WO2014084202A1 - トルクロッド - Google Patents

トルクロッド Download PDF

Info

Publication number
WO2014084202A1
WO2014084202A1 PCT/JP2013/081749 JP2013081749W WO2014084202A1 WO 2014084202 A1 WO2014084202 A1 WO 2014084202A1 JP 2013081749 W JP2013081749 W JP 2013081749W WO 2014084202 A1 WO2014084202 A1 WO 2014084202A1
Authority
WO
WIPO (PCT)
Prior art keywords
spring
axis
torque rod
axis direction
ring
Prior art date
Application number
PCT/JP2013/081749
Other languages
English (en)
French (fr)
Inventor
仁司 島田
Original Assignee
山下ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山下ゴム株式会社 filed Critical 山下ゴム株式会社
Priority to CN201380060769.6A priority Critical patent/CN104797845B/zh
Priority to DE112013005670.4T priority patent/DE112013005670T5/de
Priority to US14/646,060 priority patent/US9611916B2/en
Publication of WO2014084202A1 publication Critical patent/WO2014084202A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/08Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal
    • F16F15/085Use of both rubber and metal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/3842Method of assembly, production or treatment; Mounting thereof
    • F16F1/3849Mounting brackets therefor, e.g. stamped steel brackets; Restraining links
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/12Arrangement of engine supports
    • B60K5/1208Resilient supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/12Arrangement of engine supports
    • B60K5/1241Link-type support
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/387Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type comprising means for modifying the rigidity in particular directions
    • F16F1/3873Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type comprising means for modifying the rigidity in particular directions having holes or openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F3/00Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic
    • F16F3/08Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of a material having high internal friction, e.g. rubber
    • F16F3/10Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of a material having high internal friction, e.g. rubber combined with springs made of steel or other material having low internal friction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2236/00Mode of stressing of basic spring or damper elements or devices incorporating such elements
    • F16F2236/12Mode of stressing of basic spring or damper elements or devices incorporating such elements loaded in combined stresses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2238/00Type of springs or dampers
    • F16F2238/02Springs
    • F16F2238/024Springs torsional

Definitions

  • the present invention relates to a torque rod used for vibration-proofing an automobile engine to a vehicle body.
  • a torque rod is known as an example of an anti-vibration device that provides anti-vibration support for an automobile engine to a vehicle body.
  • This torque rod has a rod-shaped rod body and vibration-proof connection portions having bushes provided at both ends in the longitudinal direction, and the vibration-proof connection portions are respectively attached to the engine and the vehicle body.
  • the anti-vibration connecting portion includes an inner member attached to the engine or the vehicle body, a ring-shaped member integrated with the rod body, and an insulator including an elastic anti-vibration member such as rubber that connects the ring-shaped member and the inner member. .
  • the inner member is attached to the vehicle body side by a vehicle body attachment shaft such as a bolt.
  • the insulator includes an elastic arm portion extending from the inner member to both sides with respect to the input direction of the main vibration.
  • the extended end of the arm is constrained by a ring-shaped member, and the spring of the elastic arm is different in the three orthogonal directions of the inner member.
  • the inner member in the central axis direction (the axial direction of the vehicle body mounting axis) is the Z axis
  • the main vibration input direction orthogonal to this is the X axis
  • these X axis and Z axis A direction perpendicular to each other is taken as a Y axis.
  • the Z direction (direction parallel to the Z axis) is a Z spring
  • the X direction (direction parallel to the X axis) is an X spring
  • Y The direction (direction parallel to the Y axis) is defined as a Y spring.
  • FIG. 6 is a graph showing the vibration transmission characteristics of the torque rod, with the vertical axis representing the vibration transmission performance and the horizontal axis representing the rigid resonance frequency of the torque rod.
  • FIG. 6 two vibration transmission characteristics before and after frequency movement are shown for the vibration transmission characteristics of the torque rod.
  • Each of these two characteristic curves has a similar substantially mountain shape, and the frequencies F0 and F1 at the peaks P0 and P1 of the characteristic curves respectively indicate the peak frequencies of the rigid resonance.
  • the one before the frequency shift has no special means for lowering the resonance frequency as in the present invention described later, and the peak P1 has a relatively high resonance frequency F1.
  • the peak P0 in the characteristic curve after the frequency shift to which a special device for reducing the resonance frequency is applied is a low resonance frequency F0.
  • the vibration transmission performance at the highly sensitive frequency FQ on the vehicle body side is Q1
  • the level of this vibration transmission performance Q1 is the vibration transmission performance due to the influence of the rigid resonance of the torque rod.
  • the vibration of the engine is relatively easy to be transmitted to the vehicle body side, and the vibration isolation is insufficient.
  • vibration isolation can be realized by shifting the characteristic curve from P0 to P1 approximately in parallel so that the frequency curve is shifted. This movement of the peak is nothing but to move the rigid resonance frequency of the torque rod from F1 to F0. Therefore, if the rigid resonance frequency of the torque rod can be lowered so as to deviate from the sensitive frequency FQ on the vehicle body side, the necessary vibration isolation effect can be produced. It is required to make it possible.
  • the frequency of the rigid body resonance is proportional to the square root of the spring and inversely proportional to the square root of the weight in the vibration system composed of the spring and the weight. Therefore, it is known that the frequency of rigid resonance can be lowered by reducing the spring or increasing the weight.
  • torque rods are required to be as light as possible due to the basic design requirements of reducing the weight of the vehicle, and it is not possible to adjust the frequency of the rigid body resonance by increasing the weight. For this reason, it is also required to enable the frequency adjustment of the rigid resonance while reducing the weight of the torque rod.
  • the spring ratio of the springs in the XYZ directions be within a predetermined range.
  • the X spring which is the main body of vibration isolation. Therefore, it is also desired to adjust the spring so that the spring ratio of the Y spring and the Z spring relative to the X spring can be adjusted while maintaining the X spring in a predetermined range. Therefore, the present application aims to realize these requirements.
  • the invention described in claim 1 includes a rod body that is a longitudinal member, and a small ball portion (11a) and a large ball that are a pair of vibration-proof connecting portions that are provided at both ends in the longitudinal direction.
  • a small ball portion (11a) and a large ball that are a pair of vibration-proof connecting portions that are provided at both ends in the longitudinal direction.
  • At least the large ball portion (11b) of the anti-vibration connecting portion includes a ring-shaped member (14) provided on the rod body (10), an inner member (20) disposed at the center thereof, and these inner members.
  • an elastic insulator (22) for elastically coupling the ring
  • the central axis of the inner member (20) is the Z axis
  • the main vibration input axis orthogonal to the X axis is the X axis
  • the axes orthogonal to the Z axis and the X axis are the Y axis
  • a spring adjustment recess (32) is provided in the insulator (22), At least by changing the spring ratio of the X-axis spring and the Z-axis spring, It is characterized by controlling the frequency of rigid body resonance in the Z-axis direction.
  • the invention described in claim 2 is the torque rod according to claim 1, wherein
  • the spring adjustment recess (32) is a groove, and the spring ratio of each spring in the X-axis direction, the Y-axis direction, and the Z-axis direction can be adjusted by adjusting the depth and width thereof.
  • the invention described in claim 3 is the torque rod according to claim 1 or 2, wherein
  • the insulator (22) has an elastic arm portion (30) extending from the inner member (20) to both sides of the X axis and having an extended end connected to the ring-shaped member (14) and restrained.
  • the spring adjusting recess (32) is provided at a part of a base portion of the elastic arm (30) with the ring-shaped member (14) so as not to be restrained by the ring-shaped member (14).
  • the invention described in claim 4 is the torque rod according to any one of claims 1 to 3, wherein
  • the spring adjustment recess (32) is provided on the elastic arm portion (30) at the outer side in the Y-axis direction than the spring region (38) which is the main body of the spring action when the main vibration is input.
  • the invention described in claim 5 is the torque rod according to any one of claims 1 to 4, wherein In the insulator (22), a first straightening that penetrates in the Z-axis direction on both sides of the inner member (20) in the X-axis direction and extends on both sides of the X-axis with the elastic arm portion (30) interposed therebetween ( 24) and a second curb (26) are provided,
  • the spring adjusting recess (32) is formed by cutting the elastic arm (30) in the X-axis direction from the first curl (24) or the second curl (26).
  • the invention described in claim 6 is the torque rod according to any one of claims 1 to 5, wherein
  • the elastic arm (30) The region (38) sandwiched between the tangent line L1 and the straight line L2 is a spring region that is the main component of the spring action when the main vibration is input,
  • the spring adjusting recess (32) is provided outside the region (38) in the Y-axis direction.
  • a seventh aspect of the present invention is the torque rod according to any one of the first to sixth aspects, wherein the spring adjusting recess (32) has a slit shape.
  • the invention described in claim 8 is the torque rod according to any one of claims 1 to 7, wherein
  • the rod body (10) and the ring-shaped member (14) are integrally formed of a nonmetal having a specific gravity smaller than 2.7.
  • the insulator (22) with the spring adjusting recess (32) at least the X-axis spring (X spring) and the Z-axis direction spring are provided.
  • the frequency of the rigid resonance in the Z-axis direction of the torque rod can be controlled by changing the spring ratio with the spring (Z spring). Therefore, by adjusting the frequency of the rigid resonance so as to deviate from the frequency with high sensitivity on the vehicle body side by the spring adjustment recess (32), a vibration blocking effect is produced and vibration transmission to the vehicle body side can be suppressed.
  • the spring adjustment recess (32) when the spring adjustment recess (32) is a groove and the depth and width thereof are adjusted, the springs in the X-axis direction, the Y-axis direction, and the Z-axis direction change.
  • the spring ratio can be adjusted. Therefore, not only the frequency control of the rigid body resonance but also the spring ratio in each of the XYZ directions can be adjusted by the spring adjustment recess (32).
  • the spring adjustment recess (32) is formed in the elastic arm (30). Since the spring adjustment recess (32) that is not constrained by the ring-shaped member (14) is provided at a part of the base of the elastic arm (30) with the ring-shaped member (14), it is the input direction of the main vibration.
  • the Z spring which is the central axis direction of the inner member (20), can be greatly lowered while maintaining the X spring at a predetermined size. For this reason, it is possible to reduce the frequency of the rigid resonance in the Z direction by reducing the Z spring without affecting the X spring necessary for absorbing the main vibration. As a result, vibration isolation to the vehicle body can be effectively performed.
  • the adjustment of the Z spring is merely to provide the spring adjustment recess (32) in a part of the elastic arm portion (30), and does not increase the weight.
  • the frequency can be lowered.
  • the XZ spring ratio can be changed greatly to obtain an XZ spring ratio that could not be realized in the past, the control range of the XZ spring ratio is expanded, and the degree of freedom in tuning can be improved. .
  • the spring adjustment recess (32) is located outside the Y-axis direction in the elastic arm portion (30) with respect to the spring region (38) that is the main body of the spring action when the main vibration is input. Therefore, even if the spring adjusting recess (32) is provided, the influence on the X spring can be reduced.
  • the spring adjusting recess (32) is formed by cutting the elastic arm portion (30) in the X-axis direction from the first curl (24) or the second curl (26).
  • the unconstrained portion that is not restrained by the ring-shaped member (14) in the elastic arm portion (30) can be easily formed.
  • the tangent in the X-axis direction of the inner member (20) is L1
  • the straight line passing through the Y-axis direction end of the second straight (26) in parallel with the tangent is L2.
  • the region (38) sandwiched between the tangent L1 and the straight line L2 in the elastic arm portion (30) becomes a spring region that is the main body of the spring action when the main vibration is input.
  • the spring adjusting recess (32) is formed in a slit shape, it can be made extremely small, can be easily formed, and can suppress the influence on the Y spring as much as possible. it can.
  • the torque rod can be reduced in weight as much as possible.
  • the reduction of the Z spring can reduce the frequency of the rigid body resonance in the Z direction, and both the weight reduction and the frequency reduction of the rigid body resonance can be achieved.
  • FIG. 3 Front view of torque rod according to the embodiment
  • Enlarged view of the main part in FIG. Graph showing the relationship between resonance frequency and vibration transfer performance
  • Graph showing the relationship between torque rod weight and rigid resonance frequency
  • Graph showing the relationship between the spring adjustment recess depth and spring value
  • Graph showing the relationship between the depth of the spring adjustment recess and the XZ spring ratio
  • Graph showing the relationship between the depth of the spring adjustment recess and the Y spring Graph showing the relationship between the width of the spring adjustment recess and the X spring
  • FIG. 1 is a front view
  • FIG. 2 is a plan view
  • FIG. 3 is a plan view of a large ball portion
  • FIG. 4 is a sectional view taken along line 4-4 of FIG.
  • This torque rod includes a rod body 10 having a round bar shape and a small ball portion 11a and a large ball portion 11b which are a pair of vibration-proof connecting portions of different sizes provided at both ends in the longitudinal direction.
  • the small lobed portion 11 a includes a first ring-shaped member 12, a first inner member 16 disposed at the center thereof, the first inner member 16 and the first ring-shaped member 12.
  • the first insulator 18 made of an appropriate elastic member such as rubber filled between the first ring 18 and the first inner member 16 is elastically coupled by the first insulator 18.
  • the elastic coupling by the first insulator 18 can be variously such as adhesion by vulcanization or the like, pressure welding by fitting, and the like.
  • the first inner member 16 is attached to an engine (not shown).
  • the large large ball portion 11b includes a second ring-shaped member 14, a second inner member 20 disposed at the center thereof, and rubber or the like filled between the second inner member 20 and the second ring-shaped member 14 as appropriate.
  • a second insulator 22 made of an elastic member is provided, and the second ring-like member 14 and the second inner member 20 are elastically coupled by the second insulator 22.
  • the elastic coupling by the second insulator 22 can be variously such as adhesion by vulcanization or the like, pressure welding by fitting, and the like.
  • the second inner member 20 has a cylindrical shape and is attached to the vehicle body side (not shown) through a bolt member (not shown) passed through the shaft hole.
  • the first ring-shaped member 12 and the second ring-shaped member 14 are integrally formed of a rigid material such as resin together with the rod body 10.
  • the first ring-shaped member 12 and the second ring-shaped member 14 each have a cylindrical shape, but the second ring-shaped member 14 has a larger diameter than the first ring-shaped member 12.
  • a center line connecting the centers of the first inner member 16 and the second inner member 20 is defined as C1.
  • C1 in the present embodiment is also the center line of the rod body 10.
  • the central axes of the first inner member 16 and the second inner member 20 are C2 and C3.
  • C2 and C3 are orthogonal to each other and are also orthogonal to C1.
  • C2 and C3 may be provided so as to be parallel to each other.
  • C1 is arranged in the front-rear direction (X-axis direction) of the vehicle
  • C2 is arranged in the left-right direction (Y-axis direction)
  • C3 is arranged in the up-down direction (Z-axis direction).
  • X, Y, and Z form three orthogonal axes that are orthogonal to each other at the central portions of the first inner member 16 and the second inner member 20, respectively.
  • the main vibration from the engine is input from the first inner member 16 to the small ball portion 11a on the small side, passes through the rod body 10 along the center line C1, and passes through the large side. To the large ball portion 11b and further transmitted from the second inner member 20 to the vehicle body.
  • the second insulator 22 is provided with a first curl 24 and a second curl 26 before and after the second inner member 20.
  • the first curl 24 is provided in front of the second inner member 20, that is, on the side where the second inner member 20 and the second ring-shaped member 14 approach when main vibration is input, and the second curl 26 is provided on the second inner member 20.
  • the second inner member 20 and the second ring-shaped member 14 are provided rearward, that is, on the side where the second ring-shaped member 14 is separated when main vibration is input.
  • the first curls 24 and the second curls 26 are formed so as to extend symmetrically in the left-right direction across the X-axis and penetrate in the Z-axis direction.
  • the first curl 24 is larger than the second curl 26, and the end in the left-right direction reaches the vicinity of the second ring-shaped member 14 to form an enlarged hole 28.
  • the portion that is in front of the second inner member 20 and faces the second inner member 20 on the X axis forms a first stopper 21, and the second inner member 20 is in a second ring shape.
  • the second curb 26 has a relatively small amount of left and right extension and has a substantially inverted V shape. Of the rear edge of the second curb 26, the portion on the X-axis protrudes forward in a mountain shape. It is a stopper 27. The second stopper 27 prevents the rearward movement of the second inner member 20 by contacting the front edge when the second inner member 20 moves rearward relative to the second ring-shaped member 14. To do.
  • a portion of the second insulator 22 sandwiched between the first curl 24 and the second curl 26 forms an elastic arm portion 30 that projects to both sides in the Y direction across the second inner member 20.
  • This part is the part that forms each spring in each of the X, Y, and Z directions.
  • the springs in each of the X, Y, and Z directions are X springs, Y springs, and Z springs, and each X, Y, and Z directions.
  • the spring value is Ex ⁇ Ey ⁇ Ez, Ey>Ex> Ez.
  • the XZ spring ratio Ez / Ex which is the spring ratio of the X spring and the Z spring, is set to be about 0.36.
  • the extended end portions that are both ends in the Y-axis direction of the elastic arm portion 30 are constrained by the second ring-shaped member 14 by being coupled to the second ring-shaped member 14.
  • This extended end portion is a base portion 31 of the elastic arm portion 30 connected to the second ring-shaped member 14, and a spring adjustment concave portion 32 indicated by hatching is formed in this portion.
  • the spring adjusting recess 32 is provided for the purpose of reducing the Z spring by making a part of the extended end portion of the elastic arm portion 30 unconstrained with respect to the second ring-shaped member 14.
  • the front edge portion of the elastic arm portion 30 facing the portion 28 is cut rearward in parallel with the X axis, and in this example, it is a slit-shaped space.
  • the spring adjusting recess 32 can be said to be a recess that cuts into the elastic arm portion 30 from the enlarged hole portion 28 toward the inside of the thickness.
  • the front edge portion 23 has an arc shape similar to that of the second ring-shaped member 14 except for the first stopper 21. However, the first stopper 21 whose portion intersecting the X axis is substantially flat is formed. Further, the rear side of the edge portion surrounding the first curl 24 forms a front edge portion 30 a of the elastic arm portion 30.
  • the front edge portion 30a has a curved shape, and both ends of the Y-axis direction are widened with the front edge portion 23 to form enlarged hole portions 28. Both ends in the Y-axis direction of the front edge portion 30a extend toward the second ring-shaped member 14 and are connected to the spring adjustment recess 32, but the connection portion with the spring adjustment recess 32 is an acute bent portion 33. ing.
  • the spring adjustment recess 32 is less than the straight line L2.
  • a hatched area 38 surrounded by the tangent line L1 and the straight line L2 is a part that is mainly used to form the X spring when the main input is input in the X-axis direction. Therefore, the influence on the X spring is reduced by removing the spring adjusting recess 32 from the region 38.
  • the front side portion of the base portion 31 provided with the spring adjustment recess 32 of the elastic arm portion 30 is a portion that mainly receives a force in the pulling direction when elastically deforming when main vibration is input. This is a part that does not affect the size.
  • the phantom line portion in which the front edge portion 30a of the elastic arm portion 30 is extended from the bent portion 33 toward the second ring-shaped member 14 is opened.
  • the portion 34 is formed and corresponds to a portion formed by cutting out a part of the front edge portion 30 a by the spring adjustment recess 32, and the spring adjustment recess 32 is opened forward toward the first curl 24.
  • the spring adjustment recess 32 penetrates in the Z direction and forms an opening 34 that opens toward the enlarged hole 28 of the first curl 24.
  • the spring adjustment recess 32 is formed in a slit shape from the front edge portion facing the enlarged hole portion 28 of the first curl 24 in the X direction in a plan view of the second insulator 22.
  • the rear end portion 35 of the spring adjusting recess 32 is stopped within the thickness in the X-axis direction of the elastic arm portion 30 that is on the side of the second inner member 20.
  • the portion adjacent to the spring adjustment recess 32 inside the spring adjustment recess 32 (on the second inner member 20 side) becomes a non-restraining portion 36 that is not restrained by the second ring-shaped member 14.
  • the length from the open portion 34 to the rear end portion 35 is defined as the depth (cut depth) D of the spring adjustment recess 32, and the opening width of the spring adjustment recess 32 is defined as W.
  • the spring adjustment recess 32 is a part mainly related to the adjustment of the Z spring. Since the spring adjusting recess 32 prevents a part of the elastic arm portion 30 from being restrained by the second ring-shaped member 14, the Z spring Ez is significantly reduced. Therefore, the depth D is appropriately set so as to obtain a predetermined XZ spring ratio, Ez / Ex, as will be described later.
  • the influence of the opening width W is negligible, and the X spring has little influence by removing the spring adjustment recess 32 from the region 38 to the outside in the Y direction, and the Y spring does not have much influence unless the opening width W is too large. Not receive.
  • the spring adjustment recess 32 is appropriately provided mainly with the position and depth D provided.
  • the spring adjusting recess 32 it is sufficient if the spring adjusting recess 32 can be formed as a non-constrained portion from the second ring-shaped member 14 in a part of the second insulator 22.
  • the spring adjusting recess 32 has a rear end portion 35 that is more than the intersection point P (point indicated by an imaginary line) with the second ring-shaped member 14 when the front edge 30a is extended in the direction of the second ring-shaped member 14. What is necessary is just to become a recessed part which enters back.
  • FIG. 6 shows the vibration transfer characteristics before the frequency shift (conventional example) and the vibration transfer characteristics after the frequency shift (the present invention).
  • the vibration transfer characteristic after the frequency shift shows that the Z-spring is lowered due to the presence of the spring adjustment recess 32, so that the peak of the characteristic curve becomes P0, the frequency of the rigid resonance changes to F0, and the characteristic curve as a whole It is moving to the left side of in parallel.
  • FIG. 7 is a graph showing the relationship between the weight of the torque rod and the rigid resonance frequency, with the vertical axis representing the rigid resonance frequency and the horizontal axis representing the weight (square root) of the torque rod.
  • the rigid resonance frequency of the torque rod is affected by the weight, and as the weight increases, the rigid resonance frequency becomes lower along the characteristic line R that decreases to the right. Therefore, if resin torque rods 1 to 3 and aluminum alloy torque rods are prepared as samples and the respective weights are W1 to W4 (W1 ⁇ W2 ⁇ W3 ⁇ W4), the rigid resonance frequency is f1>f2> f3. > F4.
  • the weight of the torque rod is adjusted and the rigid body resonance frequency is set to f0 similar to the frequency F0 that produces the vibration isolation effect as shown in FIG. It is necessary to set the frequency f4).
  • the torque rod of the present invention is made of resin, the weight W0 is substantially the same as the weight W1 of the resin torque rod 1, and the weight of the aluminum alloy is reduced by reducing the Z spring by the spring adjustment recess 32.
  • the frequency of the rigid resonance realized by the torque rod is f0.
  • FIG. 8 shows changes in the depth D of the spring adjustment recess 32 and the spring values in the X and Z directions, with the horizontal axis representing the depth D and the vertical axis representing the spring value.
  • FIG. 9 is a graph showing the relationship between the depth D and the Z spring.
  • the horizontal axis represents the depth D
  • the vertical axis represents the XZ spring ratio (Ez / Ex) on the left side
  • Ez / Ex the spring value of the Z spring
  • the rate of decrease of the spring value with respect to the depth is different, and the rate of decrease is larger for the Z spring.
  • the X spring decreases.
  • the rate ⁇ X is about 10%, but the reduction rate ⁇ Z of the Z spring is reduced by about 30%. This difference in the reduction rate increases as the depth D increases. For this reason, as shown in FIG. 9, the XZ spring ratio Ez / Ex gradually decreases as the depth D increases.
  • the depth D when it is desired to set the XZ spring ratio Ez / Ex to 0.36, the depth is set to D36 (for example, about 12 mm) in FIG. At this time, the decrease rate ⁇ X of the X spring is about 10% (FIG. 8), and a practically sufficient spring value can be maintained. That is, a small XZ spring ratio Ez / Ex is possible while maintaining the spring value Ex of the X spring at a sufficient value. In this example, until the XZ spring ratio becomes 0.35, the X spring can maintain a practically sufficient spring value. In other words, the XZ spring ratio can be reduced to about 0.35.
  • the XZ spring ratio is reduced to a predetermined value (for example, about 0.46 shown in FIG. 9) or lower without lowering the X spring. There was a limit. However, as shown in FIG. 8, since the Z spring can be lowered while maintaining the practical range without reducing the X spring so much, the XZ spring ratio is set to 0, for example, without significantly affecting the X spring. It became possible to make it as small as .35.
  • the spring adjusting recess 32 is formed by cutting the elastic arm 30 so as to bite in the X-axis direction from the enlarged hole 28 of the first curl 24. For this reason, the spring adjusting recess 32 can easily form a non-restraining portion that is not restrained by the second ring-shaped member 14 at a part of the radial end portion of the elastic arm portion 30 that is connected to the second ring-shaped member 14. it can.
  • the spring adjusting recess 32 has a slit shape with a small opening width W, the influence on the X spring and the Y spring is reduced as much as possible. Therefore, the necessary spring value is secured without reducing the practically important X spring, and the Y spring. Also, the Z spring can be lowered greatly while maintaining a predetermined size. In addition, since the opening width W of the spring adjustment recess 32 can be made extremely small, there are less restrictions on the formation place, and the formation is facilitated.
  • FIG. 10 is a graph showing the relationship between the depth D of the spring adjustment recess 32 and the Y spring and XY spring ratio.
  • the horizontal axis represents the depth D
  • the vertical axis represents the XY spring ratio (Ey / Ex)
  • the right side The spring value Ey of the Y spring is taken.
  • the XY spring ratio is the XZ spring ratio. It means not changing as much. Further, it means that the spring ratio can be adjusted so that the XZ spring ratio changes more greatly than the XY spring ratio by the depth D of the spring adjustment recess 32.
  • FIG. 11 is a graph showing the relationship between the width W of the spring adjustment recess 32 and the X spring, with the horizontal axis indicating the width W and the vertical axis indicating the X spring value.
  • the X spring gradually decreases as the width W of the spring adjustment recess 32 increases.
  • the width W of the spring adjustment recess 32 is changed so as to increase toward the second inner member 20.
  • the X spring rapidly decreases as shown in FIG. Therefore, it can be seen that the spring adjusting recess 32 should be provided outside the line L2 in order not to reduce the X spring so much.
  • the spring ratio in the XYZ triaxial direction in particular, the XY spring ratio and the XZ spring ratio can be freely adjusted.
  • a cut-in spring adjustment recess 32 is provided at the connection portion of the elastic arm portion 30 with the second ring-shaped member 14 so that the non-restrained portion is not restrained by the second ring-shaped member 14.
  • the Z spring can be significantly reduced.
  • the spring ratio adjustment according to the depth of the spring adjustment recess 32 will be described.
  • the depth is D36 (for example, about 12 mm).
  • the decrease rate ⁇ X of the X spring is about 10% (FIG. 8), and a practically sufficient spring value can be maintained. That is, a small XZ spring ratio Ez / Ex is possible while maintaining the spring value Ex of the X spring at a sufficient value. In this example, until the XZ spring ratio becomes 0.35, the X spring can maintain a practically sufficient spring value. In other words, the XZ spring ratio can be reduced to about 0.35.
  • the XZ spring ratio is a ratio of each spring value of the zero depth X spring and the Z spring in FIG. 8, and Ez / Ex is about 0.46 as shown in FIG. Even if this numerical value is variously adjusted by changing the shape of the elastic arm portion 30 or the like, it is at most about 1: 0.45 to 0.46.
  • it has become possible to reduce the X spring to about 1: 0.35 to 0.36 without significantly affecting the X spring that is the main component of vibration isolation. As a result, a remarkably small XZ spring ratio that could not be realized in the past was made possible, and the control width was widened.
  • the difference ⁇ (Z / X) in the spring ratio at the depth D36 is about 0.1 with respect to the XZ spring ratio (corresponding to the conventional example) where the depth D is 0, and this difference ⁇ (Z / It is clear that the XZ spring ratio can be controlled to be remarkably reduced with the width of X).
  • the XZ spring ratio can be arbitrarily set to less than 0.45, which could not be realized in the past, by adding a simple configuration in which a relatively small spring adjustment recess 32 is provided and the depth D is adjusted. It became so.
  • the Z spring that is the main component of vibration isolation tends to be lowered. Therefore, it is difficult to make only the Z spring small while maintaining the X spring at a predetermined level or more. However, it has been required to make only the Z-spring smaller without affecting the structure. Further, in the XZ spring ratio (Z spring / X spring) indicating the relationship between the X spring and the Z spring, if the X spring is constant, it means that the smaller the XZ spring ratio is, the smaller the Z spring can be. However, for the same reason that it is difficult to make only the above-described Z spring smaller, there is a limit to making the XZ spring ratio smaller than a predetermined value, but it becomes possible to make the XZ spring ratio smaller. became.
  • the resonance frequency in the Z direction can be reduced in the rigid resonance of the torque rod.
  • the characteristic curve indicating the vibration transmission characteristic of the torque rod is before the frequency shift with the peak P1 (conventional example) and after the frequency shift with the peak P0 (the present invention).
  • the frequency of the rigid resonance decreases from F1 to F0. For this reason, the vibration transmission performance at the frequency FQ with high sensitivity on the vehicle body side decreases from Q1 to Q0, vibration transmitted to the vehicle body side can be suppressed, and a sufficient vibration blocking effect ⁇ Q can be realized.
  • the rigid resonance frequency of the torque rod generated by the vibration in the Z direction can be controlled.
  • the frequency of the rigid body resonance by the spring especially the vibration to be cut off is the vibration that is input in the vehicle body mounting axis direction (Z direction). Therefore, if the spring of the insulator in this direction, that is, the Z spring is reduced.
  • the vibration transmission to the vehicle body side can be suppressed by lowering the resonance frequency of the rigid body resonance input in the Z direction. As a result, vibration transmission characteristics to the vehicle body side can be lowered and vibration transmission can be suppressed.
  • the control range of the XZ spring ratio is expanded, the degree of freedom in tuning can be improved.
  • the XZ spring ratio can be adjusted by changing the width W of the spring adjustment recess 32.
  • the resonance frequency in the Z direction in the rigid resonance of the torque rod can be controlled relatively freely.
  • the spring ratio adjustment in the XYZ 3-axis directions by the spring adjustment recess 32 can be simultaneously performed.
  • the torque rod of the present invention is made of resin
  • the weight W0 is substantially the same as the weight W1 of the resin torque rod 1
  • the Z spring is reduced by the spring adjustment recess 32, so that The frequency f0 of the rigid body resonance realized by the heavy aluminum alloy torque rod can be realized.
  • the torque rod is also required to be as light as possible.
  • resin is adopted. Yes.
  • the resin torque rods 1 to 3 all have rigid resonance frequencies f1 to f3, which are higher than the target frequency f0. Therefore, the weight reduction of the torque rod and the reduction of the rigid resonance frequency cannot be achieved at the same time.
  • the torque rod is made of resin and the Z spring is reduced by the spring adjustment recess 32, it is possible to achieve both weight reduction of the torque rod and reduction of the rigid resonance frequency, and the weight reduction of the vehicle.
  • the request can be satisfied.
  • the torque rod can be made as light as possible by using resin.
  • the reduction of the Z spring is realized by providing the spring adjustment recess 32 at the base 31 of the elastic arm 30, so that it does not involve any weight increase, and conversely, the weight is reduced by the amount of the spring adjustment recess 32. To do. Therefore, regardless of whether the torque rod is made of resin, it is possible to achieve a reduction in the rigid resonance frequency without causing an increase in the weight of the torque rod. Moreover, it is not necessarily made of resin, and any non-metallic material can be used to reduce the weight as long as it has a specific gravity smaller than 2.7 of aluminum.
  • FIG. 12 is a view showing the same portion as FIG. 3 of another embodiment in which the opening width W of the spring adjusting recess 32 is increased.
  • symbol is used for the part which is common in the previous Example, and duplication description is abbreviate
  • the spring adjusting recess 32 of this embodiment is formed as a groove having an opening width W comparable to that of the enlarged hole portion 28, and the rear end portion is long so as to reach the position near the rear end portion of the second inner member 20. Is formed. However, in this example as well, consideration is given to forming the spring adjustment recess 32 outside the region 38.
  • the size of the opening width W can be arbitrarily set according to the size of the desired Y spring under the condition of being outside the region 38 (on the second ring-shaped member 14 side), as indicated by a virtual line in the drawing. Can be adjusted.
  • the spring adjustment recess 32 ⁇ / b> A may be formed as a through hole in the middle portion in the front-rear direction of the base portion 31 of the elastic arm portion 30.
  • the spring adjustment recess 32A is located outside the region 38 in the Y direction and is provided so as to avoid the spring region that is the main component of the spring action when the main vibration is input.
  • the width and length of the spring adjusting recess 32A can be arbitrarily set according to the specification.
  • the small arm portion 11a on the small side shown in FIGS. 1 and 2 can be provided with the elastic arm portion 30 and the spring adjusting recess 32 similar to those on the large ball portion 11b on the large side.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

主たる振動の入力方向におけるXバネの大きさを維持したまま、インナー部材の軸方向におけるZバネを下げて、XZバネ比(Zバネ値(Ez)/Xバネ値(Ex))の変化を大きくする。トルクロッドを構成する第2リング状部材(14)に、第2インナー部材(20)及び第2インシュレータ(22)を設け、第2インナー部材(20)を挟む前後に第1すぐり(24)、第2すぐり(26)を設ける。インシュレータ(22)はY軸方向に延びる弾性腕部(30)を有し、その第2リング状部材(14)に接続する付け根部に、第1すぐり(24)の端部からX軸方向へ切り込み状に食い込むバネ調整凹部(32)を設ける。バネ調整凹部(32)は弾性腕部(30)の第2リング状部材(14)による非拘束部をなし、Xバネの大きさを維持したままZバネを下げて、XZバネ比を大きく変化させることができる。

Description

トルクロッド
この発明は、自動車のエンジンを車体へ防振支持するために用いられるトルクロッドに関する。
自動車のエンジンを車体へ防振支持する防振装置の一例としてトルクロッドが公知である。このトルクロッドは、棒状のロッド本体と、その長手方向両端に設けられたブッシュを有する防振連結部を備え、この防振連結部をそれぞれエンジンと車体へ取付けるようになっている。
防振連結部は、エンジン又は車体へ取付けられるインナー部材と、ロッド本体に一体化されたリング状部材と、このリング状部材とインナー部材を連結するゴム等の弾性防振部材からなるインシュレータを備える。インナー部材はボルトなどの車体取付軸により車体側へ取付けられている。
また、上記一対の防振連結部のうち車体側へ連結される防振連結部において、インシュレータは、主たる振動の入力方向に対してインナー部材から両側へ延出する弾性腕部を備え、この弾性腕部の延出端をリング状部材で拘束してあり、弾性腕部のバネは、インナー部材の直交3軸方向で異なるものとなっている。
以下、この直交3軸として、インナー部材の中心軸線方向(車体取付軸の軸線方向)のものをZ軸、これに直交する主たる振動の入力方向のものをX軸、これらX軸及びZ軸にそれぞれ直交する方向のものをY軸とする。また、車体側へ連結される防振連結部における弾性腕部のバネとして、Z方向(Z軸と平行する方向)をZバネ、X方向(X軸と平行する方向)をXバネとし、Y方向(Y軸と平行する方向)をYバネとする。
特開平06-109075号公報
トルクロッドの機能として、エンジンから車体側への振動伝達を遮断する性能がある。ところが、この振動遮断性能は、トルクロッドの剛体共振周波数帯と車体側の共振周波数帯の相対関係により変化する。これを図6により説明する。図6はトルクロッドの振動伝達特性を示すグラフであり、縦軸に振動伝達性能、横軸にトルクロッドの剛体共振周波数をとってある。このグラフにおいて、トルクロッドの振動伝達特性について周波数移動前及び周波数移動後における2つの振動伝達特性を示す。これら2つの特性曲線はそれぞれ相似形の略山形をなし、各特性曲線のピークP0・P1における周波数F0・F1がそれぞれ剛体共振のピーク周波数を示している。
このうち周波数移動前のものは、後述する本願発明のような特別に共振周波数を下げるための工夫がないものであり、ピークP1は比較的高い共振周波数F1になっている。一方、共振周波数を下げる特別の工夫を施した周波数移動後の特性曲線におけるピークP0は、低い共振周波数F0になっている。
ここで、周波数移動前の特性曲線において、車体側における感度の高い周波数FQにおける振動伝達性能はQ1であるが、この振動伝達性能Q1のレベルは、トルクロッドの剛体共振の影響により、振動伝達性能が高くエンジンの振動が車体側へ比較的伝達されやすく、振動遮断が不十分な状態である。
そこで仮に、車体側における感度の高い周波数FQにおいて、振動伝達性能を振動遮断に十分なQ0まで下げることができれば、振動遮断効果△Q(=Q1-Q0)が生じ、車体側への振動伝達を抑制できる。
しかも、このような振動遮断は、特性曲線をピークがP0からP1へ略平行移動させて周波数移動後のようにすることにより実現できる。このピークの移動は、トルクロッドの剛体共振周波数をF1からF0へ移動させることに他ならない。したがって、車体側における感度の高い周波数FQからずれるようにトルクロッドの剛体共振周波数を下げることができれば、必要な振動遮断効果を生じさせることができることになるので、このような剛体共振周波数のコントロールを可能にすることが求められる。
ここで、剛体共振の周波数は、バネと重量からなる振動系において、バネの平方根に比例し、重量の平方根に反比例する。したがって、バネを小さくするか重量を増大させれば剛体共振の周波数を下げることができることが知られている。
しかし、車両の軽量化という設計上の基本的な要請により、トルクロッドも可及的に軽量化を求められており、重量増による剛体共振の周波数調整は採用できない。このため、トルクロッドを軽量化しつつ剛体共振の周波数調整を可能にすることも求められている。
また、バネを調整する場合にも、XYZ各方向のバネからなるバネ比が所定の範囲となるようにすることが求められている。
特に、防振の主体をなすXバネを下げないようにすることが求められる。そこで、Xバネを所定の範囲に維持しつつ、Xバネに対するYバネ及びZバネの各バネ比を調整できるようにバネを調整することも望まれている。
そこで本願は、これらの要請の実現を目的とする。
上記課題を解決するため、請求項1に記載した発明は、長手部材であるロッド本体と、その長手方向両端に設けられた大小に異なる一対の防振連結部である小玉部(11a)と大玉部(11b)を備えたトルクロッドにおいて、
前記防振連結部のうち少なくとも大玉部(11b)は、前記ロッド本体(10)に設けられたリング状部材(14)と、その中心部に配置されたインナー部材(20)と、これらインナー部材とリングを弾性的に結合する弾性体のインシュレータ(22)を備え、
前記インナー部材(20)の中心軸をZ軸、これと直交する主たる振動の入力軸をX軸、これらZ軸及びX軸とそれぞれ直交する軸をY軸とするとき、
前記インシュレータ(22)にバネ調整凹部(32)を設け、
少なくとも、X軸方向のバネとZ軸方向のバネとのバネ比を変化させることにより、
Z軸方向における剛体共振の周波数をコントロールすることを特徴とする。
請求項2に記載した発明は、上記請求項1に記載したトルクロッドであって、
前記バネ調整凹部(32)は溝であり、その深さや幅を調整することにより、X軸方向、Y軸方向及びZ軸方向における各バネのバネ比を調整可能とすることを特徴とする。
請求項3に記載した発明は、上記請求項1又は2に記載したトルクロッドであって、
前記インシュレータ(22)は、前記インナー部材(20)から前記X軸の両側へ延出し、その延出端部が前記リング状部材(14)と接続して拘束される弾性腕部(30)を備え、
前記バネ調整凹部(32)は、前記弾性腕部(30)における前記リング状部材(14)との付け根部分の一部に、前記リング状部材(14)で拘束されないように設けられることを特徴とする。
請求項4に記載した発明は、上記請求項1~3のいずれか1項に記載したトルクロッドであって、
前記バネ調整凹部(32)は、前記弾性腕部(30)において、主たる振動の入力時におけるバネ作用の主体となるバネ領域(38)よりもY軸方向外方に設けられていることを特徴とする。
請求項5に記載した発明は、上記請求項1~4のいずれか1項に記載したトルクロッドであって、
前記インシュレータ(22)には、X軸方向において前記インナー部材(20)の両側に、Z軸方向へ貫通するとともに、前記弾性腕部(30)を挟んでX軸の両側へ延びる第1すぐり(24)及び第2すぐり(26)が設けられ、
前記バネ調整凹部(32)が、前記第1すぐり(24)又は第2すぐり(26)からX軸方向へ前記弾性腕部(30)を切り込んで形成されることを特徴とする。
請求項6に記載した発明は、上記請求項1~5のいずれか1項に記載したトルクロッドであって、
前記インナー部材(20)のX軸方向における接線をL1、この接線と平行して前記第2すぐり(26)のY軸方向端部を通る直線をL2とするとき、前記弾性腕部(30)のうち前記接線L1と直線L2とに挟まれた領域(38)を、主たる振動の入力時におけるバネ作用の主体となるバネ領域とし、
この領域(38)のY軸方向外側に前記バネ調整凹部(32)を設けたことを特徴とする。
請求項7に記載した発明は、上記請求項1~6のいずれか1項に記載したトルクロッドであって、前記バネ調整凹部(32)がスリット状をなしていることを特徴とする。
請求項8に記載した発明は、上記請求項1~7のいずれか1項に記載したトルクロッドであって、
前記ロッド本体(10)及びリング状部材(14)は、比重が2.7より小さい非金属により一体に形成されていることを特徴とする。
請求項1に記載した発明によれば、大玉部(11b)において、インシュレータ(22)にバネ調整凹部(32)を設けることにより、少なくとも、X軸方向のバネ(Xバネ)とZ軸方向のバネ(Zバネ)とのバネ比を変化させて、トルクロッドのZ軸方向における剛体共振の周波数をコントロールできる。そこで、バネ調整凹部(32)により、上記剛体共振の周波数を、車体側の感度が高い周波数からずれるように調整すると、振動遮断効果を生じ、車体側への振動伝達を抑制できる。
請求項2に記載した発明によれば、バネ調整凹部(32)を溝とし、その深さや幅を調整すると、X軸方向、Y軸方向及びZ軸方向における各バネが変化するので、これらのバネ比が調整可能になる。したがって、バネ調整凹部(32)により、剛体共振の周波数コントロールのみならず、XYZ各方向のバネ比も調整可能になる。
請求項3に記載した発明によれば、バネ調整凹部(32)を、弾性腕部(30)において、
弾性腕部(30)におけるリング状部材(14)との付け根部分の一部に、前記リング状部材(14)で拘束されないバネ調整凹部(32)を設けたので、主たる振動の入力方向であるXバネを所定の大きさに維持したまま、インナー部材(20)の中心軸方向であるZバネを大きく下げることができる。
このため、主たる振動の吸収に必要なXバネに影響せずに、Zバネを低減させて、Z方向における剛体共振の周波数を低減させることができる。その結果、車体側への振動遮断を効果的に行える。
しかも、Zバネの調整は、弾性腕部(30)の一部にバネ調整凹部(32)を設けるだけであって、重量増加を招かないため、トルクロッドの重量を増大せずに剛体共振の周波数を低下させることができる。
また、XZバネ比を大きく変化させて、従来では実現できなかったXZバネ比にすることができるので、XZバネ比の制御幅が拡大することになり、チューニングにおける自由度を向上させることができる。
請求項4に記載した発明によれば、バネ調整凹部(32)を、弾性腕部(30)において、主たる振動の入力時におけるバネ作用の主体となるバネ領域(38)よりもY軸方向外方に設けたので、バネ調整凹部(32)を設けてもXバネに対する影響があまり出ないようにすることができる。
請求項5に記載した発明によれば、バネ調整凹部(32)が、第1すぐり(24)又は第2すぐり(26)からX軸方向へ弾性腕部(30)を切り込んで形成されるので、弾性腕部(30)におけるリング状部材(14)で拘束されない非拘束部を容易に形成することができる。
請求項6に記載した発明によれば、インナー部材(20)のX軸方向における接線をL1、この接線と平行して第2すぐり(26)のY軸方向端部を通る直線をL2とするとき、弾性腕部(30)のうち接線L1と直線L2とに挟まれた領域(38)が、主たる振動の入力時におけるバネ作用の主体となるバネ領域となるため、この領域(38)のY軸方向外側にバネ調整凹部(32)を設けることにより、バネ調整凹部(32)を設けたにもかかわらず、Xバネに対する影響があまり出ないようにすることができる。
請求項7に記載した発明によれば、バネ調整凹部(32)をスリット状にしたので、極めて小さなものにすることができ、形成が容易になるとともに、Yバネに対する影響を極力抑制することができる。
請求項8に記載した発明によれば、ロッド本体(10)及びリング状部材(14)が樹脂により一体に形成された樹脂製であるため、トルクロッドを可及的に軽量化できる。しかも、軽量化したにもかかわらず、Zバネの低減により、Z方向における剛体共振の周波数を低減させることができ、軽量化と剛体共振の周波数低下を両立させることができる。
実施形態に係るトルクロッドの正面図 上記トルクロッドの平面図 一方の防振連結部の平面図 図3の4-4線断面図 図3における要部の拡大図 共振周波数と振動伝達性能の関係を示すグラフ トルクロッドの重量と剛体共振周波数の関係を示すグラフ バネ調整凹部の深さとバネ値の関係を示すグラフ バネ調整凹部の深さとXZバネ比の関係を示すグラフ バネ調整凹部の深さとYバネとの関係を示すグラフ バネ調整凹部の幅とXバネとの関係を示すグラフ 別実施例に係る図3と同様部位の図 さらに別実施例に係る図3と同様部位の図
以下、自動車のエンジン支持用に設けられるトルクロッドについて説明する。図1は正面図、図2は平面図、図3は大玉部の平面図、図4は図3の4-4線断面図である。
このトルクロッドは、丸棒状のロッド本体10と、その長手方向両端に設けられた大小に異なる一対の防振連結部である小玉部11a及び大玉部11bを備える。
これら一対の防振連結部のうち、小型の小玉部11aは、第1リング状部材12、その中心部に配置された第1インナー部材16、この第1インナー部材16と第1リング状部材12の間に充填されたゴム等の適宜弾性部材からなる第1インシュレータ18を備え、第1インシュレータ18により、第1リング状部材12と第1インナー部材16が弾性的に結合されている。第1インシュレータ18による弾性的な結合は、加硫等による接着、嵌合による圧接等種々可能である。第1インナー部材16は図示しないエンジンへ取付けられている。
大型の大玉部11bは、第2リング状部材14、その中心部に配置された第2インナー部材20、この第2インナー部材20と第2リング状部材14の間に充填されたゴム等の適宜弾性部材からなる第2インシュレータ22を備え、第2インシュレータ22により、第2リング状部材14と第2インナー部材20が弾性的に結合されている。第2インシュレータ22による弾性的な結合は、加硫等による接着、嵌合による圧接等種々可能である。
第2インナー部材20は筒状をなし、その軸穴へ通されたボルト部材(図示省略)を介して同じく図示しない車体側へ取付けられている。
第1リング状部材12及び第2リング状部材14は、ロッド本体10と共に、樹脂等の剛性材料により一体に形成されている。第1リング状部材12と第2リング状部材14はそれぞれ筒状をなすが、第2リング状部材14の方が第1リング状部材12よりも大径になっている。
ここで、第1インナー部材16と第2インナー部材20の各中心を結ぶ中心線をC1とする。本実施形態におけるC1はロッド本体10の中心線でもある。
また、第1インナー部材16及び第2インナー部材20の各中心軸線をC2及びC3とする。C2及びC3は互いに直交するとともに、それぞれがC1とも直交している。
なお、C2とC3を互いに平行するように設けてもよい。
また、本実施形態では、C1を車両の前後方向(X軸方向)、C2を左右方向(Y軸方向)、C3を上下方向(Z軸方向)へそれぞれ向けて配置するものとする。X・Y・Zはそれぞれ、第1インナー部材16及び第2インナー部材20の各中心部において互いに直交する直交3軸をなす。
このトルクロッドを介してエンジンを車体へ支持すると、エンジンからの主たる振動は、第1インナー部材16から小型側の小玉部11aへ入力され、ロッド本体10を中心線C1に沿って通り、大型側の大玉部11bへ入力され、さらに第2インナー部材20から車体へ伝達される。
以下、大型側の大玉部11bについて詳細構造を説明する。図3に示すように、第2インシュレータ22は、第2インナー部材20の前後に第1すぐり24及び第2すぐり26が設けられる。第1すぐり24は第2インナー部材20の前方、すなわち主たる振動の入力時に第2インナー部材20と第2リング状部材14が接近する側に設けられ、第2すぐり26は第2インナー部材20の後方、すなわち主たる振動の入力時に第2インナー部材20と第2リング状部材14が離れる側に設けられている。これら第1すぐり24及び第2すぐり26は、X軸を挟んで左右方向へ対称に広がり、かつZ軸方向へ貫通して形成されている。
第1すぐり24は第2すぐり26よりも大きく、左右方向の端部は第2リング状部材14近傍に達し、拡大穴部28をなしている。第1すぐり24の縁部のうち、第2インナー部材20の前方となり、X軸上で第2インナー部材20に対向する部分は第1ストッパ21をなし、第2インナー部材20が第2リング状部材14に対して相対的に前方へ移動したとき、当接して第2インナー部材20の前方移動を阻止するようになっている。
第2すぐり26は左右の延出量が相対的に少なく、略逆V字状をなし、第2すぐり26の後縁部のうち、X軸上の部分は前方へ山型に突出する第2ストッパ27になっている。第2ストッパ27は、第2インナー部材20が第2リング状部材14に対して相対的に後方へ移動したとき、その前縁部に当接することにより、第2インナー部材20の後方移動を阻止する。
第2インシュレータ22のうち、第1すぐり24と第2すぐり26に挟まれた部分は、第2インナー部材20を挟んでY方向両側へ張り出す弾性腕部30をなす。この部分は、X・Y・Z各方向における各バネを形成する部分であり、X・Y・Z各方向のバネを、Xバネ・Yバネ・Zバネとし、各X・Y・Z各方向のバネ値をEx・Ey・Ezとすれば、Ey>Ex>Ezとなっている。
また、XバネとZバネのバネ比であるXZバネ比Ez/Exが0.36程度になるように設定されている。
弾性腕部30のY軸方向両端である延出端部は、第2リング状部材14に結合することにより、第2リング状部材14に拘束されている。この延出端部は、第2リング状部材14に接続する弾性腕部30の付け根部31であり、この部分にハッチングで示すバネ調整凹部32が形成されている。このバネ調整凹部32は、弾性腕部30における延出端部のうちの一部を第2リング状部材14に対して非拘束にすることにより、Zバネを低減する目的で設けられ、拡大穴部28に臨む弾性腕部30の前縁部をX軸と平行に後方へ向かって切り込まれたものであり、本例ではスリット状をなす空間になっている。このバネ調整凹部32を別言すれば、拡大穴部28から弾性腕部30に肉厚内に向かって切り欠き状をなして食い込んでいる凹部とも言える。
第1すぐり24を囲む縁部のうち、前縁部23は、第1ストッパ21を除く部分が第2リング状部材14と同様の円弧状をなす。但し、そのX軸と交差する部分が略扁平になった第1ストッパ21をなす。また、第1すぐり24を囲む縁部のうち後側は弾性腕部30の前縁部30aをなす。前縁部30aは湾曲形状をなし、Y軸方向両端側が前縁部23との間に間隔を広げて拡大穴部28を形成している。前縁部30aのY軸方向両端部は第2リング状部材14へ向かって延びてバネ調整凹部32へ接続しているが、バネ調整凹部32との接続部は鋭角的な屈曲部33になっている。
また、第2インナー部材20の接線でX軸と平行なものをL1、これと平行でかつ第2すぐり26の左右方向端部を通る線をL2とするとき、バネ調整凹部32は直線L2よりもY軸方向外側に設けられている。
接線L1と直線L2に囲まれた斜線で示す領域38は、X軸方向に主たる入力が入ったとき、Xバネの形成に主体となる部分である。
したがって、バネ調整凹部32をこの領域38から外すことにより、Xバネに対する影響を少なくしている。なお、弾性腕部30のバネ調整凹部32が設けられている付け根部31の前側部分は、主たる振動の入力時に弾性変形するとき、引っ張り方向の力を主体的に受ける部分であり、Xバネの大きさにはあまり影響しない部分である。
図3中のバネ調整凹部32部分を拡大した図5に示すように、弾性腕部30の前縁部30aを屈曲部33から第2リング状部材14へ向かって延長させた仮想線部分が開放部34をなし、バネ調整凹部32によって前縁部30aの一部を切り欠いて形成された部分に相当し、バネ調整凹部32を第1すぐり24に向かって前方へ開放している。バネ調整凹部32はZ方向へ貫通しており、第1すぐり24の拡大穴部28に向かって開放された開放部34になっている。
また、バネ調整凹部32は、第2インシュレータ22における平面視で、弾性腕部30の付け根部31を、第1すぐり24の拡大穴部28に臨む前縁部からスリット状をなしてX方向と平行に後方へ切り込まれた状態をなし、バネ調整凹部32の後端部35は、第2インナー部材20の側方となる弾性腕部30のX軸方向における肉厚内で止まっている。
弾性腕部30のうち、バネ調整凹部32より内側(第2インナー部材20側)で、バネ調整凹部32に隣接する部分が第2リング状部材14に拘束されない非拘束部36となる。
ここで、開放部34から後端部35までの長さをバネ調整凹部32の深さ(切り込み深さ)D、また、バネ調整凹部32の開口幅をWとする。
バネ調整凹部32は、主としてZバネの調整に関与する部分である。バネ調整凹部32により、弾性腕部30の一部が第2リング状部材14に拘束されなくなるため、ZバネEzは著しく低下する。そこで、深さDは、後述するように、所定のXZバネ比、Ez/Exが得られるように適宜設定される。
一方、開口幅Wの影響は極わずかであり、バネ調整凹部32を領域38からY方向外側へ外すことによりXバネは影響が殆どなく、かつYバネも開口幅Wをあまり大きくしない限りそれほど影響を受けない。
したがって、バネ調整凹部32は、設ける位置及び深さDを主にして適宜設けられることになる。要は、バネ調整凹部32を設ける場合、第2インシュレータ22の一部に第2リング状部材14から非拘束の部分としてバネ調整凹部32を形成できれば足りる。
換言すれば、バネ調整凹部32は、前縁部30aを第2リング状部材14方向へ延長したときの第2リング状部材14との交点P(仮想線で示すポイント)よりも後端部35が後方へ入り込む凹部となっていればよい。
図6は、周波数移動前(従来例)の振動伝達特性と、周波数移動後(本願発明)の振動伝達特性を示す。周波数移動後(本願発明)の振動伝達特性は、バネ調整凹部32の存在によりZバネが低下したため、特性曲線のピークがP0となり、剛体共振の周波数がF0に変化し、特性曲線が全体として図の左側へ略平行に移動していることを示す。
図7は、トルクロッドの重量と剛体共振周波数の関係を示すグラフであり、縦軸に剛体共振周波数、横軸にトルクロッドの重量(平方根)を取ってある。
トルクロッドの剛体共振周波数は、重量の影響を受け、重量が増大するほど剛体共振周波数は、右下がりの特性直線Rに沿って低くなる。
そこで、サンプルとして樹脂製トルクロッド1~3及びアルミ合金製トルクロッドを用意し、それぞれの重量をW1~W4(W1<W2<W3<W4)とすれば、剛体共振周波数はf1>f2>f3>f4となる。
したがって、トルクロッドの重量を調節して、剛体共振周波数を、図6に示すような振動遮断効果を生じる周波数F0と同様なf0にしようとすれば、アルミ合金製トルクロッドのような重量W4(周波数f4)にすることが必要となる。
一方、本願発明のトルクロッドは、樹脂化しているため、樹脂製トルクロッド1の重量W1とほぼ同じ重量W0であり、しかも、バネ調整凹部32によるZバネの低減により、最も重量のあるアルミ合金製トルクロッドが実現する剛体共振の周波数f0となっている。
図8は、バネ調整凹部32の深さDとX方向及びZ方向の各バネ値の変化を示し、横軸に深さD、縦軸にバネ値をとってある。また、図9は深さDとZバネの関係を示すグラフであり、横軸に深さD、縦軸として左側にXZバネ比(Ez/Ex)、右側にZバネのバネ値Ezをとってある。
図8に示すように、バネ調整凹部32の深さDを大きくすると、Xバネ及びZバネともにバネ値が低下するが、その低下は緩慢であって、ほぼ横ばいになる。
但し、深さに対するバネ値の低下率が異なり、低下率はZバネの方が大きく、例えば、深さがD36(XZバネ比が0.36となる深さ、後述)では、Xバネの低下率△Xが約10%であるが、Zバネの低下率△Zは約30%低下する。この低下率の差は、深さDが大きくなる程拡大する。
このため、図9に示すように、XZバネ比Ez/Exは、深さDが大きくなるにしたがって、次第に小さくなる。
したがって、深さDを設定することにより、顕著なXZバネ比を形成できる。例えば、XZバネ比Ez/Exを0.36としたい場合には、図9において、深さをD36(例えば、12mm程度)とする。このときXバネは、その低下率△Xが約10%であり(図8)、実用上十分なバネ値を維持できている。すなわち、Xバネのバネ値Exを十分な値に維持したまま、小さなXZバネ比Ez/Exが可能になる。本例では、XZバネ比が0.35になるまで、Xバネは、実用上十分なバネ値を維持できる。換言すれば、XZバネ比を0.35程度まで小さくすることができる。
なお、XZバネ比が小さいほど、Zバネを小さくできることを意味するが、従来はXバネを下げずにXZバネ比を所定(例えば、図9に示す0.46程度)以下に小さくすることには限界があった。しかし、図8に示すようにXバネをあまり下げず、かつ実用域に維持したまま、Zバネを低下させることができるので、Xバネにあまり影響を与えることなく、XZバネ比を例えば、0.35程度まで小さくすることが可能になった。
また、バネ調整凹部32は、第1すぐり24の拡大穴部28からX軸方向へ食い込むように、弾性腕部30を切り込んで形成される。このためバネ調整凹部32により、弾性腕部30の第2リング状部材14に接続する径方向端部の一部に、第2リング状部材14で拘束されない非拘束部を容易に形成することができる。
そのうえ、バネ調整凹部32を開口幅Wの小さなスリット状としてXバネ及びYバネに対する影響を極力少なくしたので、実用上重要なXバネを低下させず、必要なバネ値を確保し、かつYバネも所定の大きさに確保したまま、Zバネだけ大きく下げることができる。
しかも、バネ調整凹部32の開口幅Wを極めて小さなものにすることができるから、形成場所の制約が少なくなり、形成が容易になる。
図10は、バネ調整凹部32の深さDとYバネ及びXYバネ比の関係を示すグラフであり、横軸に深さD、縦軸として左側にXYバネ比(Ey/Ex)、右側にYバネのバネ値Eyをとってある。
この図に示すように、バネ調整凹部32の深さDを大きくすると、Yバネは次第に低くなるが、Xバネは前述したように緩慢に低下し、あまり変化しない。このため、XYバネ比の変化はほぼYバネの変化と同様になる。
このことは、バネ調整凹部32の深さDによる影響が、Xバネ及びYバネに対して同様のものとなり、バネ調整凹部32の深さDを変化させても、XYバネ比はXZバネ比ほど変化しないことを意味する。また、バネ調整凹部32の深さDにより、XZバネ比をXYバネ比よりも大きく変化するようにバネ比調節できることを意味する。
図11は、バネ調整凹部32の幅WとXバネの関係を示すグラフであり、横軸に幅W、縦軸にXバネ値をとってある。Xバネはバネ調整凹部32の幅Wが増大すると次第に低くなる。このとき、図3において、バネ調整凹部32の幅Wを、第2インナー部材20へ向かって広げるように変化させる。すると、第2すぐり26の左右方向端部を通る線をL2を超えると、図11に示すように、急激にXバネが低下する。したがって、Xバネをあまり低下させないようにするためには、バネ調整凹部32を線をL2より外側に設けるようにすべきことが判る。
なお、バネ調整凹部32の深さDや幅Wを調整することによって、XYZ3軸方向のバネ比、特に、XYバネ比及びXZバネ比を自由に調整可能になる。
次に、本実施例の作用を説明する。図5に示すように、弾性腕部30の第2リング状部材14との接続部に、切り込み状のバネ調整凹部32を設けて第2リング状部材14で拘束されない非拘束部としたので、Zバネを著しく小さくすることができる。以下、バネ調整凹部32の深さによるバネ比調節を説明する。
図9において、深さをD36(例えば、12mm程度)とする。このときXバネは、その低下率△Xが約10%であり(図8)、実用上十分なバネ値を維持できている。すなわち、Xバネのバネ値Exを十分な値に維持したまま、小さなXZバネ比Ez/Exが可能になる。本例では、XZバネ比が0.35になるまで、Xバネは、実用上十分なバネ値を維持できる。換言すれば、XZバネ比を0.35程度まで小さくすることができる。
従来の場合、XZバネ比は、図8における深さ0のXバネ及びZバネの各バネ値の比であって、図9に示すように、Ez/Exは約0.46程度である。この数値は弾性腕部30の形状変更等で種々調整しても、せいぜい、1:0.45~0.46程度が限界であった。
しかし、本願によれば、防振の主体をなすXバネにあまり影響を与えることなく、1:0.35~0.36程度まで小さくすることが可能になった。その結果、従来実現できなかった顕著に小さなXZバネ比が可能となり、制御幅が広くなった。
図9において、深さDが0のXZバネ比(従来例相当)に対して、深さD36におけるバネ比の差△(Z/X)は、約0.1となり、この差△(Z/X)の幅で、XZバネ比を著しく小さくなるように制御できていることが明らかである。
しかも、比較的小さなバネ調整凹部32を設け、その深さDを調整するという簡単な構成を加えるだけで、XZバネ比を、従来実現できなかった0.45未満で任意に設定することができるようになった。
すなわち、一般にZバネを小さくすれば防振の主体をなすXバネも下がってしまう傾向にあるから、Xバネを所定以上に維持しつつ、Zバネのみを小さくすることは困難であり、Xバネにあまり影響を与えることなく、Zバネのみをより小さくすることが求められていたところ、これを解決することができるようになった。
また、XバネとZバネの関係を示すXZバネ比(Zバネ/Xバネ)において、Xバネを一定とすれば、XZバネ比が小さいほど、Zバネを小さくできることを意味する。但し、上述したZバネのみをより小さくすることが困難であると同じ理由により、XZバネ比を所定以上に小さくすることには限界があったところ、XZバネ比をより小さくすることが可能になった。
このように、XZバネ比を小さくして、Zバネを低減させることにより、トルクロッドの剛体共振においてZ方向における共振周波数を低減させることができる。
その結果、図6に示すように、トルクロッドの振動伝達特性を示す特性曲線は、ピークがP1なる周波数移動前(従来例)のものが、ピークがP0なる周波数移動後(本願発明)のものへ略平行に移動し、剛体共振の周波数がF1からF0へ低下する。
このため、車体側の感度の高い周波数FQにおける振動伝達性能はQ1からQ0へ低下し、車体側へ伝達される振動を抑制でき、十分な振動遮断効果△Qを実現できる。
すなわち、XZバネ比の調整により、Z方向の振動によって生じるトルクロッドの剛体共振周波数を制御することができる。バネによる剛体共振の周波数の調整をする場合、特に、遮断すべき振動は、車体取付軸方向(Z方向)に入力する振動であるから、この方向におけるインシュレータのバネ、すなわちZバネを小さくすれば、Z方向に入力する剛体共振の共振周波数を下げて車体側への振動伝達を抑制できる。その結果、車体側への振動伝達特性を下げ、振動伝達を抑制可能になる。
また、XZバネ比の制御幅が拡大するため、チューニングにおける自由度を向上させることができる。
しかも、XZバネ比の調整はバネ調整凹部32の幅Wを変化させることによっても可能である。このようなXZバネ比の調整により、トルクロッドの剛体共振におけるZ方向の共振周波数を比較的自由にコントロールできるようになる。また、バネ調整凹部32によるXYZ3軸方向におけるバネ比調節も同時に可能になる。
そのうえ、トルクロッドを軽量化したまま、Zバネの低減が可能になる。図7に示すように、本願発明のトルクロッドは、樹脂化しているため、樹脂製トルクロッド1の重量W1とほぼ同じ重量W0であり、しかも、バネ調整凹部32によるZバネの低減により、最も重量のあるアルミ合金製トルクロッドが実現する剛体共振の周波数f0を実現できている。
また、車両を軽量化するため、トルクロッドも可及的に軽量化を求められており、アルミ合金製トルクロッド(重量W4)などの金属製よりも軽量にするため、樹脂化が採用されている。しかし、樹脂製トルクロッド1~3はいずれも剛体共振周波数がf1~f3であり、目標とする周波数f0よりも高くなってしまう。したがって、トルクロッドの軽量化と剛体共振周波数の低減は両立できないものであった。
しかし、本願発明は、トルクロッドを樹脂化するとともにバネ調整凹部32によりZバネを低減したので、トルクロッドの軽量化と剛体共振周波数の低減を両立させることが可能になり、車両の軽量化という要請も満足させることができる。そのうえ、樹脂化によりトルクロッドを可及的に軽量化できる。
なお、Zバネの低減は、弾性腕部30の付け根部31にバネ調整凹部32を設けることによって実現されるから、何らかの重量増加を伴うものではなく、逆にバネ調整凹部32の分だけ軽量化する。したがって、トルクロッドを樹脂化するか否かにかかわらず、トルクロッドの重量増加を招かずに剛体共振周波数の低減を達成できる。
また、必ずしも樹脂製とすることなく、アルミの比重2.7よりも小さな比重を有するものであれば適宜な非金属素材を利用して軽量化できる。
図12はバネ調整凹部32の開口幅Wを大きくした別実施例の図3と同様部位を示す図である。なお、前実施例と共通する部分は共通符号を用い、重複説明を省略する。
この実施例のバネ調整凹部32は、拡大穴部28と同程度の開口幅Wを有する凹溝として形成され、後端部位置は第2インナー部材20の後端部近傍位置まで達するように長く形成されている。但し、この例でも、領域38の外側にバネ調整凹部32が形成されるように配慮されている。
このようにすると、Yバネが若干低下するものの、Xバネを所定に維持したまま、Zバネを大きく低下させることができることについては変わりがない。
なお、開口幅Wの大きさは、図中に仮想線で示すように、領域38より外側(第2リング状部材14側)という条件下で、所望するYバネの大きさに応じて任意に調整できる。
なお、本願発明は上記の実施形態に限定されるものではなく、発明の原理内において種々に変形や応用が可能である。例えば、バネ調整凹部32Aとして図13に示すように、弾性腕部30の付け根部31のうち、前後方向中間部に貫通穴状をなして形成されたものでもよい。この場合のバネ調整凹部32Aは、領域38のY方向外側に位置し、主たる振動の入力時におけるバネ作用の主体となるバネ領域を避けて設けられることに変わりはない。また、バネ調整凹部32Aの幅や長さは仕様により任意に設定できる。
さらに、図1及び2に示す、小型側の小玉部11aについても、大型側の大玉部11bと同様な弾性腕部30及びバネ調整凹部32を設けることもできる。
10:ロッド本体、11a:小玉部、11b:大玉部、14:第2リング状部材、20:第2インナー部材、22:第2インシュレータ、24:第1すぐり、26:第2すぐり、30:弾性腕部、32:バネ調整凹部

Claims (8)

  1. 長手部材であるロッド本体と、その長手方向両端に設けられた大小に異なる一対の防振連結部である小玉部(11a)と大玉部(11b)を備えたトルクロッドにおいて、
    前記防振連結部のうち少なくとも大玉部(11b)は、前記ロッド本体(10)に設けられたリング状部材(14)と、その中心部に配置されたインナー部材(20)と、これらインナー部材とリングを弾性的に結合する弾性体のインシュレータ(22)を備え、
    前記インナー部材(20)の中心軸をZ軸、これと直交する主たる振動の入力軸をX軸、これらZ軸及びX軸とそれぞれ直交する軸をY軸とするとき、
    前記インシュレータ(22)にバネ調整凹部(32)を設け、
    少なくとも、X軸方向のバネとZ軸方向のバネとのバネ比を変化させることにより、
    Z軸方向における剛体共振の周波数をコントロールすることを特徴とするトルクロッド。
  2. 請求項1に記載したトルクロッドであって、
    前記バネ調整凹部(32)は溝であり、その深さや幅を調整することにより、X軸方向、Y軸方向及びZ軸方向における各バネのバネ比を調整可能とすることを特徴とする。
  3. 請求項1又は2に記載したトルクロッドであって、
    前記インシュレータ(22)は、前記インナー部材(20)から前記X軸の両側へ延出し、その延出端部が前記リング状部材(14)と接続して拘束される弾性腕部(30)を備え、
    前記バネ調整凹部(32)は、前記弾性腕部(30)における前記リング状部材(14)との付け根部分の一部に、前記リング状部材(14)で拘束されないように設けられることを特徴とする。
  4. 上記請求項1~3のいずれか1項に記載したトルクロッドであって、
    前記バネ調整凹部(32)は、前記弾性腕部(30)において、主たる振動の入力時におけるバネ作用の主体となるバネ領域(38)よりもY軸方向外方に設けられていることを特徴とする。
  5. 上記請求項1~4のいずれか1項に記載したトルクロッドであって、
    前記インシュレータ(22)には、X軸方向において前記インナー部材(20)の両側に、Z軸方向へ貫通するとともに、前記弾性腕部(30)を挟んでX軸の両側へ延びる第1すぐり(24)及び第2すぐり(26)が設けられ、
    前記バネ調整凹部(32)が、前記第1すぐり(24)又は第2すぐり(26)からX軸方向へ前記弾性腕部(30)を切り込んで形成されることを特徴とする。
  6. 上記請求項1~5のいずれか1項に記載したトルクロッドであって、
    前記インナー部材(20)のX軸方向における接線をL1、この接線と平行して前記第2すぐり(26)のY軸方向端部を通る直線をL2とするとき、前記弾性腕部(30)のうち前記接線L1と直線L2とに挟まれた領域(38)を、主たる振動の入力時におけるバネ作用の主体となるバネ領域とし、
    この領域(38)のY軸方向外側に前記バネ調整凹部(32)を設けたことを特徴とする。
  7. 上記請求項1~6のいずれか1項に記載したトルクロッドであって、前記バネ調整凹部(32)がスリット状をなしていることを特徴とする。
  8. 上記請求項1~7のいずれか1項に記載したトルクロッドであって、
    前記ロッド本体(10)及びリング状部材(14)は、比重が2.7より小さい非金属により一体に形成されていることを特徴とする。
PCT/JP2013/081749 2012-11-27 2013-11-26 トルクロッド WO2014084202A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380060769.6A CN104797845B (zh) 2012-11-27 2013-11-26 扭矩杆
DE112013005670.4T DE112013005670T5 (de) 2012-11-27 2013-11-26 Drehstab
US14/646,060 US9611916B2 (en) 2012-11-27 2013-11-26 Torque rod

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-258502 2012-11-27
JP2012258502A JP5985967B2 (ja) 2012-11-27 2012-11-27 トルクロッド

Publications (1)

Publication Number Publication Date
WO2014084202A1 true WO2014084202A1 (ja) 2014-06-05

Family

ID=50827838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081749 WO2014084202A1 (ja) 2012-11-27 2013-11-26 トルクロッド

Country Status (5)

Country Link
US (1) US9611916B2 (ja)
JP (1) JP5985967B2 (ja)
CN (1) CN104797845B (ja)
DE (1) DE112013005670T5 (ja)
WO (1) WO2014084202A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109383280A (zh) * 2017-08-09 2019-02-26 现代自动车株式会社 用于车辆的侧倾杆

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6342756B2 (ja) * 2014-09-05 2018-06-13 株式会社ブリヂストン 防振装置
JP6431380B2 (ja) * 2015-01-13 2018-11-28 株式会社ブリヂストン 防振装置
JP6570967B2 (ja) * 2015-10-28 2019-09-04 株式会社ブリヂストン トルクロッド
DE102017222757A1 (de) * 2017-12-14 2019-06-19 Bayerische Motoren Werke Aktiengesellschaft Radträger eines Fahrzeugs mit einer Aufnahme für eine Spurstange
JP2022052088A (ja) 2020-09-23 2022-04-04 山下ゴム株式会社 トルクロッド
JP2022090754A (ja) 2020-12-08 2022-06-20 山下ゴム株式会社 トルクロッド
CN115366652A (zh) * 2021-05-20 2022-11-22 本田技研工业株式会社 扭矩杆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6084321U (ja) * 1983-11-12 1985-06-11 日産自動車株式会社 パワ−ユニツトマウント構造
JPS6232241U (ja) * 1985-08-12 1987-02-26
JPH06109075A (ja) * 1992-09-22 1994-04-19 Bridgestone Corp 防振ゴム
JP2000065113A (ja) * 1998-08-19 2000-03-03 Toyo Tire & Rubber Co Ltd ブッシュ型インシュレータ
JP2012189142A (ja) * 2011-03-10 2012-10-04 Toyo Tire & Rubber Co Ltd 防振連結ロッド
JP2012251642A (ja) * 2011-06-06 2012-12-20 Bridgestone Corp アクティブ制御トルクロッド

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5887859A (en) * 1995-10-05 1999-03-30 Toyoda Gosei Co., Ltd. Suspension bushing
JP2001343026A (ja) * 2000-03-29 2001-12-14 Toyota Industries Corp 動力伝達機構
JP3770170B2 (ja) * 2001-12-10 2006-04-26 東海ゴム工業株式会社 防振ブッシュ
JP3841720B2 (ja) * 2002-05-14 2006-11-01 東海ゴム工業株式会社 ブラケット付き筒型マウント装置
JP2005104427A (ja) * 2003-10-02 2005-04-21 Toyo Tire & Rubber Co Ltd エキゾーストマウントラバー
JP4436103B2 (ja) * 2003-10-03 2010-03-24 株式会社ブリヂストン トルクロッド構造
JP2005315315A (ja) * 2004-04-28 2005-11-10 Tokai Rubber Ind Ltd トルクロッド
JP5037493B2 (ja) * 2006-04-12 2012-09-26 株式会社ブリヂストン 防振支持装置
JP4722883B2 (ja) * 2007-06-20 2011-07-13 山下ゴム株式会社 トルクロッド
JP5278202B2 (ja) * 2009-07-02 2013-09-04 日産自動車株式会社 振動低減装置
US9689457B2 (en) * 2010-08-23 2017-06-27 Bridgestone Corporation Torque rod and engine mounting system for using same
JP5913848B2 (ja) * 2011-07-13 2016-04-27 日産自動車株式会社 トルクロッド

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6084321U (ja) * 1983-11-12 1985-06-11 日産自動車株式会社 パワ−ユニツトマウント構造
JPS6232241U (ja) * 1985-08-12 1987-02-26
JPH06109075A (ja) * 1992-09-22 1994-04-19 Bridgestone Corp 防振ゴム
JP2000065113A (ja) * 1998-08-19 2000-03-03 Toyo Tire & Rubber Co Ltd ブッシュ型インシュレータ
JP2012189142A (ja) * 2011-03-10 2012-10-04 Toyo Tire & Rubber Co Ltd 防振連結ロッド
JP2012251642A (ja) * 2011-06-06 2012-12-20 Bridgestone Corp アクティブ制御トルクロッド

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109383280A (zh) * 2017-08-09 2019-02-26 现代自动车株式会社 用于车辆的侧倾杆
CN109383280B (zh) * 2017-08-09 2022-07-12 现代自动车株式会社 用于车辆的侧倾杆

Also Published As

Publication number Publication date
DE112013005670T5 (de) 2015-09-10
US9611916B2 (en) 2017-04-04
JP2014105765A (ja) 2014-06-09
CN104797845B (zh) 2017-06-09
CN104797845A (zh) 2015-07-22
JP5985967B2 (ja) 2016-09-06
US20150300446A1 (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP5985967B2 (ja) トルクロッド
US9518628B2 (en) Tubular vibration-damping device
US9027912B2 (en) Vibration damping device
JP4382822B2 (ja) 筒形防振装置
US10451133B2 (en) Tubular vibration-damping device
WO2017056546A1 (ja) ブラケット付き筒形防振装置
JP2019168088A (ja) ゴムストッパ
JP2007333029A (ja) トルクロッド
US20170097088A1 (en) Vibration isolator for manual transmission shifter with a single reaction arm
JP2013204801A (ja) 筒形防振装置とその製造方法
US9127743B2 (en) Chassis bushing with integrated travel limiter
JP6998260B2 (ja) 降着装置及び補剛部材
US11780311B2 (en) Torque rod
JP4283853B2 (ja) リンク装置
JP2013036550A (ja) 防振ブッシュ
WO2018096814A1 (ja) バンプストッパ
JP2015064051A (ja) 防振装置
US10576813B2 (en) Mounting bracket for a vehicle component and method of forming
KR102416603B1 (ko) 서스펜션 마운팅 부시
EP2818343B1 (en) Vehicle suspension device
JP2010031894A (ja) パワーユニット用のトルクロッドおよびその製造方法
JP2009097686A (ja) 筒型防振マウント
KR102074645B1 (ko) 이중 보이드 타입 부시 및 멀티링크 서스펜션
JP7121719B2 (ja) ブラケット付き筒型防振装置
JP4633751B2 (ja) 防振装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859182

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14646060

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013005670

Country of ref document: DE

Ref document number: 1120130056704

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859182

Country of ref document: EP

Kind code of ref document: A1