WO2014057969A1 - ポリグリコール酸樹脂組成物及びその製造方法 - Google Patents

ポリグリコール酸樹脂組成物及びその製造方法 Download PDF

Info

Publication number
WO2014057969A1
WO2014057969A1 PCT/JP2013/077457 JP2013077457W WO2014057969A1 WO 2014057969 A1 WO2014057969 A1 WO 2014057969A1 JP 2013077457 W JP2013077457 W JP 2013077457W WO 2014057969 A1 WO2014057969 A1 WO 2014057969A1
Authority
WO
WIPO (PCT)
Prior art keywords
pga
mass
composition
acid resin
polyglycolic acid
Prior art date
Application number
PCT/JP2013/077457
Other languages
English (en)
French (fr)
Inventor
三枝孝拓
鈴木智
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to CN201380047578.6A priority Critical patent/CN104684997B/zh
Priority to US14/432,840 priority patent/US20150247021A1/en
Priority to CA2891366A priority patent/CA2891366C/en
Publication of WO2014057969A1 publication Critical patent/WO2014057969A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Definitions

  • the present invention contains a polyglycolic acid resin which is a biodegradable resin, has excellent moldability and mechanical properties, and has both excellent heat resistance and hydrolyzability, and a method for producing the same About.
  • Aliphatic polyesters such as polyglycolic acid resin (hereinafter sometimes referred to as “PGA”) and polylactic acid resin (hereinafter sometimes referred to as “PLA”) are microorganisms present in nature such as soil and sea. Since it is decomposed by an enzyme, it has been attracting attention as a biodegradable polymer material with a low environmental load. In addition, since aliphatic polyester has biodegradable absorbability, it is also used as a medical polymer material such as surgical sutures and artificial skin.
  • PGA polyglycolic acid resin
  • PLA polylactic acid resin
  • PGA is excellent in mechanical strength, gas barrier properties such as oxygen gas barrier property, carbon dioxide gas barrier property, water vapor barrier property, and aroma barrier property. Since PGA has a high melting point and can be melt-molded, it is being developed as a practically excellent biodegradable resin, alone or in combination with other resin materials.
  • PGA is used as a molding material that is molded into products by general-purpose resin molding methods such as injection molding, extrusion molding, compression molding, and blow molding. Because of its small size and its strength and degradability, it can be left in the ground and decomposed after use, producing oil (shale oil, etc.) or natural gas (shale gas, etc.). As a material for forming a downhole tool for drilling a well or a member thereof, expectation is expanding.
  • PGA may have a reduced molecular weight during melt processing and may be difficult to use for a long time under high temperature and high humidity. . Furthermore, because PGA has a high crystallization speed, it may cause unevenness in the thickness of the molded product, or it may be difficult to perform stretch molding when compounding with other thermoplastic resins. Or there was a problem with the appearance of the product.
  • Patent Document 1 discloses a biodegradable resin composition comprising a biodegradable resin, a thermoplastic elastomer and an inorganic filler, and the biodegradable resin composition
  • a biodegradable resin composition comprising a biodegradable resin, a thermoplastic elastomer and an inorganic filler, and the biodegradable resin composition
  • toughness and heat resistance are improved.
  • Patent Document 1 as a biodegradable resin, polylactic acid (PLA), polyethylene succinate, polybutylene succinate, polybutylene succinate adipate, polyglycolic acid (PGA), or poly ( ⁇ -hydroxybutyrate), Polyhydroxyalkanoate-based polymers including poly ( ⁇ -hydroxyvalerate), poly ( ⁇ -hydroxycaproate), poly ( ⁇ -hydroxyheptanoate) and poly (hydroxybutyrate-co-hydroxyvalerate) Or a poly (hydroxyester-ether) -based polymer, poly (propylene carbonate), but the biodegradable resin specifically used is PLA only, and the heat resistance of the PLA composition is It remained at a heat deformation temperature of 93.7 to 114 ° C.
  • PLA polylactic acid
  • PGA polyglycolic acid
  • PGA poly ( ⁇ -hydroxybutyrate)
  • Polyhydroxyalkanoate-based polymers including poly ( ⁇ -hydroxyvalerate), poly ( ⁇ -hydroxycaproate), poly ( ⁇ -hydroxyheptanoate)
  • PGA composition that has excellent moldability and mechanical properties, and has both excellent heat resistance and hydrolyzability.
  • the object of the present invention is to use a general-purpose resin molding method as a molding material, a packaging material for food and other products, a packaging material with a small environmental load, and petroleum (shale oil etc.) or natural gas (shale gas etc.).
  • a general-purpose resin molding method as a molding material, a packaging material for food and other products, a packaging material with a small environmental load, and petroleum (shale oil etc.) or natural gas (shale gas etc.).
  • PGA which is a biodegradable resin with excellent moldability and mechanical properties that can be used as a material for forming the downhole tool for well drilling to be produced or its members, and has excellent heat resistance It is providing the PGA composition which has hydrolyzability together.
  • the present inventors have found a PGA composition having both excellent heat resistance and hydrolyzability, and a method for producing the PGA composition. Completed the invention.
  • the PGA content is 30 to 90% by mass and the inorganic filler is 70 to 10% by mass, and the mass reduction rate of the polyglycolic acid resin after immersion in water at 120 ° C. for 3 hours is 20% or more.
  • a PGA composition characterized by having a deflection temperature under load of 120 ° C. or higher.
  • the following inventions (1) to (5) are provided as embodiments.
  • (6) The PGA composition for use in a downhole tool or a member thereof.
  • a method for producing the PGA composition comprising a step of melt-kneading PGA and an inorganic filler using an extruder, and further comprising a main feed port and a side feed port.
  • a method for producing the PGA composition as described above, wherein the PGA is supplied to the extruder from the main feed port and the inorganic filler at least from the side feed port using the extruder provided with the extruder. Is provided to the extruder through the main feed port and the side feed port.
  • the downhaul tool or its member formed from the said PGA composition is provided.
  • the present invention contains 30 to 90% by mass of PGA and 70 to 10% by mass of an inorganic filler, the mass reduction rate of PGA after being immersed in water at 120 ° C. for 3 hours is 20% or more, and the load By being a PGA composition characterized by a deflection temperature of 120 ° C.
  • PGA a biodegradable resin with excellent moldability and mechanical properties that can be used as a material for forming downhole tools for well drilling or its components, and has excellent heat resistance and hydrolysis
  • the PGA composition having both properties is provided, and further, there is an effect that a downhole tool or a member thereof formed from the PGA composition is provided.
  • the said PGA composition is easily manufactured by being a manufacturing method of the said PGA composition including the process of melt-kneading PGA and an inorganic filler using an extruder. The effect that it can be performed is produced.
  • the PGA contained in the PGA composition of the present invention is a homopolymer of glycolic acid (glycolic acid 2) consisting only of glycolic acid repeating units represented by the formula: (—O—CH 2 —CO—).
  • PGA copolymer a polyglycolic acid copolymer containing 70% by mass or more of the above glycolic acid repeating unit is also included.
  • PGA can be synthesized by dehydration polycondensation of glycolic acid, which is an ⁇ -hydroxycarboxylic acid. In order to efficiently synthesize high molecular weight PGA, synthesis is performed by ring-opening polymerization of glycolide, which is a bimolecular cyclic ester of glycolic acid.
  • Examples of comonomers that give a PGA copolymer together with glycolic acid monomers such as glycolide include ethylene glycol, propylene glycol, butanediol, heptanediol, hexanediol, octanediol, nonanediol, decanediol, 1,4- Glycol compounds such as cyclohexanedimethanol, neopentyl glycol, glycerin, pentaerythritol, bisphenol A, polyethylene glycol, polypropylene glycol and polytetramethylene glycol; oxalic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, malonic acid, Glutaric acid, cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid
  • comonomers can be mentioned. These comonomers can be used as a starting material for giving a PGA copolymer together with the glycolic acid monomer such as glycolide.
  • glycolic acid monomer such as glycolide.
  • a preferred comonomer is lactic acid, which forms a copolymer of glycolic acid and lactic acid (PGLA).
  • the glycolic acid repeating unit in the PGA in the PGA composition of the present invention is 70% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and particularly preferably 98%. It is a substantially PGA homopolymer that is greater than or equal to mass% and most preferably greater than or equal to 99 mass%. If the proportion of the glycolic acid repeating unit is too small, the hydrolyzability, heat resistance, mechanical properties, etc. expected for the PGA composition of the present invention will be poor.
  • the repeating unit other than the glycolic acid repeating unit is 30% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less, and particularly preferably 2% by mass or less. Most preferably, it is used in a proportion of 1% by mass or less, and may not contain any repeating unit other than the glycolic acid repeating unit.
  • PGA obtained by polymerizing 70 to 100% by mass of glycolide and 30 to 0% by mass of the above-mentioned other comonomer in order to efficiently produce a desired high molecular weight polymer.
  • the other comonomer may be a cyclic monomer between two molecules, or may be a mixture of both instead of a cyclic monomer.
  • a cyclic monomer is used. Is preferred.
  • PGA obtained by ring-opening polymerization of 70 to 100% by mass of glycolide and 30 to 0% by mass of other cyclic monomers will be described in detail.
  • glycolide which forms PGA by ring-opening polymerization, is a bimolecular cyclic ester of glycolic acid.
  • the manufacturing method of glycolide is not specifically limited, Generally, it can obtain by thermally depolymerizing a glycolic acid oligomer.
  • a depolymerization method for glycolic acid oligomers for example, a melt depolymerization method, a solid phase depolymerization method, a solution depolymerization method, etc. can be adopted, and glycolide obtained as a cyclic condensate of chloroacetate should also be used. Can do.
  • glycolide containing glycolic acid can be used up to 20% by mass of the glycolide amount.
  • the PGA in the PGA composition of the present invention may be formed by ring-opening polymerization of only glycolide, but may also be formed by simultaneously ring-opening polymerization using another cyclic monomer as a copolymerization component.
  • the proportion of glycolide is 70% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and particularly preferably 98% by mass. % Or more, and most preferably 99% by mass or more of a substantially PGA homopolymer.
  • hydroxycarboxylic acids include L-lactic acid, D-lactic acid, ⁇ -hydroxybutyric acid, ⁇ -hydroxyisobutyric acid, ⁇ - Hydroxyvaleric acid, ⁇ -hydroxycaproic acid, ⁇ -hydroxyisocaproic acid, ⁇ -hydroxyheptanoic acid, ⁇ -hydroxyoctanoic acid, ⁇ -hydroxydecanoic acid, ⁇ -hydroxymyristic acid, ⁇ -hydroxystearic acid, and these Examples include alkyl-substituted products.
  • Another particularly preferable cyclic monomer is lactide, which is a bimolecular cyclic ester of lactic acid, and may be any of L-form, D-form, racemate, and a mixture thereof.
  • the other cyclic monomer is 30% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less, further preferably 5% by mass or less, particularly preferably 2% by mass or less, and most preferably 1% by mass. Used in the following proportions.
  • PGA is formed from 100% by weight of glycolide
  • the other cyclic monomer is 0% by weight, and this PGA is also included in the scope of the present invention.
  • the melting point of the PGA copolymer (Tm, sometimes referred to as “crystal melting point”) is lowered, and a product such as a molded product is obtained from the PGA composition.
  • Molding processability can be improved by lowering the processing temperature for production or controlling the crystallization rate.
  • the use ratio of these cyclic monomers is too large, the crystallinity of the formed PGA copolymer is impaired, and the heat resistance and mechanical properties of the PGA composition are lowered.
  • the ring-opening polymerization or ring-opening copolymerization of glycolide (hereinafter sometimes collectively referred to as “ring-opening (co) polymerization”) is preferably carried out in the presence of a small amount of a catalyst.
  • the catalyst is not particularly limited.
  • a tin-based compound such as tin halide (for example, tin dichloride, tin tetrachloride) and organic carboxylate (for example, tin octoate such as tin 2-ethylhexanoate).
  • a titanium compound such as alkoxy titanate; an aluminum compound such as alkoxyaluminum; a zirconium compound such as zirconium acetylacetone; an antimony compound such as antimony halide and antimony oxide;
  • the amount of the catalyst used is preferably about 1 to 1,000 ppm, more preferably about 3 to 300 ppm in terms of mass ratio with respect to the cyclic ester.
  • glycolide The ring-opening (co) polymerization of glycolide is performed by using a protonic compound such as alcohol (which may be a higher alcohol such as lauryl alcohol) or water as a molecular weight regulator in order to control the physical properties such as melt viscosity and molecular weight of the produced PGA.
  • alcohol which may be a higher alcohol such as lauryl alcohol
  • water as a molecular weight regulator
  • glycolide usually contains a trace amount of water and a hydroxycarboxylic acid compound such as glycolic acid or a linear glycolic acid oligomer as impurities, and these compounds also act on the polymerization reaction.
  • the concentration of these impurities is quantified as a molar concentration by, for example, neutralization titration of carboxylic acid, and alcohol or water is added as a protic compound according to the target molecular weight, and the molar concentration of all protic compounds is determined.
  • the molecular weight of the produced PGA can be adjusted.
  • polyhydric alcohols such as glycerol, for a physical property improvement.
  • the ring-opening (co) polymerization of glycolide may be bulk polymerization or solution polymerization, but in many cases, bulk polymerization is employed.
  • bulk polymerization equipment for bulk polymerization, such as an extruder type, a vertical type with paddle blades, a vertical type with helical ribbon blades, a horizontal type such as an extruder type and a kneader type, an ampoule type, a plate type and a tubular type.
  • the device can be selected as appropriate.
  • various reaction tanks can be used for solution polymerization.
  • the polymerization temperature can be appropriately set according to the purpose within a range from 120 ° C. to 300 ° C. which is a substantial polymerization start temperature.
  • the polymerization temperature is preferably 130 to 270 ° C., more preferably 140 to 260 ° C., and particularly preferably 150 to 250 ° C. If the polymerization temperature is too low, the molecular weight distribution of the produced PGA tends to be wide. If the polymerization temperature is too high, the produced PGA is susceptible to thermal decomposition.
  • the polymerization time is in the range of 3 minutes to 50 hours, preferably 5 minutes to 30 hours. If the polymerization time is too short, the polymerization does not proceed sufficiently and a predetermined weight average molecular weight cannot be realized. If the polymerization time is too long, the produced PGA tends to be colored.
  • Solid phase polymerization means an operation of heat treatment while maintaining a solid state by heating at a temperature lower than the melting point of PGA.
  • the solid phase polymerization is preferably performed for 1 to 100 hours, more preferably 2 to 50 hours, particularly preferably 3 to 30 hours.
  • a thermal history to a solid state PGA by a melt kneading step within a temperature range of a melting point (Tm) or higher, preferably a melting point (Tm) + 20 ° C. to a melting point (Tm) + 100 ° C. May be controlled.
  • the weight average molecular weight (Mw) of PGA contained in the PGA composition of the present invention is usually preferably within the range of 70,000 to 1,000,000, more preferably 100,000 to 800,000, Preferably, those within the range of 120,000 to 500,000, particularly preferably 150,000 to 400,000 are selected.
  • the weight average molecular weight (Mw) of PGA is determined by a gel permeation chromatography (GPC) apparatus. If the weight average molecular weight (Mw) is too small, decomposition may proceed quickly and it may be difficult to achieve its purpose, or mechanical properties such as heat resistance and strength may be insufficient. If the weight average molecular weight (Mw) is too large, it may be difficult to produce a PGA composition, or hydrolyzability and biodegradability may be insufficient.
  • the molecular weight distribution (Mw / Mn) represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of PGA contained in the PGA composition of the present invention is 1.5-4.
  • the degradation rate can be controlled by reducing the amount of the polymer component in the low molecular weight region that is susceptible to degradation early or the polymer component in the high molecular weight region that is slow in degradation rate. Therefore, it is preferable.
  • the decomposition rate does not depend on the weight average molecular weight (Mw) of PGA, and it may be difficult to control the decomposition. If the molecular weight distribution (Mw / Mn) is too small, it may be difficult to maintain mechanical properties such as strength of the PGA composition for a required period of time.
  • the molecular weight distribution (Mw / Mn) is preferably 1.6 to 3.7, more preferably 1.65 to 3.5.
  • the molecular weight distribution (Mw / Mn) can be determined using a GPC analyzer in the same manner as the weight average molecular weight (Mw).
  • the melting point (Tm) of PGA contained in the PGA composition of the present invention is usually 185 to 245 ° C., and can be adjusted by weight average molecular weight (Mw), molecular weight distribution, type and content ratio of copolymerization component, and the like. .
  • the melting point (Tm) of PGA is preferably 190 to 240 ° C, more preferably 195 to 235 ° C, and particularly preferably 200 to 230 ° C.
  • the melting point (Tm) of a homopolymer of PGA is usually about 220 ° C. If the melting point (Tm) is too low, mechanical properties such as heat resistance and strength may be insufficient.
  • the melting point (Tm) of PGA is determined in a nitrogen atmosphere using a differential scanning calorimeter (DSC).
  • the glass transition temperature (Tg) of PGA contained in the PGA composition of the present invention is usually 25 to 60 ° C., preferably 30 to 55 ° C., more preferably 32 to 52 ° C., and particularly preferably 35 to 50 ° C. is there.
  • the glass transition temperature (Tg) of PGA can be adjusted by the weight average molecular weight (Mw), the molecular weight distribution, the type and content ratio of the copolymerization component, and the like.
  • the glass transition temperature (Tg) of PGA is determined in a nitrogen atmosphere using a differential scanning calorimeter (DSC).
  • the melt flow rate (MFR) of PGA contained in the PGA composition of the present invention is usually preferably in the range of 0.1 to 100 g / 10 minutes, more preferably 1 to 50 g / 10 minutes, and still more preferably 2 The range is ⁇ 20 g / 10 minutes.
  • the MFR of PGA is expressed as a flow rate (g) per 10 minutes when measured at a temperature of 240 ° C. and a load of 2.16 kg. If the MFR of PGA is too large, molding processability may not be ensured depending on the production process, and mechanical properties such as strength of the product obtained from the PGA composition may be insufficient. The composition may not be obtained. If the MFR of PGA is too small, it may be difficult to mold the resulting PGA composition.
  • the PGA composition of the present invention contains an inorganic filler together with PGA.
  • the inorganic filler is not particularly limited, and a fibrous or whisker-like inorganic filler can be used as the shape, and an inorganic filler other than the fibrous or whisker-like, for example, plate (layer), powder Inorganic or particulate fillers can be used.
  • inorganic fillers having various compositions such as carbon-based, metal-based, or silicon-based can be used as the inorganic filler.
  • the fibrous or whisker-like inorganic filler includes glass fiber (long fiber type or short fiber type chopped strand, milled fiber, etc.), PAN-based or pitch-based carbon fiber, graphite fiber, aluminum fiber.
  • Inorganic fibrous fillers such as metal fibers such as brass fiber or stainless steel fiber, alumina fiber, zirconia fiber, ceramic fiber, asbestos fiber, gypsum fiber, silicon carbide fiber, silica fiber, titanium oxide fiber, rock wool; potassium titanate Inorganic whisker-like fillers such as whisker, barium titanate whisker, aluminum borate whisker, silicon nitride whisker, zinc oxide whisker, calcium carbonate whisker, wollastonite whisker, and aluminum borate whisker are used.
  • Non-fibrous or whisker-like inorganic fillers include silicon oxide (silica, silica sand, etc.); talc, kaolin, mica, wollastonite, zeolite, sericite, clay, pyrophyllite, bentonite, asbestos, aluminosilicate, silicic acid Silicates such as magnesium; layered silicates typified by swelling mica such as Li-type fluorine teniolite, Na-type fluorine teniolite, Na-type tetrasilicon fluorine mica, Li-type tetrasilicon fluorine mica; magnesium oxide, alumina, zinc oxide, Metal oxides such as zirconium oxide, titanium oxide, iron oxide, antimony oxide, tungstic acid and vanadic acid; carbonates such as calcium carbonate, magnesium carbonate, barium carbonate and dolomite; sulfates such as calcium sulfate, barium sulfate and aluminum sulfate Calcium hydroxide and hydroxy
  • inorganic fillers preferably silicon oxide, silicate, carbonate, sulfate, clay mineral, inorganic fibrous filler or inorganic whisker-like filler, particularly preferably silica sand, silica, talc, kaolin, Mica, calcium carbonate, magnesium carbonate, barium carbonate, barium sulfate, montmorillonite, glass fiber, carbon fiber or graphite fiber.
  • An inorganic filler can be used by using two or more kinds in combination in a PGA composition.
  • a combination of a fibrous or whisker-like inorganic filler and an inorganic filler other than a fibrous or whisker-like, or a combination of inorganic fillers other than a fibrous or whisker-like is preferable.
  • the inorganic filler used in the present invention may be used by treating the surface with a surface treatment agent such as a known coupling agent (for example, a silane coupling agent, a titanate coupling agent, etc.). it can.
  • the glass fiber used in the present invention is preferably treated with a thermoplastic resin such as an ethylene / vinyl acetate copolymer, an epoxy-based, urethane-based, acrylic-based coating agent or a sizing agent.
  • a thermoplastic resin such as an ethylene / vinyl acetate copolymer, an epoxy-based, urethane-based, acrylic-based coating agent or a sizing agent.
  • the system is particularly preferred.
  • the short diameter of the glass fiber is preferably 0.1 to 1,000 ⁇ m, more preferably 1 to 100 ⁇ m. If the minor axis is too small or too large, sufficient strength may not be expressed.
  • the fiber length is preferably 0.1 to 10 mm, more preferably 1 to 7 mm. If the fiber length is too short, there is a possibility that sufficient strength cannot be exhibited, and if it is too long, the melt-kneading process may be difficult.
  • the content of the inorganic filler in the PGA composition of the present invention is an amount that is a ratio of 30 to 90% by mass of PGA and 70 to 10% by mass of inorganic filler, preferably 35 to 80% by mass of PGA and 65 to 65% of inorganic filler.
  • the amount is 20% by mass, more preferably 40 to 75% by mass of PGA and 60 to 25% by mass of the inorganic filler. If the content of the inorganic filler is too small, mechanical properties such as heat resistance and strength of the PGA composition may be insufficient. If the content of the inorganic filler is too large, the processability of the PGA composition is insufficient and the formation of the product cannot be controlled sufficiently, and the properties such as hydrolyzability and biodegradability are within the desired range. Or may not.
  • the PGA composition of the present invention can further contain other biodegradable resins, other resins, or other additives as long as they do not contradict the object of the present invention.
  • biodegradable resins include polylactic acid (PLA), polyhydroxybutyrate, polyhydroxyvalerate, polyhydroxycaproate, and polyhydroxyheptanoate.
  • PLA polylactic acid
  • polyhydroxybutyrate polyhydroxyvalerate
  • polyhydroxycaproate polyhydroxycaproate
  • polyhydroxyheptanoate polyhydroxyheptanoate
  • Polyhydroxyalkanoates such as poly (hydroxybutyrate / hydroxyvalerate); polyesters formed from dicarboxylic acids and diols such as polyethylene succinate, polybutylene succinate, polybutylene succinate adipate; polyetheresters such as polydioxanone; Examples thereof include aliphatic polycarbonates such as polytrimethylene carbonate; polyamino acids such as poly ⁇ -pyrrolidone, polyaspartic acid, and polylysine; and copolymers and mixtures thereof, with PLA being preferred.
  • the PGA composition of the present invention can be further adjusted to include other biodegradable resins to adjust degradability, that is, hydrolyzability, biodegradability, and mechanical properties such as processability and strength. .
  • the PGA composition contains PGA and other biodegradable resin
  • the PGA is preferably 70 parts by mass or more, More preferably, the proportion is such that PGA is 80 parts by mass or more, further preferably PGA is 90 parts by mass or more, and particularly preferably PGA is 95 parts by mass or more.
  • the PGA composition of the present invention has mechanical properties such as workability and strength by containing other resins together with other biodegradable resins or without containing other biodegradable resins. Can be adjusted.
  • the content of the other resin is usually 30 parts by mass or less, preferably 20 parts by mass with respect to 100 parts by mass of PGA so as not to impair the degradability of the PGA composition. Or less, more preferably 10 parts by mass or less, and a content of 5 parts by mass or less or 1 part by mass or less may be used.
  • additives that the PGA composition of the present invention can further contain include plasticizers (polyester plasticizers, glycerin plasticizers, polycarboxylic acid ester plasticizers, phosphate ester plasticizers, Polyalkylene glycol plasticizers and epoxy plasticizers), antioxidants, heat stabilizers, end-capping agents, UV absorbers, flame retardants (bromine flame retardants, phosphorus flame retardants, antimony compounds, melamine compounds, etc.) ), Lubricants, waterproofing agents, water repellents, mold release agents, waxes, colorants such as dyes and pigments, oxygen absorbers, crystallization accelerators, nucleating agents, hydrogen ion concentration regulators, and inorganic fillers
  • plasticizers polymers
  • glycerin plasticizers polycarboxylic acid ester plasticizers, phosphate ester plasticizers, Polyalkylene glycol plasticizers and epoxy plasticizers
  • antioxidants heat stabilizers, end-capping agents
  • UV absorbers flame retardants
  • the degradability, particularly hydrolyzability of the PGA composition can be controlled, This is preferable because the storage stability of the PGA composition can be improved. That is, by blending a carboxyl group end-capping agent or a hydroxyl group end-capping agent, the PGA composition obtained is prevented from unexpected degradation during storage until it is used for molding or other processing, The molecular weight reduction can be suppressed, and the hydrolyzable and biodegradable speed of the PGA composition can be adjusted.
  • end capping agent a compound that has a carboxyl group end capping action or a hydroxyl group end capping action and is known as a water resistance improver for PGA can be used.
  • a carboxyl group end capping agent is particularly preferable from the viewpoint of the balance between hydrolyzability and biodegradability and hydrolysis resistance during storage.
  • carboxyl group terminal blocking agent examples include carbodiimide compounds such as N, N′-2,6-diisopropylphenylcarbodiimide; 2,2′-m-phenylenebis (2-oxazoline), 2,2′-p- Oxazoline compounds such as phenylenebis (2-oxazoline), 2-phenyl-2-oxazoline and styrene / isopropenyl-2-oxazoline; Oxazine compounds such as 2-methoxy-5,6-dihydro-4H-1,3-oxazine And epoxy compounds such as N-glycidylphthalimide, cyclohexene oxide, and tris (2,3-epoxypropyl) isocyanurate; Among these carboxyl group end-capping agents, carbodiimide compounds are preferred, and any of aromatic, alicyclic, and aliphatic carbodiimide compounds are used, but aromatic carbodiimide compounds are particularly preferred, and particularly high purity.
  • a hydroxyl group terminal blocker a diketene compound, isocyanates, etc. are used as a hydroxyl group terminal blocker.
  • the carboxyl group terminal blocking agent or the hydroxyl group terminal blocking agent is usually 0.01 to 5 parts by mass, preferably 0.05 to 3 parts by mass, more preferably 0.1 to 1 part by mass with respect to 100 parts by mass of PGA. It is used in the ratio.
  • the PGA composition contains a heat stabilizer because thermal deterioration during molding and the like can be suppressed, and long-term storage stability of the PGA composition is improved.
  • a mixture of 50% by mass and about 50% by mass of distearyl phosphate (trade name “AX-71” manufactured by ADEKA Corporation) is known. ].
  • distearyl phosphate trade name “AX-71” manufactured by ADEKA Corporation
  • carbonates such as calcium carbonate and strontium carbonate (sometimes contained as an inorganic filler).
  • the heat stabilizer is usually 3 parts by mass or less, preferably 0.001 to 1 part by mass, more preferably 0.005 to 0.5 part by mass, and particularly preferably 0.01 to 0. It is used at a ratio of 1 part by mass (100 to 1,000 ppm).
  • the PGA composition of the present invention contains 30 to 90% by mass of PGA and 70 to 10% by mass of an inorganic filler, and has a mass reduction rate of 20 after immersion in water at 120 ° C. for 3 hours. %, And the deflection temperature under load is 120 ° C. or higher.
  • the PGA composition of the present invention includes molding raw materials such as pellets, strands or granules (including those obtained by melt mixing and those obtained by melt-kneading using an extruder described later), sheets and films. , Extruded products, injection molded products, compression molded products, blow molded products, laminates and other composites may be used.
  • the PGA composition of the present invention has a mass loss rate of PGA after immersion in water at 120 ° C. for 3 hours (hereinafter sometimes referred to as “120 ° C. 3 hour mass loss rate”) of 20% or more, Preferably it is 23% or more, More preferably, it is 25% or more, More preferably, it is 30% or more.
  • the PGA composition of the present invention has an excellent moldability and mechanical properties as well as excellent heat resistance and hydrolysis due to a mass loss rate of 20% or more, more preferably 25% or more at 120 ° C. for 3 hours. Can also be combined. If the mass loss rate at 120 ° C. for 3 hours of the PGA composition is less than 20%, the heat resistance, hydrolyzability and biodegradability may be insufficient.
  • the mass reduction rate at 120 ° C. for 3 hours of the PGA composition is measured by the following method. That is, using the PGA composition, an evaluation test piece having a dumbbell shape (dumbbell shape standard conforms to ISO294) is prepared by injection molding, the mass of the evaluation test piece is measured, and the content ratio of the inorganic filler is determined. In consideration, the mass of PGA in the evaluation test piece (hereinafter referred to as “PGA mass before test”) is calculated. Next, pure water and an evaluation test piece are enclosed in a bag-shaped body made of a barrier packaging material, and the bag-shaped body is sealed.
  • a bag-like body enclosing pure water and an evaluation test piece is put into a retort kettle adjusted to a temperature of 120 ° C., and the evaluation test piece is taken out after 3 hours.
  • the evaluation test piece taken out was subjected to cold air blowing and vacuum drying to remove moisture, and then the mass of the evaluation test piece was measured, and the mass of PGA in the evaluation test piece after the test (hereinafter referred to as “post-test PGA”). Mass))).
  • the PGA composition of the present invention has a deflection temperature under load of 120 ° C. or higher, preferably 140 ° C. or higher, more preferably 150 ° C. or higher, and further preferably 160 ° C. or higher.
  • the PGA composition of the present invention has excellent moldability and mechanical properties as well as excellent heat resistance and hydrolyzability when the deflection temperature under load is 120 ° C. or higher.
  • heat resistance, hydrolyzability and biodegradability may be insufficient.
  • the deflection temperature under load of the PGA composition was measured according to ISO75 (bending stress: 1.80 MPa, distance between fulcrums: 64 mm, temperature rise rate: 120 ° C./hour flat-wise method).
  • the melt flow rate (MFR) of the PGA composition of the present invention is usually preferably in the range of 0.1 to 100 g / 10 minutes, more preferably 1 to 80 g / 10 minutes, still more preferably 2 to 70 g / 10. The range of minutes.
  • the MFR of the PGA composition is expressed as a flow rate (g) per 10 minutes when measured at a temperature of 240 ° C. and a load of 2.16 kg. If the MFR of the PGA composition is too large, molding processability may not be ensured depending on the production process, and mechanical properties such as strength of a product obtained from the PGA composition may be insufficient. If the MFR of the PGA composition is too small, it may be difficult to mold the PGA composition, and a product obtained from the PGA composition having desired characteristics may not be obtained.
  • the PGA composition of the present invention has excellent mechanical properties that are balanced.
  • Charpy impact strength (according to ISO 179) is, 3 kJ / m 2 or more, preferably 4 kJ / m 2 or more, more preferably 5 KJ / m 2 or more
  • the tensile strength (based on ISO 527) is 50 MPa or more, preferably 70 MPa or more.
  • Elongation (based on ISO 527) is 1% or more, preferably 1.5% or more.
  • the bending strength (based on ISO178) is 100 MPa or more, preferably 110 MPa or more, more preferably 120 MPa or more.
  • the flexural modulus (based on ISO178) is 8 GPa or more, preferably 10 GPa or more, more preferably 15 GPa or more. It is possible to provide the requirements required as mechanical characteristics.
  • the PGA composition of the present invention has excellent biodegradability.
  • the biodegradability of the PGA composition was determined by digging out the evaluation test piece before the test used in the measurement of the mass reduction rate at 120 ° C. for 3 hours described above after burying it in the soil kept at a temperature of 60 ° C. for 2 months, It can be determined that there is biodegradability if the collapse of the shape is observed visually, and the shape is broken as the original shape is unknown.
  • the PGA composition of the present invention contains 30 to 90% by mass of PGA and 70 to 10% by mass of an inorganic filler, has a mass reduction rate of 20% or more at 120 ° C. for 3 hours, and As long as a PGA composition characterized by a deflection temperature under load of 120 ° C. or higher can be obtained, the production method is not particularly limited. From the viewpoint of the stability of the quality of the PGA composition and the production efficiency, a method for producing a PGA composition including a step of melt-kneading PGA and an inorganic filler using an extruder is preferable.
  • a method for producing a PGA composition for supplying PGA from the main feed port and supplying an inorganic filler from at least the side feed port to the extruder using an extruder having a main feed port and a side feed port, a method for producing a PGA composition for supplying PGA from the main feed port and supplying an inorganic filler from at least the side feed port to the extruder,
  • a PGA composition having a large content of the inorganic filler can be easily produced. More preferable.
  • the step of melt-kneading using an extruder refers to melting a raw material containing 30 to 90% by mass of PGA and 70 to 10% by mass of an inorganic filler, which are materials for forming a PGA composition, with a screw and a cylinder.
  • Supply to an extruder having a kneading function heat and melt the raw material based on external heating and shearing heat generation, kneading and mixing, and then extruding into a bar shape etc. It is a process of cutting a pellet into a PGA composition having a required material composition.
  • the PGA composition of the present invention is a method for producing a PGA composition comprising a step of melt kneading using an extruder, and preferably melt kneading using a twin screw extruder equipped with two screws.
  • the PGA composition obtained by the method for producing a PGA composition including the step of melt-kneading using a twin-screw extruder has good dispersion / distribution efficiency of the inorganic filler, such as a sheet / film or an injection molded product.
  • a PGA composition product having various forms and shapes can be obtained, and a product comprising a PGA composition having excellent moldability, mechanical properties, heat resistance, hydrolyzability and biodegradability can be obtained. It is preferable because it is possible.
  • melt-kneading step is performed using an extruder having a main feed port and a side feed port as an extruder, the PGA from the main feed port, and the inorganic filler from at least the side feed port.
  • a PGA composition having a high content of inorganic filler when fed to the extruder, and more preferably when fed by feeding the inorganic filler from the main feed port and the side feed port to the extruder. can be easily manufactured.
  • An extruder having a main feed port and a side feed port is located on the screw drive unit side of the extruder, and most of materials for forming a PGA composition including PGA (usually solid).
  • PGA usually solid
  • the extruder is provided with a side feed port for supplying a part of the material to the extruder.
  • the side feed port is usually 0.2 to 0.9 L, preferably 0.4 to 0.8 L, more preferably 0.5 to the cylinder length (L) of the extruder from the screw drive unit side. It can be provided in a range separated by a length of ⁇ 0.75 L.
  • the supply of PGA and inorganic filler to the extruder from the main feed port and / or side feed port can be performed by a method and mechanism known per se. For example, it may be supplied to the extruder via a hopper installed at the main feed port and / or the side feed port, or via a feeder or an extruder installed at the main feed port and / or the side feed port. Alternatively, it may be supplied to the extruder.
  • an extruder having a screw and a cylinder and having a melt-kneading function heats and melts a raw material and performs kneading and mixing based on external heating and shearing heat generation.
  • Most of the materials for forming the PGA composition supplied from the main feed port, in particular PGA, are solid and are heated and melted in the extruder based on external heating and shear heat generation, , And sent to the extrusion port (nozzle) side.
  • a part of the material for forming the PGA composition supplied from the side feed port for example, an inorganic filler, is already heated and melted most of the material for forming the PGA composition supplied from the main feed port.
  • the melt kneading of the PGA and the inorganic filler is performed by being extruded from the extrusion port (nozzle) through a relatively short residence time in the extruder. . Therefore, in the method for producing the PGA composition of the present invention, the step of supplying the inorganic filler from the side feed port to the extruder, or supplying the inorganic filler from the main feed port and the side feed port to the extruder, and melt-kneading the process.
  • the heat history such as the amount of heat generated by shearing and the shearing force that are imparted to the inorganic filler contained in the PGA composition.
  • thermal deterioration, breakage, breakage, etc. of the inorganic filler can be reduced or eliminated, and particularly desirable effects can be obtained when using a fibrous or whisker-like inorganic machine filler.
  • the inorganic filler is supplied to the extruder from i) the main feed port and the side feed port.
  • Any supply method of supplying, ii) supplying from the side feed port, or iii) supplying from the main feed port is possible, but preferably i) supplying from the main feed port and the side feed port, or ii ) Supply method from the side feed port, more preferably i) Supply method from the main feed port and the side feed port.
  • the ratio (expressed in mass%) depending on the method of supplying the inorganic filler may be 100: 0 to 0: 100, preferably 100, as the supply from the side feed port: the supply from the main feed port. : 0 to 20:80, more preferably 90:10 to 30:70, and still more preferably 80:20 to 40:60.
  • the PGA composition of the present invention will be specifically described below with reference to examples and comparative examples.
  • the present invention is not limited to the examples.
  • the properties of PGA or PGA composition were measured by the following method.
  • the weight average molecular weight (Mw) of PGA was calculated
  • HFIP hexafluoroisopropanol
  • Tm melting point
  • Tg glass transition temperature
  • the mass reduction rate at 120 ° C. for 3 hours of the PGA composition was measured by the following method. That is, an evaluation test piece having a dumbbell shape (the dumbbell shape standard conforms to ISO 294) is produced by injection molding the PGA composition, the mass of the evaluation test piece is measured, and the content ratio of the inorganic filler is taken into consideration. Then, the mass of PGA in the evaluation test piece (“PGA mass before test”) was calculated. Subsequently, pure water and an evaluation test piece were enclosed in a bag-shaped body made of a barrier packaging material, and the bag-shaped body was sealed.
  • PGA mass before test the mass of PGA in the evaluation test piece
  • the deflection temperature under load of the PGA composition was measured in accordance with ISO75 (bending stress: 1.80 MPa, distance between fulcrums: 64 mm, temperature rise rate: 120 ° C./hour flat-wise method).
  • melt flow rate (MFR) The melt flow rate (MFR) of the PGA and PGA composition was measured as a flow rate (g) per 10 minutes when measured at a temperature of 240 ° C. and a load of 2.16 kg.
  • Biodegradability The biodegradability of the PGA composition is determined by embedding an evaluation test piece used for measurement of mass loss rate at 120 ° C. for 3 hours in soil kept at a temperature of 60 ° C. for 2 months, and visually observing the collapse of the shape. If the original shape is unclear enough, the biodegradability is determined.
  • PGA pellets manufactured by Kureha Co., Ltd., Mw: 200,000, Mw / Mn: 2.2, MFR: 10 g / 10 min, Tg: 43 ° C., Tm: 220 ° C., diameter 3 mm ⁇ length 3 mm
  • a 48 mm twin screw extruder manufactured by Nippon Placon Co., Ltd. was supplied from the main feed port and melted at a temperature of 200 to 240 ° C.
  • silica sand manufactured by JFE Mineral Co., Ltd., Nikko Silica Sand (registered trademark) No.
  • PGA and silica sand that have undergone the melt-kneading process using an extruder are extruded from an extrusion die equipped with a nozzle having a diameter of 4 mm, cooled with water, sufficiently removed with air, cut with a strand cutter, and 3 mm in diameter.
  • a pellet-like PGA composition having a length of 3 mm (sometimes referred to as “compound of PGA and silica sand”) was obtained. Thereafter, the pellet-shaped PGA composition that had been sufficiently dried was supplied to an injection molding machine (manufactured by Toshiba Machine Co., Ltd., IS75E) to prepare an evaluation test piece having a dumbbell shape (the dumbbell shape standard conformed to ISO 294). .
  • Table 1 shows the results of measuring the mass reduction rate at 120 ° C. for 3 hours, the deflection temperature under load, MFR, Charpy impact strength, tensile strength and elongation, bending strength and bending elastic modulus of the prepared evaluation test piece.
  • the evaluation test piece of the above-mentioned PGA composition was dug in the soil maintained at a temperature of 60 ° C. for 2 months and then excavated and visually observed, the evaluation test piece was completely collapsed. Was determined to be biodegradable.
  • Example 2 The inorganic filler is talc (manufactured by Nippon Talc Co., Ltd., Microace (registered trademark) L-1 (average particle size 5 ⁇ m, moisture 0.2%, apparent density 0.15 g / cm 3 ), hereinafter referred to as “talc 1”. Sometimes.
  • An evaluation test piece was prepared in the same manner as in Example 1 except that the content of PGA and talc was changed to 70% by mass: 30% by mass. Table 1 shows the results of measuring the mass reduction rate at 120 ° C. for 3 hours, the deflection temperature under load, MFR, Charpy impact strength, tensile strength and elongation, bending strength and bending elastic modulus of the prepared evaluation test piece.
  • the evaluation test piece of the above-mentioned PGA composition was buried in the soil kept at a temperature of 60 ° C. for 2 months and then excavated and visually observed, the evaluation test piece was completely collapsed. Was determined to be biodegradable.
  • the inorganic filler may be talc [manufactured by Nippon Talc Co., Ltd., Simgon (average particle size 8 ⁇ m, moisture 0.2%, apparent density 0.29 g / cm 3 ), hereinafter referred to as “talc 2”. And the method of supplying the inorganic filler (talc 2) to the twin screw extruder, 30% (mass ratio) of the total amount of talc from the main feed port, 70% (mass ratio) of the total amount of talc An evaluation test piece was prepared in the same manner as in Example 1 except that the change was made so as to be supplied from the side feed port. Table 1 shows the results of measuring the mass reduction rate at 120 ° C.
  • the deflection temperature under load, MFR, Charpy impact strength, tensile strength and elongation, bending strength and bending elastic modulus of the prepared evaluation test piece was buried in the soil kept at a temperature of 60 ° C. for 2 months and then excavated and visually observed, the evaluation test piece was completely collapsed. Was determined to be biodegradable.
  • Example 1 An evaluation test piece was produced in the same manner as in Example 1 except that only the PGA pellet was supplied to the twin screw extruder without using the inorganic filler. Table 1 shows the results of measuring the mass reduction rate at 120 ° C. for 3 hours, the deflection temperature under load, MFR, Charpy impact strength, tensile strength and elongation, bending strength and bending elastic modulus of the prepared evaluation test piece. Moreover, when the evaluation test piece of the said PGA composition was embed
  • Comparative Example 2 An evaluation test piece of PLA (containing no inorganic filler) was produced in the same manner as in Comparative Example 1 except that the PGA pellet was changed to a PLA pellet (3052D manufactured by Nature Works). Table 1 shows the results of measuring the mass reduction rate at 120 ° C. for 3 hours, the deflection temperature under load, MFR, Charpy impact strength, tensile strength and elongation, bending strength and bending elastic modulus of the prepared evaluation test piece. Further, when the evaluation test piece of the PGA composition was embedded in soil kept at a temperature of 60 ° C. for 2 months, and then excavated and visually observed, the shape of the evaluation test piece was almost maintained.
  • Example 3 An evaluation test piece of a PLA composition was produced in the same manner as in Example 3 except that the PGA pellet was changed to the PLA pellet.
  • Table 1 shows the results of measuring the mass reduction rate at 120 ° C. for 3 hours, the deflection temperature under load, MFR, Charpy impact strength, tensile strength and elongation, bending strength and bending elastic modulus of the prepared evaluation test piece. Further, when the evaluation test piece of the PGA composition was embedded in soil kept at a temperature of 60 ° C. for 2 months, and then excavated and visually observed, the shape of the evaluation test piece was almost maintained.
  • Example 1 containing 30 to 90% by mass of PGA and 70 to 10% by mass of an inorganic filler, having a mass reduction rate of 120% at 3 hours at 120 ° C. and a deflection temperature under load of 120 ° C. or more.
  • the PGA composition of 3 to 3 has excellent hydrolyzability, heat resistance and biodegradability, Charpy impact strength of 3 KJ / m 2 or more, tensile strength of 50 MPa or more, elongation of 1% or more, bending strength Of 100 MPa or more and a flexural modulus of 8 GPa or more are all satisfied, and it was found that the composition had excellent mechanical properties that were balanced.
  • the PGA compositions of Examples 1 to 3 are PGA compositions obtained by a method for producing a PGA composition including a step of melt-compounding PGA and an inorganic filler using an extruder.
  • a method for producing a PGA composition including a step of melt-compounding PGA and an inorganic filler using an extruder.
  • the PGA composition of Example 3 obtained by the method for producing the PGA composition that supplies the inorganic filler to the extruder from the main feed port and the side feed port has a very large proportion of the inorganic filler of 50% by mass.
  • the PGA of Comparative Example 1 containing no inorganic filler has a small Charpy impact strength of 2.2 KJ / m 2 and a low flexural modulus of 6.6 GPa, which is excellent in balance. It was found that it does not have mechanical properties.
  • the PLA of Comparative Example 2 containing no inorganic filler has a mass reduction rate of 5.1% at 120 ° C. for 3 hours and a deflection temperature under load of 55 ° C.
  • the hydrolyzability and heat resistance are sufficient.
  • the biodegradability was insufficient and the flexural modulus was extremely small as 3.6 GPa, it was found that the balance of mechanical properties was not good.
  • the PLA composition of Comparative Example 3 containing talc 2 as an inorganic filler in a proportion of 50% by mass has a mass reduction rate of 4.5% at 120 ° C. for 3 hours and a deflection temperature under load of 84 ° C.
  • the hydrolyzability and heat resistance are not sufficient, the biodegradability is insufficient, the tensile strength is 48 MPa, the bending strength is 91 MPa, and the bending elastic modulus is 5.1 GPa. From the above, it was found that they do not have excellent mechanical properties.
  • the present invention contains 30 to 90% by mass of PGA and 70 to 10% by mass of an inorganic filler, has a PGA mass reduction rate of 20% or more after being immersed in water at 120 ° C. for 3 hours, and has a deflection temperature under load.
  • a PGA composition characterized by having a temperature of 120 ° C. or higher, a molding material by a general-purpose resin molding method, a packaging material for food and other products, a packaging material that is easy to compost and has a low environmental load, Utilizing its strength and decomposability, it can be used as a material for forming downhole tools for well drilling or its components that can be left in the ground and decomposed after use.
  • a PGA composition containing PGA which is a biodegradable resin having mechanical properties, having both excellent heat resistance and hydrolyzability, and further formed from the PGA composition It is possible to provide a downhole tool or a member which has high industrial applicability.
  • the present invention is a method for producing the PGA composition including a step of melt-kneading the PGA and the inorganic filler using an extruder, whereby the PGA composition can be easily produced. Because it can, industrial applicability is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

 ポリグリコール酸樹脂(PGA)30~90質量%及び無機充填材70~10質量%を含有し、水中に温度120℃で3時間浸漬後のPGAの質量減少率が20%以上、好ましくは25%以上であり、かつ、荷重たわみ温度が120℃以上である、包装材料や坑井掘削用ダウンホールツール(部材)の材料として使用可能なPGA組成物、及び、押出機を使用して溶融混練する工程を含むPGA組成物の製造方法。

Description

ポリグリコール酸樹脂組成物及びその製造方法
 本発明は、生分解性樹脂であるポリグリコール酸樹脂を含有し、成形性、機械的特性に優れるとともに、優れた耐熱性と加水分解性とを併せ有するポリグリコール酸樹脂組成物及びその製造方法に関する。
 ポリグリコール酸樹脂(以下、「PGA」ということがある。)やポリ乳酸樹脂(以下、「PLA」ということがある。)等の脂肪族ポリエステルは、土壌や海中などの自然界に存在する微生物または酵素により分解されるため、環境に対する負荷が小さい生分解性高分子材料として注目されている。また、脂肪族ポリエステルは、生体内分解吸収性を有しているため、手術用縫合糸や人工皮膚などの医療用高分子材料としても利用されている。
 脂肪族ポリエステルの中でも、PGAは、機械的強度に優れるとともに、酸素ガスバリア性、炭酸ガスバリア性、水蒸気バリア性等のガスバリア性やアロマバリア性にも優れている。PGAは、高い融点を持ち、溶融成形が可能であることから、実用上優れた生分解性樹脂として、単独で、または他の樹脂材料などと複合化して用途展開が図られている。すなわちPGAは、射出成形、押出成形、圧縮成形、ブロー成形等の汎用の樹脂成形方法によって製品に成形される成形材料として、また、酸化劣化しやすい食品等の包装材料や、コンポスト化しやすく環境負荷が小さい包装材料、さらには、その強度と分解性を活かして、使用後に地中に放置し分解させることが可能であることから、石油(シェールオイル等)または天然ガス(シェールガス等)を産出する坑井掘削用ダウンホールツールまたはその部材を形成するための材料としても、期待が広がっている。
 しかしながら、PGAは、生分解性のもととなる加水分解性により、溶融加工中に分子量が低下することがあり、また、高温高湿下で長期間使用することが困難となることもあった。さらに、PGAは、結晶化速度が大きいため、成形物の厚みムラを生ずることがあったり、他の熱可塑性樹脂と複合化して成形加工する際、延伸成形がしにくかったりするなど、成形加工上または製品外観上の問題が起きることがあった。
 生分解性樹脂の耐熱性改善のために、特許文献1には、生分解性樹脂、熱可塑性エラストマー及び無機充填材とからなる生分解性樹脂組成物が開示され、該生分解性樹脂組成物が、靱性及び耐熱性が改善されたものであることが記載されている。特許文献1には、生分解性樹脂として、ポリ乳酸(PLA)、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリグリコール酸(PGA)、又はポリ(β-ヒドロキシブチレート)、ポリ(β-ヒドロキシバレレート)、ポリ(β-ヒドロキシカプロエート)、ポリ(β-ヒドロキシヘプタノエート)及びポリ(ヒドロキシブチレート-コ-ヒドロキシバレレート)を含むポリヒドロキシアルカノエートベースのポリマー、又はポリ(ヒドロキシエステル-エーテル)ベースのポリマー、ポリ(プロピレンカーボネート)が挙げられているが、具体的に使用される生分解性樹脂は、PLAのみであり、PLA組成物の耐熱性は、93.7~114℃の熱変形温度に留まるものであった。
 そのため、汎用の樹脂成形方法による成形材料として、また、食品その他製品の包装材料や環境負荷が小さい包装材料、さらには、坑井掘削用ダウンホールツールまたはその部材を形成するための材料としても使用可能な、優れた成形性、機械的特性を有するとともに、優れた耐熱性と加水分解性を併せ有するPGA組成物が求められていた。
特開2008-63577号公報
 本発明の課題は、汎用の樹脂成形方法による成形材料として、また、食品その他製品の包装材料や環境負荷が小さい包装材料、さらには、石油(シェールオイル等)または天然ガス(シェールガス等)を産出する坑井掘削用ダウンホールツールまたはその部材を形成するための材料としても使用可能な、優れた成形性、機械的特性を有する生分解性樹脂であるPGAを含有し、優れた耐熱性と加水分解性とを併せ有するPGA組成物を提供することにある。
 本発明者らは、上記目的を達成するために、鋭意研究を進めた結果、優れた耐熱性と加水分解性とを併せ有するPGA組成物、及び、該PGA組成物の製造方法を見いだし、本発明を完成させた。
 かくして、本発明によれば、PGA30~90質量%及び無機充填材70~10質量%を含有し、水中に温度120℃で3時間浸漬後のポリグリコール酸樹脂の質量減少率が20%以上であり、かつ、荷重たわみ温度が120℃以上であることを特徴とするPGA組成物が提供される。
 本発明によれば、実施態様として、以下(1)~(5)の発明が提供される。
(1)更に他の生分解性樹脂を含有する前記のPGA組成物。
(2)他の生分解性樹脂が、PLAである前記のPGA組成物。
(3)PGAと他の生分解性樹脂との合計を100質量部とするとき、PGAが70質量部以上である前記のPGA組成物。
(4)無機充填材が、酸化珪素、珪酸塩、炭酸塩、硫酸塩、粘土鉱物、無機繊維状充填材及び無機ウイスカー状充填材からなる群より選ばれる少なくとも一種である前記のPGA組成物。
(5)2種類以上の無機充填材を含有する前記のPGA組成物。
(6)ダウンホールツールまたはその部材用である前記のPGA組成物。
 また、本発明によれば、PGA及び無機充填材を、押出機を使用して溶融混練する工程を含む前記のPGA組成物の製造方法が提供され、さらに、メインフィード口とサイドフィード口とを備える押出機を使用して、PGAをメインフィード口から、及び、無機充填材を少なくともサイドフィード口から、押出機に供給する前記のPGA組成物の製造方法が提供され、更にまた、無機充填材を、メインフィード口及びサイドフィード口から押出機に供給する前記のPGA組成物の製造方法が提供される。さらに、本発明によれば、前記のPGA組成物から形成されるダウンホールツールまたはその部材が提供される。
 本発明によれば、PGA30~90質量%及び無機充填材70~10質量%を含有し、水中に温度120℃で3時間浸漬後のPGAの質量減少率が20%以上であり、かつ、荷重たわみ温度が120℃以上であることを特徴とするPGA組成物であることにより、汎用の樹脂成形方法による成形材料として、また、食品その他製品の包装材料や環境負荷が小さい包装材料、さらには、坑井掘削用ダウンホールツールまたはその部材を形成するための材料としても使用可能な、優れた成形性、機械的特性を有する生分解性樹脂であるPGAを含有し、優れた耐熱性と加水分解性とを併せ有するPGA組成物が提供され、更に該PGA組成物から形成されるダウンホールツールまたはその部材が提供されるという効果が奏される。
 また、本発明によれば、PGA及び無機充填材を、押出機を使用して溶融混練する工程を含む前記のPGA組成物の製造方法であることによって、前記のPGA組成物を容易に製造することができるという効果が奏される。
1.ポリグリコール酸樹脂
 本発明のPGA組成物に含有されるPGAは、式:(-O-CH2-CO-)で表されるグリコール酸繰り返し単位のみからなるグリコール酸のホモポリマー(グリコール酸の2分子間環状エステルであるグリコリドの開環重合物を含む)に加えて、上記グリコール酸繰り返し単位を70質量%以上含むポリグリコール酸共重合体(PGA共重合体)をも意味する。PGAは、α-ヒドロキシカルボン酸であるグリコール酸の脱水重縮合により合成することができる。高分子量のPGAを効率よく合成するためには、グリコール酸の二分子間環状エステルであるグリコリドを開環重合することにより合成することが行われている。
 上記グリコリド等のグリコール酸モノマーとともに、PGA共重合体を与えるコモノマーとしては、例えば、エチレングリコール、ブロピレングリコール、ブタンジオール、ヘプタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオール、デカンジオール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ビスフェノールA、ポリエチレングリコール、ポリプロピレングリコール及びポリテトラメチレングリコールなどのグリコール化合物;シュウ酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジオン酸、マロン酸、グルタル酸、シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸、ビス(p-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、5-テトラブチルホスホニウムイソフタル酸などのジカルボン酸;乳酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸;ラクチド類;カプロラクトン、バレロラクトン、プロピオラクトン、ウンデカラクトン、1,5-オキセパン-2-オンなどのラクトン類;トリメチレンカーボネートなどのカーボネート類;エチレングリコール、1,4-ブタンジオール等の脂肪族ジオール類と、こはく酸、アジピン酸等の脂肪族ジカルボン酸類またはそのアルキルエステル類との実質的に等モルの混合物;またはこれらの2種類以上などを挙げることができる。これらコモノマーは、その重合体を、上記グリコリド等のグリコール酸モノマーとともに、PGA共重合体を与えるための出発原料として用いることもできる。好ましいコモノマーは、乳酸であり、グリコール酸と乳酸の共重合体(PGLA)が形成される。
 本発明のPGA組成物におけるPGA中の上記グリコール酸繰り返し単位は70質量%以上であり、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上、特に好ましくは98質量%以上であり、最も好ましくは99質量%以上である実質的にPGAホモポリマーである。グリコール酸繰り返し単位の割合が小さすぎると、本発明のPGA組成物に期待される加水分解性、耐熱性、機械的特性等が乏しくなる。グリコール酸繰り返し単位以外の繰り返し単位は、30質量%以下であり、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下、特に好ましくは2質量%以下であり、最も好ましくは1質量%以下の割合で用いられ、グリコール酸繰り返し単位以外の繰り返し単位を含まないものでもよい。
 本発明のPGA組成物におけるPGAとしては、所望の高分子量ポリマーを効率的に製造するために、グリコリド70~100質量%及び上記した他のコモノマー30~0質量%を重合して得られるPGAが好ましい。他のコモノマーとしては、2分子間の環状モノマーであってもよいし、環状モノマーでなく両者の混合物であってもよいが、本発明が目的とするPGA組成物とするためには、環状モノマーが好ましい。以下、グリコリド70~100質量%及び他の環状モノマー30~0質量%を開環重合して得られるPGAについて詳述する。
〔グリコリド〕
 開環重合によってPGAを形成するグリコリドは、グリコール酸の2分子間環状エステルである。グリコリドの製造方法は、特に限定されないが、一般的には、グリコール酸オリゴマーを熱解重合することにより得ることができる。グリコール酸オリゴマーの解重合法として、例えば、溶融解重合法、固相解重合法、溶液解重合法などを採用することができ、また、クロロ酢酸塩の環状縮合物として得られるグリコリドも用いることができる。なお、所望により、グリコリドとしては、グリコリド量の20質量%を限度として、グリコール酸を含有するものを使用することができる。
 本発明のPGA組成物におけるPGAは、グリコリドのみを開環重合させて形成してもよいが、他の環状モノマーを共重合成分として同時に開環重合させて共重合体を形成してもよい。共重合体を形成する場合には、グリコリドの割合は、70質量%以上であり、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上、特に好ましくは98質量%以上であり、最も好ましくは99質量%以上である実質的にPGAホモポリマーである。
〔他の環状モノマー〕
 グリコリドとの共重合成分として使用することができる他の環状モノマーとしては、ラクチドなど他のヒドロキシカルボン酸の2分子間環状エステルの外、ラクトン類(例えば、β-プロピオラクトン、β-ブチロラクトン、ピバロラクトン、γ-ブチロラクトン、δ-バレロラクトン、β-メチル-δ-バレロラクトン、ε-カプロラクトン等)、トリメチレンカーボネート、1,3-ジオキサンなどの環状モノマーを使用することができる。好ましい他の環状モノマーは、他のヒドロキシカルボン酸の2分子間環状エステルであり、ヒドロキシカルボン酸としては、例えば、L-乳酸、D-乳酸、α-ヒドロキシ酪酸、α-ヒドロキシイソ酪酸、α-ヒドロキシ吉草酸、α-ヒドロキシカプロン酸、α-ヒドロキシイソカプロン酸、α-ヒドロキシヘプタン酸、α-ヒドロキシオクタン酸、α-ヒドロキシデカン酸、α-ヒドロキシミリスチン酸、α-ヒドロキシステアリン酸、及びこれらのアルキル置換体などを挙げることができる。特に好ましい他の環状モノマーは、乳酸の2分子間環状エステルであるラクチドであり、L体、D体、ラセミ体、これらの混合物のいずれであってもよい。
 他の環状モノマーは、30質量%以下、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下、特に好ましくは2質量%以下であり、最も好ましくは1質量%以下の割合で用いられる。PGAが、グリコリド100質量%から形成される場合は、他の環状モノマーは0質量%であり、このPGAも本発明の範囲に含まれる。グリコリドと他の環状モノマーとを開環共重合することにより、PGA共重合体の融点(Tm、「結晶融点」ということもある。)を低下させて、PGA組成物から成形品等の製品を製造するための加工温度を下げたり、結晶化速度を制御したりして成形加工性を改善することができる。しかし、これらの環状モノマーの使用割合が大きすぎると、形成されるPGA共重合体の結晶性が損なわれ、PGA組成物の耐熱性及び機械的特性などが低下する。
〔開環重合反応〕
 グリコリドの開環重合または開環共重合(以下、総称して、「開環(共)重合」ということがある。)は、好ましくは、少量の触媒の存在下に行われる。触媒は、特に限定されないが、例えば、ハロゲン化錫(例えば、二塩化錫、四塩化錫など)や有機カルボン酸錫(例えば、2-エチルヘキサン酸錫などのオクタン酸錫)などの錫系化合物;アルコキシチタネートなどのチタン系化合物;アルコキシアルミニウムなどのアルミニウム系化合物;ジルコニウムアセチルアセトンなどのジルコニウム系化合物;ハロゲン化アンチモン、酸化アンチモンなどのアンチモン系化合物;などがある。触媒の使用量は、環状エステルに対して、質量比で、好ましくは1~1,000ppm、より好ましくは3~300ppm程度である。
 グリコリドの開環(共)重合は、生成するPGAの溶融粘度や分子量等の物性を制御するために、アルコール(ラウリルアルコール等の高級アルコールでもよい。)や水などのプロトン性化合物を分子量調節剤として使用することができる。なお、グリコリドには通常、微量の水分と、グリコール酸や直鎖状のグリコール酸オリゴマー等のヒドロキシカルボン酸化合物が不純物として含まれていることがあり、これらの化合物も重合反応に作用する。そこで、これらの不純物の濃度を、例えばカルボン酸の中和滴定等によりモル濃度として定量し、また目的の分子量に応じプロトン性化合物としてアルコールや水を添加して、全プロトン性化合物のモル濃度をグリコリドに対して制御することによって、生成PGAの分子量調整を実施することができる。また、物性改良のために、グリセリンなどの多価アルコールを添加してもよい。
 グリコリドの開環(共)重合は、塊状重合でも、溶液重合でもよいが、多くの場合、塊状重合が採用される。塊状重合の重合装置としては、押出機型、パドル翼を持った縦型、ヘリカルリボン翼を持った縦型、押出機型やニーダー型の横型、アンプル型、板状型、管状型など様々な装置の中から、適宜選択することができる。また、溶液重合には、各種反応槽を用いることができる。
 重合温度は、実質的な重合開始温度である120℃から300℃までの範囲内で目的に応じて適宜設定することができる。重合温度は、好ましくは130~270℃、より好ましくは140~260℃、特に好ましくは150~250℃である。重合温度が低すぎると、生成したPGAの分子量分布が広くなりやすい。重合温度が高すぎると、生成したPGAが熱分解を受けやすくなる。重合時間は、3分間~50時間、好ましくは5分間~30時間の範囲内である。重合時間が短すぎると重合が充分に進行し難く、所定の重量平均分子量を実現することができない。重合時間が長すぎると生成したPGAが着色しやすくなる。
 生成したPGAを固体状態とした後、所望により、更に固相重合を行ってもよい。固相重合とは、PGAの融点未満の温度で加熱することにより、固体状態を維持したままで熱処理する操作を意味する。この固相重合により、未反応モノマー、オリゴマーなどの低分子量成分が揮発・除去される。固相重合は、好ましくは1~100時間、より好ましくは2~50時間、特に好ましくは3~30時間で行われる。
 また、固体状態のPGAを、その融点(Tm)以上、好ましくは融点(Tm)+20℃から融点(Tm)+100℃までの温度範囲内で溶融混練する工程により熱履歴を与えることによって、結晶性を制御してもよい。
〔重量平均分子量(Mw)〕
 本発明のPGA組成物に含まれるPGAの重量平均分子量(Mw)は、通常70,000~1,000,000の範囲内にあるものが好ましく、より好ましくは100,000~800,000、更に好ましくは120,000~500,000、特に好ましくは150,000~400,000の範囲内にあるものを選択する。PGAの重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)装置によって求めたものである。重量平均分子量(Mw)が小さすぎると、分解が早く進行して目的を果たすことが困難となったり、耐熱性や強度等の機械的特性が不十分となったりすることがある。重量平均分子量(Mw)が大きすぎると、PGA組成物を製造することが困難となったり、加水分解性や生分解性が不足したりすることがある。
〔分子量分布(Mw/Mn)〕
 本発明のPGA組成物に含まれるPGAの重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表される分子量分布(Mw/Mn)を1.5~4.0の範囲内にすることは、早期に分解を受けやすい低分子量領域の重合体成分や分解速度が遅い高分子量領域の重合体成分の量を低減させることで、分解速度を制御することができるので好ましい。分子量分布(Mw/Mn)が大きすぎると、分解速度がPGAの重量平均分子量(Mw)に依存しなくなり、分解の制御が困難になることがある。分子量分布(Mw/Mn)が小さすぎると、PGA組成物の強度等の機械的特性を、所要の期間持続することが困難になることがある。分子量分布(Mw/Mn)は、好ましくは1.6~3.7、より好ましくは1.65~3.5である。分子量分布(Mw/Mn)は、重量平均分子量(Mw)と同様に、GPC分析装置を使用して求めることができる。
〔融点(Tm)〕
 本発明のPGA組成物に含まれるPGAの融点(Tm)は、通常185~245℃であり、重量平均分子量(Mw)、分子量分布、共重合成分の種類及び含有割合等によって調整することができる。PGAの融点(Tm)は、好ましくは190~240℃、より好ましくは195~235℃、特に好ましくは200~230℃である。PGAの単独重合体(ホモポリマー)の融点(Tm)は、通常220℃程度である。融点(Tm)が低すぎると、耐熱性や強度等の機械的特性が不十分となることがある。融点(Tm)が高すぎると、PGA組成物の加工性が不足したり、製品の形成を十分制御することができず、加水分解性や生分解性等の特性が所望の範囲のものとならなかったりすることがある。PGAの融点(Tm)は、示差走査熱量計(DSC)を用いて、窒素雰囲気中で求めたものである。
〔ガラス転移温度(Tg)〕
 本発明のPGA組成物に含まれるPGAのガラス転移温度(Tg)は、通例25~60℃であり、好ましくは30~55℃、より好ましくは32~52℃、特に好ましくは35~50℃である。PGAのガラス転移温度(Tg)は、重量平均分子量(Mw)、分子量分布、共重合成分の種類及び含有割合等によって調整することができる。PGAのガラス転移温度(Tg)は、示差走査熱量計(DSC)を用いて、窒素雰囲気中で求めたものである。
〔メルトフローレート(MFR)〕
 本発明のPGA組成物に含まれるPGAのメルトフローレート(MFR)は、通常0.1~100g/10分の範囲であることが好ましく、より好ましくは1~50g/10分、更に好ましくは2~20g/10分の範囲である。PGAのMFRは、温度240℃、荷重2.16kgで測定したときの、10分間当たりの流動量(g)として表す。PGAのMFRが大きすぎると、製造工程によっては成形加工性が確保できなかったり、PGA組成物から得られる製品の強度等の機械的特性が不足したりすることがあり、所望する特性を有するPGA組成物を得られないことがある。PGAのMFRが小さすぎると、得られるPGA組成物の成形加工が困難となることがある。
2.無機充填材
 本発明のPGA組成物は、PGAとともに、無機充填材を含有する。無機充填材は、特に限定されず、形状として、繊維状またはウイスカー状の無機充填材を使用することができるし、繊維状またはウイスカー状以外の無機充填材、例えば、板状(層状)、粉末状または粒状等の無機充填材を使用することができる。また、無機充填材は、組成としては、炭素系、金属系または珪素系等の種々の組成の無機充填材を使用することができる。
 具体的には、繊維状またはウイスカー状の無機充填材としては、ガラス繊維(長繊維タイプや短繊維タイプのチョップドストランド、ミルドファイバー等)、PAN系やピッチ系の炭素繊維、グラファイト繊維、アルミニウム繊維や黄銅繊維或いはステンレス繊維等の金属繊維、アルミナ繊維、ジルコニア繊維、セラミック繊維、アスベスト繊維、石膏繊維、炭化珪素繊維、シリカ繊維、酸化チタン繊維、ロックウールなどの無機繊維状充填材;チタン酸カリウムウイスカー、チタン酸バリウムウイスカー、ホウ酸アルミニウムウイスカー、窒化珪素ウイスカー、酸化亜鉛ウイスカー、炭酸カルシウムウイスカー、ワラステナイトウイスカー、硼酸アルミウイスカーなどの無機ウイスカー状充填材;などが用いられる。
 繊維状またはウイスカー状以外の無機充填材としては、酸化珪素(シリカ、珪砂等);タルク、カオリン、マイカ、ワラステナイト、ゼオライト、セリサイト、クレー、パイロフィライト、ベントナイト、アスベスト、アルミノシリケート、珪酸マグネシウム等の珪酸塩;Li型フッ素テニオライト、Na型フッ素テニオライト、Na型四珪素フッ素雲母、Li型四珪素フッ素雲母等の膨潤性雲母に代表される層状珪酸塩;酸化マグネシウム、アルミナ、酸化亜鉛、酸化ジルコニウム、酸化チタン、酸化鉄、酸化アンチモン、タングステン酸、バナジン酸等の金属酸化物;炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、ドロマイト等の炭酸塩;硫酸カルシウム、硫酸バリウム、硫酸アルミニウム等の硫酸塩;水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム等の水酸化物;モンモリロナイト、カオリナイト、バイデライト、サポナイト、ノントロナイト、ヘクトライト、ソーコナイト、バーミキュライト、ハロイサイト、カネマイト、オクトシリケイト、マガディアイト、ケニヤイト、燐酸ジルコニウム、燐酸チタニウム等の粘土鉱物;ヒドロキシアパタイト等の層状リン酸塩;ガラスビーズ、ガラスバルーン、セラミックビーズ、ガラスフレーク、ガラス粉、窒化ホウ素、炭化珪素、燐酸カルシウム、カーボンブラック、黒鉛(グラファイト)等のその他の板状、粒状または粉末状無機充填材;などが用いられる。
 これら無機充填材の中で、好ましくは酸化珪素、珪酸塩、炭酸塩、硫酸塩、粘土鉱物、無機繊維状充填材または無機ウイスカー状充填材であり、特に好ましくは珪砂、シリカ、タルク、カオリン、マイカ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸バリウム、モンモリロナイト、ガラス繊維、炭素繊維またはグラファイト繊維である。
 無機充填材は、2種類以上を併用し、PGA組成物に含有させて使用することができる。例えば、繊維状またはウイスカー状の無機充填材と繊維状またはウイスカー状以外の無機充填材との組み合わせ、繊維状またはウイスカー状以外の無機充填材同士の組み合わせが好ましい。また、本発明において使用する上記の無機充填材は、その表面を公知のカップリング剤(例えば、シラン系カップリング剤、チタネート系カップリング剤等)などの表面処理剤で処理して用いることもできる。さらに、本発明において使用するガラス繊維は、エチレン/酢酸ビニル共重合体等の熱可塑性樹脂や、エポキシ系、ウレタン系、アクリル系等の被覆剤または収束剤で処理されていることが好ましく、エポキシ系が特に好ましい。また、ガラス繊維の短径は、好ましくは0.1~1,000μmであり、より好ましくは1~100μmである。短径が小さすぎたり、大きすぎたりすると、十分な強度を発現できないことがある。また、繊維長は、好ましくは0.1~10mmであり、より好ましくは1~7mmである。繊維長が短すぎると十分な強度を発現できない可能性があり、長すぎると溶融混練の工程が困難になることがある。
 本発明のPGA組成物における無機充填材の含有量は、PGA30~90質量%及び無機充填材70~10質量%の割合となる量であり、好ましくはPGA35~80質量%及び無機充填材65~20質量%、より好ましくはPGA40~75質量%及び無機充填材60~25質量%の割合となる量である。無機充填材の含有量が少なすぎると、PGA組成物の耐熱性や強度等の機械的特性が不十分となることがある。無機充填材の含有量が多すぎると、PGA組成物の加工性が不足したり、製品の形成を十分制御することができず、加水分解性や生分解性等の特性が所望の範囲のものとならなかったりすることがある。
3.他の樹脂または添加剤
 本発明のPGA組成物は、本発明の目的に反しない限り、他の生分解性樹脂やその他の樹脂、或いは他の添加剤を、更に含有することができる。
〔他の生分解性樹脂〕
 本発明のPGA組成物が、更に含有することができる他の生分解性樹脂としては、ポリ乳酸(PLA)、ポリヒドロキシブチレート、ポリヒドロキシバレレート、ポリヒドロキシカプロエート、ポリヒドロキシヘプタノエート、ポリ(ヒドロキシブチレート/ヒドロキシバレレート)等のポリヒドロキシアルカノエート;ポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート等のジカルボン酸とジオールから形成したポリエステル;ポリジオキサノン等のポリエーテルエステル;ポリトリメチレンカーボネート等の脂肪族ポリカーボネート;ポリα-ピロリドン、ポリアスパラギン酸、ポリリジン等のポリアミノ酸;及び、これらの共重合体や混合物などが挙げられるが、好ましくはPLAである。本発明のPGA組成物は、更に他の生分解性樹脂を含有することにより、分解性、すなわち加水分解性や生分解性、及び、加工性や強度等の機械的特性を調整することができる。PGA組成物が、PGAと他の生分解性樹脂を含有する場合は、PGAと他の生分解性樹脂との合計を100質量部とするとき、PGAが70質量部以上であることが好ましく、より好ましくはPGAが80質量部以上、更に好ましくはPGAが90質量部以上、特に好ましくはPGAが95質量部以上となる割合である。
〔その他の樹脂〕
 本発明のPGA組成物が、更に含有することができるその他の樹脂としては、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂;ポリL-リジン等のポリアミド樹脂;アクリル樹脂;ポリエチレングリコール、ポリプロピレングリコール等のポリエーテル類;変性ポリビニルアルコール;エチレン/グリシジルメタクリレート共重合体、エチレン/プロピレンターポリマー、エチレン/ブテン-1共重合体等の軟質ポリオレフィン系樹脂;スチレン系共重合体樹脂;ポリフェニレンサルファイド樹脂;ポリエーテルエーテルケトン樹脂;ポリエチレンテレフタレートやポリブチレンテレフタレート等のポリエステル樹脂;ポリカーボネート樹脂;ポリアセタール樹脂;ポリスルホン樹脂;ポリフェニレンエーテル樹脂;ポリイミド樹脂;ポリエーテルイミド樹脂;セルロースエステル;ポリウレタン樹脂;フェノール樹脂;メラミン樹脂;不飽和ポリエステル樹脂;シリコーン樹脂;エポキシ樹脂;などが挙げられる。これら他の樹脂は、2種類以上を混合して含有させることができる。本発明のPGA組成物は、他の生分解性樹脂とともに、または、他の生分解性樹脂を含有せずに、更にその他の樹脂を含有することにより、加工性や強度等の機械的特性を調整することができる。PGA組成物がその他の樹脂を含有する場合は、PGA組成物の分解性を損なわないために、その他の樹脂の含有量は、PGA100質量部に対して、通常30質量部以下、好ましくは20質量部以下、より好ましくは10質量部以下とするとよく、5質量部以下または1質量部以下の含有量でも差し支えない。
〔他の添加剤〕
 本発明のPGA組成物が、更に含有することができる他の添加剤としては、可塑剤(ポリエステル系可塑剤、グリセリン系可塑剤、多価カルボン酸エステル系可塑剤、リン酸エステル系可塑剤、ポリアルキレングリコール系可塑剤及びエポキシ系可塑剤等)、酸化防止剤、熱安定剤、末端封止剤、紫外線吸収剤、難燃剤(臭素系難燃剤、燐系難燃剤、アンチモン化合物、メラミン化合物等)、滑剤、防水剤、撥水剤、離型剤、ワックス類、染料や顔料等の着色剤、酸素吸収剤、結晶化促進剤、核剤、水素イオン濃度調節剤、及び無機充填材以外の充填材など、PGA組成物において通常配合される添加剤が挙げられる。これら他の添加剤は、2種類以上を混合して含有させることができる。他の添加剤の含有量は、PGA100質量部に対して、通常10質量部以下、好ましくは5質量部以下であり、1質量部以下の含有量でも差し支えない。
〔末端封止剤〕
 特に、PGA組成物が、他の添加剤のうち、カルボキシル基末端封止剤または水酸基末端封止剤を配合すると、PGA組成物の分解性、特に加水分解性を制御することができ、また、PGA組成物の保存性を向上させることができるので好ましい。すなわち、カルボキシル基末端封止剤または水酸基末端封止剤を配合することにより、得られるPGA組成物を、成形その他の加工に使用するまでの保存中におけるPGA組成物の予期しない分解が抑制され、分子量低下を抑制することができるとともに、PGA組成物の加水分解性や生分解性の速度を調整することができる。末端封止剤としては、カルボキシル基末端封止作用または水酸基末端封止作用を有し、PGAの耐水性向上剤として知られている化合物を用いることができる。末端封止剤としては、加水分解性や生分解性と保存中の耐加水分解性とのバランスの観点から、カルボキシル基末端封止剤が特に好ましい。カルボキシル基末端封止剤としては、例えば、N,N’-2,6-ジイソプロピルフェニルカルボジイミド等のカルボジイミド化合物;2,2’-m-フェニレンビス(2-オキサゾリン)、2,2’-p-フェニレンビス(2-オキサゾリン)、2-フェニル-2-オキサゾリン、スチレン・イソプロペニル-2-オキサゾリン等のオキサゾリン化合物;2-メトキシ-5,6-ジヒドロ-4H-1,3-オキサジン等のオキサジン化合物;N-グリシジルフタルイミド、シクロへキセンオキシド、トリス(2,3-エポキシプロピル)イソシアヌレート等のエポキシ化合物;などが挙げられる。これらのカルボキシル基末端封止剤の中でも、カルボジイミド化合物が好ましく、芳香族、脂環族、及び脂肪族のいずれのカルボジイミド化合物も用いられるが、とりわけ芳香族カルボジイミド化合物が好ましく、特に純度の高いものが保存中の耐水性改善効果を与える。また、水酸基末端封止剤としては、ジケテン化合物、イソシアネート類などが用いられる。カルボキシル基末端封止剤または水酸基末端封止剤は、PGA100質量部に対して、通常0.01~5質量部、好ましくは0.05~3質量部、より好ましくは0.1~1質量部の割合で用いられる。
 また、PGA組成物が熱安定剤を含有すると、成形加工時等の熱劣化を抑制することができ、PGA組成物の長期保存性が向上するので、より好ましい。熱安定剤としては、サイクリックネオペンタンテトライルビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,4-ジ-tert-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシル)ホスファイト等のペンタエリスリトール骨格構造を有するリン酸エステル;モノ-またはジ-ステアリルアシッドホスフェート或いはこれらの混合物〔市販品として、リン酸モノステアリル約50質量%とリン酸ジステアリル約50質量%の混合物(株式会社ADEKA製商品名「AX-71」)などが知られている。〕等の、炭素数が好ましくは8~24のアルキル基を有するリン酸アルキルエステルまたは亜リン酸アルキルエステル;炭酸カルシウム、炭酸ストロンチウム等の炭酸塩(無機充填材として含有されていることもある。);一般に重合触媒不活性剤として知られる、ビス[2-(2-ヒドロキシベンゾイル)ヒドラジン]ドデカン酸、N,N’-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン等の-CONHNH-CO-単位を有するヒドラジン系化合物;3-(N-サリチロイル)アミノ-1,2,4-トリアゾール等のトリアゾール系化合物;トリアジン系化合物;などが挙げられる。これらの熱安定剤は、それぞれ単独で、または2種類以上を組み合わせて使用することができる。熱安定剤は、PGA100質量部に対して、通常3質量部以下、好ましくは0.001~1質量部、より好ましくは0.005~0.5質量部、特に好ましくは0.01~0.1質量部(100~1,000ppm)の割合で用いられる。
4.ポリグリコール酸樹脂組成物
 本発明のPGA組成物は、PGA30~90質量%及び無機充填材70~10質量%を含有し、水中に温度120℃で3時間浸漬後のPGAの質量減少率が20%以上であり、かつ、荷重たわみ温度が120℃以上であることを特徴とするPGA組成物である。本発明のPGA組成物は、ペレット、ストランドまたは粒状体等の成形原料(溶融混合されたものや、後述する押出機を使用して溶融混練して得られたものを含む。)、シート・フィルム、押出成形品、射出成形品、圧縮成形品、ブロー成形品、または積層体その他の複合体などいかなる形状・形態のものでもよい。
〔水中に温度120℃で3時間浸漬後のポリグリコール酸樹脂の質量減少率〕
 本発明のPGA組成物は、水中に温度120℃で3時間浸漬後のPGAの質量減少率(以下、「120℃3時間質量減少率」ということがある。)が、20%以上であり、好ましくは23%以上、より好ましくは25%以上、更に好ましくは30%以上である。本発明のPGA組成物は、120℃3時間質量減少率が20%以上、より好ましくは25%以上であることにより、優れた成形性、機械的特性を有するとともに、優れた耐熱性と加水分解性とを併せ有することができる。PGA組成物の120℃3時間質量減少率が20%未満であると、耐熱性、加水分解性及び生分解性が不十分となることがある。
 PGA組成物の120℃3時間質量減少率は、以下の方法によって測定するものである。すなわち、PGA組成物を用いて、射出成形によりダンベル形状(ダンベル形状規格は、ISO294に準拠する。)の評価試験片を作製し、評価試験片の質量を測定し、無機充填材の含有比率を参酌して、評価試験片中のPGAの質量(以下、「試験前PGA質量」という。)を算出する。次いで、バリア包装材料からなる袋状体に、純水と評価試験片とを封入して、袋状体を密閉する。純水と評価試験片とを封入した袋状体を、温度120℃に調節したレトルト釜に投入し、3時間経過後に、評価試験片を取り出す。取り出した評価試験片に対して、冷風吹き付けと真空乾燥を行って水分を除去した後、評価試験片の質量を測定し、試験後の評価試験片中のPGAの質量(以下、「試験後PGA質量」という。)を算出する。PGA組成物の120℃3時間質量減少率を、以下の算出式により算出する。
算出式: 120℃3時間質量減少率(%)=(試験前PGA質量-試験後PGA質量)/試験前PGA質量×100
〔荷重たわみ温度〕
 本発明のPGA組成物は、荷重たわみ温度が、120℃以上であり、好ましくは140℃以上、より好ましくは150℃以上、更に好ましくは160℃以上である。本発明のPGA組成物は、荷重たわみ温度が120℃以上であることにより、優れた成形性、機械的特性を有するとともに、優れた耐熱性と加水分解性とを併せ有することができる。PGA組成物の荷重たわみ温度が120℃未満であると、耐熱性、加水分解性及び生分解性が不十分となることがある。PGA組成物の荷重たわみ温度は、ISO75に準拠して測定したものである(曲げ応力:1.80MPa、支点間距離:64mm、昇温速度:120℃/時間のフラットワイズ法)。
〔メルトフローレート(MFR)〕
 本発明のPGA組成物のメルトフローレート(MFR)は、通常0.1~100g/10分の範囲であることが好ましく、より好ましくは1~80g/10分、更に好ましくは2~70g/10分の範囲である。PGA組成物のMFRは、温度240℃、荷重2.16kgで測定したときの、10分間当たりの流動量(g)として表す。PGA組成物のMFRが大きすぎると、製造工程によっては成形加工性が確保できなかったり、PGA組成物から得られる製品の強度等の機械的特性が不足したりすることがある。PGA組成物のMFRが小さすぎると、PGA組成物の成形加工が困難となることがあり、所望する特性を有するPGA組成物から得られる製品を得られないことがある。
〔機械的特性〕
 本発明のPGA組成物は、バランスが取れた優れた機械的特性を有している。具体的には、
(a)シャルピー衝撃強さ(ISO179に準拠)が、3KJ/m2以上、好ましくは4KJ/m2以上、より好ましくは5KJ/m2以上である、
(b)引張強度(ISO527に準拠)が、50MPa以上、好ましくは70MPa以上である、
(c)伸度(ISO527に準拠)が、1%以上、好ましくは1.5%以上である、
(d)曲げ強度(ISO178に準拠)が、100MPa以上、好ましくは110MPa以上、より好ましくは120MPa以上である、
(e)曲げ弾性率(ISO178に準拠)が、8GPa以上、好ましくは10GPa以上、より好ましくは15GPa以上である、
という機械的特性として求められる要件を併せて備えることができる。
〔生分解性〕
 本発明のPGA組成物は、優れた生分解性を有するものである。PGA組成物の生分解性は、前記した120℃3時間質量減少率の測定で使用する試験前の評価試験片を、温度60℃に保った土壌中に2か月間埋設した後に、掘り出して、形状の崩れを目視によって観察し、元の形状が不明であるほど崩れていれば、生分解性があると判定することができる。
5.ポリグリコール酸樹脂組成物の製造方法
 本発明のPGA組成物は、PGA30~90質量%及び無機充填材70~10質量%を含有し、120℃3時間質量減少率が20%以上であり、かつ、荷重たわみ温度が120℃以上であることを特徴とするPGA組成物を得ることができる限り、その製造方法は、特に限定されない。PGA組成物の品質の安定性及び製造効率の観点から、PGA及び無機充填材を、押出機を使用して溶融混練する工程を含むPGA組成物の製造方法であることが好ましい。さらに、メインフィード口とサイドフィード口とを備える押出機を使用して、PGAをメインフィード口から、及び、無機充填材を少なくともサイドフィード口から、押出機に供給するPGA組成物の製造方法、特に、無機充填材をメインフィード口及びサイドフィード口から押出機に供給するPGA組成物の製造方法によれば、無機充填材の含有量が大きいPGA組成物を、容易に製造することができるので、より好ましい。
 押出機を使用して溶融混練する工程とは、PGA組成物を形成するための材料であるPGA30~90質量%及び無機充填材70~10質量%を含有する原料を、スクリュー及びシリンダーを備え溶融混練機能を有する押出機に供給して、外部加熱とせん断発熱に基づいて原料を加熱溶融させるとともに混練混合を行った後に、棒状等の形状に押し出すことにより、更に所望により、長さ数mm程度のペレットに切断することにより、所要の材料組成を有するPGA組成物とする工程を意味する。本発明のPGA組成物は、押出機を使用して溶融混練する工程を含むPGA組成物の製造方法であることによって、好ましくは、2本のスクリューを備える二軸押出機を使用して溶融混練する工程を含むPGA組成物の製造方法であることによって、PGAと無機充填材とが、短時間で均一に混合される結果、PGA組成物の品質の安定性及び製造効率が良好であるとともに、優れた成形性、機械的特性、耐熱性、加水分解性及び生分解性を併せ有することができる。特に、二軸押出機を使用して溶融混練する工程を含むPGA組成物の製造方法によって得られるPGA組成物は、無機充填材の分散・分配効率がよく、シート・フィルムや射出成形品等の種々の形態・形状を有するPGA組成物の製品とすることができ、優れた成形性、機械的特性、耐熱性、加水分解性及び生分解性を併せ有するPGA組成物からなる製品を得ることができるので好ましい。
 また、前記の溶融混練する工程を、押出機として、メインフィード口とサイドフィード口とを備える押出機を使用して、PGAをメインフィード口から、及び、無機充填材を少なくともサイドフィード口から、押出機に供給することにより行うと、また更に好適には、無機充填材を、メインフィード口及びサイドフィード口から押出機に供給することによって行うと、無機充填材の含有量が大きいPGA組成物を、容易に製造することができる。
 メインフィード口とサイドフィード口とを備える押出機は、押出機のスクリュー駆動機部側に位置して、PGA(通常、固体である。)を始めとしてPGA組成物を形成するための材料の大半を押出機に供給するメインフィード口を備えるとともに、該メインフィード口と押出機のスクリューの先端部側にある押出口(ノズル)との中間部分に位置して、PGA組成物を形成するための材料の一部を押出機に供給するサイドフィード口を、併せて備える押出機である。サイドフィード口は、押出機のシリンダー長さ(L)に対して、スクリュー駆動機部側から、通常0.2~0.9L、好ましくは0.4~0.8L、より好ましくは0.5~0.75Lの長さ隔たった範囲に設けることができる。
 PGA及び無機充填材の、メインフィード口及び/またはサイドフィード口からの押出機への供給は、それ自体周知の方法及び機構によって行うことができる。例えば、メインフィード口及び/またはサイドフィード口に設置されたホッパを経由して押出機に供給する方法でもよいし、メインフィード口及び/またはサイドフィード口に設置されたフィーダーや押出機を経由して押出機に供給する方法でもよい。
 先に述べたように、スクリュー及びシリンダーを備え溶融混練機能を有する押出機は、外部加熱とせん断発熱とに基づいて原料を加熱溶融させるとともに混練混合を行うものである。メインフィード口から供給されるPGA組成物を形成するための材料の大半、特に、PGAは、固体状であり、押出機内において、外部加熱とせん断発熱とに基づいて加熱溶融し、溶融流動状態で、押出口(ノズル)側に送られる。一方、サイドフィード口から供給されるPGA組成物を形成するための材料の一部、例えば無機充填材は、メインフィード口から供給されるPGA組成物を形成するための材料の大半が既に加熱溶融した溶融流動状態において、押出機に供給されるので、PGAと無機充填材との溶融混練は、相対的に短い押出機内での滞留時間を経て、押出口(ノズル)から押し出されることによって行われる。したがって、本発明のPGA組成物の製造方法において、無機充填材を、サイドフィード口から押出機に供給し、または、メインフィード口及びサイドフィード口から押出機に供給して、溶融混練する工程を行うことにより、PGA組成物に含有される無機充填材に付与される、せん断発熱量等の熱履歴や、せん断力を調整することができる。この結果、無機充填材の熱劣化や破損・折損などを減少またはなくすことができ、特に、繊維状またはウイスカー状の無機機充填材を使用する場合に望ましい効果が奏される。
 本発明によるPGA及び無機充填材を押出機を使用して溶融混練する工程を含むPGA組成物の製造方法において、無機充填材の押出機への供給は、i)メインフィード口及びサイドフィード口から供給する、ii)サイドフィード口から供給する、またはiii)メインフィード口から供給する、のいずれの供給方法も可能であるが、好ましくはi)メインフィード口及びサイドフィード口から供給する、またはii)サイドフィード口から供給する供給方法であり、より好ましくはi)メインフィード口及びサイドフィード口から供給する供給方法である。すなわち、無機充填材の供給方法の別による比率(質量%で表す。)は、サイドフィード口からの供給:メインフィード口からの供給として、100:0~0:100でよいが、好ましくは100:0~20:80、より好ましくは90:10~30:70、更に好ましくは80:20~40:60の範囲である。
 以下に実施例及び比較例を挙げて、本発明のPGA組成物について具体的に説明する。本発明は、実施例に限られるものではない。PGAまたはPGA組成物の特性は以下の方法で測定した。
〔重量平均分子量(Mw)及び分子量分布(Mw/Mn)〕
 PGAの重量平均分子量(Mw)は、GPC分析装置を使用して求めた。具体的には、PGAの試料10mgを、トリフルオロ酢酸ナトリウムを5mMの濃度で溶解させたヘキサフルオロイソプロパノール(HFIP)に溶解させて10mLとした後、メンブレンフィルターでろ過して試料溶液を得て、この試料溶液10μLをGPC分析装置に注入して、下記の測定条件で分子量を測定することによって求めた結果から、重量平均分子量(Mw)及び分子量分布(Mw/Mn)とした。
<GPC測定条件>
装置:昭和電工株式会社製GPC104
カラム:昭和電工株式会社製HFIP-806M 2本(直列接続)+プレカラム:HFIP-LG 1本
カラム温度:40℃
溶離液:トリフルオロ酢酸ナトリウムを5mMの濃度で溶解させたHFIP溶液
検出器:示差屈折率計
分子量校正:分子量の異なる標準分子量のポリメタクリル酸メチル5種(Polymer laboratories Ltd.製)を用いて作成した分子量の検量線データを使用
〔融点(Tm)及びガラス転移温度(Tg)〕
 PGAの融点(Tm)及びガラス転移温度(Tg)は、示差走査熱量計(DSC;メトラー・トレド社製TC-15)を使用して、窒素雰囲気中で求めた。
〔120℃3時間質量減少率〕
 PGA組成物の120℃3時間質量減少率は、以下の方法によって測定した。すなわち、PGA組成物を射出成形することによりダンベル形状(ダンベル形状規格は、ISO294に準拠する。)の評価試験片を作製し、評価試験片の質量を測定し、無機充填材の含有比率を参酌して、評価試験片中のPGAの質量(「試験前PGA質量」)を算出した。次いで、バリア包装材料からなる袋状体に、純水と評価試験片とを封入して、袋状体を密閉した。純水と評価試験片とを封入した袋状体を、温度120℃に調節したレトルト釜に投入し、3時間経過後に、評価試験片を取り出した。取り出した評価試験片に対して、冷風吹き付けと真空乾燥を行って水分を除去した後、評価試験片の質量を測定し、試験後の評価試験片中のPGAの質量(以下、「試験後PGA質量」という。)を算出した。PGA組成物の120℃3時間質量減少率を、以下の算出式により算出した。
算出式: 120℃3時間質量減少率(%)=(試験前PGA質量-試験後PGA質量)/試験前PGA質量×100
〔荷重たわみ温度〕
 PGA組成物の荷重たわみ温度は、ISO75に準拠して測定した(曲げ応力:1.80MPa、支点間距離:64mm、昇温速度:120℃/時間のフラットワイズ法)。
〔メルトフローレート(MFR)〕
 PGA及びPGA組成物のメルトフローレート(MFR)は、温度240℃、荷重2.16kgで測定したときの、10分間当たりの流動量(g)を測定した。
〔シャルピー衝撃強さ〕
 PGA組成物のシャルピー衝撃強さは、ISO179に準拠して測定した。
〔引張強度及び伸度〕
 PGA組成物の引張強度及び伸度は、ISO527に準拠して測定した。
〔曲げ強度及び曲げ弾性率〕
 PGA組成物の曲げ強度及び曲げ弾性率は、ISO178に準拠して測定した。
〔生分解性〕
 PGA組成物の生分解性は、120℃3時間質量減少率の測定で使用する評価試験片を、温度60℃に保った土壌中に2か月間埋設した後に、掘り出して、形状の崩れを目視によって観察し、元の形状が不明であるほど崩れていれば、生分解性があると判定した。
[実施例1]
 PGAペレット(株式会社クレハ製、Mw:200,000、Mw/Mn:2.2、MFR:10g/10分、Tg:43℃、Tm:220℃、径3mm×長さ3mm)を、径(D)48mmの二軸押出機(日本プラコン株式会社製)に、メインフィード口から供給し、温度200~240℃で溶融させた。また、無機充填材として、珪砂〔JFEミネラル株式会社製、日光珪砂(登録商標)8号〕を、サイドフィード口〔二軸押出機のシリンダー長さ(L)に対して、スクリュー駆動機部側から略0.6Lの位置に設けた。〕から二軸押出機に供給し、温度240~250℃で、PGAと珪砂とを溶融混練した。PGA組成物におけるPGAと珪砂の含有割合は、50質量%:50質量%とした。押出機を使用して溶融混練する工程を経たPGAと珪砂とを、径4mmのノズルを備える押出ダイから押し出し、水冷した後、水分をエアーで十分取り除き、ストランドカッターで切断して、径3mm×長さ3mmのペレット状のPGA組成物(「PGAと珪砂とのコンパウンド」ということもある。)を得た。その後十分乾燥させたペレット状のPGA組成物を、射出成形機(東芝機械株式会社製、IS75E)に供給して、ダンベル形状(ダンベル形状規格はISO294に準拠した。)の評価試験片を作製した。作製した評価試験片の120℃3時間質量減少率、荷重たわみ温度、MFR、シャルピー衝撃強さ、引張強度及び伸度、曲げ強度及び曲げ弾性率を測定した結果を表1に示す。また、前記のPGA組成物の評価試験片を、温度60℃に保った土壌中に2か月間埋設した後に、掘り出して目視したところ、評価試験片が完全に崩れていたことから、PGA組成物は、生分解性があると判定した。
[実施例2]
 無機充填材を、タルク〔日本タルク株式会社製、ミクロエース(登録商標)L-1(平均粒径5μm、水分0.2%、見かけ密度0.15g/cm3)、以下「タルク1」ということがある。〕に変更したこと、及び、PGAとタルクの含有割合を、70質量%:30質量%に変更したことを除いて、実施例1と同様にして、評価試験片を作製した。作製した評価試験片の120℃3時間質量減少率、荷重たわみ温度、MFR、シャルピー衝撃強さ、引張強度及び伸度、曲げ強度及び曲げ弾性率を測定した結果を表1に示す。また、前記のPGA組成物の評価試験片を、温度60℃に保った土壌中に2か月間埋設した後に、掘り出して目視したところ、評価試験片が完全に崩れていたことから、PGA組成物は、生分解性があると判定した。
[実施例3]
 無機充填材を、タルク〔日本タルク株式会社製、シムゴン(平均粒径8μm、水分0.2%、見かけ密度0.29g/cm3)、以下「タルク2」ということがある。〕に変更したこと、及び、無機充填材(タルク2)の二軸押出機への供給方法を、タルク全量の30%(質量比)をメインフィード口から、タルク全量の70%(質量比)をサイドフィード口から、それぞれ供給するように変更したことを除いて、実施例1と同様にして、評価試験片を作製した。作製した評価試験片の120℃3時間質量減少率、荷重たわみ温度、MFR、シャルピー衝撃強さ、引張強度及び伸度、曲げ強度及び曲げ弾性率を測定した結果を表1に示す。また、前記のPGA組成物の評価試験片を、温度60℃に保った土壌中に2か月間埋設した後に、掘り出して目視したところ、評価試験片が完全に崩れていたことから、PGA組成物は、生分解性があると判定した。
[比較例1]
 無機充填材を用いずに、PGAペレットのみを二軸押出機に供給したことを除いて、実施例1と同様にして、評価試験片を作製した。作製した評価試験片の120℃3時間質量減少率、荷重たわみ温度、MFR、シャルピー衝撃強さ、引張強度及び伸度、曲げ強度及び曲げ弾性率を測定した結果を表1に示す。また、前記のPGA組成物の評価試験片を、温度60℃に保った土壌中に2か月間埋設した後に、掘り出して目視したところ、評価試験片は完全に崩れていた。
[比較例2]
 PGAペレットをPLAペレット(Nature Works社製3052D)に変更したことを除いて、比較例1と同様にして、PLA(無機充填材を含有していない。)の評価試験片を作製した。作製した評価試験片の120℃3時間質量減少率、荷重たわみ温度、MFR、シャルピー衝撃強さ、引張強度及び伸度、曲げ強度及び曲げ弾性率を測定した結果を表1に示す。また、前記のPGA組成物の評価試験片を、温度60℃に保った土壌中に2か月間埋設した後に、掘り出して目視したところ、評価試験片の形状は、ほぼ維持されていた。
[比較例3]
 PGAペレットを前記のPLAペレットに変更したことを除いて、実施例3と同様にして、PLA組成物の評価試験片を作製した。作製した評価試験片の120℃3時間質量減少率、荷重たわみ温度、MFR、シャルピー衝撃強さ、引張強度及び伸度、曲げ強度及び曲げ弾性率を測定した結果を表1に示す。また、前記のPGA組成物の評価試験片を、温度60℃に保った土壌中に2か月間埋設した後に、掘り出して目視したところ、評価試験片の形状は、ほぼ維持されていた。
Figure JPOXMLDOC01-appb-T000001
 表1から、PGA30~90質量%及び無機充填材70~10質量%を含有し、120℃3時間質量減少率が20%以上であり、かつ、荷重たわみ温度が120℃以上である実施例1~3のPGA組成物は、優れた加水分解性、耐熱性及び生分解性を有するとともに、シャルピー衝撃強さが3KJ/m2以上、引張強度が50MPa以上、伸度が1%以上、曲げ強度が100MPa以上、曲げ弾性率が8GPa以上という要件を全て併せ充足することから、バランスが取れた優れた機械的特性を有する組成物であることが分かった。
 また、実施例1~3のPGA組成物は、PGA及び無機充填材を、押出機を使用して溶融コンパウンド化する工程を含むPGA組成物の製造方法によって得られたPGA組成物であることにより、PGAと無機充填材との分散性が良好となっている結果、前記の優れた特性を併せて有するものと推察された。特に、無機充填材を、メインフィード口及びサイドフィード口から押出機に供給するPGA組成物の製造方法によって得られた実施例3のPGA組成物は、無機充填材を50質量%と極めて大きい割合で含有するPGA組成物であるにもかかわらず、シャルピー衝撃強さ、引張強度及び伸度、曲げ強度及び曲げ弾性率において、バランスが取れた優れた結果が得られており、また、その120℃3時間質量減少率が、無機充填材の含有割合が同じく50質量%である実施例1のPGA組成物の120℃3時間質量減少率26.6%より高い、33%であることから、PGAと無機充填材との分散性が一層良好となっていることが推察された。
 これに対して、無機充填材を含有しない比較例1のPGAは、シャルピー衝撃強さが2.2KJ/m2と小さく、曲げ弾性率が6.6GPaと小さいことから、バランスが取れた優れた機械的特性を有するものではないことが分かった。
 また、無機充填材を含有しない比較例2のPLAは、120℃3時間質量減少率が5.1%、かつ荷重たわみ温度が55℃に留まるものである結果、加水分解性及び耐熱性が十分ではなく、また生分解性が不十分であるとともに、曲げ弾性率が3.6GPaと極めて小さいことから、機械的特性のバランスが良好とはいえないものであることが分かった。
 更にまた、無機充填材としてタルク2を50質量%の割合で含有する比較例3のPLA組成物は、120℃3時間質量減少率が4.5%、かつ荷重たわみ温度が84℃に留まるものである結果、加水分解性及び耐熱性が十分ではなく、また生分解性が不十分であるとともに、引張強度が48MPa、曲げ強度が91MPa、曲げ弾性率が5.1GPaといずれも小さな値を示したことから、優れた機械的特性を有するものではないことが分かった。
 本発明は、PGA30~90質量%及び無機充填材70~10質量%を含有し、水中に温度120℃で3時間浸漬後のPGAの質量減少率が20%以上であり、かつ、荷重たわみ温度が120℃以上であることを特徴とするPGA組成物であることにより、汎用の樹脂成形方法による成形材料として、また、食品その他製品の包装材料や、コンポスト化しやすく環境負荷が小さい包装材料、さらには、その強度と分解性を活かして、使用後に地中に放置し分解させることが可能な坑井掘削用ダウンホールツールまたはその部材を形成するための材料としても使用可能な、優れた成形性、機械的特性を有する生分解性樹脂であるPGAを含有し、優れた耐熱性と加水分解性とを併せ有するPGA組成物を提供し、更に該PGA組成物から形成されるダウンホールツールまたはその部材を提供することができるので、産業上の利用可能性が高い。
 また、本発明は、PGA及び無機充填材を、押出機を使用して溶融混練する工程を含む前記のPGA組成物の製造方法であることによって、前記のPGA組成物を容易に製造することができるので、産業上の利用可能性が高い。

Claims (11)

  1.  ポリグリコール酸樹脂30~90質量%及び無機充填材70~10質量%を含有し、水中に温度120℃で3時間浸漬後のポリグリコール酸樹脂の質量減少率が20%以上であり、かつ、荷重たわみ温度が120℃以上であることを特徴とするポリグリコール酸樹脂組成物。
  2.  更に他の生分解性樹脂を含有する請求項1記載のポリグリコール酸樹脂組成物。
  3.  他の生分解性樹脂が、ポリ乳酸樹脂である請求項2記載のポリグリコール酸樹脂組成物。
  4.  ポリグリコール酸樹脂と他の生分解性樹脂との合計を100質量部とするとき、ポリグリコール酸樹脂が70質量部以上である請求項2または3記載のポリグリコール酸樹脂組成物。
  5.  無機充填材が、酸化珪素、珪酸塩、炭酸塩、硫酸塩、粘土鉱物、無機繊維状充填材及び無機ウイスカー状充填材からなる群より選ばれる少なくとも1種である請求項1乃至4のいずれか1項に記載のポリグリコール酸樹脂組成物。
  6.  2種類以上の無機充填材を含有する請求項1乃至5のいずれか1項に記載のポリグリコール酸樹脂組成物。
  7.  ダウンホールツールまたはその部材用である請求項1乃至6のいずれか1項に記載のポリグリコール酸樹脂組成物。
  8.  ポリグリコール酸樹脂及び無機充填材を、押出機を使用して溶融混練する工程を含む請求項1乃至7のいずれか1項に記載のポリグリコール酸樹脂組成物の製造方法。
  9.  メインフィード口とサイドフィード口とを備える押出機を使用して、ポリグリコール酸樹脂をメインフィード口から、及び、無機充填材を少なくともサイドフィード口から、押出機に供給する請求項8記載のポリグリコール酸樹脂組成物の製造方法。
  10.  無機充填材を、メインフィード口及びサイドフィード口から押出機に供給する請求項9記載のポリグリコール酸樹脂組成物の製造方法。
  11.  請求項1乃至7のいずれか1項に記載のポリグリコール酸樹脂組成物から形成されるダウンホールツールまたはその部材。
PCT/JP2013/077457 2012-10-11 2013-10-09 ポリグリコール酸樹脂組成物及びその製造方法 WO2014057969A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380047578.6A CN104684997B (zh) 2012-10-11 2013-10-09 聚乙醇酸树脂组合物及其制造方法
US14/432,840 US20150247021A1 (en) 2012-10-11 2013-10-09 Polyglycolic acid resin composition and method for producing the same
CA2891366A CA2891366C (en) 2012-10-11 2013-10-09 Polyglycolic acid resin composition and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012225653 2012-10-11
JP2012-225653 2012-10-11

Publications (1)

Publication Number Publication Date
WO2014057969A1 true WO2014057969A1 (ja) 2014-04-17

Family

ID=50477436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077457 WO2014057969A1 (ja) 2012-10-11 2013-10-09 ポリグリコール酸樹脂組成物及びその製造方法

Country Status (4)

Country Link
US (1) US20150247021A1 (ja)
CN (1) CN104684997B (ja)
CA (1) CA2891366C (ja)
WO (1) WO2014057969A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208590A1 (ja) * 2016-06-03 2017-12-07 株式会社クレハ 結合剤、資材、および、資材の製造方法
JP2022512907A (ja) * 2018-10-29 2022-02-07 プージン ケミカル インダストリー カンパニー リミテッド ポリグリコライドコポリマー組成物及びその製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108079377A (zh) * 2017-12-14 2018-05-29 陈逊 一种聚乙醇酸树脂复合材料及其制造方法
CN107903599A (zh) * 2017-12-14 2018-04-13 陈逊 一种聚乙醇酸树脂挤出复合材料及其制造方法
CN108034213A (zh) * 2017-12-29 2018-05-15 叶芳 一种高强度包装材料的制备方法及其应用
WO2020087203A1 (en) * 2018-10-29 2020-05-07 Pujing Chemical Industry Co., Ltd Heat and aging resistant polyglycolide copolymer and composition thereof
US20210395516A1 (en) * 2018-10-29 2021-12-23 Pujing Chemical Industry Co., Ltd. Polyglycolide Copolymer and Preparation Thereof
CN112469765B (zh) * 2018-10-29 2023-05-26 上海浦景化工技术股份有限公司 聚乙醇酸共聚物组合物及其制备方法
CN111647143B (zh) * 2019-09-20 2023-05-12 上海浦景化工技术股份有限公司 一种用于淋膜的共聚物材料及其制备方法和应用
CN111269403B (zh) * 2020-03-09 2022-04-26 常州大学 采用纳米氧化物作为稳定剂制备的无需特殊防护的长寿命聚乙交酯材料
CN111961323B (zh) * 2020-08-28 2022-11-22 上海浦景化工技术股份有限公司 一种适用于低温井的可降解材料及其制备方法与应用
CN111944290B (zh) * 2020-08-28 2022-09-06 上海浦景化工技术股份有限公司 一种适用于高温井的可降解材料及其制品与应用
CN111944164B (zh) * 2020-08-28 2023-07-25 上海浦景化工技术股份有限公司 一种石墨烯改性可降解材料及其应用
CN112759907A (zh) * 2020-12-24 2021-05-07 海南赛高新材料有限公司 一种具有较长保质期的改性pga材料及其制备方法
CN113583255A (zh) * 2021-08-03 2021-11-02 海南赛诺实业有限公司 一种聚乙醇酸乳液及其制备方法
CN113736236B (zh) * 2021-09-24 2022-10-14 海南赛诺实业有限公司 一种阻燃pga材料及其制备方法
CN115011089B (zh) * 2022-05-25 2023-10-10 中国神华煤制油化工有限公司 一种聚乙醇酸组合物、由其制备的薄壁注塑餐盒

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060136A (ja) * 1996-04-30 1998-03-03 Kureha Chem Ind Co Ltd ポリグリコール酸配向フィルム及びその製造方法
JPH1060137A (ja) * 1996-04-30 1998-03-03 Kureha Chem Ind Co Ltd ポリグリコール酸シート及びその製造方法
JPH1072529A (ja) * 1996-04-30 1998-03-17 Kureha Chem Ind Co Ltd ポリグリコール酸射出成形物及びその製造方法
JPH1087976A (ja) * 1996-07-26 1998-04-07 Mitsui Petrochem Ind Ltd 樹脂組成物及びその成形加工品
JP2003335315A (ja) * 2002-03-15 2003-11-25 Toyo Seikan Kaisha Ltd プラスチック製容器
JP2008260902A (ja) * 2007-04-13 2008-10-30 Kureha Corp ポリグリコール酸の結晶化温度を高くする方法及び結晶化温度を高くしたポリグリコール酸樹脂組成物
JP2009540119A (ja) * 2006-06-07 2009-11-19 ハルリブルトン エネルギ セルビセス インコーポレーテッド 改良された酸性処理流体及び関連する方法
JP2012149205A (ja) * 2011-01-21 2012-08-09 Kureha Corp ポリグリコール酸組成物、ポリグリコール酸を含む樹脂成形品及び成形体、並びに、ポリグリコール酸の分解方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7461699B2 (en) * 2003-10-22 2008-12-09 Baker Hughes Incorporated Method for providing a temporary barrier in a flow pathway

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060136A (ja) * 1996-04-30 1998-03-03 Kureha Chem Ind Co Ltd ポリグリコール酸配向フィルム及びその製造方法
JPH1060137A (ja) * 1996-04-30 1998-03-03 Kureha Chem Ind Co Ltd ポリグリコール酸シート及びその製造方法
JPH1072529A (ja) * 1996-04-30 1998-03-17 Kureha Chem Ind Co Ltd ポリグリコール酸射出成形物及びその製造方法
JPH1087976A (ja) * 1996-07-26 1998-04-07 Mitsui Petrochem Ind Ltd 樹脂組成物及びその成形加工品
JP2003335315A (ja) * 2002-03-15 2003-11-25 Toyo Seikan Kaisha Ltd プラスチック製容器
JP2009540119A (ja) * 2006-06-07 2009-11-19 ハルリブルトン エネルギ セルビセス インコーポレーテッド 改良された酸性処理流体及び関連する方法
JP2008260902A (ja) * 2007-04-13 2008-10-30 Kureha Corp ポリグリコール酸の結晶化温度を高くする方法及び結晶化温度を高くしたポリグリコール酸樹脂組成物
JP2012149205A (ja) * 2011-01-21 2012-08-09 Kureha Corp ポリグリコール酸組成物、ポリグリコール酸を含む樹脂成形品及び成形体、並びに、ポリグリコール酸の分解方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208590A1 (ja) * 2016-06-03 2017-12-07 株式会社クレハ 結合剤、資材、および、資材の製造方法
JP2017218482A (ja) * 2016-06-03 2017-12-14 株式会社クレハ 結合剤、資材、および、資材の製造方法
JP2022512907A (ja) * 2018-10-29 2022-02-07 プージン ケミカル インダストリー カンパニー リミテッド ポリグリコライドコポリマー組成物及びその製造方法
JP7308264B2 (ja) 2018-10-29 2023-07-13 プージン ケミカル インダストリー カンパニー リミテッド ポリグリコライドコポリマー組成物及びその製造方法

Also Published As

Publication number Publication date
CA2891366A1 (en) 2014-04-17
CN104684997B (zh) 2016-12-07
CA2891366C (en) 2017-05-02
CN104684997A (zh) 2015-06-03
US20150247021A1 (en) 2015-09-03

Similar Documents

Publication Publication Date Title
WO2014057969A1 (ja) ポリグリコール酸樹脂組成物及びその製造方法
US8304500B2 (en) Polyglycolic acid resin particle composition and process for production thereof
TWI429679B (zh) Preparation method of polylactic acid block copolymer
CA2867111C (en) Polyester resin composition and molded article of same
EP1780234A1 (en) Polylactic acid and process for producing the same
US20090298979A1 (en) Method for Controlling Water Resistance of Polyglycolid Acid Resin
JP2006265486A (ja) ステレオコンプレックスポリ乳酸を含有する樹脂組成物および成形品
JPWO2009008262A1 (ja) 繊維強化ポリ乳酸系樹脂射出成形品
JP2003192883A (ja) ポリ乳酸系樹脂組成物、成形品及びその製造方法
JP4656056B2 (ja) ポリ乳酸ブロック共重合体、その製造方法、成形品およびポリ乳酸組成物
JP5241548B2 (ja) ポリ乳酸樹脂組成物およびその製造方法
Boruvka et al. Structure-related properties of bionanocomposites based on poly (lactic acid), cellulose nanocrystals and organic impact modifier
JP2020002189A (ja) ポリグリコール酸樹脂組成物の製造方法
JP2008239645A (ja) ポリ乳酸系樹脂組成物及びその製造方法、並びに成形品
JP4456371B2 (ja) 繊維強化ポリ乳酸系樹脂組成物
JP4996668B2 (ja) ポリ乳酸樹脂組成物、ポリ乳酸樹脂組成物の製造方法、成形品、携帯電話機用卓上ホルダー、携帯電話機の内部シャーシ部品、電子機器用筐体及び電子機器用内部部品
JP2003231799A (ja) ポリ乳酸系樹脂組成物、成形品及びその製造方法
JP2006045366A (ja) ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)組成物およびその成形体
JP2010126643A (ja) 耐衝撃性ポリ乳酸系樹脂組成物
US11827780B2 (en) Modified polyglycolic acid and molded articles for degradable downhole tools application
Khodabakhshi Poly (Lactic Acid) Thermoplastic Composites from Renewable Materials
JP5341478B2 (ja) ポリ乳酸系樹脂成形品の製造方法
JP5177200B2 (ja) ポリ乳酸組成物、成形品およびポリ乳酸組成物の製造方法
JP2008120873A (ja) ポリ乳酸の製造方法
CN118667311A (zh) 聚乙醇酸复合材料及其成型品和可溶桥塞

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845312

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2891366

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14432840

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP