washed with water until the lower layer solution became neutral, and then the upper layer solution was collected.
- the ladder type silsesquioxane has a weight average molecular weight (Mw) of 3400, a vinyl group content per molecule (average content) of 3.96% by weight, and a phenyl group / methyl group / vinyl group (moles). Ratio) was 17/68/15.
- the temperature of the reaction vessel was raised to 50 ° C., and when the temperature reached 50 ° C., 120 mmol (2.16 g) of water was added, and the polycondensation reaction was performed under nitrogen for 4 hours. Furthermore, 11.18 g of vinyltriethoxysilane was added and reacted for 4 hours. Subsequently, 19.5 g of hexamethyldisiloxane was added to the reaction solution, and the silylation reaction was performed at 50 ° C. for 1 hour. Thereafter, the reaction solution was cooled, washed with water until the lower layer solution became neutral, and then the upper layer solution was collected.
- the solvent is distilled off from the upper layer solution under the conditions of 1 mmHg and 60 ° C., and a ladder-type silsesquioxane having a vinyl group and a trimethylsilyl group at the terminal (the above-described ladder-type silsesquioxane (B1) is used).
- a ladder-type silsesquioxane having a vinyl group and a trimethylsilyl group at the terminal (the above-described ladder-type silsesquioxane (B1) is used).
- the ladder type silsesquioxane had a number average molecular weight (Mn) of 879 and a weight average molecular weight (Mw) of 1116.
- the ladder-type silsesquioxane has a weight average molecular weight (Mw) of 3700, and the SiH group content (average content) per molecule is 0.11% by weight in terms of the weight of H (hydride) in the SiH group. there were.
- Mw weight average molecular weight
- the 1 H-NMR spectrum of the ladder-type silsesquioxane was as follows. 1 H-NMR (JEOL ECA500 (500 MHz, CDCl 3 )) ⁇ : -0.3-0.3 ppm (br), 4.7 ppm (s), 7.1-7.7 ppm (br)
- Examples 1 to 7 and Comparative Examples 1 to 9 were carried out according to the following procedure. According to Table 1 and Table 2, the isocyanurate compound (C) and the silane coupling agent (D) were mixed at a predetermined weight ratio (the unit of the blending amount of each component in Tables 1 and 2 is parts by weight). Thereafter, the polyorganosiloxane (A) and the silsesquioxane (B) were mixed and stirred at room temperature for 2 hours to obtain a transparent solution.
- the color of the electrode is silvery white before the test, but changes to brown or black as corrosion progresses.
- “A” indicates that the silver electrode is hardly discolored
- “B” indicates that the discoloration is slightly brown or black
- “B” indicates that the color is slightly brown or black.
- the case where the discoloration was observed was “C”, and the case where the discoloration was completely brown or black was designated “D”.
- the cured product (sealing material) of the curable resin composition of the present invention had excellent barrier properties against corrosive gas. Furthermore, as shown in Table 3, when polyorganosiloxysilalkylene was used as the polyorganosiloxane (A) (Examples 1 and 3 to 7), almost no tackiness was observed on the surface, and handling properties were improved. It was confirmed that an excellent cured product was obtained.
- the curable resin composition and the cured product of the present invention are useful for applications such as adhesives, coating agents, and sealants that require heat resistance, transparency, flexibility, and barrier properties against corrosive gases.
- the curable resin composition and the cured product of the present invention are suitable as a sealing agent and a sealing material for an optical semiconductor element (LED element).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Silicon Polymers (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
Description
また、本発明の他の目的は、優れた耐熱性、透明性、柔軟性を有し、特に、耐リフロー性、腐食性ガスに対するバリア性に優れた硬化物を提供することにある。
また、本発明は、シルセスキオキサン(B)として、分子内に脂肪族炭素-炭素二重結合を有するラダー型シルセスキオキサンを含む上記の硬化性樹脂組成物を提供する。
また、本発明は、シルセスキオキサン(B)として、分子内にSi-H結合を有するラダー型シルセスキオキサンを含む上記の硬化性樹脂組成物を提供する。
また、本発明は、シルセスキオキサン(B)として、分子内にアリール基を有するラダー型シルセスキオキサンを含む上記の硬化性樹脂組成物を提供する。
また、本発明は、イソシアヌレート化合物(C)として、式(1)
で表されるイソシアヌレート化合物を含む上記の硬化性樹脂組成物を提供する。
また、本発明は、式(1)におけるRx、Ry、Rzのうち、いずれかひとつ以上が式(3)で表される基である上記の硬化性樹脂組成物を提供する。
また、本発明は、上記の硬化性樹脂組成物を硬化して得られる硬化物を提供する。
また、本発明は、上記の硬化性樹脂組成物を用いて得られる封止剤を提供する。
また、本発明は、上記の封止剤を用いて得られる半導体装置を提供する。
[1]ポリオルガノシロキサン(A)、シルセスキオキサン(B)、イソシアヌレート化合物(C)、及びシランカップリング剤(D)を含み、ポリオルガノシロキサン(A)がアリール基を有しないポリオルガノシロキサンであり、シルセスキオキサン(B)としてラダー型シルセスキオキサンを含むことを特徴とする硬化性樹脂組成物。
[2]ポリオルガノポリシロキサン(A)の数平均分子量が500~20000である[1]に記載の硬化性樹脂組成物。
[3]ポリオルガノポリシロキサン(A)の重量平均分子量が500~50000である[1]又は[2]に記載の硬化性樹脂組成物。
[4]ポリオルガノシロキサン(A)の含有量(配合量)が、硬化性樹脂組成物の全量(100重量%)に対して、55~95重量%である[1]~[3]のいずれか1つに記載の硬化性樹脂組成物。
[5]ポリオルガノシロキサン(A)として、ポリオルガノシロキシシルアルキレンを含む[1]~[4]のいずれか1つに記載の硬化性樹脂組成物。
[6]前記ポリオルガノシロキシシルアルキレンが、下記式(I)で表される構造を有するポリオルガノシロキシシルアルキレンである[5]に記載の硬化性樹脂組成物。
[7]ポリオルガノシロキシシルアルキレンとして、末端及び/又は側鎖に脂肪族炭素-炭素不飽和結合を含む基を有するポリオルガノシロキシシルアルキレンと、末端及び/又は側鎖にケイ素原子に結合した水素原子(ヒドリド)を有するポリオルガノシロキシシルアルキレンとの両方を含む[5]又は[6]に記載の硬化性樹脂組成物。
[8]ポリオルガノシロキシシルアルキレンとして、下記式(I-1)で表される構造を含むポリオルガノシロキシシルアルキレンと、下記式(I-2)で表される構造を含むポリオルガノシロキシシルアルキレンとの両方を含む[5]~[7]のいずれか1つに記載の硬化性樹脂組成物。
[9]前記式(I-1)中のRa~Rfが、それぞれ、水素原子、直鎖又は分岐鎖状のアルキル基、又は脂肪族炭素-炭素不飽和結合を含む一価の基(但し、Ra~Rfのうち1つ以上は、脂肪族炭素-炭素不飽和結合を含む一価の基)であり、前記式(I-2)中のRa~Rfが、それぞれ、水素原子、直鎖又は分岐鎖状のアルキル基、又は脂肪族炭素-炭素不飽和結合を含む一価の基(但し、Ra~Rfのうち1つ以上は、水素原子)である[8]に記載の硬化性樹脂組成物。
[10]ポリオルガノシロキサン(A)の全量(100重量%)に対するポリオルガノシロキシシルアルキレンの割合が、60~100重量%である[5]~[9]のいずれか1つに記載の硬化性樹脂組成物。
[11]シルセスキオキサン(B)の含有量(配合量)が、硬化性樹脂組成物の全量(100重量%)に対して、5~45重量%である[1]~[10]のいずれか1つに記載の硬化性樹脂組成物。
[12]シルセスキオキサン(B)として、分子内に脂肪族炭素-炭素二重結合を有するラダー型シルセスキオキサン(B1)を含む[1]~[11]のいずれか1つに記載の硬化性樹脂組成物。
[13]ラダー型シルセスキオキサン(B1)における、分子内(一分子中)の脂肪族炭素-炭素二重結合の数が2~50個である[12]に記載の硬化性樹脂組成物。
[14]ラダー型シルセスキオキサン(B1)中の脂肪族炭素-炭素二重結合の含有量が0.7~5.5mmol/gである[12]又は[13]に記載の硬化性樹脂組成物。
[15]ラダー型シルセスキオキサン(B1)に含まれる脂肪族炭素-炭素二重結合の割合(重量基準)が、ビニル基換算で、2.0~15.0重量%である[12]~[14]のいずれか1つに記載の硬化性樹脂組成物。
[16]ラダー型シルセスキオキサン(B1)の23℃における粘度が、100~100000mPa・sである[12]~[15]のいずれか1つに記載の硬化性樹脂組成物。
[17]シルセスキオキサン(B)として、分子内にSi-H結合を有するラダー型シルセスキオキサン(B2)を含む[1]~[16]のいずれか1つに記載の硬化性樹脂組成物。
[18]ラダー型シルセスキオキサン(B2)における、分子内(一分子中)の後記水素原子又は後記Si-H結合を有する基の数が、2~50個である[17]に記載の硬化性樹脂組成物。
[19]ラダー型シルセスキオキサン(B2)が有する後記水素原子又は後記Si-H結合を有する基の含有量が、0.01~0.5mmol/gである[17]又は[18]に記載の硬化性樹脂組成物。
[20]ラダー型シルセスキオキサン(B2)に含まれる後記水素原子又は後記Si-H結合を有する基の割合(重量基準)が、水素原子又はSi-H結合におけるH(ヒドリド)の重量換算(H換算)で、0.01~0.50重量%である[17]~[19]のいずれか1つに記載の硬化性樹脂組成物。
[21]ラダー型シルセスキオキサン(B2)の23℃における粘度が、100~100000mPa・sである[17]~[20]のいずれか1つに記載の硬化性樹脂組成物。
[22]シルセスキオキサン(B)の全量(100重量%)に対するラダー型シルセスキオキサン(B1)及びラダー型シルセスキオキサン(B2)の割合(総量)が、60重量%以上である[17]~[21]のいずれか1つに記載の硬化性樹脂組成物。
[23]シルセスキオキサン(B)として、分子内にアリール基を有するラダー型シルセスキオキサンを含む[1]~[22]のいずれか1つに記載の硬化性樹脂組成物。
[24]イソシアヌレート化合物(C)として、前記式(1)で表されるイソシアヌレート化合物を含む[1]~[23]のいずれか1つに記載の硬化性樹脂組成物。
[25]前記式(1)におけるRx、Ry、Rzのうち、いずれかひとつ以上が前記式(3)で表される基である[24]に記載の硬化性樹脂組成物。
[26]イソシアヌレート化合物(C)の含有量が、硬化性樹脂組成物の全量(100重量%)に対して、0.01~10重量%である[1]~[25]のいずれか1つに記載の硬化性樹脂組成物。
[27]シランカップリング剤(D)が、エポキシ基含有シランカップリング剤である[1]~[26]のいずれか1つに記載の硬化性樹脂組成物。
[28]シランカップリング剤(D)の含有量が、硬化性樹脂組成物の全量(100重量%)に対して、0.01~15重量%である[1]~[27]のいずれか1つに記載の硬化性樹脂組成物。
[29]硬化性樹脂組成物中に存在するヒドロシリル基1モルに対して、脂肪族炭素-炭素二重結合が0.2~4モルとなるような組成(配合組成)である[1]~[28]のいずれか1つに記載の硬化性樹脂組成物。
[30]23℃における粘度が300~20000mPa・sである[1]~[29]のいずれか1つに記載の硬化性樹脂組成物。
[31][1]~[30]のいずれか1つに記載の硬化性樹脂組成物を硬化して得られる硬化物。
[32][1]~[30]のいずれか1つに記載の硬化性樹脂組成物を用いて得られる封止剤。
[33][32]に記載の封止剤を用いて得られる半導体装置。
本発明の硬化性樹脂組成物におけるポリオルガノシロキサン(A)は、シロキサン結合(Si-O-Si)で構成された主鎖を有するポリオルガノシロキサンであって、アリール基を有しないポリオルガノシロキサンである。このようなポリオルガノシロキサン(A)(アリール基を有しないポリオルガノシロキサン)を使用することによって、耐熱性、柔軟性、耐クラック性に優れた硬化物を得ることができる。上記ポリオルガノシロキサン(A)としては、直鎖又は分岐鎖を有するポリオルガノシロキサンであっても良い。中でも、ポリオルガノシロキサン(A)は、硬化物の強度の観点からは、分岐鎖を有するポリオルガノシロキサンであることが好ましい。
本発明の硬化性樹脂組成物は、ラダー型シルセスキオキサンを主成分とするシルセスキオキサン(B)を含む。ラダー型シルセスキオキサンは、架橋された三次元構造を有するポリシロキサンである。
本発明の硬化性樹脂組成物は、シルセスキオキサン(B)として、分子内に脂肪族炭素-炭素二重結合を有するラダー型シルセスキオキサン(B1)(以下、単に「ラダー型シルセスキオキサン(B1)」と称する場合がある)を含んでいても良い。ラダー型シルセスキオキサン(B1)としては、前記側鎖又は前記末端基に脂肪族炭素-炭素二重結合を有する基を持つ化合物であれば特に限定されない。
本発明の硬化性樹脂組成物は、シルセスキオキサン(B)として、分子内にSi-H結合を有するラダー型シルセスキオキサン(B2)(以下、単に「ラダー型シルセスキオキサン(B2)」と称する場合がある)を含んでいても良い。ラダー型シルセスキオキサン(B2)としては、前記側鎖又は前記末端基に水素原子又はSi-H結合を有する基を持つ化合物であれば特に限定されない。
本発明の硬化性樹脂組成物におけるラダー型シルセスキオキサンとしては、ラダー型シルセスキオキサン(B1)、ラダー型シルセスキオキサン(B2)以外のラダー型シルセスキオキサン(以下、「その他のラダー型シルセスキオキサン」と称する場合がある)を使用することもできる。特に、上記その他のラダー型シルセスキオキサンは、ラダー型シルセスキオキサン(B1)やラダー型シルセスキオキサン(B2)と併用することが好ましい。上記その他のラダー型シルセスキオキサンとしては、特に、25℃において固体であり、なおかつ脂肪族炭素-炭素二重結合を有するラダー型シルセスキオキサン(「ラダー型シルセスキオキサン(S1)」と称する場合がある)、25℃において固体であり、なおかつヒドロシリル基を有するラダー型シルセスキオキサン(「ラダー型シルセスキオキサン(S2)」と称する場合がある)が好ましい。本発明の硬化性樹脂組成物がラダー型シルセスキオキサン(S1)及び/又は(S2)を含む場合には、特に、硬化により形成される硬化物の腐食性ガスに対するバリア性が向上し、さらに、強靭性(特に、耐クラック性)が向上する傾向がある。
本発明の硬化性樹脂組成物は、イソシアヌレート化合物(C)を含む。本発明の硬化性樹脂組成物が上記イソシアヌレート化合物(C)を含むことにより、特に、硬化により形成される硬化物の腐食性ガスに対するバリア性が向上し、さらに、被着体に対する密着性が向上する傾向がある。特に、イソシアヌレート化合物(C)として、特に、上記式(1)で表されるイソシアヌレート化合物を含むことが好ましい。
本発明の硬化性樹脂組成物は、シランカップリング剤(D)を含む。本発明の硬化性樹脂組成物が上記シランカップリング剤(D)を含む場合には、硬化により形成される硬化物の腐食性ガスに対するバリア性が向上し、特に、被着体に対する密着性が向上する傾向がある。
本発明の硬化性樹脂組成物は、更に、ヒドロシリル化触媒を含んでいてもよい。本発明の硬化性樹脂組成物は、ヒドロシリル化触媒を含むことにより、硬化反応(ヒドロシリル化反応)を効率的に進行させることができる。上記ヒドロシリル化触媒としては、白金系触媒、ロジウム系触媒、パラジウム系触媒等の周知のヒドロシリル化反応用触媒が例示される。具体的には、白金微粉末、白金黒、白金担持シリカ微粉末、白金担持活性炭、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金のオレフィン錯体、白金-カルボニルビニルメチル錯体などの白金のカルボニル錯体、白金-ジビニルテトラメチルジシロキサン錯体や白金-シクロビニルメチルシロキサン錯体などの白金ビニルメチルシロキサン錯体、白金-ホスフィン錯体、白金-ホスファイト錯体等の白金系触媒、ならびに上記白金系触媒において白金原子の代わりにパラジウム原子又はロジウム原子を含有するパラジウム系触媒又はロジウム系触媒が挙げられる。なお、上記ヒドロシリル化触媒は1種を単独で、又は2種以上を組合せて使用することができる。
本発明の硬化性樹脂組成物は、硬化反応(ヒドロシリル化反応)の速度を調整するために、ヒドロシリル化反応抑制剤を含んでいてもよい。上記ヒドロシリル化反応抑制剤としては、例えば、3-メチル-1-ブチン-3-オール、3,5-ジメチル-1-ヘキシン-3-オール、フェニルブチノール等のアルキンアルコール;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-3-ヘキセン-1-イン等のエンイン化合物;チアゾール、ベンゾチアゾール、ベンゾトリアゾールなどが挙げられる。上記ヒドロシリル化反応抑制剤は1種を単独で、又は2種以上を組合せて使用することができる。上記ヒドロシリル化反応抑制剤の含有量としては、硬化性樹脂組成物の架橋条件により異なるが、実用上、硬化性樹脂組成物中の含有量として、0.00001~5重量%の範囲内が好ましい。
本発明の硬化性樹脂組成物は、その他のシロキサン化合物として、更に、分子内(一分子中)に2個以上の脂肪族炭素-炭素二重結合を有する環状シロキサンを含んでいてもよい。また、本発明の硬化性樹脂組成物は、その他のシロキサン化合物として、更に、分子内(一分子中)に2個以上のSi-H結合を有する基を有する環状シロキサンを含んでいても良い。上記環状シロキサンは1種を単独で、又は2種以上を組合せて使用することができる。本発明の硬化性樹脂組成物における環状シロキサンの含有量(配合量)は、特に限定されないが、硬化性樹脂組成物の全量(100重量%)に対して、0.01~30重量%が好ましく、0.1~20重量%がより好ましく、0.5~10重量%が更に好ましい。
本発明の硬化性樹脂組成物は、その他のシラン化合物(例えば、ヒドロシリル基を有する化合物)を含んでいてもよい。上記その他のシラン化合物としては、例えば、メチル(トリスジメチルシロキシ)シラン、テトラキス(ジメチルシロキシ)シラン、1,1,3,3-テトラメチルジシロキサン、1,1,3,3,5,5-ヘキサメチルトリシロキサン、1,1,1,3,5,5,5-へプタメチルトリシロキサン、1,1,3,3,5,5,7,7-オクタメチルテトラシロキサン、1,1,1,3,5,5,7,7,7-ノナメチルテトラシロキサン、1,1,3,3,5,5,7,7,9,9-デカメチルペンタシロキサン、1,1,1,3,5,5,7,7,9,9,9-ウンデカメチルペンタシロキサンなどのSi-H基を有する直鎖又は分岐鎖状シロキサンなどが挙げられる。なお、上記シラン化合物は1種を単独で、又は2種以上を組合せて使用することができる。上記シラン化合物の含有量は、特に限定されないが、硬化性樹脂組成物の全量(100重量%)に対して、0~5重量%以下が好ましく、0~1.5重量%がより好ましい。
本発明の硬化性樹脂組成物は、溶媒を含んでいてもよい。上記溶媒としては、例えば、トルエン、ヘキサン、イソプロパノール、メチルイソブチルケトン、シクロペンタノン、プロピレングリコールモノメチルエーテルアセテート等の従来公知の溶媒が挙げられる。上記溶媒は1種を単独で、又は2種以上を組合せて使用することができる。
本発明の硬化性樹脂組成物は、その他任意の成分として、沈降シリカ、湿式シリカ、ヒュームドシリカ、焼成シリカ、酸化チタン、アルミナ、ガラス、石英、アルミノケイ酸、酸化鉄、酸化亜鉛、炭酸カルシウム、カーボンブラック、炭化ケイ素、窒化ケイ素、窒化ホウ素等の無機質充填剤、これらの充填剤をオルガノハロシラン、オルガノアルコキシシラン、オルガノシラザン等の有機ケイ素化合物により処理した無機質充填剤;シリコーン樹脂、エポキシ樹脂、フッ素樹脂等の有機樹脂微粉末;銀、銅等の導電性金属粉末等の充填剤、安定化剤(酸化防止剤、紫外線吸収剤、耐光安定剤、熱安定化剤など)、難燃剤(リン系難燃剤、ハロゲン系難燃剤、無機系難燃剤など)、難燃助剤、補強材(他の充填剤など)、核剤、カップリング剤、滑剤、ワックス、可塑剤、離型剤、耐衝撃改良剤、色相改良剤、流動性改良剤、着色剤(染料、顔料など)、分散剤、消泡剤、脱泡剤、抗菌剤、防腐剤、粘度調整剤、増粘剤などの慣用の添加剤を含んでいてもよい。これらの添加剤は単独で、又は2種以上を組合せて使用できる。
本発明の硬化性樹脂組成物は、特に限定されないが、硬化性樹脂組成物中に存在するヒドロシリル基1モルに対して、脂肪族炭素-炭素二重結合が0.2~4モルとなるような組成(配合組成)であることが好ましく、より好ましくは0.5~1.5モル、さらに好ましくは0.8~1.2モルである。ヒドロシリル基と脂肪族炭素-炭素二重結合との割合を上記範囲に制御することにより、硬化物の耐熱性、透明性、柔軟性、耐リフロー性、及び腐食性ガスに対するバリア性がより向上する傾向がある。
本発明の硬化性樹脂組成物を硬化反応(ヒドロシリル化反応)により硬化させることにより、硬化物(以下、「本発明の硬化物」と称する場合がある)を得ることができる。硬化反応の際の条件は、特に限定されず、従来公知の条件より適宜選択することができるが、例えば、反応速度の点から、温度(硬化温度)は25~180℃(より好ましくは60℃~150℃)が好ましく、時間(硬化時間)は5~720分が好ましい。本発明の硬化物は、耐熱性、透明性、柔軟性等の各種物性に優れ、さらに、リフロー工程における耐クラック性、パッケージに対する密着性等の耐リフロー性に優れ、SOxガス等の腐食性ガスに対するバリア性にも優れる。
本発明の封止剤は、本発明の硬化性樹脂組成物を必須成分として含む封止剤である。本発明の封止剤を硬化させることにより得られる封止材(硬化物)は、耐熱性、透明性、柔軟性等の各種物性に優れ、さらに、耐リフロー性、腐食性ガスに対するバリア性に優れる。このため、本発明の封止剤は、半導体装置における半導体素子の封止剤、特に、光半導体装置における光半導体素子(特に、高輝度、短波長の光半導体素子)の封止剤等として好ましく使用できる。本発明の封止剤を用いて半導体素子(特に、光半導体素子)を封止することによって、耐久性及び品質に優れた半導体装置(特に、光半導体装置)が得られる。
ポリオルガノシロキサン(A)として、以下の製品を使用した。
GD-1012A:長興化学工業製、ビニル基含有量1.33重量%、フェニル基含有量0重量%、SiH基(ヒドリド換算)含有量0重量%、数平均分子量5108、重量平均分子量23385
GD-1012B:長興化学工業製、ビニル基含有量1.65重量%、フェニル基含有量0重量%、SiH基(ヒドリド換算)含有量0.19重量%、数平均分子量4563、重量平均分子量21873
KER-2500A:信越化学工業(株)製、ビニル基含有量1.53重量%、フェニル基含有量0重量%、SiH基(ヒドリド換算)含有量0.03重量%、数平均分子量4453、重量平均分子量19355
KER-2500B:信越化学工業(株)製、ビニル基含有量1.08重量%、フェニル基含有量0重量%、SiH基(ヒドリド換算)含有量0.13重量%、数平均分子量4636、重量平均分子量18814
<合成例1>
反応容器に、メチルトリエトキシシラン(信越化学工業(株)製)30.06g、ビニルトリエトキシシラン(東京化成工業(株)製)21.39g及びメチルイソブチルケトン(MIBK)17.69gを仕込み、これらの混合物を10℃まで冷却した。上記混合物に水281ミリモル(5.06g)及び5Nの塩酸0.48g(塩化水素として2.4ミリモル)を1時間かけて滴下した。滴下後、これらの混合物を10℃で1時間保持した。その後、MIBKを80.0g添加して、反応溶液を希釈した。
次に、反応容器の温度を70℃まで昇温し、70℃になった時点で水703ミリモル(12.64g)を添加し、重縮合反応を窒素下で12時間行った。
続いて、上記反応溶液にヘキサメチルジシロキサン15.0gを添加して、シリル化反応を70℃で3時間行った。その後、反応溶液を冷却し、下層液が中性になるまで水洗を行い、その後、上層液を分取した。次に、当該上層液から、1mmHg、60℃の条件で溶媒を留去し、末端にトリメチルシリル基を有するラダー型シルセスキオキサンを無色透明の固体状の生成物として22.0g得た。
上記ラダー型シルセスキオキサンの重量平均分子量(Mw)は5000、1分子当たりのビニル基の含有量(平均含有量)は11.68重量%であり、メチル基/ビニル基(モル比)は60/40であった。
上記ラダー型シルセスキオキサンの1H-NMRスペクトルは、以下の通りであった。
1H-NMR(JEOL ECA500(500MHz、CDCl3))δ:0-0.3ppm(br)、5.8-6.1ppm(br)
反応容器に、メチルトリエトキシシラン34.07g、フェニルトリエトキシシラン(信越化学工業(株)製)11.49g、及びメチルイソブチルケトン(MIBK)17.69gを仕込み、これらの混合物を10℃まで冷却した。上記混合物に水240ミリモル(4.33g)及び5Nの塩酸0.48g(塩化水素として2.4ミリモル)を1時間かけて滴下した。滴下後、これらの混合物を10℃で1時間保持した。その後、MIBKを80.0g添加して、反応溶液を希釈した。
次に、反応容器の温度を70℃まで昇温し、70℃になった時点で水606ミリモル(10.91g)を添加し、重縮合反応を窒素下で9時間行った。さらに、ビニルトリエトキシシラン6.25gを添加し、3時間反応を行った。
続いて、上記反応溶液にヘキサメチルジシロキサン15.0gを添加して、シリル化反応を70℃で3時間行った。その後、反応溶液を冷却し、下層液が中性になるまで水洗を行い、その後、上層液を分取した。次に、当該上層液から、1mmHg、60℃の条件で溶媒を留去し、末端にビニル基とトリメチルシリル基とを有するラダー型シルセスキオキサン(上述のラダー型シルセスキオキサン(B1)に相当)を無色透明の液状の生成物として得た。
上記ラダー型シルセスキオキサンの重量平均分子量(Mw)は3400、1分子当たりのビニル基の含有量(平均含有量)は3.96重量%であり、フェニル基/メチル基/ビニル基(モル比)は17/68/15であった。
上記ラダー型シルセスキオキサンの1H-NMRスペクトルは、以下の通りであった。
1H-NMR(JEOL ECA500(500MHz、CDCl3))δ:-0.3-0.3ppm(br)、5.7-6.2ppm(br)、7.1-7.7ppm(br)
反応容器に、メチルトリエトキシシラン31.06g、フェニルトリエトキシシラン2.38g、及びメチルイソブチルケトン(MIBK)93.00gを仕込み、これらの混合物を10℃まで冷却した。上記混合物に水240ミリモル(4.33g)及び5Nの塩酸0.24g(塩化水素として1.2ミリモル)を1時間かけて滴下した。滴下後、これらの混合物を10℃で1時間保持した。
次に、反応容器の温度を50℃まで昇温し、50℃になった時点で水120ミリモル(2.16g)を添加し、重縮合反応を窒素下で4時間行った。さらに、ビニルトリエトキシシラン11.18gを添加し、4時間反応を行った。
続いて、上記反応溶液にヘキサメチルジシロキサン19.5gを添加して、シリル化反応を50℃で1時間行った。その後、反応溶液を冷却し、下層液が中性になるまで水洗を行い、その後、上層液を分取した。次に、当該上層液から、1mmHg、60℃の条件で溶媒を留去し、末端にビニル基とトリメチルシリル基とを有するラダー型シルセスキオキサン(上述のラダー型シルセスキオキサン(B1)に相当)を無色透明の液状の生成物として得た。
