JP6969550B2 - 画像処理装置、画像処理システム、画像処理方法及びプログラム - Google Patents

画像処理装置、画像処理システム、画像処理方法及びプログラム Download PDF

Info

Publication number
JP6969550B2
JP6969550B2 JP2018524162A JP2018524162A JP6969550B2 JP 6969550 B2 JP6969550 B2 JP 6969550B2 JP 2018524162 A JP2018524162 A JP 2018524162A JP 2018524162 A JP2018524162 A JP 2018524162A JP 6969550 B2 JP6969550 B2 JP 6969550B2
Authority
JP
Japan
Prior art keywords
image
incident light
color
image processing
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018524162A
Other languages
English (en)
Other versions
JPWO2017222021A1 (ja
Inventor
正人 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2017222021A1 publication Critical patent/JPWO2017222021A1/ja
Application granted granted Critical
Publication of JP6969550B2 publication Critical patent/JP6969550B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/12Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/13Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with multiple sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/843Demosaicing, e.g. interpolating colour pixel values
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Color Television Image Signal Generators (AREA)
  • Physics & Mathematics (AREA)
  • Studio Devices (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

本開示は、画像処理に関する。
カラー画像を撮像するためのイメージセンサには、例えばシリコン系センサのように、可視光(visible light)のほかに近赤外光(near-infrared light)にも感度を有するものがある。近赤外光に感度を有するイメージセンサは、人間の色知覚と異なる特性を有するため、色再現性が低下する場合がある。
特許文献1は、可視光成分を透過するフィルタに加え、主に赤外光成分を透過するIR(InfraRed)フィルタを有する撮像装置を開示している。また、特許文献2は、可視光センサ部よりも画像光が進入する側から遠い位置に非可視光センサ部を有する撮像デバイスを開示している。
特開2011−243862号公報 特開2012−227758号公報
特許文献1、2に開示された技術は、いずれも、近赤外光を読み取るための特別な構成の撮像部を要する。
本開示の例示的な目的は、可視画像と近赤外画像とを簡易な構成で生成できるようにすることにある。
一の態様において、可視光及び近赤外光を含む入射光に応じて撮像手段により撮像されたカラー画像を取得する取得手段と、前記取得されたカラー画像の色情報と、前記撮像手段の分光感度特性と、前記入射光の分光特性をモデル化した情報とに基づいて前記入射光の分光特性を推定する推定手段と、前記推定された前記入射光の分光特性と前記撮像手段の分光感度特性とに基づいて可視画像と近赤外画像とを生成する生成手段とを備える画像処理装置が提供される。
別の態様において、撮像装置と画像処理装置とを備え、前記撮像装置は、可視光及び近赤外光を含む入射光に応じてカラー画像を生成する撮像手段を備え、前記画像処理装置は、前記撮像手段により撮像されたカラー画像を取得する取得手段と、前記取得されたカラー画像の色情報と、前記撮像手段の分光感度特性と、前記入射光の分光特性をモデル化した情報とに基づいて前記入射光の分光特性を推定する推定手段と、前記推定された前記入射光の分光特性と前記撮像手段の分光感度特性とに基づいて可視画像と近赤外画像とを生成する生成手段とを備える画像処理システムが提供される。
さらに別の態様において、可視光及び近赤外光を含む入射光に応じて撮像手段により撮像されたカラー画像を取得し、前記取得されたカラー画像の色情報と、前記撮像手段の分光感度特性と、前記入射光の分光特性をモデル化した情報とに基づいて前記入射光の分光特性を推定し、前記推定された前記入射光の分光特性と前記撮像手段の分光感度特性とに基づいて可視画像と近赤外画像とを生成する画像処理方法が提供される。
さらに別の態様において、コンピュータに、可視光及び近赤外光を含む入射光に応じて撮像手段により撮像されたカラー画像を取得するステップと、前記取得されたカラー画像の色情報と、前記撮像手段の分光感度特性と、前記入射光の分光特性をモデル化した情報とに基づいて前記入射光の分光特性を推定するステップと、前記推定された前記入射光の分光特性と前記撮像手段の分光感度特性とに基づいて可視画像と近赤外画像とを生成するステップとを実行させるためのプログラムを記録したコンピュータ読み取り可能なプログラム記録媒体が提供される。
