WO2019187639A1 - 画像投影装置 - Google Patents

画像投影装置 Download PDF

Info

Publication number
WO2019187639A1
WO2019187639A1 PCT/JP2019/003896 JP2019003896W WO2019187639A1 WO 2019187639 A1 WO2019187639 A1 WO 2019187639A1 JP 2019003896 W JP2019003896 W JP 2019003896W WO 2019187639 A1 WO2019187639 A1 WO 2019187639A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
light
optical system
scanning unit
light beam
Prior art date
Application number
PCT/JP2019/003896
Other languages
English (en)
French (fr)
Inventor
森野誠治
鈴木誠
安井賢治
金子千鶴
Original Assignee
株式会社Qdレーザ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Qdレーザ filed Critical 株式会社Qdレーザ
Publication of WO2019187639A1 publication Critical patent/WO2019187639A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers

Definitions

  • the present invention relates to an image projecting device, for example, an image projecting device that projects an image on a retina.
  • Image projection apparatuses that project an image directly on the retina by scanning light beams such as laser light are used in head mounted displays, optometry apparatuses, and the like (for example, Patent Documents 1 and 2). It is known to scan a light beam such as a laser beam using a scanning unit such as a scanning mirror (for example, Patent Documents 3 and 4).
  • the image when an image is projected onto the retina by the light beam scanned by the scanning unit, the image may be distorted due to the projection direction.
  • the present invention has been made in view of the above problems, and an object thereof is to suppress distortion of an image projected on the retina.
  • the present invention includes a scanning unit that two-dimensionally scans light emitted from a light source, a projection optical system that projects an image on the retina by irradiating the scanned light on the retina, the scanning unit, and the scanning unit. And a half mirror that is provided between the projection optical system and reflects the light beam emitted from the light source to the scanning unit and transmits the scanned light beam to the projection optical system.
  • the half mirror reflects the light beam emitted from the light source to the scanning unit from the direction opposite to the traveling direction of the light beam forming the image among the light beams incident on the projection optical system from the scanning unit. It can be configured.
  • the half mirror scans the image from a direction substantially opposite to the traveling direction of the light beam that forms the center of the scanning range of the image and / or the scanning unit among the light beams incident on the projection optical system from the scanning unit.
  • the light beam emitted from the light source can be reflected on the part.
  • the half mirror may be configured to transmit all the light beams that form the image among the light beams incident on the projection optical system from the scanning unit.
  • the half mirror transmits a part of the light rays that form the image among the light rays incident on the projection optical system from the scanning unit, and the other light rays among the light rays that form the image pass through the half mirror. It can be configured to enter the projection optical system without passing through the mirror.
  • the projection optical system may be an axisymmetric optical system.
  • the scanning unit may be a scanning mirror.
  • the present invention includes a light source that generates a light beam to be projected onto the retina, a scanning unit that is disposed at a position facing the retina and that scans the light beam in a two-dimensional manner, and between the scanning unit and the retina.
  • the image projection apparatus includes a half mirror that is disposed and reflects the light beam generated from the light source to the scanning unit and transmits the light beam reflected by the scanning unit.
  • the light source may not be arranged at a position facing the retina.
  • FIG. 1 is a block diagram of an image projection apparatus according to the first embodiment.
  • FIG. 2 is a diagram illustrating an image generation method according to the first embodiment.
  • FIG. 3 is a block diagram of the image projection apparatus according to the first comparative example.
  • FIG. 4A and FIG. 4B are diagrams showing simulation results in Example 1 and Comparative Example 1, respectively.
  • FIG. 5 is a block diagram of an image projection apparatus according to the first modification of the first embodiment.
  • FIG. 6 is a block diagram of an image projection apparatus according to the second embodiment.
  • FIG. 1 is a block diagram of an image projection apparatus according to the first embodiment.
  • the image projection apparatus 100 includes a light source 10, a scanning mirror 12, a half mirror 14, a lens 16, an adjustment unit 17, a projection optical system 20, a control unit 30, and an image input unit 32.
  • the image projection device 100 is a visual inspection device that inspects the visual sense of the subject, for example, and projects an image for inspection onto the retina 74 of the eyeball 70 of the subject.
  • Image data is input to the image input unit 32.
  • the image data is, for example, image data for examining the subject's vision and / or data output from an external device.
  • the control unit 30 controls the light source 10 based on the image data.
  • a processor such as a CPU (Central Processing Unit) may perform processing in cooperation with a program.
  • the controller 30 may be a dedicated circuit.
  • the light source 10 emits, for example, red laser light (wavelength: about 610 nm to 660 nm), green laser light (wavelength: about 515 nm to 540 nm), and blue laser light (wavelength: about 440 nm to 480 nm) as the light beam 50.
  • Examples of the light source 10 that emits red, green, and blue laser light include a light source in which RGB (red, green, and blue) laser diode chips, a three-color synthesis device, and a microcollimator lens are integrated.
  • the light source 10 is a single light source and may emit laser light having a single wavelength.
  • the dotted line at the center of the light beam 50 indicates the center line of the light beam 50, and the solid line indicates the end of the light beam 50. The same applies to the light beams 52a to 52c.
  • the lens 16 is a collimating lens, and the light beam 50 is collimated light.
  • the adjustment unit 17 includes, for example, a neutral density filter, an aperture, and the like, and molds a light beam.
  • the collimated light beam 50 enters the half mirror 14.
  • the half mirror 14 reflects the light beam 50 to the scanning mirror 12.
  • the scanning mirror 12 is, for example, MEMS (Micro Electro Mechanical Systems), and is disposed in front of the retina 74, which is a projection target, facing the retina 74, and scans the light beam 50 two-dimensionally.
  • the scanned light beams 52 a to 52 c pass through the half mirror 14 and enter the projection optical system 20.
  • the scanning mirror 12 and the half mirror 14 are substantially flat, for example, and the light collecting power is almost zero. Thereby, each light beam 52a to 52c incident on the projection optical system 20 is substantially collimated light.
  • Projection optical system 20 has lenses 21 and 22.
  • the lenses 21 and 22 are convex lenses and have a positive condensing power.
  • the lens 21 makes the light beams 52a to 52c parallel to each other, and sets the light beams 52a to 52c as convergent light.
  • Each light beam 52a to 52c is focused between the lenses 21 and 22, and enters the lens 22 as diffused light.
  • the lens 22 converges the light beams 52a to 52c and makes each light beam 52a to 52c substantially collimated light.
  • Light rays 52 a to 52 c pass through the cornea 72, converge near the anterior chamber 73 or the lens 76, pass through the vitreous body 78, and irradiate the retina 74.
  • Each ray 52a to 52c is substantially in focus at the retina.
  • the projection optical system 20 is an axially symmetric optical system. The symmetry axis of the projection optical system 20 substantially coincides with the light ray 52b.
  • FIG. 2 is a diagram illustrating an image generation method according to the first embodiment.
  • an image 54 is projected onto the retina 74.
  • the scanning mirror 12 performs a raster scan of the light beam 52 from the upper left to the lower right as indicated by a broken line arrow.
  • a range scanned by the scanning mirror 12 is a scanning range 53. If the light source 10 does not emit the light beam 50 even if the scanning mirror 12 is driven within the scanning range 53, the light beam 52 is not irradiated on the retina 74.
  • the light beam 50 is not emitted by the broken-line arrow in FIG.
  • the control unit 30 synchronizes the light source 10 and the scanning mirror 12. As a result, the light source 10 emits a light beam 50 whose intensity is modulated along a thick solid line. As a result, the image 54 is projected onto the retina 74.
  • the light beam 50 reflected by the half mirror 14 enters the scanning mirror 12 from a direction substantially opposite to the traveling direction of the light beam 52 b forming the center 55.
  • FIG. 3 is a block diagram of the image projection apparatus according to the first comparative example.
  • the image projection apparatus 110 according to the comparative example 1 includes a reflection mirror 15 instead of the half mirror 14.
  • the reflection mirror 15 is provided so as not to overlap the light rays 52 a to 52 c forming the image 54.
  • the light beam 50 reflected by the reflection mirror 15 enters the scanning mirror 12 obliquely from below.
  • Other configurations are the same as those of the first embodiment, and the description thereof is omitted.
  • FIG. 4A and FIG. 4B are diagrams showing simulation results in Example 1 and Comparative Example 1, respectively.
  • 4A and 4B show a projection state on the retina 74 of the dots 56 arranged in a grid pattern in the image 54.
  • FIG. When the dots 56 are displaced from the lattice, the image 54 is distorted.
  • the distortion of the image 54 is suppressed in the first embodiment compared to the first comparative example.
  • the projection optical system 20 is axisymmetric, and it is considered that there is almost no image distortion caused by the projection optical system 20.
  • Comparative Example 1 since the reflection mirror 15 is provided to avoid the light rays 52a to 52c, the light ray 50 is incident on the scanning mirror 12 obliquely from the reflection mirror 15. For this reason, it is considered that the image 54 is asymmetrically distorted with respect to the center 55. In the first embodiment, there is almost no asymmetric distortion with respect to the center 55.
  • the scanning mirror 12 (scanning unit or scanner) is disposed at a position facing the retina 74 and scans the light beam 50 emitted from the light source 10 two-dimensionally.
  • the projection optical system 20 projects the image 54 onto the retina 74 by irradiating the scanned light rays 52a to 52c onto the retina 74 from the opposite direction.
  • the half mirror 14 is provided between the scanning mirror 12 and the projection optical system 20, reflects the light beam 50 to the scanning mirror 12, and transmits the light beams 52 a to 52 c to the projection optical system 20.
  • the scanning mirror 12 is disposed at a position facing the retina 74, and the half mirror 14 is provided between the scanning mirror 12 and the retina 74, so that the light beams 52a to 52c are opposed to the retina 74. Project from the direction. Thereby, the distortion of the image 54 can be suppressed as shown in FIG.
  • the light source 10 that generates the light beam 50 is not disposed at a position facing the retina 74, and the light beam 50 is guided to the scanning mirror 12 by the half mirror 14 directed toward the scanning mirror 12.
  • the half mirror 14 scans from the direction opposite to the traveling direction of the light beam 52 b that forms the center 54 of the image 54 and / or the scanning range 53 of the scanning mirror 12 among the light beams 52 a to 52 c incident on the projection optical system 20 from the scanning mirror 12.
  • the light beam 50 is reflected by the mirror 12. Thereby, distortion of the image 54 resulting from the scanning mirror 12 can be further suppressed.
  • the traveling direction of the light beam 50 incident on the scanning mirror 12 may be substantially opposite to the traveling direction of the light beam 52b so that the distortion of the image 54 can be suppressed.
  • the half mirror 14 may reflect the light beam 50 to the scanning mirror 12 from the direction opposite to the traveling direction of the light beams 52a to 52c forming the image 54 out of the light beams 52a to 52c incident on the projection optical system 20 from the scanning mirror 12. Thereby, the distortion of the image 54 can be suppressed as compared with the first comparative example.
  • the half mirror 14 transmits all the light rays that form the image 54 out of the light rays 52a to 52c incident on the projection optical system 20 from the scanning mirror 12. Thereby, the brightness
  • Projection optical system 20 is an axially symmetric optical system. Thereby, distortion of the image 54 resulting from the projection optical system 20 can be suppressed.
  • the axially symmetric optical system uses the light beam 52a that forms the center of the image among the light beams 52a to 52c incident from the scanning mirror 12 to the projection optical system 20 as a symmetric axis. Thereby, distortion of the image 54 can be further suppressed.
  • the scanning mirror 12 such as a MEMS mirror has been described as an example of the scanning unit, the scanning unit may be a polygon mirror, for example.
  • FIG. 5 is a block diagram of an image projection apparatus according to the first modification of the first embodiment.
  • the half mirror 14 is provided so that a part of the light rays 52b among the light rays 52a to 52c are transmitted.
  • the other light rays 52a and 52c do not pass through the half mirror 14.
  • Other configurations are the same as those of the first embodiment, and the description thereof is omitted.
  • the half mirror 14 transmits a part of the light rays 52b of the light rays 52a to 52c forming the image 54 out of the light rays 52a to 52c reflected by the scanning mirror 12 on the projection optical system 20.
  • the other light rays 52 a and 52 c are incident on the projection optical system 20 without passing through the half mirror 14.
  • the half mirror 14 may transmit only a part of the light rays 52a. Since the light beam 52a is attenuated by the half mirror 14, it is preferable that the control unit 30 sets the light intensity of the light beam 50 to be the light beam 52b to be higher than the light intensity of the other light beams 52a and 54c.
  • FIG. 6 is a block diagram of an image projection apparatus according to the second embodiment.
  • the image projection device 104 includes a reflection mirror 18.
  • the projection optical system 20 includes mirrors 24 and 26 and a lens 25.
  • the image projection device 104 is, for example, a glasses-type head mounted display.
  • the light source 10 is installed, for example, on a temple of glasses.
  • the scanning mirror 12 and the projection optical system 20 are installed, for example, in the vicinity of a lens of eyeglasses.
  • the control unit 30 and the image input unit 32 are provided on a crane, for example.
  • the control unit 30 and the image input unit 32 may be provided in an external device (for example, a portable terminal) without being provided in the head mounted display.
  • the image input unit 32 receives image data from a camera and / or recording device (not shown).
  • the lens 16 turns the light beam 50 into convergent light.
  • the reflection mirror 18 reflects the light beam 50 to the half mirror 14.
  • the light beam 50 reflected by the half mirror 14 is scanned by the scanning mirror 12 to become light beams 52a to 52c.
  • the condensing power of the reflecting mirror 18, the half mirror 14, and the scanning mirror 12 is almost zero and is almost flat.
  • Each light beam 52 a to 52 c is focused between the scanning mirror 12 and the mirror 24.
  • the mirror 24 is a mirror having a free-form surface and has a positive light collecting power.
  • the light beams 52 a to 52 c scanned by the scanning mirror 12 are converged to the convergence point 60 by the mirror 24.
  • Each light beam 52a to 52c reflected by the mirror 24 is diffused light.
  • a lens 25 having positive condensing power is provided at a position where the light beams 52a to 52c converge.
  • the lens 25 uses the light rays 52a to 52c as convergent light.
  • the mirror 26 is a mirror having a free-form surface and has a positive condensing power. The mirror 26 converges the light beams 52a to 52c to the convergence point 62 in or near the crystalline lens 76, and focuses each light beam 52a to 52c near the retina 74.
  • the scanning angle ⁇ 1 of the scanning mirror 12 (for example, the angle of the center line of the light beams 52a and 52c) and the convergence angle ⁇ 4 of the convergence point 62 (for example, the angle of the center line of the light beams 52a and 52c) are the same size.
  • the convergence angle ⁇ 2 (for example, the angle of the center line of the light beams 52a and 52c) and the emission angle ⁇ 3 (for example, the angle of the center line of the light beams 52a and 52c) at the convergence point 60 are the same size.
  • the optical path length of the light beam 52b between the scanning mirror 12 and the mirror 24 is L1
  • the optical path length of the light beam 52b between the mirror 24 and the convergence point 60 is L2
  • the optical path length of the light beam 52b between the convergence point 60 and the mirror 26 is Let L3 be the optical path length of the light beam 52b between the mirror 26 and the convergence point 62.
  • the scanning mirror 12 and the convergence point 62 have a conjugate relationship of the same magnification through the mirrors 24 and 26.
  • Other configurations are the same as those in the first embodiment, and a description thereof will be omitted.
  • the projection optical system 20 is disposed in a small space, so it is difficult to make the projection optical system 20 an axially symmetric optical system.
  • the projection optical system 20 is a non-axisymmetric optical system, the scanning mirror 12 and the convergence point 62 are in a conjugate relationship. Thereby, distortion of the image 54 can be suppressed. Furthermore, the distortion of the image 54 can be suppressed by providing the half mirror 14.
  • the half mirror 14 reflects the light beam 50 to the scanning mirror 12 from the direction opposite to the traveling direction of the light beam 52a to 52c incident on the projection optical system 20 from the scanning mirror 12. To do. Thereby, distortion of the image 54 can be further suppressed.
  • the half mirror 14 may transmit some of the light beams 52b among the light beams 52a to 52c.
  • the projection optical system 20 of the axially symmetric optical system is used for the visual inspection apparatus.
  • the projection optical system 20 of the axially symmetric optical system may be used for the head mounted display.
  • the projection optical system 20 having the conjugate relationship of the equal magnification is used for the head-mounted display.
  • the projection optical system 20 having the conjugate relationship may be used for the visual inspection apparatus.
  • an optical system other than the axially symmetric optical system and the conjugate projection optical system 20 may be used as the projection optical system 20, an optical system other than the axially symmetric optical system and the conjugate projection optical system 20 may be used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)

Abstract

本発明は、光源10から出射された光線50を2次元に走査する走査部と、走査された光線52aから52cを網膜74に照射することにより、画像を前記網膜上に投影する投影光学系20と、前記走査部と前記投影光学系20との間に設けられ、前記光源10から出射された光線50を前記走査部に反射し、前記走査された光線52aから52cを前記投影光学系20に透過させるハーフミラー14と、を備える画像投影装置である。

Description

画像投影装置
 本発明は、画像投影装置に関し、例えば網膜に画像を投影する画像投影装置である。
 レーザ光等の光線を走査することで網膜に直接画像を投影する画像投影装置は、ヘッドマウントディスプレイや検眼装置等に用いられている(例えば特許文献1、2)。レーザ光等の光線を走査ミラー等の走査部を用い走査することが知られている(例えば特許文献3、4)。
国際公開第2014/192479号 特開2018-000619号公報 特開2012-026935号公報 特開2007-225844号公報
 しかしながら、走査部が走査した光線により網膜に画像を投影すると、投影する方向に起因して画像が歪んでしまうことがある。
 本発明は、上記課題に鑑みなされたものであり、網膜に投影される画像の歪を抑制することを目的とする。
 本発明は、光源から出射された光線を2次元に走査する走査部と、走査された光線を網膜に照射することにより、画像を前記網膜上に投影する投影光学系と、前記走査部と前記投影光学系との間に設けられ、前記光源から出射された光線を前記走査部に反射し、前記走査された光線を前記投影光学系に透過させるハーフミラーと、を備える画像投影装置である。
 上記構成において、前記ハーフミラーは、前記走査部から前記投影光学系に入射する光線のうち前記画像を形成する光線の進行方向の逆方向から前記走査部に前記光源から出射された光線を反射する構成とすることができる。
 上記構成において、前記ハーフミラーは、前記走査部から前記投影光学系に入射する光線のうち前記画像および/または前記走査部の走査範囲の中心を形成する光線の進行方向のほぼ逆方向から前記走査部に前記光源から出射された光線を反射する構成とすることができる。
 上記構成において、前記ハーフミラーは、前記走査部から前記投影光学系に入射した光線のうち前記画像を形成する全ての光線が透過する構成とすることができる。
 上記構成において、前記ハーフミラーは、前記走査部から前記投影光学系に入射した光線のうち前記画像を形成する一部の光線が透過し、前記画像を形成する光線のうち他の光線は前記ハーフミラーを透過せずに前記投影光学系に入射する構成とすることができる。
 上記構成において、前記投影光学系は、軸対称光学系である構成とすることができる。
 上記構成において、前記走査部は走査ミラーである構成とすることができる。
 本発明は、網膜へ投影する光線を発生させる光源と、前記網膜に正対する位置に配置され、前記光線を反射して2次元に走査する走査部と、前記走査部と前記網膜との間に配置され、前記光源から発生された光線を前記走査部へ反射させるとともに、前記走査部で反射した光線を透過させるハーフミラーを備える画像投影装置である。
 上記構成において、前記光源は、前記網膜と正対する位置に配置されていない構成とすることができる。
 本発明によれば、網膜に投影される画像の歪を抑制することができる。
図1は、実施例1に係る画像投影装置のブロック図である。 図2は、実施例1における画像の生成方法を示す図である。 図3は、比較例1に係る画像投影装置のブロック図である。 図4(a)および図4(b)は、それぞれ実施例1および比較例1におけるシミュレーション結果を示す図である。 図5は、実施例1の変形例1に係る画像投影装置のブロック図である。 図6は、実施例2に係る画像投影装置のブロック図である。
 以下、図面を参照し、本発明の実施例について説明する。
 図1は、実施例1に係る画像投影装置のブロック図である。図1に示すように、画像投影装置100は、光源10、走査ミラー12、ハーフミラー14、レンズ16、調整部17および投影光学系20、制御部30および画像入力部32を備えている。画像投影装置100は、例えば被検者の視覚を検査する視覚検査装置であり、被検者の眼球70の網膜74に検査用の画像を投影する。
 画像入力部32に画像データが入力する。画像データは例えば被検者の視覚を検査するための画像のデータおよび/または外部装置から出力されたデータである。制御部30は、画像データに基づき光源10を制御する。制御部30は、例えばCPU(Central Processing Unit)等のプロセッサがプログラムと協働し処理を行ってもよい。制御部30は、専用に設計された回路でもよい。
 光源10は、光線50として、例えば赤色レーザ光(波長:610nm~660nm程度)、緑色レーザ光(波長:515nm~540nm程度)および青色レーザ光(波長:440nm~480nm程度)を出射する。赤色、緑色および青色レーザ光を出射する光源10として、例えばRGB(赤・緑・青)それぞれのレーザダイオードチップと3色合成デバイスとマイクロコリメートレンズとが集積された光源が挙げられる。また光源10は1つの光源であり単一の波長のレーザ光を出射してもよい。光線50の中心の点線は光線50の中心線を示し、実線は光線50の端を示す。光線52aから52cも同様である。
 レンズ16はコリメートレンズであり、光線50をコリメート光とする。調整部17は、例えば、減光フィルタおよびアパーチャ等を有しており、光線を成型する。コリメートされた光線50はハーフミラー14に入射する。ハーフミラー14は光線50を走査ミラー12に反射する。
 走査ミラー12は、例えばMEMS(Micro Electro Mechanical Systems)であり、投影対象である網膜74の略正面に、網膜74に対して正対して配置されており、光線50を2次元に走査する。走査された光線52aから52cはハーフミラー14を透過し、投影光学系20に入射する。走査ミラー12およびハーフミラー14は、例えばほぼ平面であり集光パワーはほぼ0である。これにより、投影光学系20に入射する各光線52aから52cはほぼコリメート光である。
 投影光学系20は、レンズ21および22を有している。レンズ21および22は凸レンズであり正の集光パワーを有する。レンズ21は、光線52aから52cを互いに平行にし、各光線52aから52cを収束光とする。各光線52aから52cはレンズ21と22との間で焦点を結び、拡散光としてレンズ22に入射する。レンズ22は、光線52aから52cを互いに収束させ、各光線52aから52cをほぼコリメート光とする。光線52aから52cは、角膜72を通過し前房73または水晶体76付近で収束し、硝子体78を通過し網膜74に照射される。各光線52aから52cは網膜でほぼ焦点を結ぶ。投影光学系20は、軸対称な光学系である。投影光学系20の対称軸は光線52bとほぼ一致する。
 図2は、実施例1における画像の生成方法を示す図である。図2に示すように、網膜74に画像54を投影する。走査ミラー12は光線52を破線矢印のように左上から右下までラスタースキャンする。走査ミラー12が走査する範囲は走査範囲53である。走査範囲53内において走査ミラー12が駆動しても光源10が光線50を出射しないと、光線52は網膜74に照射されない。図2の破線矢印では光線50は出射されない。制御部30は、光源10と走査ミラー12とを同期させる。これにより、光源10は、太実線において強度変調された光線50を出射する。これにより、網膜74に画像54が投影される。
 図1の光線52bは画像54および走査範囲53の中心55に照射される。画像54の中心と走査範囲53の中心とは一致していなくてもよい。ハーフミラー14が反射した光線50は、中心55を形成する光線52bの進行方向のほぼ反対方向から走査ミラー12に入射する。
[比較例1]
 図3は、比較例1に係る画像投影装置のブロック図である。図3に示すように、比較例1に係る画像投影装置110では、ハーフミラー14に代え反射ミラー15が設けられている。反射ミラー15は、画像54を形成する光線52aから52cに重ならないように設けられている。反射ミラー15が反射した光線50は、走査ミラー12に下方から斜めに入射する。その他の構成は実施例1と同じであり説明を省略する。
[シミュレーション]
 実施例1および比較例1について網膜に投影される画像の歪をシミュレーションした。図4(a)および図4(b)は、それぞれ実施例1および比較例1におけるシミュレーション結果を示す図である。図4(a)および図4(b)は、画像54内の格子状に配置されたドット56の、網膜74上での投影状態を示している。ドット56が格子からずれると画像54が歪曲してことを示している。
 図4(a)および図4(b)に示すように、実施例1では比較例1に比べ、画像54の歪曲が抑制されている。投影光学系20は軸対称であり、投影光学系20による画像の歪はほとんどないと考えられる。比較例1では、反射ミラー15を光線52aから52cを避けて設けるため、走査ミラー12に反射ミラー15から斜めに光線50が入射する。このため、画像54が中心55に対し非対称に歪曲していると考えられる。実施例1では、中心55に対する非対称な歪曲はほとんどない。
 実施例1によれば、走査ミラー12(走査部またはスキャナ)は、網膜74に正対する位置に配置され、光源10から出射された光線50を2次元に走査する。投影光学系20は、走査された光線52aから52cを網膜74に、正対した方向から照射することにより、画像54を網膜74上に投影する。ハーフミラー14は、走査ミラー12と投影光学系20との間に設けられ、光線50を走査ミラー12に反射し、光線52aから52cを投影光学系20に透過させる。
 このように、走査ミラー12が網膜74に正対した位置に配置されるとともに、ハーフミラー14を走査ミラー12と網膜74との間に設けることで、光線52aから52cを網膜74に正対した方向から投影する。これにより、図4(a)のように、画像54の歪曲を抑制できる。このとき、光線50を発生させる光源10は、網膜74とは正対した位置には配置されず、走査ミラー12の方向へ向けられたハーフミラー14により、光線50が走査ミラー12へ導かれる。
 ハーフミラー14は、走査ミラー12から投影光学系20に入射する光線52aから52cのうち画像54および/または走査ミラー12の走査範囲53の中心55を形成する光線52bの進行方向の逆方向から走査ミラー12に光線50を反射する。これにより、走査ミラー12に起因した画像54の歪曲をより抑制できる。走査ミラー12に入射する光線50の進行方向は光線52bの進行方向に対し、画像54の歪曲が抑制できる程度にほぼ逆方向であればよい。
 ハーフミラー14は、走査ミラー12から投影光学系20に入射する光線52aから52cのうち画像54を形成する光線52aから52cの進行方向の逆方向から走査ミラー12に光線50を反射すればよい。これにより、比較例1より画像54の歪曲を抑制できる。
 ハーフミラー14は、走査ミラー12から投影光学系20に入射した光線52aから52cのうち画像54を形成する全ての光線が透過する。これにより、画像54を形成する光線52aから52cの輝度等を均一にできる。
 投影光学系20は、軸対称光学系である。これにより、投影光学系20に起因した画像54の歪曲を抑制できる。軸対称光学系は、走査ミラー12から投影光学系20に入射する光線52aから52cのうち画像の中心を形成する光線52aを対称軸とする。これにより、画像54の歪曲をより抑制できる。
 走査部として、MEMSミラー等の走査ミラー12を例に説明したが走査部は例えばポリゴンミラーでもよい。
[実施例1の変形例1]
 図5は、実施例1の変形例1に係る画像投影装置のブロック図である。図5に示すように、画像投影装置102では、ハーフミラー14は、光線52aから52cのうち一部の光線52bが透過するように設けられている。他の光線52aおよび52cはハーフミラー14を透過しない。その他の構成は実施例1と同じであり説明を省略する。
 実施例1の変形例1によれば、ハーフミラー14は、走査ミラー12が投影光学系20に反射した光線52aから52cのうち画像54を形成する光線52aから52cの一部の光線52bが透過する。画像54を形成する光線52aから52cのうち他の光線52aおよび52cはハーフミラー14を透過せずに投影光学系20に入射する。このように、ハーフミラー14は一部の光線52aのみを透過させてもよい。光線52aはハーフミラー14により減光するため、制御部30は光線52bとなる光線50の光強度を他の光線52aおよび54cの光強度より大きくすることが好ましい。
 図6は、実施例2に係る画像投影装置のブロック図である。図6に示すように、画像投影装置104は、反射ミラー18を備えている。投影光学系20は、ミラー24、26およびレンズ25を備えている。画像投影装置104は、例えば眼鏡型のヘッドマウントディスプレイである。光源10は、例えば眼鏡のツルに設置されている。走査ミラー12および投影光学系20は、例えば眼鏡のレンズ付近に設置されている。制御部30および画像入力部32は、例えばツルに設けられている。制御部30および画像入力部32は、ヘッドマウントディスプレイに設けられずに外部装置(例えば携帯端末)に設けられていてもよい。画像入力部32は、図示しないカメラおよび/または録画機器などから画像データが入力される。
 レンズ16は、光線50を収束光にする。反射ミラー18は光線50をハーフミラー14に反射する。ハーフミラー14により反射された光線50は走査ミラー12により走査され光線52aから52cとなる。反射ミラー18、ハーフミラー14および走査ミラー12の集光パワーはほぼ0でありほぼ平面である。各光線52aから52cは走査ミラー12とミラー24との間で焦点を結ぶ。
 ミラー24は自由曲面を有するミラーであり、正の集光パワーを有している。走査ミラー12が走査した光線52aから52cはミラー24により収束点60に収束する。ミラー24により反射された各光線52aから52cは拡散光である。光線52aから52cが収束する位置に正の集光パワーを有するレンズ25が設けられている。レンズ25は各光線52aから52cを収束光とする。ミラー26は自由曲面を有するミラーであり、正の集光パワーを有している。ミラー26は、光線52aから52cを水晶体76内または近傍の収束点62に収束させ、各光線52aから52cを網膜74近傍に合焦させる。
 走査ミラー12の走査角度θ1(例えば光線52aと52cの中心線の角度)と収束点62の収束角度θ4(例えば光線52aと52cの中心線の角度)とは同じ大きさである。収束点60における収束角度θ2(例えば光線52aと52cの中心線の角度)と出射角度θ3(例えば光線52aと52cの中心線の角度)とは同じ大きさである。
 走査ミラー12とミラー24の間の光線52bの光路長をL1とし、ミラー24と収束点60の間の光線52bの光路長をL2とし、収束点60とミラー26との光線52bの光路長をL3とし、ミラー26と収束点62との光線52bの光路長をL4とする。このとき、ほぼ(光路長L2/光路長L1)=(光路長L3/光路長L4)の関係にある。これにより、走査ミラー12と収束点62とはミラー24および26を介して等倍の共役の関係となっている。その他の構成は、実施例1と同じであり説明を省略する。
 実施例2のように、画像投影装置がヘッドマウントディスプレイとする場合、小さい空間に投影光学系20を配置するため、投影光学系20を軸対称光学系とすることは難しい。このように投影光学系20が非軸対称光学系の場合に、走査ミラー12と収束点62とを共役の関係とする。これにより、画像54の歪曲を抑制できる。さらに、ハーフミラー14を設けることで、画像54の歪曲を抑制できる。
 実施例1と同様に、ハーフミラー14は、走査ミラー12から投影光学系20に入射する光線52aから52cのうち画像54を形成する光線の進行方向の逆方向から走査ミラー12に光線50を反射する。これにより、画像54の歪曲をより抑制できる。実施例1の変形例のように、ハーフミラー14は光線52aから52cのうち一部の光線52bを透過させてもよい。
 実施例1では、軸対称光学系の投影光学系20を視覚検査装置に用いる例を説明したが、軸対称光学系の投影光学系20をヘッドマウントディスプレイに用いてもよい。実施例2では、等倍の共役関係にある投影光学系20をヘッドマウントディスプレイに用いる例を説明したが、共役関係の投影光学系20を視覚検査装置に用いてもよい。投影光学系20として、軸対称光学系および共役関係の投影光学系20以外の光学系を用いてもよい。
 以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 

Claims (9)

  1.  光源から出射された光線を2次元に走査する走査部と、
     走査された光線を網膜に照射することにより、画像を前記網膜上に投影する投影光学系と、
     前記走査部と前記投影光学系との間に設けられ、前記光源から出射された光線を前記走査部に反射し、前記走査された光線を前記投影光学系に透過させるハーフミラーと、
    を備える画像投影装置。
  2.  前記ハーフミラーは、前記走査部から前記投影光学系に入射する光線のうち前記画像を形成する光線の進行方向の逆方向から前記走査部に前記光源から出射された光線を反射する請求項1に記載の画像投影装置。
  3.  前記ハーフミラーは、前記走査部から前記投影光学系に入射する光線のうち前記画像および/または前記走査部の走査範囲の中心を形成する光線の進行方向のほぼ逆方向から前記走査部に前記光源から出射された光線を反射する請求項1に記載の画像投影装置。
  4.  前記ハーフミラーは、前記走査部から前記投影光学系に入射した光線のうち前記画像を形成する全ての光線が透過する請求項1から3のいずれか一項に記載の画像投影装置。
  5.  前記ハーフミラーは、前記走査部から前記投影光学系に入射した光線のうち前記画像を形成する一部の光線が透過し、前記画像を形成する光線のうち他の光線は前記ハーフミラーを透過せずに前記投影光学系に入射する請求項1から4のいずれか一項に記載の画像投影装置。
  6.  前記投影光学系は、軸対称光学系である請求項1から5のいずれか一項に記載の画像投影装置。
  7.  前記走査部は走査ミラーである請求項1から6のいずれか一項に記載の画像投影装置。
  8.  網膜へ投影する光線を発生させる光源と、
     前記網膜に正対する位置に配置され、前記光線を反射して2次元に走査する走査部と、
     前記走査部と前記網膜との間に配置され、前記光源から発生された光線を前記走査部へ反射させるとともに、前記走査部で反射した光線を透過させるハーフミラーを備える画像投影装置。
  9.  前記光源は、前記網膜と正対する位置に配置されていない、請求項8記載の画像投影装置。
PCT/JP2019/003896 2018-03-28 2019-02-04 画像投影装置 WO2019187639A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-063136 2018-03-28
JP2018063136A JP7050292B2 (ja) 2018-03-28 2018-03-28 画像投影装置

Publications (1)

Publication Number Publication Date
WO2019187639A1 true WO2019187639A1 (ja) 2019-10-03

Family

ID=68058711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003896 WO2019187639A1 (ja) 2018-03-28 2019-02-04 画像投影装置

Country Status (2)

Country Link
JP (1) JP7050292B2 (ja)
WO (1) WO2019187639A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7427237B2 (ja) * 2020-02-21 2024-02-05 株式会社Qdレーザ 画像投影装置、画像投影方法、プログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138822A (ja) * 2002-10-17 2004-05-13 Canon Inc 網膜走査型表示装置
US20100079865A1 (en) * 2008-09-26 2010-04-01 Nokia Corporation Near-to-eye scanning display with exit-pupil expansion
JP2017161789A (ja) * 2016-03-10 2017-09-14 富士通株式会社 網膜描画表示装置、網膜描画表示方法および網膜描画表示プログラム
JP2017183857A (ja) * 2016-03-29 2017-10-05 セイコーエプソン株式会社 頭部装着型表示装置、頭部装着型表示装置の制御方法、コンピュータープログラム
JP2017221657A (ja) * 2016-06-09 2017-12-21 株式会社Qdレーザ 視野視力検査システム、視野視力検査装置、視野視力検査方法、視野視力検査プログラム及びサーバ装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4921634B2 (ja) 2000-01-31 2012-04-25 グーグル インコーポレイテッド 表示装置
WO2002033472A2 (de) 2000-10-07 2002-04-25 Physoptics Opto-Electronic Gmbh Informationssystem und verfahren zum zurverfügungstellen von informationen unter verwendung eines holographischen elements
JP4082075B2 (ja) 2002-04-22 2008-04-30 ブラザー工業株式会社 画像表示装置
JP3460716B1 (ja) 2002-04-25 2003-10-27 ソニー株式会社 画像表示装置
JP4287375B2 (ja) 2002-09-24 2009-07-01 健爾 西 画像表示装置及び投影光学系
JP2009268778A (ja) 2008-05-09 2009-11-19 Panasonic Corp 画像表示装置、画像表示方法、プログラムおよび集積回路
EP3238609B1 (en) 2014-12-26 2021-10-20 Nikon Corporation Fundus image forming device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138822A (ja) * 2002-10-17 2004-05-13 Canon Inc 網膜走査型表示装置
US20100079865A1 (en) * 2008-09-26 2010-04-01 Nokia Corporation Near-to-eye scanning display with exit-pupil expansion
JP2017161789A (ja) * 2016-03-10 2017-09-14 富士通株式会社 網膜描画表示装置、網膜描画表示方法および網膜描画表示プログラム
JP2017183857A (ja) * 2016-03-29 2017-10-05 セイコーエプソン株式会社 頭部装着型表示装置、頭部装着型表示装置の制御方法、コンピュータープログラム
JP2017221657A (ja) * 2016-06-09 2017-12-21 株式会社Qdレーザ 視野視力検査システム、視野視力検査装置、視野視力検査方法、視野視力検査プログラム及びサーバ装置

Also Published As

Publication number Publication date
JP2019174663A (ja) 2019-10-10
JP7050292B2 (ja) 2022-04-08

Similar Documents

Publication Publication Date Title
CN110709755B (zh) 图像投影装置
CN110192143B (zh) 图像投影装置
JP5075595B2 (ja) 表示装置及びそれを用いた移動体
US11428926B2 (en) Image projection device
US20100141895A1 (en) scanning ophthalmoscopes
CN109804296B (zh) 图像投影装置
US20130093996A1 (en) Scanning Ophthalmoscopes
US20100302516A1 (en) Projector for projecting an image and corresponding method
CN101918866B (zh) 利用空间光束失配的激光投影
CN101918878A (zh) 利用光束失配的激光投影
JP2010531473A (ja) レーザ走査投影装置
WO2019187639A1 (ja) 画像投影装置
WO2017056802A1 (ja) 画像投影装置
JPH1114923A (ja) 光学走査装置
JP2011069902A (ja) 画像表示装置
JP2021144147A (ja) 投影装置
EP3176627B1 (en) Light source apparatus, image display apparatus and system
JP2021013576A (ja) 視覚検査装置
CN118265941A (en) Image projection apparatus
JP2021081509A (ja) 画像投影装置
JP2023076137A (ja) 画像投影装置
JP2021153710A (ja) 視機能検査装置
JP2022000153A (ja) 眼底撮影装置
JP2020194116A (ja) レーザ走査式映像装置
CN115963631A (zh) 视网膜扫描近眼显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776959

Country of ref document: EP

Kind code of ref document: A1