上記ラダー型シルセスキオキサンの数平均分子量(Mn)は879、重量平均分子量(Mw)は1116であった。
反応容器に、合成例2で得られたラダー型シルセスキオキサン12gと、1,1,3,3-テトラメチルジシロキサン(東京化成工業(株)製)24gと、2.0%白金-シクロビニルシロキサン錯体ビニルシクロシロキサン溶液(和光純薬工業(株)製)10μlとを仕込んだ。次いで、70℃で8時間加熱して、反応終了とした。続いて、エバポレータで濃縮した後、真空ポンプを用いて0.2Torrで3時間減圧し、末端にSiH含有基とトリメチルシリル基とを有するラダー型シルセスキオキサン(上述のラダー型シルセスキオキサン(B2)に相当)を液状の生成物として得た。
上記ラダー型シルセスキオキサンの重量平均分子量(Mw)は3700、1分子当たりのSiH基の含有量(平均含有量)は、SiH基におけるH(ヒドリド)の重量換算で0.11重量%であった。
上記ラダー型シルセスキオキサンの1H-NMRスペクトルは、以下の通りであった。
1H-NMR(JEOL ECA500(500MHz、CDCl3))δ:-0.3-0.3ppm(br)、4.7ppm(s)、7.1-7.7ppm(br)
実施例1~7及び比較例1~9を、以下の手順に従って実施した。
表1及び表2に従って、イソシアヌレート化合物(C)及びシランカップリング剤(D)を所定重量比率(表1及び表2中の各成分の配合量の単位は、重量部である)で混合した後、ポリオルガノシロキサン(A)及びシルセスキオキサン(B)を混合し、室温で2時間攪拌したところ、透明な溶液が得られた。この溶液に、2.0%白金-シクロビニルシロキサン錯体ビニルシクロシロキサン溶液(和光純薬工業(株)製)1.3μlを仕込み、さらに30分間攪拌して、硬化性樹脂組成物を得た。
上記で得た硬化性樹脂組成物をガラスプレートに塗布し、90℃で1時間、続いて、150℃で5時間加熱したところ、実施例1~7及び比較例1~9のいずれにおいても無色透明な硬化物が得られた。
LEDパッケージ(TOP LED OP-3、35mm×28mm、素子なし)に、実施例1~7、比較例1~9で得られた硬化性樹脂組成物を注入し、90℃で1時間、続いて、150℃で5時間加熱して、試料を作成した。
上記試料と硫黄粉末(キシダ化学(株)製)0.3gとを450mlのガラス瓶に入れ、さらに上記ガラス瓶をアルミ製の箱の中に入れた。続いて、上記アルミ製の箱をオーブン(ヤマト科学(株)製、型番「DN-64」)に入れ、24時間後に、上記試料のLEDパッケージにおける銀製電極の腐食状況を観察した。上記電極の色は、試験前は銀白色であるが、腐食が進むに従って、茶褐色、更には黒色へと変化する。
硫黄腐食性試験の評価基準については、銀製電極にほとんど変色が見られなかった場合を「A」、わずかに茶褐色又は黒色への変色が見られた場合を「B」、相当程度の茶褐色又は黒色への変色が見られた場合を「C」、完全に茶褐色又は黒色に変色した場合を「D」とした。結果を表3及び表4に示す。
実施例1~7、比較例1~9で得られた硬化物の表面粘着性を評価した。当該表面粘着性試験の評価基準については、硬化物の表面に粘着性がほとんど認められなかった場合を「A」、粘着性が認められた場合を「B」とした。結果を表3及び表4に示す。
Claims (9)
- ポリオルガノシロキサン(A)、シルセスキオキサン(B)、イソシアヌレート化合物(C)、及びシランカップリング剤(D)を含み、
ポリオルガノシロキサン(A)がアリール基を有しないポリオルガノシロキサンであり、シルセスキオキサン(B)としてラダー型シルセスキオキサンを含むことを特徴とする硬化性樹脂組成物。 - シルセスキオキサン(B)として、分子内に脂肪族炭素-炭素二重結合を有するラダー型シルセスキオキサンを含む請求項1に記載の硬化性樹脂組成物。
- シルセスキオキサン(B)として、分子内にSi-H結合を有するラダー型シルセスキオキサンを含む請求項1又は2に記載の硬化性樹脂組成物。
- シルセスキオキサン(B)として、分子内にアリール基を有するラダー型シルセスキオキサンを含む請求項1~3のいずれか1項に記載の硬化性樹脂組成物。
- 式(1)におけるRx、Ry、Rzのうち、いずれかひとつ以上が式(3)で表される基である請求項5に記載の硬化性樹脂組成物。
- 請求項1~6のいずれか1項に記載の硬化性樹脂組成物を硬化して得られる硬化物。
- 請求項1~6のいずれか1項に記載の硬化性樹脂組成物を用いて得られる封止剤。
- 請求項8に記載の封止剤を用いて得られる半導体装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14738183.4A EP2944675B1 (en) | 2013-01-09 | 2014-01-09 | Curable resin composition, and cured product of same |
US14/758,480 US9646904B2 (en) | 2013-01-09 | 2014-01-09 | Curable resin composition, and cured product of same |
KR1020157011470A KR101598325B1 (ko) | 2013-01-09 | 2014-01-09 | 경화성 수지 조성물 및 그의 경화물 |
CN201480004246.4A CN104903404B (zh) | 2013-01-09 | 2014-01-09 | 固化性树脂组合物及其固化物 |
JP2014556429A JP5778875B2 (ja) | 2013-01-09 | 2014-01-09 | 硬化性樹脂組成物及びその硬化物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-002104 | 2013-01-09 | ||
JP2013002104 | 2013-01-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014109349A1 true WO2014109349A1 (ja) | 2014-07-17 |
Family
ID=51166996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/050190 WO2014109349A1 (ja) | 2013-01-09 | 2014-01-09 | 硬化性樹脂組成物及びその硬化物 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9646904B2 (ja) |
EP (1) | EP2944675B1 (ja) |
JP (1) | JP5778875B2 (ja) |
KR (1) | KR101598325B1 (ja) |
CN (1) | CN104903404B (ja) |
MY (1) | MY155102A (ja) |
TW (1) | TWI523914B (ja) |
WO (1) | WO2014109349A1 (ja) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015016001A1 (ja) * | 2013-08-02 | 2015-02-05 | 株式会社ダイセル | 硬化性樹脂組成物及びそれを用いた半導体装置 |
WO2015016000A1 (ja) * | 2013-08-01 | 2015-02-05 | 株式会社ダイセル | 硬化性樹脂組成物及びそれを用いた半導体装置 |
WO2015019767A1 (ja) * | 2013-08-06 | 2015-02-12 | 株式会社ダイセル | 硬化性樹脂組成物及びそれを用いた半導体装置 |
WO2016043082A1 (ja) * | 2014-09-17 | 2016-03-24 | 株式会社ダイセル | 硬化性シリコーン樹脂組成物及びその硬化物 |
JP2016079219A (ja) * | 2014-10-10 | 2016-05-16 | 株式会社ダイセル | 硬化性樹脂組成物及びその硬化物、並びに半導体装置 |
JP2016124958A (ja) * | 2014-12-26 | 2016-07-11 | 株式会社ダイセル | 硬化性樹脂組成物及びその硬化物、並びに半導体装置 |
JP6027222B2 (ja) * | 2013-02-14 | 2016-11-16 | 株式会社ダイセル | 硬化性樹脂組成物、硬化物、封止材、及び半導体装置 |
JP2016216599A (ja) * | 2015-05-20 | 2016-12-22 | 株式会社ダイセル | 硬化性シリコーン樹脂組成物及びその硬化物 |
JP2016216642A (ja) * | 2015-05-22 | 2016-12-22 | 株式会社ダイセル | 硬化性樹脂組成物及びその硬化物、封止剤、並びに半導体装置 |
JP2016216598A (ja) * | 2015-05-20 | 2016-12-22 | 株式会社ダイセル | 硬化性シリコーン樹脂組成物及びその硬化物 |
JP2017002172A (ja) * | 2015-06-09 | 2017-01-05 | 株式会社ダイセル | 高硬度ポリシロキサン硬化物を与える硬化性樹脂組成物及びその硬化物 |
JPWO2015186722A1 (ja) * | 2014-06-06 | 2017-04-20 | 株式会社ダイセル | 硬化性樹脂組成物、硬化物、封止材、及び半導体装置 |
WO2017122712A1 (ja) * | 2016-01-15 | 2017-07-20 | 株式会社ダイセル | 硬化性樹脂組成物、硬化物、封止材、及び半導体装置 |
WO2017126538A1 (ja) * | 2016-01-18 | 2017-07-27 | 株式会社ダイセル | 新規ポリオルガノシロキシシルアルキレン、硬化性樹脂組成物及びその硬化物 |
KR20180113602A (ko) | 2016-02-22 | 2018-10-16 | 주식회사 다이셀 | 경화성 수지 조성물, 그의 경화물 및 반도체 장치 |
KR20190031508A (ko) | 2016-07-19 | 2019-03-26 | 주식회사 다이셀 | 경화성 수지 조성물, 그의 경화물 및 반도체 장치 |
KR20190050999A (ko) | 2016-09-07 | 2019-05-14 | 주식회사 다이셀 | 경화성 수지 조성물, 그의 경화물 및 반도체 장치 |
KR20190103366A (ko) | 2017-01-16 | 2019-09-04 | 주식회사 다이셀 | 경화성 수지 조성물, 그의 경화물 및 반도체 장치 |
US10488325B2 (en) | 2016-06-23 | 2019-11-26 | Daicel Corporation | Curable resin composition, method for producing curable resin composition, and method for measuring surface tackiness of viscoelastic material |
US10619046B2 (en) | 2016-03-25 | 2020-04-14 | Daicel Corporation | Curable resin composition, cured product thereof, and semiconductor device |
US10853926B2 (en) | 2016-03-29 | 2020-12-01 | Sony Corporation | Image processing device, imaging device, and image processing method |
JP2021012202A (ja) * | 2020-09-24 | 2021-02-04 | 株式会社ダイセル | 硬化性樹脂組成物、硬化性樹脂組成物の製造方法、及び粘弾性材料表面のタックの測定方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5895958B2 (ja) * | 2014-02-20 | 2016-03-30 | 横浜ゴム株式会社 | 偏波保持光ファイバー用接着剤組成物 |
CN106479134B (zh) * | 2016-09-21 | 2018-06-22 | 沈阳化工大学 | 一种含l-poss交联剂的同质异构交联法改性聚对苯二甲酸丁二醇酯(pbt)及其制备方法 |
KR20180065185A (ko) * | 2016-12-07 | 2018-06-18 | 한국과학기술연구원 | 자가-치유가 가능한 폴리실세스퀴옥산 및 이를 이용한 하이브리드 필름 |
CN106674522B (zh) * | 2016-12-13 | 2018-10-26 | 沈阳化工大学 | 含有l-poss交联剂的同质异构交联法改性回收pc及其制备方法 |
CN106751095B (zh) * | 2016-12-26 | 2018-10-26 | 沈阳化工大学 | 含有l-poss交联剂的同质异构改性回收ps及其制备方法 |
CN106832892B (zh) * | 2016-12-27 | 2019-01-01 | 沈阳化工大学 | 一种含l-poss的硅烷交联剂改性回收尼龙及其制备方法 |
CN106589786B (zh) * | 2016-12-27 | 2018-12-18 | 沈阳化工大学 | 一种含l-poss交联剂同质异构改性聚甲醛及其制备方法 |
CN106832893B (zh) * | 2016-12-27 | 2018-10-12 | 沈阳化工大学 | 一种含l-poss交联剂的同质异构回收尼龙及其制备方法 |
CN106832929B (zh) * | 2016-12-28 | 2018-10-26 | 沈阳化工大学 | 一种含有l-poss交联剂的同质异构交联法改性回收pps及其制备方法 |
JP2018188563A (ja) * | 2017-05-09 | 2018-11-29 | 株式会社ダイセル | 絶縁膜形成用組成物、絶縁膜、及び絶縁膜を備えた半導体デバイス |
WO2019058231A1 (en) * | 2017-09-22 | 2019-03-28 | 3M Innovative Properties Company | COMPOSITIONS COMPRISING SILSESQUIOXANE POLYMER AND FREE SILOXANE, AND ARTICLES |
JP7367704B2 (ja) * | 2018-12-27 | 2023-10-24 | 三菱瓦斯化学株式会社 | 樹脂組成物、成形体、光学レンズ、及び光学レンズユニット |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002314140A (ja) | 2001-02-09 | 2002-10-25 | Kanegafuchi Chem Ind Co Ltd | 発光ダイオード及びその製造方法 |
JP2006206721A (ja) | 2005-01-27 | 2006-08-10 | Kansai Electric Power Co Inc:The | 高耐熱合成高分子化合物及びこれで被覆した高耐電圧半導体装置 |
JP2007031619A (ja) | 2005-07-28 | 2007-02-08 | Nagase Chemtex Corp | 光素子封止用樹脂組成物 |
WO2011111667A1 (ja) * | 2010-03-08 | 2011-09-15 | リンテック株式会社 | 硬化性組成物、硬化物および硬化性組成物の使用方法 |
JP2012007126A (ja) * | 2010-06-28 | 2012-01-12 | Aica Kogyo Co Ltd | 付加型シリコーン樹脂組成物 |
JP2012077142A (ja) * | 2010-09-30 | 2012-04-19 | Kaneka Corp | 多面体構造ポリシロキサン系組成物、およびこれを封止剤として用いてなる光半導体 |
JP2012111875A (ja) * | 2010-11-25 | 2012-06-14 | Daicel Corp | 硬化性樹脂組成物及び硬化物 |
JP2012140617A (ja) | 2010-12-31 | 2012-07-26 | Eternal Chemical Co Ltd | 硬化性オルガノポリシロキサン組成物及びその製造方法 |
JP2012162666A (ja) * | 2011-02-08 | 2012-08-30 | Kaneka Corp | 多面体構造ポリシロキサン系組成物 |
WO2013094625A1 (ja) * | 2011-12-22 | 2013-06-27 | 株式会社ダイセル | 硬化性樹脂組成物及びその硬化物 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0770324A (ja) * | 1993-09-03 | 1995-03-14 | Toray Dow Corning Silicone Co Ltd | 有機ケイ素重合体の製造方法 |
JP4630032B2 (ja) * | 2004-10-04 | 2011-02-09 | 東レ・ダウコーニング株式会社 | ポリオルガノシロキサン及びそれを含む硬化性シリコーン組成物並びにその用途 |
JP5345908B2 (ja) | 2009-08-21 | 2013-11-20 | 信越化学工業株式会社 | オルガノポリシルメチレン及びオルガノポリシルメチレン組成物 |
JP2013510079A (ja) * | 2009-11-03 | 2013-03-21 | ダウ コーニング コーポレーション | ポリシルアルキレンシロキサンの製造プロセス |
MY154045A (en) | 2012-05-25 | 2015-04-27 | Daicel Corp | Curable resin composition and cured product thereof, encapsulating agent, and optical semiconductor device |
-
2014
- 2014-01-09 MY MYPI2015702112A patent/MY155102A/en unknown
- 2014-01-09 KR KR1020157011470A patent/KR101598325B1/ko active IP Right Grant
- 2014-01-09 TW TW103100828A patent/TWI523914B/zh not_active IP Right Cessation
- 2014-01-09 JP JP2014556429A patent/JP5778875B2/ja not_active Expired - Fee Related
- 2014-01-09 WO PCT/JP2014/050190 patent/WO2014109349A1/ja active Application Filing
- 2014-01-09 US US14/758,480 patent/US9646904B2/en not_active Expired - Fee Related
- 2014-01-09 CN CN201480004246.4A patent/CN104903404B/zh not_active Expired - Fee Related
- 2014-01-09 EP EP14738183.4A patent/EP2944675B1/en not_active Not-in-force
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002314140A (ja) | 2001-02-09 | 2002-10-25 | Kanegafuchi Chem Ind Co Ltd | 発光ダイオード及びその製造方法 |
JP2006206721A (ja) | 2005-01-27 | 2006-08-10 | Kansai Electric Power Co Inc:The | 高耐熱合成高分子化合物及びこれで被覆した高耐電圧半導体装置 |
JP2007031619A (ja) | 2005-07-28 | 2007-02-08 | Nagase Chemtex Corp | 光素子封止用樹脂組成物 |
WO2011111667A1 (ja) * | 2010-03-08 | 2011-09-15 | リンテック株式会社 | 硬化性組成物、硬化物および硬化性組成物の使用方法 |
JP2012007126A (ja) * | 2010-06-28 | 2012-01-12 | Aica Kogyo Co Ltd | 付加型シリコーン樹脂組成物 |
JP2012077142A (ja) * | 2010-09-30 | 2012-04-19 | Kaneka Corp | 多面体構造ポリシロキサン系組成物、およびこれを封止剤として用いてなる光半導体 |
JP2012111875A (ja) * | 2010-11-25 | 2012-06-14 | Daicel Corp | 硬化性樹脂組成物及び硬化物 |
JP2012140617A (ja) | 2010-12-31 | 2012-07-26 | Eternal Chemical Co Ltd | 硬化性オルガノポリシロキサン組成物及びその製造方法 |
JP2012162666A (ja) * | 2011-02-08 | 2012-08-30 | Kaneka Corp | 多面体構造ポリシロキサン系組成物 |
WO2013094625A1 (ja) * | 2011-12-22 | 2013-06-27 | 株式会社ダイセル | 硬化性樹脂組成物及びその硬化物 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2944675A4 |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6027222B2 (ja) * | 2013-02-14 | 2016-11-16 | 株式会社ダイセル | 硬化性樹脂組成物、硬化物、封止材、及び半導体装置 |
JPWO2014125964A1 (ja) * | 2013-02-14 | 2017-02-02 | 株式会社ダイセル | 硬化性樹脂組成物、硬化物、封止材、及び半導体装置 |
WO2015016000A1 (ja) * | 2013-08-01 | 2015-02-05 | 株式会社ダイセル | 硬化性樹脂組成物及びそれを用いた半導体装置 |
WO2015016001A1 (ja) * | 2013-08-02 | 2015-02-05 | 株式会社ダイセル | 硬化性樹脂組成物及びそれを用いた半導体装置 |
WO2015019767A1 (ja) * | 2013-08-06 | 2015-02-12 | 株式会社ダイセル | 硬化性樹脂組成物及びそれを用いた半導体装置 |
JPWO2015186722A1 (ja) * | 2014-06-06 | 2017-04-20 | 株式会社ダイセル | 硬化性樹脂組成物、硬化物、封止材、及び半導体装置 |
WO2016043082A1 (ja) * | 2014-09-17 | 2016-03-24 | 株式会社ダイセル | 硬化性シリコーン樹脂組成物及びその硬化物 |
CN106715593A (zh) * | 2014-09-17 | 2017-05-24 | 株式会社大赛璐 | 固化性有机硅树脂组合物及其固化物 |
JP2016079219A (ja) * | 2014-10-10 | 2016-05-16 | 株式会社ダイセル | 硬化性樹脂組成物及びその硬化物、並びに半導体装置 |
JP2016124958A (ja) * | 2014-12-26 | 2016-07-11 | 株式会社ダイセル | 硬化性樹脂組成物及びその硬化物、並びに半導体装置 |
JP2016216599A (ja) * | 2015-05-20 | 2016-12-22 | 株式会社ダイセル | 硬化性シリコーン樹脂組成物及びその硬化物 |
JP2016216598A (ja) * | 2015-05-20 | 2016-12-22 | 株式会社ダイセル | 硬化性シリコーン樹脂組成物及びその硬化物 |
JP2016216642A (ja) * | 2015-05-22 | 2016-12-22 | 株式会社ダイセル | 硬化性樹脂組成物及びその硬化物、封止剤、並びに半導体装置 |
JP2017002172A (ja) * | 2015-06-09 | 2017-01-05 | 株式会社ダイセル | 高硬度ポリシロキサン硬化物を与える硬化性樹脂組成物及びその硬化物 |
WO2017122712A1 (ja) * | 2016-01-15 | 2017-07-20 | 株式会社ダイセル | 硬化性樹脂組成物、硬化物、封止材、及び半導体装置 |
WO2017126538A1 (ja) * | 2016-01-18 | 2017-07-27 | 株式会社ダイセル | 新規ポリオルガノシロキシシルアルキレン、硬化性樹脂組成物及びその硬化物 |
KR20180113602A (ko) | 2016-02-22 | 2018-10-16 | 주식회사 다이셀 | 경화성 수지 조성물, 그의 경화물 및 반도체 장치 |
US10870758B2 (en) | 2016-02-22 | 2020-12-22 | Daicel Corporation | Curable resin composition, cured product thereof, and semiconductor device |
US10619046B2 (en) | 2016-03-25 | 2020-04-14 | Daicel Corporation | Curable resin composition, cured product thereof, and semiconductor device |
US10853926B2 (en) | 2016-03-29 | 2020-12-01 | Sony Corporation | Image processing device, imaging device, and image processing method |
US12105013B2 (en) | 2016-06-23 | 2024-10-01 | Nichia Corporation | Curable resin composition, method for producing curable resin composition, and method for measuring surface tackiness of viscoelastic material |
US10488325B2 (en) | 2016-06-23 | 2019-11-26 | Daicel Corporation | Curable resin composition, method for producing curable resin composition, and method for measuring surface tackiness of viscoelastic material |
US11124649B1 (en) | 2016-07-19 | 2021-09-21 | Nichia Corporation | Curable resin composition, cured product of same and semiconductor device |
KR20190031508A (ko) | 2016-07-19 | 2019-03-26 | 주식회사 다이셀 | 경화성 수지 조성물, 그의 경화물 및 반도체 장치 |
KR20190050999A (ko) | 2016-09-07 | 2019-05-14 | 주식회사 다이셀 | 경화성 수지 조성물, 그의 경화물 및 반도체 장치 |
KR20190103366A (ko) | 2017-01-16 | 2019-09-04 | 주식회사 다이셀 | 경화성 수지 조성물, 그의 경화물 및 반도체 장치 |
JP2021012202A (ja) * | 2020-09-24 | 2021-02-04 | 株式会社ダイセル | 硬化性樹脂組成物、硬化性樹脂組成物の製造方法、及び粘弾性材料表面のタックの測定方法 |
JP7004932B2 (ja) | 2020-09-24 | 2022-01-21 | 日亜化学工業株式会社 | 粘弾性材料表面のタックの測定方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201431961A (zh) | 2014-08-16 |
US20150340299A1 (en) | 2015-11-26 |
EP2944675B1 (en) | 2017-04-12 |
JPWO2014109349A1 (ja) | 2017-01-19 |
EP2944675A4 (en) | 2015-12-09 |
MY155102A (en) | 2015-09-07 |
JP5778875B2 (ja) | 2015-09-16 |
CN104903404A (zh) | 2015-09-09 |
CN104903404B (zh) | 2016-07-20 |
EP2944675A1 (en) | 2015-11-18 |
TWI523914B (zh) | 2016-03-01 |
US9646904B2 (en) | 2017-05-09 |
KR101598325B1 (ko) | 2016-02-26 |
KR20150065822A (ko) | 2015-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5778875B2 (ja) | 硬化性樹脂組成物及びその硬化物 | |
JP5655163B2 (ja) | 硬化性樹脂組成物及びその硬化物 | |
JP6027209B2 (ja) | 硬化性樹脂組成物、硬化物、封止材、及び半導体装置 | |
JP5736524B1 (ja) | 硬化性樹脂組成物及びそれを用いた半導体装置 | |
JP5830201B2 (ja) | 硬化性樹脂組成物及びそれを用いた半導体装置 | |
JP5736525B1 (ja) | 硬化性樹脂組成物及びそれを用いた半導体装置 | |
JP6474801B2 (ja) | 硬化性樹脂組成物、硬化物、封止材、及び半導体装置 | |
JP6460714B2 (ja) | 硬化性樹脂組成物及びその硬化物、並びに半導体装置 | |
JP6452545B2 (ja) | 硬化性シリコーン樹脂組成物及びその硬化物 | |
JP2017002172A (ja) | 高硬度ポリシロキサン硬化物を与える硬化性樹脂組成物及びその硬化物 | |
WO2017126538A1 (ja) | 新規ポリオルガノシロキシシルアルキレン、硬化性樹脂組成物及びその硬化物 | |
JP2016216642A (ja) | 硬化性樹脂組成物及びその硬化物、封止剤、並びに半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14738183 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2014556429 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20157011470 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14758480 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014738183 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014738183 Country of ref document: EP |