WO2014077340A1 - β-1,3-グルカン誘導体、及びβ-1,3-グルカン誘導体の製造方法 - Google Patents

β-1,3-グルカン誘導体、及びβ-1,3-グルカン誘導体の製造方法 Download PDF

Info

Publication number
WO2014077340A1
WO2014077340A1 PCT/JP2013/080841 JP2013080841W WO2014077340A1 WO 2014077340 A1 WO2014077340 A1 WO 2014077340A1 JP 2013080841 W JP2013080841 W JP 2013080841W WO 2014077340 A1 WO2014077340 A1 WO 2014077340A1
Authority
WO
WIPO (PCT)
Prior art keywords
derivative
group
paramylon
glucan
added
Prior art date
Application number
PCT/JP2013/080841
Other languages
English (en)
French (fr)
Inventor
芝上 基成
源 坪内
雅弘 林
Original Assignee
独立行政法人産業技術総合研究所
国立大学法人宮崎大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所, 国立大学法人宮崎大学 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2014547043A priority Critical patent/JP6029155B2/ja
Priority to US14/440,778 priority patent/US20150299339A1/en
Priority to EP13855905.9A priority patent/EP2921504B1/en
Publication of WO2014077340A1 publication Critical patent/WO2014077340A1/ja
Priority to US15/790,272 priority patent/US20180044440A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0003General processes for their isolation or fractionation, e.g. purification or extraction from biomass

Definitions

  • the present invention relates to a ⁇ -1,3-glucan derivative having a main chain of glucan composed of ⁇ -1,3-glucoside bonds and excellent in thermoplasticity, and a method for producing the same.
  • plastics bioplastics
  • moldability thermoplasticity
  • strength Development is fostering.
  • a plastic made of polylactic acid is excellent in biodegradability, but there is much room for development in terms of practical properties such as mechanical strength.
  • Cellulose on the other hand, has the highest production volume among various biomass produced on the ground, and is a central material that constitutes trees, and has high potential as a structural material. The moldability is very inferior.
  • ⁇ -1,3-glucan a kind of polysaccharide, is a natural polymer in which glucose is linked by ⁇ -1,3 bonds.
  • the only difference in molecular structure from cellulose is the mode of binding between glucose (cellulose is a ⁇ -1,4 bond).
  • ⁇ -1,3-glucan has a structure very similar to cellulose, but cellulose has a sheet structure, whereas it has a triple helix structure.
  • ⁇ -1,3-glucan is generally easier to dissolve in a solvent than cellulose.
  • ⁇ -1,3-glucan is produced mainly by algae and fungi.
  • laminaran is a linear polysaccharide containing ⁇ -1,3 bonds and ⁇ -1,6 bonds
  • schizophyllan is It is a branched polysaccharide containing ⁇ -1,3 bonds and ⁇ -1,6 bonds.
  • polysaccharides whose main chain consists of ⁇ -1,3 bonds pachyman has 3 to 6 side chains in one molecule (see, for example, Non-Patent Document 1), and lentinan is It is known that each of five main chain glucoses has two side chain glucoses (see, for example, Non-Patent Document 2).
  • Curdlan is almost linear, but it is known to have one side chain in about 200 glucose units (see, for example, Non-Patent Documents 3 and 4).
  • ⁇ -1,3-glucan called paramylon which is synthesized and accumulated by Euglena (euglena), a kind of microalgae, is linear without side chain glucose (for example, non-algae) (See Patent Documents 5 and 6.)
  • Paramylon is an energy storage substance and exists in the cells of Euglena as oval micro-sized particles (paramylon particles).
  • paramylon is also being considered for use as a raw material for plastics.
  • a method for producing a film by a solution obtained by dissolving paramylon particles in formic acid or a method obtained by casting a solution obtained by mixing a certain amount of polyvinyl alcohol into the solution has been reported (for example, patent document) 1. See Non-Patent Documents 7 and 8.)
  • Paramylon has a problem that it is inferior in moldability because it does not have thermoplasticity like cellulose.
  • the paramylon film produced by the method described in Patent Document 1 has a small elongation at break and is a hard film.
  • the present invention provides a ⁇ -1,3-glucan derivative which is a polymer having ⁇ -1,3-glucan as the main chain, has good thermoplasticity and excellent moldability, and a method for producing the same.
  • the purpose is to do.
  • the present inventors weakened the interaction between polymer chains by acylating the hydroxyl group in glucose constituting ⁇ -1,3-glucan with a fatty acid or the like. As a result, it was found that a ⁇ -1,3-glucan derivative having thermoplasticity can be produced, and the present invention has been completed.
  • R 1 in the formula (1a), a plurality of R 1 s each independently represent a hydrogen atom or —COR 2 , and n represents an integer of 1 or more.
  • R 2 Represents an aliphatic hydrocarbon group or an aromatic hydrocarbon group, provided that at least a part of R 1 is —COR 2 ). , 3-glucan derivatives.
  • [3] The ⁇ -1,3-glucan derivative of [1] or [2], wherein the number of —COR 2 per glucose unit in the ⁇ -1,3-glucan derivative is 0.1 or more.
  • [4] The ⁇ -1,3-glucan derivative of [1] or [2], wherein all R 1 in the general formula (1) or the general formula (1a) is the —COR 2 .
  • [5] The ⁇ -1 of any one of [1] to [4], wherein at least a part of R 2 in the ⁇ -1,3-glucan derivative is an aliphatic hydrocarbon group having 13 or more carbon atoms. , 3-glucan derivatives.
  • the number of —COR 21 (the R 21 represents an aliphatic hydrocarbon group having 13 or more carbon atoms) per glucose unit in the ⁇ -1,3-glucan derivative is 0.1 or more.
  • the number of —CH 2 OCOR 21 (wherein R 21 represents an aliphatic hydrocarbon group having 13 or more carbon atoms) per glucose unit in the general formula (1) or the general formula (1a) is 0.
  • a ⁇ -1,3-glucan characterized in that at least a part of hydroxyl groups in a polymer having a glucan composed of ⁇ -1,3-glucoside bonds as a main chain is acylated with a fatty acid.
  • a method for producing a derivative [12] The method for producing a ⁇ -1,3-glucan derivative according to [11], wherein the fatty acid is a long chain fatty acid having 13 or more carbon atoms. [13] At least one of the hydroxyl groups remaining in the ⁇ -1,3-glucan derivative obtained after acylating at least a part of the hydroxyl groups in the polymer with a long-chain fatty acid having 13 or more carbon atoms.
  • the ⁇ -1,3-glucan derivative according to the present invention is superior in thermoplasticity to natural ⁇ -1,3-glucan produced by Euglena and the like. Therefore, by molding the ⁇ -1,3-glucan derivative according to the present invention, a molded product can be produced more easily and more efficiently than natural ⁇ -1,3-glucan.
  • a ⁇ -1,3-glucan derivative excellent in thermoplasticity can be produced from ⁇ -1,3-glucan by the method for producing a ⁇ -1,3-glucan derivative according to the present invention.
  • the ⁇ -1,3-glucan derivative according to the present invention is a polymer in which a hydroxyl group in a polymer having ⁇ -1,3-glucan as a main chain, that is, a hydroxyl group in glucose constituting the main chain is acylated. is there. Since the hydroxyl group is acylated, the interaction due to the hydrogen bond between the main chains is weakened. Therefore, the ⁇ -1,3-glucan derivative according to the present invention is superior in thermoplasticity to the polymer before acylation. .
  • the ⁇ -1,3-glucan derivative according to the present invention has a structure represented by the following general formula (1) as a main chain.
  • a plurality of R 1 s independently represent a hydrogen atom or —COR 2
  • the R 2 represents an aliphatic hydrocarbon group or an aromatic hydrocarbon group (consisting of carbon and hydrogen). Group).
  • at least a part of R 1 is —COR 2 .
  • the aliphatic hydrocarbon group for R 2 may be linear, branched, or have a cyclic structure. In any structure, the interaction between the main chains can be weakened. When the number of carbon atoms is 2 or more, it may be an alkyl group consisting of only a carbon-carbon single bond, or an alkenyl group or alkynyl group containing one or more double bonds or triple bonds.
  • R 2 is preferably an alkyl group from the viewpoint of ease of synthesis, high degree of freedom of side chain, etc., and a linear or branched alkyl group It is more preferable that it is a linear alkyl group.
  • R 2 is a relatively bulky aliphatic hydrocarbon group, the effect of weakening the interaction between the main chains is higher than that of a small hydrocarbon group.
  • R 2 is preferably an aliphatic hydrocarbon group having 11 or more carbon atoms (hereinafter referred to as a long-chain hydrocarbon group), and more preferably a long-chain hydrocarbon group having 13 or more carbon atoms. preferable.
  • the aliphatic hydrocarbon group of R 2 is introduced by acylating the hydroxyl group of the main chain with a fatty acid, as will be described later. At this time, the fatty acid having a larger carbon number has a lower acylation efficiency. Tend to be.
  • the aliphatic hydrocarbon group of R 2 preferably has 11 to 20 carbon atoms from the viewpoint of the interaction reducing effect between the main chains and the acylation efficiency. To 20 is more preferred, 13 to 18 is more preferred, and 13 to 17 is even more preferred.
  • Examples of the aliphatic hydrocarbon group having 11 to 20 carbon atoms include undecyl group, dodecyl group (lauryl group), tridecyl group, tetradecyl group (myristyl group), pentadecyl group, hexadecyl group (palmityl group), heptadecyl group (cetyl group).
  • Octadecyl group (stearyl group), nonadecyl group, eicosyl group, undecenyl group, dodecenyl group, tridecenyl group, tetradecenyl group, pentadecenyl group, hexadecenyl group, heptadecenyl group, octadecenyl group (especially oleyl group, linol group), nonadecenyl group And an eicosenyl group.
  • a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, or a heptadecyl group is preferable, and a tridecyl group, a pentadecyl group, or a heptadecyl group is more preferable.
  • R 2 is preferably a branched hydrocarbon group.
  • a branched chain hydrocarbon group it may be a hydrocarbon group having 8 to 11 carbon atoms (hereinafter referred to as a branched chain medium chain hydrocarbon group) in addition to a long chain hydrocarbon group having 11 or more carbon atoms. preferable.
  • Heptyl 1-propyloctyl, 1-butylpentyl, 1-butylhexyl, 1-butylheptyl, 2-ethylhexyl, 2-ethylheptyl, 2-ethyloctyl, 2-ethylnonyl, 2 -Propylpentyl group, 2-propylhexyl group, 2-propylheptyl group, 2-propyloctyl group and the like.
  • R 2 is a small aliphatic hydrocarbon group, for example, even when it is an aliphatic hydrocarbon group having 1 to 5 carbon atoms (hereinafter referred to as a short-chain hydrocarbon group), the hydroxyl group of the main chain is completely Thermoplasticity is improved because the interaction between main chain hydrogen bonds is weaker than natural non-acylated ⁇ -1,3-glucan.
  • Short chain hydrocarbon groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, vinyl Group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-methyl-2-propenyl group, 2-methyl-2-propenyl group, 1-pentenyl group, Examples thereof include 2-pentenyl group, 3-pentenyl group, 4-pentenyl group, 1-methyl-2-butenyl group, 2-methyl-2-butenyl group and the like. Among them, a methyl group, an ethyl group, and a propyl group are preferable because of high acylation efficiency.
  • R 2 is an aromatic hydrocarbon group
  • examples of the aromatic hydrocarbon group include a phenyl group and a naphthyl group.
  • the aromatic hydrocarbon group one or two or more hydrogen atoms in the aromatic ring may be substituted with other functional groups.
  • the other functional group include an aliphatic hydrocarbon group having 1 to 6 carbon atoms and an alkoxy group having 1 to 6 carbon atoms.
  • the ratio of -COR 2 to the total R 1 in the ⁇ -1,3-glucan derivative (acylation rate) can be expressed by the number of -COR 2 per glucose unit (degree of substitution).
  • the maximum value of the degree of substitution in glucose constituting other ends of the main chain is theoretically “3”, and the maximum value of the degree of substitution in glucose constituting both ends is theoretically “4”.
  • the degree of substitution of the ⁇ -1,3-glucan derivative can be measured by nuclear magnetic resonance spectroscopy (NMR method) or the like.
  • the acylation rate of the ⁇ -1,3-glucan derivative according to the present invention is preferably set as appropriate in consideration of mechanical properties and moldability required for the derivative.
  • the degree of substitution of —COR 2 is preferably 0.1 or more, more preferably 0.2 or more, still more preferably 0.5 or more, and 1.0 The above is more preferable, and 2.0 or more is particularly preferable. Further, all R 1 in the general formula (1) (or general formula (1a)) may be —COR 2 .
  • a plurality of R 2 in —COR 2 present in a plurality of ⁇ -1,3-glucan derivatives according to the present invention may be the same type of aliphatic hydrocarbon group or may be different from each other.
  • the ⁇ -1,3-glucan derivative according to the present invention may have only one type of long-chain hydrocarbon group as R 2 and may have two or more types of long-chain hydrocarbon groups. It may have only one kind of short chain hydrocarbon group, and may have two or more kinds of short chain hydrocarbon groups.
  • the ⁇ -1,3-glucan derivative according to the present invention has, as R 2 , one type or two or more types of long chain hydrocarbon groups and one type or two or more types of short chain hydrocarbon groups. Preferably it is. Moreover, it is also preferable to have one type or two or more types of long-chain hydrocarbon groups and a phenyl group. It is preferable that the number of hydroxyl groups remaining in the ⁇ -1,3-glucan derivative is small because the interaction between polymers can be sufficiently reduced. However, when the degree of substitution of the long-chain hydrocarbon group is too large, the mechanical strength May be too low.
  • R 2 has a long-chain hydrocarbon group and a short-chain hydrocarbon group
  • the substitution degree of —COR 2 in which R 2 is a long-chain hydrocarbon group has a higher effect of reducing the interaction between main chains. Therefore, 0.1 or more is preferable, 0.2 or more is more preferable, 0.3 or more is further preferable, and 0.4 or more is more preferable.
  • substitution degree of -COR 2 R 2 is a short chain hydrocarbon group or a phenyl group, from the viewpoint of residual hydroxyl group amount is sufficiently reduced, preferably 0.5 or more, more preferably 1.0 or more, 1.5 or more is more preferable, and 2.5 or less is preferable and 2.2 or less is more preferable from the viewpoint that a sufficient long-chain hydrocarbon group is provided in the side chain.
  • the ⁇ -1,3-glucan derivative represented by the general formula (1) or the general formula (1a) includes a long-chain hydrocarbon group (particularly a long-chain hydrocarbon group having 13 or more carbon atoms) in the primary hydroxyl group. Is preferably introduced. Higher thermoplasticity can be obtained by sufficiently introducing the long-chain hydrocarbon group into the primary hydroxyl group.
  • the ⁇ -1,3-glucan derivative according to the present invention includes —CH 2 OCOR 21 per glucose unit in the general formula (1) or general formula (1a) (wherein R 21 is a long group having 13 or more carbon atoms). The number of chain hydrocarbon groups) is preferably 0.1 or more.
  • beta-1,3 of the total -COR 2 glucan in derivatives is preferably -COR 2 introduced into a primary hydroxyl group is 50% or more, more preferably 60% or more, 70 % Or more is more preferable.
  • the ⁇ -1,3-glucan derivative according to the present invention includes, for example, at least a part of hydroxyl groups in a polymer having a glucan as a main chain composed of ⁇ -1,3-glucoside bonds as a fatty acid or aromatic carboxylic acid. It can be produced by acylating with an acid.
  • ⁇ -1,3-glucan having no side chain such as paramylon as a raw material polymer
  • the polymer represented by the general formula (1a) can be produced.
  • ⁇ -1,3-glucan having a side chain may be used as a starting polymer. Examples of ⁇ -1,3-glucan having a side chain include pachyman, lentinan, curdlan and the like.
  • the polymer used as a raw material may be a synthetic product, but from the viewpoint of reducing environmental burden, a biological one is preferable, and a plant-derived one is more preferable.
  • a biological one is preferable, and a plant-derived one is more preferable.
  • ⁇ -1,3-glucan separated from microalgae that synthesize ⁇ -1,3-glucan in cells is used as a raw material because ⁇ -1,3-glucan can be easily separated and recovered. preferable.
  • Euglena (microalgae belonging to Euglena plant gate) is preferable.
  • Euglena is not only easy to grow and has a fast growth cycle, but also accumulates a large amount of paramylon particles in the cell as a photosynthesis product.
  • the paramylon synthesized and accumulated by Euglena is a ⁇ -1,3-glucan, usually formed by ⁇ -1,3 linkage of 700 to 800 glucoses.
  • ⁇ -1,3-glucan such as paramylon is difficult to dissolve in ordinary solvents such as water, but alkaline aqueous solution, dimethyl sulfoxide (DMSO), formic acid, DMSO-amine solvent, dimethylformamide-chloral-pyridine. It can be dissolved in a solvent, a dimethylacetamide-lithium chloride solvent, an imidazolium ionic liquid, and the like.
  • DMSO dimethyl sulfoxide
  • DMSO-amine solvent dimethylformamide-chloral-pyridine
  • a fatty acid represented by the following general formula (2) (in formula (2), R 2 is the same as in general formula (1)) can be used.
  • the said fatty acid may be a synthetic product, the thing of biological origin is preferable from the point of environmental load reduction, and the thing derived from a plant is more preferable.
  • n is an integer of 1 or more.
  • the numerical value of n is not particularly limited as long as the size of the ⁇ -1,3-glucan derivative according to the present invention is in a numerical value range sufficient to provide thermoplasticity.
  • the ⁇ -1,3-glucan derivative according to the present invention preferably has a mass average molecular weight (Mw) in the range of 5.0 ⁇ 10 4 to 1.0 ⁇ 10 6 and 10.0 ⁇ 10 4. more preferably ⁇ in the range of 1.0 ⁇ 10 6, and more preferably in the range of 15.0 ⁇ 10 4 ⁇ 1.0 ⁇ 10 6.
  • cellulose derivatives such as acylated cellulose have thermoplasticity but require a relatively large amount of plasticizer for melt spinning.
  • ⁇ -1,3-glucan derivatives produced by the method for producing ⁇ -1,3-glucan derivatives, including ⁇ -1,3-glucan derivatives according to the present invention are plasticizers. It has an excellent characteristic that it can be melt-spun even if it is not required.
  • a molded object can also be manufactured from a mixed composition with other resin, such as polyvinyl alcohol.
  • Example 1 Various paramylon derivatives obtained by acylating paramylon, which is a polysaccharide derived from the alga Euglena gracilis excellent in productivity, using fatty acids having different carbon numbers were produced, and various physical properties were compared.
  • FT-IR Fastier transform infrared spectroscopy
  • the white precipitate is washed with water (200 mL) and methanol (100 mL), and dried by heating under reduced pressure (80 ° C., overnight) to obtain a target product (paramylon derivative obtained by acetylating myristoyl group-introduced paramylon, hereinafter referred to as “derivative”. 2 (Myr-Ac) "(1.39 g) was obtained.
  • FT-IR FT-IR (cm ⁇ 1 ): 3416 (b), 2917 (s), 2850 (s), 1740 (s)
  • the load at break, the elastic modulus, and the stress at break were measured by pulling a dumbbell-shaped film at a speed of 7 mm / min at room temperature using a 50N load cell. Three independent runs were performed on one derivative and the mean and SD were determined.
  • Table 1 shows the results of substitution degree, glass transition point (Tg), breaking point load, elastic modulus, and breaking point stress of each derivative.
  • the upper part of the column “Degree of substitution” in Table 1 shows the degree of substitution of the myristoyl group, palmitoyl group or stearoyl group of each derivative, and the lower part shows the degree of substitution of the acetyl group.
  • the degree of substitution was calculated from the integral value of 1 H-NMR.
  • derivatives with a higher degree of substitution tended to have smaller breaking point load, elastic modulus, and breaking point stress. Further, when comparing derivatives substituted with the same kind of acyl group, derivatives having a smaller substitution degree of the long-chain acyl group tended to have higher elastic modulus and higher mechanical strength.
  • Paramylon itself is not thermoplastic.
  • the film obtained by dissolving paramylon in a 1N sodium hydroxide aqueous solution and being brittle was brittle and crisp, and could not be measured by the universal testing machine.
  • the derivative 2 (Myr-Ac) and the like have thermoplasticity because they have a glass transition point and an elastic modulus can be measured. From these results, it is clear that a derivative having thermoplasticity can be obtained by acylating at least a part of hydroxyl groups in a polymer having ⁇ -1,3-glucan as a main chain such as paramylon.
  • Example 2 Various paramylon derivatives obtained by acylating Euglena gracilis-derived paramylon using fatty acids having different carbon numbers are produced, and various physical properties are derived from polylactic acid and polyamide 11 which are mass-produced as bioplastics, and petroleum-derived for durable products. Comparison with ABS resin.
  • Polylactic acid (PLA) product name: TE-4000
  • Polyamide 11 Poly 11-aminoundecanoic acid: PA11
  • Product name: Rilson BMFO is available from Arkema Japan Ltd.
  • (Japan) obtained ABS resin (product name: GA-701) from Nippon A & L Co. (Japan)
  • the number average molecular weight ( MN ) (standard polystyrene conversion) was measured on condition of the following by GPC method.
  • GPC device LC-10AVP system (Shimadzu Co., Japan), Column used: Shim Pack GPC 80MC (Shimadzu Co., Japan), Eluent: chloroform, Flow rate: 1.0 mL / min, Standard sample: Polystyrene (Product name: Shodex (registered trademark) SM-105, manufactured by Showa Denko KK).
  • melt flow rate MFR
  • a capillary column product name: CFT-500D, Shimadzu Co., Japan
  • thermogravimetric analysis Using a thermogravimetric analyzer (product name: S2 EXSTAR 6000, Seiko Instrument Inc., Japan), the weight loss rate was measured when the temperature was increased from 25 ° C. to 500 ° C. in a nitrogen stream at 10 ° C./min.
  • Izod impact strength was measured using an impact strength measuring device (product name: Universal Impact Tester C1, Toyo Seiki CO., Japan).
  • the test piece had a thickness of 2.4 mm with a notch, a length of 80 mm, and a width of 12.4 mm.
  • Derivative 20 (Myr-Ac), Derivative 22 (Pam-Ac) and Derivative 24 (Ste-Ac) are all acetylcellulose (CDA) to which a plasticizer (TEC) is added, conventional bioplastics (PLA, PA11), and excellent thermoplasticity as well as petroleum raw material ABS resin for durable products.
  • TEC plasticizer
  • Tg heat resistance
  • Tg thermal decomposition resistance
  • 5% weight loss temperature was slightly lower than that of conventional bioplastics, but was sufficient.
  • the water resistance (water absorption rate) was lower than that of conventional plastics, but was superior to that of plasticizer-added acetylcellulose.
  • the bending strength, elastic modulus, and impact resistance were all lower than those of conventional bioplastics and the like.
  • Example 3 Various paramylon derivatives obtained by acylating paramylon derived from Euglena gracilis with fatty acids having different carbon numbers were produced, and various physical properties were examined.
  • the solution was stirred and reacted in a nitrogen atmosphere while being heated to 120 ° C. After 3 hours, methanol (2.0 L) was added to the reaction solution in the three-necked flask to cause white precipitation. The supernatant was removed from the reaction solution by centrifugation, and white precipitate was obtained. The white precipitate was washed with a methanol / chloroform (2/1) mixed solvent (900 mL), separated by suction filtration, air-dried overnight, and further heat-dried under reduced pressure (70 ° C., 2 hours). The product (myristoyl group-introduced paramylon, hereinafter, “derivative T1 (Myr)”) was obtained.
  • the target product (a paramylon derivative obtained by acetylating palmitoyl group-introduced paramylon, hereinafter, “derivative T6 (Pam-Ac)”) (14.7 g) was obtained.
  • the target product (a paramylon derivative obtained by acetylating a palmitoyl group-introduced paramylon, hereinafter referred to as “derivative T8 (Pam-Ac)”) (13.5 g) was obtained.
  • the degree of substitution, number average molecular weight (MN), heat resistance (Tg), heat decomposition resistance (5% weight loss temperature), thermoplasticity (MFR), and water resistance (water absorption rate) of each derivative and the like were measured. Except for the number average molecular weight (MN), the measurement was performed in the same manner as in Example 2.
  • melt extrusion spinning apparatus product name: IMC-1149, manufactured by Imoto Seisakusho Co., Ltd.
  • the temperature of the heating furnace and the yarn forming die was set to 200 to 250 ° C.
  • extrusion was performed at an extrusion speed of 0.2 mm / second
  • a commercially available winding device winding device (standard A), product name: IMC- 1128-A, manufactured by Imoto Seisakusho Co., Ltd. was used for spinning.
  • winding device standard A
  • IMC- 1128-A manufactured by Imoto Seisakusho Co., Ltd.
  • Example 4 Various paramylon derivatives in which a long chain hydrocarbon group and a propyl group or a phenyl group were introduced into paramylon derived from Euglena gracilis were produced, and the thermoplasticity was examined.
  • Production Example 62 Production of Lauroyl Group / Benzoyl Group-Introduced Paramylon Into a 2 L three-necked flask, put the derivative U3 (Lau) (1.0 g), lithium chloride (593 mg), and DMAc (50 mL) obtained in Production Example 61. The mixture was stirred at 120 ° C. in a nitrogen atmosphere. About 1 hour after the start of stirring, the solution in the three-necked flask became transparent. After the temperature of the clear solution was returned to room temperature, DMAc (100 mL), pyridine (15 mL), and benzoyl chloride (5.4 mL) were added dropwise, and then the solution was heated to 120 ° C. with nitrogen.
  • the reaction was stirred under an atmosphere. After 3 hours, methanol (300 mL) and distilled water (300 mL) were added to the reaction solution in the three-necked flask to cause white precipitation. The supernatant was removed from the reaction solution by centrifugation, and white precipitate was obtained. The white precipitate was washed with methanol (160 mL), filtered by suction filtration, air-dried overnight, and further heated and dried under reduced pressure (90 ° C., 4 hours) to benzoylate the target product (lauroyl group-introduced paramylon). Paramylon derivative, “derivative U4 (Lau-Bz)”) (1.5 g) was obtained.
  • Production Example 68 Production of Lauroyl Group / Propanoyl Group-Introduced Paramylon Into a 2 L eggplant flask, the derivative U9 (Lau) (11.6 g) obtained in Production Example 67, lithium chloride (6.5 g), and DMAc (1.5 L) ) And stirred at 120 ° C. for 1 hour under a nitrogen atmosphere. After stirring, the temperature of the solution in a uniform state was cooled to 70 ° C., and then pyridine (168 mL) and propionic anhydride (360 mL) were added to the solution and added under a nitrogen atmosphere for 7 hours and subsequently at room temperature for 15 hours. The reaction was stirred for an hour.
  • thermoplasticity test with hot plate Each derivative was placed on a hot plate, the temperature was gradually increased from room temperature, and the temperature showing thermoplasticity (thermoplastic expression temperature (° C.)) was examined.
  • the measurement results are shown in Table 8 together with the charging ratio at the time of production ([long chain fatty acid chloride] / [glucose unit]). As a result, all derivatives showed thermoplasticity at 200 ° C. or higher.
  • FT-IR FT-IR (cm ⁇ 1 ): 2920, 2857, 1731, 1455, 1361, 1162, 1047, 1031.
  • FT-IR cm ⁇ 1
  • FT-IR cm ⁇ 1
  • FT-IR cm ⁇ 1
  • the degree of substitution of each derivative was measured in the same manner as in Example 2. Further, the thermoplastic development temperature (° C.) of each derivative was measured by the same method as in Example 4. The measurement results are shown in Table 9 together with the charging ratio at the time of production ([long chain fatty acid chloride] / [glucose unit]). In the “Substitution degree” column of Table 9, “ ⁇ ” indicates unmeasured. In the “thermoplastic expression temperature” column of Table 9, “ ⁇ ” indicates that the thermoplasticity was not expressed by heating up to 300 ° C.
  • the derivative produced so that the charging ratio was in the range of 2.5 to 3.0 exhibited thermoplasticity at 200 ° C. or higher.
  • the prepared derivative tended not to exhibit thermoplasticity even when the charging ratio was too small or too large.
  • the ⁇ -1,3-glucan derivative according to the present invention is suitable as a plastic because it is excellent in strength and thermoplasticity.
  • ⁇ -1,3-glucan derivatives synthesized from plant-derived ⁇ -1,3-glucan such as paramylon are plant plastics with low environmental impact, and are excellent in biodegradability by molding this. Can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本発明は、β-1,3-グルカンを主鎖とする高分子であって、熱可塑性を有し、成形性に優れたβ-1,3-グルカン誘導体、及びその製造方法を提供することを目的とする。すなわち、本発明は、一般式(1)(式(1)中、Rは、水素原子、又は-CORを表し、nは、1以上の整数を表す。前記Rは、脂肪族炭化水素基又は芳香族炭化水素基を表す。式(1)中、複数存在するRは、互いに同一であってもよく、異なっていてもよいが、少なくとも一部は、-CORである。)で表される構造を主鎖として有することを特徴とするβ-1,3-グルカン誘導体を提供する。

Description

β-1,3-グルカン誘導体、及びβ-1,3-グルカン誘導体の製造方法
 本発明は、β-1,3-グルコシド結合により構成されるグルカンを主鎖とし、熱可塑性に優れたβ-1,3-グルカン誘導体、及びその製造方法に関する。
 本願は、2012年11月14日に、日本に出願された特願2012-250569号に基づき優先権を主張し、その内容をここに援用する。
 近年、環境負荷低減の点から、植物由来の成分を原料とするプラスチック(バイオプラスチック)が注目されており、生分解性、成形性(熱可塑性)、強度等の要求される特性を備えたプラスチックの開発が盛んである。例えば、ポリ乳酸からなるプラスチックは、生分解性に優れているものの、機械的強度などの実用特性については開発の余地が大きい。一方で、セルロースは、地上で生産される様々なバイオマスの中で最も生産量が多い上に、樹木を構成する中心的な素材であり、構造材料としての高いポテンシャルを持っているが、熱可塑性を有しておらず、成形性が大いに劣る。天然のセルロースが強固にその構造を保つ大きな要因はセルロース鎖間の分子間水素結合であり、この分子間水素結合を弱めることが熱可塑性の獲得につながると考えられている。そこで、長鎖アルキル基を酢酸セルロースに導入するなどによって、分子間水素結合が弱く、熱可塑性を有するセルロース誘導体が開発されている。
 多糖類の一種であるβ-1,3-グルカンは、グルコースがβ-1,3結合で連結された天然高分子である。セルロースとの分子構造の違いは、グルコース間の結合様式(セルロースはβ-1,4結合)だけである。β-1,3-グルカンは、セルロースと非常によく似た構造であるが、セルロースはシート構造をとるのに対して、三重らせん構造をとる。また、β-1,3-グルカンは、一般的にセルロースに比べて溶媒に溶解しやすいという特徴がある。
 β-1,3-グルカンは、主に藻類や菌類などにより生産される。藻類等により生産されるβ-1,3-グルカンのうち、例えばラミナラン (laminaran)はβ-1,3結合とβ-1,6結合を含む直鎖状の多糖であり、シゾフィラン(schizophyllan)はβ-1,3結合とβ-1,6結合を含む枝分かれ状の多糖である。主鎖がβ-1,3結合からなる多糖のうち、パキマン(pachyman)は1分子に3~6個の側鎖を持つことが(例えば、非特許文献1参照。)、レンチナン(lentinan)は主鎖のグルコース5個につき2つの側鎖グルコースを持つことが(例えば、非特許文献2参照。)、それぞれ知られている。また、カードラン(curdlan)はほぼ直鎖状ではあるが、約200のグルコース単位に1つの側鎖を持つことが知られている(例えば、非特許文献3及び4参照。)。これらに対して、微細藻類の一種であるユーグレナ(ミドリムシ)が合成・蓄積するパラミロン(paramylon)と呼ばれるβ-1,3-グルカンは、側鎖グルコースを持たない直鎖状である(例えば、非特許文献5及び6参照。)。パラミロンは、エネルギー貯蔵物質であり、ユーグレナの細胞内に卵形のマイクロサイズの粒子(パラミロン粒子)として存在している。
 セルロースと同様に、パラミロンもプラスチック原料としての使用が検討されている。例えば、パラミロン粒子をギ酸に溶解することで得られる溶液や、当該溶液にポリビニルアルコールを一定量混合して得られる溶液をキャストする方法によりフィルムを製造する方法が報告されている(例えば、特許文献1、非特許文献7及び8参照。)。
特開2004-331837号公報
ホフマン(Hoffmann)、他2名、カルボハイドレート・リサーチ(Carbohydrate Research)、1971年、第20巻、第185~188ページ。 吉積智司、他2名、「甘味の系譜とその科学」、株式会社光琳(発行)、1986年、第358ページ。 サイトウ、他2名、アグリカルチュラル・アンド・バイオロジカル・ケミストリー(Agricultural and Biological Chemistry)、1968年、第32巻、第1261~1269ページ。 ハラダ、他2名、アチーブ・オブ・バイオケミストリー・アンド・バイオフィジックス(Archives of Biochemistry and Biophysics)、1968年、第124巻、第292~298ページ。 コバヤシ、他4名、カルボハイドレート・ポリマーズ(Carbohydrate Polymers)、2010年、第80巻、第491~497ページ。 クラーク(Clarke)、他1名、バイオケミカ・エ・バイオフィジカ・アクタ(Biochimica et Biophysica Acta)、1960年、第44巻、第161~163ページ。 カワハラ、他1名、ジャーナル・オブ・アプライド・ポリマー・サイエンス(Journal of Applied Polymer Science)、2006年、第102巻、第3495~3497ページ。 小金丸昭洋、他1名、繊維学会誌、2003年、第59巻、第11号、第457~460ページ。
 パラミロンは、セルロースと同様に熱可塑性を有していないため、成形性に劣るという問題がある。実際に、特許文献1に記載の方法で製造されたパラミロンフィルムは、破断伸びが小さく、硬いフィルムである。
 本発明は、β-1,3-グルカンを主鎖とする高分子であって、良好な熱可塑性を有し、成形性に優れたβ-1,3-グルカン誘導体、及びその製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、β-1,3-グルカンを構成するグルコース中の水酸基を脂肪酸等によりアシル化することによって、高分子鎖間の相互作用が弱められる結果、熱可塑性を有するβ-1,3-グルカン誘導体を製造し得ることを見出し、本発明を完成するに至った。
 即ち、本発明に係るβ-1,3-グルカン誘導体、成形体、β-1,3-グルカン誘導体の製造方法、及び成形体の製造方法は、下記[1]~[16]である。
[1]下記一般式(1)(式(1)中、複数存在するRはそれぞれ独立して、水素原子、又は-CORを表し、nは、1以上の整数を表す。前記Rは、脂肪族炭化水素基又は芳香族炭化水素基を表す。ただし、Rの少なくとも一部は、-CORである。)で表される構造を主鎖として有することを特徴とするβ-1,3-グルカン誘導体。
Figure JPOXMLDOC01-appb-C000003
[2]下記一般式(1a)(式(1a)中、複数存在するRはそれぞれ独立して、水素原子、又は-CORを表し、nは、1以上の整数を表す。前記Rは、脂肪族炭化水素基又は芳香族炭化水素基を表す。ただし、Rの少なくとも一部は、-CORである。)で表される高分子である、前記[1]のβ-1,3-グルカン誘導体。
Figure JPOXMLDOC01-appb-C000004
[3]前記β-1,3-グルカン誘導体中のグルコース単位当たりの-CORの数が0.1以上である、前記[1]又は[2]のβ-1,3-グルカン誘導体。
[4]前記一般式(1)又は一般式(1a)中の全てのRが、前記-CORである、前記[1]又は[2]のβ-1,3-グルカン誘導体。
[5]前記β-1,3-グルカン誘導体中の少なくとも一部のRが、炭素数13以上の脂肪族炭化水素基である、前記[1]~[4]のいずれかのβ-1,3-グルカン誘導体。
[6]前記β-1,3-グルカン誘導体中のグルコース単位当たりの-COR21(前記R21は、炭素数13以上の脂肪族炭化水素基を表す。)の数が0.1以上である、前記[1]~[4]のいずれかのβ-1,3-グルカン誘導体。
[7]前記一般式(1)又は一般式(1a)中のグルコース単位当たりの-CHOCOR21(前記R21は、炭素数13以上の脂肪族炭化水素基を表す。)の数が0.1以上である、前記[1]~[4]のいずれかのβ-1,3-グルカン誘導体。
[8]前記β-1,3-グルカン誘導体中の少なくとも一部のRが、炭素数1~5の短鎖脂肪族炭化水素基又はフェニル基である、前記[1]~[7]のいずれかのβ-1,3-グルカン誘導体。
[9]前記[1]~[8]のいずれかのβ-1,3-グルカン誘導体を成形してなることを特徴とする成形体。
[10]前記[1]~[8]のいずれかのβ-1,3-グルカン誘導体を成形して成形体を製造することを特徴とする成形体の製造方法。
[11]β-1,3-グルコシド結合により構成されるグルカンを主鎖とする高分子中の水酸基の少なくとも一部を、脂肪酸でアシル化することを特徴とする、β-1,3-グルカン誘導体の製造方法。
[12]前記脂肪酸が、炭素数13以上の長鎖脂肪酸である、前記[11]のβ-1,3-グルカン誘導体の製造方法。
[13]前記高分子中の水酸基の少なくとも一部を、炭素数13以上の長鎖脂肪酸でアシル化した後、得られたβ-1,3-グルカン誘導体中に残存している水酸基の少なくとも一部を、炭素数1~5の短鎖脂肪酸又は安息香酸でアシル化する、前記[11]のβ-1,3-グルカン誘導体の製造方法。
[14]前記高分子が、細胞内でβ-1,3-グルカンを合成する微細藻類から分離したパラミロンである、前記[11]~[13]のいずれかのβ-1,3-グルカン誘導体の製造方法。
[15]前記微細藻類が、ユーグレナ植物門に属する微細藻類である、前記[14]のβ-1,3-グルカン誘導体の製造方法。
[16]前記脂肪酸が、植物由来のワックスエステルの加水分解により得られた、前記[11]~[15]のいずれかのβ-1,3-グルカン誘導体の製造方法。
 本発明に係るβ-1,3-グルカン誘導体は、ユーグレナ等が産生する天然のβ-1,3-グルカンよりも熱可塑性に優れている。このため、本発明に係るβ-1,3-グルカン誘導体を成形することにより、天然のβ-1,3-グルカンよりも簡便かつ効率よく成形体を製造することができる。
 また、本発明に係るβ-1,3-グルカン誘導体の製造方法により、β-1,3-グルカンから熱可塑性に優れたβ-1,3-グルカン誘導体を製造することができる。
[β-1,3-グルカン誘導体]
 本発明に係るβ-1,3-グルカン誘導体は、β-1,3-グルカンを主鎖とする高分子中の水酸基、すなわち主鎖を構成するグルコース中の水酸基がアシル化された高分子である。水酸基がアシル化されることにより、主鎖間水素結合による相互作用が弱められるため、本発明に係るβ-1,3-グルカン誘導体は、アシル化前の高分子よりも熱可塑性に優れている。
 具体的には、本発明に係るβ-1,3-グルカン誘導体は、下記一般式(1)で表される構造を主鎖として有することを特徴とする。一般式(1)中、複数存在するRはそれぞれ独立して、水素原子、又は-CORを表し、前記Rは、脂肪族炭化水素基又は芳香族炭化水素基(炭素と水素からなる基)を表す。ただし、Rの少なくとも一部は、-CORである。
Figure JPOXMLDOC01-appb-C000005
 Rの脂肪族炭化水素基は、直鎖状であってもよく、分岐鎖状であってもよく、環状構造を有していてもよい。いずれの構造であっても、主鎖間の相互作用を弱めることができる。また、炭素数が2以上の場合、炭素-炭素単結合のみからなるアルキル基であってもよく、二重結合又は三重結合を1又は2以上含むアルケニル基やアルキニル基であってもよい。一般式(1)で表される構造としては、合成の容易さ、側鎖の自由度の高さ等から、Rはアルキル基であることが好ましく、直鎖状又は分岐鎖状のアルキル基であることがより好ましく、直鎖状のアルキル基であることがさらに好ましい。
 Rが比較的嵩高い脂肪族炭化水素基であるほうが、小さな炭化水素基よりも、主鎖間の相互作用を弱める効果が高い。このため、Rとしては、炭素数が11以上の脂肪族炭化水素基(以下、長鎖炭化水素基)であることが好ましく、炭素数が13以上の長鎖炭化水素基であることがより好ましい。一方で、Rの脂肪族炭化水素基は、後述するように、主鎖の水酸基を脂肪酸によってアシル化することにより導入されるが、この際、炭素数が大きい脂肪酸ほど、アシル化効率が低くなる傾向にある。そこで、一般式(1)で表される構造としては、主鎖間の相互作用低減効果とアシル化効率の点から、Rの脂肪族炭化水素基の炭素数は11~20が好ましく、13~20がより好ましく、13~18がさらに好ましく、13~17がよりさらに好ましい。炭素数が11~20の脂肪族炭化水素基としては、ウンデシル基、ドデシル基(ラウリル基)、トリデシル基、テトラデシル基(ミリスチル基)、ペンタデシル基、ヘキサデシル基(パルミチル基)、ヘプタデシル基(セチル基)、オクタデシル基(ステアリル基)、ノナデシル基、エイコシル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基(特に、オレイル基、リノール基)、ノナデセニル基、エイコセニル基等が挙げられる。中でも、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、又はヘプタデシル基が好ましく、トリデシル基、ペンタデシル基、又はヘプタデシル基がより好ましい。
 一般的に、直鎖状の炭化水素基よりも分岐鎖状の炭化水素基のほうが、同じ炭素数の場合には嵩高くなる傾向にある。そこで、Rとしては、分岐鎖状の炭化水素基であることも好ましい。分岐鎖状の炭化水素基の場合、炭素数は11以上の長鎖炭化水素基以外にも、炭素数8~11の炭化水素基(以下、分岐鎖状中鎖炭化水素基)であることも好ましい。分岐鎖状中鎖炭化水素基としては、例えば、1-エチルヘキシル基、1-エチルヘプチル基、1-エチルオクチル基、1-エチルノニル基、1-プロピルペンチル基、1-プロピルヘキシル基、1-プロピルヘプチル基、1-プロピルオクチル基、1-ブチルペンチル基、1-ブチルヘキシル基、1-ブチルヘプチル基、2-エチルヘキシル基、2-エチルヘプチル基、2-エチルオクチル基、2-エチルノニル基、2-プロピルペンチル基、2-プロピルヘキシル基、2-プロピルヘプチル基、2-プロピルオクチル基等が挙げられる。
 Rが小さな脂肪族炭化水素基である場合、例えば、炭素数が1~5の脂肪族炭化水素基(以下、短鎖炭化水素基)である場合であっても、主鎖の水酸基が全くアシル化されていない天然のβ-1,3-グルカンよりも、主鎖間水素結合による相互作用が弱くなるため、熱可塑性は向上する。短鎖炭化水素基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-メチル-2-プロペニル基、2-メチル-2-プロペニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、1-メチル-2-ブテニル基、2-メチル-2-ブテニル基等が挙げられる。中でも、アシル化効率の高さから、メチル基、エチル基、プロピル基が好ましい。
 Rが芳香族炭化水素基の場合、該芳香族炭化水素基としては、例えば、フェニル基、ナフチル基等が挙げられる。該芳香族炭化水素基としては、芳香環中の1又は2以上の水素原子が他の官能基に置換されていてもよい。該他の官能基としては、例えば、炭素数1~6の脂肪族炭化水素基、炭素数1~6のアルコキシ基等が挙げられる。
 本発明に係るβ-1,3-グルカン誘導体としては、主鎖の少なくとも一部が、好ましくは主鎖全体の80%以上が前記一般式(1)で表される構造からなる高分子であればよく、-COR以外の側鎖を有していてもよい。側鎖を有するβ-1,3-グルカン誘導体としては、例えば、パキマンやレンチナン、カードラン等のグルコース単位中の水酸基の少なくとも一部が-OCORに置換されている高分子が挙げられる。
 本発明に係るβ-1,3-グルカン誘導体としては、主鎖が前記一般式(1)で表される構造からなる高分子、すなわち、下記一般式(1a)で表される高分子であることが好ましい。一般式(1a)中、R及びnは、前記一般式(1)と同様である。当該高分子としては、例えば、パラミロン等の直鎖状のβ-1,3-グルカンのグルコース単位中の水酸基の少なくとも一部が-OCORに置換されている高分子が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 β-1,3-グルカン誘導体中の全Rに対する-CORである割合(アシル化率)は、グルコース単位当たりの-CORの数(置換度)で表すことができる。主鎖の両末端以外を構成するグルコースにおける置換度の最大値は理論上「3」であり、両末端を構成するグルコースにおける置換度の最大値は理論上「4」である。β-1,3-グルカン誘導体の置換度は、核磁気共鳴分光法(NMR法)等により測定することができる。例えば、H-NMRにより、グルコース単位中の水酸基を構成する水素原子のシグナルと-CORを構成する水素原子のシグナルとを区別して検出し、それぞれの積分値に基づいて置換度を求めることができる。
 β-1,3-グルカン誘導体においてはアシル化率が高くなるほど、主鎖間の相互作用低減効果が高くなり、熱可塑性は向上する。また、アシル化により水酸基が減少するため、耐水性も向上する。一方で、アシル化率が高くなるにつれ、得られた成形体の機械的強度は低下する傾向にある。このため、本発明に係るβ-1,3-グルカン誘導体のアシル化率は、当該誘導体に要求される機械特性と成形性とを考慮して適宜設定することが好ましい。例えば、本発明に係るβ-1,3-グルカン誘導体としては、-CORの置換度は0.1以上が好ましく、0.2以上がより好ましく、0.5以上がさらに好ましく、1.0以上がよりさらに好ましく、2.0以上が特に好ましい。また、前記一般式(1)(又は一般式(1a))中の全てのRが-CORであってもよい。
 本発明に係るβ-1,3-グルカン誘導体中に複数存在する-CORにおけるRは、全て同種の脂肪族炭化水素基であってもよく、互いに異なっていてもよい。例えば、本発明に係るβ-1,3-グルカン誘導体は、Rとして、1種類の長鎖炭化水素基のみを有していてもよく、2種類以上の長鎖炭化水素基を有していてもよく、1種類の短鎖炭化水素基のみを有していてもよく、2種類以上の短鎖炭化水素基を有していてもよい。
 特に、本発明に係るβ-1,3-グルカン誘導体は、Rとして、1種類又は2種類以上の長鎖炭化水素基と、1種類又は2種類以上の短鎖炭化水素基を有していることが好ましい。また、1種類又は2種類以上の長鎖炭化水素基と、フェニル基を有していることも好ましい。β-1,3-グルカン誘導体に残存する水酸基が少ないほど、高分子間相互作用を充分に低減させることができ好ましいが、長鎖炭化水素基の置換度が大きすぎる場合には、機械的強度が低くなりすぎるおそれがある。β-1,3-グルカン中の水酸基を、Rが長鎖炭化水素基である-CORと、Rが短鎖炭化水素基又はフェニル基である-CORの両方でバランスよく置換することにより、トレードオフの関係にある熱可塑性(成形性)と機械的強度の両方に優れたβ-1,3-グルカン誘導体を得やすくなる。
 Rとして、長鎖炭化水素基と短鎖炭化水素基を有する場合、Rが長鎖炭化水素基である-CORの置換度は、より高い主鎖間相互作用低減効果が得られる点から、0.1以上が好ましく、0.2以上がより好ましく、0.3以上がさらに好ましく、0.4以上がよりさらに好ましい。また、Rが短鎖炭化水素基又はフェニル基である-CORの置換度は、残存水酸基量が充分に低減される点から、0.5以上が好ましく、1.0以上がより好ましく、1.5以上がさらに好ましく、側鎖に充分な長鎖炭化水素基を備えられる点から、2.5以下が好ましく、2.2以下がより好ましい。
 前記一般式(1)又は一般式(1a)で表されるβ-1,3-グルカン誘導体としては、1級水酸基に長鎖炭化水素基(特に、炭素数13以上の長鎖炭化水素基)が導入されていることが好ましい。1級水酸基に長鎖炭化水素基が充分に導入されていることにより、より高い熱可塑性が得られる。本発明に係るβ-1,3-グルカン誘導体としては、前記一般式(1)又は一般式(1a)中のグルコース単位当たりの-CHOCOR21(前記R21は、炭素数13以上の長鎖炭化水素基を表す。)の数が0.1以上であることが好ましい。また、β-1,3-グルカン誘導体中の全-CORのうち、1級水酸基に導入された-CORが50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがさらに好ましい。
[β-1,3-グルカン誘導体の製造方法]
 本発明に係るβ-1,3-グルカン誘導体は、例えば、β-1,3-グルコシド結合により構成されるグルカンを主鎖とする高分子中の水酸基の少なくとも一部を、脂肪酸又は芳香族カルボン酸でアシル化することにより製造することができる。原料となる高分子として、パラミロン等の側鎖を有さないβ-1,3-グルカンを用いることにより、前記一般式(1a)で表される高分子を製造することができる。側鎖を有するβ-1,3-グルカンを原料の高分子として用いてもよい。側鎖を有するβ-1,3-グルカンとしては、パキマン、レンチナン、カードラン等が挙げられる。
 原料として用いる高分子は、合成品であってもよいが、環境負荷低減の点から、生物由来のものが好ましく、植物由来のものがより好ましい。中でも、β-1,3-グルカンの分離回収が容易であることから、細胞内でβ-1,3-グルカンを合成する微細藻類から分離したβ-1,3-グルカンを原料として用いることが好ましい。
 前記微細藻類としては、ユーグレナ(ユーグレナ植物門に属する微細藻類)が好ましい。ユーグレナは、栽培が容易であり、成長サイクルも早いことに加えて、光合成産物としてパラミロン粒子を細胞内に大量に蓄積するためである。ユーグレナが合成・蓄積するパラミロンは、通常700~800個のグルコースがβ-1,3結合してなるβ-1,3-グルカンである。
 パラミロン等のβ-1,3-グルカンの微細藻類からの分離は、常法により行うことができる。また、パラミロン等のβ-1,3-グルカンは、水等の通常の溶媒には溶解し難いが、アルカリ水溶液、ジメチルスルホキシド(DMSO)、ギ酸、DMSO-アミン系溶媒、ジメチルホルムアミド-クロラール-ピリジン系溶媒、ジメチルアセトアミド-リチウムクロライド系溶媒、イミダゾリウム系イオン液体などに溶解可能である。
 アシル化には、下記一般式(2)(式(2)中、Rは、一般式(1)と同様である。)で表される脂肪酸を用いることができる。当該脂肪酸は、合成品であってもよいが、環境負荷低減の点から、生物由来のものが好ましく、植物由来のものがより好ましい。
Figure JPOXMLDOC01-appb-C000007
 特に、ユーグレナから分離回収されたパラミロン中の水酸基の少なくとも一部を、ユーグレナが産生するワックスエステルの加水分解により得られた脂肪酸でアシル化することにより、植物原料の含有量の多い植物性プラスチック(β-1,3-グルカン誘導体)を製造することができる。
 アシル化反応は、例えば、パラミロンを溶解させた溶液中で、塩化リチウム等のルイス酸やピリジン等の塩基の存在下、アシル化剤として前記脂肪酸の塩化物、無水物、又はビニル化合物を反応させることにより行う。反応温度、反応時間等の条件は、使用するアシル化剤の種類、所望の置換度等を考慮して適宜設定される。
 脂肪酸の塩化物としては、例えば、酢酸クロリド、ブチル酸クロリド、ドデカン酸クロリド(ラウリン酸クロリド)、テトラデカン酸クロリド(ミリスチン酸クロリド)、ヘキサデカン酸クロリド(パルミチン酸クロリド)、オクタデカン酸クロリド(ステアリン酸クロリド)、ヘキサデセン酸クロリド、オクタデセン酸クロリド(オレイン酸クロリド)、オクタデカジエン酸クロリド(リノール酸クロリド)、オクタデカトリエン酸クロリド(リノレン酸クロリド)等が挙げられる。脂肪酸の無水物としては、無水酢酸、無水プロピオン酸、無水ブチル酸等が挙げられる。脂肪酸のビニル化合物としては、酢酸ビニル、プロピオン酸ビニル、ドデカン酸ビニル(ラウリン酸ビニル)、テトラデカン酸ビニル(ミリスチン酸ビニル)、ヘキサデカン酸ビニル(パルミチン酸ビニル)、オクタデカン酸ビニル(ステアリン酸ビニル)、ヘキサデセン酸ビニル、オクタデセン酸ビニル(オレイン酸ビニル)、オクタデカジエン酸ビニル(リノール酸ビニル)、オクタデカトリエン酸ビニル(リノレン酸ビニル)等が挙げられる。
 Rとして、1種類又は2種類以上の長鎖炭化水素基と、1種類若しくは2種類以上の短鎖炭化水素基又はフェニル基を有しているβ-1,3-グルカン誘導体を合成する場合には、原料となるパラミロン等の高分子に対して、まず、水酸基の少なくとも一部を長鎖炭化水素基でアシル化した後、得られたβ-1,3-グルカン誘導体中に残存している水酸基の少なくとも一部を短鎖脂肪酸又は安息香酸でアシル化する方法により合成することが好ましい。高分子中の水酸基に対して、先に長鎖炭化水素基を導入することにより、充分な量の1級水酸基へ長鎖炭化水素基を導入しやすい。
 Rとして、長鎖炭化水素基のみを有しているβ-1,3-グルカン誘導体を合成する場合には、長鎖脂肪酸の塩化物と原料の高分子中のグルコースユニットの仕込み比([長鎖脂肪酸の塩化物(モル)]/[高分子中のグルコースユニット(モル)])が1.5~4.0とすることが好ましく、2.0~3.5とすることがより好ましく、2.5~3.0とすることがさらに好ましい。当該仕込み比を前記範囲内にすることにより、熱可塑性を有するとともに、射出成形機等を用いた成形が可能な程度の適度な粘性を有するβ-1,3-グルカン誘導体を合成し易くなる。
 また、一般式(1)中、nは1以上の整数である。nの数値は、本発明に係るβ-1,3-グルカン誘導体の大きさが熱可塑性を備えるに充分な大きさとなる数値範囲であれば特に限定されるものではない。本発明に係るβ-1,3-グルカン誘導体としては、質量平均分子量(Mw)が5.0×10~1.0×10の範囲内であることが好ましく、10.0×10~1.0×10の範囲内であることがより好ましく、15.0×10~1.0×10の範囲内であることがさらに好ましい。
[成形体及びその製造方法]
 本発明に係るβ-1,3-グルカン誘導体をはじめとする、前記β-1,3-グルカン誘導体の製造方法により製造されたβ-1,3-グルカン誘導体は、熱可塑性を有する高分子であり、他の熱可塑性樹脂と同様に、各種成形方法によって成形して成形体を製造することができる。成形方法は、キャスト法、射出成形法、圧縮法、インフレーション法等のような、熱可塑性樹脂の成形に通常使用されている方法の中から適宜選択して使用することができる。
 天然のパラミロンの溶液からキャスト法によって成形体を製造する方法(特許文献1等に記載の方法)では、当該溶液中においてパラミロンは少なからず脱重合されるため、得られた成形体は機械的強度が低く、実用性に欠けるという問題がある。これに対して本発明に係るβ-1,3-グルカン誘導体では、アシル化に用いる脂肪酸の種類や組合せ、それぞれの置換度等を適宜調整することによって、機械的強度を過度に犠牲にすることなく、熱可塑性を向上させることができる。
 また、アシル化セルロース等のセルロース誘導体は、熱可塑性は有するものの、溶融紡糸するためには比較的大量の可塑剤を必要とする。これに対して、本発明に係るβ-1,3-グルカン誘導体をはじめとする、前記β-1,3-グルカン誘導体の製造方法により製造されたβ-1,3-グルカン誘導体は、可塑剤を必要とせずとも、溶融紡糸することができるという優れた特性を備える。
 β-1,3-グルカン誘導体のみから成形してもよいが、β-1,3-グルカン誘導体とその他の成分を含む組成物から成形してもよい。当該他の成分としては、フィラー、酸化防止剤、離形剤、着色剤、分散剤、難燃助剤、難燃剤等の樹脂組成物に一般的に添加される各種添加剤が挙げられる。その他、ポリビニルアルコール等の他の樹脂との混合組成物から成形体を製造することもできる。
 以下、実施例で本発明を更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
[実施例1]
 生産性に優れた藻類Euglena gracilis由来の多糖類であるパラミロンを炭素数の異なる脂肪酸を用いてアシル化した各種パラミロン誘導体を製造し、諸物性を比較した。
(製造例1)ミリストイル基導入パラミロン(パラミロンをミリストイル化したパラミロン誘導体)の製造
 500mLの三ツ口フラスコに、パラミロン(1.04g)、塩化リチウム(815mg)、及びN,N-ジメチルアセトアミド(DMAc)(50mL)を入れ、窒素雰囲気下、120℃で撹拌を行った。撹拌開始から約1時間後には、当該三ツ口フラスコ内の溶液は透明になった。この透明になった溶液の温度を室温に戻した後、トリエチルアミン(0.9mL)を加え、続いてミリスチン酸クロリド(0.84mL)を溶かしたDMAc(50mL)を滴下して加えた後に、当該溶液を120℃に加熱しながら窒素雰囲気下で撹拌し反応させた。4時間後、当該三ツ口フラスコ内の反応溶液にメタノール(200mL)を加えて白沈を生じさせた。遠心分離処理によって当該反応溶液から上澄みを除き、白沈を得た。この白沈をメタノール(120mL)で3回洗浄し、吸引濾過で濾別後、減圧下で加熱乾燥(80℃、3時間)させることにより、目的物(ミリストイル基導入パラミロン、以下、「誘導体1(Myr)」)を得た。