本開示によれば、可視画像と近赤外画像とが簡易な構成で生成可能である。
図1は、画像処理装置の構成の一例を示すブロック図である。 図2は、画像処理装置が実行する画像処理の一例を示すフローチャートである。 図3は、画像処理システムの構成の一例を示すブロック図である。 図4は、撮像装置のイメージセンサの分光感度特性の一例を示す図である。 図5は、光学フィルタの分光透過特性の一例を示す図である。 図6は、IRカットフィルタの分光透過特性の一例を示す図である。 図7は、平均ベクトルr0(λ)と基底ベクトルri(λ)の一例を示す図である。 図8は、撮像装置の構成の一例を示すブロック図である。 図9は、光学フィルタの構成の一例を示す図である。 図10は、画像処理装置の構成の別の例を示すブロック図である。 図11は、画像処理装置の構成のさらに別の例を示すブロック図である。 図12は、撮像装置の構成の別の例を示すブロック図である。 図13は、コンピュータ装置のハードウェア構成の一例を示すブロック図である。
[第1実施形態]
図1は、一実施形態に係る画像処理装置100の構成を示すブロック図である。画像処理装置100は、取得部110と、推定部120と、生成部130とを少なくとも含んで構成される。画像処理装置100は、他の構成を含んでもよい。
取得部110は、カラー画像を取得する。取得部110は、可視光及び近赤外光のいずれにも感度を有する撮像部により撮像された可視光及び近赤外光を含む入射光に応じたカラー画像を取得する。取得部110は、撮像部からカラー画像を直接取得してもよいし、撮像部により撮像された後に記憶媒体に記憶されたカラー画像をその記憶媒体から取得してもよい。
ここでいう可視光は、例えば、概ね400〜700nmの波長域の光(すなわち電磁波)である。一方、近赤外光は、例えば、概ね0.7〜2μmの波長域の光である。ただし、可視光及び近赤外光の上限及び下限は、ここに例示された波長に必ずしも限定されず、例えば、撮像部の性能や構成に応じてある程度異なってもよい。
カラー画像は、複数チャネルの画像の組み合わせにより表される。換言すれば、カラー画像は、複数の色成分の組み合わせにより表される。カラー画像のチャネル数は、2以上であれば特に限定されない。例えば、取得部110は、R(赤)、G(緑)、B(青)の3チャネルのカラー画像を取得するように構成されてもよい。以下においては、カラー画像のチャネル数を「M」とする。
撮像部は、例えば、CCD(Charge Coupled Device)イメージセンサなどのシリコン系のセンサと、センサへの入射光をフィルタする光学フィルタ(カラーフィルタ)とを含んで構成される。例えば、撮像部は、画素に相当する撮像素子のそれぞれにR、G、Bのいずれかに相当する光学フィルタを設けたイメージセンサにより構成される。このような複数色の光学フィルタを有する構成のイメージセンサのことを、以下においては「カラーイメージセンサ」ともいう。
推定部120は、入射光の分光特性を推定する。推定部120は、取得部110により取得されたMチャネルのカラー画像の色情報と、撮像部の分光感度特性と、入射光の分光特性をモデル化した情報とに基づき、取得部110により取得されたカラー画像の基となった入射光の分光特性を推定する。
ここで、カラー画像がR、G、Bの3色の色成分により表されるとする。また、カラーイメージセンサの分光感度特性をCR(λ)、CG(λ)、CB(λ)とし、カラーイメージセンサのある画素への入射光の分光特性をE(λ)とする。ここで、各画素における色信号をR、G、Bとすると、これらの色信号は、式(1)のように表される。ここにおいて、λは、光の波長を表し、カラーイメージセンサが感度を有する波長域の任意の値をとり得る。
Figure 0006969550
カラーイメージセンサの分光感度特性は、イメージセンサの分光感度特性と光学フィルタの分光透過特性の積で表すことができ、既知である。入射光の分光特性E(λ)は、本来、波長に関して離散的でない連続データである。本実施形態においては、画像データの色信号R、G、Bから入射光の分光特性E(λ)を式(1)に基づいて求めるために、入射光の分光特性E(λ)を比較的少数のパラメータで表現するモデル化が導入される。
具体的には、入射光の分光特性E(λ)は、入射光の平均ベクトルr0(λ)と基底ベクトルri(λ)の加重和(重み付き和)によってモデル化される。ここにおいて、基底ベクトルの数は、光学フィルタの色数、すなわちカラー画像のチャネル数(M)と等しい。したがって、カラー画像がR、G、Bの3色の色成分により表される場合の基底ベクトルの数(すなわちiの最大値)は、「3」である。M=3の場合、入射光の分光特性E(λ)は、式(2)のようにモデル化される。
Figure 0006969550
基底ベクトルri(λ)は、入射光の分光特性を表現する関数である。基底ベクトルri(λ)は、光源の分光特性と物体の表面反射率の積で形成される分光空間を主成分分析することによって得られる。このような基底ベクトルri(λ)によれば、入射光の分光特性を少ないパラメータで表現することが可能である。
式(1)に式(2)を代入すると、式(3)に示される未知のパラメータaiに関する観測方程式を得ることができる。ここで、式(3)の右辺の積分定数は、説明を簡単にするために省略されている。
Figure 0006969550
式(3)の積分は、式(4)に示される総和に近似することができる。ここにおいて、λ1は、可視光の波長域の下限を表す。また、λ2は、近赤外光の波長域の上限を表す。λ1、λ2は、カラーイメージセンサの分光感度特性に依存する。
Figure 0006969550
画像データから色情報、すなわち各色成分の色信号(R、G、B)が得られれば、式(4)の観測方程式は、未知のパラメータaiに関する連立三元一次方程式になる。そうすると、各画素の入射光の分光特性E(λ)は、式(4)により求められたパラメータai(i=1,2,3)を式(2)に代入することで推定することができる。したがって、推定部120は、画像データの全ての画素について式(4)の観測方程式を解くことにより、入射光の分光特性を全ての画素について求めることが可能である。
生成部130は、可視画像と近赤外画像とを生成する。生成部130は、推定部120により推定された入射光の分光特性と、撮像部の分光感度特性とに基づいて、可視画像と近赤外画像とを生成する。具体的には、生成部130は、以下のように可視画像と近赤外画像とを生成する。以下においては、近赤外画像を、必要に応じて「NIR(near-infrared)画像」ともいう。
例えば、カラーイメージセンサの分光感度特性CR(λ)、CG(λ)、CB(λ)のうち、可視領域の分光感度特性をCR_VIS(λ)、CG_VIS(λ)、CB_VIS(λ)とする。すると、可視光成分による色信号RVIS、GVIS、BVISは、式(5)により表される。ここにおいて、λ3は、可視光の波長域の上限(近赤外光の波長域の下限)を表す。λ3は、λ1<λ3<λ2を満たす。
Figure 0006969550
生成部130は、カラー画像を構成する全ての画素について色信号RVIS、GVIS、BVISを生成することで、それぞれの色成分の可視光成分による画像データIR、IG、IBを生成することができる。画像データIR、IG、IBは、可視画像を表す画像データである。
また、生成部130は、カラーイメージセンサの分光感度特性CR(λ)、CG(λ)、CB(λ)のうちの近赤外領域の分光感度特性CR_NIR(λ)、CG_ NIR(λ)、CB_ NIR(λ)を用いて、近赤外光成分による色信号RNIR、GNIR、BNIRを式(6)により求める。
Figure 0006969550
生成部130は、カラー画像を構成する全ての画素について色信号RNIR、GNIR、BNIRを生成し、これらを画素毎に加算することで、近赤外光成分による画像データINIRを生成することができる。画像データINIRは、近赤外画像を表す画像データである。
図2は、画像処理装置100が実行する画像処理を示すフローチャートである。ステップS1において、取得部110は、撮像部により撮像されたMチャネルのカラー画像を取得する。ステップS2において、推定部120は、ステップS1において取得されたMチャネルのカラー画像の色情報と、撮像部の分光感度特性と、入射光の分光特性をモデル化した情報とに基づき、入射光の分光特性を推定する。ステップS3において、生成部130は、ステップS2において推定された入射光の分光特性と、撮像部の分光感度特性とに基づき、可視画像と近赤外画像とを生成する。
以上のとおり、本実施形態の画像処理装置100は、カラー画像の色情報、撮像部の分光感度特性及び入射光の分光特性をモデル化した情報に基づいて入射光の分光特性を推定する構成を有する。この構成は、可視光成分と近赤外光成分とを別個のイメージセンサで読み取るような構成や、光学フィルタを機械的に移動させる構成を有することなく可視画像と近赤外画像とを生成することが可能である。したがって、本実施形態の画像処理装置100は、このような特別な構成を要することなく、可視画像と近赤外画像とを簡易な構成で生成することを可能にする。
[第2実施形態]
図3は、別の実施形態に係る画像処理システム200の構成を示すブロック図である。画像処理システム200は、撮像装置210と、画像処理装置220とを含んで構成される。画像処理システム200は、撮像装置210及び画像処理装置220以外の構成を含んでもよい。例えば、画像処理システム200は、撮像装置210により供給されるデータを記憶し、又は画像処理装置220に転送する別の装置を含んでもよい。
撮像装置210は、被写体を撮像し、画像データを生成する。本実施形態において、撮像装置210は、イメージセンサと、R、G、Bの3色の光学フィルタとを含むカラーイメージセンサを有する。撮像装置210は、入射光に応じたカラー画像を表す画像データを生成して出力する。この画像データは、可視領域及び近赤外領域に分光感度を有する。撮像装置210は、例えば、デジタルスチルカメラであってもよい。
撮像装置210のカラーイメージセンサは、近赤外領域に受光感度を有するように構成されている。すなわち、撮像装置210の光学フィルタは、近赤外光の少なくとも一部を透過するように構成されている。一般に、カラーイメージセンサは、近赤外光の透過を妨げるフィルタ(IRカットフィルタ)をカラーフィルタとは別に有している場合がある。撮像装置210は、このような一般的なカラーイメージセンサからIRカットフィルタを取り除いたカラーイメージセンサを用いて構成されてもよい。
なお、本実施形態において、可視光とは、波長が400〜700nmの電磁波をいう。また、近赤外光とは、波長が700〜1000nmの電磁波をいう。すなわち、本実施形態においては、λ1=400nm、λ2=1000nm、λ3=700nmである。
図4は、撮像装置210のイメージセンサの分光感度特性の一例を示す図である。図4に示すように、撮像装置210のイメージセンサは、可視光に加えて近赤外光に感度を有する。
図5は、R、G、Bの各色の光学フィルタの分光透過特性の一例を示す図である。図5に示すように、撮像装置210の光学フィルタは、可視光に加えて近赤外光を透過する特性を有している。なお、撮像装置210のイメージセンサは、各画素がR、G、B3色のいずれについても受光できるように構成されているものとする。
図6は、一般的なカラーイメージセンサに用いられるIRカットフィルタの分光透過特性の一例を示す図である。一般的なカラーイメージセンサは、このようなIRカットフィルタをカラーフィルタとともに設けることで、近赤外光がカットされた撮像、すなわち人間の色知覚に近い撮像を可能にしている。
画像処理装置220は、画像データに対して画像処理を実行する。画像処理装置220は、撮像装置210から供給された画像データに基づいて、可視画像に相当する画像データと近赤外画像に相当する画像データとを生成することができる。画像処理装置220は、データ取得部221と、スペクトル推定部222と、可視画像生成部223と、NIR画像生成部224とを含んで構成される。
