WO2014104203A1 - 投影装置 - Google Patents

投影装置 Download PDF

Info

Publication number
WO2014104203A1
WO2014104203A1 PCT/JP2013/084917 JP2013084917W WO2014104203A1 WO 2014104203 A1 WO2014104203 A1 WO 2014104203A1 JP 2013084917 W JP2013084917 W JP 2013084917W WO 2014104203 A1 WO2014104203 A1 WO 2014104203A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
fiber
light
color
infrared
Prior art date
Application number
PCT/JP2013/084917
Other languages
English (en)
French (fr)
Inventor
昌史 井出
新平 深谷
正也 鈴木
Original Assignee
シチズンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズンホールディングス株式会社 filed Critical シチズンホールディングス株式会社
Priority to US14/387,839 priority Critical patent/US9438871B2/en
Priority to JP2014514265A priority patent/JP5611490B1/ja
Priority to CN201380068609.6A priority patent/CN104884995B/zh
Publication of WO2014104203A1 publication Critical patent/WO2014104203A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3185Geometric adjustment, e.g. keystone or convergence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/02Scanning details of television systems; Combination thereof with generation of supply voltages by optical-mechanical means only
    • H04N3/08Scanning details of television systems; Combination thereof with generation of supply voltages by optical-mechanical means only having a moving reflector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • H04N9/3132Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen using one-dimensional electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • H04N9/3135Driving therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3138Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using arrays of modulated light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/317Convergence or focusing systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
    • G02B6/065Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images with dynamic image improvement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/10Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical
    • H04N3/16Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by deflecting electron beam in cathode-ray tube, e.g. scanning corrections
    • H04N3/22Circuits for controlling dimensions, shape or centering of picture on screen

Definitions

  • the present invention relates to a projection apparatus that scans a laser beam and projects an image on a projection surface.
  • Laser projectors that produce all colors by combining fiber tails that transmit red, green, and blue three primary colors (RGB) with a fused fiber combiner are known.
  • a light source device having a fiber bundle that is bundled and fixed by a ferrule without using a fusion type fiber combiner is also known.
  • Patent Document 1 discloses a plurality of core-clad optical fibers that are bundled in parallel by reducing the outer diameter of the clad while keeping the core diameter at one end face, and the other end face of each of the optical fibers and RGB A light source device having an optical system unit that optically couples each of the laser light sources is described.
  • Patent Document 2 discloses a plurality of first optical fibers into which light emitted from a plurality of light emitting elements is incident, and a plurality of second lights having one end connected to a multiplexing unit that multiplexes the light.
  • a light source device including a ferrule fixing mechanism that fixes a fiber, an optical scanner that forms an image by two-dimensionally scanning light from the light source device, and forms an image of the light scanned by the optical scanner on a predetermined projection surface
  • a projector comprising an imaging optical system is described.
  • Patent Document 3 describes an optical scanning color projector device in which each laser beam emitted from an RGB semiconductor laser is condensed by a condenser lens, deflected by a movable mirror, and drawn as a two-dimensional image on a screen. ing.
  • This apparatus displays a high-resolution color image by giving a time difference to the lighting timing of each laser beam so that each laser beam reaches the same pixel point and lights up with image information of that pixel.
  • Patent Document 4 describes an image display device that can stabilize the resonance frequency of the scanning means and obtain a high-quality image.
  • the image display device includes a light source device that emits light, a scanning unit that scans light emitted from the light source device toward a projection surface, another light source device that irradiates light to the scanning unit, and a scanning unit.
  • Control means for controlling the amount of light emitted from another light source device so that the amount of heat absorbed is constant.
  • Patent Document 5 discloses a plurality of light sources that emit light modulated in accordance with an image signal, a collimator lens that converts light from the plurality of light sources into parallel beam beams, and a plurality of converted beam beams.
  • a condensing lens system that condenses the light beam on almost the same optical axis by narrowing the beam interval, and optical scanning that reflects the light collected on almost the same optical axis by a variable angle mirror to scan the projection surface two-dimensionally
  • a projection display device comprising means.
  • the distance between adjacent cores becomes shorter in the fused fiber.
  • optical coupling between the optical fibers occurs.
  • the projected image appears blurred by simply bundling the fibers with the ferrule. This is because the cores of the respective fibers for RGB laser light are separated from each other, so that a positional shift occurs at the projection point between RGB.
  • the scanning unit that scans the RGB laser light in a two-dimensional manner is configured by a resonance MEMS (Micro Electro Mechanical System) scanner
  • the resonance frequency changes due to a temperature change of the MEMS scanner.
  • distortion may occur in the projected image.
  • correction is performed using RGB visible light, it is difficult to simultaneously project an image that is originally intended to be displayed and measure image distortion, and it is difficult to correct distortion of a projected image in real time.
  • the scanning angle of the RGB laser light may be controlled using depth information indicating the distance. I need it.
  • This depth information can be detected using visible light, but if visible light is used, the depth information cannot be detected unless an image is being projected.
  • the present invention improves the utilization efficiency of each color laser beam of RGB, eliminates the misalignment of the projection point caused by the separation of the core of the fiber emitting each color laser beam, and displays the image by each color laser beam.
  • An object of the present invention is to provide a projection apparatus capable of detecting additional information such as image distortion or depth information while projecting.
  • the projector includes a laser light source that outputs laser light of each color of red, green, and blue, a fixture that fixes each color fiber of red fiber, green fiber, and blue fiber that transmits each color laser light, and each color laser
  • Each color laser beam has a scanning unit that scans light and projects an image on the projection surface, and an optical system that forms an image on the projection surface of the light scanned by the scanning unit.
  • the fixing tool fixes the red fiber, the green fiber, and the blue fiber so that the projection points are arranged in order.
  • the detection unit that detects the depth information indicating the distance from the emission point of the laser beam to the projection surface, and the displacement of the projection point of each color that occurs on the projection surface due to the positional relationship of each color fiber. It is preferable to further include a control unit that controls the emission timing of each color laser beam by the laser light source in accordance with the depth information so as to cancel.
  • the projection device includes a laser light source that emits a plurality of laser beams having different colors and light emitting points on the same surface, a scanning unit that scans the plurality of laser beams and projects an image on the projection surface, An optical system that forms an image of the light scanned by the scanning unit on the projection surface, and a distance between the projection points and scanning by the scanning unit so as to cancel the positional deviation of the projection points of the plurality of laser beams generated on the projection surface. And a control unit that controls the light emission timings of the plurality of laser beams by the laser light source based on the direction of positional deviation between the projection points with respect to the direction.
  • the above projection apparatus may further include a detection unit that detects depth information indicating the distances from the emission points of the plurality of laser beams to the projection surface, and the control unit may further control the emission timing based on the depth information. preferable.
  • the laser light source includes at least red, green, and blue laser lights as a plurality of laser lights, and each projection point of the red, green, and blue laser lights in a line along the scanning direction on the projection surface. It is preferable to emit the light in a line.
  • the laser light source emits red, green, and blue laser beams from the red, green, and blue fibers, and projects the red, green, and blue laser beams. It is preferable to further include a fixture for fixing each color fiber so that the dots are aligned in a line along the scanning direction.
  • the fixture fixes an infrared irradiation fiber that outputs infrared rays for detecting depth information together with each color fiber.
  • the projector includes a laser light source that emits red, green, and blue color laser light and infrared laser light, a color fiber that transmits each color laser light, and an infrared irradiation fiber that transmits infrared laser light.
  • a scanning unit that scans each color laser beam emitted from the emission end of each color fiber, and projects an image on the projection surface, and an emission end of the infrared irradiation fiber It has a detection part which detects reflected light of emitted infrared laser light, and a control part which controls light emission of each color laser light by a laser light source based on information which a detection part detected.
  • the detection unit detects depth information indicating a distance from the emission end of each color fiber to the projection surface, and the control unit controls light emission based on the depth information.
  • control unit sets the timing of light emission based on the amount of positional deviation between the projection points of each color laser beam generated on the projection plane due to the positional relationship between the fibers for each color fixed by the fixture. It is preferable to control.
  • the fixing device fixes the emission end portion of each color fiber so that the projection points of the respective color laser beams are aligned in a line along the scanning direction of the scanning unit.
  • the fixture fixes the end of the infrared receiving fiber that receives and transmits the reflected light together with each color fiber and the infrared irradiation fiber, and the detection unit is transmitted by the infrared receiving fiber. It is preferable to detect depth information from the transmitted light.
  • the fixing device fixes each color fiber having an emission end face inclined with respect to a plane perpendicular to the length direction, and the scanning unit is a direction inclined with respect to the length direction from each color fiber. It is preferable to scan the laser beam emitted from the laser beam.
  • the scanning unit is a MEMS scanner that scans each color laser beam on the projection surface in a two-dimensional manner, and each color laser beam emitted from the emission end of each color fiber is applied to the MEMS scanner.
  • the projection lens is shaped so that the MEMS scanner is arranged away from the projection lens by the focal length of the projection lens.
  • the scanning unit projects an image by each color laser beam and an image by the infrared laser beam on the projection surface
  • the detection unit is an infrared camera that captures the image projected on the projection surface.
  • the control unit detects the distortion of the image projected on the projection surface based on the image captured by the infrared camera and controls the light emission based on the image data corrected so as to cancel the distortion.
  • the detection unit further includes a band-pass filter that transmits light of each color laser beam and infrared laser beam disposed in front of the imaging unit.
  • each color laser beam of RGB is improved, the positional deviation of the projection point due to the separation of the core of the fiber emitting each color laser beam is eliminated, and the laser beam of each color is used. It is possible to provide a projection apparatus that can detect additional information such as image distortion or depth information while projecting an image.
  • FIG. 1 is a diagram for explaining an overall configuration of a laser projector 1.
  • FIG. (A)-(C) is a figure for demonstrating the ferrule 23 and a fiber bundle.
  • (A) And (B) is a figure for demonstrating the scanning direction of the laser beam 28 by the MEMS scanner 25.
  • FIG. (A) And (B) is a figure for demonstrating the conditions in the case of overlapping the image output from a some fiber.
  • 1 is a diagram showing a projection optical system of a laser projector 1.
  • FIG. (A) to (C) are graphs showing experimental results with the projection optical system of FIG. (A) And (B) is a figure for demonstrating the example of the method of correct
  • (A) And (B) is a figure for demonstrating another example of the method of correct
  • (A) And (B) is a figure for demonstrating another example of the method of correct
  • (A)-(C) are the figures for demonstrating the modification which cuts the output end surface of each fiber 21 diagonally. It is a figure for demonstrating the preferable cut direction of an output end surface.
  • FIG. 1 is a diagram for explaining the overall configuration of the laser projector 1.
  • the laser projector 1 is an example of a projection device, and includes a laser light source 10, an emission unit 20, a detection unit 30, and a control unit 40 as main components.
  • the laser projector 1 outputs laser light of each color emitted from a laser light source 10 from three fibers bundled by a ferrule, and two-dimensionally through a oscillating MEMS (Micro Electro Mechanical System) scanner.
  • the image is projected onto the projection plane 50 by scanning.
  • MEMS Micro Electro Mechanical System
  • the laser light source 10 includes laser diodes (LD) 11, 12 and 13 that emit red (R), green (G) and blue (B) laser beams.
  • LD laser diodes
  • R red
  • G green
  • B blue
  • the control unit 40 the control unit 40 according to the image data of the projected image.
  • the emitting unit 20 emits each color laser beam from the laser light source 10 toward the projection surface 50.
  • the emitting unit 20 includes a plurality of fibers 21, a ferrule 23, a projection lens 24, a MEMS scanner 25, a MEMS driver 26, and a shielding unit 29.
  • the plurality of fibers 21 include fibers for transmitting the respective color laser beams from the laser light source 10 and dummy fibers (not shown).
  • Each fiber is, for example, a single mode optical fiber.
  • the fibers that transmit the R, G, and B laser beams from the laser diodes 11, 12, and 13 are referred to as an R fiber, a G fiber, and a B fiber, respectively. These fibers are collectively referred to as RGB fibers.
  • the dummy fiber is called D fiber.
  • the laser projector 1 has one R fiber, one G fiber, and one B fiber, and a plurality of D fibers.
  • the ferrule 23 is an example of a fixture, and binds and fixes an R fiber, a G fiber, a B fiber, and a D fiber at the end opposite to the laser light source 10.
  • the ferrule 23 functions as a fiber bundle combiner that forms a fiber bundle.
  • the RGB laser beams are emitted from the emission end face of each fiber 21 at the end of the ferrule 23.
  • Projection lens 24 shapes so that each color laser beam emitted from the emission end face of each fiber 21 is irradiated to MEMS scanner 25.
  • the MEMS scanner 25 is an example of a scanning unit, and scans each color laser light from the projection lens 24 on the projection surface 50 in a two-dimensional manner.
  • the MEMS scanner 25 is swung at a high speed, for example, in the horizontal direction and the vertical direction by the MEMS driver 26.
  • the MEMS scanner 25 is resonantly driven at, for example, about 20 KHz, and the scanning angle changes with time in a sine wave shape.
  • the MEMS scanner 25 is driven at, for example, 60 Hz by a sawtooth forced drive, and its scanning angle changes with time in a sawtooth manner.
  • the MEMS driver 26 drives the MEMS scanner 25 according to the control data from the control unit 40, and swings the MEMS scanner 25 in the horizontal direction and the vertical direction at high speed.
  • the driving method any of an electrostatic method, an electromagnetic method, a piezo method, and the like may be used. Different driving methods may be combined for horizontal scanning and vertical scanning.
  • the shielding unit 29 is a frame having a rectangular opening (see FIG. 3A), and shields the periphery of the scanning region of the laser light 28 scanned by the MEMS scanner 25.
  • the laser beam 28 passing through the opening of the shielding unit 29 displays an image on the projection surface 50.
  • the detection unit 30 detects the distance (depth information) from the emission point of the laser light at the emission unit 20 to the projection plane 50.
  • the detection unit 30 includes an infrared irradiation unit 31 and an infrared detection unit 32.
  • the infrared irradiation unit 31 irradiates infrared rays in the space where the laser projector 1 is installed.
  • the infrared detection unit 32 is, for example, an infrared camera, and receives reflected light reflected by an object in the space, a floor, a wall, or the like, which is emitted from the infrared irradiation unit 31.
  • the detection unit 30 uses, for example, a time-of-flight (TOF) method, and measures the depth of flight by measuring the flight time of light from when the infrared irradiation unit 31 emits infrared rays until the infrared detection unit 32 receives reflected light. Detect information.
  • the detection unit 30 may use a triangulation method using a pseudo-random dot irradiation method such as M-Array. The detection unit 30 notifies the control unit 40 of the depth information.
  • the control unit 40 controls the entire operation of the laser projector 1.
  • the control unit 40 includes a CPU 41, a RAM 42, a ROM 43, and an I / O 44.
  • the I / O 44 is an interface for exchanging data among the laser light source 10, the emission unit 20, and the detection unit 30.
  • the control unit 40 controls the light emission timing of the laser light source 10 as described later according to the image data and the depth information acquired from the detection unit 30.
  • the control unit 40 controls the emission unit 20 to project the laser light on the projection surface 50.
  • the emission unit 20 is adjusted by optimally adjusting the projection angle of the MEMS scanner 25 and the diffusion angle of the Gaussian beam. And a characteristic (focus free characteristic) that a good image can be formed on the projection plane 50 regardless of the distance between the projection plane 50 and the projection plane 50. Therefore, as long as an image is simply projected on a projection surface installed on a wall or the like, a good image can be projected without using depth information.
  • depth information is required when an image having a certain size is projected regardless of the distance from the emitting unit 20 to the projection plane 50.
  • an image having a constant size is always displayed regardless of the distance from the laser projector 1.
  • the image size to be projected is changed according to the distance, whereby the palm is obtained. Make the image size above constant.
  • depth information by the detection unit 30 is required.
  • FIGS. 2A to 2C are diagrams for explaining the ferrule 23 and the fiber bundle.
  • FIG. 2A is a cutaway perspective view of the ferrule 23.
  • FIG. 2B is a cross-sectional view of the fiber bundle fixed by the ferrule 23.
  • FIG. 2C is a diagram for explaining which fiber each fiber 21 shown in FIG. 2B is.
  • the ferrule 23 is configured in a cylindrical shape by, for example, zirconia.
  • the ferrule 23 fixes one R fiber 21r, one G fiber 21g, and one B fiber 21b, and four fibers of the D fiber 21d. These seven fibers in total are closely packed in the cylindrical through hole 23a.
  • Each fiber 21 has a core 211 and a clad 212 covering the periphery of the core.
  • the core 211 is formed at the center of the core of the fiber 21 and transmits laser light.
  • Each fiber 21 can be a single mode fiber or polarization maintaining fiber suitable for a predetermined wavelength.
  • the clad 212 is formed on the outer periphery of the core 211 and has a refractive index lower than that of the core 211.
  • Laser diodes 11, 12, and 13 are connected to the end portions (not shown) opposite to the end portions shown in FIG. And each color laser beam is radiate
  • the other six fibers are concentrically arranged so as to surround the central G fiber 21g. Further, the R fiber 21r, the G fiber 21g, and the B fiber 21b are arranged so as to be aligned in the A direction in FIG.
  • the diameter of each fiber 21 is substantially equal, and the distance between two adjacent cores 211 is also substantially equal.
  • the ferrule 23 fixes the fiber bundle bundled in such an arrangement. The ferrule 23 is fixed with respect to the laser projector 1. That is, the arrangement of the fibers 21 is fixed for each laser projector (for each device).
  • the light from the RGB fibers is not coupled to one fiber, but a plurality of fibers 21 including the RGB fibers are simply bundled to form a fiber bundle and fixed by the ferrule 23.
  • the use efficiency of a laser beam is improved by suppressing the influence between the fibers which may occur in the fused fiber.
  • the ferrule 23 may be made of other materials such as stainless steel. Further, the fiber bundle may be fixed using a fixing tool different from the ferrule 23.
  • FIG. 3A and 3B are diagrams for explaining the scanning direction of the laser light 28 by the MEMS scanner 25.
  • FIG. 3A is a diagram for explaining the scanning direction of the laser light 28.
  • the projection point 51 of the laser beam 28 moves in the direction of the arrow, and draws a sine wave locus L indicated by a broken line and a solid line.
  • the trajectory covers the projection surface in a two-dimensional manner while repeatedly reciprocating substantially horizontally with respect to the projection surface 50 (see FIG. 1).
  • the number of scans is reduced for the sake of explanation.
  • the horizontal direction is the X direction
  • the vertical direction is the Y direction.
  • the laser beam 28 is scanned within a rectangle having an X-direction display width A1 and a Y-direction display width B1.
  • the laser beam 28 is shielded when scanning on the shield 29 (the locus indicated by the broken line). For this reason, the laser beam 28 reaches the projection surface only when scanning the opening 29a of the shielding part 29 having the X-direction display width A2 and the Y-direction display width B2 (trajectory indicated by a solid line).
  • the locus L of the projection point 51 moves in the direction of the arrow along a sine wave curve indicated by a broken line and a solid line, starting from the point P1.
  • the trajectory L forms a trajectory substantially in the X direction, for example, as trajectories La1 and La2 within the opening 29a, and draws a curved line, for example, as trajectories Lb1 and Lb2, on the shielding unit 29, and these are repeated periodically.
  • the locus L moves upward along the sinusoidal curves Lc1 and Lc2 indicated by fine dotted lines, and returns to the starting point P1. Thereby, drawing for one screen is completed.
  • the laser projector 1 projects images continuously by repeating the above scanning.
  • FIG. 3B is a schematic diagram of the MEMS scanner 25.
  • the MEMS scanner 25 has a structure in which a micro mirror 251 serving as a reflection surface is supported by torsion bars 252 and 253.
  • the micro mirror 251 swings in the horizontal direction (X direction) with the shaft 254 as the central axis.
  • the normal line of the reflecting surface of the micromirror 251 changes in the X direction, so that the reflection angle of the laser light incident on the micromirror 251 changes in the X direction.
  • the micro mirror 251 swings in the vertical direction (Y direction) about the axis 255 orthogonal to the axis 254 as the torsion bar 253 is twisted.
  • the normal line of the reflecting surface of the micromirror 251 changes in the Y direction, so that the reflection angle of the laser light incident on the micromirror 251 changes in the Y direction.
  • the laser beam is scanned two-dimensionally by the MEMS scanner 25.
  • the ferrule 23 is made of an RGB fiber so that the projection points of the respective colors are arranged in order along the horizontal scanning direction of the laser light 28 (X direction in FIG. 3A).
  • the ferrule 23 fixes the RGB fibers side by side on the diameter of the concentric circles of the fiber bundle as shown in FIG. 2C, and each RGB projection point is on a straight line on the projection plane. Try to line up.
  • the direction in which the RGB fibers are arranged A direction in FIG. 2C
  • the oscillation direction of the MEMS scanner 25 in which the reflection angle of the laser light changes in the horizontal direction (X direction in FIG. 3B).
  • the ferrules 23 are arranged so as to match. Thereby, the RGB projection points are arranged in the X direction on the projection surface. If the scanning direction of the laser beam 28 and the alignment direction of the RGB fibers are aligned in this way, it is easy to correct the positional deviation of the projection point 51 caused by the separation of the cores of the respective fibers, as will be described below. Become.
  • the direction in which the RGB fibers are arranged and the direction in which the MEMS scanner 25 swings do not necessarily match. That is, the arrangement direction of the RGB fibers with respect to the swing direction of the MEMS scanner 25 may be arbitrary. In addition, the arrangement of the fibers 21 in the fiber bundle is not necessarily limited to that the RGB fibers are arranged on a straight line. The number of the fibers 21 may not be seven.
  • the arrangement of each fiber 21 in the fiber bundle with respect to the swing direction of the MEMS scanner 25 is known information that is determined for each laser projector 1 (for each device). From this information, the arrangement of each projection point 51 on the projection plane 50 can be known.
  • each color RGB image can be superimposed by a fiber bundle type laser projector.
  • the light emitted from the fibers for each color is a parallel straight line (collimated light) and is shifted only in the horizontal scanning direction.
  • the optical system is approximated by geometric optics, and the MEMS scanner is disposed at the focal length of the projection lens.
  • the distance between the cores of the fiber is d, and the angle formed by the light beam from the center fiber and the light beam from the adjacent fiber when the MEMS scanner is at the origin position where the MEMS scanner does not vibrate is the shift angle ⁇ .
  • f is the focal length of the projection lens.
  • Expression (1) represents position / angle conversion.
  • FIG. 4A and FIG. 4B are diagrams for explaining conditions in the case of overlapping image outputs from a plurality of fibers.
  • FIG. 4A is a diagram illustrating a case where image outputs from two fibers are overlapped.
  • an image I of light (solid line) from a central fiber is projected onto the projection plane 50 at a scanning angle ⁇ ( ⁇ > ⁇ ) larger than the shift angle ⁇ .
  • the image J by light (broken line) from the adjacent fiber has the same scanning angle ⁇ and intersects the image I at the optical axis U.
  • the laser projector 1 When the laser projector 1 is installed on a ceiling or the like and uses an optical fiber bundle including three fibers of RGB, for example, to project an image on the palm detected in a predetermined space, the formula ( A design that considers 3) is necessary.
  • the projection distance becomes long, so the scanning angle ⁇ is reduced. Therefore, when the shift angle ⁇ is large, the effective overlap angle ⁇ capable of displaying an image becomes very small. Then, the time that can be used for image display out of the scanning double angle 2 ⁇ by the MEMS scanner 25 is proportional to the overlap angle ⁇ , so that the time during which the image can be displayed is shortened and the use efficiency of the laser light is reduced.
  • the distance to the projection surface is as short as several tens of centimeters, a practical system can be developed even if the inter-fiber distance d is 80 ⁇ m. However, when extending the projection distance beyond that, it is necessary to further shorten the inter-fiber distance d.
  • the MEMS scanner 25 is disposed at the focal length of the projection lens 24, and that each of RGB colors is condensed at the same position of the MEMS scanner 25 and projected from that point onto the projection plane.
  • the projection lens is not ideal, and because there are restrictions such as the fact that the MEMS scanner must be placed near the projection lens for design reasons, the projection points for each RGB color are the same as those of the MEMS scanner. It does not become a position. Therefore, when actually designing a laser projector, it is necessary to consider the above-described conditions for overlapping images under such restrictions. However, even in such a case, in applications where the scanning angle ⁇ can be increased, it is considered that a brighter display can be obtained by using a fiber bundle combiner like the laser projector 1 than by using a fusion type combiner.
  • FIG. 5 is a diagram showing a projection optical system of the laser projector 1. 5, the ferrule 23, the projection lens 24, the MEMS scanner 25, and the projection surface 50 are shown in an enlarged manner in the overall configuration shown in FIG.
  • x, y, and z axes are defined, and the horizontal scanning direction on the projection plane 50 by the MEMS scanner 25 is defined as the x direction, and the vertical scanning direction is defined as the y direction.
  • the x and y directions coincide with the X and Y directions in FIGS. 3A and 3B, respectively.
  • the angle formed by the laser beam when the laser beam is reflected by the MEMS scanner 25 is 30 °.
  • An angle formed by a perpendicular drawn from the reflection point on the MEMS scanner 25 onto the projection plane 50 and the laser beam toward the projection plane 50 is defined as a scanning angle ⁇ .
  • is the horizontal scanning angle.
  • the distance from the reflection point on the MEMS scanner 25 to the projection plane 50 (hereinafter referred to as “height”) is h. Further, on the projection plane 50, the distance between the centers of the green laser light projection point 51g and the blue laser light projection point 51b is d GB , and the distance between the red laser light projection point 51r and the green laser light projection point 51g. Let dRG be the distance. These center-to-center distances are positional deviation amounts.
  • FIGS. 6 (A) to 6 (C) are graphs showing experimental results using the projection optical system of FIG.
  • the point O in FIG. 5 is the origin.
  • the position of the projection point in the x direction differs for the three colors of RGB, and it can be seen that a positional shift has occurred.
  • FIG. 6B is a graph showing the relationship between the height h and the positional deviation amount d GB when the horizontal scanning angle ⁇ by the MEMS scanner 25 is 0 °. Although not shown, the relationship between the height h and the positional deviation amount dRG is the same. FIG. 6B shows that the positional deviation amount d GB (and d RG ) changes linearly with the height h.
  • FIG. 6C is a graph showing the relationship between the horizontal scanning angle ⁇ by the MEMS scanner 25 and the positional deviation amount d GB .
  • the relationship between the horizontal scanning angle ⁇ and the positional deviation amount dRG is the same. From FIG. 6C, it can be seen that the positional deviation amount d GB (and d RG ) slightly increases as the horizontal scanning angle ⁇ increases. Further, it can be seen that the spreading method differs slightly depending on the height h, and that the change in spreading is greater as the height h is larger.
  • the positional deviation amount d GB (and d RG ) is proportional to the height h.
  • the moving speed of the projection point 51 on the projection surface 50 is proportional to the height h.
  • each color has the same light emission timing. By emitting laser light, it is possible to project an image with no positional deviation between projection points.
  • the emission point of each laser beam whose position is shifted in parallel on the incident side of the projection lens 24 is subjected to position / angle conversion by the projection lens 24, and as a result, the position shift is converted to an angle shift. Therefore, even if the height h changes, if the angle deviation can be corrected by the MEMS scanner 25, it can be easily understood that the deviation of the image on the projection plane can be corrected.
  • the laser beams of the respective colors are irradiated and reflected at points away from the fulcrum in the mirror of the MEMS scanner 25, translational motion is also involved.
  • the scanning angle is large
  • the change in the angle of the mirror of the MEMS scanner 25 with respect to time is sinusoidal, and thus has a non-linear characteristic. Accordingly, in a general case including a range where the horizontal scanning angle ⁇ is large, the light emission timing of each color is considered in consideration of the spread of the positional deviation amount according to the height h as shown in FIG. Need to control.
  • FIG. 7 (A) to 9 (B) are diagrams for explaining three examples of a method for correcting the positional deviation of each projection point.
  • the ferrule 23 is fixed so that the A direction of the fiber bundle matches the X direction of scanning by the MEMS scanner 25.
  • the G fiber 21g is located at the center among the three fibers of the R fiber 21r, the G fiber 21g, and the B fiber 21b. Therefore, a case where the positional deviation is corrected with reference to the G projection point will be described.
  • FIGS. 7A and 7B are diagrams in the case where the RGB fiber alignment direction (A direction) coincides with the horizontal scanning direction (X direction) by the MEMS scanner 25 as described above.
  • the RGB projection points 51r, 51g, and 51b are arranged in a line in the X direction. If the height h (distance from the reflection point on the MEMS scanner 25 to the projection surface 50) is known, the positional deviation amount d GB between the projection points is obtained from the relationship shown in FIGS. 6B and 6C. And d RG are known. Then, from the moving speed of each projection point at the height h, the time difference ⁇ t of the light emission timing for canceling out this positional deviation is known.
  • the sign of the time difference ⁇ t differs depending on whether the scanning is in the left or right direction.
  • the R projection point 51r is in front of the G projection point 51g
  • the B projection point 51b is rearward in the scanning direction. It is in.
  • the B projection point 51b ′ is ahead of the G projection point 51g ′ and the R projection point 51r ′ is behind the scanning direction.
  • the projection points 51r and 51r ′ of R ⁇ t> 0 (slows the light emission timing) when scanned in the + X direction, and ⁇ t ⁇ 0 when scanned in the ⁇ X direction (light emission). Make timing faster).
  • the projection points 51b and 51b ′ of B ⁇ t ⁇ 0 when scanning in the + X direction (makes the emission timing earlier), and ⁇ t> 0 when scanning in the ⁇ X direction (the emission timing is changed). Slow down).
  • the time difference ⁇ t is determined for each projection point according to the scanning direction.
  • FIGS. 8A and 8B show, as a modification, a case where RGB fibers are arranged perpendicular to the A direction, and the arrangement direction of the RGB fibers coincides with the vertical scanning direction (Y direction) by the MEMS scanner 25.
  • FIG. On the projection surface 50, the RGB projection points 51r, 51g, and 51b are arranged in a line in the Y direction.
  • the relationship shown in FIGS. 6B and 6C also holds when the projection points are arranged in the vertical scanning direction. Therefore, as in the case of FIG. 7B, the positional deviation amounts d GB and d RG are known from the height h.
  • the number of scans in the X direction when moving between two shifted points by scanning is calculated. Specifically, the total number of scanning lines of the N number of X direction of the projected image, when the length in the Y direction of the projection image and l v, through which the projection points by scanning is moved by the Y-direction d RG The number of scans in the X direction is (d RG / l v ) ⁇ N. Therefore, when the scan time when crossing once an image projected on the X-direction and T h, the time difference ⁇ t of the light emission timing is (d RG / l v) ⁇ N ⁇ T h. The same applies to the positional deviation amount d GB .
  • the light emission timing is delayed by ⁇ t ( ⁇ t> 0) when scanned in either the + X direction or the ⁇ X direction.
  • the light emission timing is advanced by
  • FIG. 9A and FIG. 9B are diagrams in a case where the RGB fiber alignment direction and the scanning direction by the MEMS scanner 25 do not match as another modified example.
  • the positional deviation amounts d GB and d RG are known from the height h.
  • a projection point 51r for R is in the direction of the angle ⁇ with respect to the X direction, they are separated by a distance d RG.
  • This angle ⁇ is a known amount determined by the arrangement of each fiber 21 in the fiber bundle with respect to the swinging direction (X direction) of the MEMS scanner 25.
  • This modification is characterized in that the distance in the vertical scanning direction between the points R and B with respect to G can be adjusted by a rotating operation with the axial direction of the fiber bundle as a reference.
  • the positional deviation amount d RG time difference between emission timing corresponding to the Y component d RG sin .alpha is (d RG sin ⁇ / l v) ⁇ N ⁇ T h.
  • a time difference is calculated by adding an X component d RG cos ⁇ of the positional deviation amount d RG to this.
  • the time difference in the X direction is (d RG cos ⁇ / l h ) ⁇ T h
  • the time difference ⁇ t of the final light emission timing is (D RG sin ⁇ / l v ) ⁇ N ⁇ T h ⁇ (d RG cos ⁇ / l h ) ⁇ T h It becomes.
  • the positional deviation amount d GB is (D RG sin ⁇ / l v ) ⁇ N ⁇ T h ⁇ (d RG cos ⁇ / l h ) ⁇ T h
  • the light emission timing is delayed by ⁇ t ( ⁇ t> 0) when scanned in either the + X direction or the ⁇ X direction.
  • the light emission timing is advanced by
  • the positional deviation between the respective projection points is caused by the above time difference ⁇ t even if the height h changes from the proportional relationship between the height, the positional deviation amount, and the moving speed of the projection point. Can be countered.
  • the relationship between the relative position of each projection point and the time difference ⁇ t of the light emission timing is obtained in advance for various arrangements of projection points, and the relationship is held as a table. That is, a relationship between a relative position with one of the RGB projection points as a reference point and a time difference ⁇ t for causing the projection point at the relative position to come to the reference point is held as a table.
  • the control unit 40 corrects the emission timing of each color laser beam by referring to the table. In this table, for each relative position, a time difference ⁇ t + for scanning in the + X direction and a time difference ⁇ t ⁇ for scanning in the ⁇ X direction are stored.
  • FIG. 10 is a flowchart illustrating an example of processing in which the control unit 40 corrects the positional deviation of the projection points of the respective colors.
  • the flow in FIG. 10 is executed by the CPU 41 in the control unit 40 according to a program stored in advance in the ROM 43 in the control unit 40 shown in FIG.
  • the control unit 40 acquires depth information (height h) detected by the detection unit 30 when the infrared irradiation unit 31 emits infrared rays and the infrared detection unit 32 receives the reflected light (S1). Then, based on the relationship shown in FIGS. 6B and 6C, the control unit 40 projects an image on the projection plane 50 at the current height h from the depth information acquired in step S1. The resulting projection point misregistration amounts d GB and d RG are calculated (S2). Further, the control unit 40 acquires the arrangement direction of each projection point from the known information indicating the arrangement of each fiber 21 in the fiber bundle with respect to the swing direction of the MEMS scanner 25 (S3).
  • control unit 40 refers to the above-mentioned table created in advance so that the RGB projection points are aligned from the arrangement direction of the projection points and the positional deviation amounts d GB and d RG.
  • the time difference ⁇ t of the light emission timing is acquired (S4).
  • the control unit 40 causes the laser light source 10 to emit laser light according to the image data to be projected, and starts scanning by the MEMS scanner 25 (S5). Then, the control unit 40 controls the laser light source 10 so as to shift the RGB light emission timing by the time difference ⁇ t acquired in step S4. At that time, when scanning is performed in the horizontal direction rightward on the projection plane (in the + X direction in FIG. 5) (Yes in S6), the light emission timing of each projection point is changed by the time difference ⁇ t + for the scanning in the + X direction ( S7). On the other hand, when scanning is performed horizontally leftward on the projection plane (in the ⁇ X direction in FIG.
  • step S6 S9
  • steps S6 to S9 are repeated until the image projection is completed. This is the end of the process in which the control unit 40 corrects the positional deviation.
  • the R and B projection points are matched with the G projection point using G of the three RGB points as a reference, but the R or B projection point may be used as the reference. Moreover, you may correct
  • the laser light source 10 may include a laser light source of another wavelength such as Y (yellow) in addition to R, G, and B in order to widen the color gamut.
  • Y yellow
  • the positional deviation may be corrected as described above for projection points of four or more colors such as RGBY.
  • the positional deviation between the projection points is corrected by the same method as described above. Can do.
  • the relationship between the relative position of each projection point, the scanning direction, and the time difference ⁇ t of the light emission timing may be obtained and the relationship held as a table.
  • the control part 40 should just correct
  • FIG. 11 is a view showing a fiber bundle in which fibers emitting infrared rays are bundled in addition to RGB fibers.
  • the fiber bundle in FIG. 11 is obtained by replacing one of the four D fibers in the fiber bundle in FIG. 2C with a fiber that outputs infrared rays.
  • a single mode fiber or a polarization maintaining fiber which becomes a single mode with respect to a predetermined infrared wavelength can be used.
  • this fiber is referred to as an IR fiber.
  • An IR fiber is an example of an infrared irradiation fiber.
  • the position of the IR fiber may be any of the four locations (other than the RGB fiber) where the D fiber was present in FIG.
  • not only one of the D fibers but also 2 to 4 of the D fibers may be replaced with IR fibers.
  • FIG. 12 is a schematic configuration diagram of the laser projector 2 using the fiber bundle of FIG.
  • the laser light source 10 'of the laser projector 2 includes a laser diode 14 that emits infrared light (infrared laser light) in addition to the laser diodes 11 to 13 that emit RGB laser beams.
  • the laser diode 14 emits near infrared (NIR) light as infrared rays.
  • the detection unit 30 ′ of the laser projector 2 does not include an infrared irradiation unit, but includes an infrared camera 32 ′ as an infrared detection unit.
  • the infrared camera 32 ′ is, for example, a USB camera, and receives infrared reflected light emitted from the IR fiber.
  • the infrared rays generated by the laser diode 14 are emitted from the end of the ferrule 23 through the IR fiber together with the RGB laser light when projecting an image or before projecting the image.
  • the infrared camera 32 'receives and detects the reflected infrared light. Except for the laser light source 10 'and the detection unit 30', the laser projector 2 has the same configuration as the laser projector 1 of FIG.
  • infrared laser light is emitted from an IR fiber, an infrared image is projected onto the projection surface 50, and the infrared image is captured by the infrared camera 32 ′, thereby obtaining depth information of the projection surface 50. Is.
  • the laser projector 2 scans the RGB laser light with the MEMS scanner 25 to project a visible light image on the projection surface 50, and from the IR fiber so as to overlap the visible light image with the same MEMS scanner 25.
  • An infrared image for depth detection is projected with the infrared laser beam.
  • FIG. 12 shows a visible light image 61 and an infrared image 62 projected on the projection surface 50 in an overlapping manner.
  • an infrared image for depth detection is captured by the infrared camera 32 ′, and depth information of the projection plane 50 is obtained by a triangulation method based on a pseudo-random dot projection method such as M-Array. get.
  • the control unit 40 dynamically controls the scanning angle of the RGB laser light using the acquired depth information. It becomes possible to do. In this way, it is not necessary to separately provide a depth sensor for acquiring depth information, and the depth information can be obtained by simultaneously projecting a visible light image and an infrared image with the same MEMS scanner, thereby simplifying the configuration of the apparatus. Is done.
  • the detection unit 30 ' may include an RGB camera for acquiring color information from a visible light image in addition to the infrared camera 32'. It is also conceivable to form a projection mapping system by arranging such laser projectors 2 in a stereo arrangement (two arrangements) or a large number.
  • the second example is to correct image distortion generated in a visible light image using an infrared image projected from the IR fiber onto the projection surface 50 and captured by the infrared camera 32 '.
  • the laser projector 2 scans the RGB laser light with the MEMS scanner 25 to project a visible light image on the projection surface 50, and from the IR fiber so as to overlap the visible light image with the same MEMS scanner 25.
  • the infrared image for distortion correction is projected with the infrared laser beam.
  • the infrared image for distortion correction is, for example, a grid pattern.
  • the infrared camera 32 'captures an infrared image for distortion correction in real time. If the projection surface 50 is a flat surface, the detection unit 30 ′ compares the captured distortion correction pattern with the projected known pattern, thereby causing image distortion caused by the geometric change of the MEMS scanner 25 or The MEMS scanner 25 detects image distortion caused by the temperature change and the resonance frequency changing. Based on the detected image distortion data, the control unit 40 corrects (feedback correction) the RGB image data so as to cancel the image distortion.
  • the laser projector 2 by constantly monitoring the infrared image, for example, image distortion due to a temperature change of the MEMS can be reduced. Even when the projection surface 50 is not flat, if the surface shape is known, it is possible to detect image distortion by calculation and perform correction to cancel it.
  • a distortion correction pattern such as a grid pattern
  • random dots may be projected so as to be superimposed on a visible light image with infrared laser light from an IR fiber.
  • the depth information can be obtained by triangulation using the infrared camera 32 ′.
  • the projection surface 50 is a flat surface
  • the apparent deviation of the depth information from the plane is caused by the MEMS scanner 25.
  • the image distortion data can be obtained by correcting the scanning timing of the infrared laser light so that the deviation of the apparent depth information from the plane is close to 0, the RGB image data may be corrected using the data. .
  • control unit 40 may perform control to compensate for the temperature change of the MEMS scanner 25 by adjusting the light amounts of the RGB laser light and the infrared laser light.
  • the control unit 40 controls the laser light source 10 'so that the sum of the lighting integration time of the laser diode 14 and the lighting integration time of the laser diodes 11 to 13 becomes a substantially constant value.
  • This lighting integration time is a length of time corresponding to the amount of heat generated on the MEMS scanner 25.
  • the appearance of the color of an object changes due to the influence of ambient light.
  • a black body radiation-type light source such as an incandescent light bulb or sunlight
  • noise other than the target infrared wavelength is large.
  • a BPF having a spectral / wavelength selection characteristic that matches the wavelength of a laser light source that is a monochromatic light source is used, the SN ratio of the target wavelength in the captured image can be improved. This makes it possible to accurately measure the spectral characteristics for the wavelengths of RGB light and infrared light while minimizing the influence of external light.
  • the object is not a wavelength selective surface such as a Bragg reflection surface or a specular reflection surface, based on the acquired spectral characteristics of RGB light and infrared light, for example, color correction is performed so that the color balance of the projected image is optimized. Is possible.
  • the influence of strong external light such as a fluorescent lamp can be reduced, and the contrast ratio (SN ratio) when viewed with a camera is improved, so even a projected image with low brightness can be obtained with the camera. become able to. Thereby, for example, it becomes possible to recognize a shift of a pattern or a projection point on a PC. Therefore, if pixel shift or pattern detection is automatically performed, the accuracy of depth information can be improved.
  • the BPF may have slightly different transmittance for each RGB peak. In this case, an image obtained by correcting the luminance value of each color in accordance with the transmittance ratio based on the spectral characteristic data of the BPF acquired in advance. By projecting, it becomes possible to correct the hue of the projected image.
  • the laser light source is a narrow band light source having laser diodes of RGB and NIR (for example, B: 460 nm, G: 520 nm, R: 637 nm and NIR: 830 nm), whereas disturbance ambient light is much In some cases, the light has a broad spectrum.
  • each RGB pixel of the camera has a sensitivity obtained by multiplying the spectral characteristic of the camera by the spectral characteristic of the BPF.
  • the disturbance light has a wide spectrum that can be regarded as white noise, and thus the amount of disturbance light detected by each RGB pixel is reduced.
  • the laser beam is transmitted through the BPF with almost no attenuation because the energy is concentrated in a narrow spectrum that can be almost regarded as a delta function. For this reason, an output according to the RGB response curve of each RGB pixel is obtained for the laser light.
  • the laser projector 2 can be used as a depth sensor by setting the projection pattern of near-infrared light to an M array, for example.
  • the camera is hardly affected by ambient light, so by comparing the light intensity of the light obtained by the camera with the light intensity of the projected RGB light The spectral reflectance at the wavelength of RGB light can be obtained. Therefore, it is possible to measure the spectral reflectance of the surface of the target object where the laser light is projected, regardless of the surrounding brightness.
  • the laser projector 2 can obtain the depth information and the color information almost in real time.
  • the projection RGB light can be adaptively adjusted according to the surface shape and the reflectance of the projection surface. Become.
  • the object is not self-luminous, even if the posture is changed, it is possible to obtain an effect that looks like illumination with the same pattern or the same color scheme, and it is possible to construct a system that can easily automate projection mapping. It becomes possible.
  • the laser projectors 1 and 2 can simultaneously acquire responses (reflectance and pattern) of RGB light and near-infrared light on the object surface onto which the image is projected, using a single RGB camera. Below, the separation method of this RGB light and near-infrared light is demonstrated.
  • RGB light can be separated by pixels having respective color filters with a camera. Since each RGB pixel of the camera has almost the same sensitivity to near-infrared light, when the near-infrared light is turned on / off, the same rate of change is detected by the RGB pixels. Actually, depending on the camera used, the sensitivity to near-infrared light is slightly different for each RGB pixel, so it is necessary to perform sensitivity correction in advance. Assume that the sensitivity is the same. Also, it is assumed that background noise due to ambient light is sufficiently small and can be ignored.
  • the light intensity of each RGB pixel detected by the camera is (R, G, B) when the near-infrared light is turned off, and increases by ⁇ R, ⁇ G, ⁇ B, respectively, when the near-infrared light is turned on.
  • the output of each RGB pixel is not saturated.
  • the RGB image can be compared with RGB light without affecting the appearance of the projected image. Infrared light can be separated.
  • structured light is often used as near-infrared light.
  • One example is M-array light projection.
  • the near-infrared light takes either ON / OFF value, for example, a negative / positive inversion pattern can be projected every several frames.
  • the near-infrared light pattern can be eliminated by adding the camera image in which the negative / positive inversion of the near-infrared light having the same pattern and the RGB light are superimposed.
  • the RGB light pattern can be erased by subtracting the camera image in which the negative / positive inversion of the near-infrared light having the same pattern and the RGB light are superimposed.
  • FIG. 13 is a diagram showing another example of a fiber bundle.
  • one of the four D fibers in the fiber bundle of FIG. 2C is an IR fiber, and the other three are reflected on the projection surface of infrared rays irradiated from the IR fiber. It is replaced with a fiber to which light is input.
  • this fiber is referred to as a PD fiber.
  • the PD fiber is an example of an infrared receiving fiber.
  • a single mode fiber that becomes a single mode at a predetermined wavelength of infrared rays to be projected can be used. However, in many cases, only the light amount is important. In this case, a multimode fiber having a large core diameter is used.
  • a photodiode (PD) (not shown) is provided at the end of the PD fiber opposite to the ferrule 23.
  • PD photodiode
  • the depth information is detected by receiving the reflected infrared light irradiated from the IR fiber with three PD fibers. That is, the depth information is detected not by the external detection unit 30 ′ but by the IR fiber and the PD fiber fixed together with the ferrule 23 together with the RGB fiber. As described above, when the IR fiber and the PD fiber for detecting depth information are bundled with the ferrule 23 together with the RGB fiber, it is not necessary to provide the external detection unit 30 ′, so the laser projector is further downsized. It becomes possible to do.
  • a fiber provided with a visible color detection PD may be bundled.
  • a fiber bundle of laser light including other than RGB may be replaced with a multi-core fiber. Even when a multi-core fiber is used, the light emission timing correction described with reference to FIGS. 7A to 10 can be performed in the same manner as in the fiber bundle.
  • the light emitted from the emitting unit 20 may include not only visible light and infrared light but also ultraviolet light.
  • a laser projector can be used as a projection type exposure device.
  • an object such as a UV curable resin can be exposed with ultraviolet light while measuring the surface shape with infrared light.
  • FIGS. 14A to 14C are diagrams for explaining a modification in which the emission end face of each fiber 21 is cut obliquely.
  • the emission end faces 21c of the R fiber 21r, the G fiber 21g, and the B fiber 21b may be cut obliquely.
  • the laser beam is incident on the emission end face at an incident angle ⁇ 1 , and when the laser beam is emitted in air having a refractive index smaller than that of the core, the refractive angle is larger than ⁇ 1. refracted at theta 2.
  • the refractive angle theta 2 it is necessary to decide less than 90 ° value.
  • FIG. 15 is a diagram for explaining a preferable cutting direction of the emission end face.
  • “Cut 1” is a case in which the tip of the R fiber is cut obliquely so that the tip of the R fiber is closer to the projection lens 24 than the tip of the B fiber on a plane that includes the RGB fibers arranged in a row.
  • a case where the tip of the B fiber is cut obliquely so that the tip of the B fiber is closer to the projection lens 24 than the tip of the R fiber is called “Cut 2”.
  • the angle at which each fiber 21 is cut is the same as the incident angle ⁇ 1 in FIG. 14B, and cut 1 and cut 2 have the same angle.
  • the MFD when there is no cut is 3.5 ⁇ m.
  • the size of RGB projection points is smaller in cut 2 than in cut 1.
  • the R projection point is particularly small. Therefore, the direction of cutting the emission end face is preferably cut 2 rather than cut 1.
  • the control unit 40 changes the projection position and the light emission timing of the laser light for each of the RGB colors. Thereby, the position shift of the projection point resulting from the separation of the core of each fiber can be corrected. Further, in the laser projectors 1 and 2, the arrangement direction of the RGB fibers fixed by the ferrule 23 is aligned with the scanning direction by the MEMS scanner 25. Thereby, it is possible to eliminate the positional deviation between the projection points of each color only by shifting the light emission timing of RGB.
  • the IR fiber is bundled with the ferrule 23 together with the RGB fiber, and the visible light image and the infrared image are projected and imaged by an infrared camera, thereby image distortion or depth information while projecting the visible light image. It becomes possible to detect additional information such as.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Geometry (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

 RGBの各色レーザ光の利用効率を高め、各色レーザ光を出射するファイバのコアが離れていることに起因する投射点の位置ずれを解消するとともに、各色レーザ光により画像を投影しながら画像歪みまたは深度情報などの付加的な情報を検知可能な投影装置を提供する。投影装置は、赤色、緑色および青色の各色レーザ光ならびに赤外レーザ光を出射するレーザ光源と、各色レーザ光をそれぞれ伝送する各色用ファイバおよび赤外レーザ光を伝送する赤外線照射用ファイバの出射端部を固定する固定具と、各色用ファイバの出射端部から出射された各色レーザ光を走査して、投影面上に画像を投影する走査部と、赤外線照射用ファイバの出射端部から出射された赤外レーザ光の反射光を検知する検知部と、検知部が検知した情報に基づいて、レーザ光源による各色レーザ光の発光タイミングを制御する制御部とを有する。

Description

投影装置
 本発明は、レーザ光を走査して投影面上に画像を投影する投影装置に関する。
 赤、緑および青の三原色(RGB)のレーザ光をそれぞれ伝送するファイバのピグテイルを融着型ファイバコンバイナで合波することにより全ての色を作り出すレーザプロジェクタが知られている。また、融着型ファイバコンバイナを用いずに、フェルールにより束ねられて固定されたファイババンドルを有する光源装置も知られている。
 特許文献1には、一方の端面においてコア径はそのままとしクラッドの外径が縮小され近接されて並列に束ねられた複数のコア・クラッド型光ファイバ、およびその光ファイバの各他方の端面とRGBからなるレーザ光源とをそれぞれ光学的に連結する光学系ユニットとを有する光源装置が記載されている。
 特許文献2には、複数の発光素子から射出される光が入射される複数の第1光ファイバ、およびその光を合波する合波部に一方の端部が接続される複数の第2光ファイバを固定するフェルール固定機構を備える光源装置と、光源装置からの光を二次元的に走査して画像を形成する光スキャナと、光スキャナによって走査された光を所定の投影面に結像させる結像光学系とを備えるプロジェクタが記載されている。
 特許文献3には、RGBの半導体レーザから出射した各レーザビームを集光レンズにより集光させ、可動ミラーにより偏向させて、スクリーン上に2次元画像として描画させる光走査型カラープロジェクタ装置が記載されている。この装置は、各レーザビームが同一画素地点に到達したときにその画素の画像情報で点灯するように各レーザビームの点灯タイミングに時間差を与えることにより、高解像度のカラー画像を表示する。
 特許文献4には、走査手段の共振周波数を安定化させるとともに、高品質な画像を得ることが可能な画像表示装置が記載されている。この画像表示装置は、光を射出する光源装置と、光源装置から射出された光を被投射面に向けて走査する走査手段と、走査手段に光を照射する他の光源装置と、走査手段に吸収される熱量が一定になるように他の光源装置から射出される光の光量を制御する制御手段とを備える。
 特許文献5には、画像信号に応じて変調された光を出射する複数の光源と、複数の光源からの光を互いに平行なビーム光線に変換するコリメートレンズと、変換された複数のビーム光線のビーム間隔を絞ってほぼ同一光軸上に集光する集光レンズ系と、ほぼ同一光軸上に集光された光を角度可変ミラーにより反射して被投射面上に二次元走査する光走査手段とを備える投射型表示装置が記載されている。
特開2008-216506号公報 特開2011-242476号公報 特開2006-186243号公報 特開2008-015001号公報 特開2010-085819号公報
 レーザプロジェクタに融着型ファイバコンバイナを用いると、融着されたファイバでは隣接するコア間の距離が近くなる。このコア間が近づいた領域では、光ファイバ同士の光結合が生じる。隣接するコアが結合する結合長を所定の値とすることで、目的とする波長で合波し、所定の出力側ファイバにほとんどの光を結合させることが原理的には可能である。しかし、結合長を高精度に制御することは融着法では一般に困難である。このため、隣接コア間で意図しないクロストークなどが発生し、出力側に合波される光に漏れが生じて、光の利用効率が低くなる。融着型ファイバコンバイナを用いずにファイバを束ねる構成をとったとしても、フェルールによりファイバを単に束ねるだけでは、投影された画像がにじんで見える。これは、RGBレーザ光用の各ファイバのコアが離れているため、RGB間で投射点に位置ずれが発生することに起因する。
 また、例えば、RGBレーザ光を2次元状に走査する走査部が共振型のMEMS(Micro Electro Mechanical System)スキャナにより構成されていると、MEMSスキャナの温度変化に起因してその共振周波数が変化することにより、投影画像に歪みが生じ得る。こうした画像歪みを除くためには、例えば、碁盤目のようなパタンを可視光で投影し、投影面上に生じたその碁盤目の歪みを打ち消すように投影画像を補正することが考えられる。しかし、RGBの可視光を使って補正を行うと、本来表示させたい画像の投影と画像歪みの計測を同時に行うことができず、投影画像の歪みをリアルタイムに補正することが難しい。
 また、例えば、投影装置から投影面までの距離によらずに同じ大きさの画像を投影したいときなどには、その距離を示す深度情報を用いてRGBレーザ光の走査角を制御することなどが必要になる。この深度情報は可視光を使って検知することもできるが、可視光を使うと、画像を投影している状態でなければ深度情報を検知できないという不具合がある。また、赤外線を使って深度情報を検知する場合には、通常、投影装置と深度センサをそれぞれ別個に設けることになるため、装置を小型化しかつ低価格化することが難しい。
 そこで、本発明は、RGBの各色レーザ光の利用効率を高め、各色レーザ光を出射するファイバのコアが離れていることに起因する投射点の位置ずれを解消するとともに、各色レーザ光により画像を投影しながら画像歪みまたは深度情報などの付加的な情報を検知可能な投影装置を提供することを目的とする。
 投影装置は、赤色、緑色および青色の各色レーザ光を出力するレーザ光源と、各色レーザ光をそれぞれ伝送する赤色用ファイバ、緑色用ファイバおよび青色用ファイバの各色ファイバを固定する固定具と、各色レーザ光を走査して、投影面上に画像を投影する走査部と、走査部により走査された光を投影面に結像させる光学系とを有し、走査部による走査方向に沿って各色レーザ光の各投射点が順に並ぶように、固定具が赤色用ファイバ、緑色用ファイバおよび青色用ファイバを固定することを特徴とする。
 上記の投影装置では、レーザ光の発光点から投影面までの距離を示す深度情報を検知する検知部と、各色ファイバの位置関係に起因して投影面上に生じる各色の投射点の位置ずれを打ち消すように、深度情報に応じてレーザ光源による各色レーザ光の出射タイミングを制御する制御部とをさらに有することが好ましい。
 また、投影装置は、互いに色が異なり発光点が同一面上にある複数のレーザ光を出射するレーザ光源と、複数のレーザ光を走査して、投影面上に画像を投影する走査部と、走査部により走査された光を投影面に結像させる光学系と、投影面上に生じる複数のレーザ光の各投射点の位置ずれを打ち消すように、各投射点間の距離および走査部による走査方向に対する各投射点間の位置ずれの方向に基づいて、レーザ光源による複数のレーザ光の発光タイミングを制御する制御部とを有することを特徴とする。
 上記の投影装置では、複数のレーザ光の発光点から投影面までの距離を示す深度情報を検知する検知部をさらに有し、制御部が、さらに深度情報に基づいて発光タイミングを制御することが好ましい。
 上記の投影装置では、レーザ光源は、複数のレーザ光として少なくとも赤色、緑色および青色のレーザ光を、赤色、緑色および青色のレーザ光の各投射点が投影面上で走査方向に沿って一列に並ぶように出射することが好ましい。
 上記の投影装置では、レーザ光源は、赤色、緑色および青色のレーザ光を、赤色用ファイバ、緑色用ファイバおよび青色用ファイバの各色ファイバからそれぞれ出射し、赤色、緑色および青色のレーザ光の各投射点が走査方向に沿って一列に並ぶように各色ファイバを固定する固定具をさらに有することが好ましい。
 上記の投影装置では、固定具が、各色ファイバとともに、深度情報を検知するための赤外線を出力する赤外線照射用ファイバを固定することが好ましい。
 また、投影装置は、赤色、緑色および青色の各色レーザ光ならびに赤外レーザ光を出射するレーザ光源と、各色レーザ光をそれぞれ伝送する各色用ファイバおよび赤外レーザ光を伝送する赤外線照射用ファイバの出射端部を固定する固定具と、各色用ファイバの出射端部から出射された各色レーザ光を走査して、投影面上に画像を投影する走査部と、赤外線照射用ファイバの出射端部から出射された赤外レーザ光の反射光を検知する検知部と、検知部が検知した情報に基づいて、レーザ光源による各色レーザ光の発光を制御する制御部とを有することを特徴とする。
 上記の投影装置では、検知部は、各色用ファイバの出射端部から投影面までの距離を示す深度情報を検知し、制御部は、深度情報に基づいて発光を制御することが好ましい。
 上記の投影装置では、制御部は、固定具により固定される各色用ファイバの位置関係に起因して投影面上に生じる各色レーザ光の投射点間の位置ずれ量に基づいて、発光のタイミングを制御することが好ましい。
 上記の投影装置では、固定具は、各色レーザ光の投射点が走査部による走査方向に沿って一列に並ぶように各色用ファイバの出射端部を固定することが好ましい。
 上記の投影装置では、固定具は、各色用ファイバおよび赤外線照射用ファイバとともに、反射光を受光して伝送する赤外線受光用ファイバの端部を固定し、検知部は、赤外線受光用ファイバにより伝送される光から深度情報を検知することが好ましい。
 上記の投影装置では、固定具は、長さ方向に垂直な平面に対して傾斜した出射端面を有する各色用ファイバを固定し、走査部は、各色用ファイバから長さ方向に対して傾斜した方向に出射されるレーザ光を走査することが好ましい。
 上記の投影装置では、走査部は、各色レーザ光を投影面上に2次元状に走査するMEMSスキャナであり、各色用ファイバの出射端部から出射された各色レーザ光がMEMSスキャナに照射されるように整形する投影レンズをさらに有し、MEMSスキャナは、投影レンズの焦点距離だけ投影レンズから離れて配置されることが好ましい。
 上記の投影装置では、走査部は、各色レーザ光による画像と赤外レーザ光による画像を投影面上に重ねて投影し、検知部は、投影面上に投影された画像を撮像する赤外線カメラであり、制御部は、赤外線カメラにより撮像された画像に基づいて、投影面上に投影された画像の歪みを検出し、歪みを打ち消すように補正した画像データにより発光を制御することが好ましい。
 上記の投影装置では、検知部は、撮像部の前方に配置された各色レーザ光および赤外レーザ光の波長帯の光を透過するバンドパスフィルタをさらに有することが好ましい。
 上記の投影装置によれば、RGBの各色レーザ光の利用効率を高め、各色レーザ光を出射するファイバのコアが離れていることに起因する投射点の位置ずれを解消するとともに、各色レーザ光により画像を投影しながら画像歪みまたは深度情報などの付加的な情報を検知可能な投影装置を提供することが可能になる。
レーザプロジェクタ1の全体構成を説明するための図である。 (A)~(C)は、フェルール23とファイババンドルを説明するための図である。 (A)および(B)は、MEMSスキャナ25によるレーザ光28の走査方向を説明するための図である。 (A)および(B)は、複数のファイバからの画像出力を重ねる場合の条件について説明するための図である。 レーザプロジェクタ1の投射光学系を示す図である。 (A)~(C)は、図5の投射光学系による実験結果を示したグラフである。 (A)および(B)は、各投射点の位置ずれを補正する方法の例を説明するための図である。 (A)および(B)は、各投射点の位置ずれを補正する方法の別の例を説明するための図である。 (A)および(B)は、各投射点の位置ずれを補正する方法のさらに別の例を説明するための図である。 制御部40が各色の投射点の位置ずれを補正する処理の例を示したフローチャートである。 RGBファイバに加えて赤外線を出射するIRファイバを束ねたファイババンドルを示す図である。 図11のファイババンドルを用いたレーザプロジェクタ2の概略構成図である。 ファイババンドルの別の例を示す図である。 (A)~(C)は、各ファイバ21の出射端面を斜めにカットする変形例を説明するための図である。 好ましい出射端面のカット方向を説明するための図である。
 以下、添付図面を参照して、投影装置について詳細に説明する。ただし、本発明の技術的範囲はそれらの実施の形態に限定されず、特許請求の範囲に記載された発明とその均等物に及ぶ点に留意されたい。
 図1は、レーザプロジェクタ1の全体構成を説明するための図である。レーザプロジェクタ1は投影装置の一例であり、レーザ光源10と、出射部20と、検知部30と、制御部40とを主要な構成要素として有する。レーザプロジェクタ1は、レーザ光源10から出射された各色のレーザ光を、フェルールにより束ねられた3本のファイバからそれぞれ出力し、揺動するMEMS(Micro Electro Mechanical System)スキャナを介して2次元状に走査して、投影面50上に画像を投影する。
 レーザ光源10は、赤(R)、緑(G)および青(B)の各色レーザ光を出射するレーザダイオード(LD)11、12および13を有する。レーザ光源10は、各レーザダイオード(LD)11、12および13の発光タイミングや発光強度などが、投影される画像の画像データに応じて制御部40により制御される。
 出射部20は、レーザ光源10からの各色レーザ光を投影面50に向けて出射する。出射部20は、複数のファイバ21と、フェルール23と、投影レンズ24と、MEMSスキャナ25と、MEMSドライバ26と、遮蔽部29とを有する。
 複数のファイバ21には、レーザ光源10からの各色レーザ光をそれぞれ伝送するファイバと、図示しないダミーのファイバが含まれる。それぞれのファイバは、例えばシングルモードの光ファイバである。以下では、レーザダイオード11、12および13からのR、GおよびBのレーザ光を伝送するファイバのことを、それぞれRファイバ、Gファイバ、Bファイバという。これらのファイバをまとめて、RGBファイバともいう。また、ダミーファイバのことをDファイバという。レーザプロジェクタ1は、Rファイバ、GファイバおよびBファイバを1本ずつ有し、Dファイバを複数本有する。
 フェルール23は、固定具の一例であり、Rファイバ、Gファイバ、BファイバおよびDファイバを、レーザ光源10とは反対側の端部で束ねて固定する。フェルール23は、ファイババンドルを形成するファイババンドルコンバイナとして機能する。RGBの各色レーザ光は、フェルール23の端部にある各ファイバ21の出射端面から出射される。
 投影レンズ24は、各ファイバ21の出射端面から出射された各色レーザ光がMEMSスキャナ25に照射されるように整形する。
 MEMSスキャナ25は、走査部の一例であり、投影レンズ24からの各色レーザ光を投影面50上に2次元状に走査する。MEMSスキャナ25は、MEMSドライバ26により、例えば水平方向および垂直方向に高速に揺動される。水平方向には、MEMSスキャナ25は例えば約20KHzで共振駆動され、その走査角は正弦波状に時間変化する。垂直方向には、MEMSスキャナ25は鋸波状の強制駆動により例えば60Hzで駆動され、その走査角は鋸波状に時間変化する。
 MEMSドライバ26は、制御部40による制御データに応じてMEMSスキャナ25を駆動し、MEMSスキャナ25を水平方向および垂直方向に高速に揺動させる。この駆動方式は、静電方式や、電磁方式、ピエゾ方式などのどれを用いてもよい。また、水平走査と垂直走査で異なる駆動方式を組み合わせてもよい。
 遮蔽部29は、矩形の開口(図3(A)を参照)を有する枠体であり、MEMSスキャナ25により走査されるレーザ光28の走査領域の周囲を遮光する。遮蔽部29の開口内を通過するレーザ光28が投影面50上に画像を表示する。
 検知部30は、出射部20でのレーザ光の発光点から投影面50までの距離(深度情報)を検知する。検知部30は、赤外線照射部31と、赤外線検知部32とを有する。赤外線照射部31は、レーザプロジェクタ1が設置されている空間内に赤外線を照射する。赤外線検知部32は、例えば赤外線カメラであり、赤外線照射部31から照射された赤外線がその空間内の物体や、床、壁等により反射された反射光を受光する。検知部30は、例えばタイムオブフライト(TOF)方式を利用し、赤外線照射部31が赤外線を照射してから赤外線検知部32が反射光を受光するまでの光の飛行時間を計測することにより深度情報を検知する。または、検知部30は、M-Arrayなどの疑似ランダムドット照射法による3角測量方式を用いることもできる。検知部30は、その深度情報を制御部40に通知する。
 制御部40は、レーザプロジェクタ1全体の動作を制御する。制御部40は、CPU41と、RAM42と、ROM43と、I/O44とを有する。I/O44は、レーザ光源10、出射部20および検知部30の間でデータの受け渡しを行うためのインタフェースである。制御部40は、画像データおよび検知部30から取得した深度情報に応じて、後述するようにレーザ光源10の発光タイミングを制御する。また、制御部40は、出射部20を制御してレーザ光を投影面50上に投影させる。
 なお、レーザプロジェクタ1は、理想的なガウスビームとみなせるレーザ光を利用して画像を投影するため、MEMSスキャナ25の投射角とガウスビームの拡散角とを最適に調整することで、出射部20と投影面50の間の距離に拘わらず良好な画像を投影面50上に結像することができるという特性(フォーカスフリー特性)を有している。このため、壁等に設置された投影面上に単に画像を投影する限りは、深度情報を用いなくても、良好な画像の投影が可能である。
 しかし、出射部20から投影面50までの距離によらずに一定の大きさの画像を投影する場合には、深度情報が必要になる。例えば、画像を投影可能な所定の空間内で手のひらを検出し、検出された手のひらに画像を表示する場合には、レーザプロジェクタ1からの距離に関係なく常に一定の大きさの画像を表示する。このためには、投影面となる手のひらまでの距離を検知して、出射部20からのレーザ光の出射角度を変えるなどして、投影すべき画像サイズを距離に応じて変化させることで、手のひら上での画像サイズが一定になるようにする。このような例では、検知部30による深度情報が必要になる。
 図2(A)~図2(C)は、フェルール23とファイババンドルを説明するための図である。図2(A)は、フェルール23の破断斜視図である。図2(B)は、フェルール23により固定されるファイババンドルの断面図である。図2(C)は、図2(B)に示した各ファイバ21がどのファイバであるかを説明するための図である。
 フェルール23は、例えばジルコニアにより円筒形に構成される。フェルール23は、Rファイバ21r、Gファイバ21g、Bファイバ21bをそれぞれ1本ずつと、Dファイバ21dを4本のファイバを固定する。これらの計7本のファイバは、円筒形の貫通孔23aの中で最密充填配置される。
 各ファイバ21は、コア211と、コアの周囲を覆うクラッド212とを有する。コア211は、ファイバ21の芯の中心に形成され、レーザ光を伝送する。各ファイバ21には、所定の波長に適したシングルモードファイバまたは偏波保持ファイバを用いることができる。クラッド212は、コア211の外周に形成され、コア211よりも屈折率が低い。RGBファイバのそれぞれには、図2(A)に示した端部と反対側の端部(図示せず)に、レーザダイオード11、12および13が接続される。そして、図2(A)に示したRGBファイバのそれぞれの端部から、各色レーザ光が出射される。
 これらの複数のファイバ21は、中心となるGファイバ21gを取り囲むように、他の6本のファイバが同心円状に配置される。さらに、Rファイバ21r、Gファイバ21gおよびBファイバ21bが、その同心円の直径上で図2(C)のA方向に並ぶように配置される。各ファイバ21の直径は略等しく、隣接する2つのコア211間の距離も略等しくなる。フェルール23は、こうした配置で束ねられたファイババンドルを固定する。なお、フェルール23はレーザプロジェクタ1に対して固定されている。すなわち、レーザプロジェクタごと(装置ごと)に、各ファイバ21の配置は固定されている。
 このように、レーザプロジェクタ1では、RGBの各ファイバからの光を1本のファイバに結合するのではなく、RGBファイバを含む複数のファイバ21を単に束ねてファイババンドルとし、フェルール23で固定する。これにより、レーザプロジェクタ1では、融着されたファイバで起こり得るファイバ相互間での影響を抑えて、レーザ光の利用効率を向上させる。
 なお、フェルール23は、ステンレス鋼など他の材質で構成してもよい。また、フェルール23とは別の固定具を用いて上記のファイババンドルを固定してもよい。
 図3(A)および図3(B)は、MEMSスキャナ25によるレーザ光28の走査方向を説明するための図である。まず、図3(A)は、レーザ光28の走査方向を説明する図である。MEMSスキャナ25の揺動により、レーザ光28の投射点51は矢印方向に移動し、破線および実線で示した正弦波状の軌跡Lを描く。軌跡は、投影面50(図1を参照)に対してほぼ水平方向に繰返し往復しながら、投影面上を2次元状に覆う。ただし、図3(A)では、説明のため走査本数を少なく表示している。
 図3(A)では、水平方向をX方向とし、垂直方向をY方向とする。レーザ光28は、X方向表示幅A1とY方向表示幅B1を有する矩形内で走査される。ただし、レーザ光28は、遮蔽部29上を走査しているとき(破線で示す軌跡)は遮光される。このため、レーザ光28は、X方向表示幅A2とY方向表示幅B2を有する遮蔽部29の開口29aを走査しているとき(実線で示す軌跡)だけ投影面に到達する。
 投射点51の軌跡Lは、点P1を始点として破線および実線で示す正弦波状の曲線に沿って矢印方向に移動する。軌跡Lは、開口29a内では、例えば軌跡La1,La2のようにほぼX方向の軌跡を形成し、遮蔽部29上では、例えば軌跡Lb1,Lb2のように曲線を描き、これらを周期的に繰り返す。軌跡Lは、最下端の点P2に到達すると、細かい点線で示す正弦波状の曲線Lc1,Lc2に沿って上方へ向かい、始点P1に戻る。これにより、1画面分の描画が終了する。レーザプロジェクタ1は、以上の走査を繰り返すことにより、連続的に画像を投影する。
 図3(B)は、MEMSスキャナ25の概略図である。MEMSスキャナ25は、反射面となる微小ミラー251がトーションバー252,253で支持された構造を有する。微小ミラー251は、トーションバー252が捻れることにより、軸254を中心軸として水平方向(X方向)に揺動する。これにより、微小ミラー251の反射面の法線がX方向に変化するため、微小ミラー251に入射するレーザ光の反射角がX方向に変化する。また、微小ミラー251は、トーションバー253が捻れることにより、軸254に直交する軸255を中心軸として垂直方向(Y方向)に揺動する。これにより、微小ミラー251の反射面の法線がY方向に変化するため、微小ミラー251に入射するレーザ光の反射角がY方向に変化する。このようにして、MEMSスキャナ25によりレーザ光は2次元状に走査される。
 上記のような走査に対応して、レーザプロジェクタ1では、レーザ光28の水平走査方向(図3(A)のX方向)に沿って各色の投射点が順に並ぶように、フェルール23がRGBファイバを固定する。すなわち、レーザプロジェクタ1では、フェルール23が、図2(C)に示すようにファイババンドルの同心円の直径上にRGBファイバを並べて固定して、RGBの各投射点が投影面上で1直線上に並ぶようにする。その上で、RGBファイバが並ぶ方向(図2(C)のA方向)と、レーザ光の反射角が水平方向に変化するMEMSスキャナ25の揺動方向(図3(B)のX方向)とが一致するように、フェルール23を配置する。これにより、RGBの各投射点が投影面上でX方向に並ぶようになる。このようにレーザ光28の走査方向とRGBファイバの並び方向を揃えておくと、以下で説明するように、各ファイバのコアが離れていることに起因する投射点51の位置ずれを補正し易くなる。
 なお、RGBファイバの並び方向とMEMSスキャナ25の揺動方向とは必ずしも一致しなくてよい。すなわち、MEMSスキャナ25の揺動方向に対するRGBファイバの並び方向は任意でよい。また、ファイババンドル内の各ファイバ21の配置は必ずしもRGBファイバが1直線上に並ぶものでなくてもよい。ファイバ21の本数は、7本でなくてもよい。MEMSスキャナ25の揺動方向に対するファイババンドル内の各ファイバ21の配置は、レーザプロジェクタ1ごと(装置ごと)に定まる既知の情報である。この情報から、投影面50上での各投射点51の配置がわかる。
 ここで、ファイババンドル方式のレーザプロジェクタでRGB各色の画像を重ねることができる条件について説明する。簡単のため、各色用ファイバからの出射光が平行な直線(コリメート光)であり、互いに水平走査方向だけにずれていると近似・仮定する。また、光学系を幾何光学で近似し、投影レンズの焦点距離にMEMSスキャナが配置されているとする。ファイバのコア間距離をdとし、MEMSスキャナが振動していない原点位置にあるときの、中央のファイバからの光線と隣接するファイバからの光線がなす角をシフト角βとする。このとき、コア間距離dとシフト角βの関係は、
        d/f=tanβ               (1)
となる。ここで、fは投影レンズの焦点距離である。式(1)は位置・角度変換を表す。
 図4(A)および図4(B)は、複数のファイバからの画像出力を重ねる場合の条件について説明するための図である。
 図4(A)は、2本のファイバからの画像出力を重ねる場合についての図である。中央のファイバから光(実線)による画像Iを、シフト角βより大きい走査角θ(θ>β)で投影面50に投影することを考える。このとき、隣接するファイバから光(破線)による画像Jは、同じ走査角θをもち、光軸Uで画像Iと交差する。画像Iと画像Jが投影面50上で重なってできる正の値をもつ重なり角γは、図4(A)の各角度の関係から、
        γ=2θ-β                 (2)
となる。
 図4(B)は、3本のファイバからの画像出力を重ねる場合についての図である。中央のファイバと外側のファイバの距離は、ともに等しくdであるとする。光軸Uで3本のファイバからの画像が交差するため、β<θである。重なり角γは、図4(B)から、
        γ=2(θ-β)               (3)
と求められる。すなわち、2本のファイバからの画像出力を重ねる場合の式(2)よりβだけ重なり角が狭くなる。
 レーザプロジェクタ1が天井などに設置されており、RGBの3本のファイバを含むファイババンドルを利用して、例えば所定の空間内で検出された手のひらの上に画像を投影する場合には、式(3)を考慮した設計が必要である。手のひらなどの小さなターゲットに画像を表示するときは、投射距離が長くなるため、走査角θを小さくする。そのため、シフト角βが大きいと、画像を表示できる有効な重なり角γが非常に小さくなる。すると、MEMSスキャナ25による走査倍角2θのうち画像表示に使える時間は重なり角γに比例するため、画像表示できる時間が短くなってレーザ光の利用効率が下がる。例えば、投影面までの距離が数十cmと短ければ、ファイバ間距離dが80μmでも実用システムの開発が可能と思われる。しかし、それ以上に投射距離を伸ばす場合は、ファイバ間距離dをさらに短くする必要がある。
 例えば、図4(B)において、d=80μm、h=50cm、f=2mmとし、投影レンズ24の焦点距離fにMEMSスキャナ25を配置したと仮定する。このとき、シフト角βは、
        β=tan-1(d/f)=2.29°     (4)
である。高さh=50cmの位置に直径l=8cmの円を表示させるのに必要な走査角θは、d=0のとき、
        θ=tan-1(l/2h)=4.57°   (5)
となる。一方、d=80μmのとき、重なり角γ=2θを2×4.57=9.14°にするために必要な走査角θは、式(3)~(5)より、
        θ=γ/2+β=6.86°          (6)
となる。したがって、垂直方向のずれがないとすると、走査範囲中で有効な面積比は、
        θ/θ=4.57/6.86°=0.67
となる。融着型コンバイナのロスは0.5に達することがあり、コンバイナに起因するロスを比較すると、0.67/0.5=1.34となる。すなわち、この例では34%ほどファイババンドルが有利な可能性がある。したがって、画像の大きさが直径8cm程度までは、ファイババンドルコンバイナを用いた方が、同じ光源でも明るい表示が得られる可能性がある。
 次に、走査角θ=12°で対角20インチの画像を投影するときを考える。この場合、h=95.6cmとなる。重なり角γ=2θは2×12.0=24.0°とおけるから、d=80μm、f=2mmのときは、γ/2=12.0,β=2.29°より、
        θ=γ/2+β=14.3°
となる。したがって、
        θ/θ=12.0/14.3=0.84
である。走査角θを大きくできる用途では、走査倍角2θのうち画像表示に使える時間が長くなるため、低出力でも融着型コンバイナより大幅に明るい表示が得られる可能性がある。
 なお、上記の説明では、投影レンズ24の焦点距離にMEMSスキャナ25が配置され、RGB各色がMEMSスキャナ25の同じ位置に集光され、その点から投影面に投影されることを前提としている。ただし、実際には、投影レンズは理想的でなく、また設計上の理由からMEMSスキャナを投影レンズの近くに配置しなければならないなどの制約があるため、RGB各色の投射点はMEMSスキャナの同じ位置にはならない。したがって、実際にレーザプロジェクタを設計する際は、そうした制約の下で、上記した画像の重なりの条件を考慮する必要がある。しかし、その場合でも、走査角θを大きくできる用途では、レーザプロジェクタ1のようにファイババンドルコンバイナを用いる方が、融着型コンバイナを用いるよりも明るい表示が得られると考えられる。
 次に、出射部20でのレーザ光の発光点から投影面50までの距離と、投影面50上における各色の投射点の位置ずれ量との関係について説明する。図5は、レーザプロジェクタ1の投射光学系を示す図である。図5では、図1に示した全体構成のうち、フェルール23、投影レンズ24、MEMSスキャナ25、および投影面50の部分を拡大して示している。
 ここでは、図示するようにx,y,z軸を定め、MEMSスキャナ25による投影面50上での水平走査方向をx方向、垂直走査方向をy方向とする。x,y方向は、図3(A)および図3(B)のX,Y方向とそれぞれ一致している。また、レーザ光がMEMSスキャナ25で反射するときにレーザ光線がなす角(レーザ光の入射角)を30°とする。MEMSスキャナ25上の反射点から投影面50上に下ろした垂線と投影面50に向かうレーザ光線とがなす角を走査角θとする。θは水平方向の走査角である。MEMSスキャナ25上の反射点から投影面50までの距離(以下、「高さ」という)をhとする。さらに、投影面50上での、緑色レーザ光の投射点51gと青色レーザ光の投射点51bの中心間距離をdGB、赤色レーザ光の投射点51rと緑色レーザ光の投射点51gの中心間距離をdRGとする。これらの中心間距離が位置ずれ量である。
 図5に示した投射光学系で、高さhを1m,2m,3mと変化させ、高さhによらずに投影面50上に8cm角の画像を投影することを考える。高さhとMEMSスキャナ25による水平走査角θが変化する範囲との関係は、以下のようになる。
  h=1mのとき、θ=-1.66~2.08°(θmax-θmin=3.752°)
  h=2mのとき、θ=-1.21~1.42°(θmax-θmin=2.644°)
  h=3mのとき、θ=-1.06~1.20°(θmax-θmin=2.273°)
このように、高さhに応じてMEMSスキャナ25による水平走査角θの範囲を変化させる必要があるため、高さhによらずに同じ大きさの画像を投影面50上に投影するには、高さhの情報(深度情報)が必要になる。
 図6(A)~図6(C)は、図5の投射光学系による実験結果を示したグラフである。図6(A)は、h=1mとしたときの、水平走査角θと、RGBの各投射点のx方向の位置との関係を示したグラフである。なお、図5の点Oを原点とする。それぞれの水平走査角θについて、RGBの3色で投射点のx方向の位置が異なっており、位置ずれが発生していることがわかる。
 図6(B)は、MEMSスキャナ25による水平走査角θが0°のときの高さhと位置ずれ量dGBとの関係を示したグラフである。なお、図示しないが、高さhと位置ずれ量dRGの関係もこれと同様である。図6(B)から、高さhによって位置ずれ量dGB(およびdRG)が線形に変化していることがわかる。
 図6(C)は、MEMSスキャナ25による水平走査角θと、位置ずれ量dGBとの関係を示したグラフである。なお、図示しないが、水平走査角θと位置ずれ量dRGの関係もこれと同様である。図6(C)から、水平走査角θが大きくなるにつれて位置ずれ量dGB(およびdRG)は若干大きくなっていくことがわかる。さらに、その広がり方が高さhによって若干違い、高さhが大きいほど広がりの変化も大きいことがわかる。
 ただし、図6(C)によると、上記のθmax~θminの範囲では、位置ずれ量の広がり方は、高さh=1m,2m,3mのいずれでもほとんど変わらない。この範囲では、位置ずれ量dGB(およびdRG)は高さhに比例していることがわかる。また、投影面50上での投射点51の移動速度は高さhに比例する。したがって、1m~3m先の投影面に8cm角の大きさで投影するとき(最大水平走査角は図6(C)に破線で示したθmax=2.08°程度)のように水平走査角θが十分小さい場合は、ある高さhについてRGBの各投射点が1点に重なるように各色の発光タイミングを決めておけば、高さhが変化しても、その同じ発光タイミングで各色のレーザ光を出射することにより、投射点間の位置ずれがない画像を投影することができる。
 図5からもわかる通り、投影レンズ24の入射側で平行に位置シフトした各レーザ光の出射点が投影レンズ24によって位置・角度変換をされ、結果的に位置ずれが角度ずれに変換される。したがって、高さhが変化しても、その角度ずれ分をMEMSスキャナ25で角度補正することができれば、投影面での画像のずれを補正できることが容易に理解できる。しかし、各色のレーザ光がMEMSスキャナ25のミラーにおいて支点から離れた点に照射されて反射される場合には、並進運動も伴う。また、走査角が大きい場合に、MEMSスキャナ25のミラーの時間に対する角度変化は正弦波状であるため、非線形な特性をもつ。これらのことにより、水平走査角θが大きい範囲も含む一般の場合には、図6(C)に示すような高さhに応じた位置ずれ量の広がり方を考慮して、各色の発光タイミングを制御する必要がある。
 以下では、図1に示した制御部40によるRGB各色の投射点の位置ずれを補正する方法について説明する。既に述べた通り、RGBの各ファイバを単に束ねるだけでは、各ファイバのコア間の距離が離れているため、投影面上でのRGBの各投射点間で位置ずれが発生し、画像がにじんで見える。このため、レーザプロジェクタ1では、投射点の位置ずれを打ち消すように、レーザ光源10の発光タイミングを制御部40が色ごとに補正する。これにより、レーザプロジェクタ1では、投射点の位置ずれを見かけ上回避する。
 図7(A)~図9(B)は、各投射点の位置ずれを補正する方法の3つの例を説明するための図である。これらの例では、ファイババンドルのA方向とMEMSスキャナ25による走査のX方向とが一致するように、フェルール23が固定されているものとする。また、これらの例では、Rファイバ21r、Gファイバ21gおよびBファイバ21bの3本のうち、Gファイバ21gが中央に位置している。そこで、Gの投射点を基準として位置ずれを補正する場合について説明する。
 図7(A)および図7(B)は、上記のように、RGBファイバが並ぶ方向(A方向)とMEMSスキャナ25による水平走査方向(X方向)とが一致する場合の図である。投影面50上では、RGBの各投射点51r,51gおよび51bが、X方向に1列に並ぶ。高さh(MEMSスキャナ25上の反射点から投影面50までの距離)がわかれば、図6(B)および図6(C)に示した関係から、各投射点間の位置ずれ量dGBおよびdRGがわかる。そして、この高さhでの各投射点の移動速度から、この位置ずれを打ち消すための発光タイミングの時間差Δtがわかる。
 ただし、+X方向に走査されるときと-X方向に走査されるときで、RGBの各投射点のうち、走査方向の前方にある点と後方にある点が互いに逆転する。このため、時間差Δtの符号は、走査が左右どちら向きかにより異なる。例えば、図7(B)の場合、+X方向に走査されるときは、Gの投射点51gに対してRの投射点51rが走査方向の前方にあり、Bの投射点51bが走査方向の後方にある。しかし、-X方向に走査されるときは、Gの投射点51g’に対してBの投射点51b’が走査方向の前方になり、Rの投射点51r’が走査方向の後方になる。
 そこで、Rの投射点51r,51r’については、+X方向に走査されるときはΔt>0であり(発光タイミングを遅くする)、-X方向に走査されるときはΔt<0である(発光タイミングを早くする)。Bの投射点51b,51b’については、+X方向に走査されるときはΔt<0であり(発光タイミングを早くする)、-X方向に走査されるときはΔt>0である(発光タイミングを遅くする)。このように、各投射点に対し、走査方向に応じて時間差Δtが定まる。
 図8(A)および図8(B)は、変形例として、RGBファイバがA方向に垂直に並び、RGBファイバの並び方向とMEMSスキャナ25による垂直走査方向(Y方向)とが一致する場合の図である。投影面50上では、RGBの各投射点51r,51gおよび51bが、Y方向に1列に並ぶ。図6(B)および図6(C)に示した関係は、各投射点が垂直走査方向に並ぶ場合も成り立つ。よって、図7(B)の場合と同様に、高さhから位置ずれ量dGBおよびdRGがわかる。
 垂直走査方向に位置ずれがある場合は、ずれている2点間を走査により移動するときのX方向の走査本数を算出する。具体的には、投影される画像のX方向の全走査本数をN本、投影画像のY方向の長さをlとすると、走査により投射点がdRGだけY方向に移動するときに通るX方向の走査本数は、(dRG/l)×Nである。よって、投影される画像をX方向に1回横切るときの走査時間をTとすると、発光タイミングの時間差Δtは、(dRG/l)×N×Tである。位置ずれ量dGBについても同様である。
 そして、走査方向の前方にあるBの投射点51bについては、+X方向と-X方向のどちらに走査されるときも、Δtだけ発光タイミングを遅くする(Δt>0)。一方、走査方向の後方にあるRの投射点51rについては、+X方向と-X方向のどちらに走査されるときも、|Δt|だけ発光タイミングを早くする(Δt<0)。
 図9(A)および図9(B)は、別の変形例として、RGBファイバが並ぶ方向とMEMSスキャナ25による走査方向とが一致しない場合の図である。この場合も、高さhから位置ずれ量dGBおよびdRGがわかる。説明のため、Gの投射点51gを基準として、Rの投射点51rがX方向に対し角度αの向きに、距離dRGだけ離れているとする。この角度αは、MEMSスキャナ25の揺動方向(X方向)に対するファイババンドル内の各ファイバ21の配置により決まる既知の量である。この変形例では、Gに対するRおよびBの点の垂直走査方向の間隔を、ファイババンドルの軸方向を基準とした回転操作で調整することができるという特徴がある。
 投影画像のX方向の全走査本数をN本、投影画像のY方向の長さをl、投影画像をX方向に1回横切るときの走査時間をTとすると、位置ずれ量dRGのY成分dRGsinαに対応する発光タイミングの時間差は、(dRGsinα/l)×N×Tである。これに、位置ずれ量dRGのX成分dRGcosαを加味した時間差を求める。具体的には、投影画像のX方向の長さをlとすると、X方向の時間差は、(dRGcosα/l)×Tであるから、最終的な発光タイミングの時間差Δtは、
     (dRGsinα/l)×N×T-(dRGcosα/l)×T
となる。位置ずれ量dGBについても同様である。
 そして、走査方向の前方にあるBの投射点51bについては、+X方向と-X方向のどちらに走査されるときも、Δtだけ発光タイミングを遅くする(Δt>0)。一方、走査方向の後方にあるRの投射点51rについては、+X方向と-X方向のどちらに走査されるときも、|Δt|だけ発光タイミングを早くする(Δt<0)。
 特に走査角θが小さい場合には、高さと位置ずれ量と投射点の移動速度との間の比例関係から、高さhが変化しても上記の時間差Δtで各投射点間の位置ずれを打ち消すことができる。
 以上のことから、レーザプロジェクタ1では、投射点の様々な配置について、各投射点の相対位置と発光タイミングの時間差Δtとの関係を予め求めて、その関係をテーブルとして保持しておく。すなわち、RGBの投射点のうちの1点を基準点とした相対位置と、その相対位置にある投射点が基準点に来るようにするための時間差Δtとの関係をテーブルとして保持しておく。制御部40は、そのテーブルを参照することにより、各色レーザ光の発光タイミングを補正する。このテーブルには、相対位置ごとに、+X方向の走査についての時間差Δtと-X方向の走査についての時間差Δtがそれぞれ記憶されるとする。
 図10は、制御部40が各色の投射点の位置ずれを補正する処理の例を示したフローチャートである。図10のフローは、図1に示した制御部40内のROM43に予め記憶されたプログラムに従って、制御部40内のCPU41により実行される。
 制御部40は、まず、赤外線照射部31が赤外線を照射しその反射光を赤外線検知部32が受光することにより検知部30が検知した深度情報(高さh)を取得する(S1)。そして制御部40は、図6(B)および図6(C)に示した関係に基づき、ステップS1で取得した深度情報から、現在の高さhで投影面50上に画像を投影したときに生じる投射点の位置ずれ量dGBおよびdRGを算出する(S2)。また制御部40は、MEMSスキャナ25の揺動方向に対するファイババンドル内の各ファイバ21の配置を示す既知の情報から、各投射点の配置方向を取得する(S3)。そして制御部40は、予め作成した上記のテーブルを参照することにより、各投射点の配置方向と、位置ずれ量dGBおよびdRGとから、RGBの各投射点が1点に揃うようなRGBの発光タイミングの時間差Δtを取得する(S4)。
 次に、制御部40は、投影すべき画像データに応じてレーザ光源10にレーザ光を発光させ、MEMSスキャナ25による走査を開始させる(S5)。そして制御部40は、ステップS4で取得された時間差ΔtだけRGBの発光タイミングをずらすようにレーザ光源10を制御する。その際、投影面上で水平方向右向きに(図5で+X方向に)走査されるとき(S6でYes)は、各投射点の発光タイミングを+X方向の走査についての時間差Δtだけ変化させる(S7)。一方、投影面上で水平方向左向きに(図5で-X方向に)走査されるとき(S6でNo)は、各投射点の発光タイミングを-X方向の走査についての時間差Δtだけ変化させる(S8)。ただし、実際には走査は真横ではなく斜め下方向に動くため、色(位置)によっては、次の走査タイミングまで待つなどの制御も必要になる。
 また走査が終了していなければステップS6に戻り(S9)、画像の投影を終えるまでステップS6~S9のステップを繰り返す。以上で、制御部40が位置ずれを補正する処理は終了する。
 なお、上記の説明では、RGBの3点のうちGを基準として、RおよびBの投射点をGの投射点に合わせているが、RまたはBの投射点を基準としてもよい。また、RGBのうちの2色だけについて、投射点の位置ずれを補正してもよい。また、各色の投射点が1列に並ばない場合でも、上記と同様にして、色ごとに独立に位置ずれを補正することができる。
 また、レーザ光源10は、色域を広げるために、R,G,Bに加えて、例えばY(黄色)といった他の波長のレーザ光源を含んでもよい。この場合、RGBYなど、4色以上の投射点について、上記のように位置ずれを補正してもよい。
 さらに、図3(A)で説明したものとは異なる走査方法により画像が投影される場合であっても、上記で説明したものと同様の方法により、各投射点間の位置ずれを補正することができる。走査方法に応じて、投射点の様々な配置について、各投射点の相対位置と、走査方向と、発光タイミングの時間差Δtとの関係を求め、その関係をテーブルとして保持しておけばよい。そして、制御部40は、そのテーブルを参照することにより、各色レーザ光の発光タイミングを補正すればよい。
 図11は、RGBファイバに加えて赤外線を出射するファイバを束ねたファイババンドルを示す図である。図11のファイババンドルは、図2(C)のファイババンドルにおける4本のDファイバのうちの1本を、赤外線を出力するファイバに置き換えたものである。このファイバとしては、所定の赤外線波長に対してシングルモードとなるシングルモードファイバや偏波保持ファイバを用いることができる。以下では、このファイバのことをIRファイバという。IRファイバは赤外線照射用ファイバの一例である。IRファイバの位置は、図2(C)においてDファイバがあった(RGBファイバ以外の)4箇所のうちどこでもよい。なお、Dファイバのうちの1本に限らず、Dファイバの2~4本をIRファイバに置き換えてもよい。
 図12は、図11のファイババンドルを用いたレーザプロジェクタ2の概略構成図である。レーザプロジェクタ2のレーザ光源10’は、RGBの各色レーザ光を出射するレーザダイオード11~13に加えて、赤外線(赤外レーザ光)を出射するレーザダイオード14を有する。レーザダイオード14は、例えば、赤外線として近赤外(Near Infra-Red:NIR)光を出射する。また、レーザプロジェクタ2の検知部30’は、赤外線照射部を含まず、赤外線検知部としての赤外線カメラ32’を含む。赤外線カメラ32’は、例えばUSBカメラであり、IRファイバから照射された赤外線の反射光を受光する。レーザプロジェクタ2では、画像を投影するときにRGBのレーザ光と一緒に、または画像を投影する前に、IRファイバを介してフェルール23の端部から、レーザダイオード14で生成された赤外線が照射される。赤外線カメラ32’は、その赤外線の反射光を受光して検知する。レーザ光源10’と検知部30’以外については、レーザプロジェクタ2は図1のレーザプロジェクタ1と同じ構成を有するため、重複する説明は省略する。
 以下では、レーザプロジェクタ2のIRファイバから出射する赤外線の用途について、2つの例を説明する。
 1つ目の例は、IRファイバから赤外レーザ光を出射して投影面50に赤外線画像を投影し、その赤外線画像を赤外線カメラ32’で撮像して、投影面50の深度情報を得るというものである。
 この場合、レーザプロジェクタ2は、RGBレーザ光をMEMSスキャナ25で走査して投影面50上に可視光画像を投影するとともに、同じMEMSスキャナ25により、その可視光画像に重ねるように、IRファイバからの赤外レーザ光で深度検知用の赤外線画像を投影する。図12は、投影面50上に重ねて投影された可視光画像61と赤外線画像62を示している。そして、検知部30’では、赤外線カメラ32’により深度検知用の赤外線画像を撮像して、たとえばM-Arrayなどの疑似ランダムドット投影法に基づく3角測量方式にて投影面50の深度情報を取得する。
 これにより、投影面50までの距離によらずに同じ大きさの画像を投影したいときなどには、取得された深度情報を用いて、制御部40によりRGBレーザ光の走査角を動的に制御することが可能になる。このようにすれば、深度情報を取得するための深度センサを別途設ける必要がなく、可視光画像と赤外線画像を同じMEMSスキャナで同時に投影して深度情報が得られるので、装置の構成が簡略化される。
 なお、検知部30’には、赤外線カメラ32’に加えて、可視光画像から色情報を取得するためのRGBカメラを含めてもよい。また、このようなレーザプロジェクタ2をステレオ配置(2個配置)または多数配置して、プロジェクションマッピングシステムを構成することも考えられる。
 2つ目の例は、IRファイバから投影面50に投影され、赤外線カメラ32’により撮像された赤外線画像を用いて、可視光画像に生じる画像歪みを補正するというものである。
 この場合、レーザプロジェクタ2は、RGBレーザ光をMEMSスキャナ25で走査して投影面50上に可視光画像を投影するとともに、同じMEMSスキャナ25により、その可視光画像に重ねるように、IRファイバからの赤外レーザ光で歪み補正用の赤外線画像を投影する。歪み補正用の赤外線画像は、例えば碁盤目のパタンである。赤外線カメラ32’は、歪み補正用の赤外線画像をリアルタイムに撮像する。検知部30’は、投影面50が平面であれば、撮像された歪み補正用のパタンと投影された既知のパタンを比較することにより、MEMSスキャナ25の幾何的な変化に起因する画像歪みまたはMEMSスキャナ25が温度変化して共振周波数が変化することに起因する画像歪みを検出する。そして、制御部40は、検出された画像歪みのデータに基づき、その画像歪みを打ち消すようにRGBの画像データを補正(フィードバック補正)する。
 このように、レーザプロジェクタ2では、赤外線画像を常時モニタすることで、例えばMEMSの温度変化に起因する画像歪みを低減させることができる。なお、投影面50が平面でない場合でも、その表面形状がわかっていれば、計算により画像歪みを検出して、それを打ち消す補正を行うことが可能である。
 また、碁盤目などの歪み補正用のパタンに代えて、例えばランダムドットを、IRファイバからの赤外レーザ光で可視光画像に重ねるように投影してもよい。この場合、赤外線カメラ32’を用いて3角測量により深度情報を得ることができるが、投影面50が平面であれば、見かけ上の深度情報の平面からの偏差は、MEMSスキャナ25に起因する画像歪みと相関がある。この見かけ上の深度情報の平面からの偏差を0に近付けるように赤外レーザ光の走査タイミングを補正すれば画像歪みのデータが求まるので、それを用いてRGBの画像データを補正してもよい。
 また、制御部40は、RGBレーザ光と赤外レーザ光の光量を調整することにより、MEMSスキャナ25の温度変化を補償する制御を行ってもよい。この場合、制御部40は、レーザダイオード14の点灯積分時間とレーザダイオード11~13の点灯積分時間とを合計した値が概ね一定値となるように、レーザ光源10’を制御する。この点灯積分時間は、MEMSスキャナ25上で発生する熱量に対応する長さの時間である。この制御により、MEMSスキャナ25上で発生する熱量が平均化されるため、MEMSスキャナ25の温度変化により生じる共振周波数の変化が一定範囲内に抑えられ、画像歪みの補正が容易になる。
 ところで、例えば赤外線カメラ32’の代わりにUSBカメラを用いて投影面の色情報または形状情報を取得し投影画像を補正する場合には、室内照明などの外光(環境光または周囲光)があると、投影画像のコントラストが低くなってしまうので、カメラで投影画像を認識できなくなるおそれがある。例えば対象物の色を正確に計測することができないと、計測結果から投影画像の色補正を行うことが困難になる。そこで、このような場合には、外光の影響を抑えるために、RGBレーザ光および赤外レーザ光の波長帯の光だけを透過するバンドパスフィルタ(BPF)を、カラーフィルタ付きのUSBカメラの前に配置するとよい。
 通常、物体は、周囲光の影響により色などの見え方が変化する。特に、白熱電球、太陽光などの黒体輻射型光源の下で赤外線画像を取得する場合には、対象の赤外線波長以外のノイズが大きいため、表面形状の計測が困難になることがある。しかし、単色光源であるレーザ光源の波長に合った分光・波長選択特性をもつBPFを用いれば、撮像された画像における対象波長についてのSN比を向上させることができる。これにより、外光の影響を最小限にして、RGB光と赤外光の波長について分光特性を正確に計測することが可能になる。物体がブラッグ反射面などの波長選択性表面または鏡面反射面でなければ、取得されたRGB光と赤外光の分光特性に基づいて、例えば投影画像の色バランスが最適になるように色補正を行うことが可能である。
 BPFを用いれば、蛍光灯などの強い外光の影響を低減させることができ、カメラで見たときのコントラスト比(SN比)が向上するため、輝度が小さい投影画像であってもカメラで取得できるようになる。これにより、例えばPC上でパタンまたは投射点のずれを認識できるようになるため、画素ずらしまたはパタンの検出を自動で行えば、深度情報の精度を向上させることができる。BPFはRGBのピークごとに透過率が若干異なる場合があるが、その場合には、予め取得されたBPFの分光特性データに基づき、透過率の比に応じて各色の輝度値を補正した画像を投影することで、投影画像の色合いを補正することも可能になる。
 なお、USBカメラの前にBPFを設ける代わりに、BPFを眼鏡型にして、それを利用者が着用すれば、外光の強い環境でも輝度の低い投影映像を見ることが可能である。
 レーザ光源は、RGBおよびNIR(例えば、B:460nm、G:520nm、R:637nmおよびNIR:830nm)のレーザダイオードを有する狭帯域な光源であるのに対し、外乱となる周囲光は、多くの場合広いスペクトルをもった光である。RGBカラーフィルタを有するカメラの前にBPFを配置すると、カメラの各RGB画素は、カメラの分光特性とBPFの分光特性とを掛けた感度を有することになる。BPFフィルタの透過域だけを考えた場合、外乱光はホワイトノイズとみなせるような広いスペクトルをもつため、各RGB画素で検出される外乱光の光量は低減される。一方、レーザ光は、ほとんどデルタ関数とみなせるような狭いスペクトルにエネルギーが集中しているため、ほとんど減衰することなくBPFを透過する。このため、レーザ光については、各RGB画素のRGBの応答曲線に従う出力が得られる。
 レーザ光源とカメラは3角測量ができるように配置されているため、近赤外光の投射パタンを例えばM配列とすることで、深度センサとしてレーザプロジェクタ2を用いることができる。また、カメラの前にBPFが配置されていると、カメラは周囲光の影響をほとんど受けないため、カメラで得られた光の光強度と投射されたRGB光の光強度とを比較することにより、RGB光の波長における分光反射率を得ることができる。したがって、周囲の明るさによらず、レーザ光が投射された部分の対象物表面の分光反射率を計測することができる。
 このように、レーザプロジェクタ2では、深度情報と色情報とをほぼリアルタイムで得ることができるため、例えば、投影面の表面形状および反射率に合わせて投射RGB光をアダプティブに調整することが可能になる。これにより、対象物が自発光でないにもかかわらず、姿勢を変えても同じパタンまたは同じ配色の照明のように見える効果を得ることができ、プロジェクションマッピングの自動化が容易なシステムを構築することが可能になる。
 なお、レーザプロジェクタ1,2では、画像が投影された物体表面でのRGB光と近赤外光の応答(反射率やパタン)を、一台のRGBカメラで同時に取得することができる。以下では、このRGB光と近赤外光との分離方法について説明する。
 RGB光は、カメラにて、それぞれのカラーフィルタを有する画素により分離することが可能である。近赤外光に対しては、カメラの各RGB画素がほぼ同じ感度を有するため、近赤外光をON/OFFすると、同じ割合の変化がRGB画素で検出されることになる。実際には、使用するカメラによっては近赤外光に対する感度が各RGB画素で少し異なるため感度補正を事前に行う必要があるが、ここでは、簡単のため、近赤外光に対する各RGB画素の感度が同じであると仮定する。また、周囲光による背景ノイズは十分小さく無視できると仮定する。
 ここで、カメラにより検出される各RGB画素の光強度は、近赤外光をOFFにすると(R,G,B)であり、近赤外光をONにするとそれぞれΔR、ΔG、ΔBだけ大きくなると仮定する。ただし、各RGB画素の出力は飽和していないとする。仮定より、近赤外光に対する各RGB画素の感度は同じであるから、近赤外光による光強度の増分をΔNIRとすると、ΔR=ΔG=ΔB=ΔNIRとなる。したがって、近赤外光をON/OFFしたときの差分画像(強度)が赤外線画像となる。近赤外光は人の目には見えないため、例えば数フレームごとに繰り返し近赤外光をON/OFFすることで、投影画像の見た目に影響を与えずに、RGB画像からRGB光と近赤外光とを分離することができる。
 なお、深度情報を検知する場合には、近赤外光として構造化光(Structured light)を用いることが多い。その一つの例が、M配列光の投射である。この場合、近赤外光はON/OFFのどちらかの値をとるため、例えば、数フレームごとにネガポジ反転パタンを投射することが可能である。その同じパタンの近赤外光のネガポジ反転とRGB光とが重畳されたカメラ画像を足し算することで、近赤外光のパタンを消去することができる。また、同じパタンの近赤外光のネガポジ反転とRGB光とが重畳されたカメラ画像を引き算することで、RGB光のパタンを消去することもできる。
 図13は、ファイババンドルの別の例を示す図である。図13のファイババンドルは、図2(C)のファイババンドルにおける4本のDファイバのうちの1本をIRファイバとし、他の3本を、IRファイバから照射された赤外線の投影面での反射光が入力されるファイバに置き換えたものである。以下では、このファイバのことをPDファイバという。PDファイバは赤外線受光用ファイバの一例である。PDファイバには、投射する赤外線の所定の波長でシングルモードとなるシングルモードファイバを用いることができるが、光量だけが重要な用途も多く、この場合は、コア径の大きいマルチモードファイバを使用してもよい。この変形例では、PDファイバのフェルール23とは反対側の端部に、フォトダイオード(PD)(図示せず)が設けられる。赤外線は、投影面で反射される反射光のうち、MEMSスキャナ25の大きさに相当する立体角の分だけが各PDファイバに入り、そのフォトダイオードで受光される。
 図13の場合、深度情報は、IRファイバから照射された赤外線の反射光を3本のPDファイバで受光することにより検知される。即ち、外付けの検知部30’ではなく、RGBファイバとともにフェルール23で固定されたIRファイバとPDファイバにより、深度情報が検知される。このように、RGBファイバとともに、深度情報を検知するためのIRファイバとPDファイバもフェルール23で束ねた構成とすると、外付けの検知部30’を設ける必要がなくなるため、レーザプロジェクタをさらに小型化することが可能になる。
 さらに、上記のファイバに加えて色検出用の可視PDが設けられたファイバも束ねた構成としてもよい。また、RGB以外も含むレーザ光のファイババンドルをマルチコアファイバに置き換えてもよい。マルチコアファイバを用いる場合でも、図7(A)~図10で説明した発光タイミングの補正はファイババンドルのときと同様に行うことができる。
 また、出射部20から出射される光には、可視光と赤外光だけでなく、紫外光を含めてもよい。例えば、RGBファイバおよびIRファイバとともに、紫外光を出射するファイバをフェルール23で束ねると、レーザプロジェクタを投影型の露光器として使用可能である。この場合、例えばUV硬化樹脂などの対象物に対して、赤外光により表面形状を計測しながら紫外光で露光を行うことができる。
 図14(A)~図14(C)は、各ファイバ21の出射端面を斜めにカットする変形例を説明するための図である。図14(A)に示すように、複数のファイバ21のうち、Rファイバ21r、Gファイバ21gおよびBファイバ21bの各出射端面21cを斜めにカットしてもよい。そうすると、図14(B)に示すように、レーザ光は、出射端面に入射角θで入射することになり、コアより屈折率が小さい空気中に出射されるときにθより大きい屈折角θで屈折する。なお、屈折角θは、90°より小さい値に決めることが必要である。これは、出射端面で全反射が起きない条件と同じである。これにより、図14(C)に示すように、RGBの各レーザ光は、カット前のビーム間隔dよりカット後のビーム間隔dが小さくなる。したがって、出射端面21cを斜めにカットすることにより、レーザ光の光束径が狭くなり光束が絞られるため、投影される画像がより高精細になる。
 図15は、好ましい出射端面のカット方向を説明するための図である。図15に示すように、一列に並んだRGBファイバを含む面に垂直な平面で、Rファイバの先端がBファイバの先端より投影レンズ24に近くなるように斜めにカットする場合を「カット1」とし、Bファイバの先端がRファイバの先端より投影レンズ24に近くなるように斜めにカットする場合を「カット2」とする。各ファイバ21をカットする角度は図14(B)の入射角θと同じであり、カット1とカット2で同じ角度とする。
 カット角(入射角)θ、屈折角θ、ならびにカット前後のビーム間隔dおよびdの間には、d=(d/cosθ)×cosθの関係がある。これにより、θ=8°のときd≒79.08μm、θ=20°のときd≒73.64μmとなる。カット角が8°と小さい場合、dとdの差は1μm程度と小さいため、カット角を比較的大きい20°として、図5に示した投射光学系で、カット1とカット2について、投影面上におけるRGBの投射点を比較する。高さはh=3mとする。
 また、図示するようにx,y,z軸を定め、カット後のRおよびBの出射位置は、Gの出射位置を原点として、
  カット1:Rがy=d,z=dtanθ、Bがy=-d,z=-dtanθ
  カット2:Rがy=d,z=-dtanθ、Bがy=-d,z=dtanθ
だけGに対してずれているとする。また、投射点のパタンは、カット前は真円であるが、カット後はy方向を長軸とする楕円になる。そこで、レーザ光として、モードフィールド径(MFD)がx=3.5μm,y=3.5μm×1.5である分布がz方向に進むとする。カットなしの場合のMFDは3.5μmとする。
 このような条件で得られる投射点の大きさは、以下の通りである。
・カットなしの場合,
  R→y=6.6mm、z=4.0mmの楕円パタン
  G→直径3.8mmの真円パタン
  B→z=3.6mm,y=3.7mmの楕円パタン
・カット1の場合、MEMSスキャナ25の水平走査方向、垂直走査方向の順で、
  R→14.2mm,16.39mm
  G→5.34mm,3.65mm
  B→7.8mm,7.9mm
・カット2の場合、MEMSスキャナ25の水平走査方向、垂直走査方向の順で、
  R→6.6mm,7.8mm
  G→5.34mm,3.65mm
  B→7.4mm,11.2mm
 この結果から、カット1よりカット2の方がRGBの投射点の大きさが小さくなることがわかる。RGBの3点のうちでは、特にRの投射点の大きさが小さくなっている。したがって、出射端面をカットするときの方向は、カット1よりカット2の方が好ましい。
 以上説明してきたように、レーザプロジェクタ1,2では、RGBの各ファイバを束ねてファイババンドルとすることにより、ファイバ相互間でのクロストーク等が起こり難くして、光の利用効率を向上させる。また、レーザプロジェクタ1,2では、制御部40がRGBの色ごとにレーザ光の投射位置や発光タイミングを変化させる。これにより、各ファイバのコアが離れていることに起因する投射点の位置ずれを補正することができる。さらに、レーザプロジェクタ1,2では、フェルール23で固定されるRGBファイバの並び方向を、MEMSスキャナ25による走査方向に揃えている。これにより、RGBの発光タイミングをずらすだけで、各色の投射点間の位置ずれを解消することができる。また、RGBのファイバとともにIRファイバをフェルール23で束ねて、可視光画像と赤外線画像を重ねて投影し、それを赤外線カメラなどで撮像することにより、可視光画像を投影しながら画像歪みまたは深度情報などの付加的な情報を検知することが可能になる。
 1,2  レーザプロジェクタ
 10,10’  レーザ光源
 20  出射部
 21  ファイバ
 23  フェルール
 24  投影レンズ
 25  MEMSスキャナ
 26  MEMSドライバ
 30,30’  検知部
 31  赤外線照射部
 32  赤外線検知部
 32’  赤外線カメラ
 40  制御部
 50  投影面

Claims (6)

  1.  赤色、緑色および青色の各色レーザ光ならびに赤外レーザ光を出射するレーザ光源と、
     前記各色レーザ光をそれぞれ伝送する各色用ファイバおよび前記赤外レーザ光を伝送する赤外線照射用ファイバの出射端部を固定する固定具と、
     前記各色用ファイバの出射端部から出射された前記各色レーザ光を走査して、投影面上に画像を投影する走査部と、
     前記赤外線照射用ファイバの出射端部から出射された赤外レーザ光の反射光を検知する検知部と、
     前記検知部が検知した情報に基づいて、前記レーザ光源による前記各色レーザ光の発光を制御する制御部と、
     を有することを特徴とする投影装置。
  2.  前記検知部は、前記各色用ファイバの出射端部から投影面までの距離を示す深度情報を検知し、
     前記制御部は、前記深度情報に基づいて前記発光を制御する、請求項1に記載の投影装置。
  3.  前記制御部は、前記固定具により固定される前記各色用ファイバの位置関係に起因して投影面上に生じる前記各色レーザ光の投射点間の位置ずれ量に基づいて、前記発光のタイミングを制御する、請求項1または2に記載の投影装置。
  4.  前記固定具は、前記各色レーザ光の投射点が前記走査部による走査方向に沿って一列に並ぶように前記各色用ファイバの出射端部を固定する、請求項1~3の何れか一項に記載の投影装置。
  5.  前記固定具は、前記各色用ファイバおよび前記赤外線照射用ファイバとともに、前記反射光を受光して伝送する赤外線受光用ファイバの端部を固定し、
     前記検知部は、前記赤外線受光用ファイバにより伝送される光から前記深度情報を検知する、請求項1~4の何れか一項に記載の投影装置。
  6.  前記固定具は、長さ方向に垂直な平面に対して傾斜した出射端面を有する前記各色用ファイバを固定し、
     前記走査部は、前記各色用ファイバから前記長さ方向に対して傾斜した方向に出射されるレーザ光を走査する、請求項1~5の何れか一項に記載の投影装置。
PCT/JP2013/084917 2012-12-26 2013-12-26 投影装置 WO2014104203A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/387,839 US9438871B2 (en) 2012-12-26 2013-12-26 Laser projection apparatus with bundled fibers
JP2014514265A JP5611490B1 (ja) 2012-12-26 2013-12-26 投影装置
CN201380068609.6A CN104884995B (zh) 2012-12-26 2013-12-26 投影装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012283356 2012-12-26
JP2012-283356 2012-12-26
JP2013-070333 2013-03-28
JP2013070333 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014104203A1 true WO2014104203A1 (ja) 2014-07-03

Family

ID=51021277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084917 WO2014104203A1 (ja) 2012-12-26 2013-12-26 投影装置

Country Status (4)

Country Link
US (1) US9438871B2 (ja)
JP (1) JP5611490B1 (ja)
CN (1) CN104884995B (ja)
WO (1) WO2014104203A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090684A (ja) * 2014-10-31 2016-05-23 株式会社豊通エレクトロニクス レーザ光出力装置
JP2016218384A (ja) * 2015-05-26 2016-12-22 セイコーエプソン株式会社 画像表示装置
JP2019534467A (ja) * 2016-08-12 2019-11-28 マイクロビジョン,インク. レーザ画像投影の走査と共に深度マッピングを提供するための装置および方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10051211B2 (en) * 2013-12-05 2018-08-14 Omnivision Technologies, Inc. Image sensors for capturing both visible light images and infrared light images, and associated systems and methods
JP6618249B2 (ja) * 2014-02-18 2019-12-11 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 投影システムおよび半導体集積回路
CN103974047B (zh) * 2014-04-28 2016-07-06 京东方科技集团股份有限公司 一种穿戴式投影装置及其调焦方法、投影方法
US9762873B2 (en) * 2015-09-04 2017-09-12 Microvision, Inc. Dynamic constancy of brightness or size of projected content in a scanning display system
US9659371B2 (en) * 2015-10-08 2017-05-23 Christie Digital Systems Usa, Inc. System and method for online projector-camera calibration from one or more images
JP6582943B2 (ja) * 2015-12-04 2019-10-02 株式会社Jvcケンウッド 描画装置及び描画方法
KR20180094878A (ko) * 2015-12-18 2018-08-24 소니 주식회사 화상 처리 장치 및 방법, 데이터, 그리고 기록 매체
US10996336B2 (en) 2016-01-05 2021-05-04 Raytheon Company System for coherent imaging in dynamic engagements
US10401499B2 (en) * 2016-03-16 2019-09-03 Raytheon Company Laser beam projection system with dynamic phase compensation
EP3273681B1 (en) * 2016-06-08 2020-06-17 Panasonic Intellectual Property Management Co., Ltd. Projection system
JP6969550B2 (ja) * 2016-06-24 2021-11-24 日本電気株式会社 画像処理装置、画像処理システム、画像処理方法及びプログラム
US10409148B2 (en) * 2016-11-08 2019-09-10 Ipg Photonics Corporation RGB projector with multi-laser broadband light source and system for dynamically controlling image contrast ratio
US10084997B1 (en) * 2017-05-23 2018-09-25 Sony Corporation Adaptive optics for a video projector
CN109242901B (zh) 2017-07-11 2021-10-22 深圳市道通智能航空技术股份有限公司 应用于三维相机的图像校准方法和装置
WO2019126951A1 (zh) * 2017-12-25 2019-07-04 歌尔科技有限公司 激光束扫描显示设备及增强现实眼镜
CN108089175B (zh) * 2018-01-15 2023-10-31 深圳市速腾聚创科技有限公司 激光雷达及提高激光雷达发射点频的方法
KR102457462B1 (ko) * 2018-03-06 2022-10-21 삼성전자주식회사 전자장치의 이미지 처리 장치 및 방법
CN108508795B (zh) * 2018-03-27 2021-02-02 百度在线网络技术(北京)有限公司 用于投影仪的控制方法和装置
CN108471525B (zh) * 2018-03-27 2020-07-17 百度在线网络技术(北京)有限公司 用于投影仪的控制方法和装置以及实现该方法的投影仪
US10429495B1 (en) 2018-04-03 2019-10-01 Hesai Photonics Technology Co., Ltd. Lidar system and method
TWI653427B (zh) * 2018-04-09 2019-03-11 宏碁股份有限公司 三維感測系統
WO2019237581A1 (en) 2018-06-13 2019-12-19 Hesai Photonics Technology Co., Ltd. Lidar systems and methods
CN109031867B (zh) * 2018-07-04 2021-09-07 歌尔光学科技有限公司 激光成像位置矫正方法、激光控制方法及设备
US10890914B2 (en) 2018-08-24 2021-01-12 Baidu Usa Llc Trigger logic to trigger sensors of an autonomous driving vehicle for capturing data
CN111751923B (zh) * 2019-03-29 2023-03-10 成都理想境界科技有限公司 一种光纤及扫描光成像显示装置
CN110333599A (zh) * 2019-04-30 2019-10-15 成都理想境界科技有限公司 一种扫描显示模组
CN112130321B (zh) * 2019-06-24 2023-06-27 成都理想境界科技有限公司 一种波导模组及基于波导的近眼显示模组及设备
US10848647B1 (en) * 2019-07-17 2020-11-24 Brendan Bellomo Composite environment filmmaking devices, systems, products and methods
CN110764254A (zh) * 2019-09-30 2020-02-07 中国科学院苏州纳米技术与纳米仿生研究所 可编译的结构光投影系统
US11630379B2 (en) * 2020-03-03 2023-04-18 Microvision, Inc. Optical power reduction by masking pixels of image content
US11368658B2 (en) * 2020-06-15 2022-06-21 Microsoft Technology Licensing, Llc Amplitude and biphase control of MEMS scanning device
CN114157845B (zh) * 2020-09-08 2023-09-26 青岛海信激光显示股份有限公司 投影系统
CN114245085B (zh) * 2020-09-08 2024-04-19 青岛海信激光显示股份有限公司 投影系统及投影图像的校正方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09508476A (ja) * 1994-01-31 1997-08-26 エス・ディー・エル・インコーポレイテッド レーザ照明ディスプレイシステム
JPH11326826A (ja) * 1998-05-13 1999-11-26 Sony Corp 照明方法及び照明装置
JP2006186243A (ja) 2004-12-28 2006-07-13 Fuji Photo Film Co Ltd レーザー光源、色光源およびこれを用いた光走査型カラープロジェクター装置
JP2008015001A (ja) 2006-07-03 2008-01-24 Seiko Epson Corp 画像表示装置及び画像表示装置の制御方法
JP2008216506A (ja) 2007-03-01 2008-09-18 National Institute Of Advanced Industrial & Technology 光源装置
JP2009047926A (ja) * 2007-08-20 2009-03-05 Seiko Epson Corp プロジェクタ
JP2009222973A (ja) * 2008-03-17 2009-10-01 Citizen Holdings Co Ltd 画像投射装置
JP2010085819A (ja) 2008-10-01 2010-04-15 Hitachi Metals Ltd 投射型表示装置
JP2011242476A (ja) 2010-05-14 2011-12-01 Brother Ind Ltd フェルール固定機構、光源装置、画像提示装置及びプロジェクタ

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2683640B2 (ja) 1989-06-16 1997-12-03 石川島建材工業株式会社 異腕分岐部セグメント
JPH05193400A (ja) 1992-01-22 1993-08-03 Asahi Glass Co Ltd ヘッドアップディスプレイ
JP3621303B2 (ja) 1999-08-30 2005-02-16 Necエレクトロニクス株式会社 半導体装置及びその製造方法
US7102700B1 (en) * 2000-09-02 2006-09-05 Magic Lantern Llc Laser projection system
JP2004530162A (ja) * 2001-05-22 2004-09-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 投影表示装置
JP5159028B2 (ja) 2004-06-29 2013-03-06 キヤノン株式会社 揺動体を有する光偏向装置、及びその調整方法
JP4960037B2 (ja) 2006-08-07 2012-06-27 株式会社ミツトヨ バンドルファイバ、及び光電式エンコーダ
DE102007019017A1 (de) * 2007-04-19 2009-01-22 Ldt Laser Display Technology Gmbh Verfahren und Vorrichtung zum Projizieren eines Bildes auf eine Projektionsfläche
JP2009122455A (ja) * 2007-11-15 2009-06-04 Funai Electric Co Ltd 画像表示装置
JP5012463B2 (ja) * 2007-12-03 2012-08-29 セイコーエプソン株式会社 走査型画像表示システム及び走査型画像表示装置
JP2009193008A (ja) * 2008-02-18 2009-08-27 Sharp Corp 画像表示装置
US20100253769A1 (en) * 2008-09-04 2010-10-07 Laser Light Engines Optical System and Assembly Method
JP2010152323A (ja) 2008-11-26 2010-07-08 Sanyo Electric Co Ltd 照明装置および投写型映像表示装置
CN201378859Y (zh) * 2009-02-13 2010-01-06 深圳市纳宇电子有限公司 激光投影显示装置
JP2010224316A (ja) * 2009-03-24 2010-10-07 Sanyo Electric Co Ltd 投写型映像表示装置
JP2011180172A (ja) 2010-02-26 2011-09-15 Sharp Corp 撮像防止装置、撮像防止方法および映像表示システム
JP2012022176A (ja) 2010-07-15 2012-02-02 Hitachi Cable Ltd マルチコアインターフェイス
US8622549B2 (en) * 2011-06-29 2014-01-07 Microvision, Inc. Beam combiner for a scanned beam display
CN102680096B (zh) * 2012-05-29 2015-05-20 南昌航空大学 一种低分辨光纤单色仪

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09508476A (ja) * 1994-01-31 1997-08-26 エス・ディー・エル・インコーポレイテッド レーザ照明ディスプレイシステム
JPH11326826A (ja) * 1998-05-13 1999-11-26 Sony Corp 照明方法及び照明装置
JP2006186243A (ja) 2004-12-28 2006-07-13 Fuji Photo Film Co Ltd レーザー光源、色光源およびこれを用いた光走査型カラープロジェクター装置
JP2008015001A (ja) 2006-07-03 2008-01-24 Seiko Epson Corp 画像表示装置及び画像表示装置の制御方法
JP2008216506A (ja) 2007-03-01 2008-09-18 National Institute Of Advanced Industrial & Technology 光源装置
JP2009047926A (ja) * 2007-08-20 2009-03-05 Seiko Epson Corp プロジェクタ
JP2009222973A (ja) * 2008-03-17 2009-10-01 Citizen Holdings Co Ltd 画像投射装置
JP2010085819A (ja) 2008-10-01 2010-04-15 Hitachi Metals Ltd 投射型表示装置
JP2011242476A (ja) 2010-05-14 2011-12-01 Brother Ind Ltd フェルール固定機構、光源装置、画像提示装置及びプロジェクタ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090684A (ja) * 2014-10-31 2016-05-23 株式会社豊通エレクトロニクス レーザ光出力装置
JP2016218384A (ja) * 2015-05-26 2016-12-22 セイコーエプソン株式会社 画像表示装置
JP2019534467A (ja) * 2016-08-12 2019-11-28 マイクロビジョン,インク. レーザ画像投影の走査と共に深度マッピングを提供するための装置および方法

Also Published As

Publication number Publication date
US9438871B2 (en) 2016-09-06
JPWO2014104203A1 (ja) 2017-01-19
US20150036105A1 (en) 2015-02-05
CN104884995A (zh) 2015-09-02
CN104884995B (zh) 2017-10-03
JP5611490B1 (ja) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5611490B1 (ja) 投影装置
EP3267236B1 (en) Optical scanner, projector, and heads-up display
US8098414B2 (en) Scanning image display system and scanning image display
JP6694772B2 (ja) レーザ投射表示装置
WO2013150897A1 (ja) 光源装置
JP2015179245A5 (ja)
JP6295981B2 (ja) 画像描画装置、ヘッドアップディスプレイ及び画像輝度調整方法
JP6335674B2 (ja) 光モジュール
EP2741140B1 (en) System of laser projector and speckle noise reducing screen
CN103676420A (zh) 具有相位检测及补偿功能的激光扫描式投影装置
KR20200016210A (ko) 주사형 표시 장치 및 주사형 표시 시스템
US9160995B2 (en) Image display device and light emission timing control method
JP2013073080A5 (ja)
JP6952795B2 (ja) ヘッドアップディスプレイ
JP5153485B2 (ja) 背面投射型表示装置
JP7009654B2 (ja) 光源装置、及び光量調整方法
JP6668711B2 (ja) 光源装置、画像表示装置及び物体装置
JP2011069902A (ja) 画像表示装置
WO2019187639A1 (ja) 画像投影装置
JP2021144147A (ja) 投影装置
JP6335532B2 (ja) 照明光学系、画像投射装置およびその制御方法
JP7154293B2 (ja) 内視鏡システム
JP6776748B2 (ja) 光源装置、画像表示装置
WO2012081308A1 (ja) プロジェクタおよび制御方法
JP2015146001A (ja) 投影装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014514265

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867610

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14387839

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013867610

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867610

Country of ref document: EP

Kind code of ref document: A1