WO2014098208A1 - ジルコニア-アルミナ複合焼結体及びその製造方法 - Google Patents
ジルコニア-アルミナ複合焼結体及びその製造方法 Download PDFInfo
- Publication number
- WO2014098208A1 WO2014098208A1 PCT/JP2013/084199 JP2013084199W WO2014098208A1 WO 2014098208 A1 WO2014098208 A1 WO 2014098208A1 JP 2013084199 W JP2013084199 W JP 2013084199W WO 2014098208 A1 WO2014098208 A1 WO 2014098208A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zirconia
- alumina
- sintered body
- powder
- alumina composite
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
- C04B35/6455—Hot isostatic pressing
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G25/00—Compounds of zirconium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G25/00—Compounds of zirconium
- C01G25/006—Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/486—Fine ceramics
- C04B35/488—Composites
- C04B35/4885—Composites with aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/444—Halide containing anions, e.g. bromide, iodate, chlorite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5409—Particle size related information expressed by specific surface values
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/608—Green bodies or pre-forms with well-defined density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/765—Tetragonal symmetry
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/785—Submicron sized grains, i.e. from 0,1 to 1 micron
Definitions
- the present invention relates to a zirconia-alumina composite sintered body that is used for structural members such as cutting tools, dies, nozzles, bearings, and decorative articles, and particularly has excellent hydrothermal deterioration resistance.
- High-strength zirconia-alumina composite sintered bodies are widely used for structural members such as cutting tools, dies, rollers, nozzles, and bearings, and materials for exterior products and decorative products.
- this zirconia-alumina composite sintered body since the crystal phase of zirconia is tetragonal, it gradually transforms from tetragonal to monoclinic over a long time, resulting in volume expansion and cracking. At the same time, it has been pointed out that a deterioration phenomenon occurs in which the strength decreases.
- structural members and exterior products are required to satisfy the above-described characteristics and have high quality reliability that does not easily deteriorate, that is, have a long product life. Quality reliability is generally evaluated by a deterioration acceleration test by hydrothermal treatment.
- Patent Document 1 discloses a zirconia-alumina composition having a yttria concentration contained in zirconia of 1.5 to 5 mol% and an alumina content of 5 to 50 wt% and a bending strength of 1700 MPa or more.
- a composite sintered body is disclosed.
- this composite sintered body is subjected to hot isostatic pressing (HIP) at a high temperature of 1500 ° C., it tends to deteriorate, and as described above, further improvement in quality reliability is achieved. There was room for.
- HIP processing temperature is as high as 1425 ° C., it is easily deteriorated and the quality reliability is inferior.
- Example 6 of Patent Document 3 zirconia-alumina composite powder having a composition of yttria contained in zirconia of 2 mol% and an alumina content of 20% by weight was subjected to HIP treatment at 1350 ° C. Further, a zirconia-alumina composite sintered body is disclosed. However, the composite sintered body has a strength as low as 1198 MPa despite the HIP treatment, and there is room for further improvement in strength characteristics.
- the zirconia-alumina composite powder disclosed in Example 1 of Patent Document 4 was also HIP treated at 1350 ° C. in the same manner as described above, but it had a low strength of 1520 MPa.
- Japanese Unexamined Patent Publication No. 2004-143031 Japanese Laid-Open Patent Publication No. 9-268055 Japanese Laid-Open Patent Publication No. 3-218967 Japanese Unexamined Patent Publication No. 2003-40673
- the present invention provides a zirconia-alumina composite sintered body that eliminates the drawbacks of the conventional products as described above, has excellent strength, and in addition has excellent hydrothermal deterioration resistance; and the zirconia-alumina composite sintered body.
- the object is to provide a method capable of producing a body by a simple process.
- the present inventors have studied in detail the relationship between the microstructure formed in the sintering process of the zirconia-alumina composite powder and the hydrothermal deterioration resistance, and have reached the present invention.
- a zirconia-alumina composite sintered body comprising 50 to 95% by weight of zirconia containing 2 to 4 mol% of yttria and 5 to 50% by weight of alumina, and the relative density of the zirconia-alumina composite sintered body is 98.
- the average particle size of the mixed particles composed of zirconia crystal particles and alumina crystal particles is 0.4 ⁇ m or less, the tetragonal ratio of the zirconia crystal phase is 83 wt% or more, and the coarse alumina composed of 20 or more alumina crystal particles
- a mixed powder obtained by pulverizing and further mixing and pulverizing alumina powder having a BET specific surface area of 10 to 20 m 2 / g and an average particle diameter of 0.5 ⁇ m or less to an alumina concentration of 5 to 50% by weight is obtained.
- a zirconia-alumina composite powder comprising 50 to 95% by weight of zirconia containing 2 to 4% by weight of yttria and 5 to 50% by weight of alumina, and the BET specific surface area of the zirconia-alumina composite powder is 9 to 20 m 2.
- zirconia-alumina composite powder having a monoclinic crystal ratio of zirconia of 35 to 60%.
- the zirconia-alumina composite sintered body of the present invention is excellent in strength and, in addition to this, is excellent in hydrothermal deterioration resistance, so structural members such as cutting tools, dies, rollers, nozzles, and bearings, and exterior products And can be suitably used for materials such as decorations.
- the zirconia-alumina composite sintered body can be produced by a simple process by the method of the present invention.
- zirconia related to a zirconia-alumina composite sintered body refers to zirconia in which yttria is dissolved as a stabilizer.
- yttria concentration refers to a value expressed as a mol% ratio of Y 2 O 3 / (ZrO 2 + Y 2 O 3 ).
- alumina concentration refers to a value expressed as a percentage by weight of Al 2 O 3 / (ZrO 2 + Y 2 O 3 + Al 2 O 3 ).
- the “relative density” is an actually measured density ⁇ obtained experimentally and a true density ⁇ 0 of yttria and alumina containing yttria and alumina calculated by the formulas (1) to (4), and ( ⁇ / ⁇ 0 ) It means the ratio (%) represented by x100.
- A 0.58080 + 0.06980X / (100 + X) (1)
- C 0.5195-0.06180X / (100 + X) (2)
- ⁇ Z [124.25 (100 ⁇ X) + 225.81X] / [150.5 (100 + X) A2C] (3)
- ⁇ 0 100 / [(Y / 3.987) + (100 ⁇ Y) / ⁇ Z ] (4)
- X is the yttria concentration (mol%)
- Y is the alumina concentration (wt%).
- the “average particle diameter” related to the alumina and zirconia crystal particles is a value calculated by a planimetric method using an electron microscope (reference: Minoru Yamaguchi, Ceramics, 19, 520-529 (1984)).
- “Coarse alumina polycrystalline particles” refers to a reflection electron composition image observed by using a field emission scanning electron microscope (FE-SEM) after mirror-treating the surface of the sintered body and performing thermal etching.
- the number of coarse alumina polycrystal particles can be as large as 20 or more alumina crystal particles present in a field of view of 240 ⁇ m ⁇ 180 ⁇ m at at least three different sites in the microscopic observation. The average value of counting particles.
- the “tetragonal ratio” related to the zirconia crystal phase is defined as an analysis program based on the X-ray diffraction (XRD) profile of a zirconia-alumina composite sintered body as RIETRAN-FP (reference: F. Izumi, “The Rietveld Method”). , Ed. By RA A. Young, Oxford University Press, Oxford (1993) Chap. 13.), the fraction (weight%) of tetragonal and cubic crystals of zirconia was determined by the Rietveld method, respectively. This is the% value calculated as the ratio of crystal / (tetragonal crystal + cubic crystal).
- “Monoclinic ratio (f m )” means the area intensity of (111) and (11-1) reflection of monoclinic zirconia crystal phase by XRD measurement of hydrothermally treated zirconia-alumina composite sintered body The area intensity of (111) reflection of cubic crystal and tetragonal crystal is respectively obtained, and the percentage value calculated by the formula (5) is referred to.
- I is the area intensity of each reflection of the zirconia crystal phase
- subscripts m, t, and c are monoclinic, tetragonal, and cubic, respectively.
- Zirconia - according to the alumina composite powder as "zirconia percentage of monoclinic crystals (f m) 'performs XRD measurement for the composite powder is a value calculated by the equation (5).
- BET specific surface area relating to zirconia powder or alumina powder refers to a value measured using nitrogen as an adsorbed molecule.
- Average particle diameter means the diameter of a sphere having the same volume as the particle whose volume reference distribution is the median (median), and is measured by a particle size distribution measuring device using a laser diffraction device, for example, a microtrack particle size distribution meter. Can do.
- reaction rate related to the hydrated zirconia sol is obtained by ultrafiltration of a hydrated zirconia sol-containing liquid and determining the amount of zirconium in the unreacted substance present in the filtrate by inductively coupled plasma emission spectrometry.
- the amount of zirconia sol produced is calculated and the value expressed as the ratio of the amount of hydrated zirconia sol to the amount of raw material charged.
- the zirconia-alumina composite sintered body of the present invention needs to comprise 50 to 95% by weight of zirconia containing 2 to 4 mol% of yttria and 5 to 50% by weight of alumina. This is because by setting the yttria concentration to 2 to 4 mol% and the alumina concentration to 5 to 50% by weight, deterioration is suppressed, quality reliability is improved, and mechanical characteristics are improved.
- the yttria concentration is preferably 2.5 to 3.5 mol%
- the alumina concentration is preferably 11 to 40% by weight, more preferably 15 to 40%. % By weight.
- the relative density of the zirconia-alumina composite sintered body is 98% or more, preferably 99% or more, more preferably 99.2% or more.
- the average particle size of the mixed particles composed of zirconia crystal particles and alumina crystal particles is 0.4 ⁇ m or less, and the tetragonal ratio of the zirconia crystal phase is 83% by weight or more.
- each average particle diameter of the zirconia crystal particles and the alumina crystal particles is 0.3 ⁇ m or less, particularly preferably 0.1 to 0.3 ⁇ m, and the tetragonal ratio of the more preferable zirconia crystal phase is 85%. More preferably, it is 85 to 98% by weight.
- the number of coarse alumina polycrystalline particles composed of 20 or more alumina crystal particles is 1 or less.
- the size of coarse alumina polycrystalline particles serving as a fracture source of the sintered body is reduced and mechanical characteristics are improved.
- the alumina crystal particles are uniformly dispersed in the sintered body, compressive stress is generated, and this causes the volume expansion associated with the zirconia tetragonal to monoclinic phase transformation to be suppressed. This is because it is difficult to deteriorate and the quality reliability is enhanced.
- the number of coarse alumina polycrystals is less than one.
- the zirconia-alumina composite sintered body of the present invention has high strength, and flexural strength is preferably 1000 MPa or more without HIP treatment, preferably 1900 MPa or more with HIP treatment, particularly preferably 1100 MPa or more without HIP treatment, and 2000 MPa or more with HIP treatment. is there.
- the zirconia-alumina composite sintered body of the present invention is preferably immersed in 140 ° C. hot water for 60 hours and then the monoclinic crystal abundance ratio of the sintered body is preferably 10% or less. Particularly preferably, it is 6% or less, and is excellent in hydrothermal deterioration resistance.
- an yttrium compound is converted into an oxide in terms of oxide in a hydrated zirconia sol having a reaction rate of 98% or more obtained by hydrolysis reaction of an aqueous zirconium salt solution. Add ⁇ 4 mol% and dry. This is because by setting the reaction rate to 98% or more, strong sintering between particles due to unreacted substances does not occur during calcination, the moldability is improved, and the sinterability is also improved. A more preferable reaction rate is 99% or more.
- Zirconium salts used for the production of the hydrated zirconia sol include zirconium oxychloride, zirconyl nitrate, zirconium chloride, zirconium sulfate and the like, and in addition, a mixture of zirconium hydroxide and acid may be used.
- the mixing method of the hydrated zirconia sol and the yttria compound is not particularly limited.
- the yttrium compound used as a raw material for the stabilizer include chloride, nitrate, carbonate, sulfate, acetate, oxide, water An oxide etc. can be mentioned.
- the drying method of the hydrated zirconia sol for example, the mixed solution as it is or a method of spray-drying by adding an organic solvent to the mixed solution, after adding alkali or the like to the mixed solution, filtering and washing with water. The method of drying can be mentioned.
- the dried powder is calcined in the range of 900 to 1100 ° C.
- the BET specific surface area of the zirconia powder to which 0.05 to 1% by weight of an aluminum compound is added in oxide conversion in the next step can be reduced to 9 to 20 m 2 / g and the average particle size to 0.5 ⁇ m or less. It becomes possible.
- an aluminum compound is added to the calcined powder obtained above so as to be in the range of 0.05 to 1% by weight in terms of oxide, and a BET specific surface area of 9 to 20 m. Grind until 2 / g and the average particle size is in the range of 0.5 ⁇ m or less.
- the method for adding the aluminum compound is not particularly limited, and examples thereof include a method of adding the aluminum compound to the calcined powder slurry and a method of adding the aluminum compound slurry to the calcined powder slurry.
- the pulverization method is preferably wet pulverization from the viewpoint of pulverization efficiency, and the medium at that time is preferably an organic solvent such as water or alcohol.
- a pulverizer used for pulverization for example, a vibration mill, a continuous medium stirring mill, or the like can be used.
- the calcined powder In the case of wet pulverization, it is preferable to preliminarily wash the calcined powder with water or dilute aqueous ammonia before pulverization because trace impurities derived from the zirconium salt raw material are removed and the sinterability is improved.
- the aluminum compound added to the calcined powder include alumina sol, aluminum hydroxide, aluminum hydrate, aluminum nitrate, aluminum chloride, and aluminum sulfate.
- the zirconia powder further comprises a BET specific surface area of 9 to 20 m 2 / g containing 0.05 to 1% by weight of the above-described aluminum compound in terms of oxide, and an average particle size adjusted to 0.5 ⁇ m or less.
- Alumina powder having a BET specific surface area of 10 to 20 m 2 / g and an average particle size of 0.5 ⁇ m or less is mixed and pulverized so that the alumina concentration is 5 to 50% by weight.
- alumina powder having a BET specific surface area of 10 to 20 m 2 / g and an average particle size of 0.5 ⁇ m or less By adding alumina powder having a BET specific surface area of 10 to 20 m 2 / g and an average particle size of 0.5 ⁇ m or less, the uniformity of alumina after mixing with zirconia powder is increased, resulting in coarse alumina during sintering. Polycrystalline particles are hardly formed.
- the alumina powder added in this step is a high-purity alumina powder (Si ⁇ 20 ppm, Fe ⁇ 10 ppm, Na ⁇ 10 ppm) having a BET specific surface area of 10 to 20 m 2 / g and an average particle size of 0.5 ⁇ m or less,
- alumina powder having a relative density of the sintered body of 98% or more is suitable.
- any method may be used as long as the above conditions are satisfied.
- the zirconia-alumina mixed pulverized powder is molded and sintered at 1200 to 1400 ° C. to obtain a composite sintered body.
- the sintering temperature is in the temperature range of 1200 ° C. to 1400 ° C.
- the average particle diameter of the zirconia crystal particles and the alumina crystal particles is 0.4 ⁇ m or less
- the tetragonal crystal ratio of the zirconia crystal phase is 83 wt% or more
- a zirconia-alumina composite sintered body in which the number of coarse alumina polycrystalline particles composed of 20 or more alumina crystal particles is 1 / mm 2 or less and the relative density is 98% or more can be obtained.
- the rate of temperature increase during sintering is not particularly limited, and is preferably 50 to 200 ° C./hour from the viewpoint of productivity, and the holding time of the sintering temperature may be about 2 to 5 hours.
- a known method for molding the zirconia powder a known method such as pressure molding, injection molding or extrusion molding can be selected.
- a hot isostatic pressing (HIP) treatment is effective.
- the zirconia-alumina mixed powder is molded and pre-sintered at 1250 to 1350 ° C., and the obtained pre-sintered body is HIP at 50 to 500 MPa and temperature 1300 to 1400 ° C. for 0.5 to 2 hours. What is necessary is just to process.
- HIP hot isostatic pressing
- the powder for a zirconia-alumina composite sintered body is a powder composed of 50 to 95% by weight of zirconia containing 2 to 4 mol% of yttria and 5 to 50% by weight of alumina. Since a zirconia-alumina composite sintered body having higher quality reliability and stronger mechanical properties can be obtained, the yttria concentration is preferably 2.5 to 3.5 mol%, and the alumina concentration is 11 to 40% by weight. And more preferably 15 to 40% by weight.
- the BET specific surface area of the powder for a zirconia-alumina composite sintered body is 9 to 20 m 2 / g, preferably 10 to 19 m 2 / g. Further, the monoclinic crystal ratio of zirconia in the powder for a zirconia-alumina composite sintered body is 35 to 60%, preferably 35 to 45%.
- the zirconia-alumina composite granule will be described.
- the zirconia-alumina composite granule has an average particle size of 30 to 80 ⁇ m, preferably 50 to 60 ⁇ m, and a light bulk density of 1.00 to 1.40 g / cm 3 , preferably 1.1 to 1.3 g / cm 3. 3 .
- the zirconia-alumina composite granule is produced by spray granulating a zirconia-alumina composite powder in a slurry.
- a method of making a slurry a method in which zirconia powder or alumina powder is suspended in a solution alone and then mixed; a method in which zirconia powder and alumina powder are mixed and then suspended in a solution; zirconia powder and alumina powder And a method of suspending in a solution after wet grinding.
- the solution used at the time of slurry preparation include organic solvents such as water and alcohol.
- organic solvents such as water and alcohol.
- water when water is used as a solution, it is easy to handle as a slurry, and no special restrictions are imposed on production equipment, which is suitable for industrial mass production.
- acid, alkali, organic matter, etc. may be added to the slurry before spray drying. There is no restriction
- the average particle diameters of the zirconia powder and the alumina powder were measured using a Microtrac particle size distribution meter (trade name “9320-HRA” manufactured by Honeywell). As sample pretreatment conditions, the powder was suspended in distilled water and dispersed for 3 minutes using an ultrasonic homogenizer. The average granule diameter of the zirconia-alumina composite powder was determined by a screening test method. The light bulk density was evaluated by a method according to JIS R9301.
- the monoclinic crystal ratio of zirconia in the zirconia-alumina composite powder was calculated by the X-ray diffraction measurement of the composite powder and the above equation (5).
- the zirconia-alumina composite powder was formed by CIP at a molding pressure of 200 MPa after preforming with a die press. Next, the obtained molded body was sintered at a predetermined temperature (temperature increase rate: 100 ° C./h, holding time: 2 hours).
- the above-mentioned molded body is pre-sintered at a predetermined temperature (temperature increase rate: 100 ° C./h, holding time: 2 hours), and is sintered in an Ar gas atmosphere (150 MPa) at a predetermined temperature (temperature increase rate; 600 ° C./h, holding time; 1 hour).
- the density of the obtained sintered body was measured by Archimedes method.
- the coarse alumina polycrystalline particles were observed with a reflection electron composition image using a field emission scanning electron microscope (FE-SEM) after mirror-treating the surface of the sintered body and performing a thermal etching treatment.
- the number of coarse alumina polycrystalline particles was calculated by counting coarse alumina polycrystalline particles composed of 20 or more alumina crystal particles present in an image (3 fields of view) of 240 ⁇ m ⁇ 180 ⁇ m.
- Coarse alumina polycrystal particles present in the image were identified by examining the alumina crystal particles constituting the polycrystal particles with a high magnification of the polycrystal particle region.
- the mirror surface processing of the sintered body is performed by cutting the surface of the sintered body with a surface grinder and then using a mirror polishing apparatus with diamond abrasive grains having an average grain size of 9 ⁇ m, 6 ⁇ m, and 1 ⁇ m in order of 9 ⁇ 6 ⁇ 1 ⁇ m abrasive grains. Polished.
- the thermal etching treatment was performed for 1 hour at a temperature 50 ° C. lower than the temperature set by sintering or HIP treatment.
- the average particle size of the mixed particles composed of zirconia crystal particles and alumina crystal particles was calculated by the planimetric method using FE-SEM as described above. Specifically, when a circle is drawn on a microscopic image, a circle is drawn such that the sum of the number of particles nc in the circle and the number of particles Ni applied to the circumference is at least 200, or less than 200. In the case of no image, a plurality of circles were drawn using images of several fields so that the total number of particles (nc + Ni) was at least 200, and the average particle size was determined by the planimetric method.
- the tetragonal ratio of the zirconia crystal phase was measured by XRD using the step scan method (2 ⁇ : 15 to 80 °, step width: 0.04 °, integration time: 8 seconds / step), and the profile obtained was the Rietveld method.
- the analysis was a mixed phase of tetragonal crystal and cubic crystal, the profile function of each crystal was handled independently, and the temperature parameters of each element were the same.
- the bending strength was evaluated by a three-point bending test according to JIS R1601.
- the accelerated deterioration test was evaluated by immersing the sintered body in 140 ° C. hot water for a predetermined time and determining the ratio of the monoclinic crystals to be formed.
- the monoclinic rate was calculated by the X-ray diffraction measurement of the sintered body subjected to the immersion treatment, and the above formula (5).
- Example 1 4.8 liters of 2 mol / liter ammonia water was mixed with 4 liters of 2 mol / liter zirconium oxychloride aqueous solution, and distilled water was added to prepare a solution having a zirconia equivalent concentration of 0.8 mol / liter. While stirring this solution in a flask equipped with a reflux condenser, the hydrolysis reaction was carried out at the boiling temperature for 200 hours. The reaction rate of the obtained hydrated zirconia sol was 99%. To the obtained hydrated zirconia sol, yttrium chloride was added to a yttria concentration of 3.0 mol%, dried, and calcined at a temperature of 1000 ° C. for 2 hours.
- alumina sol having a particle size of 0.015 ⁇ m is added so that the alumina concentration is 0.15 wt%, and distilled water is further added to form a slurry having a zirconia concentration of 45 wt%.
- This slurry was pulverized with a vibration mill for 48 hours using zirconia balls having a diameter of 2 mm, and dried to obtain zirconia powder having a BET specific surface area of 16 m 2 / g and an average particle size of 0.3 ⁇ m.
- distilled water was added to high purity alumina powder (Si ⁇ 20 ppm, Fe ⁇ 10 ppm, Na ⁇ 10 ppm) having a BET specific surface area of 13 m 2 / g and an average particle diameter of 0.4 ⁇ m to obtain a slurry having a slurry concentration of 45% by weight, Were pulverized and dried under the same conditions as above to obtain an alumina powder having a BET specific surface area of 14 m 2 / g and an average particle size of 0.3 ⁇ m.
- high purity alumina powder Si ⁇ 20 ppm, Fe ⁇ 10 ppm, Na ⁇ 10 ppm
- the alumina powder of the pulverized has BET specific surface area of 15 m 2 / g and average particle size 0.3 [mu] m alumina concentration 20 Mix to a weight percent, add a small amount of distilled water and polyacrylic dispersant, wet pulverize to obtain a slurry, then granulate the resulting slurry using a spray dryer to obtain granules It was.
- the characteristics of the obtained zirconia-alumina composite powder are shown in Table 1.
- the zirconia-alumina composite powder obtained above was molded, and the obtained molded body was sintered at 1350 ° C.
- Table 2 shows the properties (relative density, tetragonal crystal ratio, bending strength) of the obtained sintered body and the monoclinic crystal ratio after the deterioration acceleration test (aging time: before treatment, 30, 60 hours). Since the monoclinic crystal ratio after 60 hours of aging was less than 1%, it was confirmed that the zirconia-alumina composite sintered body was highly reliable and hardly deteriorated.
- Example 2 The zirconia-alumina composite powder obtained by the same method as in Example 1 was press-molded, pre-sintered at 1300 ° C., and then subjected to HIP treatment at a temperature of 1350 ° C. Table 2 shows the characteristics of the obtained zirconia-alumina composite sintered body and the monoclinic crystal ratio after the accelerated deterioration test. Since the bending strength is 2470 MPa and the monoclinic crystal ratio at 60 hours of aging is 6%, it is confirmed that this is a zirconia-alumina composite sintered body with high bending strength and high quality reliability that is difficult to deteriorate. It was.
- Example 3 The same conditions as in Example 2 were performed except that alumina powder was mixed with zirconia powder containing an aluminum compound so that the alumina concentration was 11% by weight. Table 1 shows the characteristics of the obtained zirconia-alumina composite powder, and Table 2 shows the characteristics of the sintered body and the monoclinic crystal ratio after the accelerated deterioration test.
- Example 4 The same conditions as in Example 2 were performed except that alumina powder was mixed with zirconia powder containing an aluminum compound so that the alumina concentration was 15 wt%. Table 1 shows the characteristics of the obtained zirconia-alumina composite powder, and Table 2 shows the characteristics of the sintered body and the monoclinic crystal ratio after the accelerated deterioration test.
- Example 5 This was performed under the same conditions as in Example 2 except that alumina powder was mixed with zirconia powder containing an aluminum compound so that the alumina concentration was 30% by weight.
- Table 1 shows the characteristics of the obtained zirconia-alumina composite powder, and Table 2 shows the characteristics of the sintered body and the monoclinic crystal ratio after the accelerated deterioration test.
- Example 6 The test was performed under the same conditions as in Example 2 except that yttrium chloride was added so that the yttria concentration was 2.5 mol%.
- Table 1 shows the characteristics of the obtained zirconia-alumina composite powder, and Table 2 shows the characteristics of the sintered body and the monoclinic crystal ratio after the accelerated deterioration test.
- Example 7 The test was performed under the same conditions as in Example 2 except that yttrium chloride was added so that the yttria concentration was 3.5 mol%.
- Table 1 shows the characteristics of the obtained zirconia-alumina composite powder, and Table 2 shows the characteristics of the sintered body and the monoclinic crystal ratio after the accelerated deterioration test.
- Example 8 The same procedure as in Example 2 was performed, except that calcination was performed at a temperature of 950 ° C. for 2 hours, preliminary sintering was performed at 1250 ° C., and then HIP treatment was performed at 1300 ° C.
- the BET specific surface area and average particle diameter of the zirconia powder were 20 m 2 / g and 0.25 ⁇ m, respectively.
- Table 1 shows the characteristics of the obtained zirconia-alumina composite powder, and Table 2 shows the characteristics of the sintered body and the monoclinic crystal ratio after the accelerated deterioration test.
- Example 9 The same method as in Example 1 was carried out except that it was calcined at 1080 ° C. for 2 hours and sintered at 1400 ° C.
- the BET specific surface area and average particle diameter of the zirconia powder were 8.5 m 2 / g and 0.5 ⁇ m, respectively.
- Table 1 shows the characteristics of the obtained zirconia-alumina composite powder
- Table 2 shows the characteristics of the sintered body and the monoclinic crystal ratio after the accelerated deterioration test.
- Example 10 The zirconia-alumina composite powder obtained by the same method as in Example 9 was press-molded, pre-sintered at 1350 ° C., and then subjected to HIP treatment at a temperature of 1400 ° C.
- Table 2 shows the characteristics of the obtained zirconia-alumina composite sintered body and the monoclinic crystal ratio after the accelerated deterioration test.
- Comparative Example 1 A sintered body was obtained in the same manner as in Example 1 except that sintering was performed at 1500 ° C.
- Table 2 shows the characteristics of the obtained sintered body and the monoclinic crystal ratio after the accelerated acceleration test.
- Comparative Example 2 A sintered body was obtained in the same manner as in Example 2 except that the HIP treatment was performed at a temperature of 1500 ° C.
- Table 2 shows the characteristics of the obtained sintered body and the monoclinic crystal ratio after the accelerated acceleration test.
- Comparative Example 3 Yttrium chloride was added to the hydrated zirconia sol of Example 1 so that the yttria concentration was 3.0 mol%, dried, and calcined at a temperature of 1100 ° C. for 2 hours.
- the obtained calcined powder is washed with water, mixed with an alumina powder having a BET specific surface area of 7 m 2 / g and an average particle size of 0.6 ⁇ m so that the alumina concentration is 20% by weight, and wet pulverized. Then, it was dried using a stationary dryer.
- the characteristics of the obtained zirconia-alumina composite powder are shown in Table 1.
- Comparative Example 4 Comparative Example 1 was performed under the same conditions as Comparative Example 1 except that the zirconia-alumina composite powder was press-molded, pre-sintered at 1450 ° C., and subjected to HIP treatment at a temperature of 1500 ° C. Table 2 shows the characteristics of the obtained sintered body and the monoclinic crystal ratio after the accelerated acceleration test.
- Comparative Example 5 An aqueous solution having a zirconium oxychloride concentration of 0.25 mol / liter was prepared and subjected to a hydrolysis reaction at a boiling temperature for 150 hours to obtain a hydrated zirconia sol. A predetermined amount of yttrium chloride and aluminum chloride was added to the hydrated zirconia sol-containing liquid to prepare a mixed solution (weight: 52.5 kg). Next, while stirring the mixed solution, 0.6 mol / liter of aqueous ammonia was added to the mixed solution at an addition rate of 5.25 kg / hour to form a coprecipitate, filtered, washed with water and dried.
- the yttria concentration was 3 mol% and the alumina content was 1 wt%.
- This dried powder was calcined at a temperature of 950 ° C. for 2 hours to obtain a calcined powder.
- an alumina powder having a BET specific surface area of 14 m 2 / g and an average particle size of 0.4 ⁇ m is mixed so that the alumina content is 20% by weight, distilled water is added, and wet pulverization is performed to obtain a slurry. Then, the obtained slurry was granulated using a spray dryer to obtain granules.
- the characteristics of the obtained zirconia-alumina composite powder are shown in Table 1.
- Table 1 The characteristics of the obtained zirconia-alumina composite powder are shown in Table 1.
- the CIP molding was performed at a molding pressure of 200 MPa and sintering was performed at 1300 ° C.
- the relative density of the obtained alumina sintered body was 96.3%.
- the zirconia-alumina composite powder obtained above was molded, and the obtained molded body was sintered at 1500 ° C.
- Table 2 shows the characteristics of the obtained sintered body and the monoclinic crystal ratio after the accelerated acceleration test.
- Comparative Example 6 A sintered body was obtained in the same manner as in Comparative Example 1 except that it was pre-sintered at 1400 ° C. and subjected to HIP treatment at a temperature of 1500 ° C. Table 2 shows the characteristics of the obtained zirconia-alumina composite sintered body and the monoclinic crystal ratio after the accelerated deterioration test. Comparative Example 7 The zirconia-alumina composite powder obtained by the same method as in Example 1 was press-molded, pre-sintered at 1400 ° C., and then subjected to HIP treatment at a temperature of 1450 ° C. Table 2 shows the characteristics of the obtained zirconia-alumina composite sintered body and the monoclinic crystal ratio after the accelerated deterioration test.
- Comparative Example 8 An aqueous solution in which zirconium oxychloride and yttrium chloride were dissolved so as to have an yttria concentration of 2 mol% was hydrolyzed by heating at 105 ° C. for 168 hours, and ammonia water was further added to form a coprecipitate. Thereafter, the coprecipitate was filtered, dried, calcined, and pulverized to obtain a zirconia powder having a BET specific surface area of 20 m 2 / g and an average particle diameter of 0.8 ⁇ m.
- an alumina powder having a BET specific surface area of 14 m 2 / g and an average particle size of 0.1 ⁇ m is mixed with this zirconia powder so that the alumina concentration is 20% by weight, ethanol is added and wet-mixed with a ball mill, and an evaporator is prepared. Used to dry.
- the characteristics of the obtained zirconia-alumina composite powder are shown in Table 1.
- the zirconia-alumina composite powder obtained above was molded, pre-sintered at 1400 ° C., and subjected to HIP treatment at a temperature of 1350 ° C.
- Table 2 shows the characteristics of the obtained zirconia-alumina composite sintered body and the monoclinic crystal ratio after the accelerated deterioration test.
- Comparative Example 9 The zirconia-alumina composite powder obtained by the same method as in Comparative Example 8 was press-molded and sintered at 1400 ° C. Table 2 shows the characteristics of the obtained zirconia-alumina composite sintered body and the monoclinic crystal ratio after the accelerated deterioration test. Comparative Example 10 Yttrium chloride is dissolved so that the yttria concentration becomes 3 mol%, and alumina powder having an average particle size of 0.2 ⁇ m is mixed so that the alumina concentration becomes 17% by weight. The same procedure as in Comparative Example 8 was performed, except that the pulverization was further performed, followed by preliminary sintering at 1400 ° C. and HIP treatment at a temperature of 1425 ° C. Table 1 shows the characteristics of the obtained zirconia-alumina composite powder, and Table 2 shows the characteristics of the sintered body and the monoclinic crystal ratio after the accelerated deterioration test.
- Comparative Example 11 A sintered body was obtained in the same manner as in Comparative Example 8 except that yttrium chloride was dissolved so that the yttria concentration was 3 mol%, and the alumina concentration was 15 wt%.
- Table 1 shows the characteristics of the obtained zirconia-alumina composite powder
- Table 2 shows the characteristics of the sintered body and the monoclinic crystal ratio after the accelerated deterioration test.
- Comparative Example 12 The zirconia-alumina composite powder obtained by the same method as in Comparative Example 11 was press-molded and sintered at 1400 ° C.
- Table 2 shows the characteristics of the obtained zirconia-alumina composite sintered body and the monoclinic crystal ratio after the accelerated deterioration test.
- the zirconia-alumina composite sintered body of the present invention is useful for structural member applications such as cutting tools, dies, nozzles, bearings, and decorative items.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
強度に優れており、これに加えて耐水熱劣化性に優れるジルコニア-アルミナ複合焼結体を提供する。イットリアを2~4モル%含むジルコニア50~95重量%とアルミナ5~50重量%とからなり、該ジルコニア-アルミナ複合焼結体の相対密度が98%以上、ジルコニア結晶粒子及びアルミナ結晶粒子の平均粒径が0.4μm以下、ジルコニア結晶相の正方晶率が85重量%以上、かつ、20個以上のアルミナ結晶粒子からなる粗大アルミナ多結晶粒子の個数が、電界放出形走査型電子顕微鏡による240μm×180μmの視野中に1個以下である。
Description
本発明は、切断工具、ダイス、ノズル、ベアリング等の構造部材用途や装飾品に使用される、特に、耐水熱劣化性に優れるジルコニア-アルミナ複合焼結体に関するものである。
高強度のジルコニア-アルミナ複合焼結体は、切断工具、ダイス、ローラー、ノズル、ベアリング等の構造部材、外装品や装飾品等の材料に広く利用されている。
一方で、このジルコニア-アルミナ複合焼結体は、ジルコニアの結晶相が正方晶であるため、長い時間を経て除々に正方晶から単斜晶へ相変態して体積膨張が起って、クラック発生とともに強度が低下する劣化現象が起ることが指摘されている。特に、構造部材や外装品では上記の特性を満足し、かつ、劣化しにくい品質信頼性の高い、即ち、製品寿命の長いものが求められている。品質信頼性は、一般に水熱処理による劣化加速試験で評価されている。
一方で、このジルコニア-アルミナ複合焼結体は、ジルコニアの結晶相が正方晶であるため、長い時間を経て除々に正方晶から単斜晶へ相変態して体積膨張が起って、クラック発生とともに強度が低下する劣化現象が起ることが指摘されている。特に、構造部材や外装品では上記の特性を満足し、かつ、劣化しにくい品質信頼性の高い、即ち、製品寿命の長いものが求められている。品質信頼性は、一般に水熱処理による劣化加速試験で評価されている。
例えば、特許文献1には、ジルコニアに含まれているイットリア濃度が1.5~5モル%及びアルミナ含有量5~50重量%の組成であって、かつ、曲げ強度が1700MPa以上のジルコニア-アルミナ複合焼結体が開示されている。しかしながら、この複合焼結体は、1500℃という高い温度で熱間静水圧プレス(HIP)処理を行っているため、劣化しやすいものとなっており、上記のとおり、品質信頼性に更なる改善の余地があった。
特許文献2も同様に、HIP処理温度が1425℃と高いため、劣化しやすく品質信頼性の劣るものであった。
特許文献2も同様に、HIP処理温度が1425℃と高いため、劣化しやすく品質信頼性の劣るものであった。
特許文献3の実施例6には、ジルコニアに含まれているイットリア濃度が2モル%及びアルミナ含有量20重量%の組成からなるジルコニア-アルミナ複合粉末であって、かつ、1350℃でHIP処理させたジルコニア-アルミナ複合焼結体が開示されている。しかしながら、この複合焼結体は、HIP処理を行っているにもかかわらず、強度が1198MPaと低いものとなっており、強度特性に更なる改善の余地があった。特許文献4の実施例1に開示されているジルコニア-アルミナ複合粉末も、上記と同様に1350℃でHIP処理しているが、1520MPaと強度の低いものであった。
本発明では、上記のような従来品における欠点を解消し、強度に優れており、これに加えて耐水熱劣化性に優れるジルコニア-アルミナ複合焼結体の提供;並びにそのジルコニア-アルミナ複合焼結体を簡易なプロセスにより製造することのできる方法の提供を目的とするものである。
本発明者らは、ジルコニア-アルミナ複合粉末の焼結過程で形成される微細組織と耐水熱劣化性の関係について詳細に検討し、本発明に到達した。
即ち、本発明は、
(1)イットリアを2~4モル%含むジルコニア50~95重量%とアルミナ5~50重量%とからなるジルコニア-アルミナ複合焼結体であり、該ジルコニア-アルミナ複合焼結体の相対密度が98%以上、ジルコニア結晶粒子とアルミナ結晶粒子からなる混合粒子の平均粒径が0.4μm以下、ジルコニア結晶相の正方晶率が83重量%以上、かつ、20個以上のアルミナ結晶粒子からなる粗大アルミナ多結晶粒子の個数が、電界放出形走査型電子顕微鏡による240μm×180μmの視野中に1個以下であるジルコニア-アルミナ複合焼結体。
(2)焼結体全体を140℃熱水中に60時間浸漬させた後の焼結体中の単斜晶存在比率が10%以下である(1)記載のジルコニア-アルミナ複合焼結体。
(3)ジルコニウム塩水溶液の加水分解で得られる反応率が98%以上の水和ジルコニアゾルに、イットリウム化合物を酸化物換算で2~4モル%添加して乾燥させ、900~1100℃の範囲で仮焼して得られる仮焼粉に、アルミニウム化合物を酸化物換算として0.05~1重量%添加した後、BET比表面積9~20m2/g及び平均粒径が0.5μm以下になるまで粉砕して、さらにBET比表面積10~20m2/g及び平均粒径が0.5μm以下のアルミナ粉末をアルミナ濃度が5~50重量%になるように混合し粉砕して得られる混合粉末を得、次いで該混合粉末を成形して、1200~1400℃で焼結することによる(1)または(2)記載のジルコニア-アルミナ複合焼結体の製造方法。
(4)イットリアを2~4モル%含むジルコニア50~95重量%とアルミナ5~50重量%とからなるジルコニア-アルミナ複合粉末であり、該ジルコニア-アルミナ複合粉末のBET比表面積が9~20m2/g、かつ、ジルコニアの単斜晶率が35~60%であるジルコニア-アルミナ複合粉末。
(5)上記(4)記載のジルコニア-アルミナ複合粉末をスラリーにして噴霧造粒することにより得られ、平均粒径が30~80μm、軽装嵩密度が1.00~1.40g/cm3であるジルコニア-アルミナ複合顆粒。
を要旨とするものである。
(1)イットリアを2~4モル%含むジルコニア50~95重量%とアルミナ5~50重量%とからなるジルコニア-アルミナ複合焼結体であり、該ジルコニア-アルミナ複合焼結体の相対密度が98%以上、ジルコニア結晶粒子とアルミナ結晶粒子からなる混合粒子の平均粒径が0.4μm以下、ジルコニア結晶相の正方晶率が83重量%以上、かつ、20個以上のアルミナ結晶粒子からなる粗大アルミナ多結晶粒子の個数が、電界放出形走査型電子顕微鏡による240μm×180μmの視野中に1個以下であるジルコニア-アルミナ複合焼結体。
(2)焼結体全体を140℃熱水中に60時間浸漬させた後の焼結体中の単斜晶存在比率が10%以下である(1)記載のジルコニア-アルミナ複合焼結体。
(3)ジルコニウム塩水溶液の加水分解で得られる反応率が98%以上の水和ジルコニアゾルに、イットリウム化合物を酸化物換算で2~4モル%添加して乾燥させ、900~1100℃の範囲で仮焼して得られる仮焼粉に、アルミニウム化合物を酸化物換算として0.05~1重量%添加した後、BET比表面積9~20m2/g及び平均粒径が0.5μm以下になるまで粉砕して、さらにBET比表面積10~20m2/g及び平均粒径が0.5μm以下のアルミナ粉末をアルミナ濃度が5~50重量%になるように混合し粉砕して得られる混合粉末を得、次いで該混合粉末を成形して、1200~1400℃で焼結することによる(1)または(2)記載のジルコニア-アルミナ複合焼結体の製造方法。
(4)イットリアを2~4モル%含むジルコニア50~95重量%とアルミナ5~50重量%とからなるジルコニア-アルミナ複合粉末であり、該ジルコニア-アルミナ複合粉末のBET比表面積が9~20m2/g、かつ、ジルコニアの単斜晶率が35~60%であるジルコニア-アルミナ複合粉末。
(5)上記(4)記載のジルコニア-アルミナ複合粉末をスラリーにして噴霧造粒することにより得られ、平均粒径が30~80μm、軽装嵩密度が1.00~1.40g/cm3であるジルコニア-アルミナ複合顆粒。
を要旨とするものである。
本発明のジルコニア-アルミナ複合焼結体は、強度に優れており、これに加えて耐水熱劣化性にも優れていることから切断工具、ダイス、ローラー、ノズル、ベアリング等の構造部材、外装品や装飾品等の材料等に好適に用いることができる。また、本発明の方法により、上記のジルコニア-アルミナ複合焼結体を簡易なプロセスにより製造することができる。
以下、本発明をさらに詳細に説明する。まず、本発明における用語の定義を以下に示す。
ジルコニア-アルミナ複合焼結体に係わる「ジルコニア」とは、イットリアが安定化剤として固溶しているジルコニアをいう。
「イットリア濃度」とは、Y2O3/(ZrO2+Y2O3)の比率をモル%として表した値をいう。
「アルミナ濃度」とは、Al2O3/(ZrO2+Y2O3+Al2O3)の比率を重量%として表した値をいう。
「相対密度」とは、実験的に求めた実測密度ρと、数式(1)~(4)により計算されたイットリア及びアルミナを含有するジルコニアの真密度ρ0を用い、(ρ/ρ0)×100で表される比率(%)のことをいう。
ジルコニア-アルミナ複合焼結体に係わる「ジルコニア」とは、イットリアが安定化剤として固溶しているジルコニアをいう。
「イットリア濃度」とは、Y2O3/(ZrO2+Y2O3)の比率をモル%として表した値をいう。
「アルミナ濃度」とは、Al2O3/(ZrO2+Y2O3+Al2O3)の比率を重量%として表した値をいう。
「相対密度」とは、実験的に求めた実測密度ρと、数式(1)~(4)により計算されたイットリア及びアルミナを含有するジルコニアの真密度ρ0を用い、(ρ/ρ0)×100で表される比率(%)のことをいう。
A=0.5080+0.06980X/(100+X) (1)
C=0.5195-0.06180X/(100+X) (2)
ρZ=[124.25(100-X)+225.81X]/[150.5(100+X)A2C] (3)
ρ0=100/[(Y/3.987)+(100-Y)/ρZ] (4)
C=0.5195-0.06180X/(100+X) (2)
ρZ=[124.25(100-X)+225.81X]/[150.5(100+X)A2C] (3)
ρ0=100/[(Y/3.987)+(100-Y)/ρZ] (4)
ここで、Xはイットリア濃度(モル%)、Yはアルミナ濃度(重量%)である。
アルミナ及びジルコニア結晶粒子に係わる「平均粒径」とは、電子顕微鏡を用いてプラニメトリック法(参考文献:山口喬、セラミックス、19,520-529(1984))により算出されたものの値をいう。
「粗大アルミナ多結晶粒子」とは、焼結体表面を鏡面処理して熱エッチング処理を行ったあとに、電界放出形走査型電子顕微鏡(FE-SEM)を用いて、反射電子組成像で観察可能であり、粗大アルミナ多結晶粒子の個数は、当該顕微鏡観測において、少なくとも3ヶ所の異なる部位における、240μm×180μmの視野範囲内に存在する、20個以上のアルミナ結晶粒子からなる粗大アルミナ多結晶粒子をカウントした平均値をいう。
ジルコニア結晶相に係わる「正方晶率」とは、ジルコニア-アルミナ複合焼結体のX線回折(XRD)プロファイルに解析プログラムとしてRIETAN-FP(参考文献:F.Izumi,’’The Rietveld Method’’,Ed. by R. A. Young, Oxford University Press, Oxford (1993) Chap. 13.)を用いて、リートベルト法によりジルコニアの正方晶と立方晶の分率(重量%)をそれぞれ求め、正方晶/(正方晶+立方晶)の比率として算出されたものの%値をいう。
「粗大アルミナ多結晶粒子」とは、焼結体表面を鏡面処理して熱エッチング処理を行ったあとに、電界放出形走査型電子顕微鏡(FE-SEM)を用いて、反射電子組成像で観察可能であり、粗大アルミナ多結晶粒子の個数は、当該顕微鏡観測において、少なくとも3ヶ所の異なる部位における、240μm×180μmの視野範囲内に存在する、20個以上のアルミナ結晶粒子からなる粗大アルミナ多結晶粒子をカウントした平均値をいう。
ジルコニア結晶相に係わる「正方晶率」とは、ジルコニア-アルミナ複合焼結体のX線回折(XRD)プロファイルに解析プログラムとしてRIETAN-FP(参考文献:F.Izumi,’’The Rietveld Method’’,Ed. by R. A. Young, Oxford University Press, Oxford (1993) Chap. 13.)を用いて、リートベルト法によりジルコニアの正方晶と立方晶の分率(重量%)をそれぞれ求め、正方晶/(正方晶+立方晶)の比率として算出されたものの%値をいう。
「単斜晶率(fm)」とは、水熱処理したジルコニア-アルミナ複合焼結体についてXRD測定を行い、ジルコニア結晶相の単斜晶の(111)及び(11-1)反射の面積強度、立方晶及び正方晶の(111)反射の面積強度をそれぞれ求めて、数式(5)により算出されたものの%値をいう。
fm(%)
=[Im(111)+Im(11-1)]×100/[Im(111)+Im(11-1)+It(111)+Ic(111)] (5)
=[Im(111)+Im(11-1)]×100/[Im(111)+Im(11-1)+It(111)+Ic(111)] (5)
ここで、Iはジルコニア結晶相の各反射の面積強度、添字m、t及びcはそれぞれ単斜晶、正方晶、立方晶を示す。
ジルコニア-アルミナ複合粉末に係わる「ジルコニアの単斜晶率(fm)」とは、複合粉末についてXRD測定を行い、上記の数式(5)により算出された値をいう。
ジルコニア粉末またはアルミナ粉末に係わる「BET比表面積」は、吸着分子として窒素を用いて測定したものをいう。
「平均粒径」とは、体積基準分布が中央値(メディアン)である粒子と同じ体積の球の直径をいい、レーザー回折装置による粒度分布測定装置、例えば、マイクロトラック粒度分布計によって測定することができる。
水和ジルコニアゾルに係わる「反応率」とは、水和ジルコニアゾル含有液を限外濾過して、その濾液中に存在する未反応物のジルコニウム量を誘導結合プラズマ発光分光分析により求めて、水和ジルコニアゾルの生成量を算出し、原料仕込量に対する水和ジルコニアゾル量の比率として表したものの値をいう。
ジルコニア粉末またはアルミナ粉末に係わる「BET比表面積」は、吸着分子として窒素を用いて測定したものをいう。
「平均粒径」とは、体積基準分布が中央値(メディアン)である粒子と同じ体積の球の直径をいい、レーザー回折装置による粒度分布測定装置、例えば、マイクロトラック粒度分布計によって測定することができる。
水和ジルコニアゾルに係わる「反応率」とは、水和ジルコニアゾル含有液を限外濾過して、その濾液中に存在する未反応物のジルコニウム量を誘導結合プラズマ発光分光分析により求めて、水和ジルコニアゾルの生成量を算出し、原料仕込量に対する水和ジルコニアゾル量の比率として表したものの値をいう。
本発明のジルコニア-アルミナ複合焼結体は、イットリアを2~4モル%含むジルコニア50~95重量%とアルミナ5~50重量%とからなることを必要とする。イットリア濃度を2~4モル%及びアルミナ濃度を5~50重量%とすることにより、劣化が抑制されて品質信頼性が向上すると共に、機械的特性が向上するからである。より高い品質信頼性及びより強い機械的特性を得るために、イットリア濃度としては2.5~3.5モル%が好ましく、アルミナ濃度としては11~40重量%が好ましく、より好ましくは15~40重量%である。
さらに、上記のジルコニア-アルミナ複合焼結体の相対密度は、98%以上、好ましくは99%以上、より好ましくは99.2%以上のものがよい。
さらに、上記のジルコニア-アルミナ複合焼結体の相対密度は、98%以上、好ましくは99%以上、より好ましくは99.2%以上のものがよい。
本発明のジルコニア-アルミナ複合焼結体では、ジルコニア結晶粒子とアルミナ結晶粒子からなる混合粒子の平均粒径が0.4μm以下、かつ、ジルコニア結晶相の正方晶率が83重量%以上である。ジルコニア結晶粒子とアルミナ結晶粒子からなる混合粒子の平均粒径を0.4μm以下とすることにより、破壊によるクラックの進展が抑制されるので機械的特性が向上すると共に、ジルコニア結晶相の正方晶率を83重量%以上とすることにより、正方晶の相安定性が向上し、品質信頼性が高くなるからである。より好ましいジルコニア結晶粒子及びアルミナ結晶粒子の各平均粒径は、0.3μm以下であり、特に好ましくは0.1~0.3μmであり、また、より好ましいジルコニア結晶相の正方晶率は85%以上であり、特に好ましくは85~98重量%である。
さらに、本発明のジルコニア-アルミナ複合焼結体では、20個以上のアルミナ結晶粒子からなる粗大アルミナ多結晶粒子の個数が1個以下である。20個以上のアルミナ結晶粒子からなる粗大アルミナ多結晶粒子の個数を1個以下にすることにより、焼結体の破壊源となる粗大アルミナ多結晶粒子のサイズが小さくなって機械的特性が向上し、かつ、焼結体中にアルミナ結晶粒子が均一に分散することにより圧縮応力が発生し、それが要因となってジルコニアの正方晶→単斜晶相変態に伴う体積膨張が抑制されるために、劣化しにくくなり、品質信頼性が高くなるからである。より好ましい粗大アルミナ多結晶体の個数は、1個未満である。
本発明のジルコニア-アルミナ複合焼結体は、強度が高く、曲げ強度はHIP無処理で1000MPa以上、HIP処理で1900MPa以上が好ましく、特に好ましくはHIP無処理で1100MPa以上、HIP処理で2000MPa以上である。
また、本発明のジルコニア-アルミナ複合焼結体は、140℃熱水中に60時間浸漬させた後に、その焼結体の単斜晶存在比率を測定すると、その存在比率が10%以下が好ましく、特に好ましくは6%以下のものであり、耐水熱劣化性に優れるものである。
また、本発明のジルコニア-アルミナ複合焼結体は、140℃熱水中に60時間浸漬させた後に、その焼結体の単斜晶存在比率を測定すると、その存在比率が10%以下が好ましく、特に好ましくは6%以下のものであり、耐水熱劣化性に優れるものである。
次に、ジルコニア-アルミナ複合焼結体の製造方法につき説明する。
本発明のジルコニア-アルミナ複合焼結体を製造する方法においては、まず、ジルコニウム塩水溶液の加水分解反応で得られる反応率が98%以上の水和ジルコニアゾルに、イットリウム化合物を酸化物換算で2~4モル%添加して乾燥させる。反応率を98%以上にすることにより、仮焼時に未反応物に起因する粒子間の強固な焼結が起きず、成形性が良好となり、焼結性もよくなるからである。より好ましい反応率は99%以上である。
水和ジルコニアゾルの製造に用いられるジルコニウム塩としては、オキシ塩化ジルコニウム、硝酸ジルコニル、塩化ジルコニウム、硫酸ジルコニウムなどが挙げられ、この他に水酸化ジルコニウムと酸との混合物を用いてもよい。
本発明のジルコニア-アルミナ複合焼結体を製造する方法においては、まず、ジルコニウム塩水溶液の加水分解反応で得られる反応率が98%以上の水和ジルコニアゾルに、イットリウム化合物を酸化物換算で2~4モル%添加して乾燥させる。反応率を98%以上にすることにより、仮焼時に未反応物に起因する粒子間の強固な焼結が起きず、成形性が良好となり、焼結性もよくなるからである。より好ましい反応率は99%以上である。
水和ジルコニアゾルの製造に用いられるジルコニウム塩としては、オキシ塩化ジルコニウム、硝酸ジルコニル、塩化ジルコニウム、硫酸ジルコニウムなどが挙げられ、この他に水酸化ジルコニウムと酸との混合物を用いてもよい。
水和ジルコニアゾルとイットリア化合物との混合方法としては、特に制限はなく、安定化剤の原料に用いられるイットリウム化合物としては、塩化物、硝酸塩、炭酸塩、硫酸塩、酢酸塩、酸化物、水酸化物などを挙げることができる。また、水和ジルコニアゾルの乾燥方法については、例えば、混合溶液をそのまま、または該混合溶液に有機溶媒を添加して噴霧乾燥する方法、該混合溶液にアルカリなどを添加して濾過、水洗したあとに乾燥する方法等を挙げることができる。
次いで、乾燥粉を900~1100℃の範囲で仮焼する。この仮焼により、次工程でアルミニウム化合物を酸化物換算として0.05~1重量%添加したジルコニア粉末のBET比表面積を9~20m2/g及び平均粒径を0.5μm以下にすることが可能となる。
続けて、上記で得られた仮焼粉に、焼結性を高めるために、アルミニウム化合物を酸化物換算で0.05~1重量%の範囲になるように添加し、BET比表面積9~20m2/g及び平均粒径が0.5μm以下の範囲になるまで粉砕する。アルミニウム化合物の添加方法に特に制限はなく、例えば仮焼粉のスラリーにアルミニウム化合物を添加する方法や、仮焼粉のスラリーにアルミニウム化合物のスラリーを添加する方法などを挙げることができる。粉砕方法は、粉砕効率の点で湿式粉砕が好ましく、その際の媒体としては水、アルコール等の有機溶媒が好ましい。粉砕に用いる粉砕機としては、例えば、振動ミル、連続式媒体撹拌ミル等を用いることができる。
続けて、上記で得られた仮焼粉に、焼結性を高めるために、アルミニウム化合物を酸化物換算で0.05~1重量%の範囲になるように添加し、BET比表面積9~20m2/g及び平均粒径が0.5μm以下の範囲になるまで粉砕する。アルミニウム化合物の添加方法に特に制限はなく、例えば仮焼粉のスラリーにアルミニウム化合物を添加する方法や、仮焼粉のスラリーにアルミニウム化合物のスラリーを添加する方法などを挙げることができる。粉砕方法は、粉砕効率の点で湿式粉砕が好ましく、その際の媒体としては水、アルコール等の有機溶媒が好ましい。粉砕に用いる粉砕機としては、例えば、振動ミル、連続式媒体撹拌ミル等を用いることができる。
湿式粉砕の場合、粉砕する前に、仮焼粉を予め水洗処理、あるいは稀薄なアンモニア水で洗浄処理すると、ジルコニウム塩原料に由来する微量不純物が除去されて、焼結性が向上するため好ましい。
仮焼粉に添加するアルミニウム化合物としては、例えば、アルミナゾル、水酸化アルミニウム、アルミニウム水和物、硝酸アルミニウム、塩化アルミニウム、硫酸アルミニウム等が挙げられる。
仮焼粉に添加するアルミニウム化合物としては、例えば、アルミナゾル、水酸化アルミニウム、アルミニウム水和物、硝酸アルミニウム、塩化アルミニウム、硫酸アルミニウム等が挙げられる。
本発明では、更に、上記のアルミニウム化合物を酸化物換算で0.05~1重量%含むBET比表面積9~20m2/g及び平均粒径が0.5μm以下に調整されたジルコニア粉末に、さらにBET比表面積10~20m2/g及び平均粒径が0.5μm以下のアルミナ粉末を、アルミナ濃度が5~50重量%になるように混合し粉砕する。BET比表面積が10~20m2/g及び平均粒径が0.5μm以下のアルミナ粉末を添加することにより、ジルコニア粉末に混合した後のアルミナの均一性が高くなった結果、焼結時に粗大アルミナ多結晶粒子が形成されにくくなる。
本工程で添加するアルミナ粉末としては、BET比表面積10~20m2/g及び平均粒径が0.5μm以下の高純度アルミナ粉末(Si≦20ppm,Fe≦10ppm,Na≦10ppm)であって、かつ、この粉末を成形圧200MPaで冷間静水圧(CIP)成形し、1300℃で焼結した際、当該焼結体の相対密度が98%以上になるようなアルミナ粉末が好適である。
アルミニウム化合物を含むジルコニア粉末と後添加するアルミナ粉末との混合方法に特に制限はなく、上記の条件を満足しているものであればいかなる方法で混合してもよい。特に、湿式粉砕する場合、ポリアクリル酸系分散剤を添加して噴霧乾燥させるとアルミナ粉末との均一性が高くなるので好適である。
アルミニウム化合物を含むジルコニア粉末と後添加するアルミナ粉末との混合方法に特に制限はなく、上記の条件を満足しているものであればいかなる方法で混合してもよい。特に、湿式粉砕する場合、ポリアクリル酸系分散剤を添加して噴霧乾燥させるとアルミナ粉末との均一性が高くなるので好適である。
続いて、本発明では、上記のジルコニア-アルミナ混合粉砕粉末を成形して、1200~1400℃で焼結させ、複合焼結体を得る。焼結温度が1200℃~1400℃の温度範囲にあることにより、ジルコニア結晶粒子及びアルミナ結晶粒子の平均粒径がそれぞれ0.4μm以下であり、ジルコニア結晶相の正方晶率が83重量%以上、かつ、20個以上のアルミナ結晶粒子からなる粗大アルミナ多結晶粒子の個数が1個/mm2以下であり、相対密度が98%以上のジルコニア-アルミナ複合焼結体を得ることができる。
焼結時の昇温速度は特に限定はなく、生産性の観点から50~200℃/時間とするのが好ましく、焼結温度の保持時間は2~5時間程度でよい。
焼結時の昇温速度は特に限定はなく、生産性の観点から50~200℃/時間とするのが好ましく、焼結温度の保持時間は2~5時間程度でよい。
ジルコニア粉末を成形する方法としては、加圧成形、射出成形、押出成形等の公知の方法を選択することができる。
より高強度のジルコニア-アルミナ複合焼結体を得るためには、熱間静水圧プレス(HIP)処理が効果的である。具体的には、上記のジルコニア-アルミナ混合粉末を成形し1250~1350℃で予備焼結させ、得られた予備焼結体を50~500MPa、温度1300~1400℃で0.5~2時間HIP処理すればよい。このHIP処理で、曲げ強度が1700MPa以上のジルコニア-アルミナ複合焼結体を得ることができる。
より高強度のジルコニア-アルミナ複合焼結体を得るためには、熱間静水圧プレス(HIP)処理が効果的である。具体的には、上記のジルコニア-アルミナ混合粉末を成形し1250~1350℃で予備焼結させ、得られた予備焼結体を50~500MPa、温度1300~1400℃で0.5~2時間HIP処理すればよい。このHIP処理で、曲げ強度が1700MPa以上のジルコニア-アルミナ複合焼結体を得ることができる。
次に、ジルコニア-アルミナ複合焼結体用粉末について説明する。
ジルコニア-アルミナ複合焼結体用粉末は、イットリアを2~4モル%含むジルコニア50~95重量%とアルミナ5~50重量%とからなる粉末である。より高い品質信頼性及びより強い機械的特性のジルコニア-アルミナ複合焼結体が得られることから、イットリア濃度としては2.5~3.5モル%が好ましく、アルミナ濃度としては11~40重量%が好ましく、より好ましくは15~40重量%である。
ジルコニア-アルミナ複合焼結体用粉末のBET比表面積が9~20m2/gであり、好ましく10~19m2/gである。
また、ジルコニア-アルミナ複合焼結体用粉末におけるジルコニアの単斜晶率が35~60%であり、好ましくは35~45%である。
ジルコニア-アルミナ複合焼結体用粉末は、イットリアを2~4モル%含むジルコニア50~95重量%とアルミナ5~50重量%とからなる粉末である。より高い品質信頼性及びより強い機械的特性のジルコニア-アルミナ複合焼結体が得られることから、イットリア濃度としては2.5~3.5モル%が好ましく、アルミナ濃度としては11~40重量%が好ましく、より好ましくは15~40重量%である。
ジルコニア-アルミナ複合焼結体用粉末のBET比表面積が9~20m2/gであり、好ましく10~19m2/gである。
また、ジルコニア-アルミナ複合焼結体用粉末におけるジルコニアの単斜晶率が35~60%であり、好ましくは35~45%である。
ジルコニア-アルミナ複合顆粒について説明する。
ジルコニア-アルミナ複合顆粒は、平均粒径が30~80μm、好ましく50~60μmであり、軽装嵩密度が1.00~1.40g/cm3であり、好ましくは1.1~1.3g/cm3である。
ジルコニア-アルミナ複合顆粒の製造方法は、ジルコニア-アルミナ複合粉末をスラリーにして噴霧造粒することにより製造する。
ジルコニア-アルミナ複合顆粒は、平均粒径が30~80μm、好ましく50~60μmであり、軽装嵩密度が1.00~1.40g/cm3であり、好ましくは1.1~1.3g/cm3である。
ジルコニア-アルミナ複合顆粒の製造方法は、ジルコニア-アルミナ複合粉末をスラリーにして噴霧造粒することにより製造する。
スラリーとする方法としては、ジルコニア粉末またはアルミナ粉末を単独に溶液中に懸濁させたあと混合する方法;ジルコニア粉末とアルミナ粉末を混合したあとに溶液中に懸濁させる方法;ジルコニア粉末とアルミナ粉末を湿式粉砕したあとに溶液中に懸濁させる方法等を挙げることができる。スラリー調製時に使用される溶液としては、水,アルコール等の有機溶媒を挙げることができる。例えば、溶液として水を使用した場合、スラリーとして扱い易く、生産設備に特別な制約もいらないので、工業的な大量生産に適している。また、顆粒径分布及び顆粒形状を制御するため、噴霧乾燥するまえに、スラリーに酸,アルカリ,有機物等を添加してもよい。
該スラリーを噴霧造粒する方法としては、特に制限はなく、通常の噴霧乾燥機を用いて造粒すればよい。
該スラリーを噴霧造粒する方法としては、特に制限はなく、通常の噴霧乾燥機を用いて造粒すればよい。
以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に何等限定されるものではない。
例中、ジルコニア粉末、アルミナ粉末の平均粒径は、マイクロトラック粒度分布計(Honeywell社製、商品名「9320-HRA」)を用いて測定した。試料の前処理条件としては、粉末を蒸留水に懸濁させ、超音波ホモジナイザーを用いて3分間分散させた。ジルコニア-アルミナ複合粉末の平均顆粒径は、ふるい分け試験方法によって求めた。軽装嵩密度は、JIS R9301に準じた方法で評価した。ジルコニア-アルミナ複合粉末のジルコニアの単斜晶率は、複合粉末についてX線回折測定を行い、前記の数式(5)により算出した。
ジルコニア-アルミナ複合粉末の成形は、金型プレスにより予備成形を行ったあとに、成形圧力200MPaでCIPを行った。次いで、得られた成形体を所定温度(昇温速度;100℃/h、保持時間;2時間)に設定して焼結させた。HIP処理は、上記の成形体を所定温度(昇温速度;100℃/h、保持時間;2時間)で予備焼結させ、それをArガス雰囲気中(150MPa)で所定温度(昇温速度;600℃/h、保持時間;1時間)の条件で行った。
得られた焼結体の密度は、アルキメデス法により測定した。
例中、ジルコニア粉末、アルミナ粉末の平均粒径は、マイクロトラック粒度分布計(Honeywell社製、商品名「9320-HRA」)を用いて測定した。試料の前処理条件としては、粉末を蒸留水に懸濁させ、超音波ホモジナイザーを用いて3分間分散させた。ジルコニア-アルミナ複合粉末の平均顆粒径は、ふるい分け試験方法によって求めた。軽装嵩密度は、JIS R9301に準じた方法で評価した。ジルコニア-アルミナ複合粉末のジルコニアの単斜晶率は、複合粉末についてX線回折測定を行い、前記の数式(5)により算出した。
ジルコニア-アルミナ複合粉末の成形は、金型プレスにより予備成形を行ったあとに、成形圧力200MPaでCIPを行った。次いで、得られた成形体を所定温度(昇温速度;100℃/h、保持時間;2時間)に設定して焼結させた。HIP処理は、上記の成形体を所定温度(昇温速度;100℃/h、保持時間;2時間)で予備焼結させ、それをArガス雰囲気中(150MPa)で所定温度(昇温速度;600℃/h、保持時間;1時間)の条件で行った。
得られた焼結体の密度は、アルキメデス法により測定した。
粗大アルミナ多結晶粒子は、焼結体表面を鏡面処理して熱エッチング処理を行ったあとに、電界放出形走査型電子顕微鏡(FE-SEM)を用いて、反射電子組成像で観察した。粗大アルミナ多結晶粒子の個数は、240μm×180μmの画像(3視野)範囲内に存在する20個以上のアルミナ結晶粒子からなる粗大アルミナ多結晶粒子をカウントしてその平均値を算出した。画像内に存在する粗大アルミナ多結晶粒子は、多結晶粒子の領域を高倍率にして、多結晶粒子を構成しているアルミナ結晶粒子を調べることにより特定した。焼結体の鏡面加工は、平面研削盤で焼結体表面を削った後に、鏡面研磨装置で平均粒径9μm,6μm,1μmのダイヤモンド砥粒を用いて9→6→1μm砥粒の順に鏡面研磨した。熱エッチング処理は、焼結又はHIP処理で設定した温度よりも50℃低い温度で1時間行った。
ジルコニア結晶粒子とアルミナ結晶粒子からなる混合粒子の平均粒径は、上記と同様にFE-SEMを用いてプラニメトリック法により算出した。具体的には、顕微鏡画像上に円を描いたとき、円内の粒子数ncと円周にかかった粒子数Niの合計が少なくとも200個となるような円を描いて、または200個に満たない画像の場合には、粒子数の合計(nc+Ni)が少なくとも200個となるように数視野の画像を用いて複数の円を描き、プラニメトリック法により平均粒径を求めた。
ジルコニア結晶相の正方晶率は、XRDをステップスキャン法(2θ:15~80°、ステップ幅:0.04°、積算時間:8秒/ステップ)で測定し、得られたプロファイルをリートベルト法により定量化することにより求めた。解析は、正方晶及び立方晶の混相とし、各結晶のプロファイル関数は独立して取扱い、各元素の温度パラメーターは同一とした。
曲げ強度は、JIS R1601に準じた3点曲げ試験で評価した。
劣化加速試験は、焼結体を140℃の熱水中に所定時間浸漬させ、生成する単斜晶の比率を求めることによって評価した。単斜晶率は、浸漬処理した焼結体についてX線回折測定を行い、前記の数式(5)により算出した。
ジルコニア結晶相の正方晶率は、XRDをステップスキャン法(2θ:15~80°、ステップ幅:0.04°、積算時間:8秒/ステップ)で測定し、得られたプロファイルをリートベルト法により定量化することにより求めた。解析は、正方晶及び立方晶の混相とし、各結晶のプロファイル関数は独立して取扱い、各元素の温度パラメーターは同一とした。
曲げ強度は、JIS R1601に準じた3点曲げ試験で評価した。
劣化加速試験は、焼結体を140℃の熱水中に所定時間浸漬させ、生成する単斜晶の比率を求めることによって評価した。単斜晶率は、浸漬処理した焼結体についてX線回折測定を行い、前記の数式(5)により算出した。
実施例1
2モル/リットルのオキシ塩化ジルコニウム水溶液4リットルに2モル/リットルのアンモニア水4.8リットルを混合し、蒸留水を加えてジルコニア換算濃度0.8モル/リットルの溶液を調製した。この溶液を還流器付きフラスコ中で攪拌しながら加水分解反応を煮沸温度で200時間行った。得られた水和ジルコニアゾルの反応率は99%であった。
得られた水和ジルコニアゾルに、塩化イットリウムをイットリア濃度が3.0モル%になるように添加して乾燥させ、1000℃の温度で2時間仮焼した。
得られた仮焼粉を水洗処理したあとに、粒径0.015μmのアルミナゾルをアルミナ濃度が0.15重量%になるように添加し、さらに蒸留水を加えてジルコニア濃度45重量%のスラリーにした。このスラリーを直径2mmのジルコニアボールを用いて、振動ミルで48時間粉砕して乾燥させ、BET比表面積16m2/g、平均粒径0.3μmのジルコニア粉末を得た。
2モル/リットルのオキシ塩化ジルコニウム水溶液4リットルに2モル/リットルのアンモニア水4.8リットルを混合し、蒸留水を加えてジルコニア換算濃度0.8モル/リットルの溶液を調製した。この溶液を還流器付きフラスコ中で攪拌しながら加水分解反応を煮沸温度で200時間行った。得られた水和ジルコニアゾルの反応率は99%であった。
得られた水和ジルコニアゾルに、塩化イットリウムをイットリア濃度が3.0モル%になるように添加して乾燥させ、1000℃の温度で2時間仮焼した。
得られた仮焼粉を水洗処理したあとに、粒径0.015μmのアルミナゾルをアルミナ濃度が0.15重量%になるように添加し、さらに蒸留水を加えてジルコニア濃度45重量%のスラリーにした。このスラリーを直径2mmのジルコニアボールを用いて、振動ミルで48時間粉砕して乾燥させ、BET比表面積16m2/g、平均粒径0.3μmのジルコニア粉末を得た。
次いで、BET比表面積13m2/g及び平均粒径0.4μmの高純度アルミナ粉末(Si≦20ppm,Fe≦10ppm,Na≦10ppm)に蒸留水を加えてスラリー濃度45重量%のスラリーとし、上記と同様の条件で粉砕、乾燥してBET比表面積14m2/g及び平均粒径0.3μmのアルミナ粉末を得た。このアルミナ粉末の焼結性を調べるために、成形圧力200MPaでCIP成形して1300℃で焼結すると、得られたアルミナ焼結体の相対密度は99.1%であった。ここで、アルミナの理論密度は、3.987g/cm3として相対密度を算出した。
アルミニウム化合物を含む、BET比表面積16m2/g、平均粒径0.3μmのジルコニア粉末に、この粉砕処理したBET比表面積15m2/g及び平均粒径0.3μmのアルミナ粉末をアルミナ濃度が20重量%になるように混合し、蒸留水とポリアクリル系分散剤を微量添加し、湿式粉砕してスラリーを得、次いで、得られたスラリーを噴霧乾燥機を用いて造粒して顆粒を得た。得られたジルコニア-アルミナ複合粉末の特性を表1に示す。
アルミニウム化合物を含む、BET比表面積16m2/g、平均粒径0.3μmのジルコニア粉末に、この粉砕処理したBET比表面積15m2/g及び平均粒径0.3μmのアルミナ粉末をアルミナ濃度が20重量%になるように混合し、蒸留水とポリアクリル系分散剤を微量添加し、湿式粉砕してスラリーを得、次いで、得られたスラリーを噴霧乾燥機を用いて造粒して顆粒を得た。得られたジルコニア-アルミナ複合粉末の特性を表1に示す。
次いで、上記で得られたジルコニア-アルミナ複合粉末を成形し、得られた成形体を1350℃で焼結させた。
得られた焼結体の特性(相対密度、正方晶率、曲げ強度)と劣化加速試験(エージング時間:処理前、30、60時間)後の単斜晶率を表2に示す。エージング60時間での単斜晶率が1%未満であることから、極めて劣化しにくい品質信頼性の高いジルコニア-アルミナ複合焼結体であることが確認された。
得られた焼結体の特性(相対密度、正方晶率、曲げ強度)と劣化加速試験(エージング時間:処理前、30、60時間)後の単斜晶率を表2に示す。エージング60時間での単斜晶率が1%未満であることから、極めて劣化しにくい品質信頼性の高いジルコニア-アルミナ複合焼結体であることが確認された。
実施例2
実施例1と同様の方法で得られたジルコニア-アルミナ複合粉末をプレス成形し、1300℃で予備焼結させ、次いで1350℃の温度でHIP処理した。
得られたジルコニア-アルミナ複合焼結体の特性と劣化加速試験後の単斜晶率を表2に示す。曲げ強度が2470MPa、エージング60時間での単斜晶率が6%であることから、曲げ強度が高く、かつ、劣化しにくい品質信頼性の高いジルコニア-アルミナ複合焼結体であることが確認された。
実施例1と同様の方法で得られたジルコニア-アルミナ複合粉末をプレス成形し、1300℃で予備焼結させ、次いで1350℃の温度でHIP処理した。
得られたジルコニア-アルミナ複合焼結体の特性と劣化加速試験後の単斜晶率を表2に示す。曲げ強度が2470MPa、エージング60時間での単斜晶率が6%であることから、曲げ強度が高く、かつ、劣化しにくい品質信頼性の高いジルコニア-アルミナ複合焼結体であることが確認された。
実施例3
アルミニウム化合物を含むジルコニア粉末に、アルミナ粉末をアルミナ濃度が11重量%になるように混合した以外は、実施例2と同様の条件で行った。
得られたジルコニア-アルミナ複合粉末の特性を表1に、焼結体の特性と劣化加速試験後の単斜晶率を表2にそれぞれ示す。
実施例4
アルミニウム化合物を含むジルコニア粉末に、アルミナ粉末をアルミナ濃度が15重量%になるように混合した以外は、実施例2と同様の条件で行った。
得られたジルコニア-アルミナ複合粉末の特性を表1に、焼結体の特性と劣化加速試験後の単斜晶率を表2にそれぞれ示す。
実施例5
アルミニウム化合物を含むジルコニア粉末に、アルミナ粉末をアルミナ濃度が30重量%になるように混合した以外は、実施例2と同様の条件で行った。
得られたジルコニア-アルミナ複合粉末の特性を表1に、焼結体の特性と劣化加速試験後の単斜晶率を表2にそれぞれ示す。
実施例6
塩化イットリウムをイットリア濃度が2.5モル%になるように添加した以外は、実施例2と同様の条件で行った。
得られたジルコニア-アルミナ複合粉末の特性を表1に、焼結体の特性と劣化加速試験後の単斜晶率を表2にそれぞれ示す。
実施例7
塩化イットリウムをイットリア濃度が3.5モル%になるように添加した以外は、実施例2と同様の条件で行った。
得られたジルコニア-アルミナ複合粉末の特性を表1に、焼結体の特性と劣化加速試験後の単斜晶率を表2にそれぞれ示す。
実施例8
950℃の温度で2時間仮焼し、かつ、1250℃で予備焼結させ、次いで1300℃でHIP処理した以外は、実施例2と同様の方法で行った。ジルコニア粉末のBET比表面積と平均粒径は、それぞれ20m2/g、0.25μmであった。
得られたジルコニア-アルミナ複合粉末の特性を表1に、焼結体の特性と劣化加速試験後の単斜晶率を表2にそれぞれ示す。
アルミニウム化合物を含むジルコニア粉末に、アルミナ粉末をアルミナ濃度が11重量%になるように混合した以外は、実施例2と同様の条件で行った。
得られたジルコニア-アルミナ複合粉末の特性を表1に、焼結体の特性と劣化加速試験後の単斜晶率を表2にそれぞれ示す。
実施例4
アルミニウム化合物を含むジルコニア粉末に、アルミナ粉末をアルミナ濃度が15重量%になるように混合した以外は、実施例2と同様の条件で行った。
得られたジルコニア-アルミナ複合粉末の特性を表1に、焼結体の特性と劣化加速試験後の単斜晶率を表2にそれぞれ示す。
実施例5
アルミニウム化合物を含むジルコニア粉末に、アルミナ粉末をアルミナ濃度が30重量%になるように混合した以外は、実施例2と同様の条件で行った。
得られたジルコニア-アルミナ複合粉末の特性を表1に、焼結体の特性と劣化加速試験後の単斜晶率を表2にそれぞれ示す。
実施例6
塩化イットリウムをイットリア濃度が2.5モル%になるように添加した以外は、実施例2と同様の条件で行った。
得られたジルコニア-アルミナ複合粉末の特性を表1に、焼結体の特性と劣化加速試験後の単斜晶率を表2にそれぞれ示す。
実施例7
塩化イットリウムをイットリア濃度が3.5モル%になるように添加した以外は、実施例2と同様の条件で行った。
得られたジルコニア-アルミナ複合粉末の特性を表1に、焼結体の特性と劣化加速試験後の単斜晶率を表2にそれぞれ示す。
実施例8
950℃の温度で2時間仮焼し、かつ、1250℃で予備焼結させ、次いで1300℃でHIP処理した以外は、実施例2と同様の方法で行った。ジルコニア粉末のBET比表面積と平均粒径は、それぞれ20m2/g、0.25μmであった。
得られたジルコニア-アルミナ複合粉末の特性を表1に、焼結体の特性と劣化加速試験後の単斜晶率を表2にそれぞれ示す。
実施例9
1080℃の温度で2時間仮焼し、1400℃で焼結させた以外は、実施例1と同様の方法で行った。ジルコニア粉末のBET比表面積と平均粒径は、それぞれ8.5m2/g、0.5μmであった。
得られたジルコニア-アルミナ複合粉末の特性を表1に、焼結体の特性と劣化加速試験後の単斜晶率を表2にそれぞれ示す。
1080℃の温度で2時間仮焼し、1400℃で焼結させた以外は、実施例1と同様の方法で行った。ジルコニア粉末のBET比表面積と平均粒径は、それぞれ8.5m2/g、0.5μmであった。
得られたジルコニア-アルミナ複合粉末の特性を表1に、焼結体の特性と劣化加速試験後の単斜晶率を表2にそれぞれ示す。
実施例10
実施例9と同様の方法で得られたジルコニア-アルミナ複合粉末をプレス成形し、1350℃で予備焼結させ、次いで1400℃の温度でHIP処理した。
得られたジルコニア-アルミナ複合焼結体の特性と劣化加速試験後の単斜晶率を表2に示す。
実施例9と同様の方法で得られたジルコニア-アルミナ複合粉末をプレス成形し、1350℃で予備焼結させ、次いで1400℃の温度でHIP処理した。
得られたジルコニア-アルミナ複合焼結体の特性と劣化加速試験後の単斜晶率を表2に示す。
比較例1
1500℃で焼結させた以外は、実施例1と同様の方法で焼結体を得た。得られた焼結体の特性と劣化加速試験後の単斜晶率を表2に示す。
比較例2
1500℃の温度でHIP処理した以外は、実施例2と同様の方法で焼結体を得た。得られた焼結体の特性と劣化加速試験後の単斜晶率を表2に示す。
1500℃で焼結させた以外は、実施例1と同様の方法で焼結体を得た。得られた焼結体の特性と劣化加速試験後の単斜晶率を表2に示す。
比較例2
1500℃の温度でHIP処理した以外は、実施例2と同様の方法で焼結体を得た。得られた焼結体の特性と劣化加速試験後の単斜晶率を表2に示す。
比較例3
実施例1の水和ジルコニアゾルに、塩化イットリウムをイットリア濃度が3.0モル%になるように添加して乾燥させ、1100℃の温度で2時間仮焼した。
得られた仮焼粉を水洗処理したあとに、BET比表面積7m2/g及び平均粒径0.6μmのアルミナ粉末を用いて、アルミナ濃度が20重量%になるように混合し、湿式粉砕して、静置乾燥機を用いて乾燥させた。得られたジルコニア-アルミナ複合粉末の特性を表1に示す。このアルミナ粉末の焼結性を調べるために、成形圧力200MPaでCIP成形して1300℃で焼結すると、得られたアルミナ焼結体の相対密度は93.4%であった。
次いで、上記で得られたジルコニア-アルミナ複合粉末を成形し、得られた成形体を1350℃、1400℃で焼結したところ、焼結体の相対密度がそれぞれ88.7%、95.8%と低かったので、さらに高い温度である1500℃で焼結させた。
得られた焼結体の特性と劣化加速試験後の単斜晶率を表2に示す。
実施例1の水和ジルコニアゾルに、塩化イットリウムをイットリア濃度が3.0モル%になるように添加して乾燥させ、1100℃の温度で2時間仮焼した。
得られた仮焼粉を水洗処理したあとに、BET比表面積7m2/g及び平均粒径0.6μmのアルミナ粉末を用いて、アルミナ濃度が20重量%になるように混合し、湿式粉砕して、静置乾燥機を用いて乾燥させた。得られたジルコニア-アルミナ複合粉末の特性を表1に示す。このアルミナ粉末の焼結性を調べるために、成形圧力200MPaでCIP成形して1300℃で焼結すると、得られたアルミナ焼結体の相対密度は93.4%であった。
次いで、上記で得られたジルコニア-アルミナ複合粉末を成形し、得られた成形体を1350℃、1400℃で焼結したところ、焼結体の相対密度がそれぞれ88.7%、95.8%と低かったので、さらに高い温度である1500℃で焼結させた。
得られた焼結体の特性と劣化加速試験後の単斜晶率を表2に示す。
比較例4
比較例1のジルコニア-アルミナ複合粉末をプレス成形し、1450℃で予備焼結させ、1500℃の温度でHIP処理した以外は、比較例1と同様の条件で行った。
得られた焼結体の特性と劣化加速試験後の単斜晶率を表2に示す。
比較例1のジルコニア-アルミナ複合粉末をプレス成形し、1450℃で予備焼結させ、1500℃の温度でHIP処理した以外は、比較例1と同様の条件で行った。
得られた焼結体の特性と劣化加速試験後の単斜晶率を表2に示す。
比較例5
オキシ塩化ジルコニウム濃度0.25モル/リットルの水溶液を調製し、煮沸温度で150時間、加水分解反応を行って水和ジルコニアゾルを得た。この水和ジルコニアゾル含有液に所定量の塩化イットリウムと塩化アルミニウムを添加して混合溶液(重量52.5kg)を調製した。次に、この混合溶液を攪拌しながら0.6モル/リットルのアンモニア水を5.25kg/時間の添加速度で混合溶液に加えて共沈物を生成させ、濾過し水洗して乾燥させた。得られた乾燥粉について化学分析を行ったところ、イットリア濃度3モル%及びアルミナ含有量1重量%であった。
この乾燥粉を950℃の温度で2時間仮焼して仮焼粉を得た。この仮焼粉に、BET比表面積14m2/g及び平均粒径0.4μmのアルミナ粉末をアルミナ含有量が20重量%になるように混合し、蒸留水を添加し、湿式粉砕してスラリーを得、次いで、得られたスラリーを噴霧乾燥機を用いて造粒して顆粒を得た。得られたジルコニア-アルミナ複合粉末の特性を表1に示す。このアルミナ粉末の焼結性を調べるために、成形圧力200MPaでCIP成形して1300℃で焼結すると、得られたアルミナ焼結体の相対密度は96.3%であった。
次いで、上記で得られたジルコニア-アルミナ複合粉末を成形し、得られた成形体を1500℃で焼結させた。
得られた焼結体の特性と劣化加速試験後の単斜晶率を表2に示す。
オキシ塩化ジルコニウム濃度0.25モル/リットルの水溶液を調製し、煮沸温度で150時間、加水分解反応を行って水和ジルコニアゾルを得た。この水和ジルコニアゾル含有液に所定量の塩化イットリウムと塩化アルミニウムを添加して混合溶液(重量52.5kg)を調製した。次に、この混合溶液を攪拌しながら0.6モル/リットルのアンモニア水を5.25kg/時間の添加速度で混合溶液に加えて共沈物を生成させ、濾過し水洗して乾燥させた。得られた乾燥粉について化学分析を行ったところ、イットリア濃度3モル%及びアルミナ含有量1重量%であった。
この乾燥粉を950℃の温度で2時間仮焼して仮焼粉を得た。この仮焼粉に、BET比表面積14m2/g及び平均粒径0.4μmのアルミナ粉末をアルミナ含有量が20重量%になるように混合し、蒸留水を添加し、湿式粉砕してスラリーを得、次いで、得られたスラリーを噴霧乾燥機を用いて造粒して顆粒を得た。得られたジルコニア-アルミナ複合粉末の特性を表1に示す。このアルミナ粉末の焼結性を調べるために、成形圧力200MPaでCIP成形して1300℃で焼結すると、得られたアルミナ焼結体の相対密度は96.3%であった。
次いで、上記で得られたジルコニア-アルミナ複合粉末を成形し、得られた成形体を1500℃で焼結させた。
得られた焼結体の特性と劣化加速試験後の単斜晶率を表2に示す。
比較例6
1400℃で予備焼結させ、1500℃の温度でHIP処理した以外は、比較例1と同様の方法で焼結体を得た。
得られたジルコニア-アルミナ複合焼結体の特性と劣化加速試験後の単斜晶率を表2に示す。
比較例7
実施例1と同様の方法で得られたジルコニア-アルミナ複合粉末をプレス成形し、1400℃で予備焼結させ、次いで1450℃の温度でHIP処理した。
得られたジルコニア-アルミナ複合焼結体の特性と劣化加速試験後の単斜晶率を表2に示す。
1400℃で予備焼結させ、1500℃の温度でHIP処理した以外は、比較例1と同様の方法で焼結体を得た。
得られたジルコニア-アルミナ複合焼結体の特性と劣化加速試験後の単斜晶率を表2に示す。
比較例7
実施例1と同様の方法で得られたジルコニア-アルミナ複合粉末をプレス成形し、1400℃で予備焼結させ、次いで1450℃の温度でHIP処理した。
得られたジルコニア-アルミナ複合焼結体の特性と劣化加速試験後の単斜晶率を表2に示す。
比較例8
オキシ塩化ジルコニウムと塩化イットリウムをイットリア濃度が2モル%となるように溶解させた水溶液を105℃で168時間加熱して加水分解し、更にアンモニア水を添加することにより、共沈物を形成させた後、該共沈物をろ過し、乾燥し、仮焼し、粉砕してBET比表面積20m2/g及び平均粒径0.8μmのジルコニア粉末を得た。次いで、このジルコニア粉末に、BET比表面積14m2/g及び平均粒径0.1μmのアルミナ粉末をアルミナ濃度が20重量%になるように混合し、エタノールを加えてボールミルで湿式混合し、エバポレーターを用いて乾燥させた。得られたジルコニア-アルミナ複合粉末の特性を表1に示す。
次いで、上記で得られたジルコニア-アルミナ複合粉末を成形し、1400℃で予備焼結させ、1350℃の温度でHIP処理した。
得られたジルコニア-アルミナ複合焼結体の特性と劣化加速試験後の単斜晶率を表2に示す。
オキシ塩化ジルコニウムと塩化イットリウムをイットリア濃度が2モル%となるように溶解させた水溶液を105℃で168時間加熱して加水分解し、更にアンモニア水を添加することにより、共沈物を形成させた後、該共沈物をろ過し、乾燥し、仮焼し、粉砕してBET比表面積20m2/g及び平均粒径0.8μmのジルコニア粉末を得た。次いで、このジルコニア粉末に、BET比表面積14m2/g及び平均粒径0.1μmのアルミナ粉末をアルミナ濃度が20重量%になるように混合し、エタノールを加えてボールミルで湿式混合し、エバポレーターを用いて乾燥させた。得られたジルコニア-アルミナ複合粉末の特性を表1に示す。
次いで、上記で得られたジルコニア-アルミナ複合粉末を成形し、1400℃で予備焼結させ、1350℃の温度でHIP処理した。
得られたジルコニア-アルミナ複合焼結体の特性と劣化加速試験後の単斜晶率を表2に示す。
比較例9
比較例8と同様の方法で得られたジルコニア-アルミナ複合粉末をプレス成形し、1400℃で焼結させた。
得られたジルコニア-アルミナ複合焼結体の特性と劣化加速試験後の単斜晶率を表2に示す。
比較例10
塩化イットリウムをイットリア濃度が3モル%となるように溶解させ、かつ、平均粒径0.2μmのアルミナ粉末をアルミナ濃度が17重量%になるように混合して蒸留水を加えて振動ミルで湿式粉砕し、更に、1400℃で予備焼結させて1425℃の温度でHIP処理した以外は、比較例8と同様の方法で行った。
得られたジルコニア-アルミナ複合粉末の特性を表1に、焼結体の特性と劣化加速試験後の単斜晶率を表2にそれぞれ示す。
比較例8と同様の方法で得られたジルコニア-アルミナ複合粉末をプレス成形し、1400℃で焼結させた。
得られたジルコニア-アルミナ複合焼結体の特性と劣化加速試験後の単斜晶率を表2に示す。
比較例10
塩化イットリウムをイットリア濃度が3モル%となるように溶解させ、かつ、平均粒径0.2μmのアルミナ粉末をアルミナ濃度が17重量%になるように混合して蒸留水を加えて振動ミルで湿式粉砕し、更に、1400℃で予備焼結させて1425℃の温度でHIP処理した以外は、比較例8と同様の方法で行った。
得られたジルコニア-アルミナ複合粉末の特性を表1に、焼結体の特性と劣化加速試験後の単斜晶率を表2にそれぞれ示す。
比較例11
塩化イットリウムをイットリア濃度が3モル%となるように溶解させ、かつ、アルミナ濃度を15重量%になるように混合した以外は、比較例8と同様の方法で焼結体を得た。得られたジルコニア-アルミナ複合粉末の特性を表1に、焼結体の特性と劣化加速試験後の単斜晶率を表2にそれぞれ示す。
比較例12
比較例11と同様の方法で得られたジルコニア-アルミナ複合粉末をプレス成形し、1400℃で焼結させた。
得られたジルコニア-アルミナ複合焼結体の特性と劣化加速試験後の単斜晶率を表2に示す。
塩化イットリウムをイットリア濃度が3モル%となるように溶解させ、かつ、アルミナ濃度を15重量%になるように混合した以外は、比較例8と同様の方法で焼結体を得た。得られたジルコニア-アルミナ複合粉末の特性を表1に、焼結体の特性と劣化加速試験後の単斜晶率を表2にそれぞれ示す。
比較例12
比較例11と同様の方法で得られたジルコニア-アルミナ複合粉末をプレス成形し、1400℃で焼結させた。
得られたジルコニア-アルミナ複合焼結体の特性と劣化加速試験後の単斜晶率を表2に示す。
本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
なお、本出願は、2012年12月21日付で出願された日本国特許出願(特願2012-279644)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
なお、本出願は、2012年12月21日付で出願された日本国特許出願(特願2012-279644)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
本発明のジルコニア-アルミナ複合焼結体は、切断工具、ダイス、ノズル、ベアリング等の構造部材用途や装飾品に有用である。
Claims (5)
- イットリアを2~4モル%含むジルコニア50~95重量%とアルミナ5~50重量%とからなるジルコニア-アルミナ複合焼結体であり、該ジルコニア-アルミナ複合焼結体の相対密度が98%以上、ジルコニア結晶粒子とアルミナ結晶粒子からなる混合粒子の平均粒径が0.4μm以下、ジルコニア結晶相の正方晶率が83重量%以上、かつ、20個以上のアルミナ結晶粒子からなる粗大アルミナ多結晶粒子の個数が、電界放出形走査型電子顕微鏡による240μm×180μmの視野中に1個以下であるジルコニア-アルミナ複合焼結体。
- 焼結体全体を140℃熱水中に60時間浸漬させた後の焼結体中の単斜晶存在比率が10%以下である請求項1記載のジルコニア-アルミナ複合焼結体。
- ジルコニウム塩水溶液の加水分解で得られる反応率が98%以上の水和ジルコニアゾルに、イットリウム化合物を酸化物換算で2~4モル%添加して乾燥させ、900~1100℃の範囲で仮焼して得られる仮焼粉に、アルミニウム化合物を酸化物換算として0.05~1重量%添加してBET比表面積9~20m2/g及び平均粒径が0.5μm以下になるまで粉砕して、さらにBET比表面積10~20m2/g及び平均粒径が0.5μm以下のアルミナ粉末をアルミナ濃度が5~50重量%になるように混合し粉砕して得られる混合粉末を得、次いで該混合粉末を成形して、1200~1400℃で焼結する請求項1または請求項2記載のジルコニア-アルミナ複合焼結体の製造方法。
- イットリアを2~4モル%含むジルコニア50~95重量%とアルミナ5~50重量%とからなるジルコニア-アルミナ複合粉末であり、該ジルコニア-アルミナ複合粉末のBET比表面積が9~20m2/g、かつ、ジルコニアの単斜晶率が35~60%であるジルコニア-アルミナ複合粉末。
- 請求項4に記載のジルコニア-アルミナ複合粉末をスラリーにして噴霧造粒することにより得られ、平均粒径が30~80μm、軽装嵩密度が1.00~1.40g/cm3であるジルコニア-アルミナ複合顆粒。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-279644 | 2012-12-21 | ||
JP2012279644 | 2012-12-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014098208A1 true WO2014098208A1 (ja) | 2014-06-26 |
Family
ID=50978524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/084199 WO2014098208A1 (ja) | 2012-12-21 | 2013-12-20 | ジルコニア-アルミナ複合焼結体及びその製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6260226B2 (ja) |
TW (1) | TW201427923A (ja) |
WO (1) | WO2014098208A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111201208B (zh) * | 2017-10-05 | 2023-05-23 | 阔斯泰公司 | 氧化铝质烧结体及其制造方法 |
JP7181827B2 (ja) * | 2019-03-28 | 2022-12-01 | 三菱マテリアル電子化成株式会社 | アルミナにより被覆された窒化ジルコニウム粉末及びその製造方法 |
JP2021088501A (ja) * | 2019-04-25 | 2021-06-10 | 東ソー株式会社 | 焼結体、粉末及びその製造方法 |
CN113773077A (zh) * | 2021-10-08 | 2021-12-10 | 宜兴市运博科技有限公司 | 一种复合陶瓷及其制备方法和在制备直线导轨中的应用 |
CN116409990A (zh) * | 2021-12-31 | 2023-07-11 | 万华化学集团股份有限公司 | 一种氧化锆陶瓷及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004143031A (ja) * | 2002-05-20 | 2004-05-20 | Tosoh Corp | セラミックス及びその製造方法 |
JP2006240928A (ja) * | 2005-03-04 | 2006-09-14 | Tosoh Corp | ジルコニア微粉末及びその製造方法 |
JP2008081325A (ja) * | 2006-09-25 | 2008-04-10 | Tosoh Corp | ジルコニア微粉末及びその製造方法 |
JP2008150220A (ja) * | 2006-12-14 | 2008-07-03 | Toray Ind Inc | アルミナ−ジルコニア複合粉末およびその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2671929B2 (ja) * | 1989-03-30 | 1997-11-05 | 日本タングステン株式会社 | ジルコニア系セラミック材料とその製造法 |
JP2976226B2 (ja) * | 1989-06-08 | 1999-11-10 | 工業技術院長 | アルミナ・ジルコニア系焼結体の製造法 |
JP2645894B2 (ja) * | 1989-08-23 | 1997-08-25 | 住友大阪セメント株式会社 | ジルコニア系セラミックスの製造方法 |
JPH03218967A (ja) * | 1989-11-06 | 1991-09-26 | Osaka Cement Co Ltd | 高強度アルミナ―ジルコニア系セラミックス焼結体 |
JPH10194743A (ja) * | 1996-12-27 | 1998-07-28 | Tosoh Corp | ジルコニア−アルミナ顆粒及びその製造方法 |
-
2013
- 2013-11-22 JP JP2013242386A patent/JP6260226B2/ja active Active
- 2013-12-19 TW TW102147062A patent/TW201427923A/zh unknown
- 2013-12-20 WO PCT/JP2013/084199 patent/WO2014098208A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004143031A (ja) * | 2002-05-20 | 2004-05-20 | Tosoh Corp | セラミックス及びその製造方法 |
JP2006240928A (ja) * | 2005-03-04 | 2006-09-14 | Tosoh Corp | ジルコニア微粉末及びその製造方法 |
JP2008081325A (ja) * | 2006-09-25 | 2008-04-10 | Tosoh Corp | ジルコニア微粉末及びその製造方法 |
JP2008150220A (ja) * | 2006-12-14 | 2008-07-03 | Toray Ind Inc | アルミナ−ジルコニア複合粉末およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201427923A (zh) | 2014-07-16 |
JP2014139123A (ja) | 2014-07-31 |
JP6260226B2 (ja) | 2018-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7077552B2 (ja) | ジルコニア焼結体及びその製造方法 | |
JP5034349B2 (ja) | ジルコニア微粉末及びその製造方法並びにその用途 | |
JP6260226B2 (ja) | ジルコニア−アルミナ複合焼結体及びその製造方法 | |
JP5061554B2 (ja) | ジルコニア微粉末及びその製造方法 | |
JP6221698B2 (ja) | ピンク色ジルコニア焼結体 | |
JP5356639B2 (ja) | ジルコニア微粉末及びその製造方法 | |
JP2024138111A (ja) | 焼結体、粉末及びその製造方法 | |
JP4670227B2 (ja) | ジルコニアセラミックス及びその製造方法 | |
JP2018172263A (ja) | ジルコニア粉末及びその製造方法 | |
JPH05193948A (ja) | ジルコニア粉末およびその製造方法 | |
JP6665542B2 (ja) | ジルコニア粉末及びその製造方法 | |
US11746054B2 (en) | Zirconia sintered body and method for manufacturing the same | |
JP4253877B2 (ja) | ジルコニア微粉末及びその製造方法 | |
JP6236883B2 (ja) | 透光性ジルコニア焼結体及びその製造方法 | |
JP6405699B2 (ja) | ジルコニア焼結体及びその製造方法 | |
JP6221434B2 (ja) | ジルコニア焼結体及びその製造方法 | |
JP6862702B2 (ja) | ジルコニア仮焼体及びその製造方法 | |
CN118265683A (zh) | 烧结氧化锆珠粒 | |
JP2001080962A (ja) | ジルコニア焼結体及びその製造方法 | |
JP6502495B2 (ja) | 制御されたサイズ分布を有するセラミック粉末 | |
JP6340879B2 (ja) | ジルコニア焼結体及びその製造方法 | |
JP2023524381A (ja) | 焼結されたジルコニアボール | |
Grabis et al. | Characteristics and sinterability of ceria stabilized zirconia nanoparticles prepared by chemical methods | |
JP6340880B2 (ja) | ジルコニア焼結体及びその製造法 | |
JP2006143551A (ja) | ジルコニア粉末 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13864742 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13864742 Country of ref document: EP Kind code of ref document: A1 |