データ取得部221は、データを取得する。データ取得部221は、例えば、撮像装置210から画像データを受信するための有線又は無線のインタフェースを含む。あるいは、データ取得部221は、記憶媒体に記憶された画像データを読み出すリーダを含んでもよい。データ取得部221は、第1実施形態の取得部110の一例に相当する。
データ取得部221は、画像データを少なくとも取得する。データ取得部221は、画像データに加え、撮像装置210の分光感度特性を示すデータ(以下「特性データ」ともいう。)を取得するように構成されてもよい。あるいは、データ取得部221は、画像データにメタデータとして埋め込まれ、又は画像データに関連付けられた特性データを取得してもよい。
スペクトル推定部222は、撮像装置210のカラーイメージセンサの各画素に入射した光の分光特性を推定する。本実施形態において、スペクトル推定部222は、入射光のスペクトルを推定する。スペクトル推定部222は、データ取得部221により取得された画像データと、撮像装置210の特性データとに基づき、入射光のスペクトルを推定する。スペクトル推定部222は、第1実施形態の推定部120の一例に相当する。
可視画像生成部223は、可視画像を表す第1の画像データを生成する。可視画像生成部223は、スペクトル推定部222により推定された入射光のスペクトルと、撮像装置210の特性データとに基づき、第1の画像データを生成する。可視画像生成部223(及びNIR画像生成部224)は、第1実施形態の生成部130の一例に相当する。
NIR画像生成部224は、近赤外画像を表す第2の画像データを生成する。NIR画像生成部224は、スペクトル推定部222により推定された入射光のスペクトルと、撮像装置210の特性データとに基づき、第2の画像データを生成する。
なお、ここでいう第1の画像データ及び第2の画像データは、便宜的な区別にすぎない。例えば、画像処理装置220は、第1の画像データ(3チャネル)及び第2の画像データ(1チャネル)に相当する4チャネルの画像データを出力するように構成されてもよい。
画像処理システム200の構成は、以上のとおりである。画像処理装置220は、原理的には、第1実施形態の画像処理装置100と同様に動作する。より詳細には、画像処理装置220は、式(1)〜(6)を用いて説明された原理の下、λ1=400nm、λ2=1000nm、λ3=700nmであるとして必要な演算を実行する。
例えば、可視画像生成部223は、式(2)のモデル化に基づき、可視光成分による色信号RVIS、GVIS、BVISを次の式(7)を用いて算出する。
Figure 0006969550
また、NIR画像生成部224は、近赤外光成分による色信号RNIR、GNIR、BNIRを式(8)を用いて算出する。
Figure 0006969550
図7は、本実施形態における平均ベクトルr0(λ)と基底ベクトルri(λ)の一例を示す図である。基底ベクトルri(λ)は、上述のように、光源の分光特性と物体の表面反射率の積で形成される分光空間を主成分分析することによって求めることが可能である。
本実施形態の画像処理システム200は、第1実施形態の画像処理装置100と同様の構成を含む。そのため、画像処理システム200は、画像処理装置100と同様に、可視画像と近赤外画像とを簡易な構成で生成することが可能である。
[第3実施形態]
図8は、さらに別の実施形態に係る撮像装置300の構成を示すブロック図である。撮像装置300は、光学系部材310と、カラーイメージセンサ320と、画像処理部330と、メモリ340とを含んで構成される。カラーイメージセンサ320は、より詳細には、光学フィルタ321とフォトセンサ322とを含む。
光学系部材310は、光をカラーイメージセンサ320に誘導する。光学系部材310は、例えば、レンズやミラーを含む。光学系部材310は、可視光及び近赤外光をカラーイメージセンサ320に入射させる。
カラーイメージセンサ320は、入射光に応じた画像データを生成する。光学フィルタ321は、R、G、Bの3色の光学フィルタを含んで構成される。光学フィルタ321は、いわゆるベイヤ(Bayer)配列で各色の光学フィルタが配置される。したがって、フォトセンサ322は、各画素がR、G、Bの3色のいずれかの色成分を選択的に受光する。
図9は、光学フィルタ321の構成の一例を示す図である。この例において、赤色(R)のカラーフィルタは、奇数行奇数列の画素に対応して設けられる。これに対し、青色(B)のカラーフィルタは、偶数行偶数列の画素に対応して設けられる。また、緑色(G)のカラーフィルタは、奇数行偶数列及び偶数行奇数列の画素に対応して設けられる。
光学フィルタ321が図9に示される構成の場合、フォトセンサ322は、奇数行奇数列の画素で赤色に相当する光(及び近赤外光)を受光し、偶数行偶数列の画素で青色に相当する光(及び近赤外光)を受光する。また、フォトセンサ322は、その他の画素で緑色に相当する光(及び近赤外光)を受光する。
なお、一般的なカラーイメージセンサは、光学フィルタ321の前段(すなわち光学系部材310と光学フィルタ321の間)にIRカットフィルタ323を有する。カラーイメージセンサ320は、このような一般的なカラーイメージセンサからIRカットフィルタ323を取り除いた構成であってもよい。したがって、カラーイメージセンサ320は、大量生産が容易な汎用品を用いて作成可能である。
画像処理部330は、第2実施形態の画像処理装置220と同様の構成を有する。具体的には、画像処理部330は、カラーイメージセンサ320により生成された画像データを取得する機能と、入射光の分光特性を推定する機能と、可視画像を表す第1の画像データを生成する機能と、近赤外画像を表す第2の画像データを生成する機能とを含む。また、画像処理部330は、取得された画像データに対してデモザイキング処理を実行する機能を有する。なお、本実施形態における可視光及び近赤外光の波長域は、第2実施形態に準ずる。すなわち、本実施形態においても、λ1=400nm、λ2=1000nm、λ3=700nmである。
メモリ340は、上述の第2実施形態と同様の特性データを記憶する。ただし、本実施形態の特性データは、撮像装置300の分光感度特性を示すデータである。メモリ340は、揮発性又は不揮発性の記憶媒体を含んで構成される。この記憶媒体は、特定の種類の記憶媒体に限定されない。特性データは、撮像装置300を用いてあらかじめ測定されてもよく、実験的又は経験的に決定されてもよい。