Figure JPOXMLDOC01-appb-C000008
 誘導体1(Myr)のFT-IR(フーリエ変換赤外分光法)の測定結果を以下に示す。
FT-IR(cm-1):3380(b),2914(s),2848(s),1720(s),1605(s)
(製造例2)ミリストイル基/アセチル基導入パラミロン(ミリストイル基導入パラミロンをアセチル化したパラミロン誘導体)の製造
 500mLナスフラスコに、製造例1で得た誘導体1(Myr)(1.21g)と塩化リチウム(687mg)、及びDMAc(150mL)を入れ、窒素雰囲気下、120℃で1時間撹拌した。撹拌後、均一状態になった溶液の液温を70℃まで冷却させた後、当該溶液にピリジン(16.8mL)と無水酢酸(24mL)を加えて窒素雰囲気下で6時間、続いて室温で17時間撹拌し反応させた。反応終了後、反応溶液に蒸留水(200mL)を加えて白沈を生じさせ、吸引濾過により白沈を得た。当該白沈を水(200mL)及びメタノール(100mL)で洗浄し、減圧下で加熱乾燥(80℃、終夜)させることにより、目的物(ミリストイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体2(Myr-Ac)」(1.39g)を得た。
Figure JPOXMLDOC01-appb-C000009
 誘導体2(Myr-Ac)のH-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(δ):4.95-4.70(m,2H),4.47-4.15(m,2H),4.13-3.87(br,1H),3.81-3.43(m,2H),2.06(t,J =24.3Hz),1.60-1.55(m),1.26(s),0.88(t,J=6.4)
FT-IR(cm-1):1735(s)
(製造例3)ミリストイル基導入パラミロンの製造
 トリエチルアミンの添加量を1.3mLとし、ミリスチン酸クロリドの添加量を1.7mLとした以外は、製造例1と同様にして、目的物(ミリストイル基導入パラミロン、以下、「誘導体3(Myr)」)を得た。
 誘導体3(Myr)のFT-IRの測定結果を以下に示す。
FT-IR(cm-1):3047(b),2919(s),2851(s),1735(s) 
(製造例4)ミリストイル基/アセチル基導入パラミロンの製造
 誘導体1(Myr)に代えて製造例3で得た誘導体3(Myr)を用いた以外は、製造例2と同様にして、目的物(ミリストイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体4(Myr-Ac)」)(1.30g)を得た。
 誘導体4(Myr-Ac)のH-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(δ):5.03-4.65(m,2H),4.53-4.15(m,2H),4.13-3.90(br,1H),3.85-3.35(m,2H),2.12(s),2.06(s),2.00(s),1.73-1.68(m),1.26(s),0.88(t,J=6.9)
FT-IR(cm-1):1740(s)
(製造例5)ミリストイル基導入パラミロンの製造
 トリエチルアミンの添加量を2.6mLとし、ミリスチン酸クロリドの添加量を3.3mLとした以外は、製造例1と同様にして、目的物(ミリストイル基導入パラミロン、以下、「誘導体5(Myr)」)を得た。
 誘導体5(Myr)のFT-IRの測定結果を以下に示す。
FT-IR(cm-1):3416(b),2917(s),2850(s),1740(s) 
(製造例6)ミリストイル基/アセチル基導入パラミロンの製造
 誘導体1(Myr)に代えて製造例5で得た誘導体5(Myr)を用いた以外は、製造例2と同様にして、目的物(ミリストイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体6(Myr-Ac)」)(1.43g)を得た。
 誘導体6(Myr-Ac)のH-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(δ):5.10-4.53(m,2H),4.52-4.12(m,2H),4.11-3.86(br,1H),3.84-3.23(m,2H),2.11(s),2.05(s),1.98(s),1.73-1.68(m),1.26(s),0.88(t,J=6.6)
FT-IR(cm-1):2914(s),2847(s),1740(s)
(製造例7)パルミトイル基導入パラミロンの製造
 ミリスチン酸クロリドに代えてパルミチン酸クロリドを用い、かつパルミチン酸クロリド添加量を0.94mLとした以外は、製造例1と同様にして、目的物(パルミトイル基導入パラミロン、以下、「誘導体7(Pam)」)を得た。
 誘導体7(Pam)のFT-IRの測定結果を以下に示す。
FT-IR(cm-1):3365(b),2918(s),2850(s),1732(s)
(製造例8)パルミトイル基/アセチル基導入パラミロンの製造
 誘導体1(Myr)に代えて製造例7で得た誘導体7(Pam)を用いた以外は、製造例2と同様にして、目的物(パルミトイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体8(Pam-Ac)」)(1.17g)を得た。
 誘導体8(Pam-Ac)のH-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(δ):4.94-4.73(m,2H),4.45-4.13(m,2H),4.08-3.87(br,1H),3.79-3.45(m,2H),2.12(s),2.06(s),2.00(s),1.60-1.55(m),1.26(s),0.88(t,J=6.9)
FT-IR(cm-1):1737(s)
(製造例9)パルミトイル基導入パラミロンの製造
 ミリスチン酸クロリドに代えてパルミチン酸クロリドを用い、トリエチルアミンの添加量を1.3mLとし、パルミチン酸クロリド添加量を1.9mLとした以外は、製造例1と同様にして、目的物(パルミトイル基導入パラミロン、以下、「誘導体9(Pam)」)を得た。
 誘導体9(Pam)のFT-IRの測定結果を以下に示す。
FT-IR(cm-1):3402(b),2917(s),2850(s),1720(s)
(製造例10)パルミトイル基/アセチル基導入パラミロンの製造
 誘導体1(Myr)に代えて製造例9で得た誘導体9(Pam)を用いた以外は、製造例2と同様にして、目的物(パルミトイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体10(Pam-Ac)」)(1.54g)を得た。
 誘導体10(Pam-Ac)のH-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(δ):5.05-4.51(m,2H),4.50-4.14(m,2H),4.13-3.90(br,1H),3.80-3.20(m,2H),2.12(s),2.06(s),2.00(s),1.61-1.58(m),1.26(s),0.88(t,J=6.9)
FT-IR(cm-1):2905(s),2845(s),1740(s)
(製造例11)パルミトイル基導入パラミロンの製造
 ミリスチン酸クロリドに代えてパルミチン酸クロリドを用い、トリエチルアミンの添加量を2.6mLとし、パルミチン酸クロリド添加量を3.8mLとした以外は、製造例1と同様にして、目的物(パルミトイル基導入パラミロン、以下、「誘導体11(Pam)」)を得た。
 誘導体11(Pam)のFT-IRの測定結果を以下に示す。
FT-IR(cm-1):3424(b),2918(s),2850(s),1728(s)
(製造例12)パルミトイル基/アセチル基導入パラミロンの製造
 誘導体1(Myr)に代えて製造例11で得た誘導体11(Pam)を用いた以外は、製造例2と同様にして、目的物(パルミトイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体12(Pam-Ac)」)(1.61g)を得た。
 誘導体12(Pam-Ac)のH-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(δ):5.18-4.57(m,2H),4.55-4.12(m,2H),4.11-3.87(br,1H),3.85-3.20(m,2H),2.12(s),2.00(s),1.99(s),1.77-1.73(m),1.26(s),0.88(t,J=6.6)
FT-IR(cm-1):2919(s),2848(s),1741(s)
(製造例13)ステアロイル基導入パラミロンの製造
 ミリスチン酸クロリドに代えてステアリン酸クロリドを用い、かつステアリン酸クロリド添加量を1.1mLとした以外は、製造例1と同様にして、目的物(ステアロイル基導入パラミロン、以下、「誘導体13(Ste)」)を得た。
 誘導体13(Ste)のFT-IRの測定結果を以下に示す。
FT-IR(cm-1):3330(b),2915(s),2848(s),1720(s)
(製造例14)ステアロイル基/アセチル基導入パラミロンの製造
 誘導体1(Myr)に代えて製造例13で得た誘導体13(Ste)を用いた以外は、製造例2と同様にして、目的物(ステアロイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体14(Ste-Ac)」)(1.71g)を得た。
 誘導体14(Ste-Ac)のH-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(δ):5.02-4.60(m,2H),4.49-4.13(m,2H),4.10-3.91(br,1H),3.83-3.25(m,2H),2.12(s),2.06(s),2.00(s),1.60-1.55(m),1.26(s),0.88(t,J=6.6)
FT-IR(cm-1):2913(s),2844(s),1739(s)
(製造例15)ステアロイル基導入パラミロンの製造
 ミリスチン酸クロリドに代えてステアリン酸クロリドを用い、トリエチルアミンの添加量を1.3mLとし、ステアリン酸クロリド添加量を2.1mLとした以外は、製造例1と同様にして、目的物(ステアロイル基導入パラミロン、以下、「誘導体15(Ste)」)を得た。
 誘導体15(Ste)のFT-IRの測定結果を以下に示す。
FT-IR(cm-1):3393(b),2914(s),2848(s),1719(s)
(製造例16)ステアロイル基/アセチル基導入パラミロンの製造
 誘導体1(Myr)に代えて製造例15で得た誘導体15(Ste)を用いた以外は、製造例2と同様にして、目的物(ステアロイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体16(Ste-Ac)」)(1.53g)を得た。
 誘導体16(Ste-Ac)のH-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(δ):5.02-4.68(m,2H),4.52-4.17(m,2H),4.11-3.91(br,1H),3.83-3.40(m,2H),2.12(s),2.06(s),2.00(s),1.65-1.53(m),1.26(s),0.88(t,J=6.9)
FT-IR(cm-1):2917(s),2851(s),1738(s)
(製造例17)ステアロイル基導入パラミロンの製造
 ミリスチン酸クロリドに代えてステアリン酸クロリドを用い、トリエチルアミンの添加量を2.6mLとし、ステアリン酸クロリド添加量を4.2mLとした以外は、製造例1と同様にして、目的物(ステアロイル基導入パラミロン、以下、「誘導体17(Ste)」)を得た。
 誘導体17(Ste)のFT-IRの測定結果を以下に示す。
FT-IR(cm-1):3396(b),2917(s),2849(s),1725(s)
(製造例18)ステアロイル基/アセチル基導入パラミロンの製造
 誘導体1(Myr)に代えて製造例17で得た誘導体17(Ste)を用いた以外は、製造例2と同様にして、目的物(ステアロイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体18(Ste-Ac)」)(1.63g)を得た。
 誘導体18(Ste-Ac)のH-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(δ):5.07-4.63(m,2H),4.52-4.15(m,2H),4.11-3.88(br,1H),3.83-3.35(m,2H),2.11(s),2.05(s),1.98(s),1.65-1.53(m),1.25(s),0.87(t,J=6.9)
FT-IR(cm-1):2918(s),2851(s),1742(s)
(DSC測定によるガラス転移点の測定)
 製造例2、4、6、8、10、12、14、16及び18において合成した各誘導体について、以下の条件でDSC測定(示差走査熱量測定)を行い、ガラス転移点(Tg)を測定した。
使用機器:Thermo plus EVO II/DSC8230(リガク社製)、
昇温速度:10℃/分、
窒素フロー:100mL/分。
(万能試験機による力学的物性の測定)
 製造例2、4、6、8、10,12、14、16、及び18において合成した各誘導体から作製したキャストフィルムの各力学的物性を、万能試験機を用いて測定した。
 キャストフィルムは、約1gの誘導体を溶解したクロロホルム溶液をテフロン(登録商標)製バットに入れ、風乾することにより作製した。
 得られたキャストフィルムをダンベル型に切り取り、万能試験機(装置名:テンシロンRTG-1225、エー・アンド・デイ社製)を用いて、破断点荷重(N)、弾性率(MPa)、及び破断点応力(MPa)の測定を行った。具体的には、50Nのロードセルを用いて、室温にてダンベル型フィルムを速度7mm/分で引っ張ることで破断点荷重、弾性率、及び破断点応力を測定した。一の誘導体に対して3回の独立した施行を行い、平均値とSDを求めた。
 各誘導体の置換度、ガラス転移点(Tg)、破断点荷重、弾性率、及び破断点応力の結果を表1に示す。表1中の「置換度」の欄の上段は、各誘導体のミリストイル基、パルミトイル基、又はステアロイル基の置換度を示し、下段は、アセチル基の置換度を示す。なお、置換度は、H-NMRの積分値から算出した。
Figure JPOXMLDOC01-appb-T000010
 導入したアシル基の種類にかかわらず、置換度が大きい誘導体ほど、破断点荷重、弾性率、及び破断点応力が小さくなる傾向にあった。また、同種のアシル基を置換した誘導体を比較すると、長鎖アシル基の置換度が小さい誘導体ほど、弾性率が大きく、機械的強度が高い傾向にあった。
 なお、パラミロン自身は、熱可塑性がない。実際に、パラミロンを1N 水酸化ナトリウム水溶液に溶解した後にキャストして得られたフィルムは、脆くパリパリとしており、前記万能試験機による測定はできなかった。一方で、表1に示すように、誘導体2(Myr-Ac)等は、ガラス転移点があり、かつ弾性率も測定可能であったことから、熱可塑性を有することが明らかである。これらの結果から、パラミロン等のβ-1,3-グルカンを主鎖とする高分子中の水酸基の少なくとも一部をアシル化することによって、熱可塑性を有する誘導体が得られることが明らかである。
[実施例2]
 Euglena gracilis由来のパラミロンを、炭素数の異なる脂肪酸を用いてアシル化した各種パラミロン誘導体を製造し、諸物性を、バイオプラスチックとして量産されているポリ乳酸とポリアミド11、及び耐久製品用の石油由来のABS樹脂と比較した。ポリ乳酸(PLA)(製品名:TE-4000) はUnitika Ltd.(日本)から、ポリアミド11(Poly 11-aminoundecanoic acid:PA11)(製品名:Rilson BMFO) はArkema Japan Ltd.(日本) から、ABS樹脂(製品名:GA-701)はNippon A&L Co.(日本)から得た。
(製造例19)ミリストイル基導入パラミロンの製造
 白沈の洗浄をメタノールに代えてメタノール・クロロホルム(2/1)混合溶媒を用いて行った以外は、実施例1の製造例1と同様にして、目的物(ミリストイル基導入パラミロン、以下、「誘導体19(Myr)」)を得た。
(製造例20)ミリストイル基/アセチル基導入パラミロンの製造
 誘導体1(Myr)に代えて製造例19で得た誘導体19(Myr)を用い、反応終了後、蒸留水(3000mL)を加えて白沈を生じさせ、吸引濾過によって得られた白沈を、水(1600mL)で1回撹拌洗浄した後、吸引濾過して得た白沈をメタノール(300mL)で1回洗浄し、未反応物が1質量%以下であることを確認した後に、当該白沈を70℃で1時間、さらに105℃で4時間加熱して乾燥させた以外は、製造例2と同様にして、目的物(ミリストイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体20(Myr-Ac)」)(11.3g)を得た。
(製造例21)パルミトイル基導入パラミロンの製造
 ミリスチン酸クロリドに代えてパルミチン酸クロリドを用い、得られた白沈の洗浄をメタノールに代えてメタノール・クロロホルム(2/1)混合溶媒を用いて行った以外は、実施例1の製造例1と同様にして、目的物(パルミトイル基導入パラミロン、以下、「誘導体21(Pam)」)を得た。
(製造例22)パルミトイル基/アセチル基導入パラミロンの製造
 誘導体1(Myr)に代えて製造例21で得た誘導体21(Pam)を用い、反応終了後、蒸留水(3000mL)を加えて白沈を生じさせ、吸引濾過によって得られた白沈を、水(1600mL)で1回撹拌洗浄した後、吸引濾過して得た白沈をメタノール(300mL)で1回洗浄し、未反応物が1質量%以下であることを確認した後に、当該白沈を70℃で1時間、さらに105℃で4時間加熱して乾燥させた以外は、製造例2と同様にして、目的物(パルミトイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体22(Pam-Ac)」)(10.9g)を得た。
(製造例23)ステアロイル基導入パラミロンの製造
 ミリスチン酸クロリドに代えてステアリン酸クロリドを用い、得られた白沈の洗浄をメタノールに代えてメタノール・クロロホルム(2/1)混合溶媒を用いて行った以外は、実施例1の製造例1と同様にして、目的物(ステアロイル基導入パラミロン、以下、「誘導体23(Ste)」)を得た。
(製造例24)ステアロイル基/アセチル基導入パラミロンの製造
 誘導体1(Myr)に代えて製造例23で得た誘導体23(Ste)を用い、反応終了後、蒸留水(3000mL)を加えて白沈を生じさせ、吸引濾過によって得られた白沈を、水(1600mL)で1回撹拌洗浄した後、吸引濾過して得た白沈をメタノール(300mL)で1回洗浄し、未反応物が1質量%以下であることを確認した後に、当該白沈を70℃で1時間、さらに105℃で4時間加熱して乾燥させた以外は、製造例2と同様にして、目的物(ステアロイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体24(Ste-Ac)」)(11.0g)を得た。
(置換度の算出)
 各誘導体のH-NMRを測定し、積分値からミリストイル基、パルミトイル基、又はステアロイル基の置換度とアセチル基の置換度を算出した。
(数平均分子量の測定)
 合成した各誘導体について、数平均分子量(M)(標準ポリスチレン換算)を、GPC法により、以下の条件で測定した。
GPC装置:LC-10AVP system(Shimadzu Co.、日本)、
使用カラム:Shim Pack GPC 80MC(Shimadzu Co.、日本)、
溶離液:クロロホルム、
流速:1.0mL/分、
標準試料:ポリスチレン(製品名:Shodex(登録商標)SM-105、昭和電工社製)。
(成形体)
 合成した各誘導体及び市販の樹脂について、機械的特性や吸水率を測定するためのサンプル(成形体)を、射出成形機 (製品名:HAAKE Mini Jet II、Thermo Fisher Scientific Co.、ドイツ)を用い、210℃で成形した。ポリ乳酸は、成形後、結晶化処理のため、100℃で4時間加熱した。
(メルトフローレート(Melt Flow Rate)の測定)
 熱可塑性の評価のため、各誘導体及び樹脂のメルトフローレート(MFR)を測定した。具体的には、キャピラリーカラム(製品名:CFT-500D、Shimadzu Co.、日本)を用い、200℃、荷重500kgf/cmで加熱した時の10分間で流下した樹脂量を測定した。サンプルは、測定前に、105℃で5時間加熱し乾燥させた。
(示差走査熱量測定)
 示差熱分析計(製品名:DSC 6200/EXSTAR6000、Seiko Instrument Inc.、日本)を使用し、最初に-100~230℃まで10℃/分で昇温し、230℃で3分間保持した後、冷却した。その後、同じ条件で昇温した時の熱量を測定し、この変曲点からガラス転移温度(Tg)を求めた。
(熱重量分析)
 熱重量分析計(製品名:S2 EXSTAR 6000、Seiko Instrument Inc.、日本)を使用し、25℃から500℃まで窒素気流中で10℃/分で昇温した時の重量減量率を測定した。
(耐水性)
 曲げ試験片を使い、105℃で2時間乾燥後、室温で24時間純水に浸漬した時の重量増加率を測定して吸水率を求めた。
(曲げ特性)
 ASTM D790に準拠して、曲げ測定装置 (製品名:INSTRON 5567、Instron Co.、アメリカ合衆国)を用いて、最大強度、弾性率、及び破断伸びを測定した。試験片は、厚みが2.4mm、長さが40mm、幅が12.4mmとした。
(衝撃性)
 JISK7110に準拠して、衝撃強度測定装置 (製品名:Universal Impact Tester C1、Toyo Seiki CO.、日本)を用いて、アイゾット衝撃強度を測定した。試験片は、厚みがノッチ付きで2.4mm、長さが80mm、幅が12.4mmとした。
 各誘導体等の置換度、数平均分子量(M)、耐熱性(Tg)、耐熱分解性(5%減量温度)、熱可塑性(MFR)、耐水性(吸水率)、曲げ特性、及び耐衝撃性の結果を表2及び3に示す。表2中の「置換度」の欄の上段は、各誘導体のミリストイル基、パルミトイル基、又はステアロイル基の置換度を示し、下段は、アセチル基の置換度を示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 誘導体20(Myr-Ac)、誘導体22(Pam-Ac)及び誘導体24(Ste-Ac)は、いずれも、可塑剤(TEC)を添加したアセチルセルロース(CDA)や、従来のバイオプラスチック(PLA、PA11)、及び耐久製品用の石油原料系のABS樹脂等と同様に優れた熱可塑性を示した。また、耐熱性(Tg)は、従来のバイオプラスチックやABS樹脂等よりも優れており、耐熱分解性(5%重量減少温度)は、従来のバイオプラスチックよりはやや低かったものの、充分であった。耐水性(吸水率)については、従来のプラスチックよりは低かったものの、可塑剤添加アセチルセルロースより優れていた。これに対して、機械的特性のうち、曲げ強度、弾性率、耐衝撃性は、いずれも従来のバイオプラスチック等よりも低かった。
[実施例3]
 Euglena gracilis由来のパラミロンを、炭素数の異なる脂肪酸を用いてアシル化した各種パラミロン誘導体を製造し、諸物性を調べた。
(製造例25)ミリストイル基導入パラミロンの製造(仕込み比:[ミリスチン酸クロリド]/[グルコースユニット]=0.5)
 2Lの三ツ口フラスコに、パラミロン(10.0g)、塩化リチウム(8.0g)、及びDMAc(0.5L)を入れ、窒素雰囲気下、120℃で撹拌を行った。撹拌開始から約1時間後には、当該三ツ口フラスコ内の溶液は透明になった。この透明になった溶液の温度を室温に戻した後、トリエチルアミン(7.8mL)を加え、続いてミリスチン酸クロリド(8.4mL)を溶かしたDMAc(0.5L)を滴下して加えた後に、当該溶液を120℃に加熱しながら窒素雰囲気下で撹拌し反応させた。3時間後、当該三ツ口フラスコ内の反応溶液にメタノール(2.0L)を加えて白沈を生じさせた。遠心分離処理によって当該反応溶液から上澄みを除き、白沈を得た。この白沈をメタノール・クロロホルム(2/1)混合溶媒(900mL)で洗浄し、吸引濾過で濾別後、終夜で風乾、さらに減圧下で加熱乾燥(70℃、2時間)させることにより、目的物(ミリストイル基導入パラミロン、以下、「誘導体T1(Myr)」)を得た。
(製造例26)ミリストイル基/アセチル基導入パラミロンの製造 
 2Lナスフラスコに、製造例25で得た誘導体T1(Myr)(12.5g)と塩化リチウム(6.6g)、及びDMAc(1.5L)を入れ、窒素雰囲気下、120℃で1時間撹拌した。撹拌後、均一状態になった溶液の液温を70℃まで冷却させた後、当該溶液にピリジン(168mL)と無水酢酸(240mL)を加えて窒素雰囲気下で6時間、続いて室温で17時間撹拌し反応させた。反応終了後、反応溶液に蒸留水(3.0L)を加えて白沈を生じさせ、吸引濾過により白沈を得た。当該白沈を水(1.6L)及びメタノール(0.3L)で洗浄し、終夜で風乾、さらに減圧下で加熱乾燥(80℃(1時間)、次いで105℃(4時間))させることにより、目的物(ミリストイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体T2(Myr-Ac)」)(15.1g)を得た。
 誘導体T2(Myr-Ac)のH-NMR、13C-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ4.99-4.75(m),4.47-4.20(m),4.08-3.96(m),3.79-3.57(m),2.37-2.21(m),2.12(s),2.06(s),2.00(s),1.57(m),1.26(s),0.88(t,J=6.9).
13C-NMR(CDCl):δ173.4,170.5,169.0,168.8,100.7,78.4,72.7,71.8,68.1,62.0,33.9,31.9,29.6,29.5,29.3,29.2,29.1,24.6,22.6,20.8,20.7,20.4,14.1.
FT-IR(cm-1):2875,2807,1740,1365,1212,1033,886.
(製造例27)ミリストイル基導入パラミロンの製造(仕込み比:[ミリスチン酸クロリド]/[グルコースユニット]=1.0)
 2Lの三ツ口フラスコに、パラミロン(10.2g)、塩化リチウム(7.9g)、及びDMAc(0.5L)を入れ、窒素雰囲気下、120℃で撹拌を行った。撹拌開始から約1時間後には、当該三ツ口フラスコ内の溶液は透明になった。この透明になった溶液の温度を室温に戻した後、トリエチルアミン(12.9mL)を加え、続いてミリスチン酸クロリド(15.2mL)を溶かしたDMAc(0.5L)を滴下して加えた後に、当該溶液を120℃に加熱しながら窒素雰囲気下で撹拌し反応させた。3時間後、当該三ツ口フラスコ内の反応溶液にメタノール(2.0L)を加えて白沈を生じさせた。遠心分離処理によって当該反応溶液から上澄みを除き、白沈を得た。この白沈をメタノール・クロロホルム(2/1)混合溶媒(300mL)で洗浄し、吸引濾過で濾別後、終夜で風乾、さらに減圧下で加熱乾燥(80℃、2時間)させることにより、目的物(ミリストイル基導入パラミロン、以下、「誘導体T3(Myr)」)を得た。
(製造例28)ミリストイル基/アセチル基導入パラミロンの製造
 2Lナスフラスコに、製造例27で得た誘導体T3(Myr)(12.4g)と塩化リチウム(6.8g)、及びDMAc(1.5L)を入れ、窒素雰囲気下、120℃で1時間撹拌した。撹拌後、均一状態になった溶液の液温を70℃まで冷却させた後、当該溶液にピリジン(168mL)と無水酢酸(240mL)を加えて窒素雰囲気下で6時間、続いて室温で21時間撹拌し反応させた。反応終了後、反応溶液に蒸留水(3.0L)を加えて白沈を生じさせ、吸引濾過により白沈を得た。当該白沈を水(1.6L)及びメタノール(0.3L)で洗浄し、終夜で風乾、さらに減圧下で加熱乾燥(70℃(0.5時間)、105℃(4時間))させることにより、目的物(ミリストイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体T4(Myr-Ac)」)(12.5g)を得た。
 誘導体T4(Myr-Ac)のH-NMR、13C-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ4.99-4.75(m),4.47-4.20(m),4.08-3.96(m),3.79-3.57(m),2.37-2.21(m),2.11(s),2.07(s),1.99(s),1.58(m),1.25(s),0.87(t,J= 6.9).
13C-NMR(CDCl):δ173.4,170.5,169.0,168.8,100.7,78.4,72.7,71.8,68.1,62.0,33.9,31.9,29.6,29.5,29.3,29.2,29.1,24.6,22.6,20.9,20.7,20.5,14.1.
FT-IR(cm-1):2918,2849,1740,1364,1210,1029,888.
(製造例29)ミリストイル基導入パラミロンの製造(仕込み比:[ミリスチン酸クロリド]/[グルコースユニット]=0.5)
 2Lの三ツ口フラスコに、パラミロン(10.0g)、塩化リチウム(7.9g)、及びDMAc(0.5L)を入れ、窒素雰囲気下、120℃で撹拌を行った。撹拌開始から約1時間後には、当該三ツ口フラスコ内の溶液は透明になった。この透明になった溶液の温度を室温に戻した後、トリエチルアミン(43.0mL)を加え、続いてミリスチン酸クロリド(8.4mL)を溶かしたDMAc(0.1L)を滴下して加えた後に、当該溶液を120℃に加熱しながら窒素雰囲気下で撹拌し反応させた。3時間後、当該三ツ口フラスコ内の反応溶液にメタノール(1.2L)を加えて白沈を生じさせた。遠心分離処理によって当該反応溶液から上澄みを除き、白沈を得た。この白沈をメタノール・クロロホルム(2/1)混合溶媒(900mL)で洗浄し、吸引濾過で濾別後、終夜で風乾、さらに減圧下で加熱乾燥(80℃、2時間)させることにより、目的物(ミリストイル基導入パラミロン、以下、「誘導体TX1(Myr)」)を得た。
(製造例30)ミリストイル基/アセチル基導入パラミロンの製造 
 2Lナスフラスコに、製造例29で得た誘導体TX1(Myr)(13.6g)と塩化リチウム(6.5g)、及びDMAc(1.5L)を入れ、窒素雰囲気下、120℃で1時間撹拌した。撹拌後、均一状態になった溶液の液温を70℃まで冷却させた後、当該溶液にピリジン(168mL)と無水酢酸(240mL)を加えて窒素雰囲気下で6時間、続いて室温で21時間撹拌し反応させた。反応終了後、反応溶液に蒸留水(3.0L)を加えて白沈を生じさせ、吸引濾過により白沈を得た。当該白沈を水(1.6L)及びメタノール(0.3L)で洗浄し、終夜で風乾、さらに減圧下で加熱乾燥(70℃(0.5時間)、次いで105℃(4時間))させることにより、目的物(ミリストイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体TX2(Myr-Ac)」)(14.8g)を得た。
 誘導体TX2(Myr-Ac)のH-NMR、13C-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 4.99-4.75(m),4.45-4.22(m),4.08-3.95(m),3.79-3.55(m),2.41-2.18(m),2.12 (s),2.06(s),1.99 (s),1.75-1.52(m),1.26(s),0.88(t,J=6.9).
13C-NMR(CDCl):δ 173.5,170.6,169.2,100.6,78.3,72.5,71.8,68.0,61.9,33.8,31.8,29.6,29.4,29.3,29.1,24.6,22.6,20.9,20.6,20.4,14.1.
FT-IR(cm-1):2924,2861,1749,1371,1210,1031,8900.
(製造例31)ミリストイル基導入パラミロンの製造(仕込み比:[ミリスチン酸クロリド]/[グルコースユニット]=0.25)
 10Lの三ツ口フラスコに、パラミロン(10.0g)、塩化リチウム(7.9g)、及びDMAc(0.5L)を入れ、窒素雰囲気下、120℃で撹拌を行った。撹拌開始から約1時間後には、当該三ツ口フラスコ内の溶液は透明になった。この透明になった溶液の温度を室温に戻した後、トリエチルアミン(4.3mL)を加え、続いてミリスチン酸クロリド(4.2mL)を溶かしたDMAc(0.5L)を滴下して加えた後に、当該溶液を120℃に加熱しながら窒素雰囲気下で撹拌し反応させた。3時間後、当該三ツ口フラスコ内の反応溶液に蒸留水(2.0L)を加えて白沈を生じさせた。遠心分離処理によって当該反応溶液から上澄みを除き、白沈を得た。この白沈をメタノール・クロロホルム(2/1)混合溶媒(900mL)で洗浄し、吸引濾過で濾別後、終夜で風乾、さらに減圧下で加熱乾燥(80℃、2時間)させることにより、目的物(ミリストイル基導入パラミロン、以下、「誘導体TX3(Myr)」)を得た。
(製造例32)ミリストイル基/アセチル基導入パラミロンの製造
 10Lナスフラスコに、製造例31で得た誘導体TX3(Myr)(10.0g)と塩化リチウム(6.5g)、及びDMAc(1.5L)を入れ、窒素雰囲気下、120℃で1時間撹拌した。撹拌後、均一状態になった溶液の液温を70℃まで冷却させた後、当該溶液にピリジン(168mL)と無水酢酸(240mL)を加えて窒素雰囲気下で6時間、続いて室温で16時間撹拌し反応させた。反応終了後、反応溶液に蒸留水(3.0L)を加えて白沈を生じさせ、吸引濾過により白沈を得た。当該白沈を水(1.6L)及びメタノール(0.3L)で洗浄し、終夜で風乾、さらに減圧下で加熱乾燥(70℃(0.5時間)、次いで105℃(4時間))させることにより、目的物(ミリストイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体TX4(Myr-Ac)」)(14.8g)を得た。
 誘導体TX4(Myr-Ac)のH-NMR、13C-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 5.01-4.72(m),4.53-4.21(m),4.14-3.92(m),3.85-3.51(m),2.37-2.18(m),2.12(s),2.06(s),2.00(s),1.62-1.55(m),1.26(s),0.88(t,J=6.9).
13C-NMR(CDCl):δ 173.5,170.6,169.1,168.9,100.6,78.4,72.6,71.7,67.9,61.9,34.0,31.8,29.6,29.4,29.3,29.1,24.6,22.6,20.8,20.6,20.4,14.0.
FT-IR(cm-1):2913,2864,1742,1365,1218,1034,895.
(製造例33)パルミトイル基導入パラミロンの製造(仕込み比:[パルミチン酸クロリド]/[グルコースユニット]=0.5)
 10Lの三ツ口フラスコに、パラミロン(10.0g)、塩化リチウム(8.1g)、及びDMAc(0.5L)を入れ、窒素雰囲気下、120℃で撹拌を行った。撹拌開始から約1時間後には、当該三ツ口フラスコ内の溶液は透明になった。この透明になった溶液の温度を室温に戻した後、トリエチルアミン(9.5mL)を加え、続いてパルミチン酸クロリド(9.4mL)を溶かしたDMAc(0.5L)を滴下して加えた後に、当該溶液を120℃に加熱しながら窒素雰囲気下で撹拌し反応させた。3時間後、当該三ツ口フラスコ内の反応溶液にメタノール(2.0L)を加えて白沈を生じさせた。遠心分離処理によって当該反応溶液から上澄みを除き、白沈を得た。この白沈をメタノール・クロロホルム(2/1)混合溶媒(900mL)で洗浄し、吸引濾過で濾別後、終夜で風乾、さらに減圧下で加熱乾燥(80℃、2時間)させることにより、目的物(パルミトイル基導入パラミロン、以下、「誘導体T5(Pam)」)を得た。
(製造例34)パルミトイル基/アセチル基導入パラミロンの製造
 10Lナスフラスコに、製造例33で得た誘導体T5(Pam)(13.2g)と塩化リチウム(6.8g)、及びDMAc(1.5L)を入れ、窒素雰囲気下、120℃で1時間撹拌した。撹拌後、均一状態になった溶液の液温を70℃まで冷却させた後、当該溶液にピリジン(168mL)と無水酢酸(240mL)を加えて窒素雰囲気下で3時間、続いて室温で21時間撹拌し反応させた。反応終了後、反応溶液に蒸留水(3.0L)を加えて白沈を生じさせ、吸引濾過により白沈を得た。当該白沈を水(1.6L)及びメタノール(0.3L)で洗浄し、終夜で風乾、さらに減圧下で加熱乾燥(70℃(1時間)、105℃(4時間))させることにより、目的物(パルミトイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体T6(Pam-Ac)」)(14.7g)を得た。
 誘導体T6(Pam-Ac)のH-NMR、13C-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 4.99-4.75(m),4.47-4.20(m),4.08-3.96(m),3.79-3.57(m),2.37-2.21(m),2.11(s),2.06(s),2.00(s),1.56(m),1.26(s),0.88(t,J=6.9).
13C-NMR(CDCl):δ173.4,170.5,169.0,100.7,78.4,72.7,71.8,68.1,62.0,33.9,31.9,29.7,29.5,29.3,29.1,24.6,22.6,20.9,20.7,20.4,14.1.
FT-IR(cm-1):2911,2846,1741,1365,1213,1032,887.
(製造例35)パルミトイル基導入パラミロンの製造(仕込み比:[パルミチン酸クロリド]/[グルコースユニット]=1.0)
 10Lの三ツ口フラスコに、パラミロン(10.2g)、塩化リチウム(7.9g)、及びDMAc(0.5L)を入れ、窒素雰囲気下、120℃で撹拌を行った。撹拌開始から約1時間後には、当該三ツ口フラスコ内の溶液は透明になった。この透明になった溶液の温度を室温に戻した後、トリエチルアミン(12.9mL)を加え、続いてパルミチン酸クロリド(18.7mL)を溶かしたDMAc(0.5L)を滴下して加えた後に、当該溶液を120℃に加熱しながら窒素雰囲気下で撹拌し反応させた。3時間後、当該三ツ口フラスコ内の反応溶液にメタノール・クロロホルム(2/1)混合溶媒(3.0L)を加えて白沈を生じさせた。遠心分離処理によって当該反応溶液から上澄みを除き、白沈を得た。この白沈をメタノール・クロロホルム(2/1)混合溶媒(400mL)で洗浄し、吸引濾過で濾別後、終夜で風乾、さらに減圧下で加熱乾燥(80℃、2時間)させることにより、目的物(パルミトイル基導入パラミロン、以下、「誘導体T7(Pam)」)を得た。
(製造例36)パルミトイル基/アセチル基導入パラミロンの製造
 10Lナスフラスコに、製造例35で得た誘導体T7(Pam)(11.0g)と塩化リチウム(6.6g)、及びDMAc(1.5L)を入れ、窒素雰囲気下、120℃で1時間撹拌した。撹拌後、均一状態になった溶液の液温を70℃まで冷却させた後、当該溶液にピリジン(168mL)と無水酢酸(240mL)を加えて窒素雰囲気下で8時間、続いて室温で14時間撹拌し反応させた。反応終了後、反応溶液に蒸留水(3.0L)を加えて白沈を生じさせ、吸引濾過により白沈を得た。当該白沈を水(0.8L)及びメタノール(0.15L)で洗浄し、終夜で風乾、さらに減圧下で加熱乾燥(70℃(1時間)、次いで105℃(5時間))させることにより、目的物(パルミトイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体T8(Pam-Ac)」)(13.5g)を得た。
 誘導体T8(Pam-Ac)のH-NMR、13C-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 4.99-4.75(m),4.47-4.20(m),4.08-3.96(m),3.79-3.57(m),2.37-2.21(m),2.11(s),2.05(s),1.98(s),1.58(m),1.25(s),0.87(t,J=6.9).
13C-NMR(CDCl):δ 173.4,170.5,169.0,168.8,100.7,78.4,72.7,71.8,68.2,62.0,33.9,31.9,29.7,29.5,29.3,29.2,29.1,24.7,22.7,20.8,20.7,20.5,20.4,14.1.
FT-IR(cm-1):2914,2849,1747,1363,1213,1032,890.
(製造例37)ステアロイル基導入パラミロンの製造(仕込み比:[ステアリン酸クロリド]/[グルコースユニット]=0.5)
 10Lの三ツ口フラスコに、パラミロン(10.2g)、塩化リチウム(7.9g)、及びDMAc(0.5L)を入れ、窒素雰囲気下、120℃で撹拌を行った。撹拌開始から約1時間後には、当該三ツ口フラスコ内の溶液は透明になった。この透明になった溶液の温度を室温に戻した後、トリエチルアミン(9.5mL)を加え、続いてステアリン酸クロリド(10.4mL)を溶かしたDMAc(0.5L)を滴下して加えた後に、当該溶液を120℃に加熱しながら窒素雰囲気下で撹拌し反応させた。3時間後、当該三ツ口フラスコ内の反応溶液にメタノール・クロロホルム(2/1)混合溶媒(1.8L)を加えて白沈を生じさせた。遠心分離処理によって当該反応溶液から上澄みを除き、白沈を得た。この白沈をメタノール・クロロホルム(2/1)混合溶媒(600mL)で洗浄し、吸引濾過で濾別後、終夜で風乾、さらに減圧下で加熱乾燥(80℃(4時間)、105℃(4時間))させることにより、目的物(ステアロイル基導入パラミロン、以下、「誘導体T9(Ste)」)を得た。
(製造例38)ステアロイル基/アセチル基導入パラミロンの製造
 10Lナスフラスコに、製造例37で得た誘導体T9(Ste)(29.8g)と塩化リチウム(6.6g)、及びDMAc(1.5L)を入れ、窒素雰囲気下、120℃で1時間撹拌した。撹拌後、均一状態になった溶液の液温を70℃まで冷却させた後、当該溶液にピリジン(168mL)と無水酢酸(240mL)を加えて窒素雰囲気下で8時間、続いて室温で14時間撹拌し反応させた。反応終了後、反応溶液に蒸留水(3.0L)を加えて白沈を生じさせ、吸引濾過により白沈を得た。当該白沈を水(1.6L)及びメタノール(0.3L)で洗浄し、終夜で風乾、さらに減圧下で加熱乾燥(70℃(2時間)、次いで105℃(4時間))させることにより、目的物(ステアロイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体T10(Ste-Ac)」)(17.5g)を得た。
 誘導体T10(Ste-Ac)のH-NMR、13C-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ4.99-4.75(m),4.47-4.20(m),4.08-3.96(m),3.79-3.57(m),2.37-2.21(m),2.12(s),2.06(s),2.00(s),1.55(m),1.26(s),0.88(t,J=6.9).
13C-NMR(CDCl):δ 173.4,170.5,169.0,100.7,78.4,72.6,71.8,68.1, 62.1,33.9,31.9,29.7, 29.5,29.3,29.1,24.6,22.6,20.8,20.7,20.4,14.1.
FT-IR(cm-1):2920,2847,1740,1365,1212,1031,889.
(製造例39)ステアロイル基導入パラミロンの製造(仕込み比:[ステアリン酸クロリド]/[グルコースユニット]=1.0)
 10Lの三ツ口フラスコに、パラミロン(10.4g)、塩化リチウム(7.9g)、及びDMAc(0.5L)を入れ、窒素雰囲気下、120℃で撹拌を行った。撹拌開始から約1時間後には、当該三ツ口フラスコ内の溶液は透明になった。この透明になった溶液の温度を室温に戻した後、トリエチルアミン(12.9mL)を加え、続いてステアリン酸クロリド(20.8mL)を溶かしたDMAc(0.5L)を滴下して加えた後に、当該溶液を120℃に加熱しながら窒素雰囲気下で撹拌し反応させた。3時間後、当該三ツ口フラスコ内の反応溶液にメタノール・クロロホルム(2/1)混合溶媒(1.8L)を加えて白沈を生じさせた。遠心分離処理によって当該反応溶液から上澄みを除き、白沈を得た。この白沈をメタノール・クロロホルム(2/1)混合溶媒(900mL)で洗浄し、吸引濾過で濾別後、終夜で風乾、さらに減圧下で加熱乾燥(80℃、4時間)させることにより、目的物(ステアロイル基導入パラミロン、以下、「誘導体T11(Ste)」)を得た。
(製造例40)ステアロイル基/アセチル基導入パラミロンの製造
 10Lナスフラスコに、製造例39で得た誘導体T11(Ste)(12.3g)と塩化リチウム(6.8g)、及びDMAc(1.5L)を入れ、窒素雰囲気下、120℃で1時間撹拌した。撹拌後、均一状態になった溶液の液温を70℃まで冷却させた後、当該溶液にピリジン(168mL)と無水酢酸(240mL)を加えて窒素雰囲気下で6時間、続いて室温で19時間撹拌し反応させた。反応終了後、反応溶液に蒸留水(3.0L)を加えて白沈を生じさせ、吸引濾過により白沈を得た。当該白沈を水(1.6L)及びメタノール(0.3L)で洗浄し、終夜で風乾、さらに減圧下で加熱乾燥(70℃(2時間)、次いで105℃(4時間))させることにより、目的物(ステアロイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体T12(Ste-Ac)」)(11.2g)を得た。
 誘導体T12(Ste-Ac)のH-NMR、13C-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ4.99-4.75(m),4.47-4.20(m),4.08-3.96(m),3.79-3.57(m),2.37-2.21(m),2.12 (s), 2.08(s),2.00(s),1.58(m),1.25(s),0.87(t,J=6.9).
13C-NMR(CDCl):δ 173.4,170.6,169.1,100.7,78.5,72.7,71.8,68.2,62.0,33.9 31.9,29.7, 29.5,29.4,29.2,24.7,22.7,20.9,20.7, 20.5, 14.1.
FT-IR(cm-1):2920,2849,1740,1366,1209,1030,890.
(製造例41)ステアロイル基導入パラミロンの製造(仕込み比:[ステアリン酸クロリド]/[グルコースユニット]=0.25)
 10Lの三ツ口フラスコに、パラミロン(10.0g)、塩化リチウム(7.9g)、及びDMAc(0.5L)を入れ、窒素雰囲気下、120℃で撹拌を行った。撹拌開始から約1時間後には、当該三ツ口フラスコ内の溶液は透明になった。この透明になった溶液の温度を室温に戻した後、トリエチルアミン(21.5mL)を加え、続いてステアリン酸クロリド(5.2mL)を溶かしたDMAc(0.5L)を滴下して加えた後に、当該溶液を120℃に加熱しながら窒素雰囲気下で撹拌し反応させた。3時間後、当該三ツ口フラスコ内の反応溶液にメタノール・クロロホルム(2/1)混合溶媒(1.8L)を加えて白沈を生じさせた。遠心分離処理によって当該反応溶液から上澄みを除き、白沈を得た。この白沈をメタノール・クロロホルム(2/1)混合溶媒(900mL)で洗浄し、吸引濾過で濾別後、終夜で風乾、さらに減圧下で加熱乾燥(80℃、4時間)させることにより、目的物(ステアロイル基導入パラミロン、以下、「誘導体TX5(Ste)」)を得た。
(製造例42)ステアロイル基/アセチル基導入パラミロンの製造
 10Lナスフラスコに、製造例41で得た誘導体TX5(Ste)(9.5g)と塩化リチウム(6.5g)、及びDMAc(1.5L)を入れ、窒素雰囲気下、120℃で1時間撹拌した。撹拌後、均一状態になった溶液の液温を70℃まで冷却させた後、当該溶液にピリジン(168mL)と無水酢酸(240mL)を加えて窒素雰囲気下で6時間、続いて室温で19時間撹拌し反応させた。反応終了後、反応溶液に蒸留水(3.0L)を加えて白沈を生じさせ、吸引濾過により白沈を得た。当該白沈を水(1.6L)及びメタノール(0.3L)で洗浄し、終夜で風乾、さらに減圧下で加熱乾燥(70℃(2時間)、次いで105℃(4時間))させることにより、目的物(ステアロイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体TX6(Ste-Ac)」)(12.3g)を得た。
 誘導体TX6(Ste-Ac)のH-NMR、13C-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ4.98-4.73(m),4.44-4.23(m),4.07-3.95(m),3.79-3.55(m),2.34-2.16(m),2.11(s),2.05(s),1.99(s),1.62-1.53(m),1.24(s),0.87(t,J=6.9).
13C-NMR(CDCl):δ 173.4,170.5,169.1,168.5,100.7,78.4,72.6,71.7,68.1,62.0,33.9,31.9,29.7,29.6,29.5,29.3,29.1,24.6,22.6,20.8,20.7,20.4,14.1.
FT-IR(cm-1):2922,2857,1739,1374,1216,1032,889.
(製造例43)デカノイル基導入パラミロンの製造(仕込み比:[デカリン酸クロリド]/[グルコースユニット]=0.5)
 1Lの三ツ口フラスコに、パラミロン(3.0g)、塩化リチウム(2.4g)、及びDMAc(150mL)を入れ、窒素雰囲気下、120℃で撹拌を行った。撹拌開始から約30分後には、当該三ツ口フラスコ内の溶液は透明になった。この透明になった溶液の温度を室温に戻した後、トリエチルアミン(12.9mL)を加え、続いてデカリン酸クロリド(1.9mL)を溶かしたDMAc(150mL)を滴下して加えた後に、当該溶液を120℃に加熱しながら窒素雰囲気下で撹拌し反応させた。3時間後、当該三ツ口フラスコ内の反応溶液にメタノール(0.6L)を加えて白沈を生じさせた。遠心分離処理によって当該反応溶液から上澄みを除き、白沈を得た。この白沈をメタノール・クロロホルム(2/1)混合溶媒(270mL)で洗浄し、吸引濾過で濾別後、終夜で風乾、さらに減圧下で加熱乾燥(90℃、4時間)させることにより、目的物(デカノイル基導入パラミロン、以下、「誘導体T13(Dec)」)を得た。
(製造例44)デカノイル基/アセチル基導入パラミロンの製造
 1Lナスフラスコに、製造例43で得た誘導体T13(Dec)(3.0g)と塩化リチウム(2.0g)、及びDMAc(450mL)を入れ、窒素雰囲気下、120℃で30分撹拌した。撹拌後、均一状態になった溶液の液温を70℃まで冷却させた後、当該溶液にピリジン(50mL)と無水酢酸(72mL)を加えて窒素雰囲気下で5時間、続いて室温で17時間撹拌し反応させた。反応終了後、反応溶液にメタノール(450mL)及び蒸留水(450mL)を加えて白沈を生じさせ、吸引濾過により白沈を得た。当該白沈を蒸留水(480mL)及びメタノール(480mL)で洗浄し、終夜で風乾、さらに減圧下で加熱乾燥(90℃(4時間))させることにより、目的物(デカノイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体T14(Dec-Ac)」)(3.6g)を得た。
 誘導体T14(Dec-Ac)のH-NMR、13C-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ4.98-4.73(m),4.44-4.23(m),4.07-3.95(m),3.79-3.55(m),2.34-2.16(m),2.11(s),2.05(s),1.99(s),1.62-1.53(m),1.24(s),0.87(t,J=6.9).
13C-NMR(CDCl):δ 173.4,170.5,169.1,168.5,100.7,78.4,72.6,71.7,68.1,62.0,33.9,31.9, 29.7,29.6,29.5,29.3,29.1,24.6, 22.6, 20.8,20.7,20.4,14.1.
FT-IR(cm-1):2935,2845,1747,1374,1214,1030,889.
(製造例45)デカノイル基導入パラミロンの製造(仕込み比:[デカリン酸クロリド]/[グルコースユニット]=0.5)
 1Lの三ツ口フラスコに、パラミロン(3.0g)、塩化リチウム(2.4g)、及びDMAc(150mL)を入れ、窒素雰囲気下、120℃で撹拌を行った。撹拌開始から約30分後には、当該三ツ口フラスコ内の溶液は透明になった。この透明になった溶液の温度を室温に戻した後、トリエチルアミン(12.9mL)を加え、続いてデカリン酸クロリド(1.9mL)を溶かしたDMAc(150mL)を滴下して加えた後に、当該溶液を120℃に加熱しながら窒素雰囲気下で撹拌し反応させた。3時間後、当該三ツ口フラスコ内の反応溶液にメタノール(0.3L)及び蒸留水(0.1L)を加えて白沈を生じさせた。遠心分離処理によって当該反応溶液から上澄みを除き、白沈を得た。この白沈をメタノール・クロロホルム(2/1)混合溶媒(270mL)で洗浄し、吸引濾過で濾別後、終夜で風乾、さらに減圧下で加熱乾燥(90℃、4時間)させることにより、目的物(デカノイル基導入パラミロン、以下、「誘導体T15(Dec)」)を得た。
(製造例46)デカノイル基/アセチル基導入パラミロンの製造
 1Lナスフラスコに、製造例45で得た誘導体T15(Dec)(4.1g)と塩化リチウム(2.0g)、及びDMAc(450mL)を入れ、窒素雰囲気下、120℃で30分撹拌した。撹拌後、均一状態になった溶液の液温を70℃まで冷却させた後、当該溶液にピリジン(50mL)と無水酢酸(72mL)を加えて窒素雰囲気下で5時間、続いて室温で17時間撹拌し反応させた。反応終了後、反応溶液にメタノール(450mL)及び蒸留水(400mL)を加えて白沈を生じさせ、吸引濾過により白沈を得た。当該白沈をメタノール(500mL)で洗浄し、終夜で風乾、さらに減圧下で加熱乾燥(90℃(4時間))させることにより、目的物(デカノイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体T16(Dec-Ac)」)(5.8g)を得た。
 誘導体T16(Dec-Ac)のH-NMR、13C-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ4.97-4.71(m),4.45-4.19(m),4.08-3.93(m),3.82-3.51(m),2.38-2.18(m),2.11(s),2.05(s),1.99(s),1.62-1.54(m),1.25(s),0.87(t,J=6.9).
13C-NMR(CDCl):δ 173.4,170.5,169.1,168.9,100.7,78.3,72.6,71.7,68.1,61.9,33.9,31.8, 29.5,29.4,29.2,29.1,24.6,22.6,20.9, 20.7,20.4,14.1.
FT-IR(cm-1):2937,2859,1732,1372,1214,1030,889.
(製造例47)ウンデカノイル基導入パラミロンの製造(仕込み比:[ウンデカリン酸クロリド]/[グルコースユニット]=0.5)
 10Lの三ツ口フラスコに、パラミロン(3.0g)、塩化リチウム(2.4g)、及びDMAc(150mL)を入れ、窒素雰囲気下、120℃で撹拌を行った。撹拌開始から約30分後には、当該三ツ口フラスコ内の溶液は透明になった。この透明になった溶液の温度を室温に戻した後、トリエチルアミン(13.0mL)を加え、続いてウンデカリン酸クロリド(2.0mL)を溶かしたDMAc(150mL)を滴下して加えた後に、当該溶液を120℃に加熱しながら窒素雰囲気下で撹拌し反応させた。3時間後、当該三ツ口フラスコ内の反応溶液にメタノール(0.6L)を加えて白沈を生じさせた。遠心分離処理によって当該反応溶液から上澄みを除き、白沈を得た。この白沈をメタノール・クロロホルム(2/1)混合溶媒(270mL)で洗浄し、吸引濾過で濾別後、終夜で風乾、さらに減圧下で加熱乾燥(90℃、4時間)させることにより、目的物(ウンデカノイル基導入パラミロン、以下、「誘導体T17(Und)」)を得た。
(製造例48)ウンデカノイル基/アセチル基導入パラミロンの製造
 10Lナスフラスコに、製造例47で得た誘導体T17(Und)(3.8g)と塩化リチウム(2.0g)、及びDMAc(450mL)を入れ、窒素雰囲気下、120℃で30分撹拌した。撹拌後、均一状態になった溶液の液温を70℃まで冷却させた後、当該溶液にピリジン(50mL)と無水酢酸(72mL)を加えて窒素雰囲気下で5時間、続いて室温で17時間撹拌し反応させた。反応終了後、反応溶液にメタノール(500mL)及び蒸留水(500mL)を加えて白沈を生じさせ、吸引濾過により白沈を得た。当該白沈を水(480mL)及びメタノール(0.1L)で洗浄し、終夜で風乾、さらに減圧下で加熱乾燥(90℃(4時間))させることにより、目的物(ウンデカノイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体T18(Und-Ac)」(4.9g)を得た。
 誘導体T18(Und-Ac)のH-NMR、13C-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 4.99-4.73(m),4.45-4.23(m),4.07-3.95(m),3.79-3.51(m),2.34-2.19(m),2.11(s),2.05(s),1.99(s),1.62-1.53(m),1.25(s),0.87(t,J=6.9).
13C-NMR(CDCl):δ 173.4,170.5,169.1,168.7,100.7,78.4,72.2,71.8,68.1,62.1,33.9,31.9,29.5,29.4,29.3,29.1,24.6,22.6,20.9,20.7,20.4,14.1.
FT-IR(cm-1):2932,2856,1740,1368,1212,1030,889.
(製造例49)ラウロイル基導入パラミロンの製造(仕込み比:[ラウリン酸クロリド]/[グルコースユニット]=0.25)
 2Lの三ツ口フラスコに、パラミロン(11.0g)、塩化リチウム(8.6g)、及びDMAc(0.5L)を入れ、窒素雰囲気下、120℃で撹拌を行った。撹拌開始から約1時間後には、当該三ツ口フラスコ内の溶液は透明になった。この透明になった溶液の温度を室温に戻した後、トリエチルアミン(4.7mL)を加え、続いてラウリン酸クロリド(4.0mL)を溶かしたDMAc(0.5L)を滴下して加えた後に、当該溶液を120℃に加熱しながら窒素雰囲気下で撹拌し反応させた。3時間後、当該三ツ口フラスコ内の反応溶液に水(2.0L)を加えて白沈を生じさせた。遠心分離処理によって当該反応溶液から上澄みを除き、白沈を得た。この白沈をメタノール・クロロホルム(2/1)混合溶媒(900mL)で洗浄し、吸引濾過で濾別後、終夜で風乾、さらに減圧下で加熱乾燥(90℃、4時間)させることにより、目的物(ラウロイル基導入パラミロン、以下、「誘導体T19(Lau)」)を得た。
(製造例50)ラウロイル基/アセチル基導入パラミロンの製造
 2Lナスフラスコに、製造例49で得た誘導体T19(Lau)(9.5g)と塩化リチウム(6.5g)、及びDMAc(1.5L)を入れ、窒素雰囲気下、120℃で1時間撹拌した。撹拌後、均一状態になった溶液の液温を70℃まで冷却させた後、当該溶液にピリジン(168mL)と無水酢酸(240mL)を加えて窒素雰囲気下で6時間、続いて室温で16時間撹拌し反応させた。反応終了後、反応溶液に蒸留水(3.0L)を加えて白沈を生じさせ、吸引濾過により白沈を得た。当該白沈を水(1.6L)及びメタノール(0.3L)で洗浄し、終夜で風乾、さらに減圧下で加熱乾燥(90℃(4時間))させることにより、目的物(ラウロイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体T20(Lau-Ac)」)(13.6g)を得た。
 誘導体T20(Lau-Ac)のH-NMR、13C-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 4.98-4.73(m),4.44-4.23(m),4.07-3.95(m),3.79-3.55(m),2.34-2.16(m),2.11(s), 2.05(s),1.99(s),1.62-1.53(m),1.24(s),0.87(t,J=6.9)
13C-NMR(CDCl):δ 173.4,170.5,169.1,168.5,100.7,78.4,72.6,71.7,68.1,62.0,33.9,31.9,29.7,29.6, 29.5,29.3,29.1,24.6,22.6,20.8,20.7,20.4,14.1.
FT-IR(cm-1):2932,2862,1740,1374,1207,1032,889.
(製造例51)ラウロイル基導入パラミロンの製造(仕込み比:[ラウリン酸クロリド]/[グルコースユニット]=0.5)
 2Lの三ツ口フラスコに、パラミロン(10.0g)、塩化リチウム(7.8g)、及びDMAc(0.5L)を入れ、窒素雰囲気下、120℃で撹拌を行った。撹拌開始から約30分後には、当該三ツ口フラスコ内の溶液は透明になった。この透明になった溶液の温度を室温に戻した後、トリエチルアミン(8.6mL)を加え、続いてラウリン酸クロリド(7.4mL)を溶かしたDMAc(0.5L)を滴下して加えた後に、当該溶液を120℃に加熱しながら窒素雰囲気下で撹拌し反応させた。3時間後、当該三ツ口フラスコ内の反応溶液にメタノール(2.0L)を加えて白沈を生じさせた。遠心分離処理によって当該反応溶液から上澄みを除き、白沈を得た。この白沈をメタノール・クロロホルム(2/1)混合溶媒(900mL)で洗浄し、吸引濾過で濾別後、終夜で風乾、さらに減圧下で加熱乾燥(90℃、2時間)させることにより、目的物(ラウロイル基導入パラミロン、以下、「誘導体T21(Lau)」)を得た。
(製造例52)ラウロイル基/アセチル基導入パラミロンの製造
 2Lナスフラスコに、製造例51で得た誘導体T21(Lau)(11.0g)と塩化リチウム(6.5g)、及びDMAc(1.5L)を入れ、窒素雰囲気下、120℃で1時間撹拌した。撹拌後、均一状態になった溶液の液温を70℃まで冷却させた後、当該溶液にピリジン(168mL)と無水酢酸(240mL)を加えて窒素雰囲気下で6時間、続いて室温で15時間撹拌し反応させた。反応終了後、反応溶液に蒸留水(3.0L)を加えて白沈を生じさせ、吸引濾過により白沈を得た。当該白沈を水(1.6L)及びメタノール(0.3L)で洗浄し、終夜で風乾、さらに減圧下で加熱乾燥(90℃(4時間))させることにより、目的物(ラウロイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体T22(Lau-Ac)」)(15.1g)を得た。
 誘導体T22(Lau-Ac)のH-NMR、13C-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 4.98-4.73(m),4.44-4.23(m),4.07-3.95(m),3.79-3.55(m),2.34-2.16(m),2.11(s),2.05(s),1.99(s),1.62-1.53(m),1.24(s),0.87(t,J=6.9).
13C-NMR(CDCl):δ 173.4,170.5,169.1,168.5,100.7,78.4,72.6,71.7,68.1,62.0,33.9,31.9,29.7,29.6,29.5,29.3,29.1,24.6,22.6,20.8,20.7,20.4,14.1.
FT-IR(cm-1):2933,2861,1739,1374,1213,1031,895.
(製造例53)トリデカノイル基導入パラミロンの製造(仕込み比:[トリデカン酸クロリド]/[グルコースユニット]=0.25)
 まず、50mLナスフラスコにトリデカン酸(2.0g)、クロロホルム(10.0mL)及び塩化オキサリル(1.3mL)を入れ、窒素雰囲気下で室温にて撹拌を行った。3時間後、窒素を吹き付けて余剰のクロロホルム及び塩化オキサリルを除いた。得られたトリデカン酸クロリドをDMAc(10.0mL)に溶かして、トリデカン酸クロリドのDMAc溶液を調製した。
 次いで、2Lの三ツ口フラスコに、パラミロン(3.0g)、塩化リチウム(2.4g)、及びDMAc(150mL)を入れ、窒素雰囲気下、120℃で撹拌を行った。撹拌開始から約30分後には、当該三ツ口フラスコ内の溶液は透明になった。この透明になった溶液の温度を室温に戻した後、トリエチルアミン(6.4mL)を加え、続いて上記で調製したトリデカン酸クロリドのDMAc溶液(6.0mL)をDMAc(150mL)で希釈し、これを滴下して加えた後に、当該溶液を120℃に加熱しながら窒素雰囲気下で撹拌し反応させた。3時間後、当該三ツ口フラスコ内の反応溶液にメタノール(300mL)及び蒸留水(100mL)を加えて白沈を生じさせた。遠心分離処理によって当該反応溶液から上澄みを除き、白沈を得た。この白沈をメタノール・クロロホルム(2/1)混合溶媒(270mL)で洗浄し、吸引濾過で濾別後、終夜で風乾、さらに減圧下で加熱乾燥(90℃、2時間)させることにより、目的物(トリデカノイル基導入パラミロン、以下、「誘導体T23(Tri)」)を得た。
(製造例54)トリデカノイル基/アセチル基導入パラミロンの製造
 10Lナスフラスコに、製造例53で得た誘導体T23(Tri)(4.1g)と塩化リチウム(2.0g)、及びDMAc(450mL)を入れ、窒素雰囲気下、120℃で30分間撹拌した。撹拌後、均一状態になった溶液の液温を70℃まで冷却させた後、当該溶液にピリジン(50mL)と無水酢酸(72mL)を加えて窒素雰囲気下で6時間、続いて室温で17時間撹拌し反応させた。反応終了後、反応溶液にメタノール(450mL)及び蒸留水(450mL)を加えて白沈を生じさせ、遠心分離処理によって当該反応溶液から上澄みを除き、白沈を得た。当該白沈をメタノール(500mL)で洗浄し、終夜で風乾、さらに減圧下で加熱乾燥(90℃(4時間))させることにより、目的物(トリデカノイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体T24(Tri-Ac)」)(5.5g)を得た。
 誘導体T24(Tri-Ac)のH-NMR、13C-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 4.99-4.73(m),4.47-4.21(m),4.07-3.95(m),3.79-3.55(m),2.34-2.16(m),2.11(s),2.06(s),2.00(s),1.68-1.55(m),1.26 (s),0.88(t,J=6.9)
13C-NMR(CDCl):δ 173.4,170.5,169.1,168.9,100.6,78.5,72.6,71.7,68.0,62.0,33.9,31.9, 29.6,29.5,29.4,29.3,29.2,29.1,24.6,22.6,20.8,20.7,20.4,14.1.
FT-IR(cm-1):2922,2853,1748,1366,1210,1030,889.
(製造例55)ステアロイル基導入パラミロンの製造(仕込み比:[ステアリン酸クロリド]/[グルコースユニット]=0.1)
 2Lの三ツ口フラスコに、パラミロン(10.0g)、塩化リチウム(7.8g)、及びDMAc(0.5L)を入れ、窒素雰囲気下、120℃で撹拌を行った。撹拌開始から約30分後には、当該三ツ口フラスコ内の溶液は透明になった。この透明になった溶液の温度を室温に戻した後、トリエチルアミン(8.6mL)を加え、続いてステアリン酸クロリド(2.1mL)を溶かしたDMAc(0.5L)を滴下して加えた後に、当該溶液を120℃に加熱しながら窒素雰囲気下で撹拌し反応させた。3時間後、当該三ツ口フラスコ内の反応溶液にメタノール・クロロホルム(2/1)混合溶媒(1.8L)を加えて白沈を生じさせた。遠心分離処理によって当該反応溶液から上澄みを除き、白沈を得た。この白沈をメタノール・クロロホルム(2/1)混合溶媒(900mL)で洗浄し、遠心分離処理によって当該反応溶液から上澄みを除き、終夜で風乾、さらに減圧下で加熱乾燥(90℃、2時間)させることにより、目的物(ステアロイル基導入パラミロン、以下、「誘導体T25(Ste)」)を得た。
(製造例56)ステアロイル基/アセチル基導入パラミロンの製造
 2Lナスフラスコに、製造例55で得た誘導体T25(Ste)(11.0g)と塩化リチウム(6.5g)、及びDMAc(1.5L)を入れ、窒素雰囲気下、120℃で1時間撹拌した。撹拌後、均一状態になった溶液の液温を70℃まで冷却させた後、当該溶液にピリジン(168mL)と無水酢酸(240mL)を加えて窒素雰囲気下で6時間、続いて室温で15時間撹拌し反応させた。反応終了後、反応溶液に蒸留水(3.0L)を加えて白沈を生じさせ、吸引濾過により白沈を得た。当該白沈を水(1.6L)及びメタノール(0.9L)で洗浄し、終夜で風乾、さらに減圧下で加熱乾燥(90℃(4時間))させることにより、目的物(ステアロイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体T26(Ste-Ac)」)(15.7g)を得た。
 誘導体T26(Ste-Ac)のH-NMR、13C-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 5.05-4.65(m),4.47-4.1(m), 4.07-3.91(m),3.78-3.47(m),2.25-2.17(m),2.10(s),2.04(s),1.98(s),1.57-1.52(m),1.24(s),0.86(t,J=6.9).
13C-NMR(CDCl):δ 173.3,170.5,169.1,168.9,100.6,78.4,72.6,71.7,68.0,62.0,31.9,29.7,29.6,29.3,24.6,22.6,21.5,20.8,20.7,20.4,14.1.
FT-IR(cm-1):2941,2872,1748,1366,1207,1029,888.
(製造例57)ラウロイル基導入パラミロンの製造(仕込み比:[ラウリン酸クロリド]/[グルコースユニット]=1.0)
 2Lの三ツ口フラスコに、パラミロン(10.0g)、塩化リチウム(7.8g)、及びDMAc(0.5L)を入れ、窒素雰囲気下、120℃で撹拌を行った。撹拌開始から約30分後には、当該三ツ口フラスコ内の溶液は透明になった。この透明になった溶液の温度を室温に戻した後、トリエチルアミン(17.0mL)を加え、続いてラウリン酸クロリド(14.8mL)を溶かしたDMAc(0.5L)を滴下して加えた後に、当該溶液を120℃に加熱しながら窒素雰囲気下で撹拌し反応させた。3時間後、当該三ツ口フラスコ内の反応溶液に蒸留水(2.0L)を加えて白沈を生じさせた。吸引濾過によって濾別し、白沈を得た。この白沈をメタノール・クロロホルム(2/1)混合溶媒(900mL)で洗浄し、吸引濾過で濾別後、終夜で風乾、さらに減圧下で加熱乾燥(90℃、2時間)させることにより、目的物(ラウロイル基導入パラミロン、以下、「誘導体T27(Lau)」)を得た。
(製造例58)ラウロイル基/アセチル基導入パラミロンの製造
 2Lナスフラスコに、製造例57で得た誘導体T27(Lau)(12.0g)と塩化リチウム(6.5g)、及びDMAc(1.5L)を入れ、窒素雰囲気下、120℃で1時間撹拌した。撹拌後、均一状態になった溶液の液温を70℃まで冷却させた後、当該溶液にピリジン(168mL)と無水酢酸(240mL)を加えて窒素雰囲気下で8時間、続いて室温で15時間撹拌し反応させた。反応終了後、反応溶液に蒸留水(3.0L)を加えて白沈を生じさせ、吸引濾過により白沈を得た。当該白沈を水(1.6L)及びメタノール(0.5L)で洗浄し、終夜で風乾、さらに減圧下で加熱乾燥(90℃(4時間))させることにより、目的物(ラウロイル基導入パラミロンをアセチル化したパラミロン誘導体、以下、「誘導体T28(Lau-Ac)」)(16.7g)を得た。
 誘導体T28(Lau-Ac)のH-NMR、13C-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 5.03-4.62(m),4.48-4.1(m),4.08-3.87(m),3.73-3.47(m),2.36-2.15(m),2.11(s),2.05(s),1.99(s),1.81-1.68(m),1.25(s),0.87(t,J=6.9).
13C-NMR(CDCl):δ 173.4,170.5,169.1,100.7,78.4,72.6,71.7,68.1,62.0,33.9,31.9,29.6,29.5,29.3,29.2,29.1,24.6,22.7,21.5,20.9,20.7,20.4,14.1.
FT-IR(cm-1):2928,2858,1747,1369,1218,1031,888.
 各誘導体等の置換度、数平均分子量(MN)、耐熱性(Tg)、耐熱分解性(5%減量温度)、熱可塑性(MFR)、及び耐水性(吸水率)を測定した。数平均分子量(MN)以外は、実施例2と同様の方法で測定した。
(質量平均分子量の測定)
 合成した各誘導体について、質量平均分子量(Mw)を、GPC法により、以下の条件で測定した。
GPC装置: 1100 HPLCシステム(Agilent社製)+MINIDAWN+QELS+OptilabreX(Wyatt社製)、
使用カラム:KD-805+K-802(昭和電工社製)、
溶離液:クロロホルム、
流速:1.0mL/分。
 測定した結果を表4及び5に示す。表4中の「長鎖炭化水素基の置換度」の欄のうち、「合計」は、高分子全体における長鎖炭化水素基の置換度を、「C2の置換度」はグルコースユニットの第2位の炭素原子の水酸基の置換度を、[C6]はグルコースユニットの第6位の炭素原子の水酸基の置換度を、それぞれ示す。また、「短鎖炭化水素基の置換度」の欄のうち、「合計」は、高分子全体における短鎖炭化水素基の置換度を、「C2+C4の置換度」はグルコースユニットの第2位及び第4位の炭素原子の水酸基の置換度の和を、[C6]はグルコースユニットの第6位の炭素原子の水酸基の置換度を、それぞれ示す。また、表中、「-」は測定していないことを示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 表6に、置換度が0.15程度の誘導体について、導入した長鎖炭化水素基の炭素数(表中、「炭素数」)ごとに、MFR値をまとめた。同様に、表7に、置換度が0.3程度の誘導体について、導入した長鎖炭化水素基の炭素数ごとに、MFR値をまとめた。この結果、MFR値は、導入した直鎖状の炭化水素基の炭素数が11~12付近では低くなり、炭素数13以上では高くなる傾向が観察された。この結果は、炭素数11、12付近で、パラミロン誘導体の分子集合様式が劇的に変化することを示唆している。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
(溶融紡糸)
 誘導体T2(Myr-Ac)、誘導体T4(Myr-Ac)、誘導体T6(Pam-Ac)、誘導体T8(Pam-Ac)」、誘導体T10(Ste-Ac)、誘導体T12(Ste-Ac)、誘導体T14(Dec-Ac)、誘導体T16(Dec-Ac)、誘導体T22(Lau-Ac)、誘導体T24(Tri-Ac)及び誘導体T28(Lau-Ac)について、溶融紡糸を試みた。
 具体的には、まず、合成した各誘導体約1.0gを、市販の溶融押出紡糸装置(溶融押出装置、製品名:IMC-1149、(株)井元製作所製)の加熱炉に投入した。続いて、加熱炉及び造糸ダイ温度を200~250℃に設定し、押出速度0.2mm/秒で押し出しを行い、市販の巻取装置(巻取装置(標準A)、製品名:IMC-1128-A、(株)井元製作所製)により巻き取ることによって紡糸を行った。
 この結果、全ての誘導体において、可塑剤なしで溶融紡糸できた。
[実施例4]
 Euglena gracilis由来のパラミロンに長鎖炭化水素基とプロピル基又はフェニル基を導入した各種パラミロン誘導体を製造し、熱可塑性を調べた。
(製造例59)ミリストイル基導入パラミロンの製造(仕込み比:[ミリスチン酸クロリド]/[グルコースユニット]=0.5)
 2Lの三ツ口フラスコに、パラミロン(10.0g)、塩化リチウム(7.8g)、及びDMAc(0.5L)を入れ、窒素雰囲気下、120℃で撹拌を行った。撹拌開始から約1時間後には、当該三ツ口フラスコ内の溶液は透明になった。この透明になった溶液の温度を室温に戻した後、トリエチルアミン(43mL)を加え、続いてミリスチン酸クロリド(8.4mL)を溶かしたDMAc(0.5L)を滴下して加えた後に、当該溶液を120℃に加熱しながら窒素雰囲気下で撹拌し反応させた。3時間後、当該三ツ口フラスコ内の反応溶液にメタノール(2.0L)を加えて白沈を生じさせた。遠心分離処理によって当該反応溶液から上澄みを除き、白沈を得た。この白沈をメタノール/クロロホルム(2/1)混合溶媒(900mL)で洗浄し、吸引濾過で濾別後、終夜で風乾、さらに減圧下で加熱乾燥(70℃、2時間)させることにより、目的物(ミリストイル基導入パラミロン、以下、「誘導体U1(Myr)」)(11.7g)を得た。
(製造例60)ミリストイル基/ベンゾイル基導入パラミロンの製造
 2Lの三ツ口フラスコに、製造例59で得た誘導体U1(Myr)(11.0g)、塩化リチウム(6.2g)、及びDMAc(0.5L)を入れ、窒素雰囲気下、120℃で撹拌を行った。撹拌開始から約1時間後には、当該三ツ口フラスコ内の溶液は透明になった。この透明になった溶液の温度を室温に戻した後、DMAc(1.0L)、ピリジン(160mL)、塩化ベンゾイル(56.7mL)を滴下して加えた後に、当該溶液を120℃に加熱しながら窒素雰囲気下で撹拌し反応させた。3時間後、当該三ツ口フラスコ内の反応溶液にメタノール(1.0L)、蒸留水(1.0L)を加えて白沈を生じさせた。遠心分離処理によって当該反応溶液から上澄みを除き、白沈を得た。この白沈をメタノール(1.6L)で洗浄し、吸引濾過で濾別後、終夜で風乾、さらに減圧下で加熱乾燥(90℃、4時間)させることにより、目的物(ミリストイル基導入パラミロンをベンゾイル化したパラミロン誘導体、以下、「誘導体U2(Myr-Bz)」)(18.3g)を得た。
 誘導体U2(Myr-Bz)のH-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 8.07-7.67(m),7.58-7.04(m),5.44-3.14(m),2.41-1.96(m),1.66-1.52(m),1.24(s),0.87(s).
FT-IR(cm-1):2918,2847,1723,1449,1369,1264,1213,1174,1078,1058,1024,891,709.
(製造例61)ラウロイル基導入パラミロンの製造(仕込み比:[ラウリン酸クロリド]/[グルコースユニット]=0.5)
 2Lの三ツ口フラスコに、パラミロン(10.0g)、塩化リチウム(7.8g)、及びDMAc(0.5L)を入れ、窒素雰囲気下、120℃で撹拌を行った。撹拌開始から約1時間後には、当該三ツ口フラスコ内の溶液は透明になった。この透明になった溶液の温度を室温に戻した後、トリエチルアミン(43mL)を加え、続いてラウリン酸クロリド(7.3mL)を溶かしたDMAc(0.5L)を滴下して加えた後に、当該溶液を120℃に加熱しながら窒素雰囲気下で撹拌し反応させた。3時間後、当該三ツ口フラスコ内の反応溶液に蒸留水(2.0L)を加えて白沈を生じさせた。遠心分離処理によって当該反応溶液から上澄みを除き、白沈を得た。この白沈をメタノール(400mL)で洗浄し、吸引濾過で濾別後、終夜で風乾、さらに減圧下で加熱乾燥(70℃、2時間)させることにより、目的物(ミリストイル基導入パラミロン、以下、「誘導体U3(Lau)」)(11.7g)を得た。
(製造例62)ラウロイル基/ベンゾイル基導入パラミロンの製造
 2Lの三ツ口フラスコに、製造例61で得た誘導体U3(Lau)(1.0g)、塩化リチウム(593mg)、及びDMAc(50mL)を入れ、窒素雰囲気下、120℃で撹拌を行った。撹拌開始から約1時間後には、当該三ツ口フラスコ内の溶液は透明になった。この透明になった溶液の温度を室温に戻した後、DMAc(100mL)、ピリジン(15mL)、塩化ベンゾイル(5.4mL)を滴下して加えた後に、当該溶液を120℃に加熱しながら窒素雰囲気下で撹拌し反応させた。3時間後、当該三ツ口フラスコ内の反応溶液にメタノール(300mL)、蒸留水(300mL)を加えて白沈を生じさせた。遠心分離処理によって当該反応溶液から上澄みを除き、白沈を得た。この白沈をメタノール(160mL)で洗浄し、吸引濾過で濾別後、終夜で風乾、さらに減圧下で加熱乾燥(90℃、4時間)させることにより、目的物(ラウロイル基導入パラミロンをベンゾイル化したパラミロン誘導体、以下、「誘導体U4(Lau-Bz)」)(1.5g)を得た。
 誘導体U4(Lau-Bz)のH-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 8.19-7.72(m),7.67-7.01(m),5.32-3.12(m),2.44-2.11(m),1.67-1.46(m),1.24(s),0.87(s).
FT-IR(cm-1):29123,2855,1719,1451,1372,1267,1175,1090,1067,1025,709.
(製造例63)ミリストイル基導入パラミロンの製造(仕込み比:[ミリスチン酸クロリド]/[グルコースユニット]=0.5)
 2Lの三ツ口フラスコに、パラミロン(10.0g)、塩化リチウム(7.8g)、及びDMAc(0.5L)を入れ、窒素雰囲気下、120℃で撹拌を行った。撹拌開始から約1時間後には、当該三ツ口フラスコ内の溶液は透明になった。この透明になった溶液の温度を室温に戻した後、トリエチルアミン(8.6mL)を加え、続いてミリスチン酸クロリド(8.4mL)を溶かしたDMAc(0.5L)を滴下して加えた後に、当該溶液を120℃に加熱しながら窒素雰囲気下で撹拌し反応させた。3時間後、当該三ツ口フラスコ内の反応溶液にメタノール(2.0L)を加えて白沈を生じさせた。遠心分離処理によって当該反応溶液から上澄みを除き、白沈を得た。この白沈をメタノール・クロロホルム(2/1)混合溶媒(900mL)で洗浄し、吸引濾過で濾別後、終夜で風乾、さらに減圧下で加熱乾燥(70℃、2時間)させることにより、目的物(ミリストイル基導入パラミロン、以下、「誘導体U5(Myr)」)(10.0g)を得た。
(製造例64)ミリストイル基/プロパノイル基導入パラミロンの製造
 2Lナスフラスコに、製造例63で得た誘導体U5(Myr)(9.8g)と塩化リチウム(6.5g)、及びDMAc(1.5L)を入れ、窒素雰囲気下、120℃で1時間撹拌した。撹拌後、均一状態になった溶液の液温を70℃まで冷却させた後、当該溶液にピリジン(168mL)と無水プロピオン酸(360mL)を加えて窒素雰囲気下で7時間、続いて室温で15時間撹拌し反応させた。反応終了後、反応溶液に蒸留水(3.0L)を加えて白沈を生じさせ、吸引濾過により白沈を得た。当該白沈を水(1.6L)及びメタノール(0.3L)で洗浄し、終夜で風乾、さらに減圧下で加熱乾燥(90℃(4時間))させることにより、目的物(ミリストイル基導入パラミロンをプロパノイル化したパラミロン誘導体、以下、「誘導体U6(Myr-Pr)」)(10.7g)を得た。
 誘導体U6(Myr-Pr)のH-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 5.11-3.16(m),2.62-2.45(m),2.39-2.16(m),1.77-1.47(m),1.24(s),1.18-0.96(br),0.86(t,J=6.8).
FT-IR(cm-1):3484,2976,2923,2853,1739,1461,1419,1363,1271,1160,1055,871,806,563.
(製造例65)ステアロイル基導入パラミロンの製造(仕込み比:[ステアリン酸クロリド]/[グルコースユニット]=0.5)
 2Lの三ツ口フラスコに、パラミロン(10.0g)、塩化リチウム(7.8g)、及びDMAc(0.5L)を入れ、窒素雰囲気下、120℃で撹拌を行った。撹拌開始から約1時間後には、当該三ツ口フラスコ内の溶液は透明になった。この透明になった溶液の温度を室温に戻した後、トリエチルアミン(43mL)を加え、続いてステアリン酸クロリド(10.4mL)を溶かしたDMAc(0.5L)を滴下して加えた後に、当該溶液を120℃に加熱しながら窒素雰囲気下で撹拌し反応させた。3時間後、当該三ツ口フラスコ内の反応溶液にメタノール/クロロホルム(2/1)混合溶媒(1.8L)を加えて白沈を生じさせた。遠心分離処理によって当該反応溶液から上澄みを除き、白沈を得た。この白沈をメタノール/クロロホルム(2/1)混合溶媒(900mL)で洗浄し、吸引濾過で濾別後、終夜で風乾、さらに減圧下で加熱乾燥(70℃、2時間)させることにより、目的物(ステアロイル基導入パラミロン、以下、「誘導体U7(Ste)」)(14.2g)を得た。
(製造例66)ステアロイル基/プロパノイル基導入パラミロンの製造
 2Lナスフラスコに、製造例65で得た誘導体U7(Ste)(14.2g)と塩化リチウム(6.5g)、及びDMAc(1.5L)を入れ、窒素雰囲気下、120℃で1時間撹拌した。撹拌後、均一状態になった溶液の液温を70℃まで冷却させた後、当該溶液にピリジン(168mL)と無水プロピオン酸(360mL)を加えて窒素雰囲気下で7時間、続いて室温で15時間撹拌し反応させた。反応終了後、反応溶液に蒸留水(3.0L)を加えて白沈を生じさせ、吸引濾過により白沈を得た。当該白沈を水(1.6L)及びメタノール(0.3L)で洗浄し、終夜で風乾、さらに減圧下で加熱乾燥(90℃(4時間))させることにより、目的物(ミリストイル基導入パラミロンをプロパノイル化したパラミロン誘導体、以下、「誘導体U8(Ste-Pr)」(15.5g)を得た。
 誘導体U8(Ste-Pr)のH-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 5.13-3.08(m),2.61-2.42(m),2.39-2.13(m),1.87-1.64(m),1.23(s),1.20-0.96(br),0.86(t,J=6.9).
FT-IR(cm-1):2977,2915,2848,1739,1461,1418,1361,1270,1160,1057,869,805,561.
(製造例67)ラウロイル基導入パラミロンの製造(仕込み比:[ラウリン酸クロリド]/[グルコースユニット]=0.5)
 2Lの三ツ口フラスコに、パラミロン(10.0g)、塩化リチウム(7.9g)、及びDMAc(0.5L)を入れ、窒素雰囲気下、120℃で撹拌を行った。撹拌開始から約1時間後には、当該三ツ口フラスコ内の溶液は透明になった。この透明になった溶液の温度を室温に戻した後、トリエチルアミン(43mL)を加え、続いてラウリン酸クロリド(7.3mL)を溶かしたDMAc(0.5L)を滴下して加えた後に、当該溶液を120℃に加熱しながら窒素雰囲気下で撹拌し反応させた。3時間後、当該三ツ口フラスコ内の反応溶液に蒸留水(2.0L)を加えて白沈を生じさせた。遠心分離処理によって当該反応溶液から上澄みを除き、白沈を得た。この白沈をメタノール・クロロホルム(2/1)混合溶媒(900mL)で洗浄し、吸引濾過で濾別後、終夜で風乾、さらに減圧下で加熱乾燥(70℃、2時間)させることにより、目的物(ステアロイル基導入パラミロン、以下、「誘導体U9(Lau)」)(11.6g)を得た。
(製造例68)ラウロイル基/プロパノイル基導入パラミロンの製造
 2Lナスフラスコに、製造例67で得た誘導体U9(Lau)(11.6g)と塩化リチウム(6.5g)、及びDMAc(1.5L)を入れ、窒素雰囲気下、120℃で1時間撹拌した。撹拌後、均一状態になった溶液の液温を70℃まで冷却させた後、当該溶液にピリジン(168mL)と無水プロピオン酸(360mL)を加えて窒素雰囲気下で7時間、続いて室温で15時間撹拌し反応させた。反応終了後、反応溶液に蒸留水(3.0L)を加えて白沈を生じさせ、吸引濾過により白沈を得た。当該白沈を水(1.6L)及びメタノール(0.3L)で洗浄し、終夜で風乾、さらに減圧下で加熱乾燥(90℃(4時間))させることにより、目的物(ミリストイル基導入パラミロンをプロパノイル化したパラミロン誘導体、以下、「誘導体U10(Lau-Pr)」(12.7g)を得た。
 誘導体U10(Lau-Pr)のH-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 5.21-3.05(m),2.66-2.42(m),2.39-2.15(m),1.77-1.61(m),1.24(s),1.20-0.96(br),0.86(t,J=6.6).
FT-IR(cm-1):3484,2975,2923,2852,1739,1458,1418,1363,1268,1162,1053,871,805,561.
 各誘導体等の置換度を実施例2と同様の方法で測定した。また、各誘導体の質量平均分子量(Mw)を実施例3と同様の方法で測定した。測定結果を表8に示す。表8の「置換度」欄中、「-」は、未測定を示す。
(ホットプレートによる熱可塑性試験)
 各誘導体をホットプレート上に設置し、室温から徐々に温度を上昇させ、熱可塑性を示す温度(熱可塑性発現温度(℃))を調べた。測定結果を、製造時の仕込み比([長鎖脂肪酸クロリド]/[グルコースユニット])と共に表8に示す。この結果、全ての誘導体において、200℃以上で熱可塑性を示した。
Figure JPOXMLDOC01-appb-T000017
[実施例5]
 Euglena gracilis由来のパラミロンに長鎖炭化水素基のみを導入した各種パラミロン誘導体を製造し、熱可塑性を調べた。
(製造例69)パラミロン2-エチルヘキサノエートの製造(仕込み比:[2-エチルヘキサン酸クロリド]/[グルコースユニット]=3.0)
 50mLナスフラスコに、パラミロン(199.5mg)とピリジン(20.0mL)を入れ、窒素雰囲気下、110℃で1時間撹拌した。続いて2-エチルヘキサン酸クロリド(528μL)を加えて窒素雰囲気下で撹拌した。3時間の撹拌の後、反応溶液にメタノール(200mL)を加えて白沈を生じさせた。白沈を遠心分離で集め、メタノール(35mL×2回)で洗浄した後に風乾することにより、目的物(2-エチルヘキサノイル基導入パラミロン、以下、「誘導体S1(2E-Hex)」)(275mg)を得た。
 誘導体S1(2E-Hex)のFT-IRの測定結果を以下に示す。
FT-IR(cm-1):2914,2854,1730,1456,1161,1034,1033.
(製造例70)パラミロン2-エチルヘキサノエートの製造(仕込み比:[2-エチルヘキサン酸クロリド]/[グルコースユニット]=2.5)
 50mLナスフラスコに、パラミロン(202mg)とピリジン(20.0mL)を入れ、窒素雰囲気下、110℃で1時間撹拌した。続いて2-エチルヘキサン酸クロリド(635μL)を加えて窒素雰囲気下で撹拌した。3時間の撹拌の後、反応溶液にメタノール(160mL)を加えて白沈を生じさせた。白沈を遠心分離で集め、メタノール(35mL×2回)で洗浄した後に風乾することにより、目的物(2-エチルヘキサノイル基導入パラミロン、以下、「誘導体S2(2E-Hex)」)(309mg)を得た。
 誘導体S2(2E-Hex)のFT-IRの測定結果を以下に示す。
FT-IR(cm-1):2920,2857,1731,1455,1361,1162,1047,1031.
(製造例71)パラミロンオクタノエートの製造(仕込み比:[オクタン酸クロリド]/[グルコースユニット]=2.5)
 50mLナスフラスコに、パラミロン(101mg)とピリジン(10.0mL)を入れ、窒素雰囲気下、110℃で1時間撹拌した。続いてオクタン酸クロリド(264μL)を加えて窒素雰囲気下で撹拌した。3時間の撹拌の後、反応溶液にメタノール(120mL)を加えて白沈を生じさせた。白沈を遠心分離で集め、メタノール(30mL×2回)で洗浄した後に風乾することにより、目的物(オクタノイル基導入パラミロン、以下、「誘導体S3(Oct)」)(233mg)を得た。
 誘導体S3(Oct)のH-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 5.16-3.15(m),2.48-2.15(m),1.77-1.49(m),1.28(s),0.88(s).
FT-IR(cm-1):2919,2852,1739,1455,1361,1150,1041,1040.
(製造例72)パラミロンオクタノエートの製造(仕込み比:[オクタン酸クロリド]/[グルコースユニット]=3.0)
 50mLナスフラスコに、パラミロン(99mg)とピリジン(10.0mL)を入れ、窒素雰囲気下、110℃で1時間撹拌した。続いてオクタン酸クロリド(317μL)を加えて窒素雰囲気下で撹拌した。3時間の撹拌の後、反応溶液にメタノール(120mL)を加えて白沈を生じさせた。白沈を遠心分離で集め、メタノール(30mL×2回)で洗浄した後に風乾することにより、目的物(オクタノイル基導入パラミロン、以下、「誘導体S4(Oct)」)(250mg)を得た。
 誘導体S4(Oct)のH-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 5.13-3.00(m),2.38-2.14(m),1.65-1.48(m),1.27(s),0.88(s).
FT-IR(cm-1):2923,2854,1743,1149,1047.
(製造例73)パラミロンデカノエートの製造(仕込み比:[デカン酸クロリド]/[グルコースユニット]=2.5)
 50mLナスフラスコに、パラミロン(99mg)とピリジン(10.0mL)を入れ、窒素雰囲気下、110℃で1時間撹拌した。続いてデカン酸クロリド(316μL)を加えて窒素雰囲気下で撹拌した。3時間の撹拌の後、反応溶液にメタノール(20mL)を加えて白沈を生じさせた。白沈を遠心分離で集め、メタノール(30mL×2回)で洗浄した後に風乾することにより、目的物(オクタノイル基導入パラミロン、以下、「誘導体S5(Dec)」)(251mg)を得た。
 誘導体S5(Dec)のH-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 5.18-3.14(m),2.54-2.12(m),1.75-1.47(m),1.26(s),0.88(t,J=6.3).
FT-IR(cm-1):2920,2851,1739,1455,1360,1147,1042.
(製造例74)パラミロンデカノエートの製造(仕込み比:[デカン酸クロリド]/[グルコースユニット]=3.0)
 50mLナスフラスコに、パラミロン(103mg)とピリジン(10.0mL)を入れ、窒素雰囲気下、110℃で1時間撹拌した。続いてデカン酸クロリド(380μL)を加えて窒素雰囲気下で撹拌した。3時間の撹拌の後、反応溶液にメタノール(20mL)を加えて白沈を生じさせた。白沈を遠心分離で集め、メタノール(30mL×2回)で洗浄した後に風乾することにより、目的物(オクタノイル基導入パラミロン、以下、「誘導体S6(Dec)」)(260mg)を得た。
 誘導体S6(Dec)のH-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 5.14-3.15(m),2.43-2.1(m),1.72-1.48(m),1.26(s),0.88(t,J=6.1).
FT-IR(cm-1):2918,2850,1739,1146,1040.
(製造例75)パラミロンラウレートの製造(仕込み比:[ラウリン酸クロリド]/[グルコースユニット]=2.5)
 50mLナスフラスコに、パラミロン(101mg)とピリジン(10.0mL)を入れ、窒素雰囲気下、110℃で1時間撹拌した。続いてラウリン酸クロリド(367μL)を加えて窒素雰囲気下で撹拌した。3時間の撹拌の後、反応溶液にメタノール(20mL)を加えて白沈を生じさせた。白沈を遠心分離で集め、メタノール(30mL×2回)で洗浄した後に風乾することにより、目的物(ラウリン基導入パラミロン、以下、「誘導体S7(Lau)」)(306mg)を得た。
 誘導体S7(Lau)のH-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 5.21-3.12(m),2.59-2.12(m),1.81-1.46(m),1.26(s),0.88(t,J=6.3).
FT-IR(cm-1):2918,2849,1740,1455,1360,1145,1045.
(製造例76)パラミロンラウレートの製造(仕込み比:[ラウリン酸クロリド]/[グルコースユニット]=3.0)
 50mLナスフラスコに、パラミロン(102mg)とピリジン(10.0mL)を入れ、窒素雰囲気下、110℃で1時間撹拌した。続いてラウリン酸クロリド(440μL)を加えて窒素雰囲気下で撹拌した。3時間の撹拌の後、反応溶液にメタノール(20mL)を加えて白沈を生じさせた。白沈を遠心分離で集め、メタノール(30mL×2回)で洗浄した後に風乾することにより、目的物(ラウリン基導入パラミロン、以下、「誘導体S8(Lau)」)(336mg)を得た。
 誘導体S8(Lau)のFT-IRの測定結果を以下に示す。
FT-IR(cm-1):2918,2850,1742,1455,1142,1042.
(製造例77)パラミロンミリステートの製造(仕込み比:[ミリスチン酸クロリド]/[グルコースユニット]=2.0)
 50mLナスフラスコに、パラミロン(103mg)とDMAc(5.0mL)、LiCl(88mg)を入れ、窒素雰囲気下、110℃で1時間撹拌した。反応溶液を40℃に冷却後、トリエチルアミン(258μL)とDMAc/ミリスチン酸クロリド(2.5mL/335μL)を加えて再び加熱し(110℃)、窒素雰囲気下で撹拌した。3時間の撹拌の後、反応溶液にメタノール(20mL)を加えて白沈を生じさせた。白沈を遠心分離で集め、メタノール(30mL×4回)で洗浄した後に風乾することにより、目的物(ミリストイル基導入パラミロン、以下、「誘導体S9(Myr)」)(232mg)を得た。
 誘導体S9(Myr)のFT-IRの測定結果を以下に示す。
FT-IR(cm-1):3362,2915,2848,1717,1435,1357,1107,1069,1028.
(製造例78)パラミロンミリステートの製造(仕込み比:[ミリスチン酸クロリド]/[グルコースユニット]=2.4)
 50mLナスフラスコに、パラミロン(50mg)とピリジン(5.0mL)を入れ、窒素雰囲気下、110℃で1時間撹拌した。続いてミリスチン酸クロリド(200μL)を加えて窒素雰囲気下で撹拌した。3時間の撹拌の後、反応溶液にメタノール(20mL)を加えて白沈を生じさせた。白沈を遠心分離で集め、メタノール(30mL×2回)で洗浄した後に風乾することにより、目的物(ミリストイル基導入パラミロン、以下、「誘導体S10(Myr)」)(174mg)を得た。
 誘導体S10(Myr)のH-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 5.23-3.09(m),2.42-2.16(m),1.55-1.51(m),1.25(s),0.88(t,J=6.6).
FT-IR(cm-1):3335,2918,2850,1739,1626,1455,1355,1151,1076.
(製造例79)パラミロンミリステートの製造(仕込み比:[ミリスチン酸クロリド]/[グルコースユニット]=2.6)
 50mLナスフラスコに、パラミロン(50mg)とピリジン(5.0mL)を入れ、窒素雰囲気下、110℃で1時間撹拌した。続いてミリスチン酸クロリド(220μL)を加えて窒素雰囲気下で撹拌した。3時間の撹拌の後、反応溶液にメタノール(20mL)を加えて白沈を生じさせた。白沈を遠心分離で集め、メタノール(30mL×2回)で洗浄した後に風乾することにより、目的物(ミリストイル基導入パラミロン、以下、「誘導体S11(Myr)」)(122mg)を得た。
 誘導体S11(Myr)のH-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 5.13-3.11(m),2.45-2.17(m),1.73-1.48(m),1.26(s),0.88(t,J=6.5).
FT-IR(cm-1):2920,2851,1743,1459,1377,1162,1082.
(製造例80)パラミロンミリステートの製造(仕込み比:[ミリスチン酸クロリド]/[グルコースユニット]=3.0)
 50mLナスフラスコに、パラミロン(101mg)とDMAc(5.0mL)、LiCl(85mg)を入れ、窒素雰囲気下、110℃で1時間撹拌した。反応溶液を40℃に冷却後、トリエチルアミン(388μL)とDMAc/ミリスチン酸クロリド(2.5mL/503μL)を加えて再び加熱し(110℃)、窒素雰囲気下で撹拌した。3時間の撹拌の後、反応溶液にメタノール(20mL)を加えて白沈を生じさせた。白沈を遠心分離で集め、メタノール(35mL×3回)で洗浄した後に風乾することにより、目的物(ミリストイル基導入パラミロン、以下、「誘導体S12(Myr)」)(82mg)を得た。
 誘導体S12(Myr)のFT-IRの測定結果を以下に示す。
FT-IR(cm-1):2919,2851,1743,1465,1371,1159,1075.
(製造例81)パラミロンパルミテートの製造(仕込み比:[パルミチン酸クロリド]/[グルコースユニット]=2.6)
 50mLナスフラスコに、パラミロン(50mg)とピリジン(5.0mL)を入れ、窒素雰囲気下、110℃で1時間撹拌した。続いてパルミチン酸クロリド(242μL)を加えて窒素雰囲気下で撹拌した。3時間の撹拌の後、反応溶液にメタノール(20mL)を加えて白沈を生じさせた。白沈を遠心分離で集め、メタノール(35mL×2回)で洗浄した後に風乾することにより目的物(パルミチン基導入パラミロン、以下、「誘導体S14(Pal)」)(190mg)を得た。
 誘導体S14(Pal)のH-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 5.13-3.09(m),2.47-2.18(m),1.67-1.49(m),1.26(s),0.88(t,J=6.7).
FT-IR(cm-1):2921,2853,1744,1465,1372,1161,1084.
(製造例82)パラミロンパルミテートの製造(仕込み比:[パルミチン酸クロリド]/[グルコースユニット]=2.6)
 1Lナスフラスコにパラミロン(3.02g)とピリジン(300mL)を入れ、窒素雰囲気下、110℃で1時間撹拌した。続いてパルミチン酸クロリド(14.5mL)を加えて窒素雰囲気下で撹拌した。3時間の撹拌の後、反応溶液にメタノール(1200mL)を加えて白沈を生じさせた。白沈を遠心分離で集め、クロロホルム/メタノール(2/1,300mL)で洗浄した後に風乾することで目的物(パルミチン基導入パラミロン、以下、「誘導体S15(Pal)」)(10.66g)を得た。
 誘導体S15(Pal)のH-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 5.16-3.17(m),2.50-2.16(m),1.77-1.50(m),1.26(s),0.88(t,J=6.6).
FT-IR(cm-1):2929,2854,1748,1540,1507,1456,1372,1210,1033.
(製造例83)パラミロンパルミテートの製造(仕込み比:[パルミチン酸クロリド]/[グルコースユニット]=3.0)
 50mLナスフラスコに、パラミロン(98mg)とDMAc(5.0mL)、LiCl(98mg)を入れ、窒素雰囲気下、110℃で1時間撹拌した。反応溶液を40℃に冷却後、トリエチルアミン(388μL)とDMAc/パルミチン酸クロリド(2.5mL/561μL)を加えて再び加熱し(110℃)、窒素雰囲気下で撹拌した。3時間の撹拌の後、反応溶液にメタノール(20mL)を加えて白沈を生じさせた。白沈を遠心分離で集め、メタノール(30mL×3回)で洗浄した後に風乾することにより目的物(パルミトイル基導入パラミロン、以下、「誘導体S16(Pal)」)(381mg)を得た。
 誘導体S16(Pal)のFT-IRの測定結果を以下に示す。
FT-IR(cm-1):2917,2850,1742,1577,1464,1371,1161,1077.
(製造例84)パラミロンステアレートの製造(仕込み比:[ステアリン酸クロリド]/[グルコースユニット]=2.5)
 50mLナスフラスコに、パラミロン(50mg)とピリジン(5.0mL)を入れ、窒素雰囲気下、110℃で1時間撹拌した。続いてステアリン酸クロリド(260μL)を加えて窒素雰囲気下で撹拌した。3時間の撹拌の後、反応溶液にメタノール(20mL)を加えて白沈を生じさせた。白沈を遠心分離で集め、メタノール、メタノール・クロロホルム(2/1)混合溶媒(30mL×2回)で洗浄した後に風乾することにより目的物(ステアロイル基導入パラミロン、以下、「誘導体S17(Ste)」)(150mg)を得た。
 誘導体S17(Ste)のH-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 5.12-3.08(m),2.42-2.12(m),1.67-1.51(m),1.26(s),0.88(t,J=6.9)
FT-IR(cm-1):2918,2851,1745,1458,1163,1082.
(製造例85)パラミロンステアレートの製造(仕込み比:[ステアリン酸クロリド]/[グルコースユニット]=3.0)
 50mLナスフラスコに、パラミロン(49mg)とピリジン(5.0mL)を入れ、窒素雰囲気下、110℃で1時間撹拌した。続いてステアリン酸クロリド(312μL)を加えて窒素雰囲気下で撹拌した。3時間の撹拌の後、反応溶液にメタノール(20mL)を加えて白沈を生じさせた。白沈を遠心分離で集め、メタノール(30mL)、メタノール・クロロホルム(2/1)混合溶媒(30mL×2回)で洗浄した後に風乾することにより、目的物(ステアロイル基導入パラミロン、以下、「誘導体S18(Ste)」)(190mg)を得た。
 誘導体S18(Ste)のH-NMR及びFT-IRの測定結果を以下に示す。
H-NMR(CDCl):δ 5.18-3.11(m),2.44-2.05(m),1.67-1.49(m),1.26(s),0.88(t,J=6.9).
FT-IR(cm-1):2918,2850,1748,1465,1373,1161,1056.
(製造例86)パラミロンラウレートの製造(仕込み比:[ラウリン酸クロリド]/[グルコースユニット]=4.0)
 50mLナスフラスコに、パラミロン(51mg)とピリジン(5.0mL)を入れ、窒素雰囲気下、110℃で1時間撹拌した。続いてラウリン酸クロリド(293μL)を加えて窒素雰囲気下で撹拌した。3時間の撹拌の後、反応溶液にメタノール(20mL)を加えて白沈を生じさせた。白沈を遠心分離で集め、メタノール(30mL×3回)で洗浄した後に風乾することにより、目的物(ラウロイル基導入パラミロン、以下、「誘導体S19(Lau)」)(108mg)を得た。
 誘導体S19(Lau)のFT-IRの測定結果を以下に示す。
FT-IR(cm-1):3467,2920,2850,1748,1468,1363,1310,1161,1080.
(製造例87)パラミロンパルミテートの製造(仕込み比:[パルミチン酸クロリド]/[グルコースユニット]=2.0)
 50mLナスフラスコに、パラミロン(102mg)とDMAc(5.0mL)、LiCl(87mg)を入れ、窒素雰囲気下、110℃で1時間撹拌した。反応溶液を40℃に冷却後、トリエチルアミン(258μL)とDMAc/ミリスチン酸クロリド(2.5mL/374μL)を加えて再び加熱し(110℃)、窒素雰囲気下で撹拌した。3時間の撹拌の後、反応溶液にメタノール(20mL)を加えて白沈を生じさせた。白沈を遠心分離で集め、メタノール(30mL×3回)で洗浄した後に風乾することにより目的物(パルミトイル基導入パラミロン、以下、「誘導体S20(Pal)」)(173mg)を得た。
 誘導体S20(Pal)のFT-IRの測定結果を以下に示す。
FT-IR(cm-1):3420,2920,2852,1731,1651,1456,1371,1161,1073,1038.
(製造例88)パラミロンパルミテートの製造(仕込み比:[パルミチン酸クロリド]/[グルコースユニット]=4.0)
 50mLナスフラスコに、パラミロン(103mg)とDMAc(5.0mL)、LiCl(98mg)を入れ、窒素雰囲気下、110℃で1時間撹拌した。反応溶液を40℃に冷却後、トリエチルアミン(516μL)とDMAc/ミリスチン酸クロリド(2.5mL/748μL)を加えて再び加熱し(110℃)、窒素雰囲気下で撹拌した。3時間の撹拌の後、反応溶液にメタノール(20mL)を加えて白沈を生じさせた。白沈を遠心分離で集め、メタノール(35mL×3回)で洗浄した後に風乾することにより目的物(パルミトイル基導入パラミロン、以下、「誘導体S21(Pal)」)(510mg)を得た。
 誘導体S21(Pal)のFT-IRの測定結果を以下に示す。
FT-IR(cm-1):3476,2916,2850,1743,1714,1578,1446,1152,1082.
(製造例89)パラミロンステアレートの製造(仕込み比:[ステアリン酸クロリド]/[グルコースユニット]=2.0)
 50mLナスフラスコに、パラミロン(50mg)とピリジン(5.0mL)を入れ、窒素雰囲気下、110℃で1時間撹拌した。続いてステアリン酸クロリド(208μL)を加えて窒素雰囲気下で撹拌した。3時間の撹拌の後、反応溶液にメタノール(20mL)を加えて白沈を生じさせた。白沈を遠心分離で集め、メタノール(30mL×3回)で洗浄した後に風乾することにより目的物(ステアロイル基導入パラミロン、以下、「誘導体S22(Ste)」)(144mg)を得た。
 誘導体S22(Ste)のFT-IRの測定結果を以下に示す。
FT-IR(cm-1):3467,2918,2849,1746,1580,1459,1374,1145,1057,898.
 各誘導体の置換度を実施例2と同様の方法で測定した。また、各誘導体の熱可塑性発現温度(℃)を実施例4と同様の方法で測定した。測定結果を、製造時の仕込み比([長鎖脂肪酸クロリド]/[グルコースユニット])と共に表9に示す。表9の「置換度」欄中、「-」は、未測定を示す。表9の「熱可塑性発現温度」欄中、「-」は、300℃までの加熱によっては熱可塑性が発現しなかったことを示す。
Figure JPOXMLDOC01-appb-T000018
 この結果、仕込み比が2.5~3.0の範囲内となるように製造された誘導体は、200℃以上で熱可塑性を示した。一方で、仕込み比が小さすぎても大きすぎても、製造された誘導体は、熱可塑性を示さなくなくなる傾向が観察された。
(矩形試験片製造試験)
 200℃以上で熱可塑性を示した誘導体について、矩形試験片の製造を試みた。
 具体的には、各誘導体約4.5gを簡易射出成形機(IMC-18D1型、井元製作所製)と専用の金型を用いて、加熱温度200~260℃で射出成形することにより、長さ78mm×幅12.4mm×厚さ2.4mmの矩形試験片を製造した。
 この結果、熱可塑性を示した全ての誘導体において、射出成形機による矩形試験片調製が可能であった。
 本発明に係るβ-1,3-グルカン誘導体は、強度と熱可塑性に優れているため、プラスチックとして好適である。特に、パラミロン等の植物由来のβ-1,3-グルカンから合成されたβ-1,3-グルカン誘導体は、環境負荷の低い植物性プラスチックであり、これを成形することによって生分解性に優れた成形体を製造することができる。

Claims (17)

  1.  下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、複数存在するRはそれぞれ独立して、水素原子、又は-CORを表し、nは、1以上の整数を表す。前記Rは、脂肪族炭化水素基又は芳香族炭化水素基を表す。ただし、Rの少なくとも一部は、-CORである。)で表される構造を主鎖として有することを特徴とするβ-1,3-グルカン誘導体。
  2.  下記一般式(1a)
    Figure JPOXMLDOC01-appb-C000002
    (式(1a)中、複数存在するRはそれぞれ独立して、水素原子、又は-CORを表し、nは、1以上の整数を表す。前記Rは、脂肪族炭化水素基又は芳香族炭化水素基を表す。ただし、Rの少なくとも一部は、-CORである。)で表される高分子である、請求項1に記載のβ-1,3-グルカン誘導体。
  3.  前記β-1,3-グルカン誘導体中のグルコース単位当たりの-CORの数が0.1以上である、請求項1又は2に記載のβ-1,3-グルカン誘導体。
  4.  前記一般式(1)又は一般式(1a)中の全てのRが、前記-CORである、請求項1又は2に記載のβ-1,3-グルカン誘導体。
  5.  前記β-1,3-グルカン誘導体中の少なくとも一部のRが、炭素数13以上の脂肪族炭化水素基である、請求項1~4のいずれか一項に記載のβ-1,3-グルカン誘導体。
  6.  前記β-1,3-グルカン誘導体中のグルコース単位当たりの-COR21(前記R21は、炭素数13以上の脂肪族炭化水素基を表す。)の数が0.1以上である、請求項1~4のいずれか一項に記載のβ-1,3-グルカン誘導体。
  7.  前記一般式(1)又は一般式(1a)中のグルコース単位当たりの-CHOCOR21(前記R21は、炭素数13以上の脂肪族炭化水素基を表す。)の数が0.1以上である、請求項1~4のいずれか一項に記載のβ-1,3-グルカン誘導体。
  8.  前記β-1,3-グルカン誘導体中の少なくとも一部のRが、炭素数1~5の短鎖脂肪族炭化水素基又はフェニル基である、請求項1~7のいずれか一項に記載のβ-1,3-グルカン誘導体。
  9.  請求項1~8のいずれか一項に記載のβ-1,3-グルカン誘導体を成形してなることを特徴とする成形体。
  10.  請求項1~8のいずれか一項に記載のβ-1,3-グルカン誘導体を成形して成形体を製造することを特徴とする成形体の製造方法。
  11.  β-1,3-グルコシド結合により構成されるグルカンを主鎖とする高分子中の水酸基の少なくとも一部を、脂肪酸でアシル化することを特徴とする、β-1,3-グルカン誘導体の製造方法。
  12.  前記脂肪酸が、炭素数13以上の長鎖脂肪酸である、請求項11に記載のβ-1,3-グルカン誘導体の製造方法。
  13.  前記高分子中の水酸基の少なくとも一部を、炭素数13以上の長鎖脂肪酸でアシル化した後、得られたβ-1,3-グルカン誘導体中に残存している水酸基の少なくとも一部を、炭素数1~5の短鎖脂肪酸又は安息香酸でアシル化する、請求項11に記載のβ-1,3-グルカン誘導体の製造方法。
  14.  前記脂肪酸の塩化物と前記高分子中のグルコースユニットの仕込み比([脂肪酸の塩化物(モル)]/[高分子中のグルコースユニット(モル)])を1.5~4.0とする、請求項11に記載のβ-1,3-グルカン誘導体の製造方法。
  15.  前記高分子が、細胞内でβ-1,3-グルカンを合成する微細藻類から分離したパラミロンである、請求項11~14のいずれか一項に記載のβ-1,3-グルカン誘導体の製造方法。
  16.  前記微細藻類が、ユーグレナ植物門に属する微細藻類である、請求項15に記載のβ-1,3-グルカン誘導体の製造方法。
  17.  前記脂肪酸が、植物由来のワックスエステルの加水分解により得られた、請求項11~16のいずれか一項に記載のβ-1,3-グルカン誘導体の製造方法。
PCT/JP2013/080841 2012-11-14 2013-11-14 β-1,3-グルカン誘導体、及びβ-1,3-グルカン誘導体の製造方法 WO2014077340A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014547043A JP6029155B2 (ja) 2012-11-14 2013-11-14 β−1,3−グルカン誘導体、及びβ−1,3−グルカン誘導体の製造方法
US14/440,778 US20150299339A1 (en) 2012-11-14 2013-11-14 Beta-1,3-glucan derivative and method for producing beta-1,3-glucan derivative
EP13855905.9A EP2921504B1 (en) 2012-11-14 2013-11-14 Beta-1,3-glucan derivative and method for producing beta-1,3-glucan derivative
US15/790,272 US20180044440A1 (en) 2012-11-14 2017-10-23 Beta-1,3-glucan derivative and method for producing beta-1,3-glucan derivative

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-250569 2012-11-14
JP2012250569 2012-11-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/440,778 A-371-Of-International US20150299339A1 (en) 2012-11-14 2013-11-14 Beta-1,3-glucan derivative and method for producing beta-1,3-glucan derivative
US15/790,272 Continuation US20180044440A1 (en) 2012-11-14 2017-10-23 Beta-1,3-glucan derivative and method for producing beta-1,3-glucan derivative

Publications (1)

Publication Number Publication Date
WO2014077340A1 true WO2014077340A1 (ja) 2014-05-22

Family

ID=50731249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080841 WO2014077340A1 (ja) 2012-11-14 2013-11-14 β-1,3-グルカン誘導体、及びβ-1,3-グルカン誘導体の製造方法

Country Status (4)

Country Link
US (2) US20150299339A1 (ja)
EP (1) EP2921504B1 (ja)
JP (1) JP6029155B2 (ja)
WO (1) WO2014077340A1 (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016106068A1 (en) * 2014-12-22 2016-06-30 E. I. Du Pont De Nemours And Company Polymeric blend containing poly alpha-1,3-glucan
JP2017101177A (ja) * 2015-12-03 2017-06-08 国立研究開発法人産業技術総合研究所 保護膜前駆体液、保護膜形成方法、および複合体
JP2017218566A (ja) * 2016-06-03 2017-12-14 株式会社ユーグレナ パラミロンエステル誘導体及び繊維
JP2018141904A (ja) * 2017-02-28 2018-09-13 国立研究開発法人産業技術総合研究所 光学フィルムおよびその製造方法
JP2018145213A (ja) * 2017-03-01 2018-09-20 国立研究開発法人産業技術総合研究所 高吸水性高分子
JP2018154723A (ja) * 2017-03-17 2018-10-04 国立研究開発法人産業技術総合研究所 接着剤および粘着剤
JP2019099508A (ja) * 2017-12-04 2019-06-24 国立研究開発法人産業技術総合研究所 糖及び/又は脂質の代謝改善剤
WO2020013232A1 (ja) * 2018-07-10 2020-01-16 日本電気株式会社 パラミロン系樹脂、成形用材料および成形体、並びにパラミロン系樹脂の製造方法
US10731297B2 (en) 2015-10-26 2020-08-04 Dupont Industrial Biosciences Usa, Llc Water insoluble alpha-(1,3-glucan) composition
US10738266B2 (en) 2015-06-01 2020-08-11 Dupont Industrial Biosciences Usa, Llc Structured liquid compositions comprising colloidal dispersions of poly alpha-1,3-glucan
US10822574B2 (en) 2015-11-13 2020-11-03 Dupont Industrial Biosciences Usa, Llc Glucan fiber compositions for use in laundry care and fabric care
US10844324B2 (en) 2015-11-13 2020-11-24 Dupont Industrial Biosciences Usa, Llc Glucan fiber compositions for use in laundry care and fabric care
US10876074B2 (en) 2015-11-13 2020-12-29 Dupont Industrial Biosciences Usa, Llc Glucan fiber compositions for use in laundry care and fabric care
US10895028B2 (en) 2015-12-14 2021-01-19 Dupont Industrial Biosciences Usa, Llc Nonwoven glucan webs
WO2021111917A1 (ja) * 2019-12-04 2021-06-10 株式会社Lixil β-1,3-グルカンエステル誘導体の精製方法
WO2021225172A1 (ja) * 2020-05-08 2021-11-11 日本電気株式会社 パラミロン系樹脂、成形用材料および成形体、並びにパラミロン系樹脂の製造方法
WO2021246006A1 (ja) * 2020-06-02 2021-12-09 株式会社Lixil β-1,3-グルカンエステル誘導体及びβ-1,4-グルカンエステル誘導体
JP2022003113A (ja) * 2020-06-23 2022-01-11 株式会社リコー 樹脂組成物、成形体、電子部品及び電子機器
US11230812B2 (en) 2015-10-26 2022-01-25 Nutrition & Biosciences Usa 4, Inc Polysaccharide coatings for paper
US11351104B2 (en) 2015-02-06 2022-06-07 Nutrition & Biosciences USA 4, Inc. Colloidal dispersions of poly alpha-1,3-glucan based polymers
WO2022186126A1 (ja) * 2021-03-01 2022-09-09 日東電工株式会社 粘着シート
WO2022186125A1 (ja) * 2021-03-01 2022-09-09 日東電工株式会社 フィルムおよび粘着テープ
WO2022255049A1 (ja) 2021-06-01 2022-12-08 日東電工株式会社 粘着剤組成物および粘着テープ
WO2023209790A1 (ja) * 2022-04-26 2023-11-02 日本電気株式会社 パラミロン系樹脂及びその製造方法、成形用樹脂組成物、並びに成形体
WO2023248911A1 (ja) * 2022-06-22 2023-12-28 日東電工株式会社 粘着剤組成物、粘着シート、積層体、及びβ-1,3-グルカン誘導体の製造方法
WO2025053227A1 (ja) * 2023-09-05 2025-03-13 日本電気株式会社 多糖類系バイオマスプラスチック、これを用いた成形用樹脂組成物及び成形体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2645965C1 (ru) * 2017-05-04 2018-02-28 Федеральное государственное бюджетное учреждение науки "Национальный научный центр морской биологии" Дальневосточного отделения Российской академии наук (ННЦМБ ДВО РАН) Микроводоросль Streblonema sp. в качестве сырья для получения ламинарана и способ повышения его содержания в микроводоросли Streblonema sp.
CN119403897A (zh) * 2022-06-22 2025-02-07 日东电工株式会社 粘合剂组合物、粘合片、层叠体、及β-1,3-葡聚糖衍生物的制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152701A (ja) * 1984-12-26 1986-07-11 Wako Pure Chem Ind Ltd 新規なカ−ドラン誘導体
JPH04300888A (ja) * 1991-03-28 1992-10-23 Dainippon Ink & Chem Inc カルボン酸オリゴ糖エステル硫酸化物
WO1995004083A1 (en) * 1993-07-27 1995-02-09 Evercorn, Inc. A method of preparing biodegradable modified-starch moldable products and films
WO1998023648A1 (en) * 1996-11-29 1998-06-04 Societa' Cooperativa Centro Ricerche Poly-Tech A Responsabilita' Limitata New butyric esters with antiproliferative activity and the pharmaceutical compositions containing them
WO2000031144A1 (fr) * 1998-11-25 2000-06-02 Japan Corn Starch Co., Ltd. Ester d'amidon
JP2002155265A (ja) * 2000-11-21 2002-05-28 Chiba Flour Milling Co Ltd 多糖類安息香酸エステルからなるゲル化剤及び該ゲル化剤を用いたチキソトロピー性粘性組成物
WO2003008457A2 (en) * 2001-07-17 2003-01-30 Eurand Pharmaceuticals Ltd Polysaccharidic esters of retinoic acid
JP2004331837A (ja) 2003-05-08 2004-11-25 Kanai Hiroaki 生分解性のフィルム又は繊維用パラミロン溶液及びその製造方法並びに生分解性フィルム又は繊維

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254701A (ja) * 1985-05-10 1987-03-10 Ajinomoto Co Inc グルカン誘導体
US4973581A (en) * 1987-02-20 1990-11-27 Ajinomoto Company, Inc. Glucan derivatives having tumoricidal activity
CA2008032C (en) * 1989-01-19 1999-03-09 Tatsuro Takeuchi Moldable compositions of activated carbon and molded articles produced therefrom
JP3651697B2 (ja) * 1995-03-24 2005-05-25 株式会社アミノアップ化学 新規多糖体物質
JP2011223893A (ja) * 2010-04-15 2011-11-10 Unyck:Kk 農業用シート
JP5787338B2 (ja) * 2010-10-27 2015-09-30 国立研究開発法人産業技術総合研究所 多孔質膜

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152701A (ja) * 1984-12-26 1986-07-11 Wako Pure Chem Ind Ltd 新規なカ−ドラン誘導体
JPH04300888A (ja) * 1991-03-28 1992-10-23 Dainippon Ink & Chem Inc カルボン酸オリゴ糖エステル硫酸化物
WO1995004083A1 (en) * 1993-07-27 1995-02-09 Evercorn, Inc. A method of preparing biodegradable modified-starch moldable products and films
WO1998023648A1 (en) * 1996-11-29 1998-06-04 Societa' Cooperativa Centro Ricerche Poly-Tech A Responsabilita' Limitata New butyric esters with antiproliferative activity and the pharmaceutical compositions containing them
WO2000031144A1 (fr) * 1998-11-25 2000-06-02 Japan Corn Starch Co., Ltd. Ester d'amidon
JP2002155265A (ja) * 2000-11-21 2002-05-28 Chiba Flour Milling Co Ltd 多糖類安息香酸エステルからなるゲル化剤及び該ゲル化剤を用いたチキソトロピー性粘性組成物
WO2003008457A2 (en) * 2001-07-17 2003-01-30 Eurand Pharmaceuticals Ltd Polysaccharidic esters of retinoic acid
JP2004331837A (ja) 2003-05-08 2004-11-25 Kanai Hiroaki 生分解性のフィルム又は繊維用パラミロン溶液及びその製造方法並びに生分解性フィルム又は繊維

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
AKIHIRO KOGANEMARU ET AL: "DEVELOPMENT OF A BIODEGRADABLE FILM USING PARAMYLON PREPARED FROM EUGLENA GRACILIS", JOURNAL OF THE SOCIETY OF FIBER SCIENCE AND TECHNOLOGY, vol. 59, no. 11, 2003, pages 457 - 460, XP055260290 *
CLARKE ET AL., BIOCHIMICA ET BIOPHYSICA ACTA, vol. 44, 1960, pages 161 - 163
HARADA ET AL., ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, vol. 124, 1968, pages 292 - 298
HOFFMANN ET AL., CARBOHYDRATE RESEARCH, vol. 20, 1971, pages 185 - 188
KAWAHARA ET AL., JOURNAL OF APPLIED POLYMER SCIENCE, vol. 102, 2006, pages 3495 - 3497
KAWAHARA, Y. ET AL: "DEVELOPMENT OF NOVEL FILM USING PARAMYLON PREPARED FROM EUGLENA GRACILIS", JOURNAL OF THE APPLIED POLYMER SCIENCE, vol. 102, no. 4, 2006, pages 3495 - 3497, XP055260291 *
KOBAYASHI ET AL., CARBOHYDRATE POLYMERS, vol. 80, 2010, pages 491 - 497
KOGANEMARU AKIHIRO ET AL., JOURNAL OF THE SOCIETY OF FIBER SCIENCE AND TECHNOLOGY, vol. 59, no. 11, 2003, pages 457 - 460
SAITO ET AL., AGRICULTURAL AND BIOLOGICAL CHEMISTRY, vol. 32, 1968, pages 1261 - 1269
WANG, P. ET AL: "SYNTHESIS AND CHARACTERIZATION OF LONG-CHAIN FATTY ACID CELLULOSE ESTER (FACE)", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 52, no. 6, 1994, pages 755 - 761, XP000462045 *
YOSHIZUMI SATOSHI ET AL.: "Genealogy of sweetness and its science", 1986, KOHRIN, pages: 358

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016106068A1 (en) * 2014-12-22 2016-06-30 E. I. Du Pont De Nemours And Company Polymeric blend containing poly alpha-1,3-glucan
CN107406524B (zh) * 2014-12-22 2020-12-08 杜邦工业生物科学美国有限责任公司 含有聚α-1,3-葡聚糖的聚合物共混物
US10800859B2 (en) 2014-12-22 2020-10-13 Dupont Industrial Biosciences Usa, Llc Polymeric blend containing poly alpha-1,3-glucan
US11351104B2 (en) 2015-02-06 2022-06-07 Nutrition & Biosciences USA 4, Inc. Colloidal dispersions of poly alpha-1,3-glucan based polymers
US11918676B2 (en) 2015-02-06 2024-03-05 Nutrition & Biosciences USA 4, Inc. Colloidal dispersions of poly alpha-1,3-glucan based polymers
US10738266B2 (en) 2015-06-01 2020-08-11 Dupont Industrial Biosciences Usa, Llc Structured liquid compositions comprising colloidal dispersions of poly alpha-1,3-glucan
US10731297B2 (en) 2015-10-26 2020-08-04 Dupont Industrial Biosciences Usa, Llc Water insoluble alpha-(1,3-glucan) composition
US11230812B2 (en) 2015-10-26 2022-01-25 Nutrition & Biosciences Usa 4, Inc Polysaccharide coatings for paper
US10844324B2 (en) 2015-11-13 2020-11-24 Dupont Industrial Biosciences Usa, Llc Glucan fiber compositions for use in laundry care and fabric care
US10822574B2 (en) 2015-11-13 2020-11-03 Dupont Industrial Biosciences Usa, Llc Glucan fiber compositions for use in laundry care and fabric care
US10876074B2 (en) 2015-11-13 2020-12-29 Dupont Industrial Biosciences Usa, Llc Glucan fiber compositions for use in laundry care and fabric care
JP2017101177A (ja) * 2015-12-03 2017-06-08 国立研究開発法人産業技術総合研究所 保護膜前駆体液、保護膜形成方法、および複合体
US10895028B2 (en) 2015-12-14 2021-01-19 Dupont Industrial Biosciences Usa, Llc Nonwoven glucan webs
JP2017218566A (ja) * 2016-06-03 2017-12-14 株式会社ユーグレナ パラミロンエステル誘導体及び繊維
JP2018141904A (ja) * 2017-02-28 2018-09-13 国立研究開発法人産業技術総合研究所 光学フィルムおよびその製造方法
JP7012984B2 (ja) 2017-03-01 2022-01-31 国立研究開発法人産業技術総合研究所 高吸水性高分子
JP2018145213A (ja) * 2017-03-01 2018-09-20 国立研究開発法人産業技術総合研究所 高吸水性高分子
JP2018154723A (ja) * 2017-03-17 2018-10-04 国立研究開発法人産業技術総合研究所 接着剤および粘着剤
JP2019099508A (ja) * 2017-12-04 2019-06-24 国立研究開発法人産業技術総合研究所 糖及び/又は脂質の代謝改善剤
JP7120561B2 (ja) 2017-12-04 2022-08-17 国立研究開発法人産業技術総合研究所 糖及び/又は脂質の代謝改善剤
JPWO2020013232A1 (ja) * 2018-07-10 2021-08-02 日本電気株式会社 パラミロン系樹脂、成形用材料および成形体、並びにパラミロン系樹脂の製造方法
JP7349079B2 (ja) 2018-07-10 2023-09-22 日本電気株式会社 パラミロン系樹脂の製造方法
WO2020013232A1 (ja) * 2018-07-10 2020-01-16 日本電気株式会社 パラミロン系樹脂、成形用材料および成形体、並びにパラミロン系樹脂の製造方法
JP2021088663A (ja) * 2019-12-04 2021-06-10 株式会社Lixil β−1,3−グルカンエステル誘導体の精製方法
WO2021111917A1 (ja) * 2019-12-04 2021-06-10 株式会社Lixil β-1,3-グルカンエステル誘導体の精製方法
JPWO2021225172A1 (ja) * 2020-05-08 2021-11-11
WO2021225172A1 (ja) * 2020-05-08 2021-11-11 日本電気株式会社 パラミロン系樹脂、成形用材料および成形体、並びにパラミロン系樹脂の製造方法
JP7495676B2 (ja) 2020-05-08 2024-06-05 日本電気株式会社 パラミロン系樹脂、成形用材料および成形体、並びにパラミロン系樹脂の製造方法
JP2021187977A (ja) * 2020-06-02 2021-12-13 株式会社Lixil β−1,3−グルカンエステル誘導体及びβ−1,4−グルカンエステル誘導体
JP7566274B2 (ja) 2020-06-02 2024-10-15 株式会社Lixil β-1,3-グルカンエステル誘導体及びβ-1,4-グルカンエステル誘導体
WO2021246006A1 (ja) * 2020-06-02 2021-12-09 株式会社Lixil β-1,3-グルカンエステル誘導体及びβ-1,4-グルカンエステル誘導体
JP2022003113A (ja) * 2020-06-23 2022-01-11 株式会社リコー 樹脂組成物、成形体、電子部品及び電子機器
JP7535241B2 (ja) 2020-06-23 2024-08-16 株式会社リコー 樹脂組成物、成形体、電子部品及び電子機器
WO2022186125A1 (ja) * 2021-03-01 2022-09-09 日東電工株式会社 フィルムおよび粘着テープ
WO2022186126A1 (ja) * 2021-03-01 2022-09-09 日東電工株式会社 粘着シート
WO2022255049A1 (ja) 2021-06-01 2022-12-08 日東電工株式会社 粘着剤組成物および粘着テープ
JPWO2023209790A1 (ja) * 2022-04-26 2023-11-02
WO2023209790A1 (ja) * 2022-04-26 2023-11-02 日本電気株式会社 パラミロン系樹脂及びその製造方法、成形用樹脂組成物、並びに成形体
WO2023248911A1 (ja) * 2022-06-22 2023-12-28 日東電工株式会社 粘着剤組成物、粘着シート、積層体、及びβ-1,3-グルカン誘導体の製造方法
WO2025053227A1 (ja) * 2023-09-05 2025-03-13 日本電気株式会社 多糖類系バイオマスプラスチック、これを用いた成形用樹脂組成物及び成形体

Also Published As

Publication number Publication date
US20150299339A1 (en) 2015-10-22
JPWO2014077340A1 (ja) 2017-01-05
EP2921504A1 (en) 2015-09-23
JP6029155B2 (ja) 2016-11-24
US20180044440A1 (en) 2018-02-15
EP2921504B1 (en) 2017-07-12
EP2921504A4 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP6029155B2 (ja) β−1,3−グルカン誘導体、及びβ−1,3−グルカン誘導体の製造方法
Fundador et al. Acetylation and characterization of xylan from hardwood kraft pulp
Akrami et al. A new approach in compatibilization of the poly (lactic acid)/thermoplastic starch (PLA/TPS) blends
Lee et al. Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties
JP6890316B2 (ja) 接着剤および粘着剤
Yu et al. Surface grafting of cellulose nanocrystals with poly (3-hydroxybutyrate-co-3-hydroxyvalerate)
JP2014098095A (ja) β−1,3−グルカン誘導体、及びβ−1,3−グルカン誘導体の製造方法
US8853386B2 (en) Starch esters, methods of making same, and articles made therefrom
JP2017193667A (ja) β−1,3−グルカン誘導体及びその製造方法、並びに成形体
Dai et al. Fabricating highly reactive bio-based compatibilizers of epoxidized citric acid to improve the flexural properties of polylactide/microcrystalline cellulose blends
Xu et al. Effect of ionic liquid 1-buyl-3-methylimidazolium halide on the structure and tensile property of PBS/corn starch blends
Wang et al. High-performance thermoplastic starch/poly (butylene adipate-co-terephthalate) blends through synergistic plasticization of epoxidized soybean oil and glycerol
JPWO2008143322A1 (ja) セルロース誘導体、セルロース誘導体−ポリ乳酸グラフト共重合体及びその製造方法、並びに、ポリ乳酸系樹脂組成物
Cho et al. Cellulose nanowhisker-incorporated poly (lactic acid) composites for high thermal stability
WO2021246006A1 (ja) β-1,3-グルカンエステル誘導体及びβ-1,4-グルカンエステル誘導体
Sun et al. Plasticization mechanism of biobased plasticizers comprising polyethylene glycol diglycidyl ether-butyl citrate with both long and short chains on poly (lactic acid)
Chen et al. Xylan cinnamoylation for reinforcing poly (butylene adipate-co-terephthalate): Molecule design and interaction optimization
Lin et al. The biosynthesis of amidated bacterial cellulose derivatives via in-situ strategy
JP2019034987A (ja) 脂肪族ポリエステル樹脂組成物および成形体
Dewi et al. Characterization of sago starch-based degradable plastic with agricultural waste cellulose fiber as filler.
Spinella et al. Modification of cellulose nanocrystals with lactic acid for direct melt blending with pla
CN106832834B (zh) 一种双向拉伸生物可降解高强度膜及其制备工艺
JP7084657B2 (ja) リグノセルロース系バイオマス由来の複合材料及びその製造方法
Mudoi et al. Biodegradable polymer-based natural fiber composites
EP2970513A1 (en) Naturally derived mixed cellulose esters and methods relating thereto

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855905

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014547043

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14440778

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013855905

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013855905

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE