WO2014077363A1 - セミカルバジド組成物、セミカルバジド組成物の製造方法、水系樹脂組成物及び複合体 - Google Patents

セミカルバジド組成物、セミカルバジド組成物の製造方法、水系樹脂組成物及び複合体 Download PDF

Info

Publication number
WO2014077363A1
WO2014077363A1 PCT/JP2013/080908 JP2013080908W WO2014077363A1 WO 2014077363 A1 WO2014077363 A1 WO 2014077363A1 JP 2013080908 W JP2013080908 W JP 2013080908W WO 2014077363 A1 WO2014077363 A1 WO 2014077363A1
Authority
WO
WIPO (PCT)
Prior art keywords
semicarbazide
compound
water
group
aqueous
Prior art date
Application number
PCT/JP2013/080908
Other languages
English (en)
French (fr)
Inventor
豊昭 山内
貴行 宮崎
貴裕 板持
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to JP2014547052A priority Critical patent/JP5990277B2/ja
Priority to EP13855684.0A priority patent/EP2921474A4/en
Priority to US14/443,288 priority patent/US10023760B2/en
Priority to CN201380059503.XA priority patent/CN104812735B/zh
Publication of WO2014077363A1 publication Critical patent/WO2014077363A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C281/00Derivatives of carbonic acid containing functional groups covered by groups C07C269/00 - C07C279/00 in which at least one nitrogen atom of these functional groups is further bound to another nitrogen atom not being part of a nitro or nitroso group
    • C07C281/06Compounds containing any of the groups, e.g. semicarbazides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3228Polyamines acyclic
    • C08G18/3231Hydrazine or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/24Homopolymers or copolymers of amides or imides
    • C09D133/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to a semicarbazide composition, a method for producing a semicarbazide composition, an aqueous resin composition, and a composite.
  • water-based resin compositions are attracting attention as a conversion material from organic solvent to water based in the coating field.
  • water-based paints obtained from water-based resin compositions still do not exhibit sufficient physical properties in terms of water resistance, stain resistance, hardness, and the like as compared with organic solvent-based paints.
  • the water-based resin composition refers to one in which a resin is dissolved and / or dispersed in water.
  • a functional group is introduced into the resin of the aqueous resin composition to enable crosslinking, and a coating film formed of a crosslinked resin (hereinafter referred to as a crosslinked coating film). Is generally performed.
  • the aqueous resin composition for forming a crosslinked coating film is a form in which a crosslinking agent and a polymer are mixed from the viewpoint of workability, workability, etc., and when applied, the aqueous medium can be evaporated without heating.
  • a one-component room-temperature crosslinking type (cold-curing, one-packtype) capable of forming a crosslinked coating film.
  • hydrazone crosslinked aqueous emulsions utilizing a dehydration condensation reaction of a carbonyl group and a hydrazide group have attracted attention.
  • the one-component room-temperature crosslinking type refers to a coating material that forms a coating film at 25 ° C. and has storage stability.
  • storage stability for example, the coating film obtained by applying the coating material to the substrate after storing the coating material at 50 ° C. for 2 weeks has the same water resistance and stain resistance as the coating film obtained from the coating material before storage. When it has hardness, it can be judged that it has storage stability.
  • the resulting crosslinked coating film has extremely high water resistance. There was a disadvantage of being inferior.
  • the conventional water-based paint containing the conventional cross-linking agent and the carbonyl group-containing copolymer deteriorates with time, so that sufficient crosslinking is achieved when this composition is applied to the substrate surface. The performance could not be demonstrated. Furthermore, when dicarboxylic acid dihydrazide which is inferior in compatibility with the carbonyl group-containing copolymer is used as a crosslinking agent, there has been a problem that the water resistance of the coating film obtained by coating becomes very poor.
  • Patent Documents 7 and 8 also disclose semicarbazide derivatives obtained by reacting polyisocyanates having 3 to 20 isocyanate groups with hydrazine or a derivative thereof, or a mixture of a terminal non-blocked and a terminal blocked. At least one selected from the group consisting of the end-capping body, at least one selected from the group consisting of the semicarbazide derivative and the end-blocking body, and at least one selected from the hydrophilic group-containing compound and the end-blocking body.
  • a semicarbazide mixture is proposed as a crosslinking agent.
  • this semicarbazide mixture contains a large amount of by-product terminal amino group compounds, there is a drawback that it is easily yellowed against basic substances.
  • dicarboxylic acid dihydrazide is supported by supporting a styrene-polycarboxylic acid acrylic emulsion ring-opening epoxy group as a second crosslinking agent for oxidative crosslinking of a mixed system of an alkyd resin emulsion and a styrene-polycarboxylic acid acrylic emulsion.
  • a styrene-polycarboxylic acid acrylic emulsion ring-opening epoxy group as a second crosslinking agent for oxidative crosslinking of a mixed system of an alkyd resin emulsion and a styrene-polycarboxylic acid acrylic emulsion.
  • the water resistance of the polycarboxylic acid acrylic emulsion coating film was not sufficient.
  • Patent Document 10 uses isophorone disemicarbazide as a cross-linking agent in a high Tg (glass transition point) carbonyl group-containing copolymerized aqueous emulsion for the purpose of improving the water resistance of the coating film and expressing the stain resistance.
  • Tg glass transition point
  • Patent Document 10 uses isophorone disemicarbazide as a cross-linking agent in a high Tg (glass transition point) carbonyl group-containing copolymerized aqueous emulsion for the purpose of improving the water resistance of the coating film and expressing the stain resistance.
  • Tg glass transition point
  • Patent Document 11 discloses isophorone disemicarbazide, but since an excess of hydrazine is used in the reaction, a semicarbazide composition containing a large amount of a terminal amino group compound is obtained, and such a semicarbazide composition is used as a crosslinking agent. When used, there was a problem that the resulting crosslinked coating film was likely to turn yellow when immersed in an alkaline aqueous solution. In addition, the production method described in Patent Document 11 requires a step of removing the remaining hydrazine.
  • Japanese Patent Publication No.46-20053 Japanese Patent Laid-Open No. 57-3850 Japanese Unexamined Patent Publication No. 57-3857 JP 58-96643
  • Japanese Patent Laid-Open No. 4-249487 JP-A-6-287457 International Publication No. 96/01252 Pamphlet JP 2001-164126 A JP 2008-504840 A JP 2005-350580
  • An object of the present invention is to provide a semicarbazide composition that can improve the hardness, stain resistance, alkali yellowing resistance, and the like of an aqueous coating film with a small amount of addition, and a method for producing the same.
  • Another object of the present invention is to provide an aqueous resin composition containing the semicarbazide composition, and a composite comprising a coating film obtained from the aqueous resin composition.
  • One aspect of the present invention relates to the following contents.
  • a semicarbazide compound (A) having an amino group and a semicarbazide group having an amino group and a semicarbazide group;
  • Containing The semicarbazide composition whose analysis area ratio (a) represented by the following formula (a) is 0.008% or more and 2% or less.
  • S A , S B-1 , S B-2 and S B-3 are the semicarbazide compound (A) and the semicarbazide, respectively, in the chromatogram obtained by high performance liquid chromatography analysis of the semicarbazide composition.
  • the peak areas of peaks derived from the compound (B-1), the semicarbazide compound (B-2) and the semicarbazide compound (B-3) are shown.
  • the semicarbazide compound (A) is a compound represented by the following formula (1-1) or the following formula (1-2):
  • the semicarbazide compound (B-2) is a compound represented by the following formula (2-2):
  • R 1 , R 2 , R 3 and R 4 each independently represents a monovalent group represented by the following formula (2-a) or the following formula (2-b), and R 5 represents the following formula:
  • the divalent group represented by (2-c) is shown.
  • Semicarbazide composition is a composition obtained by reacting a compound (C) having two or more isocyanate groups in the molecule with hydrazine or a hydrazine derivative.
  • the analysis area ratio (b-1) represented by the following formula (b-1) is 50% or more and 99% or less, and the analysis area ratio (b ⁇ 2) is 0.9% or more and 30% or less, and the analysis area ratio (b-3) represented by the following formula (b-3) is 0.01% or more and 20% or less [1]
  • a compound (C) having two or more isocyanate groups in the molecule is reacted with hydrazine or a hydrazine derivative in a solvent to obtain the semicarbazide composition according to any one of [1] to [6]
  • the manufacturing method of a semicarbazide composition which has a reaction process.
  • the solvent contains a water-soluble organic solvent and a poorly water-soluble solvent
  • a water-based resin composition used as a water-based paint or water-based coating material An aqueous resin composition comprising the semicarbazide composition according to any one of [1] to [6] and a resin capable of reacting with a semicarbazide group to form a crosslinked structure.
  • An aqueous resin composition containing a crosslinking agent and an aqueous emulsion contains the semicarbazide composition according to any one of [1] to [6],
  • the aqueous emulsion is selected from the group consisting of a water-soluble or water-dispersible polycarbonyl compound having a number average molecular weight of 1,000 to 100,000 and a water-soluble or water-dispersible polyepoxy compound having a number average molecular weight of 1,000 to 100,000.
  • An aqueous resin composition comprising at least one crosslinkable resin having a glass transition point Tg of less than 80 ° C.
  • a semicarbazide composition that can improve the hardness, stain resistance, alkali yellowing resistance, etc. of a water-based coating film with a small amount of addition, and a method for producing the same.
  • a composite provided with the aqueous resin composition containing this semicarbazide composition and the coating film obtained from this aqueous resin composition is provided.
  • FIG. 4 is a diagram showing an LC / MS analysis result of the semicarbazide composition obtained in Example 1-1. It is a figure which shows the LC / MS analysis result of the semicarbazide composition obtained in Example 1-2. It is a figure which shows the LC / MS analysis result of the semicarbazide composition obtained in Example 1-3. It is a figure which shows the LC / MS analysis result of the semicarbazide composition obtained in Comparative Example 1-1. It is a figure which shows the LC / MS analysis result of the semicarbazide composition obtained in Comparative Example 1-2.
  • the semicarbazide composition according to the present embodiment has a structure in which a semicarbazide compound having an amino group and a semicarbazide group (hereinafter referred to as “semicarbazide compound (A)”) and the amino group of the semicarbazide compound (A) are substituted with a semicarbazide group.
  • semiconductor compound (A) a semicarbazide compound having an amino group and a semicarbazide group
  • a semicarbazide compound (hereinafter referred to as “semicarbazide compound (B-1)”), a dimer of the semicarbazide compound (B-1) (hereinafter referred to as “semicarbazide compound (B-2)”), and semicarbazide And a trimer of compound (B-1) (hereinafter referred to as “semicarbazide compound (B-3)”).
  • the semicarbazide composition according to this embodiment has an analysis area ratio (a) represented by the following formula (a) of 0.008% or more and 2% or less.
  • S A represents the peak area of a peak derived from the semicarbazide compound (A) in the chromatogram obtained by high performance liquid chromatography analysis of the semicarbazide composition
  • S B-1 the semicarbazide compound in the chromatogram (B -1) indicates the peak area of the peak derived from S B-2 indicates the peak area of the peak derived from the semicarbazide compound (B-2) in the chromatogram
  • S B-3 indicates the semicarbazide compound in the chromatogram The peak area of the peak derived from (B-3) is shown.
  • the analysis area ratio (a) is 2% or less, the alkali yellowing resistance of the crosslinked coating film obtained using the semicarbazide composition is remarkably improved. Moreover, by setting the analysis area ratio (a) to 0.008% or more, the hydrolysis resistance of the crosslinked coating film obtained using the semicarbazide composition is remarkably improved.
  • the cross-linking reaction with a semicarbazide group is a reversible reaction in the presence of water
  • the cross-linking reaction with an amino group of the semicarbazide compound (A) is an irreversible reaction, and thus a cross-linked structure formed by an amino group.
  • the cross-linked coating film containing a large amount of is excellent in hydrolysis resistance.
  • the presence of the semicarbazide compound (A) in an appropriate range in the semicarbazide composition makes it possible to form a crosslinked coating film excellent in both hydrolysis resistance and alkali yellowing resistance.
  • the analysis area ratio (a) is preferably 0.008% or more and 1% or less from the viewpoint of further improving the properties (particularly alkali yellowing resistance) of the crosslinked coating film obtained using the semicarbazide composition. More preferably, the content is not less than 0.01% and not more than 0.5%.
  • the semicarbazide compound (A) is a compound having an amino group and a semicarbazide group.
  • the semicarbazide compound (A) may have two or more amino groups, and may have two or more semicarbazide groups.
  • the semicarbazide group is a group represented by the following formula (10).
  • the semicarbazide compound (B-1) is a compound having a structure in which all amino groups of the semicarbazide compound (A) are substituted with semicarbazide groups. That is, the semicarbazide compound (B-1) can be said to be a compound having no amino group and having two or more semicarbazide groups.
  • the semicarbazide composition preferably has an analysis area ratio (b-1) represented by the following formula (b-1) of 50% or more and 99% or less.
  • b-1 an analysis area ratio represented by the following formula (b-1) of 50% or more and 99% or less.
  • S A , S B-1 , S B-2 and S B-3 have the same meanings as described above.
  • the semicarbazide compound (B-2) is a dimer of the semicarbazide compound (B-1).
  • the semicarbazide compound (B-2) can be said to be a compound in which two semicarbazide compounds (B-1) are bonded by a condensation reaction of a semicarbazide group, and has a bond represented by the following formula (11).
  • the semicarbazide compound (B-2) can also be referred to as a compound having two or more semicarbazide groups and one bond represented by the following formula (11).
  • the semicarbazide composition preferably has an analysis area ratio (b-2) represented by the following formula (b-2) of 0.9% or more and 30% or less.
  • b-2 an analysis area ratio represented by the following formula (b-2) of 0.9% or more and 30% or less.
  • S A , S B-1 , S B-2 and S B-3 have the same meanings as described above.
  • the analysis area ratio (b-2) is in the above range, the obtained coating film becomes tougher.
  • the semicarbazide compound (B-3) is a trimer of the semicarbazide compound (B-1).
  • the semicarbazide compound (B-3) can be referred to as a compound in which three semicarbazide compounds (B-1) are bonded by a condensation reaction of a semicarbazide group.
  • the semicarbazide compound (B-2) can also be referred to as a compound having two or more semicarbazide groups and two bonds represented by the formula (11).
  • the semicarbazide composition preferably has an analysis area ratio (b-3) represented by the following formula (b-3) of 0.01% or more and 20% or less.
  • b-3 represented by the following formula (b-3) of 0.01% or more and 20% or less.
  • S A , S B-1 , S B-2 and S B-3 have the same meanings as described above.
  • the analysis area ratio (b-3) is in the above range, the resulting coating film becomes tougher.
  • the total content of the semicarbazide compound (A), semicarbazide compound (B-1), semicarbazide compound (B-2) and semicarbazide compound (B-3) in the semicarbazide composition is 90% based on the total amount of the semicarbazide composition. It is preferably at least mass%, more preferably at least 95 mass%, and even more preferably at least 98 mass%.
  • the semicarbazide composition may contain a tetramer or higher molecular weight component of the semicarbazide compound (A), but since such a high molecular weight component is often insoluble in water, It is desirable that the content of the high molecular weight component is small.
  • the content of the high molecular weight component is preferably 1.0% by mass or less, more preferably 0.5% by mass or less, and further preferably 0.1% by mass or less based on the total amount of the semicarbazide composition.
  • the high-performance liquid chromatography analysis of the semicarbazide composition can be performed by LC / MS (Liquid Chromatography Mass Spectrometer) by the following method.
  • the semicarbazide composition is lyophilized and then prepared into a 10 mg / ml aqueous solution. Subsequently, using a centrifuge manufactured by HSIANGTAI MACHINERY INDUSTRY (MODEL MCD-2000), centrifugation is performed at 12,000 rpm for 10 minutes, and the supernatant is measured by LC / MS.
  • LC is “Agilent, 1100 series” and MS is “Thermo Electron, LCQ”. Identification of each peak obtained by measurement is performed by MS, and the peak area of each peak is obtained from the area value of absorbance at 200 nm in an LC ultraviolet-visible detector.
  • the LC / MS measurement conditions are shown below. First, LC conditions are shown.
  • the LC column was Phenomenex, Kinetex 2.6u C18-XB 100A (2.1 mm LD. ⁇ 50 mm), the column oven temperature was 40 ° C., and the mobile phase solvent was (a) 0.1% formic acid aqueous solution and (b) 0 Using two types of methanol solution containing 1% formic acid, the composition was linearly changed from (a) 98% solution composition to (b) 100% solution composition in 5 minutes. After that, the liquid composition of (a) 98% is again obtained in 5.1 minutes, and the liquid composition of (a) 98% is maintained until 12 minutes.
  • the mobile phase flow rate is 0.4 ml / min, and the sample injection volume is 1 ⁇ l.
  • the wavelength of the UV-visible absorption detector attached to the LC is 200 nm.
  • the wavelength of a detector it can change suitably with the substance to handle, and in the case of the semicarbazide composition obtained by making isophorone diisocyanate and hydrazine react, it is preferable that it is 200 nm.
  • Ionization is a positive mode of ESI (Electrospray Ionization), and scanning is performed in a mass to charge ratio (m / z) range of 150 to 1000.
  • the semicarbazide compound (A), semicarbazide compound (B-1), semicarbazide compound (B-2), and semicarbazide compound (B-3) may each include a plurality of isomers.
  • the sum of the peak areas of the peak group containing a plurality of isomers is the peak of the semicarbazide compound (A), semicarbazide compound (B-1), semicarbazide compound (B-2), and semicarbazide compound (B-3), respectively.
  • the area may be any one or more isomers.
  • each compound represented by the formulas (1-1), (1-2), (2-1), (2-2) and (2-3) has a plurality of isomers. May exist.
  • the peak area of the semicarbazide compound (A) is the sum of the peak areas of the compound group represented by the formula (1-1) or (1-2)
  • the peak area of the semicarbazide compound (B-1) (2-1) is the sum of the peak areas of the compound group represented by (2-1)
  • the peak area of the semicarbazide compound (B-2) is the sum of the peak areas of the compound group represented by formula (2-2)
  • the peak area of the semicarbazide compound (B-3) is the sum of the peak areas of the compound group represented by the formula (2-3).
  • the semicarbazide composition when contained in an aqueous resin composition such as a paint, it can be analyzed by the following method, for example.
  • the latex precipitated by ultracentrifugation is redispersed in water.
  • the semicarbazide compound (A) immobilized in the latex can be detected.
  • the semicarbazide compound (A) is a compound represented by the following formula (1-1) or the following formula (1-2), and the semicarbazide compound (B-1) is represented by the following formula (2-1): It is a compound represented by these.
  • the semicarbazide compound (B-2) is a compound represented by the following formula (2-2), and the semicarbazide compound (B-3) is represented by the following formula (2-3).
  • R 1 , R 2 , R 3 and R 4 each independently represent a monovalent group represented by the following formula (2-a) or the following formula (2-b), and R 5 represents the following formula ( 2-c) represents a divalent group.
  • the semicarbazide composition of this embodiment is particularly excellent in water solubility, it can be used particularly suitably for applications such as a crosslinking agent for water-based paints. Moreover, in the semicarbazide composition of this embodiment, the effect of the present invention due to the above-described analysis area ratio (a) being in a specific range is more remarkably exhibited.
  • the semicarbazide composition is, for example, a compound having two or more isocyanate groups in the molecule (hereinafter referred to as “isocyanate compound (C)”) and a hydrazine or hydrazine derivative (hereinafter referred to as “hydrazines (D)”). ) And can be obtained.
  • isocyanate compound (C) a compound having two or more isocyanate groups in the molecule
  • hydrazines (D) a hydrazine or hydrazine derivative
  • the semicarbazide compound (A) is a compound in which part of the isocyanate group of the isocyanate compound (C) is converted to an amino group and the other part is converted to a semicarbazide group.
  • the semicarbazide compound (B-1) is a compound in which all isocyanate groups of the isocyanate compound (C) are converted into semicarbazide groups.
  • Examples of the isocyanate compound (C) include a diisocyanate compound having two isocyanate groups in the molecule and a polyisocyanate compound having three or more isocyanate groups in the molecule.
  • Diisocyanate compounds include alkylene diisocyanates such as N-hexamethylene diisocyanate (HDI); 4,4′-methylenebiscyclohexyl diisocyanate (hydrogenated MDI), isophorone diisocyanate (IPDI), dimethylcyclohexane diisocyanate (hydrogenated).
  • HDI N-hexamethylene diisocyanate
  • MDI 4,4′-methylenebiscyclohexyl diisocyanate
  • IPDI isophorone diisocyanate
  • dimethylcyclohexane diisocyanate hydrochlorocyanate
  • Cycloalkylene diisocyanates such as XDI); 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate and mixtures thereof (TDIs), diphenylmethane-4,4′-diisocyanate (MDI), naphthalene-1,5-diisocyanate (XDI) NDI), 3,3-dimethyl-4,4-diphenylene diisocyanate (TODI), crude TDIs, polymethylene polyphenyl diisocyanate, crude MDI, phenylene diisocyanate Xylylene aralkylene diisocyanate such as isocyanate (XDI);; arylene diisocyanates etc., and the like, may be used in combination thereof.
  • TDIs 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate and mixtures thereof
  • TDIs diphenylmethane-4,4′-di
  • polyisocyanate compound examples include those obtained by oligomerizing a diisocyanate compound by forming biuret bonds, urea bonds, isocyanurate bonds, urethane bonds, allophanate bonds, uretdione bonds, and the like into trimers to 20mers. Can be mentioned.
  • polyisocyanate compounds examples include those obtained by oligomerizing a diisocyanate compound by forming biuret bonds, urea bonds, isocyanurate bonds, urethane bonds, allophanate bonds, uretdione bonds, and the like into trimers to 20mers.
  • bonding in a polyisocyanate compound G.G. Reference can be made to the edition of Oertel, Polythene Handbook (published by Hauser Publishers, Germany, 1985).
  • isocyanate compound (C) a diisocyanate compound is preferable, and isophorone diisocyanate is particularly preferable.
  • Isophorone diisocyanate is a compound represented by the following formula (4), and the semicarbazide composition obtained from isophorone diisocyanate has high water solubility, and can be particularly suitably used for applications such as a crosslinking agent for water-based paints.
  • hydrazines (D) include hydrazine and hydrates thereof; monoalkyl-substituted hydrazine compounds such as monomethyl hydrazine, monoethyl hydrazine and monobutyl hydrazine; ethylene-1,2-dihydrazine, propylene-1,3-dihydrazine Dihydrazine compounds such as butylene-1,4-dihydrazine; oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, glutaric acid dihydrazide, adipic acid dihydrazide, sebacic acid dihydrazide, maleic acid dihydrazide, itaconic acid hydrazide acid Dicarboxylic acid dihydrazides such as isophthalic acid dihydrazide and phthalic acid dihydrazide; tricarboxylic acid trihydrazides such as trimellitic acid trihydrazide
  • the hydrazines (D) in the reaction of the isocyanate compound (C) with the hydrazines (D) (hereinafter sometimes referred to as “semicarbazide reaction”), the hydrazines (D) relative to the total number of isocyanate groups X C (mole) of the isocyanate compound (C)
  • the ratio X D / X C of the amount X D (mole) used is preferably 0.7 to 2.50, more preferably 0.75 to 1.19, and 0.80 to 0 More preferred is .99.
  • the ratio X D / X C is large, the basicity of the reaction system becomes strong and the isocyanate group tends to be easily converted to an amino group.
  • ratio X D / X C When the ratio X D / X C is within the above range, a sufficient reaction rate can be obtained, and conversion of an isocyanate group into an amino group can be sufficiently suppressed. In addition, when the ratio X D / X C is within the above range, there is an advantage that unreacted hydrazines (D) hardly remain and an operation for removing unreacted hydrazines (D) after the reaction becomes unnecessary. .
  • the semicarbazide reaction can be performed using an appropriate solvent as necessary.
  • the solvent include water; alcohols such as methanol, ethanol, isopropanol, 1-butanol, 2-butanol butyl cellosolve, propylene glycol monopropyl ether and octyl alcohol; esters such as methyl acetate, ethyl acetate and butyl acetate; diethyl Ethers such as ether, tetrahydrofuran, dioxane, dimethoxyethane, diethylene glycol dimethyl ether; ketones such as acetone, methylethylkenton, methylisobutylketone; amides such as dimethylformamide, dimethylacetamide; methylene chloride, chloroform, carbon tetrachloride, etc.
  • Chlorinated solvents Nonpolar solvents such as toluene, xylene, hexane, cyclohexane, petroleum ether and the like. Among these, ketones cause dehydration condensation with the semicarbazide compound, and therefore it is necessary to hydrolyze with water after the reaction.
  • the solvent used for the semicarbazide reaction does not necessarily need to be a solvent that dissolves both the isocyanate compound (C) and the hydrazines (D). In that case, the reaction is carried out by forcibly stirring in the reactor. be able to.
  • a water-soluble organic solvent and a poorly water-soluble organic solvent can be used in combination, and the ratio of the two is such that the amount of the poorly water-soluble organic solvent is 20% by mass or more with respect to the total amount of the solvent at the end of the reaction. It is preferably 30% by mass or more, more preferably 45% by mass or more, and may be 100% by mass.
  • water-soluble organic solvent examples include the above-mentioned alcohols, esters, ethers, ketones, and amides.
  • poorly water-soluble organic solvent examples include the above-mentioned chlorinated solvents and nonpolar solvents.
  • the semicarbazide reaction can be carried out at any temperature, but the formation of dimeric semicarbazide compound (B-2) and trimer semicarbazide compound (B-3), which are side reactions, is sufficiently suppressed.
  • the temperature is preferably 0 to 100 ° C., more preferably 0 to 50 ° C.
  • the semicarbazide reaction can be performed by mixing the isocyanate compound (C) and the hydrazines (D) by any method, but from the viewpoint of further suppressing side reactions, the hydrazines (D) or A method in which an isocyanate compound (C) or a solution thereof is gradually added and reacted in the solution; an isocyanate compound (C) or a solution thereof and a hydrazine (D) or a solution thereof are simultaneously added to a solvent.
  • the method of making it react; Or the method of adding an isocyanate compound (C) or its solution simultaneously in hydrazine (D) or its solution; etc. are preferable.
  • a semicarbazide composition having an analysis area ratio (a) in the above range can be obtained through, for example, an extraction operation from the reaction solution.
  • extraction operation examples include distillation, crystallization, column chromatography and the like. Of these, extraction operations that do not require heating to avoid yellowing due to heating (for example, crystallization, column chromatography, a method of suspending in an organic solvent and extracting with water, etc.) are preferred.
  • the solvent used for crystallization is not particularly limited as long as it does not react with the semicarbazide composition.
  • alcohols such as methanol, ethanol, isopropanol, 1-butanol, 2-butanol butyl cellosolve, propylene glycol monopropyl ether
  • esters such as methyl acetate, ethyl acetate, and butyl acetate
  • ethers such as diethyl ether, tetrahydrofuran, dioxane, dimethoxyethane, and diethylene glycol dimethyl ether
  • amides such as dimethylformamide and dimethylacetamide
  • ethers whose solubility of the semicarbazide compound (B-1) varies greatly depending on the temperature are preferable, and dioxane, tetrahydrofuran, and dimethoxyethane are more preferable.
  • an organic solvent in which the semicarbazide compound (B-1) is difficult to dissolve can be used.
  • examples of such an organic solvent include toluene, xylene, hexane, cyclohexane, and petroleum ether.
  • Nonpolar solvents can be preferably used.
  • the semicarbazide composition is a method in which the isocyanate compound (C) and the hydrazine (D) are reacted by forcibly stirring, and after suspending the water, the semicarbazide composition is extracted with water. Can be suitably obtained.
  • the semicarbazide composition obtained by the extraction operation can be used as it is or diluted with a solvent.
  • the diluting solvent include water; alcohols such as methanol, ethanol, isopropanol, and butanol; film forming aids such as butyl cellosolve, CS-12 (manufactured by JNC Corporation), butyl carbitol; Water is preferred to reduce the organic solvent.
  • the semicarbazide composition can be suitably used as a crosslinking agent for a resin that can react with a semicarbazide group to form a crosslinked structure. More specifically, for example, it can be suitably used as a crosslinking agent to be added to an aqueous resin composition containing a resin that can react with a semicarbazide group to form a crosslinked structure.
  • the semicarbazide composition can be used in combination with other compounds having two or more hydrazide groups or semicarbazide groups.
  • examples of such compounds include succinic acid dihydrazide, malonic acid dihydrazide, glutaric acid dihydrazide, succinic acid dihydrazide, adipic acid dihydrazide, sebacic acid dihydrazide and the like; saturated aliphatic carboxylic acid dihydrazide having 2 to 18 carbon atoms; maleic acid dihydrazide Monoolefinic unsaturated dicarboxylic acid dihydrazide such as phthalic acid dihydrazide, itaconic acid dihydrazide; acids such as phthalic acid dihydrazide, terephthalic acid dihydrazide, isophthalic acid dihydrazide, pyromellitic acid dihydrazide, pyromellitic acid trihydrazide, pyromellitic acid tetrahydrazide Di
  • the combined use with water-soluble adipic acid dihydrazide is particularly preferable.
  • the molar ratio of the semicarbazide composition and the compound used in combination is preferably in the range of 100/0 to 0.1 / 99.9, and preferably in the range of 90/10 to 10/90. More preferred.
  • the semicarbazide composition can be added to the aqueous resin composition in the form of an aqueous solution diluted with water, for example.
  • an aqueous solution include an aqueous solution containing 5% by mass or more (preferably 25% by mass or more, more preferably 40% by mass or more) of the semicarbazide composition.
  • the concentration of the semicarbazide composition may be 95% by mass or less, and preferably 80% by mass or less.
  • the semicarbazide composition can be added to the aqueous resin composition as a solid without being diluted with water or the like.
  • the aqueous resin composition according to this embodiment contains the above-described semicarbazide composition and a resin that can react with a semicarbazide group to form a crosslinked structure (hereinafter referred to as “resin (E)”).
  • resin (E) a resin that can react with a semicarbazide group to form a crosslinked structure
  • the aqueous resin composition according to the present embodiment a coating film excellent in hardness, stain resistance, and alkali yellowing resistance can be formed. Therefore, the aqueous resin composition is suitable as an aqueous paint or an aqueous coating material. Can be used.
  • the resin (E) is not particularly limited as long as it can react with a semicarbazide group to form a crosslinked structure.
  • the resin (E) is a compound having a plurality of carbonyl groups (hereinafter referred to as “polycarbonyl compound”). ), A compound having a plurality of epoxy groups (hereinafter referred to as “polyepoxy compound”), and the like.
  • Resin (E) is preferably obtained as an aqueous emulsion by emulsion polymerization or the like.
  • the aqueous emulsion is a liquid composition in which the resin (E) is dispersed in water, and a suitable aqueous resin composition can be obtained by adding a semicarbazide composition to the aqueous emulsion.
  • the polycarbonyl compound when combined with a semicarbazide composition, has excellent storage stability as well as excellent weather resistance, water resistance, stain resistance, hardness and the like.
  • a membrane is particularly preferred because it can be applied at relatively low temperatures.
  • polycarbonyl compound examples include a carbonyl group-containing copolymer, and a carbonyl group-containing mono- or polyalcohol having a carbonyl group such as hydroxyacetone as described in JP-A-2-238015.
  • examples thereof include polyurethanes, acetoacetylated polyvinyl alcohol, polyvinyl alcohol resins having a diacetone group in the side chain, acetoacetylated hydroxyalkylcellulose, and the like, as described in JP-A-9-324095, and combinations thereof. .
  • a preferred polycarbonyl compound is a carbonyl group-containing ethylenically unsaturated monomer ( ⁇ ) and an ethylenically unsaturated monomer copolymerizable with the carbonyl group-containing ethylenically unsaturated monomer ( ⁇ ).
  • Examples of the carbonyl group-containing ethylenically unsaturated monomer ( ⁇ ) include diacetone acrylamide, diacetone methacrylamide, acrolein, vinyl methyl ketone, acetoacetoxyethyl methacrylate, acetoacetoxyethyl acrylate, formylstyrene, and combinations thereof. It is done.
  • Examples of the ethylenically unsaturated monomer ( ⁇ ) copolymerizable with the carbonyl group-containing ethylenically unsaturated monomer ( ⁇ ) include acrylic acid ester, methacrylic acid ester, and ethylenically unsaturated monomer having a carboxyl group. , Ethylenically unsaturated monomers having an epoxy group, acrylamide monomers, methacrylamide monomers, vinyl cyanides, etc.
  • Examples of (meth) acrylic acid esters include alkyl moieties (Meth) acrylic acid alkyl ester having 1 to 18 carbon atoms, (meth) acrylic acid hydroxyalkyl ester having 1 to 18 carbon atoms in the alkyl portion, and (poly) oxy having 1 to 100 ethylene oxide groups Ethylene (meth) acrylate, (poly) oxypropylene (meth) acrylate having 1 to 100 propylene oxide groups, ethylene And (poly) oxyethylene di (meth) acrylate having 1 to 100 oxide groups.
  • acrylate ester and methacrylate ester include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, iso-butyl (meth) acrylate, and (meth) acrylic acid.
  • tert-butyl 2-ethylhexyl (meth) acrylate, methyl cyclohexyl (meth) acrylate, cyclohexyl (meth) acrylate, dodecyl (meth) acrylate, stearyl (meth) acrylate, adamantyl (me
  • hydroxyalkyl esters of (meth) acrylic acid include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxycyclohexyl (meth) acrylate, and dodecyl (meth) acrylate. Etc.
  • (poly) oxyethylene (meth) acrylate examples include ethylene glycol (meth) acrylate, ethylene glycol methoxy (meth) acrylate, diethylene glycol (meth) acrylate, diethylene glycol methoxy (meth) acrylate, (meth) Examples include tetraethylene glycol acrylate and tetraethylene glycol methoxy (meth) acrylate.
  • (poly) oxypropylene (meth) acrylate examples include propylene glycol (meth) acrylate, propylene glycol methoxy (meth) acrylate, dipropylene glycol (meth) acrylate, dipropylene glycol methoxy (meth) acrylate , (Meth) acrylic acid tetrapropylene glycol, methoxy (meth) acrylic acid tetrapropylene glycol, and the like.
  • (poly) oxyethylene di (meth) acrylate examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, diethylene glycol methoxy (meth) acrylate, tetraethylene glycol di (meth) acrylate Etc.
  • ethylenically unsaturated monomers having a carboxyl group include acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, maleic acid half ester, and crotonic acid.
  • Examples of (meth) acrylamide monomers include (meth) acrylamide, N-isobutyl (meth) acrylamide, N-diethyl (meth) acrylamide, N-methylol (meth) acrylamide, and N-butoxymethyl (meth) acrylamide.
  • Vinyl pyrrolidone, etc., examples of vinyl cyanides include (meth) acrylonitrile, and examples of ethylenically unsaturated monomers having an epoxy group include glycidyl (meth) acrylate, (meth) Examples include acrylic acid 2,3-cyclohexene oxide and allyl glycidyl ether.
  • olefins such as ethylene, propylene and isobutylene
  • dienes such as butadiene
  • haloolefins such as vinyl chloride and vinylidene chloride
  • vinyl acetate, vinyl propionate, vinyl n-butyrate benzoate
  • Carboxylic acid vinyl esters such as vinyl acid, pt-butyl vinyl benzoate, vinyl pivalate, vinyl 2-ethylhexanoate, vinyl versatate and vinyl laurate
  • carboxylic acids such as isopropenyl acetate and isopropenyl propionate Isopropenyl esters
  • vinyl ethers such as ethyl vinyl ether, isobutyl vinyl ether and cyclohexyl vinyl ether
  • aromatic vinyl compounds such as styrene and vinyl toluene
  • allyl esters such as allyl acetate and allyl benzoate
  • Allyl ethers such as tellurium and
  • the polycarbonyl compound is preferably obtained by suspension polymerization, emulsion polymerization or solution polymerization, and more preferably obtained by emulsion polymerization as a carbonyl group-containing aqueous dispersion (aqueous emulsion).
  • a particularly suitable aqueous resin composition can be obtained by obtaining a polycarbonyl compound as an aqueous emulsion and adding a semicarbazide composition to the aqueous emulsion.
  • a carbonyl group-containing acrylic copolymer dispersion using an acrylic monomer is preferable.
  • the polycarbonyl compound is, for example, an anionic ethylene selected from the group consisting of an ethylenically unsaturated monomer having a sulfonic acid group or a sulfonate group, an ethylenically unsaturated monomer having a sulfate ester group, and a mixture thereof.
  • the emulsion polymerization for obtaining the resin (E) can be carried out in an aqueous solvent using a surfactant.
  • a surfactant used for emulsion polymerization in order to express high water resistance of the coating film, it has an ethylenic double bond group in the chemical structural formula of the surfactant having a hydrophilic group and a lipophilic group.
  • a so-called reactive surfactant may be used.
  • examples of the anionic surfactant include ethylenically unsaturated monomers having a sulfonic acid group, a sulfonate group, a sulfate ester group, or a salt thereof.
  • a compound having a group ammonium salt (ammonium sulfonate group) or a group (alkali metal sulfonate group) which is an alkali metal salt of a sulfonic acid group can be suitably used.
  • alkylallylsulfosuccinate for example, Sanyo Chemical Co., Ltd., product name Eleminol JS-2, JS-5, and Kao Corporation, product name: Latemulu S-120, S-180A, S-180
  • Polyoxyethylene alkylpropenyl phenyl ether sulfate ester salt for example, product name Aqualon HS-10, Daiichi Kogyo Seiyaku Co., Ltd.
  • ⁇ - [1-[(allyloxy) methyl] -2- (phenylphenoxy) ethyl] - ⁇ -Polyoxyethylene sulfate ester salt for example, ADEKA product name ADEKA rear soap SE-1025A
  • ADEKA product name ADEKA product name ADEKA rear soap SE-1025A
  • ADEKA product name ADEKA product name
  • ADEKA product name ADEKA product name
  • the compound having an aryl group partially substituted with a sulfonate group include ammonium salt, sodium salt and potassium salt of p-styrenesulfonic acid.
  • vinyl sulfonate compounds having a vinyl group to which an ammonium salt, sodium salt or potassium salt of a sulfonic acid group is bonded include, for example, alkyl sulfonic acid (meth) acrylates such as 2-sulfoethyl acrylate and methylpropane sulfonic acid ( Examples thereof include ammonium salts such as (meth) acrylamide and allylsulfonic acid, sodium salts, and potassium salts.
  • Nonionic surfactants include, for example, ⁇ - [1-[(allyloxy) methyl] -2- (phenylphenoxy) ethyl] - ⁇ -hydroxypolyoxyethylene (for example, ADEKA product name Adekaria Co., Ltd.). Soap NE-20, NE-30, NE-40, ER-10, ER-20, ER-30, ER-40), polyoxyethylene alkylpropenyl phenyl ether (for example, product name Aqualon from Daiichi Kogyo Seiyaku Co., Ltd.) RN-10, RN-20, RN-30, RN-50) and the like.
  • ADEKA product name Adekaria Co., Ltd. Soap NE-20, NE-30, NE-40, ER-10, ER-20, ER-30, ER-40), polyoxyethylene alkylpropenyl phenyl ether (for example, product name Aqualon from Daiichi Kogyo Seiyaku Co., Ltd
  • a normal surfactant in addition to the reactive surfactant having an ethylenic double bond group in the chemical structural formula of the surfactant having a hydrophilic group and a lipophilic group, a normal surfactant can also be used.
  • surfactants include anionic surfactants such as fatty acid soaps, alkyl sulfonates, alkyl benzene sulfonates, alkyl sulfosuccinates, polyoxyethylene alkyl sulfates, and polyoxyethylene alkyl aryl sulfates.
  • Non-reactive nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl aryl ether, polyoxyethylene sorbitan fatty acid ester, oxyethylene oxypropylene block copolymer;
  • the surfactants can be used alone or in combination of two or more, and the amount used thereof is usually 0.00 with respect to the total mass of the radical polymerizable monomer for obtaining the resin (E).
  • the content can be from 05% by mass to 10% by mass, and preferably from 0.1% by mass to 5% by mass.
  • the amount of the surfactant used is 0.05% by mass or more, the generation of aggregates during emulsion polymerization is small and the polymerization stability is good.
  • the amount is 10% by mass or less, an aqueous resin composition containing the resin (E) obtained by emulsion polymerization
  • a preferred surfactant is a reactive surfactant from the viewpoint of further improving the water resistance and weather resistance of the coating film.
  • a radical polymerization initiator that can be radically decomposed by heat or a reducing substance to cause addition polymerization of a radically polymerizable unsaturated monomer can be used.
  • water-soluble or oil-soluble persulfates, peroxides, azobis compounds and the like can be used as the radical polymerization initiator.
  • examples include potassium persulfate, sodium persulfate, ammonium persulfate, hydrogen peroxide, t-butyl hydroperoxide, t-butyl peroxybenzoate, 2,2-azobisisobutyronitrile, 2,2-azobis.
  • Emulsion polymerization is usually preferably carried out under normal pressure and at a polymerization temperature of 65 to 90 ° C., but can also be carried out under high pressure in accordance with the characteristics such as vapor pressure at the polymerization temperature of the monomer.
  • a reducing agent such as sodium bisulfite, ferrous chloride, ascorbate, or longalite is used in combination with a radical polymerization initiator. It is advantageous.
  • a chain transfer agent such as dodecyl mercaptan can be optionally added.
  • the water-based resin composition contains a polycarbonyl compound as the resin (E)
  • amines such as ammonia, sodium hydroxide, potassium hydroxide, dimethylaminoethanol, and acids such as hydrochloric acid, sulfuric acid, acetic acid, and lactic acid can be added to the aqueous resin composition.
  • Examples of the polyepoxy compound as the resin (E) include an epoxy group-containing ethylenically unsaturated monomer such as glycidyl (meth) acrylate, a bulk polymerization method, and a suspension polymerization method with other unsaturated monomers. , A copolymer containing an epoxy group obtained by copolymerization by emulsion polymerization, solution polymerization, etc .; bisphenol A type epoxy resin; bisphenol F type epoxy resin; cycloaliphatic epoxy resin; glycidyl ester type epoxy Resin; glycidylamine epoxy resin; hydantoin type epoxy resin; triglycidyl isocyanurate; and the like, and these may be used in combination. These polyepoxy compounds are preferably provided in the form of an aqueous emulsion dispersed in water.
  • Examples of the aqueous emulsion in which a polyepoxy compound is dispersed in water include an epoxy group-containing acrylic copolymer aqueous dispersion.
  • the epoxy group-containing acrylic copolymer aqueous dispersion can be produced, for example, in the same manner as the production of the carbonyl group-containing aqueous emulsion except for the kind of the monomer used.
  • As the epoxy group-containing ethylenically unsaturated monomer glycidyl (meth) acrylate can be suitably used.
  • the resin (E) a compound in which part or all of the epoxy group of the polyepoxy compound is ring-opened by water addition can also be used.
  • a compound can be obtained by heating an aqueous emulsion or an aqueous resin composition containing a polyepoxy compound.
  • the content C 1 and the mass ratio C 1 / C 2 content C 2 of the resin (E) of semicarbazide composition is in the range of 0.1 / 99.9 to 90/10 It is preferable. Within this range, the aqueous resin composition has both room temperature crosslinkability and storage stability, and the coating obtained from the aqueous resin composition is excellent in water resistance, stain resistance, hardness, etc. It will be. Since the ratio C 1 / C 2 is the case is less than 0.1 / 99.9, the effect of the crosslinking density is lowered crosslinking does not appear undesirable. On the other hand, when C 1 / C 2 exceeds 90/10, the resulting coating film becomes very brittle, which is not preferable.
  • the aqueous resin composition can be suitably used as an aqueous paint or an aqueous coating material.
  • Components other than the semicarbazide composition and the resin (E) may be added to the aqueous resin composition depending on the application.
  • the aqueous resin composition may contain a known ultraviolet absorber such as benzophenone, benzotriazole, or triazine, or a known light stabilizer such as a hindered phenol or hindered amine.
  • a known ultraviolet absorber such as benzophenone, benzotriazole, or triazine
  • a known light stabilizer such as a hindered phenol or hindered amine.
  • components that are usually added to and mixed with water-based paints as necessary for example, pigments, fillers, dispersants, wetting agents, thickeners, rheology control agents, antifoaming agents, plasticizers, plasticizers, Film assistants, rust preventives, dyes, preservatives, and the like can be selected and combined according to their respective purposes.
  • the aqueous resin composition of this embodiment is an aqueous resin composition containing a crosslinking agent and an aqueous emulsion.
  • the crosslinking agent contains the semicarbazide composition described above.
  • the aqueous emulsion is selected from the group consisting of a water-soluble or water-dispersible polycarbonyl compound having a number average molecular weight of 1,000 to 100,000 and a water-soluble or water-dispersible polyepoxy compound having a number average molecular weight of 1,000 to 100,000.
  • At least one kind of crosslinkable resin having a glass transition point Tg of less than 80 ° C. is contained.
  • the cross-linking agent contains the semicarbazide composition described above.
  • the semicarbazide composition does not react with the aldo group, keto group, epoxy group, etc. in the crosslinkable resin in the presence of water in the water-based resin composition, and reacts with these groups when water runs out. It can be suitably used as a one-component water-based paint or a crosslinking agent for water-based coating materials.
  • the semicarbazide composition can be used as a crosslinking agent in the form of an aqueous solution diluted with water, for example.
  • an aqueous solution include an aqueous solution containing 5% by mass or more (preferably 25% by mass or more, more preferably 40% by mass or more) of the semicarbazide composition.
  • the concentration of the semicarbazide composition in the aqueous solution may be 95% by mass or less, and preferably 80% by mass or less.
  • the semicarbazide composition can be used as a crosslinking agent in a solid form without being diluted with water or the like.
  • crosslinking agent in addition to the semicarbazide composition, another crosslinking agent may be used in combination.
  • a crosslinking agent for example, a compound having two or more hydrazide groups or semicarbazide groups is suitable. Specific examples thereof include oxalic acid dihydrazide, malonic acid dihydrazide, glutaric acid dihydrazide, succinic acid dihydrazide, and adipic acid dihydrazide.
  • Saturated aliphatic carboxylic acid dihydrazides having 2 to 18 carbon atoms such as sebacic acid dihydrazide; monoolefinic unsaturated dicarboxylic acid dihydrazides such as maleic acid dihydrazide, fumaric acid dihydrazide, itaconic acid dihydrazide; phthalic acid dihydrazide, terephthalic acid Acid dihydrazide compounds such as dihydrazide, isophthalic acid dihydrazide, pyromellitic acid dihydrazide, pyromellitic acid trihydrazide, pyromellitic acid tetrahydrazide; nitrilotrihydrazide, citric acid trihydride Razide, 1,2,4-benzenetrihydrazide, ethylenediaminetetraacetic acid tetrahydrazide, 1,4,5,8-naphthoic acid tetrahydrazide, low polymer having carboxylic
  • dihydrazide carbonate bissemicarbazide
  • urethanization reaction of diisocyanate such as hexamethylene diisocyanate and isophorone diisocyanate with alcohols, or allophanatization reaction at the same time
  • a polyfunctional semicarbazide obtained by reacting the polyisocyanate compound having an allophanate group thus obtained with a hydrazine compound or the above-mentioned dihydrazide, and the polyisocyanate compound and
  • An aqueous polyfunctional semicarbazide obtained by reacting the above-exemplified dihydrazide with an isocyanate group in a reaction product with an active hydrogen compound containing a hydrophilic group such as ether polyols or polyethylene glycol monoalkyl ethers, or the polyfunctional semicarbazide And mixtures with aqueous polyfunctional semicarbazides (see JP-A-8-151358, JP-A-8-245878, and Japanese Patent No.
  • the combined use with water-soluble adipic acid dihydrazide is particularly preferable.
  • the molar ratio of the semicarbazide composition and the compound used in combination is preferably in the range of 100/0 to 0.1 / 99.9, and preferably in the range of 90/10 to 10/90. More preferred.
  • the semicarbazide composition and another compound to form a coating film of the aqueous resin composition it has excellent rigidity and flexibility, or excellent coating that combines flexibility, stain resistance, hardness, and the like.
  • a membrane can be provided.
  • the blending amount of the crosslinking agent is such that the ratio M 1 / M 2 of the total amount M 1 of semicarbazide groups and hydrazine groups in the crosslinking agent to the total amount M 2 of the crosslinkable groups of the resin component in the aqueous emulsion is 0.01 to
  • the amount is preferably in the range of 10, more preferably in the range of 0.05 to 5, and still more preferably in the range of 0.1 to 2.
  • the aqueous emulsion is a liquid composition containing an aqueous dispersion medium and a resin component dispersed in the aqueous dispersion medium, and the resin component has a water-soluble or water-soluble number average molecular weight of 1,000 to 100,000.
  • at least one crosslinkable resin selected from the group consisting of a dispersible polycarbonyl compound and a water-soluble or water-dispersible polyepoxy compound having a number average molecular weight of 1,000 to 100,000.
  • water-soluble or water-dispersible includes that it can be dissolved in water or can be dispersed in water to form an emulsion, and a part of the water-dispersible is water-soluble.
  • the aqueous dispersion medium contains at least water, and optionally contains a water-soluble organic solvent.
  • the water content in the aqueous dispersion medium is preferably 5% by mass or more, and more preferably 50% by mass or more.
  • the content of the resin component in the aqueous emulsion is preferably 1 to 70% by mass and more preferably 5 to 67% by mass based on the total amount of the aqueous emulsion.
  • a water-soluble or dispersible polycarbonyl compound (hereinafter simply referred to as “polycarbonyl compound”) is a compound having two or more aldo groups or keto groups.
  • the polycarbonyl compound include conventionally known polyurethane, polyester, poly (meth) acrylate, polyvinyl acetate, polybutadiene, polyvinyl chloride, chlorinated polypropylene, polyethylene, polystyrene, polystyrene- (meth).
  • Examples thereof include acrylate copolymers, rosin derivatives, styrene-maleic anhydride copolymers and alcohol adducts thereof, and polycarbonyl compounds such as cellulose resins. One or more of these can be used.
  • the polycarbonyl compound can be obtained by copolymerizing or addition-polymerizing a monomer having at least one aldo group or keto group in the molecule with another monomer.
  • the aldo group and keto group are considered to participate in the crosslinking reaction as a carbonyl group after the polymerization reaction.
  • the monomer having at least one aldo group or keto group in the molecule include acetone dicarboxylic acid, dihydroxyacetone, monohydroxyacetone, dihydroxybenzaldehyde and the like, and these may be used alone or in combination of two or more.
  • a polycarbonyl compound can be obtained by performing addition polymerization using together.
  • ethylenically unsaturated monomer having at least one aldo group or keto group in the molecule include acrolein, diacetone acrylamide, diacetone methacrylamide, formyl styrene, vinyl methyl ketone, vinyl ethyl ketone, Vinyl isobutyl ketone, acryloxyalkylpropanals, methacryloxyalkylpropanals, diacetone acrylate, diacetone methacrylate, acetonyl acrylate, 2-hydroxypropyl acrylate acetyl acetate, butanediol-1,4-acrylate acetyl acetate, etc.
  • a polycarbonyl compound is obtained by polymerizing an ethylenically unsaturated monomer mixture containing one or more of these and other ethylenically unsaturated monomers. It is possible. However, ethylenically unsaturated monomers containing carbonyl groups of carboxylic acids and esters are excluded from ethylenically unsaturated monomers having at least one aldo group or keto group in the molecule.
  • the monomer mixture for obtaining the polycarbonyl compound preferably contains 0.5% by weight or more of an ethylenically unsaturated monomer having at least one aldo group or keto group in the molecule.
  • the amount of the ethylenically unsaturated monomer having an aldo group or keto group in the monomer mixture is 0.5% by weight or more, the number of crosslinking points increases and the coating film performance is sufficient.
  • This content is more preferably 0.5% by weight or more and 20% by weight or less.
  • the polycarbonyl compound may be anionic, cationic, nonionic or amphoteric.
  • an anionic property is preferable, and an anionic property including a carboxylic acid group is particularly preferable from the viewpoint of enhancing water solubility.
  • a polycarbonyl compound having a carboxylic acid group has an acid value.
  • an ethylenically unsaturated carboxylic acid monomer is mixed with the monomer mixture used in the polymerization.
  • Specific examples of the ethylenically unsaturated carboxylic acid monomer include acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, maleic anhydride, and itaconic acid, fumaric acid or maleic acid half ester. It is done.
  • the acid value of the polycarbonyl compound is preferably 20 mgKOH / g or more, more preferably 25 mgKOH / g or more, and further preferably 25 mgKOH / g or more and 350 mgKOH / g or less.
  • the acid value is shown by the solid content weight of KOH used for neutralization with respect to g weight of dry resin.
  • the coating film obtained from the water-based resin composition is difficult to cause whitening of the coating film when immersed in water.
  • the whitening of the coating film during water immersion is thought to be due to the penetration of water into the emulsion particle fusion part, but in this embodiment, the fusion part of the emulsion particles is hydrophobized by a crosslinking reaction with a semicarbazide composition. . Therefore, in this embodiment, even when the polycarbonyl compound is highly water-soluble with oxidation of 20 mgKOH / g or more, the occurrence of whitening of the coating film when immersed in water is sufficiently suppressed.
  • polycarbonyl compound examples include cellulose, methyl cellulose (MC), carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), polyethylene glycol (PEG), polypropylene glycol (PPG) and the like having a hydroxyl group Diketene, pyruvic acid, levulinic acid, acetoacetic acid, trimethylpyruvic acid, propionylacetic acid, benzoylformic acid, phenylpyruvic acid, ketocapric acid, ketoundecanoic acid, ketostearic acid, ketoheneicosenoic acid, benzoyl List of compounds modified with acetic acid, benzoylpropionic acid, ketoglyconic acid, ketomalonic acid, acetonedicarboxylic acid, 2-ketoglutaric acid, acetonediacetic acid, acetonepropionic acid and their derivatives It is possible.
  • These compounds are usually produced by adjusting the amount of modification to such an extent that the solubility in water can be maintained while removing addition reaction and by-product hydroxyl compounds in solution or in the molten state in the presence or absence of acids, alkalis, etc. can do.
  • the monomer mixture used for polymerization contains an ethylenically unsaturated monomer having a cationic group.
  • Examples of the ethylenically unsaturated monomer having a cationic group include dimethylaminoethyl (meth) acrylate and salts, diethylaminoethyl (meth) acrylate and salts, dimethylaminopropyl and salts (meth) acrylate, dimethylaminomethyl ( (Meth) acrylamide and salt, dimethylaminoethyl (meth) acrylamide and salt, dimethylaminopropyl (meth) acrylamide and salt, vinylpyridine, halogenated salt of dimethylaminomethyl (meth) acrylamide epichlorohydrin adduct, dimethylaminopropyl Halogenated salts and alkyl sulfonates of (meth) acrylamide epichlorohydrin adducts, halogenated salts of (meth) acrylic acid dimethylaminomethyl epichlorohydrin adducts, dimethyl (meth) acrylate
  • the ethylenically unsaturated monomer having a cationic group is preferably used at 0.5 to 30% by weight in the monomer mixture, and is used at 1 to 20% by weight in the monomer mixture. More preferably. Thereby, a polycarbonyl compound having better water dispersibility can be obtained.
  • the number average molecular weight of the polycarbonyl compound is 1,000 to 100,000, preferably 1,000 to 50,000, and more preferably 4,000 to 50,000.
  • a water-soluble or dispersible polyepoxy compound (hereinafter simply referred to as “polyepoxy compound”) is a compound having two or more epoxy groups or ring-opened epoxy groups.
  • the ring-opening epoxy group is a group generated by a ring-opening reaction of an epoxy group, and can be represented by —X—C—C (—OH) —.
  • X represents an oxygen atom or a nitrogen atom.
  • Examples of the ring-opening epoxy group include a ring-opening glycidyl group.
  • the ring-opening glycidyl group is a group generated by a ring-opening reaction of a glycidyl group, and can be represented by —X—CH 2 —C (—OH) —CH 2 —.
  • Examples of the ring-opening reaction include a reaction between an epoxy group and a carboxyl group, a reaction between an epoxy group and an amino group, and the like.
  • the polyepoxy compound is, for example, an ethylenically unsaturated monomer having at least one aldo group or keto group in the molecule, and an ethylenic group having at least one epoxy group in the molecule. It can be obtained by changing to an unsaturated monomer. That is, specifically, it can be obtained by copolymerizing an ethylenically unsaturated monomer having at least one epoxy group in the molecule with another monomer.
  • a polyepoxy compound having two or more ring-opening epoxy groups reacts with a compound having at least one epoxy group in an amount of 2 equivalents or more in the presence of a catalyst, for a compound having two or more carboxyl groups or amino groups Can be obtained.
  • it can be obtained by reacting a compound having two or more epoxy groups with two or more equivalents of a compound having at least one carboxyl group or amino group in the presence of a catalyst.
  • catalysts used as curing catalysts such as tertiary amines and quaternary ammonium salts can be used. Specifically, tetra-n-butylammonium hydroxide, methyltributylammonium hydroxide, benzyl Triethylammonium hydroxide and the like can be used.
  • Ethylenically unsaturated monomers having one or more epoxy groups include glycidyl (meth) acrylate, allyl glycidyl ether, glycidyl cinnamate, glycidyl crotonate, glycidyl itaconate, glycidyl norbornenyl ester, glycidyl norbornenyl Examples include ether.
  • a compound having an epoxy group can be used without particular limitation.
  • at least one carboxyl group can be used.
  • a reaction product of a compound having a group with epichlorohydrin can be used.
  • the number average molecular weight of the polyepoxy compound is preferably from 1,000 to 100,000, more preferably from 1,000 to 50,000, and further preferably from 4,000 to 50,000.
  • the polyepoxy compound may be anionic, cationic, nonionic or amphoteric.
  • an anionic property is preferable, and an anionic property containing a carboxylic acid group is particularly preferable in terms of enhancing water solubility.
  • the polyepoxy compound having a carboxylic acid group has an acid value.
  • an ethylenically unsaturated carboxylic acid monomer is mixed with the monomer mixture used during polymerization.
  • Specific examples of the ethylenically unsaturated carboxylic acid monomer include acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, maleic anhydride, and itaconic acid, fumaric acid or maleic acid half ester. It is done.
  • the acid value of the polyepoxy compound is preferably 20 mgKOH / g or more, more preferably 25 mgKOH / g or more, and further preferably 25 mgKOH / g or more and 350 mgKOH / g or less.
  • the acid value is shown by the solid content weight of KOH used for neutralization with respect to g weight of dry resin.
  • the coating film obtained from the water-based resin composition is difficult to cause whitening of the coating film when immersed in water.
  • the whitening of the coating film during water immersion is thought to be due to water intrusion into the emulsion particle fusion part, but in this aspect, the fusion part of the emulsion particles is hydrophobized by a crosslinking reaction with a semicarbazide composition. Therefore, in this aspect, even when the polyepoxy compound is highly water-soluble with oxidation of 20 mgKOH / g or more, the occurrence of whitening of the coating film when immersed in water is sufficiently suppressed.
  • a monomer having at least one aldo group or keto group in the molecule or a monomer having one or more epoxy groups in the molecule can be copolymerized with other monomer components used here, for example, acrylic acid ester, methacrylic acid ester, acrylamide monomer, methacrylamide monomer And vinyl cyanides.
  • (meth) acrylic acid esters examples include (meth) acrylic acid alkyl esters having 1 to 18 carbon atoms in the alkyl portion, (meth) acrylic acid hydroxyalkyl esters having 1 to 18 carbon atoms in the alkyl portion, and ethylene oxide.
  • (meth) acrylate esters include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and t-butyl (meth) acrylate. , 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, methyl cyclohexyl (meth) acrylate, dodecyl (meth) acrylate, isobornyl (meth) acrylate, stearyl (meth) acrylate, (meth) acryl Examples include acid adamantyl.
  • hydroxyalkyl esters of (meth) acrylic acid include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxycyclohexyl (meth) acrylate, and dodecyl (meth) acrylate. Etc.
  • (poly) oxyethylene (meth) acrylate examples include ethylene glycol (meth) acrylate, ethylene glycol methoxy (meth) acrylate, diethylene glycol (meth) acrylate, diethylene glycol methoxy (meth) acrylate, (meth) Examples include tetraethylene glycol acrylate and tetraethylene glycol methoxy (meth) acrylate.
  • (poly) oxypropylene (meth) acrylate examples include propylene glycol (meth) acrylate, propylene glycol methoxy (meth) acrylate, dipropylene glycol (meth) acrylate, dipropylene glycol methoxy (meth) acrylate , (Meth) acrylic acid tetrapropylene glycol, methoxy (meth) acrylic acid tetrapropylene glycol, and the like.
  • (poly) oxyethylene di (meth) acrylate examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, diethylene glycol methoxy (meth) acrylate, tetraethylene glycol di (meth) acrylate Etc.
  • Examples of (meth) acrylamide monomers include (meth) acrylamide, N-isobutyl (meth) acrylamide, N-dimethyl (meth) acrylamide, N-diethyl (meth) acrylamide, N-methylol (meth) acrylamide, N-butoxymethyl (meth) acrylamide, etc., and examples of vinyl cyanides include (meth) acrylonitrile.
  • olefins such as ethylene, propylene and isobutylene
  • dienes such as butadiene
  • haloolefins such as vinyl chloride and vinylidene chloride
  • vinyl acetate, vinyl propionate, vinyl n-butyrate Carboxylic acid vinyl esters such as vinyl benzoate, pt-butyl vinyl benzoate, vinyl pivalate, vinyl 2-ethylhexanoate, vinyl versatate and vinyl laurate
  • carboxyl such as isopropenyl acetate and isopropenyl propionate
  • Acid isopropenyl esters vinyl ethers such as ethyl vinyl ether, isobutyl vinyl ether and cyclohexyl vinyl ether
  • aromatic vinyl compounds such as styrene and vinyl toluene
  • allyl esters such as allyl acetate and allyl benzoate
  • Allyl ethers such as ether, ally
  • the crosslinkable resin has a glass transition point Tg of less than 80 ° C., preferably 65 ° C. or less, and more preferably 50 ° C. or less.
  • Tg glass transition point
  • the Tg of the crosslinkable resin may be calculated from the monomer constituting the polymer by the following Fox formula.
  • Fox equation: 1 / Tg a 1 / Tg 1 + a 2 / Tg 2 + ⁇ + a n / Tg n (a 1, a 2, a mass fraction of ⁇ ⁇ ⁇ a n each monomer
  • Tg 1, Tg 2, ⁇ ⁇ ⁇ Tg n is Tg of the homopolymer of each monomer to be used for that. computed with Tg of each monomer homopolymer, for example, polymer Handbook (JhonWilley & Sons), paints for synthesis It is described in the resin introduction.
  • the crosslinkable resin is preferably obtained from emulsion polymerization, miniemulsion polymerization or solution polymerization.
  • the solution polymerization may be performed by a usual method.
  • the organic solvent used include toluene, xylene, cyclohexane, ethyl acetate, butyl acetate, CS-12 (manufactured by JNC), ethylene glycol monobutyl ether, ethylene Glycol mono 2-ethylhexyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether acetate, ethylene glycol mono 2-ethylhexyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, propylene glycol monoethyl ether, Propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene Glycol monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glyco
  • Emulsion polymerization and miniemulsion polymerization can be carried out using a surfactant.
  • a surfactant when the crosslinkable resin to be produced is anionic, an anionic surfactant or nonionic surfactant is used. Use a surfactant.
  • An activator may be used.
  • examples of the anionic surfactant include ethylenically unsaturated monomers having a sulfonic acid group, a sulfonate group, a sulfate ester group, or a salt thereof.
  • a compound having a group ammonium salt (ammonium sulfonate group) or a group (alkali metal sulfonate group) which is an alkali metal salt of a sulfonic acid group can be suitably used.
  • allyl sulfonate for example, Sanyo Chemical Co., Ltd., product name Eleminol JS-2, JS-5, for example, Kao Corporation, product name: Latemul S-120, S-180A, S-180
  • polyoxyethylene alkylpropenyl phenyl ether sulfate for example, Dai-Ichi Kogyo Seiyaku Co., Ltd., product name Aqualon HS-10
  • ⁇ - [1-[(allyloxy) Methyl] -2- (phenylphenoxy) ethyl] - ⁇ -polyoxyethylene sulfate ester salt for example, product name ADEKA rear soap SE-1025A manufactured by ADEKA Corporation
  • examples of the nonionic surfactant include ⁇ - [1-[(allyloxy) methyl] -2- (phenylphenoxy) ethyl] - ⁇ -hydroxypolyoxyethylene (for example, Manufactured by ADEKA Co., Ltd., product names Adekari Soap NE-20, NE-30, NE-40, etc.), polyoxyethylene alkylpropenyl phenyl ether (for example, product name Aqualon RN-10 from Daiichi Kogyo Seiyaku Co., Ltd.) , RN-20, RN-30, RN-50 and the like.
  • ⁇ - [1-[(allyloxy) methyl] -2- (phenylphenoxy) ethyl] - ⁇ -hydroxypolyoxyethylene for example, Manufactured by ADEKA Co., Ltd., product names Adekari Soap NE-20, NE-30, NE-40, etc.
  • a reactive surface activity having an ethylenic double bond group in the chemical structural formula of a surfactant having a hydrophilic group and a lipophilic group in addition to the agent, a normal surfactant can also be used.
  • surfactants include anionic surfactants such as fatty acid soaps, alkyl sulfonates, alkyl benzene sulfonates, alkyl sulfosuccinates, polyoxyethylene alkyl sulfates, and polyoxyethylene alkyl aryl sulfates.
  • Non-reactive nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl aryl ether, polyoxyethylene sorbitan fatty acid ester, oxyethylene oxypropylene block copolymer;
  • the amount of the surfactant used is preferably 0.05 to 20% by weight based on the total mass of monomers for obtaining the crosslinkable resin.
  • two or more kinds of surfactants may be used in combination with the surfactant, and the conditions in the emulsion polymerization may be in accordance with ordinary conditions, and are not particularly limited.
  • a radical polymerization initiator In the polymerization reaction for obtaining a crosslinkable resin, a radical polymerization initiator can be used.
  • a radical polymerization initiator a compound that can be radically decomposed by heat or a reducing substance to cause radical polymerization of an ethylenically unsaturated monomer can be used.
  • radical polymerization initiators water-soluble initiators such as water-soluble persulfates, peroxides, and azobis compounds can be used. Specific examples thereof include potassium persulfate, sodium persulfate, ammonium persulfate, Examples thereof include hydrogen oxide, t-butyl hydroperoxide, and 2,2-azobis (2-diaminopropane) hydrochloride.
  • specific examples of oil-soluble initiators include t-butyl peroxybenzoate, 2,2-azobisisobutyronitrile, 2,2-azobis (2,4-dimethyl). Valeronitrile) and the like.
  • the polymerization reaction for obtaining the crosslinkable resin is carried out by emulsion polymerization
  • it is preferable to use a water-soluble initiator and in the case of solution polymerization or miniemulsion polymerization, an oil-soluble initiator is preferably used.
  • the radical polymerization initiator is usually blended in an amount of 0.1 to 10% by mass based on the total amount of all monomers. Moreover, when acceleration
  • the reaction system can be neutralized or solubilized by adding an acid and polymerized with a water-soluble polymerization initiator.
  • a chain transfer agent can be added during the polymerization process in order to adjust the molecular weight after polymerization.
  • the addition amount of the chain transfer agent can be, for example, 0.1 to 5% by mass with respect to the total amount of all monomers. If the chain transfer agent is less than 0.1% by mass, the viscosity of the aqueous resin composition may be high and handling may be difficult, and if it exceeds 5% by mass, the water resistance of the coating film may be insufficient.
  • chain transfer agent examples include mercaptans such as butyl mercaptan, n-dodecyl mercaptan and t-dodecyl mercaptan; alcohols such as methanol and isopropyl alcohol; ⁇ -methylstyrene dimer; carbon tetrachloride and the like.
  • the aqueous emulsion may contain two or more of the above crosslinkable resins.
  • the aqueous emulsion may further contain a water-dispersible resin and / or a water-soluble resin other than the crosslinkable resin.
  • the aqueous emulsion contains a first resin that is a crosslinkable resin having an acid value of 20 mgKOH / g or more, and a second resin having an acid value lower than that of the crosslinkable resin. It may be.
  • the second resin may not have a crosslinkable group (aldo group, keto group or epoxy group), but has a crosslinkable group from the viewpoint of further improving the properties of the coating film. It is preferable to have the same kind of crosslinkable group as the crosslinkable resin. That is, the second resin may correspond to the above-described crosslinkable resin.
  • the acid value of the second resin is preferably less than 25 mgKOH / g, more preferably less than 20 mgKOH / g, and still more preferably less than 18 mgKOH / g.
  • the acid value of the resin component contained in the aqueous emulsion is preferably 1 to 250 mgKOH / g, more preferably 5 to 200 mgKOH / g, and further preferably 5 to 100 mgKOH / g.
  • the acid value and content ratio of the crosslinkable resin and the second resin can be adjusted so that the acid value of the resin component is in the above range.
  • the number average molecular weight of the second resin is preferably larger than the number average molecular weight of the crosslinkable resin.
  • the number average molecular weight of the second resin is preferably 50,000 to 2,000,000, more preferably 100,000 to 1,000,000.
  • the ratio Y 1 / Y 2 and content Y 1 and the content Y 2 of the second resin crosslinkable resin in the resin component of the aqueous emulsion in mass ratio, 1 / 99-90 / 10, preferably 5/95 to 60/40, more preferably 5/95 to 40/60.
  • the ratio of the content Y 1 of the crosslinkable resin is 1 or more, a coating film with further excellent stain resistance is obtained, and when the ratio of the content Y 1 is 90 or less, a coating film with further excellent water resistance is obtained. . That is, by setting the ratio Y 1 / Y 2 in the above range, both excellent water resistance and contamination resistance can be achieved.
  • the Tg of the resin component of the aqueous emulsion is preferably 60 ° C. or lower ( ⁇ 65 ° C. or higher), more preferably 50 ° C. or lower, and further preferably 40 ° C. or lower.
  • the aqueous resin composition has excellent film formability, and the flexibility and stain resistance of the coating film are improved in a well-balanced manner.
  • the aqueous emulsion may contain emulsion particles composed of each resin, and may contain multicomponent emulsion particles composed of two or more kinds of resins. It may be contained.
  • an aqueous emulsion containing two kinds of resins can be obtained by the following method.
  • Method 1 Method of polymerizing resin (a) and resin (b) separately to prepare an emulsion of resin (a) and an emulsion of resin (b), and mixing them to obtain an aqueous emulsion .
  • a simple mixture of emulsion particles made of resin (a) and emulsion particles made of resin (b) is obtained.
  • Method 2 A method of obtaining an aqueous emulsion by performing emulsion polymerization or miniemulsion polymerization of a monomer for obtaining the resin (b) in an aqueous solvent containing the resin (a).
  • an aqueous emulsion is obtained that includes emulsion particles having a multilayer structure in which the resin (b) is polymerized around the resin (a) as a central core.
  • the resin (a) may be dispersed in an aqueous solvent to form an emulsion, or may be dissolved in the aqueous solvent.
  • the resin (a) may be obtained by dispersing in an aqueous solvent by emulsion polymerization or miniemulsion polymerization, and may be dispersed or dissolved in an aqueous solvent after being synthesized by solution polymerization. May be.
  • Method 2 when one of the resin (a) and the resin (b) is anionic, the other is desirably anionic or nonionic, and when one is cationic, the other is a cation. Or nonionic.
  • Method 3 In the presence of the resin (a) obtained through the first-stage polymerization, the monomer (emulsion polymerization or miniemulsion polymerization for obtaining the resin (b) in the second stage is performed to obtain the resin (b). And then performing the solubilization treatment as necessary, followed by the second polymerization of the resin (a) as the third stage. At this time, the monomer composition of the first polymerization of the resin (a) and the monomer composition of the second polymerization of the resin (a) may be changed to form an aqueous emulsion containing three types of resins. Good.
  • the method for producing the aqueous emulsion is particularly preferably the method in which the resin (a) is the second resin and the resin (b) is a crosslinkable resin.
  • the crosslinkable resin and the second resin are more preferably anionic.
  • the second resin can be obtained by emulsion polymerization using an emulsifier.
  • an anionic resin is produced as the second resin
  • an anionic surfactant and / or a nonionic surfactant is used as an emulsifier.
  • the surfactant described in the explanation of the emulsion polymerization for obtaining the above-described crosslinkable resin can be used in the same manner.
  • a cationic resin when produced as the second resin, a cationic surfactant and / or a nonionic surfactant is used as the emulsifier.
  • the surfactant described in the explanation of the emulsion polymerization for obtaining the above-described crosslinkable resin can be used in the same manner.
  • the amount of the emulsifier (surfactant) used is preferably 0.05 to 25% by mass with respect to the total amount of monomers for obtaining the second resin, for example.
  • the conditions in emulsion polymerization should just follow normal conditions, and are not specifically limited.
  • the amount of chain transfer agent added can be, for example, 0.1 to 5% by mass relative to the total amount of monomers. If the chain transfer agent is less than 0.1% by mass, the viscosity of the aqueous resin composition may be high and handling may be difficult, and if it exceeds 5% by mass, the water resistance of the coating film may be insufficient.
  • chain transfer agent examples include mercaptans such as butyl mercaptan, n-dodecyl mercaptan and t-dodecyl mercaptan; alcohols such as methanol and isopropyl alcohol; ⁇ -methylstyrene dimer; carbon tetrachloride and the like.
  • an alkali component can be added to the second resin, and when the second resin is cationic, an acid component is added to the second resin. Can do. This improves the dispersion stability in the aqueous resin composition.
  • the addition amount of the alkali component and the acid component is preferably such that the pH of the aqueous emulsion is in the range of 3-10. Thereby, the dispersion stability is further improved.
  • alkali component ordinary alkalis such as sodium hydroxide, potassium hydroxide, ammonia and the like are used without any particular limitation.
  • monoethanolamine, N, N— Preferred examples of dimethylethanolamine, N, N-diethylethanolamine, diethanolamine, Nn-butyldiethanolamine, triisopropanolamine, and morpholines include morpholine and 4-morpholinoethanol.
  • ammonia is preferable as the volatile alkali component.
  • Examples of the acid component include hydrochloric acid, sulfuric acid, nitric acid, methanesulfonic acid, p-toluenesulfonic acid, acetic acid, lactic acid, and hydroxyacetic acid.
  • the acid component and the alkali component may be added before, during or after the polymerization.
  • the organic solvent that can be used for the solubilization treatment may be used supplementarily when the water-solubilization is insufficient only by adding the alkali component or the acid component, or may be solubilized only by the organic solvent.
  • an ethylenically unsaturated carboxylic acid monomer can be used as a part of the monomer used for polymerization in order to retain the carboxylic acid group in the second resin.
  • the ethylenically unsaturated carboxylic acid unit include acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, maleic anhydride, itaconic anhydride, fumaric acid, maleic acid half ester, and the like.
  • 2nd resin contains a carboxylic acid group, there also exists an aspect that it is useful in producing
  • the same monomer as that for obtaining the crosslinkable resin can be used, for example, ethylene having at least one aldo group or keto group in the molecule.
  • An ethylenically unsaturated monomer, other ethylenically unsaturated monomer, an ethylenically unsaturated monomer having a cationic group, etc. can be used for introducing a cationic group.
  • the second resin For the production of the second resin, it is not always necessary to use an ethylenically unsaturated monomer having an aldo group or a keto group, but from the viewpoint of further improving the coating film performance by increasing the number of crosslinking points, It is preferable to use 0.5% by weight or more based on the total amount of monomers, and it is more preferable to use 0.5% by weight or more and 20% by weight or less.
  • the method for producing the aqueous emulsion of the above aspect as described above, among the methods 3, the method in which the resin (a) is the second resin and the resin (b) is a crosslinkable resin is particularly suitable. is there. Below, the specific one aspect
  • the alkali component here, as the third stage, in the emulsion, 0 to 3 wt% of ethylenically unsaturated carboxylic acid monomer, ethylenically unsaturated monomer having aldo group or keto group 0 to Emulsion polymerization of a monomer mixture comprising 20% by weight and other monomers 77 to 99.5% by weight to obtain a second resin for the second time results in the second resin ( 1st), an emulsion containing a crosslinkable resin and a second resin (2nd) is obtained.
  • the above embodiment is a method of performing polymerization in three stages, but in the present invention, further multistage polymerization may be used depending on the purpose.
  • multi-stage polymerization in this way, in the coating film obtained from the aqueous resin composition, the whitening prevention performance during water immersion tends to be further improved.
  • the aqueous resin composition according to this embodiment is a composition obtained by blending a crosslinking agent and an aqueous emulsion. Components other than the above-mentioned crosslinking agent and aqueous emulsion may be blended in the aqueous resin composition.
  • the pH of the aqueous resin composition is preferably in the range of 5 to 10.
  • amines such as ammonia, sodium hydroxide, potassium hydroxide, dimethylaminoethanol, and the like can be used.
  • the mass ratio of the dispersoid (solid content) and the dispersion medium (aqueous solvent) in the aqueous resin composition is preferably 70/30 or less, and more preferably 30/70 or more and 65/35 or less.
  • examples of the aqueous solvent for dispersing and / or dissolving the crosslinkable resin include water, a mixed solvent of water and alcohols, and the like.
  • the water-based resin composition may contain components that are usually blended in water-based paints, such as film forming aids, thickeners, antifoaming agents, pigments, dispersants, dyes, preservatives, etc.
  • a light stabilizer, colloidal inorganic particles, and the like can be arbitrarily blended.
  • the colloidal inorganic particles are effective for further improving the stain resistance, and preferably 1 to 80 parts by mass, preferably 2 to 15 parts by mass with respect to 100 parts by mass of the total amount of the resin components in the aqueous emulsion. More preferably. By blending colloidal inorganic particles in this range, it becomes difficult to whiten even if the resulting coating film is immersed in water.
  • an ultraviolet absorber or a light stabilizer to the aqueous resin composition in order to impart high weather resistance.
  • a method for containing these in the aqueous resin composition a method in which an ultraviolet absorber or a light stabilizer is mixed with a film-forming auxiliary or the like may be added afterwards, but a method to be present during emulsion polymerization to obtain an aqueous emulsion.
  • the ultraviolet absorber or light stabilizer can be added at a ratio of 0.1% by mass to 5% by mass with respect to the total amount of monomers for obtaining the crosslinkable resin, for example, during the production of the crosslinkable resin. .
  • a radical polymerizable compound having a radical polymerizable double bond in the molecule as the ultraviolet absorber, and a radical polymerizable compound having a radical polymerizable double bond in the molecule as the light stabilizer. You can also. Moreover, when an ultraviolet absorber and a light stabilizer are used in combination, the weather resistance of the resulting coating film is further improved.
  • UV absorbers examples include benzotriazole UV absorbers, radical polymerizable benzotriazole UV absorbers, and triazine UV absorbers.
  • benzotriazole ultraviolet absorber examples include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-5′-tert-butylphenyl) benzotriazole, 2- (2 ′ -Hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-tert) -Octylphenyl) benzotriazole, 2- [2'-hydroxy-3 ', 5'-bis ( ⁇ , ⁇ '-dimethylbenzyl) phenyl] benzotriazole), methyl-3- [3-tert-butyl-5- (2H-benzotriazol-2-yl) -4-hydroxyphenyl] propionate and polyethylene glycol (Product name: TINUVIN 1130) manufactured by BASF Japan Ltd., isooct
  • radical polymerizable benzotriazole ultraviolet absorber 2- (2′-hydroxy-5′-methacryloxyethylphenyl) -2H-benzotriazole (manufactured by Otsuka Chemical Co., Ltd., product name: RUVA-93) 2- (2′-hydroxy-5′-methacryloxyethyl-3-tert-butylphenyl) -2H-benzotriazole, 2- (2′-hydroxy-5′-methacrylyloxypropyl-3-tert-butyl) Phenyl) -5-chloro-2H-benzotriazole, 3-methacryloyl-2-hydroxypropyl-3- [3 ′-(2 ′′ -benzotriazolyl) -4-hydroxy-5-tert-butyl] phenylpropio Nate (manufactured by BASF Japan Ltd., product name: CGL-104).
  • TINUVIN400 product name, manufactured by BASF Japan Ltd.
  • BASF Japan Ltd. the triazine ultraviolet absorber
  • Examples of the light stabilizer include hindered amine light stabilizers and radical polymerizable hindered amine light stabilizers.
  • hindered amine light stabilizer those having low basicity are preferable, and specifically, those having a base constant (pKb) of 8 or more are preferable. More specifically, bis (2,2,6,6-tetramethyl-4-piperidyl) succinate, bis (2,2,6,6-tetramethylpiperidyl) sebacate, bis (1,2,2,6 , 6-Pentamethyl-4-piperidyl) 2- (3,5-di-tert-butyl-4-hydroxybenzyl) -2-butylmalonate, 1- [2- [3- (3,5-di-tert -Butyl-4-hydroxyphenyl) propynyloxy] ethyl] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propynyloxy] -2,2,6,6-tetramethylpiperidine , A mixture of bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl-1
  • radical polymerizable hindered amine light stabilizer examples include 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate, 1,2,2,6,6-pentamethyl-4-piperidyl acrylate, 2,2,6 , 6-tetramethyl-4-piperidyl methacrylate, 2,2,6,6-tetramethyl-4-piperidyl acrylate, 1,2,2,6,6-pentamethyl-4-iminopiperidyl methacrylate, 2,2,6 , 6, -tetramethyl-4-iminopiperidyl methacrylate, 4-cyano-2,2,6,6-tetramethyl-4-piperidyl methacrylate, 4-cyano-1,2,2,6,6-pentamethyl-4 -Piperidyl methacrylate and the like.
  • the aqueous resin composition also includes (partially saponified) polymer dispersion stabilizers such as polyvinyl alcohol, methyl cellulose, hydroxyethyl cellulose, and polyvinyl pyrrolidone; thickeners such as polyether thickeners; plasticizers; You may contain, You may use these together.
  • polymer dispersion stabilizers such as polyvinyl alcohol, methyl cellulose, hydroxyethyl cellulose, and polyvinyl pyrrolidone
  • thickeners such as polyether thickeners
  • plasticizers You may contain, You may use these together.
  • the water-based resin composition includes components added and blended with ordinary paints, various coating materials, etc., for example, viscosity modifiers, pH adjusters, antifoaming agents, pigments, fillers, dispersants, dyes, antiseptics.
  • Agent, surfactant, heat stabilizer, UV absorber, antioxidant, light stabilizer, flame retardant, organic solvent, wetting agent, surfactant, thickener, plasticizer, film forming aid, rust inhibitor Etc. may be blended. These are dispersed in the aqueous resin composition using a kneader such as an attritor or a sand mill, and adjusted so that the aqueous resin composition has a predetermined viscosity according to the application.
  • the aqueous resin composition can form a coating film, for example, by coating on a substrate and drying.
  • the coating film contains a crosslinked product obtained by crosslinking a crosslinkable resin with a crosslinking agent.
  • the obtained coating film is excellent in hardness, stain resistance, water resistance and alkali yellowing resistance.
  • the composite according to this embodiment will be described below.
  • the composite according to this embodiment includes a base material and a coating film formed on at least one surface of the base material by an aqueous resin composition.
  • Non-metallic inorganic materials such as glass, gypsum and stone; metals such as iron, stainless steel, aluminum and copper; polymers such as acrylic, polystyrene, polyester, polycarbonate and polyolefin; synthetic rubber, natural rubber, Examples thereof include fibers such as cotton, silk, hemp, and nylon; wood;
  • the coating film may be formed by directly applying the aqueous resin composition to the substrate, or may be formed by further applying the aqueous resin composition after applying a paint or coating material on the substrate. .
  • the analysis area ratios (a), (b-1), (b-2), and (b-3) of the semicarbazide composition were determined according to the method described above, with the wavelength of the UV-visible absorption detector being 200 nm. Since isophorone diisocyanate is composed of a plurality of stereoisomers, the peak areas S A , S B-1 , S B-2 , and S B-3 are the peak group areas obtained by summing up the peaks derived from the isomers. Asked.
  • the yellowing of the coating film by the alkaline aqueous solution was inspected by measuring the color change after the coating film was immersed in a saturated calcium hydroxide solution for a predetermined period. More specifically, a white paint board is applied to a flexible board, and a dry paint board is prepared. The aqueous resin composition is applied on the paint board so that the coating liquid is 250 ⁇ m and dried at room temperature. A measurement sample was obtained. This measurement sample was immersed in a saturated calcium hydroxide aqueous solution at 23 ° C. for 1 week, and the change in color was measured.
  • the color change was measured before and after the test (before and after immersion in a saturated calcium hydroxide aqueous solution) by measuring the L, a, and b values using a MINOLTA color difference meter CR-200, and the change in the b value before and after the test. Indicated by the amount of ⁇ b.
  • the confirmation test of the crosslinked state of the coating film was performed by immersing the coating film in an organic solvent and measuring the insoluble content.
  • a coating film having a thickness of about 100 ⁇ m was immersed in acetone for 24 hours and then dried, and the ratio of mass change before and after immersion was measured.
  • the temperature in the reaction vessel was kept at 80 ° C. After completion of the inflow, the temperature in the reaction vessel was raised to 80 ° C. and kept for 2 hours. Thereafter, the mixture is cooled to room temperature, adjusted to pH 7.5 by adding 25% aqueous ammonia solution, filtered through a 100 mesh wire mesh, and a carbonyl group-containing copolymer having a solid content of 46.8% and an average particle size of 106 nm. An aqueous emulsion was obtained.
  • 2% CS-12 manufactured by JNC Co., Ltd.
  • a coating film having a thickness of about 100 ⁇ m was obtained from the coating solution sufficiently mixed with stirring. After drying at 23 ° C. for 1 week, 24 hours After dipping in acetone and drying, the proportion of mass change before and after immersion was measured, and the insoluble content was 8%.
  • Example 1-1 (Semicarbazide composition) 22.0 g of hydrazine monohydrate, 200 g of tetrahydrofuran (water-soluble organic solvent) and 60 g of water were placed in a reactor having a reflux condenser, a thermometer, and a stirrer. Thereafter, a mixed solution of 400 g of toluene (poorly water-soluble solvent) and 50 g of isophorone diisocyanate was added dropwise at room temperature over 1 hour. Thereafter, the mixture was further stirred at room temperature for 1 hour to complete the reaction (the water-soluble organic solvent ratio excluding water at the end of the reaction was 67%).
  • the organic solvent and water were removed under reduced pressure at a temperature of 50 ° C. or lower.
  • the obtained white powder was vacuum-dried at room temperature to obtain 64 g of a semicarbazide composition.
  • the semicarbazide composition was dissolved in the same amount of water to obtain a 50% aqueous solution.
  • the analysis area ratio (a) of the semicarbazide composition was 0.09%
  • the analysis area ratio (b-1) was 85.20%
  • the analysis area ratio (b -2) was 11.53%
  • the analysis area ratio (b-3) was 3.18%.
  • the molecular weight per semicarbazide group calculated from this ratio is 167.
  • the chromatogram obtained by LC / MS analysis was as shown in FIG.
  • This aqueous resin composition was applied as a coating liquid to a thickness of about 100 ⁇ m and dried at 23 ° C. for 1 week to obtain a coating film.
  • the obtained coating film was immersed in acetone for 24 hours and then dried, and the ratio of mass change before and after immersion was measured, the insoluble content was 88%.
  • a white enamel paint was applied to a flexible board, and this aqueous resin composition was applied to a dried coated plate to a thickness of 250 ⁇ m and dried at room temperature for 1 week to obtain a coating film.
  • the obtained coating film was immersed in a saturated calcium hydroxide aqueous solution at 23 ° C. for 1 week, the value of ⁇ b was as low as 3.7.
  • Example 1-2 (Semicarbazide composition) 18.0 g of hydrazine monohydrate, 200 g of tetrahydrofuran, and 60 g of water were placed in a reactor having a reflux condenser, a thermometer, and a stirring device. Thereafter, a mixed solution of 700 g of toluene and 50 g of isophorone diisocyanate was added dropwise at room temperature over 1 hour. Thereafter, the mixture was further stirred at room temperature for 1 hour to complete the reaction (the water-soluble organic solvent ratio excluding water at the end of the reaction was 78%). Thereafter, the organic solvent and water were removed under reduced pressure at a temperature of 50 ° C. or lower. The obtained white powder was vacuum-dried at room temperature to obtain 61.5 g of a semicarbazide composition. The semicarbazide composition was dissolved in the same amount of water to obtain a 50% aqueous solution.
  • the analysis area ratio (a) of the semicarbazide composition was 0.01%
  • the analysis area ratio (b-2) was 81%
  • the analysis area ratio (b-2 ) was 15%
  • the analysis area ratio (b-3) was 4%.
  • the molecular weight per semicarbazide group calculated from this ratio is 172.
  • the chromatogram obtained by LC / MS analysis was as shown in FIG.
  • This aqueous resin composition was applied as a coating liquid to a thickness of about 100 ⁇ m and dried at 23 ° C. for 1 week to obtain a coating film.
  • the obtained coating film was immersed in acetone for 24 hours and then dried, and when the ratio of mass change before and after immersion was measured, the insoluble content was 90%.
  • a white enamel paint was applied to a flexible board, and this aqueous resin composition was applied to a dried coated plate so as to have a thickness of 250 ⁇ m, and dried at room temperature for 1 week to obtain a coating film.
  • the obtained coating film was immersed in a saturated calcium hydroxide aqueous solution at 23 ° C. for 1 week, the value of ⁇ b was as low as 3.2.
  • Example 1-3 (Semicarbazide composition) Hydrazine monohydrate 25.0 g, tetrahydrofuran 200 g, and water 60 g were placed in a reactor having a reflux condenser, a thermometer, and a stirring device. Thereafter, a mixed solution of 200 g of toluene and 50 g of isophorone diisocyanate was added dropwise at room temperature over 1 hour. Thereafter, the reaction was further completed by stirring at room temperature for 1 hour (the water-soluble organic solvent ratio excluding water at the end of the reaction was 50%). Thereafter, the organic solvent and water were removed under reduced pressure at a temperature of 50 ° C. or lower. The obtained white powder was vacuum-dried at room temperature to obtain 64 g of a semicarbazide composition. The semicarbazide composition was dissolved in the same amount of water to obtain a 50% aqueous solution.
  • the analysis area ratio (a) of the semicarbazide composition was 0.21%
  • the analysis area ratio (b-1) was 89%
  • the analysis area ratio (b-2 ) was 9%
  • the analysis area ratio (b-3) was 1.8%.
  • the molecular weight per semicarbazide group calculated from this ratio is 159.
  • the chromatogram obtained by LC / MS analysis was as shown in FIG.
  • This aqueous resin composition was applied as a coating liquid to a thickness of about 100 ⁇ m and dried at 23 ° C. for 1 week to obtain a coating film.
  • the obtained coating film was dipped in acetone for 24 hours and then dried, and when the ratio of mass change before and after immersion was measured, the insoluble content was 86%.
  • a white enamel paint was applied to a flexible board, and this aqueous resin composition was applied to a dried coated plate to a thickness of 250 ⁇ m and dried at room temperature for 1 week to obtain a coating film.
  • the value of ⁇ b was as low as 6.2.
  • a white enamel paint was applied to the anodized plate, and this aqueous resin composition was applied to a dry coated plate to a thickness of 100 ⁇ m and dried at room temperature for 1 week to obtain a coating film.
  • the four sides and the back of the coated plate were sealed with wax and immersed in a 1 N aqueous sulfuric acid solution at 23 ° C. for 1 week, the amount of blisters on the painted surface remained small.
  • the analysis area ratio (a) is 2.2%
  • the analysis area ratio (b-1) is 92%
  • the analysis area ratio (b-2) is 5%.
  • the analysis area ratio (b-3) was 1%.
  • the molecular weight per semicarbazide group calculated from this ratio is 154.
  • the chromatogram obtained by LC / MS analysis was as shown in FIG.
  • the obtained aqueous resin composition was applied as a coating liquid to a thickness of about 100 ⁇ m and dried at 23 ° C. for 1 week to obtain a coating film.
  • the obtained coating film was dipped in acetone for 24 hours and then dried, and when the ratio of mass change before and after immersion was measured, the insoluble content was 87%.
  • a white enamel paint was applied to a flexible board, and this aqueous resin composition was applied to a dried coated plate to a thickness of 250 ⁇ m and dried at room temperature for 1 week to obtain a coating film.
  • the value of ⁇ b was as high as 12.5.
  • [Comparative Example 2] (Semicarbazide composition) 200 g of hydrazine monohydrate and 200 g of tetrahydrofuran were put into a reactor having a reflux condenser, a thermometer, and a stirring device. Thereafter, a mixed solution of 200 g of tetrahydrofuran and 50 g of isophorone diisocyanate was added dropwise at room temperature over 1 hour. Thereafter, the mixture was further stirred at room temperature for 1 hour to complete the reaction (the water-soluble organic solvent ratio excluding water at the end of the reaction was 0%). Thereafter, the organic solvent and water were removed under reduced pressure at a temperature of 50 ° C. or lower. The obtained white powder was vacuum-dried at room temperature to obtain 64 g of a semicarbazide composition. The semicarbazide composition was dissolved in the same amount of water to obtain a 50% aqueous solution.
  • the analysis area ratio (a) was 0.000%, which is below the detection limit
  • the analysis area ratio (b-1) was 95%
  • the analysis area ratio (b-2 ) was 4.5%
  • the analysis area ratio (b-3) was 0.5%.
  • the molecular weight per semicarbazide group calculated from this ratio is 150.
  • the chromatogram obtained by LC / MS analysis was as shown in FIG.
  • a white enamel paint was applied to a flexible board, and this aqueous resin composition was applied to a dried coated plate to a thickness of 250 ⁇ m and dried at room temperature for 1 week to obtain a coating film.
  • the obtained coating film was immersed in a saturated calcium hydroxide aqueous solution at 23 ° C. for 1 week, the value of ⁇ b was 3.1.
  • a white enamel paint was applied to the anodized plate, and this aqueous resin composition was applied to a dry coated plate to a thickness of 100 ⁇ m and dried at room temperature for 1 week to obtain a coating film.
  • the coated plate was wax-sealed on both sides and immersed in a 1 N sulfuric acid aqueous solution at 23 ° C. for 1 week, a large amount of painted blisters were generated.
  • the measuring method of a number average molecular weight is as follows. It calculated
  • the analysis area ratio (a) of the semicarbazide composition was 0.09%, the analysis area ratio (b-1) was 85.20%, and the analysis area ratio (b -2) was 11.53%, and the analysis area ratio (b-3) was 3.18%.
  • the molecular weight per semicarbazide group calculated from this ratio is 167.
  • the temperature in the reaction vessel was kept at 80 ° C. After completion of the inflow, the temperature of the reaction vessel was kept at 80 ° C. for 60 minutes to polymerize the resin (second resin). Thereafter, the mixture is cooled to room temperature, adjusted to pH 7.5 by adding 25% aqueous ammonia solution, filtered through a 100 mesh wire net, and an aqueous emulsion A-1 having a solid content of 40.0% and an average particle size of 186 nm is obtained. Obtained.
  • the temperature in the container was kept at 80 ° C. After completion of the inflow, the temperature of the reaction vessel was kept at 80 ° C. for 30 minutes, and then 10.4 g of 25% ammonia water was added to polymerize the polycarbonyl compound portion having the same composition as in Production Example 2-2.
  • the mixture is cooled to room temperature, adjusted to pH 7.5 by adding 25% aqueous ammonia solution, filtered through a 100 mesh wire mesh, and an aqueous emulsion A-2 having a solid content of 40.0% and an average particle size of 176 nm is obtained. Obtained.
  • Example 2-1 To 100 g of the aqueous emulsion (A-1) obtained by the method of Production Example 2-2, 3.85 g of a 50% aqueous solution of the semicarbazide composition obtained by the method of Production Example 2-1 was added, and mixed by stirring. 5 g of CS-12 (manufactured by JNC Co., Ltd.) was added and sufficiently stirred and mixed to obtain a coating liquid comprising an aqueous resin composition. This coating solution was formed into a film having a thickness of about 100 ⁇ m at room temperature and dried at 23 ° C. for 1 week to obtain a coating film. When the obtained coating film was immersed in water for 1 week and the ratio of mass change before and after immersion was measured, the weight was 1.7 times, and the water absorption was 70%. The coating film was transparent to the extent that it was slightly whitened.
  • Example 2-2 To 100 g of the aqueous emulsion (A-2) obtained by the method of Production Example 2-3, 3.85 g of a 50% aqueous solution of the semicarbazide composition obtained by the method of Production Example 2-1 was added, and mixed by stirring. 5 g of CS-12 (manufactured by JNC Co., Ltd.) was added and sufficiently stirred and mixed to obtain a coating liquid comprising an aqueous resin composition.
  • This coating solution was formed into a film having a thickness of about 100 ⁇ m at room temperature and dried at 23 ° C. for 1 week to obtain a coating film. When the obtained coating film was immersed in water for 1 week and the ratio of mass change before and after immersion was measured, the weight was 1.35 times and the water absorption was 35%.
  • the coating film was transparent with a slight bluish tint.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Resins (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