撮像装置300の構成は、以上のとおりである。撮像装置300は、このような構成により、可視光と近赤外光とを含む入射光に応じた画像データに基づき、可視画像に相当する第1の画像データと近赤外画像に相当する第2の画像データとを生成する。
光学フィルタ321がベイヤ配列であるため、画像処理部330に入力される画像データは、各画素が単一の色成分のみよって構成されている。そのため、画像処理部330は、デモザイキング処理を実行する。デモザイキング処理は、複数のアルゴリズムが周知である。画像処理部330は、例えば、デモザイキング処理を以下のように実行する。ただし、画像処理部330が実行するデモザイキング処理は、特定のアルゴリズムに限定されない。
ここで、図9を参照し、第i行第j列の画素の座標を(i,j)とする。また、座標(i,j)における各チャネルの色信号をそれぞれR(i,j)、G(i,j)、B(i,j)とする。説明の便宜上、以下においては、R(i,j)、G(i,j)、B(i,j)をそれぞれ「R値」、「G値」、「B値」ともいう。
例えば、座標(1,1)の画素は、赤色に相当する画素である。したがって、座標(1,1)のR値は、式(9)に示されるように、座標(1,1)の色信号がそのまま用いられる。
Figure 0006969550
一方、座標(1,1)のG値及びB値は、当該座標の色信号から直接には取得できない。そのため、座標(1,1)のG値及びB値は、例えば式(10)、(11)に示されるように、近傍の同色の画素の色信号から補間することによって求められる。
Figure 0006969550
Figure 0006969550
次に、座標(1,2)の画素は、緑色に相当する画素である。したがって、座標(1,2)のG値は、式(12)に示されるように、座標(1,2)の色信号がそのまま用いられる。
Figure 0006969550
また、座標(1,2)のR値及びB値は、例えば式(13)、(14)に示されるように、近傍の同色の画素の色信号から補間することによって求められる。
Figure 0006969550
Figure 0006969550
画像処理部330は、他の画素についても同様にR値、G値及びB値を計算する。画像処理部330は、R値、G値及びB値を全ての画素について計算することにより、各画素について3チャネル分の色情報を得ることができる。画像処理部330がデモザイキング処理以降に実行する処理は、第2実施形態の画像処理装置220が実行する処理と同様である。
本実施形態の撮像装置300は、第2実施形態の画像処理装置220と同様の構成を含む。そのため、撮像装置300は、画像処理装置220と同様に、可視画像と近赤外画像とを簡易な構成で生成することが可能である。加えて、撮像装置300は、近赤外画像を生成するために特別な構成を要する場合に比べ、簡易又は安価な構成で近赤外画像を生成可能であり、ひいては装置の小型化や(少ない故障による)信頼性の向上に寄与することが期待できる。
[第4実施形態]
図10は、さらに別の実施形態に係る画像処理装置220aの構成を示すブロック図である。画像処理装置220aは、第2実施形態の画像処理装置220と同様のデータ取得部221、スペクトル推定部222及び可視画像生成部223を含んで構成される。加えて、画像処理装置220aは、信号分離部225を有する。
信号分離部225は、近赤外画像を生成する機能を有する。具体的には、信号分離部225は、データ取得部221により供給される画像データと、可視画像生成部223により生成された第1の画像データとに基づいて、第2の画像データを生成する。
より詳細には、信号分離部225は、データ取得部221により供給される画像データと第1の画像データの差に基づいて第2の画像データを生成する。例えば、データ取得部221により供給される(可視成分及び近赤外成分を含む)3チャネルの画像データをIR_NIR、IG_NIR、IB_NIR、(可視成分を含む)第1の画像データをIR、IG、IBとした場合、信号分離部225は、式(15)により第2の画像データINIRを算出する。ここにおいて、cR1、cG1、cB1は、所定の係数である。
Figure 0006969550
本実施形態の画像処理装置220aは、第2実施形態の画像処理装置220と同様の構成を含む。そのため、画像処理装置220aは、画像処理装置220と同様に、可視画像と近赤外画像とを簡易な構成で生成することが可能である。また、画像処理装置220aは、信号分離部225を有することにより、減算等の簡易な計算によって第2の画像データを生成することが可能である。
[第5実施形態]
図11は、さらに別の実施形態に係る画像処理装置220bの構成を示すブロック図である。画像処理装置220bは、第2実施形態の画像処理装置220と同様のデータ取得部221、スペクトル推定部222及びNIR画像生成部224を含んで構成される。加えて、画像処理装置220bは、信号分離部226を有する。
信号分離部226は、可視画像を生成する機能を有する。具体的には、信号分離部226は、データ取得部221により供給される画像データと、NIR画像生成部224により生成された第2の画像データとに基づいて、第1の画像データを生成する。
より詳細には、信号分離部226は、データ取得部221により供給される画像データと第2の画像データの差に基づいて第1の画像データを生成する。例えば、データ取得部221により供給される(可視成分及び近赤外成分を含む)3チャネルの画像データをIR_NIR、IG_NIR、IB_NIR、(近赤外成分を含む)第2の画像データをINIRとした場合、信号分離部226は、式(16)により第1の画像データIR、IG、IBを算出する。ここにおいて、cR2、cG2、cB2は、所定の係数である。
Figure 0006969550
本実施形態の画像処理装置220bは、第2実施形態の画像処理装置220と同様の構成を含む。そのため、画像処理装置220bは、画像処理装置220と同様に、可視画像と近赤外画像とを簡易な構成で生成することが可能である。また、画像処理装置220bは、信号分離部226を有することにより、減算等の簡易な計算によって第1の画像データを生成することが可能である。
[第6実施形態]
図12は、さらに別の実施形態に係る撮像装置600の構成を示すブロック図である。撮像装置600は、いわゆる多板方式の撮像装置の一例である。すなわち、本開示に係る撮像装置は、単板方式に限定されない。撮像装置600は、色分解部610と、フォトセンサ620、630、640と、画像処理部650と、メモリ660とを含んで構成される。
色分解部610は、入射光を特定の波長域毎に分散させる。色分解部610は、例えば、プリズムである。色分解部610は、可視成分と近赤外成分とを含む入射光をR、G、Bのそれぞれの波長域に相当する色光に分解して出射する。色分解部610から出射された色光は、フォトセンサ620、630、640に入射する。
フォトセンサ620、630、640は、入射光に応じた画像データを生成する。フォトセンサ620は、赤色に相当する画像データIR_NIRを生成する。フォトセンサ630は、緑色に相当する画像データIG_NIRを生成する。フォトセンサ640は、青色に相当する画像データIB_NIRを生成する。これらの画像データの少なくともいずれかには、可視成分だけでなく近赤外成分も含まれる。
画像処理部650は、第2実施形態の画像処理装置220と同様の構成を有する。すなわち、画像処理部650は、フォトセンサ620、630、640により生成された画像データ(IR_NIR、IG_NIR、IB_NIR)を取得する機能と、入射光の分光特性を推定する機能と、可視画像を表す第1の画像データ(IR、IG、IB)を生成する機能と、近赤外画像を表す第2の画像データ(INIR)を生成する機能とを含む。
メモリ660は、撮像装置600の分光感度特性を示す特性データを記憶する。メモリ660は、第3実施形態のメモリ340と同様の構成でよい。ただし、特性データの具体的な値は、第3実施形態の特性データの値と異なり得る。
本実施形態によれば、他の実施形態と同様に、可視画像と近赤外画像とを簡易な構成で生成することが可能である。撮像装置600は、ハードウェア的には、一般的な3板方式の撮像装置からIRカットフィルタを取り除くことによって実現することが可能である。ただし、画像処理部650が実行する画像処理には、一般的な3板方式の撮像装置が実行する画像処理と異なる処理が含まれる。
[変形例]
本開示は、上述された第1実施形態〜第6実施形態に限定されない。本開示は、当業者が把握し得る変形又は応用を適用した形態を含み得る。例えば、本開示は、以下に記載される変形例の形態及び変形例から想到し得る形態を含む。また、本開示は、本明細書に記載された事項を必要に応じて適宜に組み合わせた形態を含み得る。例えば、特定の実施形態を用いて説明された事項は、矛盾を生じない範囲において、他の実施形態に対しても適用され得る。
(変形例1)
カラー画像のチャネル数と各チャネルの色成分(すなわち波長域)は、いずれも特定の値に限定されない。例えば、カラー画像のチャネル数は、4以上であってもよい。また、カラー画像の色成分は、RGBに代えてC(Cyan)M(Magenta)Y(Yellow)が用いられてもよい。
(変形例2)
本開示に係る装置(画像処理装置100、220、撮像装置300、600など)の具体的なハードウェア構成は、さまざまなバリエーションが含まれ、特定の構成に限定されない。例えば、各装置は、ソフトウェアを用いて実現されてもよく、2以上の装置を組み合わせて用いて各種処理を分担するように構成されてもよい。
図13は、本開示に係る装置を実現するためのコンピュータ装置700のハードウェア構成の一例を示すブロック図である。コンピュータ装置700は、CPU(Central Processing Unit)701と、ROM(Read Only Memory)702と、RAM(Random Access Memory)703と、記憶装置704と、ドライブ装置705と、通信インタフェース706と、入出力インタフェース707とを含んで構成される。本開示に係る装置は、図13に示される構成(又はその一部)によって実現され得る。
CPU701は、RAM703を用いてプログラム708を実行する。プログラム708は、ROM702に記憶されていてもよい。また、プログラム708は、メモリカード等の記録媒体709に記録され、ドライブ装置705によって読み出されてもよいし、外部装置からネットワーク710を介して送信されてもよい。通信インタフェース706は、ネットワーク710を介して外部装置とデータをやり取りする。入出力インタフェース707は、周辺機器(入力装置、表示装置など)とデータをやり取りする。通信インタフェース706及び入出力インタフェース707は、データを取得又は出力するための構成要素として機能することができる。
なお、本開示に係る装置の構成要素は、単一の回路(プロセッサ等)によって構成されてもよいし、複数の回路の組み合わせによって構成されてもよい。ここでいう回路(circuitry)は、専用又は汎用のいずれであってもよい。
上述された実施形態において単体の装置として説明された構成は、複数の装置に分散して設けられてもよい。例えば、画像処理装置100、220は、クラウドコンピューティング技術などを用いて、複数のコンピュータ装置によって実現されてもよい。
以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
この出願は、2016年6月24日に出願された日本出願特願2016−125147を基礎とする優先権を主張し、その開示の全てをここに取り込む。
100 画像処理装置
110 取得部
120 推定部
130 生成部
200 画像処理システム
210 撮像装置
220、220a、220b 画像処理装置
221 データ取得部
222 スペクトル推定部
223 可視画像生成部
224 NIR画像生成部
225、226 信号分離部
300、600 撮像装置
700 コンピュータ装置

Claims (9)

  1. 可視光及び近赤外光を含む入射光に応じて撮像手段により撮像されたカラー画像を取得する取得手段と、
    前記取得されたカラー画像の色情報と、前記撮像手段の分光感度特性と、前記入射光の分光特性をモデル化した情報とに基づいて前記入射光の分光特性を推定する推定手段と、
    前記推定された前記入射光の分光特性と前記撮像手段の分光感度特性とに基づいて可視画像と近赤外画像とを生成する生成手段と
    を備え
    前記カラー画像は、Mチャネル(Mは2以上の整数)のカラー画像であり、
    前記情報は、前記入射光の分光特性を、前記入射光の平均ベクトルとM個の基底ベクトルとによってモデル化した情報である、
    画像処理装置。
  2. 前記生成手段は、
    前記推定された前記入射光の分光特性と前記撮像手段の分光感度特性とに基づいて前記可視画像を生成し、
    前記カラー画像と当該生成された可視画像とに基づいて前記近赤外画像を生成する
    請求項1に記載の画像処理装置。
  3. 前記生成手段は、
    前記カラー画像と前記生成された可視画像の差に基づいて前記近赤外画像を生成する
    請求項に記載の画像処理装置。
  4. 前記生成手段は、
    前記推定された前記入射光の分光特性と前記撮像手段の分光感度特性とに基づいて前記近赤外画像を生成し、
    前記カラー画像と当該生成された近赤外画像とに基づいて前記可視画像を生成する
    請求項1に記載の画像処理装置。
  5. 前記生成手段は、
    前記カラー画像と前記生成された近赤外画像の差に基づいて前記可視画像を生成する
    請求項に記載の画像処理装置。
  6. 前記Mは、3であり、
    前記カラー画像は、赤、緑及び青の3色の色成分により構成される
    請求項に記載の画像処理装置。
  7. 撮像装置と画像処理装置とを備え、
    前記撮像装置は、
    可視光及び近赤外光を含む入射光に応じてMチャネル(Mは2以上の整数)のカラー画像を生成する撮像手段を備え、
    前記画像処理装置は、
    前記撮像手段により撮像されたカラー画像を取得する取得手段と、
    前記取得されたカラー画像の色情報と、前記撮像手段の分光感度特性と、前記入射光の分光特性をモデル化した情報とに基づいて前記入射光の分光特性を推定する推定手段と、
    前記推定された前記入射光の分光特性と前記撮像手段の分光感度特性とに基づいて可視画像と近赤外画像とを生成する生成手段とを備え
    前記情報は、前記入射光の分光特性を、前記入射光の平均ベクトルとM個の基底ベクトルとによってモデル化した情報である、
    画像処理システム。
  8. 可視光及び近赤外光を含む入射光に応じて撮像手段により撮像されたカラー画像を取得し、
    前記取得されたカラー画像の色情報と、前記撮像手段の分光感度特性と、前記入射光の分光特性をモデル化した情報とに基づいて前記入射光の分光特性を推定し、
    前記推定された前記入射光の分光特性と前記撮像手段の分光感度特性とに基づいて可視画像と近赤外画像とを生成し、
    前記カラー画像は、Mチャネル(Mは2以上の整数)のカラー画像であり、
    前記情報は、前記入射光の分光特性を、前記入射光の平均ベクトルとM個の基底ベクトルとによってモデル化した情報である、
    画像処理方法。
  9. コンピュータに、
    可視光及び近赤外光を含む入射光に応じて撮像手段により撮像されたカラー画像を取得するステップと、
    前記取得されたカラー画像の色情報と、前記撮像手段の分光感度特性と、前記入射光の分光特性をモデル化した情報とに基づいて前記入射光の分光特性を推定するステップと、
    前記推定された前記入射光の分光特性と前記撮像手段の分光感度特性とに基づいて可視画像と近赤外画像とを生成するステップと
    を実行させ
    前記カラー画像は、Mチャネル(Mは2以上の整数)のカラー画像であり、
    前記情報は、前記入射光の分光特性を、前記入射光の平均ベクトルとM個の基底ベクトルとによってモデル化した情報である、
    プログラム。
JP2018524162A 2016-06-24 2017-06-22 画像処理装置、画像処理システム、画像処理方法及びプログラム Active JP6969550B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016125147 2016-06-24
JP2016125147 2016-06-24
PCT/JP2017/023073 WO2017222021A1 (ja) 2016-06-24 2017-06-22 画像処理装置、画像処理システム、画像処理方法及びプログラム記録媒体

Publications (2)

Publication Number Publication Date
JPWO2017222021A1 JPWO2017222021A1 (ja) 2019-05-16
JP6969550B2 true JP6969550B2 (ja) 2021-11-24

Family

ID=60784145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018524162A Active JP6969550B2 (ja) 2016-06-24 2017-06-22 画像処理装置、画像処理システム、画像処理方法及びプログラム

Country Status (3)

Country Link
US (1) US10863115B2 (ja)
JP (1) JP6969550B2 (ja)
WO (1) WO2017222021A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6725060B2 (ja) * 2017-03-31 2020-07-15 日本電気株式会社 画像処理装置、画像処理システム、画像処理方法、及びプログラム
WO2019181125A1 (ja) * 2018-03-22 2019-09-26 ソニー株式会社 画像処理装置及び画像処理方法
JP7155737B2 (ja) * 2018-08-10 2022-10-19 株式会社リコー 画像処理装置、画像処理システム、プログラムおよび画像処理方法
CN110830675B (zh) * 2018-08-10 2022-05-03 株式会社理光 读取装置、图像形成装置及读取方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162841A (en) * 1989-10-11 1992-11-10 Fuji Photo Film Co., Ltd. Exposure controlling apparatus
JP3072729B2 (ja) * 1998-10-09 2000-08-07 日本電気株式会社 カラーマッチング方法、カラーマッチング装置並びにプログラムを記録した機械読み取り可能な記録媒体
US20050182328A1 (en) * 2002-08-09 2005-08-18 Hamamatsu Photonics K.K. System enabling chromaticity measurement in the visible and invisible ranges
WO2005101853A1 (ja) * 2004-04-05 2005-10-27 Mitsubishi Denki Kabushiki Kaisha 撮像装置
JP4984634B2 (ja) * 2005-07-21 2012-07-25 ソニー株式会社 物理情報取得方法および物理情報取得装置
JP4892909B2 (ja) * 2005-09-22 2012-03-07 ソニー株式会社 信号処理方法、信号処理回路およびこれを用いたカメラシステム
US7821552B2 (en) * 2005-12-27 2010-10-26 Sanyo Electric Co., Ltd. Imaging apparatus provided with imaging device having sensitivity in visible and infrared regions
JP5259381B2 (ja) * 2008-12-25 2013-08-07 京セラ株式会社 撮像装置および撮像方法
JP2011243862A (ja) 2010-05-20 2011-12-01 Sony Corp 撮像デバイス及び撮像装置
JP5718138B2 (ja) 2011-04-20 2015-05-13 株式会社豊田中央研究所 画像信号処理装置及びプログラム
KR101767093B1 (ko) * 2012-12-14 2017-08-17 한화테크윈 주식회사 색감 복원 방법 및 장치
WO2014104203A1 (ja) * 2012-12-26 2014-07-03 シチズンホールディングス株式会社 投影装置
JP2014135571A (ja) * 2013-01-08 2014-07-24 V Technology Co Ltd 撮像装置
JP6582987B2 (ja) * 2013-10-23 2019-10-02 日本電気株式会社 映像撮影装置、映像撮影方法、符号型赤外カットフィルタ、および符号型特定色カットフィルタ
US10334185B2 (en) 2014-03-06 2019-06-25 Nec Corporation Image capturing device, signal separation device, and image capturing method
JP2015211727A (ja) * 2014-05-01 2015-11-26 オリンパス株式会社 内視鏡装置
CN106464850B (zh) * 2014-06-24 2019-10-11 麦克赛尔株式会社 摄像传感器以及摄像装置
JP2016072741A (ja) 2014-09-29 2016-05-09 ソニー株式会社 信号処理装置
US9386230B1 (en) * 2015-06-12 2016-07-05 Google Inc. Day and night detection based on one or more of illuminant detection, lux level detection, and tiling
WO2017010261A1 (ja) * 2015-07-10 2017-01-19 ソニー株式会社 検査装置、検査方法、及び、プログラム
US10931895B2 (en) * 2016-12-22 2021-02-23 Nec Corporation Image processing method, image processing device, and storage medium
JP2019190927A (ja) * 2018-04-23 2019-10-31 キヤノン株式会社 解析システム、撮像装置、および、プログラム

Also Published As

Publication number Publication date
US10863115B2 (en) 2020-12-08
WO2017222021A1 (ja) 2017-12-28
JPWO2017222021A1 (ja) 2019-05-16
US20190208146A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
JP6969550B2 (ja) 画像処理装置、画像処理システム、画像処理方法及びプログラム
JP5882455B2 (ja) 高解像度マルチスペクトル画像キャプチャ
TWI525382B (zh) 包括至少一拜耳型攝影機的攝影機陣列系統及關聯的方法
JP7143767B2 (ja) 画像処理方法、画像処理装置および画像処理プログラム
US11422026B2 (en) Information processing device, information processing method, and program to perform calibration with respect to environment light
JP6182396B2 (ja) 撮像装置
JP2012070215A (ja) 3次元撮像装置
US10334185B2 (en) Image capturing device, signal separation device, and image capturing method
EP3001668A1 (en) Method for compensating for color differences between different images of a same scene
JP6794989B2 (ja) 映像処理装置、撮影装置、映像処理方法及びプログラム
KR100894420B1 (ko) 다채널 필터를 이용하여 영상을 생성하는 장치 및 방법
JP4533261B2 (ja) 撮像装置
JP6725060B2 (ja) 画像処理装置、画像処理システム、画像処理方法、及びプログラム
US20210142446A1 (en) Image processing device, image processing method, and non-transitory computer-readable medium
US8866972B1 (en) Method for transmitting spectrum information
US10249020B2 (en) Image processing unit, imaging device, computer-readable medium, and image processing method
JPWO2020209102A5 (ja)
WO2022198436A1 (zh) 图像传感器、图像数据获取方法、成像设备
JP5736846B2 (ja) 表面状態観測装置およびその方法
TW202220431A (zh) 攝像元件及電子機器
JP6317703B2 (ja) 画像処理装置、画像処理システム、画像処理方法、及び画像処理プログラム
JP2021043722A (ja) 映像処理装置、および、映像処理方法
JP2021068925A (ja) 画像処理装置および画像処理方法、撮像装置、プログラム
JP2014175731A (ja) 撮像装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211011

R150 Certificate of patent or registration of utility model

Ref document number: 6969550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150