 アミノ基及びセミカルバジド基を有するセミカルバジド化合物(A)と、セミカルバジド化合物(A)のアミノ基がセミカルバジド基に置換された構造を有するセミカルバジド化合物(B-1)と、セミカルバジド化合物(B-1)の2量体であるセミカルバジド化合物(B-2)と、セミカルバジド化合物(B-1)の3量体であるセミカルバジド化合物(B-3)と、を含有し、分析面積比率(a)が、0.008%以上2%以下である、セミカルバジド組成物。

Description

セミカルバジド組成物、セミカルバジド組成物の製造方法、水系樹脂組成物及び複合体
 本発明は、セミカルバジド組成物、セミカルバジド組成物の製造方法、水系樹脂組成物及び複合体に関する。
 近年、コーティング分野において水系樹脂組成物は、有機溶剤系から水系への転換素材として注目されている。しかし、水系樹脂組成物から得られる水系塗料は有機溶剤系塗料と比べ耐水性、耐汚染性、硬度等の点でいまだ充分な物性を示していない。ここで、水系樹脂組成物とは、水に樹脂が溶解及び/又は分散しているものを指す。
 この分野では、塗膜の物性を向上させる目的で、水系樹脂組成物の樹脂中に官能基を導入して、架橋可能とし、樹脂の架橋体よりなる塗膜(以下、架橋塗膜と称する)を形成させることが一般に行われている。
 架橋塗膜を形成する水系樹脂組成物としては、施工性、作業性等から、架橋剤とポリマーとを混合した形であり、且つ、塗布されると、加熱しなくても、水性媒体の蒸発に併って架橋塗膜を形成することのできる一液常温架橋型(cold-curing,one-packtype)に対する要求が大きい。この要求に対し、近年、カルボニル基とヒドラジド基の脱水縮合反応を利用した、ヒドラゾン架橋系水性エマルジョンが注目されている。
 ここで、一液常温架橋型とは25℃で塗膜を形成し、かつ貯蔵安定性を有する塗料を指す。貯蔵安定性については、例えば塗料を50℃で2週間保存した後に基材に塗布し得られた塗膜が、保存前に該塗料から得られた塗膜と同様の耐水性、耐汚染性、硬度を有した場合に貯蔵安定性を有すると判断することができる。
 例えば、カルボニル基含有共重合体水分散液に、架橋剤としてジカルボン酸ジヒドラジドを添加することにより、常温架橋性(cold-curingability)と貯蔵安定性を兼ね備え、硬度、耐汚染性等に優れた水系塗料を提供することが提案されている(特許文献1~6)。しかし、この方法では、架橋剤として用いるジカルボン酸ジヒドラジドが、水系塗料の貯蔵時に加水分解して架橋能力(即ち、硬化特性)が低下してしまい、優れた硬度、耐汚染性、耐溶剤性等を有する架橋塗膜を形成する能力が経時的に低下してしまう。さらに、上記文献では、ジカルボン酸ジヒドラジドとしてアジピン酸ジヒドラジドのごとき、カルボニル基含有共重合体との相溶性が低く且つ親水性の高い化合物を用いているので、得られる架橋塗膜は耐水性が著しく劣るという欠点があった。
 このように、従来の架橋剤とカルボニル基含有共重合体とを含有する従来の水系塗料は、硬化特性が経時的に低下するため、この組成物を基材表面に塗布した際に充分な架橋性能を発揮できなかった。さらに、カルボニル基含有共重合体に対する相溶性に劣るジカルボン酸ジヒドラジドを架橋剤として用いると、塗布して得られた塗膜の耐水性が非常に悪くなるという問題があった。
 また、特許文献7及び8には、イソシアネート基を3~20個有するポリイソシアネートと、ヒドラジンまたはその誘導体、或いはその末端非封鎖体と末端封鎖体との混合物とを反応させて得られるセミカルバジド誘導体及びその末端封鎖体よりなる群から選ばれる少なくとも1つ、及び該セミカルバジド誘導体及びその末端封鎖体よりなる群から選ばれる少なくとも1つと、親水性基含有化合物及びその末端封鎖体から選ばれる少なくとも1つとを含有してなるセミカルバジド混合物が架橋剤として提案されている。しかし、このセミカルバジド混合物は副生成物である末端アミノ基化合物を多く含有するため、塩基性物質に対し黄変し易いという欠点があった。
 また、特許文献9では、アルキド樹脂エマルションとスチレン-多カルボン酸アクリルエマルションの混合系の酸化架橋に対し、第2の架橋剤としてスチレン‐多カルボン酸アクリルエマルション開環エポキシ基を担持させジカルボン酸ジヒドラジドとの架橋反応を併用しているが、多カルボン酸アクリルエマルション塗膜の耐水性は充分なものではなかった。
 また、特許文献10には、塗膜の耐水性を改善し耐汚染性を発現する目的で、高Tg(ガラス転移点)のカルボニル基含有共重合した水性エマルションにイソホロンジセミカルバジドを架橋剤として利用することが開示されている。しかし、高Tgのポリマーとイソホロンジセミカルバジドとの組み合わせでは、成膜過程で硬くなるため成膜助剤を用いても成膜することができないという欠点があった。
 また、特許文献11では、イソホロンジセミカルバジドが開示されているが、反応時に過剰のヒドラジンを使用するため末端アミノ基化合物を多く含むセミカルバジド組成物が得られ、このようなセミカルバジド組成物を架橋剤として用いた場合、得られる架橋塗膜が、アルカリ水溶液に浸漬された際に黄変し易くなるという問題があった。また、特許文献11に記載の製造方法では、残留するヒドラジンを除去する工程が必要があった。
特公昭46-20053号公報 特開昭57-3850号公報 特開昭57-3857号公報 特開昭58-96643号公報 特開平4-249587号公報 特開平6-287457号公報 国際公開96/01252号パンフレット 特開2001-164126号公報 特開2008-504840号公報 特開2005-350580号公報 日本国特許4033518号公報
 本発明は、少量の添加で、水系塗膜の硬度、耐汚染性、耐アルカリ黄変性等を向上させる事のできるセミカルバジド組成物及びその製造方法を提供することを目的とする。また本発明は、該セミカルバジド組成物を含む水系樹脂組成物、及び該水系樹脂組成物から得られる塗膜を備える複合体を提供することを目的とする。
 本発明の一態様は以下の内容に関する。
[1] アミノ基及びセミカルバジド基を有するセミカルバジド化合物(A)と、
 前記セミカルバジド化合物(A)のアミノ基がセミカルバジド基に置換された構造を有するセミカルバジド化合物(B-1)と、
 前記セミカルバジド化合物(B-1)の2量体であるセミカルバジド化合物(B-2)と、
 前記セミカルバジド化合物(B-1)の3量体であるセミカルバジド化合物(B-3)と、
を含有し、
 下記式(a)で表される分析面積比率(a)が、0.008%以上2%以下である、セミカルバジド組成物。
Figure JPOXMLDOC01-appb-M000011
[式中、S、SB-1、SB-2及びSB-3はそれぞれ、前記セミカルバジド組成物の高速液体クロマトグラフィー分析によって得られるクロマトグラムにおける、前記セミカルバジド化合物(A)、前記セミカルバジド化合物(B-1)、前記セミカルバジド化合物(B-2)及び前記セミカルバジド化合物(B-3)に由来するピークのピーク面積を示す。]
[2] 前記セミカルバジド化合物(A)が、下記式(1-1)又は下記式(1-2)で表される化合物であり、
 前記セミカルバジド化合物(B-1)が、下記式(2-1)で表される化合物である、[1]に記載のセミカルバジド組成物。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
[3] 前記セミカルバジド化合物(B-2)が、下記式(2-2)で表される化合物であり、
 前記セミカルバジド化合物(B-3)が、下記式(2-3)で表される化合物である、[2]に記載のセミカルバジド組成物。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
[式中、R、R、R及びRはそれぞれ独立に下記式(2-a)又は下記式(2-b)で表される一価の基を示し、Rは下記式(2-c)で表される二価の基を示す。]
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
[4] 分子内に2つ以上のイソシアネート基を有する化合物(C)と、ヒドラジン又はヒドラジン誘導体とを反応させて得られた組成物である、[1]~[3]のいずれかに記載のセミカルバジド組成物。
[5] 前記化合物(C)が、下記式(4)で表される化合物である、[4]に記載のセミカルバジド組成物。
Figure JPOXMLDOC01-appb-C000019
[6] 下記式(b-1)で表される分析面積比率(b-1)が、50%以上99%以下であり、下記式(b-2)で表される分析面積比率(b-2)が、0.9%以上30%以下であり、下記式(b-3)で表される分析面積比率(b-3)が、0.01%以上20%以下である、[1]~[5]のいずれかに記載のセミカルバジド組成物。
Figure JPOXMLDOC01-appb-M000020
[7] 分子内に2つ以上のイソシアネート基を有する化合物(C)とヒドラジン又はヒドラジン誘導体とを溶媒中で反応させて、[1]~[6]のいずれかに記載のセミカルバジド組成物を得る反応工程を有する、セミカルバジド組成物の製造方法。
[8] 前記反応工程において、前記化合物(C)が有するイソシアネート基のモル数に対する、前記ヒドラジン又はヒドラジン誘導体のモル数の比が、0.7~5である、[7]に記載の製造方法。
[9] 前記反応工程において、
 前記溶媒が、水溶性有機溶剤及び水難溶性溶剤を含有し、
 前記水溶性有機溶剤及び前記水難溶性溶剤の合計量に対する前記水難溶性溶剤の量が20質量%以上である、[7]又は[8]に記載の製造方法。
[10] [1]~[6]のいずれかに記載のセミカルバジド組成物を5質量%以上含有する、水溶液。
[11] 水系塗料又は水系コーティング材として用いられる水系樹脂組成物であって、
 [1]~[6]のいずれかに記載のセミカルバジド組成物と、セミカルバジド基と反応して架橋構造を形成可能な樹脂と、を含有する、水系樹脂組成物。
[12] 基材と、[11]に記載の水系樹脂組成物により形成された塗膜と、を備える複合体。
[13] 架橋剤及び水性エマルションが配合された水系樹脂組成物であって、
 前記架橋剤が、[1]~[6]のいずれかに記載のセミカルバジド組成物を含有し、
 前記水性エマルションが、数平均分子量が1000~100000である水溶性又は水分散性ポリカルボニル化合物、及び数平均分子量が1000~100000である水溶性又は水分散性ポリエポキシ化合物からなる群より選択され、ガラス転移点Tgが80℃未満である架橋性樹脂を少なくとも一種含有する、水系樹脂組成物。
[14] 前記水性エマルションが、乳化重合により得られたものである、[13]に記載の水系樹脂組成物。
[15] [13]又は[14]に記載の水系樹脂組成物から得られ、前記架橋性樹脂の架橋体を含有する、塗膜。
 本発明によれば、少量の添加で、水系塗膜の硬度、耐汚染性、耐アルカリ黄変性等を向上させる事のできるセミカルバジド組成物及びその製造方法が提供される。また本発明によれば、該セミカルバジド組成物を含む水系樹脂組成物、及び該水系樹脂組成物から得られる塗膜を備える複合体が提供される。
実施例1-1で得られたセミカルバジド組成物のLC/MS分析結果を示す図である。 実施例1-2で得られたセミカルバジド組成物のLC/MS分析結果を示す図である。 実施例1-3で得られたセミカルバジド組成物のLC/MS分析結果を示す図である。 比較例1-1で得られたセミカルバジド組成物のLC/MS分析結果を示す図である。 比較例1-2で得られたセミカルバジド組成物のLC/MS分析結果を示す図である。
 以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
(セミカルバジド組成物)
 本実施形態に係るセミカルバジド組成物は、アミノ基及びセミカルバジド基を有するセミカルバジド化合物(以下、「セミカルバジド化合物(A)」という。)と、セミカルバジド化合物(A)のアミノ基がセミカルバジド基に置換された構造を有するセミカルバジド化合物(以下、「セミカルバジド化合物(B-1)」という。)と、セミカルバジド化合物(B-1)の2量体(以下、「セミカルバジド化合物(B-2)」という。)と、セミカルバジド化合物(B-1)の3量体(以下、「セミカルバジド化合物(B-3)」という。)と、を含有する。
 そして、本実施形態に係るセミカルバジド組成物は、下記式(a)で表される分析面積比率(a)が、0.008%以上2%以下である。
Figure JPOXMLDOC01-appb-M000021
 式中、Sは、セミカルバジド組成物の高速液体クロマトグラフィー分析によって得られるクロマトグラムにおけるセミカルバジド化合物(A)由来のピークのピーク面積を示し、SB-1は、該クロマトグラムにおけるセミカルバジド化合物(B-1)由来のピークのピーク面積を示し、SB-2は、該クロマトグラムにおけるセミカルバジド化合物(B-2)由来のピークのピーク面積を示し、SB-3は、該クロマトグラムにおけるセミカルバジド化合物(B-3)由来のピークのピーク面積を示す。
 分析面積比率(a)を2%以下とすることにより、セミカルバジド組成物を用いて得られる架橋塗膜の耐アルカリ黄変性が著しく向上する。また、分析面積比率(a)を0.008%以上とすることにより、セミカルバジド組成物を用いて得られる架橋塗膜の耐加水分解性が著しく向上する。
 セミカルバジド基による架橋反応は、水存在下で可逆的な反応である一方、セミカルバジド化合物(A)のアミノ基による架橋反応は、非可逆的な反応であることから、アミノ基により形成された架橋構造を多く含む架橋塗膜は、耐加水分解性に優れたものとなる。一方、架橋塗膜にアミノ基が多く存在すると、アルカリ水溶液に浸漬した場合に黄変し易いという問題がある。本実施形態では、セミカルバジド組成物中に適正な範囲でセミカルバジド化合物(A)を存在させることにより、耐加水分解性及び耐アルカリ黄変性の双方に優れた架橋塗膜の形成が可能となる。
 分析面積比率(a)は、セミカルバジド組成物を用いて得られる架橋塗膜の特性(特に耐アルカリ黄変性)が一層向上する観点から、0.008%以上1%以下であることが好ましく、0.01%以上0.5%以下であることがより好ましい。
 なお、分析面積比率(a)を0.008%以上2%以下とするためには、従来のセミカルバジド組成物から抽出・分離等の操作によりセミカルバジド化合物(A)を除去する方法では達成し難く、セミカルバジド組成物の製造段階において、セミカルバジド化合物(A)の生成量を抑制することが重要となる。
 セミカルバジド化合物(A)は、アミノ基及びセミカルバジド基を有する化合物である。セミカルバジド化合物(A)は、アミノ基を2つ以上有していてもよく、セミカルバジド基を2つ以上有していてもよい。なお、セミカルバジド基は、下記式(10)で表される基である。
Figure JPOXMLDOC01-appb-C000022
 セミカルバジド化合物(B-1)は、セミカルバジド化合物(A)のアミノ基が全てセミカルバジド基に置換された構造の化合物である。すなわち、セミカルバジド化合物(B-1)は、アミノ基を有さず、セミカルバジド基を2つ以上有する化合物ということができる。
 セミカルバジド組成物は、下記式(b-1)で表される分析面積比率(b-1)が、50%以上99%以下であることが好ましい。なお、式中、S、SB-1、SB-2、SB-3は上記と同義である。
Figure JPOXMLDOC01-appb-M000023
 セミカルバジド化合物(B-2)は、セミカルバジド化合物(B-1)の2量体である。セミカルバジド化合物(B-2)は、2つのセミカルバジド化合物(B-1)が、セミカルバジド基の縮合反応により結合した化合物ということができ、下記式(11)で表される結合を有する。また、セミカルバジド化合物(B-2)は、セミカルバジド基を2つ以上有し、且つ下記式(11)で表される結合を1つ有する化合物ということもできる。
Figure JPOXMLDOC01-appb-C000024
 セミカルバジド組成物は、下記式(b-2)で表される分析面積比率(b-2)が、0.9%以上30%以下であることが好ましい。なお、式中、S、SB-1、SB-2、SB-3は上記と同義である。分析面積比率(b-2)が上記範囲であると、得られる塗膜が一層強靭なものになる。
Figure JPOXMLDOC01-appb-M000025
 セミカルバジド化合物(B-3)は、セミカルバジド化合物(B-1)の3量体である。セミカルバジド化合物(B-3)は、3つのセミカルバジド化合物(B-1)が、セミカルバジド基の縮合反応により結合した化合物ということができ、セミカルバジド化合物(B-2)とセミカルバジド化合物(B-1)とがセミカルバジド基の縮合反応により結合した化合物ということもできる。また、セミカルバジド化合物(B-2)は、セミカルバジド基を2つ以上有し、且つ式(11)で表される結合を2つ有する化合物ということもできる。
 セミカルバジド組成物は、下記式(b-3)で表される分析面積比率(b-3)が、0.01%以上20%以下であることが好ましい。なお、式中、S、SB-1、SB-2、SB-3は上記と同義である。分析面積比率(b-3)を上記範囲であると、得られる塗膜が一層強靭なものになる。
Figure JPOXMLDOC01-appb-M000026
 セミカルバジド組成物中の、セミカルバジド化合物(A)、セミカルバジド化合物(B-1)、セミカルバジド化合物(B-2)及びセミカルバジド化合物(B-3)の合計含有量は、セミカルバジド組成物の全量基準で、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、98質量%以上であることがさらに好ましい。
 なお、セミカルバジド組成物は、セミカルバジド化合物(A)の4量体以上の高分子量成分を含有していてもよいが、このような高分子量成分は多くの場合水に難溶であることから、該高分子量成分の含有量は少ないことが望ましい。例えば、該高分子量成分の含有量は、セミカルバジド組成物の全量基準で1.0質量%以下が好ましく、0.5質量%以下がより好ましく、0.1質量%以下がさらに好ましい。
 セミカルバジド組成物の高速液体クロマトグラフィー分析は、LC/MS(Liquid Chromatograph Mass Spectrometer)により以下の方法で行うことができる。
(分析方法)
 セミカルバジド組成物を凍結乾燥後、10mg/mlの水溶液に調製する。次いで、HSIANGTAI MACHINERY INDUSTRY製(MODEL MCD-2000)遠心分離器を用いて、12000回転で10分間遠心分離を行い、その上澄み液をLC/MSで測定する。LC/MSの装置構成は、LCが「Agilent,1100series」、MSが「Thermo Electron,LCQ」とする。測定により得られた各ピークの同定はMSで行い、各ピークのピーク面積はLCの紫外可視検出器における200nmの吸光度の面積値から求める。
 以下、LC/MSの測定条件を示す。初めにLC条件を示す。LCカラムはPhenomenex, Kinetex 2.6u C18-XB 100A(2.1mmLD.×50mm)を用い、カラムオーブン温度40℃で、移動相の溶媒は(a)0.1%ギ酸水溶液及び(b)0.1%ギ酸を含有するメタノール溶液の2種類の溶液を用い、(a)液98%の液組成から5分間で(b)液の組成が100%になるように直線的に組成を変化させた後、5.1分で再び(a)液98%の液組成にし、12分まで(a)液98%の液組成を保持する。移動相の流速は0.4ml/分で行い、試料注入量は1μlで行う。
 また、LC付属の紫外可視吸光検出器の波長は200nmとする。なお、検出器の波長については取り扱う物質により適宜変更することができ、イソホロンジイソシアネートとヒドラジンとを反応させて得られるセミカルバジド組成物の場合においては、200nmであることが好ましい。
 次に、MS条件を示す。イオン化はESI(Electrospray Ionization)のポジティブモードで、質量電荷比(m/z)150から1000の範囲でスキャンを行う。
 なお、セミカルバジド化合物(A)、セミカルバジド化合物(B-1)、セミカルバジド化合物(B-2)及びセミカルバジド化合物(B-3)は、それぞれ複数の異性体を含むものであってよい。この場合、複数の異性体を含むピーク群のピーク面積の和を、それぞれセミカルバジド化合物(A)、セミカルバジド化合物(B-1)、セミカルバジド化合物(B-2)及びセミカルバジド化合物(B-3)のピーク面積とする。
 例えば、下記の態様において、式(1-1)、(1-2)、(2-1)、(2-2)及び(2-3)で表される各化合物はそれぞれ複数の異性体が存在していてよい。このとき、セミカルバジド化合物(A)のピーク面積は式(1-1)又は(1-2)で表される化合物群のピーク面積の和であり、セミカルバジド化合物(B-1)のピーク面積は式(2-1)で表される化合物群のピーク面積の和であり、セミカルバジド化合物(B-2)のピーク面積は式(2-2)で表される化合物群のピーク面積の和であり、セミカルバジド化合物(B-3)のピーク面積は式(2-3)で表される化合物群のピーク面積の和である。
 なお、セミカルバジド組成物が、塗料等の水系樹脂組成物に含まれている場合であっても、例えば、以下の方法により分析することができる。まず、塗料を水で稀釈後、遠心分離を行いその上澄みを取り、超遠心分離にてラテックスを沈降後その上澄みを透析膜(分画1万)に通過させる。次いで、透析膜を通過した液を濃縮して、濃縮液をLC/MSで分析することにより、セミカルバジド化合物(A)、(B―1)、(B―2)及び(B―3)に由来するピークのピーク面積を得ることができる。さらにラテックス中に固定化されたセミカルバジド化合物(A)を検出するためには、超遠心分離にて沈降したラテックスを水に再分散する。この再分散溶液と陽イオン交換樹脂とを混合しアルカリ成分を吸着させ、陽イオン交換樹脂を濾別後、陽イオン交換樹脂を薄いKOH水溶液で置換し、その水溶液をLC/MSで分析することにより、ラテックス中に固定化されたセミカルバジド化合物(A)を検出することができる。
 次に、セミカルバジド組成物の好適な一態様を以下に説明する。本態様において、セミカルバジド化合物(A)は、下記式(1-1)又は下記式(1-2)で表される化合物であり、セミカルバジド化合物(B-1)は、下記式(2-1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
 また、本態様において、セミカルバジド化合物(B-2)は、下記式(2-2)で表される化合物であり、セミカルバジド化合物(B-3)は、下記式(2-3)で表される化合物である。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
 式中、R、R、R及びRはそれぞれ独立に下記式(2-a)又は下記式(2-b)で表される一価の基を示し、Rは下記式(2-c)で表される二価の基を示す。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
 本態様のセミカルバジド組成物は、水溶性に特に優れるものであるため、水系塗料用架橋剤としての用途等に特に好適に用いることができる。また、本態様のセミカルバジド組成物においては、上述の分析面積比率(a)を特定の範囲としたことによる本発明の効果が一層顕著に奏される。
 セミカルバジド組成物は、例えば、分子内に2つ以上のイソシアネート基を有する化合物(以下、「イソシアネート化合物(C)」という。)と、ヒドラジン又はヒドラジン誘導体(以下、「ヒドラジン類(D)」という。)と、を反応させて得ることができる。
 このとき、セミカルバジド化合物(A)は、イソシアネート化合物(C)のイソシアネート基のうちの一部がアミノ基に変換され、他部がセミカルバジド基に変換された化合物である。また、セミカルバジド化合物(B-1)は、イソシアネート化合物(C)のイソシアネート基が全てセミカルバジド基に変換された化合物である。
 イソシアネート化合物(C)としては、分子内にイソシアネート基を2つ有するジイソシアネート化合物、分子内にイソシアネート基を3つ以上有するポリイソシアネート化合物が挙げられる。
 ジイソシアネート化合物としては、N-へキサメチレンジイソシネート(HDI)等のアルキレンジイソシアネート;4,4’-メチレンビスシクロヘキシルジイソシアネート(水添MDI)、イソホロンジイソシアネート(IPDI)、ジメチルシクロへキサンジイソシアネート(水添XDI)等のシクロアルキレンジイソシアネート;2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネートおよびその混合物(TDIs)、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、ナフタレン-1,5-ジイソシアネート(NDI)、3,3-ジメチル-4,4-ジフェニレンジイソシアネート(TODI)、粗製TDIs、ポリメチレンポリフェニルジイソシアネート、粗製MDI、フェニレンジイソシアネート等のアリーレンジイソシアネート;キシリレンジイソシアネート(XDI)等のアラルキレンジイソシアネート;などが挙げられ、これらを併用して用いることもできる。
 また、ポリイソシアネート化合物としては、例えば、ジイソシアネート化合物を、ビウレット結合、尿素結合、イソシアヌレート結合、ウレタン結合、アロファネート結合、ウレトジオン結合等の形成によりオリゴマー化して3量体~20量体にしたものが挙げられる。なお、これらのポリイソシアネート化合物の製造方法や、ポリイソシアネート化合物中の結合に関しては、例えば、G.Oertel編、Polyurethane Handbook(独国Hauser Publishers出版、1985年)を参照することができる。
 イソシアネート化合物(C)としては、ジイソシアネート化合物が好適であり、なかでもイソホロンジイソシアネートが特に好適である。イソホロンジイソシアネートは、下記式(4)で表される化合物であり、イソホロンジイソシアネートから得られるセミカルバジド組成物は、水溶性が高く、水系塗料用の架橋剤等の用途に特に好適に用いることができる。
Figure JPOXMLDOC01-appb-C000034
 ヒドラジン類(D)としては、ヒドラジン及びその水和物;モノメチルヒドラジン、モノエチルヒドラジン、モノブチルヒドラジン等のモノアルキル置換ヒドラジン化合物;エチレン-1,2-ジヒドラジン、プロピレン-1,3-ジヒドラジン、ブチレン-1,4-ジヒドラジン等のジヒドラジン化合物;シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド、マレイン酸ジヒドラジド、フマル酸ジヒドラジド、イタコン酸ジヒドラジド、イソフタル酸ジヒドラジド、フタル酸ジヒドラジド等のジカルボン酸ジヒドラジド;トリメリト酸トリヒドラジド等のトリカルボン酸トリヒドラジド等の2つ以上のカルボキシル基を有する化合物とヒドラジンとの反応物、及びこれ等の混合物が挙げられる。
 イソシアネート化合物(C)とヒドラジン類(D)との反応(以下、場合により「セミカルバジド化反応」という。)において、イソシアネート化合物(C)が有するイソシアネート基の総数X(モル)に対するヒドラジン類(D)の使用量X(モル)の比X/Xは、0.7~2.50であることが好ましく、0.75~1.19であることがより好ましく、0.80~0.99であることがさらに好ましい。比X/Xが多いと反応系の塩基性が強くなり、イソシアネート基がアミノ基に変換され易くなる傾向にある。比X/Xが上記範囲であると、十分な反応率が得られるとともに、イソシアネート基のアミノ基への変換を十分に抑制することができる。また、比X/Xが上記範囲であると、未反応のヒドラジン類(D)が残存しにくく、反応後に未反応のヒドラジン類(D)を除去する操作が不要になるという利点もある。
 セミカルバジド化反応は、必要に応じて適当な溶媒を用いて行うことができる。溶媒としては、例えば、水;メタノール、エタノール、イソプロパノール、1-ブタノール、2-ブタノールブチルセロソルブ、プロピレングリコールモノプロピルエーテル、オクチルアルコール等のアルコール類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテル等のエーテル類;アセトン、メチルエチルケントン、メチルイソブチルケトン等のケトン類;ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;塩化メチレン、クロロホルム、四塩化炭素等の塩素系溶剤類;トルエン、キシレン、ヘキサン、シクロヘキサン、石油エーテル等の非極性溶剤類があげられる。この中でケトン類はセミカルバジド化合物と脱水縮合を起こすため、反応後水で加水分解をする必要がある。
 セミカルバジド化反応に用いる溶媒は、必ずしもイソシアネート化合物(C)とヒドラジン類(D)とをともに溶解する溶媒である必要はなく、その場合、反応器内で強制的に撹拌することによって反応を実施することができる。
 また、溶媒としては、水溶性有機溶剤と水難溶性有機溶剤とを併用することも可能であって、両者の比率は、反応終了時の全溶媒量に対する水難溶性有機溶剤の量が20質量%以上であることが好ましく、30質量%以上であることがより好ましく、45質量%以上であることがさらに好ましく、100質量%であってもよい。
 水溶性有機溶剤としては、例えば、上述のアルコール類、エステル類、エーテル類、ケトン類、アミド類が挙げられる。また、水難溶性有機溶剤としては、例えば、上述の塩素系溶剤類、非極性溶剤類が挙げられる。
 セミカルバジド化反応は任意の温度において行うことが可能であるが、副反応物である2量体のセミカルバジド化合物(B-2)及び3量体のセミカルバジド化合物(B-3)の生成を十分に抑制してセミカルバジド化合物(B-1)の生成率を高める観点から、0~100℃であることが好ましく、0~50℃であることがさらに好ましい。
 また、セミカルバジド化反応は、イソシアネート化合物(C)とヒドラジン類(D)とは任意の方法で混合して行うことが可能であるが、副反応を一層抑制できる観点から、ヒドラジン類(D)若しくはその溶液中に、イソシアネート化合物(C)若しくはその溶液を徐々に添加して反応させる方法;イソシアネート化合物(C)若しくはその溶液と、ヒドラジン類(D)若しくはその溶液とを溶媒中に同時に添加して反応させる方法;又は、ヒドラジン類(D)若しくはその溶液中に、イソシアネート化合物(C)若しくはその溶液を同時に添加する方法;などが好ましい。
 セミカルバジド化反応の後、例えば、反応液からの抽出操作等を経て、分析面積比率(a)が上記範囲のセミカルバジド組成物を得ることができる。
 抽出操作としては、例えば、蒸留、晶析、カラムクロマトグラフィーなどが挙げられる。このうち、加熱による黄変を避けるために加熱を必要としない抽出操作(例えば、晶析、カラムクロマトグラフィー、有機溶剤に懸濁させ水で抽出する方法等)が好ましい。
 晶析に用いる溶媒としては、セミカルバジド組成物と反応しない溶媒であればとくに制限はなく、例えば、メタノール、エタノール、イソプロパノール、1-ブタノール、2-ブタノールブチルセロソルブ、プロピレングリコールモノプロピルエーテル等のアルコール類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルなどのエーテル類;ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;等があげられる。この中でも温度によってセミカルバジド化合物(B-1)の溶解度が大きく異なるエーテル類が好ましく、ジオキサン、テトラヒドロフラン、ジメトキシエタンがさらに好ましい。
 有機溶剤に懸濁させ水で抽出する方法では、セミカルバジド化合物(B-1)が溶けにくい有機溶剤を用いることができ、このような有機溶剤として、トルエン、キシレン、ヘキサン、シクロヘキサン、石油エーテル等の非極性溶媒類を好適に用いることができる。
 また、セミカルバジド組成物は、イソシアネート化合物(C)とヒドラジン類(D)とを強制的に撹拌することによって反応させ、反応終了後に水を懸濁させた後、セミカルバジド組成物を水で抽出する方法によって、好適に得ることができる。
 抽出操作により得られたセミカルバジド組成物は、そのまま用いることも溶媒で希釈して用いることもできる。希釈溶媒としては、水;メタノール、エタノール、イソプロパノール、ブタノールなどのアルコール類;ブチルセロソルブ、CS-12(JNC(株)製)、ブチルカルビトール等の成膜助剤;などがあげられるが、揮発する有機溶媒を低減するために水が好ましい。
 セミカルバジド組成物は、セミカルバジド基と反応して架橋構造を形成可能な樹脂に対する架橋剤として、好適に用いることができる。より具体的には、例えば、セミカルバジド基と反応して架橋構造を形成可能な樹脂を含有する水系樹脂組成物に添加する架橋剤として、好適に用いることができる。
 セミカルバジド組成物は、他の、ヒドラジド基又はセミカルバジド基を2個以上有する化合物と併用することができる。このような化合物としては、蓚酸ジヒドラジド、マロン酸ジヒドラジド、グルタル酸ジヒドラジド、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等の2~18個の炭素原子を有する飽和脂肪族カルボン酸ジヒドラジド;マレイン酸ジヒドラジド、フマル酸ジヒドラジド、イタコン酸ジヒドラジド等のモノオレフィン性不飽和ジカルボン酸ジヒドラジド;フタル酸ジヒドラジド、テレフタル酸ジヒドラジド、イソフタル酸ジヒドラジド、ピロメリット酸ジヒドラジド、ピロメリット酸トリヒドラジド、ピロメリット酸テトラヒドラジド等の酸ジヒドラジド化合物;ニトリロトリヒドラジド、クエン酸トリヒドラジド、1,2,4-ベンゼントリヒドラジド、エチレンジアミンテトラ酢酸テトラヒドラジド、1,4,5,8-ナフトエ酸テトラヒドラジド、カルボン酸低級アルキルエステル基を有する低重合体をヒドラジンまたはヒドラジン水化物(ヒドラジンヒドラード)と反応させてなるポリヒドラジド(特公昭52-22878号参照);炭酸ジヒドラジド、ビスセミカルバジド;ヘキサメチレンジイソシアネートやイソホロンジイソシアネート等のジイソシアネートとアルコール類をウレタン化反応した後、あるいは同時にアロファネート化反応して得られたアロファネート基を有するポリイソシアネート化合物にヒドラジン化合物や上記例示のジヒドラジドを反応させて得られる多官能セミカルバジド、該ポリイソシアネート化合物とポリエーテルポリオール類やポリエチレングリコールモノアルキルエーテル類等の親水性基を含む活性水素化合物との反応物中のイソシアネート基に上記例示のジヒドラジドを反応させて得られる水系多官能セミカルバジド、あるいは該多官能セミカルバジドと水系多官能セミカルバジドとの混合物(特開平8-151358号、特開平8-245878号、日本国特許No.3212857参照)等が挙げられる。これらのうち、水溶性を有するアジピン酸ジヒドラジドとの併用が特に好ましい。セミカルバジド組成物と、併用する化合物との比率は、モル比で100/0~0.1/99.9の範囲内であることが好ましく、90/10~10/90の範囲内であることがよりに好ましい。このようなセミカルバジド組成物と他の化合物とを併用して水系樹脂組成物を塗膜化することにより、剛性と柔軟性とを兼ね備え、あるいは柔軟性と耐汚染性と硬度等を兼ね備える優れた塗膜を与えることができる。
 セミカルバジド組成物は、例えば、水で希釈した水溶液の態様で水系樹脂組成物に添加することができる。このような水溶液としては、セミカルバジド組成物を5質量%以上(好ましくは25質量%以上、より好ましくは40質量%以上)含む水溶液が挙げられる。また、セミカルバジド組成物の濃度は、95質量%以下であってよく、80質量%以下とすることが好ましい。また、セミカルバジド組成物は、水等で希釈することなく、固体のまま水系樹脂組成物へ添加することもできる。
(水系樹脂組成物)
 本実施形態に係る水系樹脂組成物は、上述のセミカルバジド組成物と、セミカルバジド基と反応して架橋構造を形成可能な樹脂(以下、「樹脂(E)」という。)と、を含有する。本実施形態に係る水系樹脂組成物によれば、硬度、耐汚染性、耐アルカリ黄変性に優れる塗膜が形成することができるため、該水系樹脂組成物は、水系塗料又は水系コーティング材として好適に用いることができる。
 樹脂(E)は、セミカルバジド基と反応して架橋構造を形成可能なものであれば特に制限はなく、樹脂(E)としては、カルボニル基を複数有する化合物(以下、「ポリカルボニル化合物」という。)、エポキシ基を複数有する化合物(以下、「ポリエポキシ化合物」という。)等が挙げられる。
 樹脂(E)は、乳化重合等により水性エマルジョンとして得られたものであることが好ましい。水性エマルジョンは、水中に樹脂(E)が分散した液状組成物であり、該水性エマルジョンにセミカルバジド組成物を添加することによって、好適な水系樹脂組成物を得ることができる。
 樹脂(E)のうち、ポリカルボニル化合物は、セミカルバジド組成物と組み合わせたとき、水系樹脂組成物の貯蔵安定性が非常に優れる上、耐候性、耐水性、耐汚染性、硬度等に優れた塗膜を比較的低温で与えることができるため特に好ましい。
 ポリカルボニル化合物としては、例えば、カルボニル基を含有する共重合体、特開平2-238015号公報に記載されているがごときヒドロキシアセトン等のカルボニル基のあるモノまたはポリアルコールを原料とするカルボニル基含有ポリウレタン類、アセトアセチル化ポリビニルアルコール、特開平9-324095号公報に記載されているがごとき側鎖にジアセトン基を有するポリビニルアルコール系樹脂、アセトアセチル化ヒドロキシアルキルセルロース等、及びこれらの併用が挙げられる。
 これらの中で好ましいポリカルボニル化合物は、カルボニル基含有エチレン性不飽和単量体(α)と、該カルボニル基含有エチレン性不飽和単量体(α)と共重合可能なエチレン性不飽和単量体(β)とを共重合することによって得られるカルボニル基を含有する共重合体であり、さらに好ましくは、カルボニル基含有エチレン性不飽和単量体(α)0.1~30質量%と、該カルボニル基含有エチレン性不飽和単量体(α)と共重合可能なエチレン性不飽和単量体(β)70~99.9質量%とを共重合することによって得られるカルボニル基を含有する共重合体である。
 カルボニル基含有エチレン性不飽和単量体(α)としては、ダイアセトンアクリルアミド、ダイアセトンメタクリルアミド、アクロレイン、ビニルメチルケトン、アセトアセトキシエチルメタクリレート、アセトアセトキシエチルアクリレート、ホルミルスチロール等や、その併用が挙げられる。
 カルボニル基含有エチレン性不飽和単量体(α)と共重合可能なエチレン性不飽和単量体(β)としては、アクリル酸エステル、メタクリル酸エステル、カルボキシル基を持つエチレン性不飽和単量体類、エポキシ基を持つエチレン性不飽和単量体類、アクリルアミド系単量体、メタクリルアミド系単量体、シアン化ビニル類等が挙げられ、(メタ)アクリル酸エステルの例としては、アルキル部の炭素数が1~18の(メタ)アクリル酸アルキルエステル、アルキル部の炭素数が1~18の(メタ)アクリル酸ヒドロキシアルキルエステル、エチレンオキサイド基の数が1~100個の(ポリ)オキシエチレン(メタ)アクリレート、プロピレンオキサイド基の数が1~100個の(ポリ)オキシプロピレン(メタ)アクリレート、エチレンオキサイド基の数が1~100個の(ポリ)オキシエチレンジ(メタ)アクリレート等が挙げられる。
 アクリル酸エステル、メタクリル酸エステルの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸iso-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸アダマンチル等が挙げられる。
 (メタ)アクリル酸ヒドロキシアルキルエステルの具体例としては、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシシクロヘキシル、(メタ)アクリル酸ドデシル等が挙げられる。
 (ポリ)オキシエチレン(メタ)アクリレートの具体例としては、(メタ)アクリル酸エチレングリコール、メトキシ(メタ)アクリル酸エチレングリコール、(メタ)アクリル酸ジエチレングリコール、メトキシ(メタ)アクリル酸ジエチレングリコール、(メタ)アクリル酸テトラエチレングリコール、メトキシ(メタ)アクリル酸テトラエチレングリコール等が挙げられる。
 (ポリ)オキシプロピレン(メタ)アクリレートの具体例としては、(メタ)アクリル酸プロピレングリコール、メトキシ(メタ)アクリル酸プロピレングリコール、(メタ)アクリル酸ジプロピレングリコール、メトキシ(メタ)アクリル酸ジプロピレングリコール、(メタ)アクリル酸テトラプロピレングリコール、メトキシ(メタ)アクリル酸テトラプロピレングリコール等が挙げられる。
 (ポリ)オキシエチレンジ(メタ)アクリレートの具体例としては、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸ジエチレングリコール、メトキシ(メタ)アクリル酸ジエチレングリコール、ジ(メタ)アクリル酸テトラエチレングリコール等が挙げられる。
 カルボキシル基を持つエチレン性不飽和単量体類として具体的には、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸、マレイン酸のハーフエステル、クロトン酸などが挙げられる。
 (メタ)アクリルアミド系単量体類としては、例えば(メタ)アクリルアミド、N-イソブチル(メタ)アクリルアミド、N-ジエチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、ビニルピロリドンなどが挙げられ、シアン化ビニル類としては、例えば(メタ)アクリロニトリルなどが挙げられ、エポキシ基を持つエチレン性不飽和単量体類としては、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2,3-シクロヘキセンオキサイド、アリルグリシジルエーテル等が挙げられる。
 また上記以外の具体例としては、例えばエチレン、プロピレン、イソブチレン等のオレフィン類;ブタジエン等のジエン類;塩化ビニル、塩化ビニリデン等のハロオレフィン類;酢酸ビニル、プロピオン酸ビニル、n-酪酸ビニル、安息香酸ビニル、p-t-ブチル安息香酸ビニル、ピバリン酸ビニル、2-エチルヘキサン酸ビニル、バーサチック酸ビニル、ラウリン酸ビニル等のカルボン酸ビニルエステル類;酢酸イソプロペニル、プロピオン酸イソプロペニル等のカルボン酸イソプロペニルエステル類;エチルビニルエーテル、イソブチルビニルエーテル、シクロヘキシルビニルエーテル等のビニルエーテル類;スチレン、ビニルトルエン等の芳香族ビニル化合物;酢酸アリル、安息香酸アリル等のアリルエステル類;アリルエチルエーテル、アリルフェニルエーテル等のアリルエーテル類;γ-(メタ)アクリロキシプロピルトリメトキシシラン、4-(メタ)アクリロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-(メタ)アクリロイルオキシ-1,2,2,6,6-ペンタメチルピペリジン、パーフルオロメチル(メタ)アクリレート、パーフルオロプロピル(メタ)アクリレート、パーフルオロプロピロメチル(メタ)アクリレート、ビニルピロリドン、トリメチロールプロパントリ(メタ)アクリレート、(メタ)アクリル酸アリル等やこれらの併用が挙げられる。
 ポリカルボニル化合物は、懸濁重合、乳化重合又は溶液重合により得られたものであることが好ましく、乳化重合によってカルボルニル基含有水分散液(水性エマルジョン)として得られたものであることがさらに好ましい。水性エマルジョンとしてポリカルボニル化合物を得て、該水性エマルジョンにセミカルバジド組成物を添加することによって、特に好適な水系樹脂組成物を得ることができる。
 水性エマルジョンの中でも、アクリル系単量体を用いたカルボニル基含有アクリル系共重合体分散液であることが好ましい。また、ポリカルボニル化合物は、例えば、スルホン酸基又はスルホネート基を有するエチレン性不飽和単量体、硫酸エステル基を有するエチレン性不飽和単量体及びそれらの混合物からなる群より選ばれるアニオン型エチレン性不飽和単量体(γ)の存在下、カルボニル基含有エチレン性不飽和単量体(α)とエチレン性不飽和単量体(β)とを共重合することによって、水性エマルジョンとして得られたものであることが好ましい。
 樹脂(E)(特にポリカルボニル化合物)を得るための乳化重合は、界面活性剤を用いた水系溶媒中で行うことができる。乳化重合に用いる界面活性剤としては、塗膜の高度な耐水性を発現するために、親水基と親油基を有する界面活性剤の化学構造式の中にエチレン性二重結合基を有する、いわゆる反応性界面活性剤を用いてもよい。
 反応性界面活性剤の中でアニオン性界面活性剤としては、例えばスルホン酸基、スルホネート基、硫酸エステル基又はこれらの塩を有するエチレン性不飽和単量体が挙げられ、スルホン酸基、スルホン酸基のアンモニウム塩(アンモニウムスルホネート基)、又はスルホン酸基のアルカリ金属塩である基(アルカリ金属スルホネート基)を有する化合物を好適に用いることができる。具体例としては、アルキルアリルスルホコハク酸塩(例えば、三洋化成(株)製品名エレミノールJS-2、JS-5、及び花王(株)製品名ラテムルS-120、S-180A、S-180)、ポリオキシエチレンアルキルプロペニルフェニルエーテル硫酸エステル塩(例えば、第一工業製薬(株)製品名アクアロンHS-10)、α-〔1-〔(アリルオキシ)メチル〕-2-(フェニルフェノキシ)エチル〕-ω-ポリオキシエチレン硫酸エステル塩(例えば、(株)ADEKA製品名アデカリアソープSE-1025A)、α-スルホ-ω-(1-(アルコキシ)メチル)-2-(2-プロペニルオキシ)エトキシ)-ポリ(オキシ-1-,2-エタンジイル)のアンモニウム塩(例えば、(株)ADEKA製品名SR-1025)、アンモニウム=α-スルホナト-ω-1-(アリルオキシメチル)アルキルオキシポリオキシエチレン(例えば、第一工業製薬(株)製品名アクアロンKH-10)などが挙げられる。その他、スルホネート基により一部が置換されたアリール基を有する化合物の具体例として、p-スチレンスルホン酸のアンモニウム塩、ナトリウム塩及びカリウム塩が挙げられる。スルホン酸基のアンモニウム塩、ナトリウム塩またはカリウム塩である基が結合しているビニル基を有するビニルスルホネート化合物として例えば、2-スルホエチルアクリレート等のアルキルスルホン酸(メタ)アクリレートやメチルプロパンスルホン酸(メタ)アクリルアミド、アリルスルホン酸等のアンモニウム塩、ナトリウム塩およびカリウム塩が挙げられる。
 また、ノニオン性界面活性剤としては、例えば、α-〔1-〔(アリルオキシ)メチル〕-2-(フェニルフェノキシ)エチル〕-ω-ヒドロキシポリオキシエチレン(例えば、(株)ADEKA製品名アデカリアソープNE-20、NE-30、NE-40、ER-10、ER-20、ER-30、ER-40)、ポリオキシエチレンアルキルプロペニルフェニルエーテル(例えば、第一工業製薬(株)製品名アクアロンRN-10、RN-20、RN-30、RN-50)などが挙げられる。
 乳化重合においては、親水基と親油基を有する界面活性剤の化学構造式の中にエチレン性二重結合基を有する反応性界面活性剤以外に、通常の界面活性剤を使用することもできる。例えば、このような界面活性剤としては、脂肪酸石鹸、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、ポリオキシエチレンアルキル硫酸塩、ポリオキシエチレンアルキルアリール硫酸塩などのアニオン型界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンソルビタン脂肪酸エステル、オキシエチレンオキシプロピレンブロックコポリマーなどの非反応性ノニオン型界面活性剤;などが挙げられる。
 界面活性剤は、各々単独で又は2種類以上を組み合わせて用いることができ、その使用量は、樹脂(E)を得るためのラジカル重合性単量体の合計質量に対して、通常、0.05質量%~10質量%とすることができ、好ましくは0.1質量%~5質量%とすることができる。界面活性剤の使用量が0.05質量%以上では乳化重合時に凝集物の発生が少なく重合安定性が良好であり、10質量%以下では乳化重合により得た樹脂(E)を含む水系樹脂組成物から得られる塗膜の耐水性が一層良好になる。好ましい界面活性剤は塗膜の耐水性、耐候性が一層向上する観点から、反応性界面活性剤である。
 乳化重合においては、ラジカル重合開始剤として、熱又は還元性物質などによってラジカル分解してラジカル重合性不飽和単量体の付加重合を起こさせることができる化合物を用いることができる。
 ラジカル重合開始剤としては、水溶性又は油溶性の過硫酸塩、過酸化物、アゾビス化合物等が使用できる。その例としては、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、過酸化水素、t-ブチルハイドロパーオキサイド、t-ブチルパーオキシベンゾエート、2,2-アゾビスイソブチロニトリル、2,2-アゾビス(2-ジアミノプロパン)ハイドロクロライド、2,2-アゾビス(2,4-ジメチルバレロニトリル)等があり、その使用量はエチレン性不飽和単量体に対して0.1~1質量%とすることができる。
 乳化重合は、通常は常圧下、65~90℃の重合温度で実施されるのが好ましいが、モノマーの重合温度における蒸気圧等の特性に合わせ、高圧下でも実施することができる。なお、重合速度の促進、及び70℃以下での低温の重合を望まれるときには、例えば重亜硫酸ナトリウム、塩化第一鉄、アスコルビン酸塩、ロンガリット等の還元剤をラジカル重合開始剤と組み合わせて用いると有利である。さらに分子量を調節するために、ドデシルメルカプタン等の連鎖移動剤を任意に添加することも可能である。
 水系樹脂組成物が、樹脂(E)としてポリカルボニル化合物を含有するものであるとき、長期の保存安定性が得られることから、pHを5~10の範囲に調整することが好ましい。pH調整のため、水系樹脂組成物には、アンモニア、水酸化ナトリウム、水酸化カリウム、ジメチルアミノエタノール等のアミン類や、塩酸、硫酸、酢酸、乳酸等の酸類を添加することができる。
 樹脂(E)としてのポリエポキシ化合物としては、例えば、(メタ)アクリル酸グリシジル等のエポキシ基含有エチレン性不飽和単量体を、他の不飽和単量体と塊状重合法、懸濁重合法、乳化重合法、溶液重合法などによって共重合させることにより得られるエポキシ基を含有する共重合体;ビスフェノールA型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;環式脂肪族系エポキシ樹脂;グリシジルエステル系エポキシ樹脂;グリシジルアミン系エポキシ樹脂;ヒダントイン型エポキシ樹脂;トリグリシジルイソシアヌレート;等が挙げられ、これらを併用することもできる。また、これらポリエポキシ化合物は、水に分散した水性エマルジョンの形態で供されることが好ましい。
 ポリエポキシ化合物が水に分散してなる水性エマルジョンとしては、例えばエポキシ基含有アクリル系共重合体水分散液が挙げられる。このエポキシ基含有アクリル系共重合体水分散液の製造は、例えば、用いる単量体の種類以外はカルボニル基含有水系エマルジョンの製造と同様にして行うことができる。また、エポキシ基含有エチレン性不飽和単量体としては、(メタ)アクリル酸グリシジルを好適に用いることができる。
 樹脂(E)としては、ポリエポキシ化合物のエポキシ基の一部又は全部が水付加により開環してなる化合物を用いることもできる。このような化合物は、ポリエポキシ化合物を含有する水性エマルジョン又は水系樹脂組成物を加熱すること等により得ることができる。
 水系樹脂組成物において、セミカルバジド組成物の含有量Cと樹脂(E)の含有量Cの質量比C/Cは、0.1/99.9~90/10の範囲内であることが好ましい。この範囲内であると、水系樹脂組成物が、常温架橋性と貯蔵安定性とを兼ね備えたものとなり、また水系樹脂組成物から得られる塗膜が、耐水性、耐汚染性、硬度等に優れたものとなる。なお、この比C/Cが0.1/99.9未満である場合は、架橋密度が低くなり架橋の効果が出現しないので好ましくない。またC/Cが90/10を超えると、得られる塗膜が非常に脆いものとなり好ましくない。
 水系樹脂組成物は、水系塗料又は水系コーティング材として好適に用いることができる。水系樹脂組成物には、その用途に応じて、セミカルバジド組成物及び樹脂(E)以外の成分を添加してもよい。
 例えば、水系樹脂組成物は、ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系等の公知の紫外線吸収剤や、ヒンダードフェノール系、ヒンダードアミン系等の公知光安定剤を含有していてもよい。また、水系樹脂組成物には、必要により通常水系塗料等に添加配合される成分、例えば顔料、充填剤、分散剤、湿潤剤、増粘剤、レオロジーコントロール剤、消泡剤、可塑剤、成膜助剤、防錆剤、染料、防腐剤等をそれぞれの目的に応じて選択、組み合わせて配合することができる。
[水系樹脂組成物の好適な一態様の説明]
 以下に、本実施形態に係る水系樹脂組成物の好適な一態様について説明する。本態様の水系樹脂組成物は、架橋剤及び水性エマルションが配合された水系樹脂組成物である。本態様において、架橋剤は、上述したセミカルバジド組成物を含有する。また、水性エマルションは、数平均分子量が1000~100000である水溶性又は水分散性ポリカルボニル化合物、及び数平均分子量が1000~100000である水溶性又は水分散性ポリエポキシ化合物からなる群より選択され、ガラス転移点Tgが80℃未満である架橋性樹脂を、少なくとも1種含有する。
<架橋剤>
 架橋剤は、上述のセミカルバジド組成物を含有する。セミカルバジド組成物は、水系樹脂組成物中の水存在下においては、架橋性樹脂中のアルド基、ケト基、エポキシ基等と反応せず、水が無くなった時点でこれらの基と反応することから、一液型の水系塗料又は水系コーティング材用架橋剤として好適に用いることができる。
 セミカルバジド組成物は、例えば、水で希釈した水溶液の態様で架橋剤として用いることができる。このような水溶液としては、セミカルバジド組成物を5質量%以上(好ましくは25質量%以上、より好ましくは40質量%以上)含む水溶液が挙げられる。また、この水溶液中のセミカルバジド組成物の濃度は、95質量%以下であってよく、80質量%以下とすることが好ましい。また、セミカルバジド組成物は、水等で希釈することなく、固体のまま架橋剤として用いることもできる。
 架橋剤としては、セミカルバジド組成物以外に、他の架橋剤を併用していてもよい。このような架橋剤としては、例えば、ヒドラジド基又はセミカルバジド基を2個以上有する化合物が好適であり、その具体例としては、蓚酸ジヒドラジド、マロン酸ジヒドラジド、グルタル酸ジヒドラジド、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等の2~18個の炭素原子を有する飽和脂肪族カルボン酸ジヒドラジド;マレイン酸ジヒドラジド、フマル酸ジヒドラジド、イタコン酸ジヒドラジド等のモノオレフィン性不飽和ジカルボン酸ジヒドラジド;フタル酸ジヒドラジド、テレフタル酸ジヒドラジド、イソフタル酸ジヒドラジド、ピロメリット酸ジヒドラジド、ピロメリット酸トリヒドラジド、ピロメリット酸テトラヒドラジド等の酸ジヒドラジド化合物;ニトリロトリヒドラジド、クエン酸トリヒドラジド、1,2,4-ベンゼントリヒドラジド、エチレンジアミンテトラ酢酸テトラヒドラジド、1,4,5,8-ナフトエ酸テトラヒドラジド、カルボン酸低級アルキルエステル基を有する低重合体をヒドラジンまたはヒドラジン水化物(ヒドラジンヒドラード)と反応させてなるポリヒドラジド(特公昭52-22878号参照);炭酸ジヒドラジド、ビスセミカルバジド;ヘキサメチレンジイソシアネートやイソホロンジイソシアネート等のジイソシアネートとアルコール類をウレタン化反応した後、あるいは同時にアロファネート化反応して得られたアロファネート基を有するポリイソシアネート化合物にヒドラジン化合物や上記例示のジヒドラジドを反応させて得られる多官能セミカルバジド、該ポリイソシアネート化合物とポリエーテルポリオール類やポリエチレングリコールモノアルキルエーテル類等の親水性基を含む活性水素化合物との反応物中のイソシアネート基に上記例示のジヒドラジドを反応させて得られる水系多官能セミカルバジド、あるいは該多官能セミカルバジドと水系多官能セミカルバジドとの混合物(特開平8-151358号、特開平8-245878号、日本国特許第3212857号参照)等が挙げられる。これらのうち、水溶性を有するアジピン酸ジヒドラジドとの併用が特に好ましい。セミカルバジド組成物と、併用する化合物との比率は、モル比で100/0~0.1/99.9の範囲内であることが好ましく、90/10~10/90の範囲内であることがよりに好ましい。このようにセミカルバジド組成物と他の化合物とを併用して水系樹脂組成物を塗膜化することにより、剛性と柔軟性とを兼ね備え、あるいは柔軟性と耐汚染性と硬度等を兼ね備える優れた塗膜を与えることができる。
 架橋剤の配合量は、水性エマルション中の樹脂成分が有する架橋性基の総量Mに対する、架橋剤中のセミカルバジド基及びヒドラジン基の総量Mの比M/Mが、0.01~10の範囲となる量であることが好ましく、0.05~5の範囲となる量であることがより好ましく、0.1~2の範囲となる量であることがさらに好ましい。
<水性エマルション>
 本態様において、水性エマルションは、水系分散媒と該水系分散媒中に分散した樹脂成分とを含有する液状組成物であり、該樹脂成分は、数平均分子量が1000~100000である水溶性又は水分散性ポリカルボニル化合物、及び数平均分子量が1000~100000である水溶性又は水分散性ポリエポキシ化合物からなる群より選択される少なくとも1種の架橋性樹脂を含む。
 なお、「水溶性又は水分散性」とは、水に溶解可能であるか、水中に分散してエマルションを形成可能で、且つ水分散性している一部が水溶性であることを含む。
 水系分散媒は、少なくとも水を含み、場合により水溶性有機溶剤を含む。水系分散媒中の水の含有量は、5質量%以上であることが好ましく、50質量%以上であることがより好ましい。
 水性エマルション中の樹脂成分の含有量は、水性エマルションの全量基準で、1~70質量%であることが好ましく、5~67質量%であることがより好ましい。
(水溶性又は水分散性ポリカルボニル化合物)
 水溶性又は分散性ポリカルボニル化合物(以下、単に「ポリカルボニル化合物」という。)は、アルド基又はケト基を2つ以上有する化合物である。ポリカルボニル化合物としては、従来公知のポリウレタン系、ポリエステル系、ポリ(メタ)アクリレート系、ポリビニルアセテート系、ポリブタジエン系、ポリ塩化ビニル系、塩素化ポリプロピレン系、ポリエチレン系、ポリスチレン系、ポリスチレン-(メタ)アクリレート系共重合体、ロジン系誘導体、スチレン-無水マレイン酸共重合体及び該アルコール付加物、セルロース系樹脂などのポリカルボニル化合物が挙げられ、これらの一種または二種以上を用いることができる。
 ポリカルボニル化合物は、分子中に少なくとも1つのアルド基又はケト基を有する単量体を、他の単量体と共重合するか又は付加重合することにより得ることができる。なお、アルド基及びケト基は、重合反応後、カルボニル基として架橋反応に関与すると考えられる。
 分子中に少なくとも1つのアルド基又はケト基を有する単量体の具体例としては、アセトンジカルボン酸、ジヒドロキシアセトン、モノヒドロキシアセトン及びジヒドロキシベンズアルデヒド等が挙げられ、これらの一種を単独で又は二種以上を併用して用いて付加重合を行うことで、ポリカルボニル化合物を得ることができる。
 また、分子中に少なくとも1つのアルド基又はケト基を有するエチレン性不飽和単量体の具体例としては、アクロレイン、ジアセトンアクリルアミド、ジアセトンメタクリルアミド、ホルミルスチロール、ビニルメチルケトン、ビニルエチルケトン、ビニルイソブチルケトン、アクリルオキシアルキルプロパナール類、メタクリルオキシアルキルプロパナール類、ジアセトンアクリレート、ジアセトンメタクリレート、アセトニルアクリレート、2-ヒドロキシプロピルアクリレートアセチルアセテート、ブタンジオール-1,4-アクリレートアセチルアセテート等が挙げられ、これらの1種又は複数種と、これら以外のエチレン性不飽和単量体とを含むエチレン性不飽和単量体混合物を重合することにより、ポリカルボニル化合物を得ることができる。但し、分子中に少なくとも1つのアルド基又はケト基を有するエチレン性不飽和単量体から、カルボン酸およびエステル類の持つカルボニル基を含有するエチレン性不飽和単量体は除外する。
 ポリカルボニル化合物を得るための単量体混合物は、分子中に少なくとも1つのアルド基又はケト基を有するエチレン性不飽和単量体を0.5重量%以上含むことが好ましい。単量体混合物中のアルド基又はケト基を有するエチレン性不飽和単量体の量が0.5重量%以上であると架橋点が多くなり塗膜性能が充分となる。この含有量は、さらに好ましくは0.5重量%以上20重量%以下である。
 ポリカルボニル化合物は、アニオン性、カチオン性、ノニオン性、両性のいずれであっても良い。中でもアニオン性であることは好ましく、特にカルボン酸基を含むことによりアニオン性であることが、水溶性を高める観点から好ましい。
 カルボン酸基を有するポリカルボニル化合物は、酸価を有することになる。ポリカルボニル化合物にカルボン酸基を保持させるには、重合時に使用する単量体混合物にエチレン性不飽和カルボン酸単量体を混合する。エチレン性不飽和カルボン酸単量体の具体例としては、アクリル酸、メタクリル酸、イタコン酸、フマール酸、マレイン酸、無水マレイン酸、及び、イタコン酸、フマール酸又はマレイン酸の半エステルなどが挙げられる。
 ポリカルボニル化合物の酸価は、20mgKOH/g以上であることが好ましく、25mgKOH/g以上であることがより好ましく、25mgKOH/g以上350mgKOH/g以下であることがさらに好ましい。酸価を20mgKOH/g以上とすることにより、ポリカルボニル化合物の水溶性が高くなるため、エマルション粒子間の融着及び分子の相互拡散が促進される。なお、酸価は、乾燥樹脂のg重量に対する中和に使用したKOHの固形分重量で示す。
 なお、水系樹脂組成物から得られる塗膜は、水に浸漬したときの塗膜白化を生じ難いものとなる。水浸漬時の塗膜白化は、エマルション粒子融着部への水の侵入が一因と考えられるが、本実施形態では、エマルション粒子の融着部はセミカルバジド組成物による架橋反応によって疎水化される。そのため、本実施形態では、ポリカルボニル化合物が、酸化が20mgKOH/g以上の水溶性の高いものである場合でも、水に浸漬したときの塗膜白化の発生は十分に抑制される。
 ポリカルボニル化合物がノニオン性である場合の例としては、セルロース、メチルセルロース(MC)、カルボキシメチルセルロース(CMC)、ポリビニルアルコール(PVA)、ポリエチレングリコール(PEG)、ポリプロピレングリコール(PPG)等ヒドロキシル基を有する水溶性樹脂及びその誘導体を、ジケテン、ピルビン酸、レブリン酸、アセト酢酸、トリメチルピルビン酸、プロピオニル酢酸、ベンゾイル蟻酸、フェニルピルビン酸、ケトカプリン酸、ケトウンデカン酸、ケトステアリン酸、ケトヘンエイコセン酸、ベンゾイル酢酸、ベンゾイルプロピオン酸、ケトグリコン酸、ケトマロン酸、アセトンジカルボン酸、2‐ケトグルタル酸、アセトンジ酢酸、アセトンプロピオン酸及びその誘導体で変性した化合物を挙げることができる。これらの化合物は通常、酸、アルカリ等の存在又は不存在下に溶液又は溶融状態で付加反応や副生するヒドロキシル化合物を除去しながら、水への溶解度を保てる程度に変性量を調整して製造することができる。
 ポリカルボニル化合物がカチオン性である場合は、重合に使用する単量体混合物において、カチオン基を持つエチレン性不飽和単量体を含有させる。
 カチオン基を持つエチレン性不飽和単量体としては、(メタ)アクリル酸ジメチルアミノエチルおよび塩、(メタ)アクリル酸ジエチルアミノエチルおよび塩、(メタ)アクリル酸ジメチルアミノプロピルおよび塩、ジメチルアミノメチル(メタ)アクリルアミドおよび塩、ジメチルアミノエチル(メタ)アクリルアミドおよび塩、ジメチルアミノプロピル(メタ)アクリルアミドおよび塩、ビニルピリジン、ジメチルアミノメチル(メタ)アクリルアミドエピクロロヒドリン付加物のハロゲン化塩、ジメチルアミノプロピル(メタ)アクリルアミドエピクロロヒドリン付加物のハロゲン化塩及びアルキルスルホン酸塩、(メタ)アクリル酸ジメチルアミノメチルエピクロロヒドリン付加物のハロゲン化塩、(メタ)アクリル酸ジメチルアミノプロピルエピクロロルヒドリン付加物のハロゲン化塩及びアルキルスルホン酸塩などが挙げられる。
 カチオン基を持つエチレン性不飽和単量体は、単量体混合物中0.5重量%~30重量%で使用されることが好ましく、単量体混合物中1重量%~20重量%で使用されることがさらに好ましい。これにより、水分散性がより良好なポリカルボニル化合物が得られる。
 ポリカルボニル化合物の数平均分子量は1000~100000であり、1000~50000であることが好ましく、4000~50000であることがさらに好ましい。このように比較的低分子量で水溶性の成分を有することで、水系樹脂組成物を低粘度の水分散液又は水溶液として取り扱うことができ、エマルション粒子同士の融着による塗膜形成が容易となり、かつセミカルバジド組成物との架橋反応を速やかに生じさせることができると推定している。
(水溶性又は水分散性ポリエポキシ化合物)
 水溶性又は分散性ポリエポキシ化合物(以下、単に「ポリエポキシ化合物」という。)は、エポキシ基又は開環エポキシ基を2つ以上有する化合物である。
 開環エポキシ基とは、エポキシ基の開環反応により生じる基であり、-X-C-C(-OH)-で表すことができる基である。なお、式中、Xは、酸素原子又は窒素原子を表す。開環エポキシ基としては、例えば、開環グリシジル基が挙げられる。開環グリシジル基は、グリシジル基の開環反応により生じる基であり、-X-CH-C(-OH)-CH-で表すことができる。開環反応としては、エポキシ基とカルボキシル基との反応、エポキシ基とアミノ基との反応等が挙げられる。
 ポリエポキシ化合物は、例えば、上述のポリカルボニル化合物の製造方法における分子中に少なくとも1つのアルド基又はケト基を有するエチレン性不飽和単量体を、分子中に少なくとも1つのエポキシ基を有するエチレン性不飽和単量体に変更することによって、得ることができる。すなわち、具体的には、分子中に少なくとも1つのエポキシ基を有するエチレン性不飽和単量体を、他の単量体と共重合することによって、得ることができる。
 また、開環エポキシ基を2つ以上有するポリエポキシ化合物は、例えば、カルボキシル基又はアミノ基を2つ以上有する化合物に対して、触媒存在下、エポキシ基を少なくとも1つ有する化合物を2当量以上反応させることにより、得ることができる。また、エポキシ基を2つ以上有する化合物に対して、触媒存在下、カルボキシル基又はアミノ基を少なくとも1つ有する化合物を2当量以上反応させることにより、得ることができる。ここで、触媒としては、3級アミン、4級アンモニウム塩等の硬化触媒として用いられる触媒が使用でき、具体的には、テトラ-n-ブチルアンモニウム水酸化物、メチルトリブチルアンモニウム水酸化物、ベンジルトリエチルアンモニウム水酸化物等を使用できる。
 エポキシ基を1つ以上有するエチレン性不飽和単量体としては、(メタ)アクリル酸グリシジル、アリルグリシジルエーテル、ケイヒ酸グリシジル、クロトン酸グリシジル、イタコン酸グリシジル、グリシジルノルボルネニルエステル、グリシジルノルボルネニルエーテル等が挙げられる。
 開環エポキシ基を有するポリエポキシ化合物を得るための分子中にエポキシ基を少なくとも1つ有する化合物には、エポキシ基を有する化合物を特に制限無く用いることができ、具体例としては、少なくとも1つのカルボキシル基を有する化合物とエピクロロヒドリンとの反応物等が挙げられる。
 ポリエポキシ化合物の数平均分子量は、1000~100000であることが好ましく、1000~50000であることがより好ましく、4000~50000であることがさらに好ましい。
 ポリエポキシ化合物は、アニオン性、カチオン性、ノニオン性、両性の何れであっても良い。中でもアニオン性であることが好ましく、特にカルボン酸基を含むことによりアニオン性であることが水溶性を高める点で好ましい。
 カルボン酸基を有するポリエポキシ化合物は、酸価を有することになる。ポリエポキシ化合物にカルボン酸基を保持させるためには、重合時に使用する単量体混合物にエチレン性不飽和カルボン酸単量体を混合する。エチレン性不飽和カルボン酸単量体の具体例としては、アクリル酸、メタクリル酸、イタコン酸、フマール酸、マレイン酸、無水マレイン酸、及び、イタコン酸、フマール酸又はマレイン酸の半エステルなどが挙げられる。
 ポリエポキシ化合物の酸価は、20mgKOH/g以上であることが好ましく、25mgKOH/g以上であることがより好ましく、25mgKOH/g以上350mgKOH/g以下であることがさらに好ましい。酸価を20mgKOH/g以上とすることにより、ポリエポキシ化合物の水溶性が高くなるため、エマルション粒子間の融着及び分子の相互拡散が促進される。なお、酸価は、乾燥樹脂のg重量に対する中和に使用したKOHの固形分重量で示す。
 なお、水系樹脂組成物から得られる塗膜は、水に浸漬したときの塗膜白化を生じ難いものとなる。水浸漬時の塗膜白化は、エマルション粒子融着部への水の侵入が一因と考えられるが、本態様では、エマルション粒子の融着部はセミカルバジド組成物による架橋反応によって疎水化される。そのため、本態様では、ポリエポキシ化合物が、酸化が20mgKOH/g以上の水溶性の高いものである場合でも、水に浸漬したときの塗膜白化の発生は十分に抑制される。
 上述のとおり、ポリカルボニル化合物又はポリエポキシ化合物を得るために、分子中に少なくとも1つのアルド基又はケト基を有する単量体又は分子中にエポキシ基を1つ以上有する単量体と、他の単量体成分と、を共重合することができるが、ここで用いられる他の単量体成分としては、例えば、アクリル酸エステル、メタクリル酸エステル、アクリルアミド系単量体、メタクリルアミド系単量体、シアン化ビニル類が挙げられる。
 (メタ)アクリル酸エステルの例としては、アルキル部の炭素数が1~18の(メタ)アクリル酸アルキルエステル、アルキル部の炭素数が1~18の(メタ)アクリル酸ヒドロキシアルキルエステル、エチレンオキサイド基の数が1~100個の(ポリ)オキシエチレン(メタ)アクリレート、プロピレンオキサイド基の数が1~100個の(ポリ)オキシプロピレン(メタ)アクリレート、エチレンオキサイド基の数が1~100個の(ポリ)オキシエチレンジ(メタ)アクリレート等が挙げられる。
 (メタ)アクリル酸エステルの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸アダマンチル等が挙げられる。
 (メタ)アクリル酸ヒドロキシアルキルエステルの具体例としては、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシシクロヘキシル、(メタ)アクリル酸ドデシル等が挙げられる。
 (ポリ)オキシエチレン(メタ)アクリレートの具体例としては、(メタ)アクリル酸エチレングリコール、メトキシ(メタ)アクリル酸エチレングリコール、(メタ)アクリル酸ジエチレングリコール、メトキシ(メタ)アクリル酸ジエチレングリコール、(メタ)アクリル酸テトラエチレングリコール、メトキシ(メタ)アクリル酸テトラエチレングリコール等が挙げられる。
 (ポリ)オキシプロピレン(メタ)アクリレートの具体例としては、(メタ)アクリル酸プロピレングリコール、メトキシ(メタ)アクリル酸プロピレングリコール、(メタ)アクリル酸ジプロピレングリコール、メトキシ(メタ)アクリル酸ジプロピレングリコール、(メタ)アクリル酸テトラプロピレングリコール、メトキシ(メタ)アクリル酸テトラプロピレングリコール等が挙げられる。
 (ポリ)オキシエチレンジ(メタ)アクリレートの具体例としては、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸ジエチレングリコール、メトキシ(メタ)アクリル酸ジエチレングリコール、ジ(メタ)アクリル酸テトラエチレングリコール等が挙げられる。
 (メタ)アクリルアミド系単量体類としては、例えば(メタ)アクリルアミド、N-イソブチル(メタ)アクリルアミド、N-ジメチル(メタ)アクリルアミド、N-ジエチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、などがあり、シアン化ビニル類としては、例えば(メタ)アクリロニトリルなどが挙げられる。
 また上記以外の具体例としては、例えば、エチレン、プロピレン、イソブチレン等のオレフィン類;ブタジエン等のジエン類;塩化ビニル、塩化ビニリデン等のハロオレフィン類;酢酸ビニル、プロピオン酸ビニル、n-酪酸ビニル、安息香酸ビニル、p-t-ブチル安息香酸ビニル、ピバリン酸ビニル、2-エチルヘキサン酸ビニル、バーサチック酸ビニル、ラウリン酸ビニル等のカルボン酸ビニルエステル類;酢酸イソプロペニル、プロピオン酸イソプロペニル等のカルボン酸イソプロペニルエステル類;エチルビニルエーテル、イソブチルビニルエーテル、シクロヘキシルビニルエーテル等のビニルエーテル類;スチレン、ビニルトルエン等の芳香族ビニル化合物;酢酸アリル、安息香酸アリル等のアリルエステル類;アリルエチルエーテル、アリルグリシジルエーテル、アリルフェニルエーテル等のアリルエーテル類;γ-(メタ)アクリロキシプロピルトリメトキシシラン、ビニルメチルジエトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルエトキシシラン、ビニルジメチルメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、4-(メタ)アクリロイルオキシ-2,2,6,6,-テトラメチルピペリジン、4-(メタ)アクリロイルオキシ-1,2,2,6,6,-ペンタメチルピペリジン、パーフルオロメチル(メタ)アクリレート、パーフルオロプロピル(メタ)アクリレート、パーフルオロプロピロメチル(メタ)アクリレート、ビニルピロリドン、トリメチロルプロパントリ(メタ)アクリレート、(メタ)アクリル酸2,3-シクロヘキセンオキサイド、(メタ)アクリル酸アリル、メタクリル酸アシッドホスホオキシエチル、メタクリル酸3-クロロ-2-アシッドホスホオキシプロピル、メチルプロパンスルホン酸アクリルアミド、ジビニルベンゼン等やそれらの併用が挙げられる。
 架橋性樹脂は、ガラス転移点Tgが80℃未満であり、65℃以下であることが好ましく、50℃以下であることがより好ましい。ガラス転移点Tgが80℃以上であると、水系樹脂組成物による塗膜の成膜性が劣り、る傾向にある。
 ここで、架橋性樹脂のTgは、ポリマーを構成する単量体から、下記Foxの式で計算したものであってよい。
 Foxの式:1/Tg=a/Tg+a/Tg+・・・+a/Tg(a、a、・・・aは各々の単量体の質量分率であり、Tg、Tg、・・・Tgは各単量体ホモポリマーのTgである。計算に使用する各単量体のホモポリマーのTgは、例えばポリマーハンドブック(JhonWilley&Sons)、塗料用合成樹脂入門などに記載されている。
 架橋性樹脂は、乳化重合、ミニエマルション重合又は溶液重合から得られたものであることが好ましい。
 溶液重合は通常の方法で行えば良く、使用される有機溶剤としては、例えば、トルエン、キシレン、シクロヘキサン、酢酸エチル、酢酸ブチル、CS-12(JNC(株)製)、エチレングリコールモノブチルエーテル、エチレングリコールモノ2-エチルヘキシルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノ2-エチルヘキシルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノブチルエーテル、ベンジルアルコール、グルタル酸ジメチル、グルタル酸イソプロピル等が挙げられる。
 乳化重合、ミニエマルション重合は、界面活性剤とを用いて実施することができ、当該界面活性剤としては、製造される架橋性樹脂がアニオン性の場合には、アニオン性界面活性剤又はノニオン性界面活性剤を使用する。
 界面活性剤としては、塗膜の高度な耐水性を発現するために、親水基と親油基を有する界面活性剤の化学構造式の中にエチレン性二重結合基を有する、いわゆる反応性界面活性剤を用いてもよい。
 反応性界面活性剤の中でアニオン性界面活性剤としては、例えばスルホン酸基、スルホネート基、硫酸エステル基又はこれらの塩を有するエチレン性不飽和単量体が挙げられ、スルホン酸基、スルホン酸基のアンモニウム塩(アンモニウムスルホネート基)、又はスルホン酸基のアルカリ金属塩である基(アルカリ金属スルホネート基)を有する化合物を好適に用いることができる。
 具体例としては、アリルスルホン酸塩、p-スチレンスルホン酸塩、アルキルアリルスルホコハク酸塩(例えば、三洋化成(株)製品名エレミノールJS-2、JS-5、例えば、花王(株)製品名ラテムルS-120、S-180A、S-180)、ポリオキシエチレンアルキルプロペニルフェニルエーテル硫酸エステル塩(例えば、第一工業製薬(株)製品名アクアロンHS-10)、α-〔1-〔(アリルオキシ)メチル〕-2-(フェニルフェノキシ)エチル〕-ω-ポリオキシエチレン硫酸エステル塩(例えば、(株)ADEKA製 製品名アデカリアソープSE-1025A)、α-スルホ-ω-(1-(アルコキシ)メチル)-2-(2-プロペニルオキシ)エトキシ)-ポリ(オキシ-1-,2-エタンジイル)のアンモニウム塩(例えば、(株)ADEKA製 製品名SR-1025)、アンモニウム=α-スルホナト-ω-1-(アリルオキシメチル)アルキルオキシポリオキシエチレン(例えば、第一工業製薬(株)製品名アクアロンKH-10)などが挙げられる。
 また、反応性界面活性剤の中でノニオン性界面活性剤としては、例えば、α-〔1-〔(アリルオキシ)メチル〕-2-(フェニルフェノキシ)エチル〕-ω-ヒドロキシポリオキシエチレン(例えば、(株)ADEKA製 製品名アデカリアソープNE-20、NE-30、NE-40などが挙げられる)、ポリオキシエチレンアルキルプロペニルフェニルエーテル(例えば、第一工業製薬(株)製品名アクアロンRN-10、RN-20、RN-30、RN-50などが挙げられる)などが挙げられる。
 本態様において、架橋性樹脂を得るための乳化重合又はミニエマルション重合においては、親水基と親油基を有する界面活性剤の化学構造式の中にエチレン性二重結合基を有する反応性界面活性剤以外に、通常の界面活性剤を使用することもできる。例えば、このような界面活性剤としては、脂肪酸石鹸、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、ポリオキシエチレンアルキル硫酸塩、ポリオキシエチレンアルキルアリール硫酸塩などのアニオン型界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンソルビタン脂肪酸エステル、オキシエチレンオキシプロピレンブロックコポリマーなどの非反応性ノニオン型界面活性剤;などが挙げられる。
 界面活性剤の使用量は、架橋性樹脂を得るための単量体の合計質量に対して、0.05~20重量%であることが好ましい。また、界面活性剤には、2種類以上の界面活性剤を併用しても良く、乳化重合における条件は通常の条件に従えば良く、特に制限はされない。
 架橋性樹脂を得るための重合反応では、ラジカル重合開始剤を使用することができる。ラジカル重合開始剤としては、熱又は還元性物質などによってラジカル分解してエチレン性不飽和単量体のラジカル重合を起こさせることができる化合物を用いることができる。
 ラジカル重合開始剤のうち、水溶性開始剤としては、水溶性の過硫酸塩、過酸化物、アゾビス化合物等が使用でき、その具体例としては、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、過酸化水素、t-ブチルハイドロパーオキサイド、2,2-アゾビス(2-ジアミノプロパン)ハイドロクロライドが挙げられる。また、ラジカル重合開始剤のうち、油溶性開始剤としては、具体的には、t-ブチルパーオキシベンゾエート、2,2-アゾビスイソブチロニトリル、2,2-アゾビス(2,4-ジメチルバレロニトリル)等が挙げられる。架橋性樹脂を得るための重合反応を乳化重合で行う場合には水溶性開始剤を、溶液重合又はミニエマルション重合の場合は油溶性開始剤を利用することが好ましい。
 ラジカル重合開始剤は、全単量体の総量に対して通常0.1~10質量%配合される。また、重合速度の促進、さらに低温での重合を望む場合に、重亜硫酸ナトリウム、塩化第一鉄、アスコルビン酸塩、ロンガリット等の還元剤をラジカル重合開始剤と組み合わせて用いることもできる。
 また、架橋性樹脂を得るための単量体がアニオン基を有する場合、反応系中にアルカリを添加してアニオン基を中和又は可溶化して水溶性重合開始剤にて重合することもでき、また、架橋性樹脂を得るための単量体がカチオン基を有する場合、反応系中に酸を添加して中和又は可溶化して水溶性重合開始剤にて重合することもできる。
 さらに、架橋性樹脂の重合にあたっては、重合後の分子量を調節するため、連鎖移動剤を重合過程で添加することも可能である。連鎖移動剤の添加量は、例えば、全単量体の総量に対して0.1~5質量%とすることができる。連鎖移動剤が0.1質量%未満では水系樹脂組成物の粘度が高値を示し取扱いが困難となる場合があり、5質量%を超えると塗膜の耐水性が不充分となる場合がある。連鎖移動剤としては、ブチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン等のメルカプタン類;メタノール、イソプロピルアルコール等のアルコール類;α-メチルスチレンダイマー;四塩化炭素等が挙げられる。
 水性エマルションは、上記架橋性樹脂を2種以上含有していてもよい。また、水性エマルションは、上記架橋性樹脂以外の水分散性樹脂及び/又は水溶性樹脂を更に含有していてもよい。
 例えば、一態様において、水性エマルションは、20mgKOH/g以上の酸価を有する架橋性樹脂である第一の樹脂と、架橋性樹脂より低い酸価を有する第二の樹脂と、を含有するものであってよい。
 ここで、第二の樹脂は、架橋性基(アルド基、ケト基又はエポキシ基)を有していなくてもよいが、塗膜の特性を一層良好にする観点からは、架橋性基を有することが好ましく、架橋性樹脂と同種の架橋性基を有することがより好ましい。すなわち、第二の樹脂は、上述の架橋性樹脂に相当するものであってもよい。
 また、第二の樹脂の酸価は、好ましくは25mgKOH/g未満であり、より好ましくは20mgKOH/g未満であり、さらに好ましくは18mgKOH/g未満である。
 なお、水性エマルションが有する樹脂成分の酸価は、1~250mgKOH/gであることが好ましく、5~200mgKOH/gであることがより好ましく、5~100mgKOH/gであることがさらに好ましい。上記態様において、架橋性樹脂及び第二の樹脂は、樹脂成分の酸価が上記範囲となるように、その酸価及び含有量比を調製することができる。
 また、上記態様において、第二の樹脂の数平均分子量は、架橋性樹脂の数平均分子量より大きいことが好ましい。第二の樹脂の数平均分子量は、好ましくは5万~200万であり、より好ましくは10万~100万である。
 また、上記態様において、水性エマルションの樹脂成分中の架橋性樹脂の含有量Yと第二の樹脂の含有量Yとの比Y/Yは、質量比で、1/99~90/10であることが好ましく、5/95~60/40であることがより好ましく、5/95~40/60であることがさらに好ましい。架橋性樹脂の含有量Yの比が1以上であると耐汚染性に一層優れる塗膜が得られ、含有量Yの比が90以下であると耐水性に一層優れる塗膜が得られる。すなわち、比Y/Yを上記の範囲とすることで、一層優れた耐水性と耐汚染性とを両立できる。
 水性エマルションの樹脂成分のTgは、60℃以下(-65℃以上)であることが好ましく、50℃以下であることがより好ましく、40℃以下であることがさらに好ましい。これにより、水系樹脂組成物が成膜性に優れたものになるとともに、塗膜の可撓性と耐汚染性とがバランス良く向上する。
 水性エマルションが、樹脂成分として2種以上の樹脂を含有するとき、水性エマルションは、各樹脂からなるエマルション粒子を各々含有するものであってよく、2種以上の樹脂をからなる複成分エマルション粒子を含有するものであってもよい。
 ここで、例えば、2種の樹脂を含有する水性エマルションは、以下に挙げる方法により得ることができる。
(方法1)樹脂(a)と樹脂(b)とを別々に重合して、樹脂(a)のエマルションと樹脂(b)のエマルションとを調製し、これらを混合することによって水性エマルションを得る方法。この方法では、樹脂(a)からなるエマルション粒子と、樹脂(b)からなるエマルション粒子との単純な混合物が得られる。
(方法2)樹脂(a)を含有する水系溶剤中で、樹脂(b)を得るための単量体の乳化重合又はミニエマルション重合を行い、水性エマルションを得る方法。この方法では、樹脂(a)を中心核として、その周りに樹脂(b)が重合形成された多層構造のエマルション粒子を含む水性エマルションが得られる。
 方法2において、樹脂(a)は水系溶剤中で分散してエマルションを形成していてもよく、水系溶剤中に溶解していてもよい。また、樹脂(a)は、乳化重合又はミニエマルション重合によって水系溶剤中に分散した態様で得られたものであっても、溶液重合により合成した後に水系溶剤中へ分散又は溶解させたものであってもよい。
 方法2において、樹脂(a)及び樹脂(b)のうち一方が、アニオン性であるとき、他方はアニオン性又はノニオン性であることが望ましく、また、一方がカチオン性であるとき、他方はカチオン性又はノニオン性であることが望ましい。
(方法3)一段目の重合を経て得られた樹脂(a)の存在下、二段目に樹脂(b)を得るための単量体の乳化重合又はミニエマルション重合を行って樹脂(b)を得て、次いで、必要に応じて可溶化処理を行った後、三段目として2回目の樹脂(a)の重合を行う方法。なお、このとき、1回目の樹脂(a)の重合の単量体組成と、2回目の樹脂(a)の重合の単量体組成とを変えて、3種の樹脂を含む水性エマルションとしてもよい。
 上記態様において、水性エマルションの製造方法は、方法3のうち、樹脂(a)が第二の樹脂であり、樹脂(b)が架橋性樹脂である場合の方法が、特に好ましい。また、このとき架橋性樹脂及び第二の樹脂がアニオン性であることがより好ましい。
 以下に、上記態様の水性エマルションを製造するための方法の一形態を示す。
 本形態において、第二の樹脂は、乳化剤を用いた乳化重合により得ることができる。第二の樹脂としてアニオン性の樹脂を製造する場合には、乳化剤としては、アニオン性界面活性剤及び/又はノニオン性界面活性剤を使用する。具体的には、上述の架橋性樹脂を得る乳化重合の説明で記載した界面活性剤を同様に用いることができる。
 また、第二の樹脂としてカチオン性の樹脂を製造する場合には、乳化剤としては、カチオン性界面活性剤及び/又はノニオン性界面活性剤を使用する。具体的には、上述の架橋性樹脂を得る乳化重合の説明で記載した界面活性剤を同様に用いることができる。
 乳化剤(界面活性剤)の使用量は、例えば、第二の樹脂を得るための単量体の総量に対して、0.05~25質量%とすることが好ましい。その他、乳化重合における条件は、通常の条件に従えば良く、特に制限されるものではない。
 第二の樹脂の重合に当たっては、重合後の分子量の調節のため、連鎖移動剤を重合過程で添加することも可能である。連鎖移動剤の添加量は、例えば、単量体の総量に対して0.1~5質量%とすることができる。連鎖移動剤が0.1質量%未満では水系樹脂組成物の粘度が高値を示し取扱いが困難となる場合があり、5質量%を超えると塗膜の耐水性が不充分となる場合がある。連鎖移動剤としては、ブチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン等のメルカプタン類;メタノール、イソプロピルアルコール等のアルコール類;α-メチルスチレンダイマー;四塩化炭素等が挙げられる。
 第二の樹脂がアニオン性であるとき、第二の樹脂にはアルカリ成分を添加することができ、また第二の樹脂がカチオン性であるとき、第二の樹脂には酸成分を添加することができる。これにより水系樹脂組成物における分散安定性が向上する。アルカリ成分及び酸成分の添加量は、水性エマルションのpHが、3~10の範囲となる量であることが好ましい。これにより、分散安定性がより優れたものとなる。
 アルカリ成分としては、水酸化ナトリウム、水酸化カリウム、アンモニアなどの通常のアルカリが特に制限無く用いられるが、とくに乾燥後の塗膜の耐水性を向上せしめる観点から、モノエタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、ジエタノールアミン、N-n-ブチルジエタノールアミン、トリイソプロパノールアミン、モルホリン類としてモルホリン、4-モルホリノエタノールなどが好ましく挙げられる。この中で揮発性のアルカリ成分としてはアンモニアが好ましい。
 また、酸成分としては、塩酸、硫酸、硝酸、メタンスルホン酸、p-トルエンスルホン酸、酢酸、乳酸、ヒドロキシ酢酸等が挙げられる。
 酸成分及びアルカリ成分の添加は重合の前でも、重合中でも、重合後であっても良い。また可溶化処理に使用できる有機溶剤は、アルカリ成分又は酸成分の添加だけでは水溶化が不充分であるときに補助的に使用しても良いし、有機溶剤だけで可溶化させても良い。
 本形態の製造方法においては、第二の樹脂にカルボン酸基を保持させるために、重合に用いる単量体の一部に、エチレン性不飽和カルボン酸単量体を用いることができる。エチレン性不飽和カルボン酸単位としては、アクリル酸、メタクリル酸、イタコン酸、フマール酸、マレイン酸、無水マレイン酸、無水イタコン酸、フマール酸、マレイン酸の半エステルなどが挙げられる。なお、第二の樹脂がカルボン酸基を含有すると、エポキシ基から開環エポキシ基を生成するのに有用であるという側面もある。
 第二の樹脂を得るための単量体としては、架橋性樹脂を得るための単量体と同様のものを用いることができ、例えば、分子中に少なくとも1つのアルド基又はケト基を有するエチレン性不飽和単量体、その他のエチレン性不飽和単量体、カチオン基の導入にはカチオン基を持つエチレン性不飽和単量体等を使用することができる。第二の樹脂の製造には、アルド基又はケト基を有するエチレン性不飽和単量体は必ずしも使用しなくてもよいが、架橋点を多くして塗膜性能を一層向上させる観点からは、単量体の総量基準で0.5重量%以上使用することが好ましく、0.5質量%以上20質量%以下使用することがより好ましい。
 上記態様の水性エマルションの製造方法としては、上述のとおり、方法3のうち、樹脂(a)が第二の樹脂であり、樹脂(b)が架橋性樹脂である場合の方法が、特に好適である。以下に、その具体的な一態様を例示する。
 本態様では、まず、エチレン性不飽和カルボン酸単量体0~3重量%、アルド基又はケト基を有するエチレン性不飽和単量体0~20重量%、及びその他の単量体77~99.5重量%からなる単量体混合物を乳化重合して一段目を行い、1回目の第二の樹脂のエマルションを得る。次いで、二段目として、1回目の第二の樹脂の存在下、エチレン性不飽和カルボン酸単量体3~50重量%、アルド基又はケト基を有するエチレン性不飽和単量体0.5~20重量%、及びその他の単量体30~97重量%からなる単量体混合物を乳化重合し、1回目の第二の樹脂及び架橋性樹脂を含むエマルションを得る。ここにアルカリ成分を添加後、引き続き三段目として、該エマルション中で、エチレン性不飽和カルボン酸単量体0~3重量%、アルド基又はケト基を有するエチレン性不飽和単量体0~20重量%、及びその他の単量体77~99.5重量%からなる単量体混合物を乳化重合して2回目の第二の樹脂を得ることにより、3段階にて、第二の樹脂(1回目)、架橋性樹脂及び第二の樹脂(2回目)を含むエマルションが得られる。
 上記態様は、3段階で重合を行う方法であるが、本発明では、目的に応じてさらなる多段重合としてもよい。このように多段重合を行うことで、水系樹脂組成物から得られる塗膜において、水浸漬時の白化の防止性能が一層向上する傾向にある。
<水系樹脂組成物>
 本態様に係る水系樹脂組成物は、架橋剤及び水性エマルションを配合して得られる組成物である。水系樹脂組成物には、上述の架橋剤及び水性エマルション以外の成分が配合されていてもよい。
 長期の保存安定性の向上のため、水系樹脂組成物のpHは、5~10の範囲であることが好ましい。pHをこの範囲に調整するためのpH調整剤としては、例えば、アンモニア、水酸化ナトリウム、水酸化カリウム、ジメチルアミノエタノール等のアミン類、などを用いることができる。
 水系樹脂組成物中の分散質(固形分)と分散媒(水系溶媒)との質量比は、70/30以下であることが好ましく、30/70以上65/35以下であることがより好ましい。
 水系樹脂組成物において、架橋性樹脂等を分散及び/又は溶解させる水系溶媒としては、水、水とアルコール類との混合溶媒等が挙げられる。
 水系樹脂組成物は、通常水系塗料などに配合される成分、例えば成膜助剤、増粘剤、消泡剤、顔料、分散剤、染料、防腐剤等を含んでいてもよく、また、これら以外に紫外線吸収剤、光安定剤、コロイド状無機粒子等も任意に配合することができる。
 コロイド状無機粒子は耐汚染性をより高めるために効果的であり、水性エマルション中の樹脂成分の総量100質量部に対して、1~80質量部配合することが好ましく、2~15質量部配合することがより好ましい。この範囲でコロイド状無機粒子を配合することで、得られる塗膜が水へ浸漬しても白化しにくくなる。
 また、紫外線吸収剤又は光安定剤を水系樹脂組成物中に含有させることは、高耐候性を付与する上で好ましい。水系樹脂組成物にこれらを含有させる方法としては、紫外線吸収剤又は光安定剤を成膜助剤などと混合して後添加する方法でもよいが、水性エマルションを得るための乳化重合時に存在させる方法がより好適である。紫外線吸収剤又は光安定剤は、例えば、架橋性樹脂の製造時に、架橋性樹脂を得るための単量体の総量に対して0.1質量%~5質量%の割合で添加することができる。
 また、紫外線吸収剤として、分子内にラジカル重合性の二重結合を有するラジカル重合性のもの、光安定剤として、分子内にラジカル重合性の二重結合を有するラジカル重合性のものを用いることもできる。また、紫外線吸収剤と光安定剤を併用すると、得られる塗膜の耐候性が一層向上する。
 紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤、ラジカル重合性ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤等が挙げられる。
 ベンゾトリアゾール系紫外線吸収剤としては、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-オクチルフェニル)ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’,5’-ビス(α,α’-ジメチルベンジル)フェニル〕ベンゾトリアゾール)、メチル-3-〔3-tert-ブチル-5-(2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシフェニル〕プロピオネートとポリエチレングリコール(分子量300)との縮合物(BASFジャパン(株)製、製品名:TINUVIN1130)、イソオクチル-3-〔3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル〕プロピオネート(BASFジャパン(株)製、製品名:TINUVIN384)、2-(3-ドデシル-5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール(BASFジャパン(株)製、製品名:TINUVIN571)、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-アミルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-4’-オクトキシフェニル)ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-(3’’,4’’,5’’,6’’-テトラヒドロフタルイミドメチル)-5’-メチルフェニル〕ベンゾトリアゾール、2,2-メチレンビス〔4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール〕、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(BASFジャパン(株)製、製品名:TINUVIN900)等が挙げられる。
 また、ラジカル重合性ベンゾトリアゾール系紫外線吸収剤としては、2-(2’-ヒドロキシ-5’-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾール(大塚化学(株)製、製品名:RUVA-93)、2-(2’-ヒドロキシ-5’-メタクリロキシエチル-3-tert-ブチルフェニル)-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メタクリリルオキシプロピル-3-tert-ブチルフェニル)-5-クロロ-2H-ベンゾトリアゾール、3-メタクリロイル-2-ヒドロキシプロピル-3-〔3’-(2’’-ベンゾトリアゾリル)-4-ヒドロキシ-5-tert-ブチル〕フェニルプロピオネート(BASFジャパン(株)製、製品名:CGL-104)等が挙げられる。
 また、トリアジン系紫外線吸収剤としては、TINUVIN400(製品名、BASFジャパン(株)製)等が挙げられる。
 光安定剤としては、ヒンダードアミン系光安定剤、ラジカル重合性ヒンダードアミン系光安定剤等が挙げられる。
 ヒンダードアミン系光安定剤としては、塩基性が低いものが好ましく、具体的には塩基定数(pKb)が8以上のものが好ましい。さらに具体的には、ビス(2,2,6,6-テトラメチル-4-ピペリジル)サクシネート、ビス(2,2,6,6-テトラメチルピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)2-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-2-ブチルマロネート、1-〔2-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピニルオキシ〕エチル〕-4-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピニルオキシ〕-2,2,6,6-テトラメチルピペリジン、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケートとメチル-1,2,2,6,6-ペンタメチル-4-ピペリジル-セバケートの混合物(BASFジャパン(株)製、製品名:TINUVIN292)、ビス(1-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、TINUVIN123(製品名、BASFジャパン(株)製)等が挙げられる。
 ラジカル重合性ヒンダードアミン系光安定剤としては、1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリレート、1,2,2,6,6-ペンタメチル-4-ピペリジルアクリレート、2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、2,2,6,6-テトラメチル-4-ピペリジルアクリレート、1,2,2,6,6-ペンタメチル-4-イミノピペリジルメタクリレート、2,2,6,6,-テトラメチル-4-イミノピペリジルメタクリレート、4-シアノ-2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、4-シアノ-1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリレート等が挙げられる。
 水系樹脂組成物はまた、(部分鹸化)ポリビニルアルコール、メチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン等の高分子分散安定剤;ポリエーテル系増粘剤等の増粘剤;可塑剤;成膜助剤などを含有していてよく、これらを併用してもよい。
 また、水系樹脂組成物には、通常の塗料、種々のコーティング材等に添加配合される成分、例えば、粘性調整剤、pH調整剤、消泡剤、顔料、充填剤、分散剤、染料、防腐剤、界面活性剤、熱安定剤、紫外線吸収剤、酸化防止剤、光安定剤、難燃剤、有機溶剤、湿潤剤、界面活性剤、増粘剤、可塑剤、成膜助剤、防錆剤等を配合してもよい。これらは、例えばアトライター、サンドミルなどの練肉機を使用して水系樹脂組成物中に分散させ、水系樹脂組成物が用途に応じた所定の粘度になるよう調整を行う。
 水系樹脂組成物は、例えば基材上に塗布して乾燥することにより、塗膜を形成することができる。塗膜は、架橋性樹脂が架橋剤により架橋してなる架橋体を含有する。
 本態様においては、架橋性樹脂及び架橋剤が上述の特定の構成を有するものであるため、得られる塗膜は、硬度、耐汚染性、耐水性及び耐アルカリ黄変性に優れる。
(複合体)
 本実施形態に係る複合体について以下に説明する。本実施形態に係る複合体は、基材と、水系樹脂組成物により該基材の少なくとも一面上に形成された塗膜と、を備えるものである。
 基材の材質としては、ガラス、石膏、石等の非金属の無機物;鉄、ステンレス、アルミ、銅等の金属;アクリル、ポリスチレン、ポリエステル、ポリカーボネート、ポリオレフィンなどの高分子;合成ゴム、天然ゴム、綿、絹、麻、ナイロン等の繊維;木材;等が挙げられる。
 塗膜は、基材に直接水系樹脂組成物を塗布して形成させてもよいし、基材上に塗料又はコーティング材を塗布した上にさらに水系樹脂組成物を塗布して形成させてもよい。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
 以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。
 セミカルバジド組成物の分析面積比率(a)、(b-1)、(b-2)及び(b-3)は、上述の方法に従い、紫外可視吸光検出器の波長を200nmとして求めた。なお、イソホロンジイソシアネートは複数の立体異性体からなるため、ピーク面積S、SB-1、SB-2、SB-3は、各異性体に由来するピークを合計したピーク群の面積として求めた。
 アルカリ水溶液による塗膜の黄変は、塗膜を飽和水酸化カルシウム溶液に所定の期間浸漬したのち、色彩変化を測定することによって検査した。より具体的には、フレキブルボードに白エナメル塗料を塗装、乾燥した塗装板を用意し、水系樹脂組成物を、その塗液が250μmになるよう塗装板上に塗布し、室温にて乾燥させて測定サンプルを得た。この測定サンプルを、23℃の飽和水酸化カルシウム水溶液に1週間浸漬し、色彩の変化を測定した。色彩変化の測定は、試験の前後(飽和水酸化カルシウム水溶液への浸漬の前後)においてMINOLTA製色彩色差計CR-200を用いてL,a,b値を測定し、試験前後におけるb値の変化量のΔb値によって示した。
 塗膜の架橋状態の確認試験は、塗膜を有機溶剤に浸漬し、その不溶分を測定することにより行った。具体的な測定方法としては、約100μmの厚みの塗膜を、24時間アセトン中に浸漬した後乾燥させ、浸漬前後の質量変化の割合を測定することによって求めた。
[合成例1-1]
<ポリカルボニル化合物の調整>
 還流冷却器、滴下槽、温度計及び撹拌装置を有する反応器に、イオン交換水218gと界面活性剤(商品名:アデカリアソープSE-1025 N、(株)ADEKA製)の25%水溶液3.7gとを投入し、反応容器中の温度を80℃に上げてから、次にメタクリル酸9g、スチレン4.5g、アクリル酸ブチル234g、ダイアセトンアクリルアミド13.5g、メタクリル酸メチル189g、ドデシルメルカプタン0.45g、イオン交換水225g、アデカリアソープSE-1025Nを14.4g、ポリオキシエチレンノニルフェニルエーテル(商品名:エマルゲン950、花王(株)製)の25%水溶液10g、過硫酸アンモニウム1gの混合液を反応容器中へ滴下槽より3時間かけて流入させた。流入中は反応容器中の温度を80℃に保った。流入終了後、反応容器中の温度を80℃にして2時間保った。その後室温まで冷却し、25%アンモニア水溶液を添加してpHを7.5に調整してから100メッシュの金網で濾過し、固形分46.8%、平均粒径106nmのカルボニル基含有共重合体水性エマルジョンを得た。
 この水性エマルジョンへ、CS-12(JNC(株)製)2%を添加し、充分撹拌混合した塗液から約100μmの厚みの塗膜を得、23℃で1週間乾燥させた後、24時間アセトン中に浸漬した後乾燥させ、浸漬前後の質量変化の割合を測定したところ、その不溶分は8%であった。
[実施例1-1]
(セミカルバジド組成物)
 ヒドラジン1水和物22.0g、テトラヒドロフラン(水溶性有機溶剤)200g、水60gを還流冷却器、温度計、攪拌装置を有する反応器に入れた。その後、トルエン(水難溶性溶剤)400g、イソホロンジイソシアネート50gの混合液を1時間かけて室温下で添加滴下した。その後、さらに室温で1時間攪拌し反応を終了した(反応終了時の水を除く水溶性有機溶剤比率は67%)。その後50℃以下の温度で減圧下、有機溶剤及び水を除去した。得られた白色粉末を室温下で真空乾燥し、セミカルバジド組成物64gを得た。セミカルバジド組成物を同量の水に溶解し、50%水溶液とした。
 セミカルバジド組成物のLC/MS分析の結果、セミカルバジド組成物の分析面積比率(a)は0.09%であり、分析面積比率(b-1)は85.20%であり、分析面積比率(b-2)は11.53%であり、分析面積比率(b-3)は3.18%であった。この比率から算出されるセミカルバジド基当たりの分子量は167である。なお、LC/MS分析で得られたクロマトグラムは図1に示すとおりであった。
(水系樹脂組成物及び塗膜)
 合成例1-1のカルボニル基含有共重合体水性エマルジョン100gに対し、CS-12(JNC(株)製)2%を添加後充分撹拌混合し、次いでセミカルバジド組成物の50%水溶液を2.40g(ケト基に対しセミカルバジド基0.9当量)添加し、混合して水系樹脂組成物を得た。得られた水系樹脂組成物は、常温架橋性と貯蔵安定性とを兼ね備えていた。
 この水系樹脂組成物を塗液として、約100μmの厚みに塗布し、23℃で1週間乾燥させて塗膜を得た。得られた塗膜を24時間アセトン中に浸漬した後乾燥させ、浸漬前後の質量変化の割合を測定したところ、その不溶分は88%であった。
 また、フレキブルボードに白エナメル塗料を塗装、乾燥した塗装板へ、この水系樹脂組成物を250μmの厚みになるよう塗布し、室温にて1週間乾燥させて塗膜を得た。得られた塗膜を23℃の飽和水酸化カルシウム水溶液に1週間浸漬したところ、Δbの値は3.7と低値を示した。
[実施例1-2]
(セミカルバジド組成物)
 ヒドラジン1水和物18.0g、テトラヒドロフラン200g、水60gを還流冷却器、温度計、攪拌装置を有する反応器に入れた。その後、トルエン700g、イソホロンジイソシアネート50gの混合液を1時間かけて室温下で添加滴下した。その後、さらに室温で1時間攪拌し反応を終了した(反応終了時の水を除く水溶性有機溶剤比率は78%)。その後50℃以下の温度で減圧下、有機溶剤及び水を除去した。得られた白色粉末を室温下で真空乾燥し、セミカルバジド組成物61.5gを得た。セミカルバジド組成物を同量の水に溶解し、50%水溶液とした。
 セミカルバジド組成物のLC/MS分析の結果、セミカルバジド組成物の分析面積比率(a)は0.01%であり、分析面積比率(b-2)は81%であり、分析面積比率(b-2)は15%であり、分析面積比率(b-3)は4%であった。この比率から算出されるセミカルバジド基当たりの分子量は172である。なお、LC/MS分析で得られたクロマトグラムは図2に示すとおりであった。
(水系樹脂組成物及び塗膜)
 合成例1-1のカルボニル基含有共重合体水性エマルジョン100gに対し、CS-12(JNC(株)製)2%を添加後充分撹拌混合し、次いでセミカルバジド組成物の50%水溶液を2.48g(ケト基に対しセミカルバジド基0.9当量)添加、混合して水系樹脂組成物を得た。得られた水系樹脂組成物は、常温架橋性と貯蔵安定性とを兼ね備えていた。
 この水系樹脂組成物を塗液として、約100μmの厚みに塗布し、23℃で1週間乾燥させて塗膜を得た。得られた塗膜を24時間アセトン中に浸漬した後乾燥させ、浸漬前後の質量変化の割合を測定したところ、その不溶分は90%であった。
 また、フレキブルボードに白エナメル塗料を塗装、乾燥した塗装板へ、この水系樹脂組成物を250μmの厚みになるように塗布し、室温にて1週間乾燥さえて塗膜を得た。得られた塗膜を23℃の飽和水酸化カルシウム水溶液に1週間浸漬したところ、Δbの値は3.2と低値を示した。
[実施例1-3]
(セミカルバジド組成物)
 ヒドラジン1水和物25.0g、テトラヒドロフラン200g、水60gを還流冷却器、温度計、攪拌装置を有する反応器に入れた。その後、トルエン200g、イソホロンジイソシアネート50gの混合液を1時間かけて室温下で添加滴下した。その後、さらに室温で1時間攪拌し反応を終了した(反応終了時の水を除く水溶性有機溶剤比率は50%)。その後50℃以下の温度で減圧下、有機溶剤、水を除去した。得られた白色粉末を室温下で真空乾燥し、セミカルバジド組成物64gを得た。セミカルバジド組成物を同量の水に溶解し、50%水溶液とした。
 セミカルバジド組成物のLC/MS分析の結果、セミカルバジド組成物の分析面積比率(a)は0.21%であり、分析面積比率(b-1)は89%であり、分析面積比率(b-2)は9%であり、分析面積比率(b-3)は1.8%であった。この比率から算出されるセミカルバジド基当たりの分子量は159である。なお、LC/MS分析で得られたクロマトグラムは図3に示すとおりであった。
(水系樹脂組成物及び塗膜)
 合成例1-1のカルボニル基含有共重合体水性エマルジョン100gに対し、CS-12(JNC(株)製)2%を添加後充分撹拌混合し、次いでセミカルバジド組成物の50%水溶液を2.28g(ケト基に対しセミカルバジド基0.9当量)添加、混合して水系樹脂組成物を得た。得られた水系樹脂組成物は、常温架橋性と貯蔵安定性とを兼ね備えていた。
 この水系樹脂組成物を塗液として、約100μmの厚みに塗布し、23℃で1週間乾燥させて塗膜を得た。得られた塗膜を24時間アセトン中に浸漬した後乾燥させ、浸漬前後の質量変化の割合を測定したところ、その不溶分は86%であった。
 また、フレキブルボードに白エナメル塗料を塗装、乾燥した塗装板へ、この水系樹脂組成物を250μmの厚みになるように塗布し、室温にて1週間乾燥させて塗膜を得た。得られた塗膜を23℃の飽和水酸化カルシウム水溶液に1週間浸漬したところ、Δbの値は6.2と低値を示した。
 また、アルマイト板に白エナメル塗料を塗装、乾燥した塗装板へ、この水系樹脂組成物を100μmの厚みになるよう塗布し、室温にて1週間乾燥させて塗膜を得た。塗装板の四方、背面を蝋封し、23℃の1規定硫酸水溶液に1週間浸漬したところ、塗装面のブリスターはわずかの量に留まった。
[比較例1]
(セミカルバジド組成物)
 ヒドラジン1水和物120.0g、テトラヒドロフラン200g、水1000gを還流冷却器、温度計、攪拌装置を有する反応器に入れた。その後、テトラヒドロフラン200g、イソホロンジイソシアネート50gの混合液を1時間かけて室温下で添加滴下した。その後、さらに室温で1時間攪拌し反応を終了した(反応終了時の水を除く水溶性有機溶剤比率は0%)。その後50℃以下の温度で減圧下、有機溶剤、水を除去した。得られた白色粉末を室温下で真空乾燥し、セミカルバジド組成物64gを得た。セミカルバジド組成物を同量の水に溶解し、50%水溶液とした。
 セミカルバジド組成物のLC/MS分析の結果、分析面積比率(a)は2.2%であり、分析面積比率(b-1)は92%であり、分析面積比率(b-2)は5%であり、分析面積比率(b-3)は1%であった。この比率から算出されるセミカルバジド基当たりの分子量は154である。なお、LC/MS分析で得られたクロマトグラムは図4に示すとおりであった。
(水系樹脂組成物及び塗膜)
 合成例1-1のカルボニル基含有共重合体水性エマルジョン100gに対し、CS-12(JNC(株)製)2%を添加後充分撹拌混合し、次いでセミカルバジド化合物の50%水溶液を2.21g(ケト基に対しセミカルバジド基0.9当量)添加、混合して水系樹脂組成物を得た。
 得られた水系樹脂組成物を塗液として、約100μmの厚みに塗布し、23℃で1週間乾燥させて塗膜を得た。得られた塗膜を24時間アセトン中に浸漬した後乾燥させ、浸漬前後の質量変化の割合を測定したところ、その不溶分は87%であった。
 また、フレキブルボードに白エナメル塗料を塗装、乾燥した塗装板へ、この水系樹脂組成物を250μmの厚みになるよう塗布し、室温にて1週間乾燥させて塗膜を得た。得られた塗膜を23℃の飽和水酸化カルシウム水溶液に1週間浸漬したところ、Δbの値は12.5と高値を示した。
[比較例2]
(セミカルバジド組成物)
 ヒドラジン1水和物200g、テトラヒドロフラン200gを還流冷却器、温度計、攪拌装置を有する反応器に入れた。その後、テトラヒドロフラン200g、イソホロンジイソシアネート50gの混合液を1時間かけて室温下で添加滴下した。その後、さらに室温で1時間攪拌し反応を終了した(反応終了時の水を除く水溶性有機溶剤比率は0%)。その後50℃以下の温度で減圧下、有機溶剤、水を除去した。得られた白色粉末を室温下で真空乾燥し、セミカルバジド組成物64gを得た。セミカルバジド組成物を同量の水に溶解し、50%水溶液とした。
 セミカルバジド組成物のLC/MS分析の結果、分析面積比率(a)は0.000%と検出限界以下であり、分析面積比率(b-1)は95%であり、分析面積比率(b-2)は4.5%であり、分析面積比率(b-3)は0.5%であった。この比率から算出されるセミカルバジド基当たりの分子量は150である。なお、LC/MS分析で得られたクロマトグラムは図5に示すとおりであった。
(水系樹脂組成物及び塗膜)
 合成例1-1のカルボニル基含有共重合体水性エマルジョン100gに対し、CS-12(JNC(株)製)2%を添加後充分撹拌混合し、次いでセミカルバジド化合物の50%水溶液を2.15g(ケト基に対しセミカルバジド基0.9当量)添加、混合して水系樹脂組成物を得た。得られた水系樹脂組成物を塗液として、約100μmの厚みに塗布し、23℃で1週間乾燥させて塗膜を得た。得られた塗膜を24時間アセトン中に浸漬した後乾燥させ、浸漬前後の質量変化の割合を測定したところ、その不溶分は85%であった。
 また、フレキブルボードに白エナメル塗料を塗装、乾燥した塗装板へ、この水系樹脂組成物を250μmの厚みになるよう塗布し、室温にて1週間乾燥させて塗膜を得た。得られた塗膜を23℃の飽和水酸化カルシウム水溶液に1週間浸漬したところ、Δbの値は3.1であった。
 また、アルマイト板に白エナメル塗料を塗装、乾燥した塗装板へ、この水系樹脂組成物を100μmの厚みになるよう塗布し、室温にて1週間乾燥させて塗膜を得た。塗装板の四方、背面を蝋封し、23℃の1規定硫酸水溶液に1週間浸漬したところ、塗装面ブリスターを多量に発生した。
 なお、数平均分子量の測定方法は、下記の通りである。
 ゲルパーミィテーションクロマトグラフィーを用いて、ポリスチレン標品検量線より求めた。
(使用機器)
・液クロ装置:東ソー(株)製 HLC-8020
・カラム:東ソー(株)製
TSKgel G-5000 HXL
TSKgel G-4000 HXL
TSKgel G-2000 HXL
・データ処理装置:東ソー(株)製 SC8010
・キャリヤ:テトラヒドロフラン
[製造例2-1]
 ヒドラジン1水和物22.0g、テトラヒドロフラン200g、水60gを還流冷却基、温度計、攪拌装置を有する反応器に入れた。その後、トルエン400g、イソホロンジイソシアネート50gの混合液を1時間かけて室温下で添加滴下した。その後、さらに室温で1時間攪拌し反応を終了した(反応終了時の水を除く水非難溶性有機溶剤比率は67%)。その後50℃以下の温度で減圧下、有機溶剤、水を除去した。得られた白色粉末を室温下で真空乾燥し、セミカルバジド組成物64gを得た。得られたセミカルバジド組成物同量の水に溶解し、50%水溶液とした。
 セミカルバジド組成物のLC/MS分析の結果、セミカルバジド組成物の分析面積比率(a)は0.09%であり、分析面積比率(b-1)は85.20%であり、分析面積比率(b-2)は11.53%であり、分析面積比率(b-3)は3.18%であった。この比率から算出されるセミカルバジド基当たりの分子量は167である。
[製造例2-2:水性エマルションA-1の製造]
 還流冷却器、滴下槽、温度計及び撹拌装置を有する反応器に、イオン交換水509.4g、界面活性剤アクアロンKH-10の25%水溶液3.5gを投入し、反応容器中の温度を80℃に上げてから、メタクリル酸メチル11.2g、アクリル酸ブチル67.2g、メタクリル酸ブチル40.0g、アクリル酸16.0g、メタクリル酸16.0g、ジアセトンアクリルアミド9.6g、n-ドデシルメルカプタン1.6g、イオン交換水110.0g、界面活性剤(商品名:第一工業製薬(株)製品名アクアロンKH-10)の25%水溶液を3.2g、過硫酸アンモニウムの2%水溶液36.0gの混合液を反応容器中へ滴下槽より40分かけて流入し、流入中は反応容器中の温度を80℃に保った。流入終了後、反応容器の温度を80℃で30分に保ち、次いで25%のアンモニア水にてpH7とし、ポリカルボニル化合物の分散液を得た。得られたポリカルボニル化合物を一部採取して数平均分子量及び酸価の測定を行ったところ、数平均分子量は29000、酸価は283であった。
 引き続きポリカルボニル化合物の分散液の存在下、メタクリル酸メチル59.2g、アクリル酸ブチル149.6g、メタクリル酸ブチル240.0g、メタクリル酸2.4g、ジアセトンアクリルアミド28.8g、n-ドデシルメルカプタン0.24g、イオン交換水267.0g、アクアロンKH-10の25%水溶液を10.4g、過硫酸アンモニウムの2%水溶液72.0gの混合液を反応容器中へ滴下槽より2時間かけて流入し、流入中は反応容器中の温度を80℃に保った。流入終了後、反応容器の温度を80℃で60分間保ち、樹脂(第二の樹脂)を重合した。その後室温まで冷却し、25%アンモニア水溶液を添加してpHを7.5に調整してから100メッシュの金網で濾過し、固形分40.0%、平均粒径186nmの水性エマルションA-1を得た。
[製造例2-3:水性エマルションA-2の製造]
 還流冷却器、滴下槽、温度計及び撹拌装置を有する反応器に、イオン交換水509.4g、界面活性剤(商品名:第一工業製薬(株)製品名アクアロンKH-10)の25%水溶液3.5gを投入し、反応容器中の温度を80℃に上げてから、次にメタクリル酸メチル59.2g、アクリル酸ブチル149.6g、メタクリル酸ブチル240.0g、メタクリル酸2.4g、ジアセトンアクリルアミド28.8g、n-ドデシルメルカプタン0.24g、イオン交換水283.4g、アクアロンKH-10の25%水溶液を19.2g、過硫酸アンモニウムの2%水溶液84.0gの混合液を反応容器中へ滴下槽より2時間かけて流入し、流入中は反応容器中の温度を80℃に保った。流入終了後、反応容器の温度を80℃で30分間保ち、樹脂(1回目の第二の樹脂)を重合した。次いでメタクリル酸メチル11.2g、アクリル酸ブチル67.2g、メタクリル酸ブチル40.0g、アクリル酸16.0g、メタクリル酸16.0g、ジアセトンアクリルアミド9.6g、n-ドデシルメルカプタン1.6g、イオン交換水110.0g、アクアロンKH-10の25%水溶液を3.2g、過硫酸アンモニウムの2%水溶液24.0gの混合液を反応容器中へ滴下槽より40分かけて流入し、流入中は反応容器中の温度を80℃に保った。流入終了後、反応容器の温度を80℃で30分に保ち、次いで25%のアンモニア水を10.4g添加し、製造例2-2と同組成のポリカルボニル化合物部分を重合した。
 引き続き、メタクリル酸メチル67.2g、アクリル酸ブチル83.2g、ジアセトンアクリルアミド9.6g、n-ドデシルメルカプタン0.08g、イオン交換水161.9g、アクアロンKH-10の25%水溶液を3.2g、過硫酸アンモニウムの2%水溶液24.0gの混合液を反応容器中へ滴下槽より40分かけて流入し、流入中は反応容器中の温度を80℃に保った。流入終了後、反応容器の温度を80℃で60分間保ち、樹脂(2回目の第二の樹脂)を重合した。その後室温まで冷却し、25%アンモニア水溶液を添加してpHを7.5に調整してから100メッシュの金網で濾過し、固形分40.0%、平均粒径176nmの水性エマルションA-2を得た。
[実施例2-1]
 製造例2-2の方法で得られた水性エマルション(A-1)100gへ、製造例2-1の方法で得られたセミカルバジド組成物の50%水溶液3.85gを添加、撹拌混合し、次いでCS-12(JNC(株)製)5gを添加し、充分撹拌混合し、水系樹脂組成物からなる塗液を得た。この塗液を室温にて約100μmの厚みに成膜し、23℃で1週間乾燥させて塗膜を得た。得られた塗膜を、1週間水中に浸漬し、浸漬前後の質量変化の割合を測定したところ重量は1.7倍となっており、その吸水率は70%であった。また塗膜はわずか白化した程度で透明であった。
[実施例2-2]
 製造例2-3の方法で得られた水性エマルション(A-2)100gへ、製造例2-1の方法で得られたセミカルバジド組成物の50%水溶液3.85gを添加、撹拌混合し、次いでCS-12(JNC(株)製)5gを添加し、充分撹拌混合し、水系樹脂組成物からなる塗液を得た。この塗液を室温にて約100μmの厚みに成膜し、23℃で1週間乾燥させて塗膜を得た。得られた塗膜を、1週間水中に浸漬し、浸漬前後の質量変化の割合を測定したところ重量は1.35倍となっており、その吸水率は35%であった。また塗膜はわずかに青味がかる程度で透明であった。
[比較例2-1]
 製造例2-2の方法で得られた水性エマルション(A-1)100gへ、アジピン酸ジヒドラジドの8%水溶液12.7gを添加、撹拌混合し、次いでCS-12(JNC(株)製)5gを添加し、充分撹拌混合し、塗液とした。この塗液を室温にて約100μmの厚みに成膜し、23℃で1週間乾燥させて塗膜を得た。得られた塗膜を、1週間水中に浸漬し、浸漬前後の質量変化の割合を測定したところ重量は3.65倍となっており、その吸水率は265%であった。また塗膜は著しく白化していた。
[比較例2-2]
 製造例2-3の方法で得られた水性エマルション(A-2)100gへ、アジピン酸ジヒドラジドの8%水溶液12.7gを添加、撹拌混合し、次いでCS-12(JNC(株)製)5gを添加し、充分撹拌混合し、塗液とした。この塗液を室温にて約100μmの厚みに成膜し、23℃で1週間乾燥させて塗膜を得た。得られた塗膜を、1週間水中に浸漬し、浸漬前後の質量変化の割合を測定したところ重量は2.80倍となっており、その吸水率は180%であった。また塗膜は白化していた。

Claims (15)

  1.  アミノ基及びセミカルバジド基を有するセミカルバジド化合物(A)と、
     前記セミカルバジド化合物(A)のアミノ基がセミカルバジド基に置換された構造を有するセミカルバジド化合物(B-1)と、
     前記セミカルバジド化合物(B-1)の2量体であるセミカルバジド化合物(B-2)と、
     前記セミカルバジド化合物(B-1)の3量体であるセミカルバジド化合物(B-3)と、
    を含有し、
     下記式(a)で表される分析面積比率(a)が、0.008%以上2%以下である、セミカルバジド組成物。
    Figure JPOXMLDOC01-appb-M000001
    [式中、S、SB-1、SB-2及びSB-3はそれぞれ、前記セミカルバジド組成物の高速液体クロマトグラフィー分析によって得られるクロマトグラムにおける、前記セミカルバジド化合物(A)、前記セミカルバジド化合物(B-1)、前記セミカルバジド化合物(B-2)及び前記セミカルバジド化合物(B-3)に由来するピークのピーク面積を示す。]
  2.  前記セミカルバジド化合物(A)が、下記式(1-1)又は下記式(1-2)で表される化合物であり、
     前記セミカルバジド化合物(B-1)が、下記式(2-1)で表される化合物である、請求項1に記載のセミカルバジド組成物。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
  3.  前記セミカルバジド化合物(B-2)が、下記式(2-2)で表される化合物であり、
     前記セミカルバジド化合物(B-3)が、下記式(2-3)で表される化合物である、請求項2に記載のセミカルバジド組成物。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    [式中、R、R、R及びRはそれぞれ独立に下記式(2-a)又は下記式(2-b)で表される一価の基を示し、Rは下記式(2-c)で表される二価の基を示す。]
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
  4.  分子内に2つ以上のイソシアネート基を有する化合物(C)と、ヒドラジン又はヒドラジン誘導体とを反応させて得られた組成物である、請求項1~3のいずれか一項に記載のセミカルバジド組成物。
  5.  前記化合物(C)が、下記式(4)で表される化合物である、請求項4に記載のセミカルバジド組成物。
    Figure JPOXMLDOC01-appb-C000009
  6.  下記式(b-1)で表される分析面積比率(b-1)が、50%以上99%以下であり、下記式(b-2)で表される分析面積比率(b-2)が、0.9%以上30%以下であり、下記式(b-3)で表される分析面積比率(b-3)が、0.01%以上20%以下である、請求項1~5のいずれか一項に記載のセミカルバジド組成物。
    Figure JPOXMLDOC01-appb-M000010
  7.  分子内に2つ以上のイソシアネート基を有する化合物(C)とヒドラジン又はヒドラジン誘導体とを溶媒中で反応させて、請求項1~6のいずれか一項に記載のセミカルバジド組成物を得る反応工程を有する、セミカルバジド組成物の製造方法。
  8.  前記反応工程において、前記化合物(C)が有するイソシアネート基のモル数に対する、前記ヒドラジン又はヒドラジン誘導体のモル数の比が、0.7~5である、請求項7に記載の製造方法。
  9.  前記反応工程において、
     前記溶媒が、水溶性有機溶剤及び水難溶性溶剤を含有し、
     前記水溶性有機溶剤及び前記水難溶性溶剤の合計量に対する前記水難溶性溶剤の量が20質量%以上である、請求項7又は8に記載の製造方法。
  10.  請求項1~6のいずれか一項に記載のセミカルバジド組成物を5質量%以上含有する、水溶液。
  11.  水系塗料又は水系コーティング材として用いられる水系樹脂組成物であって、
     請求項1~6のいずれか一項に記載のセミカルバジド組成物と、セミカルバジド基と反応して架橋構造を形成可能な樹脂と、を含有する、水系樹脂組成物。
  12.  基材と、請求項11に記載の水系樹脂組成物により形成された塗膜と、を備える複合体。
  13.  架橋剤及び水性エマルションが配合された水系樹脂組成物であって、
     前記架橋剤が、請求項1~6のいずれか一項に記載のセミカルバジド組成物を含有し、
     前記水性エマルションが、数平均分子量が1000~100000である水溶性又は水分散性ポリカルボニル化合物、及び数平均分子量が1000~100000である水溶性又は水分散性ポリエポキシ化合物からなる群より選択され、ガラス転移点Tgが80℃未満である架橋性樹脂を少なくとも一種含有する、水系樹脂組成物。
  14.  前記水性エマルションが、乳化重合により得られたものである、請求項13に記載の水系樹脂組成物。
  15.  請求項13又は14に記載の水系樹脂組成物から得られ、前記架橋性樹脂の架橋体を含有する、塗膜。
PCT/JP2013/080908 2012-11-16 2013-11-15 セミカルバジド組成物、セミカルバジド組成物の製造方法、水系樹脂組成物及び複合体 WO2014077363A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014547052A JP5990277B2 (ja) 2012-11-16 2013-11-15 セミカルバジド組成物、セミカルバジド組成物の製造方法、水系樹脂組成物及び複合体
EP13855684.0A EP2921474A4 (en) 2012-11-16 2013-11-15 SEMICARBAZIDE COMPOSITION, PROCESS FOR PRODUCING SEMICARBAZIDE COMPOSITION, AQUEOUS RESIN COMPOSITION, AND COMPOSITE
US14/443,288 US10023760B2 (en) 2012-11-16 2013-11-15 Semicarbazide composition, method for producing semicarbazide composition, aqueous polymer composition and composite
CN201380059503.XA CN104812735B (zh) 2012-11-16 2013-11-15 氨基脲组合物、氨基脲组合物的制造方法、水系树脂组合物和复合体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-252603 2012-11-16
JP2012252603 2012-11-16
JP2012263202 2012-11-30
JP2012-263202 2012-11-30

Publications (1)

Publication Number Publication Date
WO2014077363A1 true WO2014077363A1 (ja) 2014-05-22

Family

ID=50731272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080908 WO2014077363A1 (ja) 2012-11-16 2013-11-15 セミカルバジド組成物、セミカルバジド組成物の製造方法、水系樹脂組成物及び複合体

Country Status (5)

Country Link
US (1) US10023760B2 (ja)
EP (1) EP2921474A4 (ja)
JP (1) JP5990277B2 (ja)
CN (1) CN104812735B (ja)
WO (1) WO2014077363A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059739A1 (ja) * 2018-09-21 2020-03-26 旭化成株式会社 複層塗膜積層体及びその製造方法
WO2020111000A1 (ja) * 2018-11-28 2020-06-04 旭化成株式会社 セミカルバジド組成物、水系塗料組成物、塗膜、物品及びセミカルバジド組成物の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108948303B (zh) * 2017-05-19 2020-10-02 中国科学院大连化学物理研究所 一种基于多孔聚酰基氨基脲类材料和制备方法与应用
US11242430B2 (en) 2019-10-17 2022-02-08 Ppg Industries Ohio, Inc. Crosslinking compositions and coatings formed therefrom
CN111060614A (zh) * 2019-12-15 2020-04-24 上海微谱化工技术服务有限公司 一种人工晶状体中浸出物的分析检测方法
US20240002581A1 (en) 2020-11-10 2024-01-04 Asahi Kasei Kabushiki Kaisha Semicarbazide composition and water-based coating composition

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222878A (en) 1975-08-13 1977-02-21 Siemens Ag Process for silicon semiconductor devices
JPS573857A (en) 1980-06-10 1982-01-09 Badische Yuka Co Ltd Aqueous dispersion composition of carbonyl group- containing copolymer
JPS573850A (en) 1980-06-10 1982-01-09 Badische Yuka Co Ltd Aqueous dispersion composition of carbonyl group- containing copolymer particle
JPS5896643A (ja) 1981-12-04 1983-06-08 Badische Yuka Co Ltd カルボニル基含有共重合体水性分散液組成物
JPH02238015A (ja) 1988-11-04 1990-09-20 Basf Lacke & Farben Ag 橋かけ可能ポリウレタンの貯蔵性のよい水性分散液
JPH04249587A (ja) 1990-12-28 1992-09-04 Kansai Paint Co Ltd 水性常乾架橋型塗料用樹脂組成物
JPH06287457A (ja) 1993-04-07 1994-10-11 Mitsubishi Yuka Badische Co Ltd 水性架橋性樹脂組成物
WO1996001252A1 (fr) 1994-07-04 1996-01-18 Asahi Kasei Kogyo Kabushiki Kaisha Derive de semicarbazide et composition de revetement le contenant
JPH08151358A (ja) 1994-11-25 1996-06-11 Asahi Chem Ind Co Ltd 水系セミカルバジド化合物の製造方法及びそれを用いた被覆組成物
JPH08245878A (ja) 1995-03-09 1996-09-24 Asahi Chem Ind Co Ltd セミカルバジド組成物及びそれを用いた被覆組成物
JPH09324095A (ja) 1996-06-04 1997-12-16 Unitika Chem Kk ポリビニルアルコール系耐水性樹脂組成物
JPH10298158A (ja) * 1997-04-24 1998-11-10 Asahi Chem Ind Co Ltd 新規なセミカルバジド系化合物及びそれを用いた被覆組成物
JP2001164126A (ja) 1999-12-03 2001-06-19 Asahi Kasei Corp 高分子水性分散物
JP3212857B2 (ja) 1995-12-21 2001-09-25 旭化成株式会社 自己架橋型重合体エマルジョン組成物
JP2005029515A (ja) * 2003-07-07 2005-02-03 Asahi Kasei Chemicals Corp セミカルバジド硬化剤及びその製法
JP2005042023A (ja) * 2003-07-23 2005-02-17 Asahi Kasei Chemicals Corp セミカルバジド硬化剤組成物
JP2005350580A (ja) 2004-06-11 2005-12-22 Asahi Kasei Chemicals Corp 水性アクリルエマルジョン組成物
JP2008504840A (ja) 2004-06-30 2008-02-21 アルニラム ファーマスーティカルズ インコーポレイテッド 非リン酸骨格結合を含むオリゴヌクレオチド

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4620053Y1 (ja) 1970-01-14 1971-07-12
JPS6011458A (ja) * 1983-06-30 1985-01-21 Showa Denko Kk セミカルバジド及びセミカルバゾン誘導体並びに除草剤
US4482738A (en) * 1983-08-01 1984-11-13 Olin Corporation Process for preparing semicarbazide hydrochloride
US5098466A (en) * 1985-08-20 1992-03-24 Sandoz Ltd. Compounds
JPH0773899B2 (ja) 1990-06-25 1995-08-09 積水化学工業株式会社 多孔性複合材料の製造方法
US5714615A (en) * 1994-02-08 1998-02-03 Georgia Tech Research Corporation Pyridinium compounds
NL1013179C2 (nl) 1999-09-30 2001-04-02 Stahl Int Bv Werkwijze voor de bereiding van een coating, een gecoat substraat, plakmiddel, film of vel, een aldus verkregen product en bekledingsmengsel ten gebruike bij de werkwijze.
JP4070378B2 (ja) * 1999-12-07 2008-04-02 富士フイルム株式会社 脂肪酸銀塩粒子の製造方法および熱現像画像記録材料
JP5424184B2 (ja) * 2007-10-11 2014-02-26 関西ペイント株式会社 水性塗料組成物

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222878A (en) 1975-08-13 1977-02-21 Siemens Ag Process for silicon semiconductor devices
JPS573857A (en) 1980-06-10 1982-01-09 Badische Yuka Co Ltd Aqueous dispersion composition of carbonyl group- containing copolymer
JPS573850A (en) 1980-06-10 1982-01-09 Badische Yuka Co Ltd Aqueous dispersion composition of carbonyl group- containing copolymer particle
JPS5896643A (ja) 1981-12-04 1983-06-08 Badische Yuka Co Ltd カルボニル基含有共重合体水性分散液組成物
JPH02238015A (ja) 1988-11-04 1990-09-20 Basf Lacke & Farben Ag 橋かけ可能ポリウレタンの貯蔵性のよい水性分散液
JPH04249587A (ja) 1990-12-28 1992-09-04 Kansai Paint Co Ltd 水性常乾架橋型塗料用樹脂組成物
JPH06287457A (ja) 1993-04-07 1994-10-11 Mitsubishi Yuka Badische Co Ltd 水性架橋性樹脂組成物
WO1996001252A1 (fr) 1994-07-04 1996-01-18 Asahi Kasei Kogyo Kabushiki Kaisha Derive de semicarbazide et composition de revetement le contenant
JPH08151358A (ja) 1994-11-25 1996-06-11 Asahi Chem Ind Co Ltd 水系セミカルバジド化合物の製造方法及びそれを用いた被覆組成物
JPH08245878A (ja) 1995-03-09 1996-09-24 Asahi Chem Ind Co Ltd セミカルバジド組成物及びそれを用いた被覆組成物
JP3212857B2 (ja) 1995-12-21 2001-09-25 旭化成株式会社 自己架橋型重合体エマルジョン組成物
JPH09324095A (ja) 1996-06-04 1997-12-16 Unitika Chem Kk ポリビニルアルコール系耐水性樹脂組成物
JPH10298158A (ja) * 1997-04-24 1998-11-10 Asahi Chem Ind Co Ltd 新規なセミカルバジド系化合物及びそれを用いた被覆組成物
JP4033518B2 (ja) 1997-04-24 2008-01-16 旭化成ケミカルズ株式会社 新規なセミカルバジド系化合物及びそれを用いた被覆組成物
JP2001164126A (ja) 1999-12-03 2001-06-19 Asahi Kasei Corp 高分子水性分散物
JP2005029515A (ja) * 2003-07-07 2005-02-03 Asahi Kasei Chemicals Corp セミカルバジド硬化剤及びその製法
JP2005042023A (ja) * 2003-07-23 2005-02-17 Asahi Kasei Chemicals Corp セミカルバジド硬化剤組成物
JP2005350580A (ja) 2004-06-11 2005-12-22 Asahi Kasei Chemicals Corp 水性アクリルエマルジョン組成物
JP2008504840A (ja) 2004-06-30 2008-02-21 アルニラム ファーマスーティカルズ インコーポレイテッド 非リン酸骨格結合を含むオリゴヌクレオチド

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Polymer Handbook", JOHN WILEY & SONS
G. OERTEL: "Polyurethane Handbook", 1985, HAUSER PUBLISHERS
See also references of EP2921474A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059739A1 (ja) * 2018-09-21 2020-03-26 旭化成株式会社 複層塗膜積層体及びその製造方法
JPWO2020059739A1 (ja) * 2018-09-21 2021-06-03 旭化成株式会社 複層塗膜積層体及びその製造方法
JP7101796B2 (ja) 2018-09-21 2022-07-15 旭化成株式会社 複層塗膜積層体及びその製造方法
WO2020111000A1 (ja) * 2018-11-28 2020-06-04 旭化成株式会社 セミカルバジド組成物、水系塗料組成物、塗膜、物品及びセミカルバジド組成物の製造方法

Also Published As

Publication number Publication date
CN104812735B (zh) 2017-03-22
JPWO2014077363A1 (ja) 2017-01-05
JP5990277B2 (ja) 2016-09-07
US10023760B2 (en) 2018-07-17
EP2921474A1 (en) 2015-09-23
EP2921474A4 (en) 2015-12-02
CN104812735A (zh) 2015-07-29
US20150291831A1 (en) 2015-10-15

Similar Documents

Publication Publication Date Title
JP5990277B2 (ja) セミカルバジド組成物、セミカルバジド組成物の製造方法、水系樹脂組成物及び複合体
AU685269B2 (en) Production of aqueous polymer compositions
EP0758364B2 (en) Production of aqueous polymer compositions
JP3194232B2 (ja) セミカルバジド誘導体及び該セミカルバジド誘導体を含有する被覆用組成物
JP3885279B2 (ja) 水性硬化型樹脂組成物および塗料、接着剤
WO2014104319A1 (ja) 水性インクジェットインク用アクリル系樹脂エマルジョン、およびそれを用いてなる水性インクジェットインク組成物
WO2020105569A1 (ja) 複合樹脂水性分散体及び複合樹脂水性分散体の製造方法
US10294386B2 (en) Acrylic-urethane composite resin particles
JP2001049078A (ja) 耐候性樹脂組成物
JP3643304B2 (ja) 水性樹脂分散体の製造方法
JPH10298158A (ja) 新規なセミカルバジド系化合物及びそれを用いた被覆組成物
JP2005042023A (ja) セミカルバジド硬化剤組成物
JPH1121461A (ja) 架橋性樹脂水性分散液組成物
JP2005029515A (ja) セミカルバジド硬化剤及びその製法
JP2007106682A (ja) ヒドラジン誘導体組成物
JP2003252847A (ja) 新規セミカルバジド誘導体及び組成物
JPH1121330A (ja) ヒドラジン誘導体組成物
JP4012603B2 (ja) ヒドラジン誘導体組成物
JP2009256492A (ja) 架橋型高分子水性分散体
JP2001139830A (ja) 高分子水性分散体
JP4315485B2 (ja) 硬化型水性下地塗料組成物
JP2006045452A (ja) 硬化型水性樹脂組成物
JP3073201B2 (ja) セミカルバジド誘導体及び該セミカルバジド誘導体を含有する組成物
JPH10231281A (ja) セミカルバジド組成物
JPWO2020032063A1 (ja) 水性分散体、その製造方法、塗料組成物及び塗膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855684

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014547052

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14443288

Country of ref document: US

Ref document number: 2013855684

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE