WO2014038491A1 - 非水電解質二次電池負極用炭素質材料及びその製造方法 - Google Patents

非水電解質二次電池負極用炭素質材料及びその製造方法 Download PDF

Info

Publication number
WO2014038491A1
WO2014038491A1 PCT/JP2013/073425 JP2013073425W WO2014038491A1 WO 2014038491 A1 WO2014038491 A1 WO 2014038491A1 JP 2013073425 W JP2013073425 W JP 2013073425W WO 2014038491 A1 WO2014038491 A1 WO 2014038491A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonaceous material
secondary battery
electrolyte secondary
negative electrode
nonaqueous electrolyte
Prior art date
Application number
PCT/JP2013/073425
Other languages
English (en)
French (fr)
Inventor
真友 小松
康志 海老原
尚志 若穂囲
靖浩 多田
直弘 園部
真央 鈴木
佳余子 岡田
明利 旗持
誠 今治
泰史 池山
正太 小林
Original Assignee
株式会社クレハ
株式会社クレハ・バッテリー・マテリアルズ・ジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ, 株式会社クレハ・バッテリー・マテリアルズ・ジャパン filed Critical 株式会社クレハ
Priority to EP13835914.6A priority Critical patent/EP2894702A4/en
Priority to CN201380033327.2A priority patent/CN104412425B/zh
Priority to JP2014534335A priority patent/JP6345116B2/ja
Priority to US14/420,385 priority patent/US20150188137A1/en
Priority to KR1020147035350A priority patent/KR101665843B1/ko
Publication of WO2014038491A1 publication Critical patent/WO2014038491A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a carbonaceous material for a negative electrode of a nonaqueous electrolyte secondary battery and a method for producing the same.
  • Non-graphitizable carbon is suitable for use in automobile applications from the viewpoint of low expansion and contraction of particles due to lithium doping and dedoping reactions and high cycle durability (Patent Document 1).
  • pitches, polymer compounds, plant organic substances, and the like have been studied as carbon sources for non-graphitizable carbon.
  • pitches There are petroleum-based and coal-based pitches, which contain many metal impurities, so that they must be removed during use.
  • These pitches have a property of generating graphitizable carbon (such as coke) by heat treatment, and a crosslinking treatment is essential for producing non-graphitizable carbon. Thus, many steps are required to prepare non-graphitizable carbon from pitches.
  • Non-graphitizable carbon can be obtained by heat-treating a polymer compound, particularly a thermosetting resin such as a phenol resin or a furan resin.
  • a polymer compound particularly a thermosetting resin such as a phenol resin or a furan resin.
  • a thermosetting resin such as a phenol resin or a furan resin.
  • Patent Document 2 a carbon source derived from plant-derived organic matter is promising as a negative electrode material because it can be doped with a large amount of active material.
  • Patent Document 3 ash such as potassium and calcium elements present in the organic raw material is doped and dedoped with the carbonaceous material used as the negative electrode. Therefore, there has been proposed a method for reducing the content of potassium element by subjecting plant-derived organic matter to deashing treatment by acid cleaning (hereinafter referred to as liquid phase demineralization) (patent) References 2 and 3).
  • the particle size of the carbonaceous material is 100 ⁇ m or less because in liquid phase deashing, if the particle size of the object to be treated during deashing is large, the deashing rate is remarkably reduced.
  • a carbonaceous material precursor of 25 ⁇ m is actually used.
  • liquid phase demineralization it is necessary to remove the solution from which ash is eluted by filtration.
  • the washing water permeates through the packed bed of carbon precursor during filtration. It took a long time to remove the solution efficiently in a short time.
  • Patent Document 4 discloses deashing with warm water using waste coffee beans that have not been heat-treated at 300 ° C. or higher.
  • the potassium content can be reduced to 0.1% by mass or less even when using raw materials having a particle diameter of 1 mm or more, and the filterability is also improved. Is done.
  • this method cannot sufficiently remove calcium element.
  • JP-A-8-64207 JP-A-9-161801 Japanese Patent Laid-Open No. 10-21919 JP 2000-268823 A Japanese Patent Laid-Open No. 2001-223030 JP 2005-317469 A JP 2007-134286 A
  • the alkali metal such as potassium can be removed by the decalcification treatment described in Patent Document 3, it is difficult to remove the alkaline earth metal such as calcium, and in particular, the life performance of 10 years or more is realized (high durability). Therefore, it is insufficient in terms of reliability as a negative electrode material for in-vehicle lithium ion secondary batteries. Therefore, it is expected to develop a method for producing a high-purity non-graphitizable carbon with less impurities and a material thereof at low cost and in large quantities.
  • the first object of the present invention is to use a plant-derived organic material as a raw material, and has a high purity obtained by sufficiently decalcifying an alkali metal such as potassium element and an alkaline earth metal such as calcium element, and has a high discharge capacity and efficiency.
  • An object of the present invention is to provide an excellent non-aqueous electrolyte secondary battery negative electrode carbonaceous material, a new production method capable of efficiently mass-producing the carbonaceous material, and a lithium ion secondary battery using the carbonaceous material. .
  • the second object of the present invention is to provide a non-aqueous solution in which an alkali metal such as potassium element and an alkaline earth metal such as calcium element are sufficiently decalcified and contains a specific amount of phosphorus element or sulfur element.
  • An object of the present invention is to provide a carbonaceous material for an electrolyte secondary battery negative electrode, and a new manufacturing method capable of efficiently and mass-producing the carbonaceous material.
  • the negative electrode material using a plant-derived organic material as a carbon source is suitable for in-vehicle use from the viewpoint of durability or safety.
  • a hybrid vehicle HEV
  • High input / output characteristics that repeatedly supply and accept large currents in a short time, such as during mode or regenerative braking, are required at the same time, and there is a need to further reduce negative electrode resistance and battery irreversible capacity.
  • the plant raw material is simply fired, it will have a honeycomb structure derived from plants. Therefore, when pulverized, the particle structure becomes curved or flake-shaped, and when used as a negative electrode of a battery, the contact between particles is bad and sufficient output characteristics cannot be obtained compared to conventional amorphous carbon. Occurred.
  • a third object of the present invention is to provide a high purity nonaqueous electrolyte secondary battery negative electrode carbonaceous material having low resistance and low irreversible capacity, and a nonaqueous electrolyte secondary battery using the same. It is in.
  • the non-aqueous lithium ion secondary battery is normally completely shut off from the outside by a sealed structure.
  • Patent Document 5 It has also been proposed to improve the charge / discharge cycle characteristics by reducing moisture contained in the lithium ion secondary battery (Patent Document 5).
  • one of the causes of moisture entering into the non-aqueous electrolyte is water released from the electrode plate after filling the battery.
  • an electrode plate is manufactured under a harsh environment.
  • the electrode active The moisture adsorbed on the substance or the like cannot be completely removed by a normal drying process.
  • an electrode active material is coated on a current collecting substrate using a binder and formed into a predetermined shape such as a tape shape.
  • the electrode active material is a slurry or organic solvent or water. Used in paste form. If the drying during molding is insufficient, moisture remains on the electrode plate.
  • the possibility that moisture is adsorbed on the electrode active material is extremely high.
  • the non-graphitizable carbon generally has more holes than easily graphitizable carbon and the like, and therefore has a problem that it is easy to absorb water. There was a possibility that the cycle characteristics would deteriorate.
  • a fourth object of the present invention is to use a non-graphitizable carbonaceous material made of plant-derived organic material as a raw material, and to provide a highly durable nonaqueous electrolyte secondary battery that provides excellent results in cycle characteristics and exposure tests.
  • the object is to provide a negative electrode.
  • the plant-derived carbonaceous material for negative electrode has an average interlamellar spacing d 002 shorter than that of general non-graphitizable carbon and large expansion and contraction of crystals due to lithium doping and dedoping. It has been found that it has a problem with low cycle characteristics.
  • a fifth object of the present invention is to provide a carbonaceous material and a battery obtained by using plant-derived organic materials as raw materials, with reduced metal impurities and improved high-temperature cycle characteristics.
  • Another object of the present invention is to provide a vehicle such as an electric vehicle that requires less maintenance by applying such a non-aqueous electrolyte secondary battery.
  • the present inventors have determined that a plant-derived organic substance having an average particle diameter of 100 ⁇ m or more is detarred. It is possible to remove potassium and calcium by performing a decalcification treatment in an acidic solution having a pH of 3.0 or less, and a plant-derived carbonaceous material for a negative electrode is produced industrially and in large quantities. As a result, the present invention has been completed. Moreover, the obtained carbonaceous material contained phosphorus element or sulfur element in a specific amount.
  • the present inventors remove potassium and calcium by performing a deashing treatment within a specific temperature range in an acidic solution having a pH of 3.0 or lower and a temperature of 0 ° C. or higher and lower than 80 ° C. before detarring,
  • the ratio ( ⁇ H / ⁇ Bt ) of the true density ( ⁇ Bt ) obtained by the pycnometer method using butanol and the true density ( ⁇ H ) obtained by the dry density measurement using helium is set within a predetermined range. It has been found that a high-performance lithium ion secondary battery using a plant-derived carbonaceous material for negative electrode can be produced.
  • Patent Documents 6 and 7 disclose attempts to make negative electrode materials excellent in output characteristics by reducing curved and flaky particles by setting the average particle size to 8 ⁇ m or less.
  • potassium as an alkali metal is not removed, and in particular, realization of a life performance of 10 years or more (high durability) is required.
  • the present inventors have obtained the potassium content, the average interplanar spacing, and the atomic ratio of hydrogen atoms and carbon atoms obtained by performing decalcification treatment before detarring plant-derived organic matter. It has been found that a water-soluble polymer can be used as a binder because carbonaceous materials within a specific range each have a low moisture adsorbability despite being a non-graphitizable carbonaceous material. And it discovered that the non-aqueous electrolyte secondary battery excellent in the exposure test and cycling characteristics can be manufactured by using water-soluble polymer as a binder. A water-soluble polymer is often used as a binder for forming a graphite electrode.
  • this water-soluble polymer can improve the cycle characteristics of a secondary battery using graphite as an electrode.
  • water-soluble polymers have high water absorption, and it has been difficult to combine them with high-water-absorbing non-graphitizable carbon, because the results of exposure tests of secondary batteries are deteriorated.
  • the present inventors use a carbonaceous material having a specific characteristic value, and contain a specific substance (additive) in the electrolytic solution, thereby providing a non-aqueous electrolyte secondary having excellent high-temperature cycle characteristics. It has been found that a battery can be manufactured.
  • a carbonaceous material obtained by carbonizing a plant-derived organic substance, the atomic ratio (H / C) of hydrogen atoms to carbon atoms by elemental analysis is 0.1 or less, and the average particle diameter Dv 50 is 2 ⁇ m 50 ⁇ m or less, 002 plane average plane spacing determined by powder X-ray diffraction method is 0.365 nm or more and 0.400 nm or less, potassium element content is 0.5 mass% or less, and calcium element content is 0.02
  • the ratio ( ⁇ H / ⁇ Bt ) of the true density ( ⁇ Bt ) determined by the pycnometer method using butanol and the true density ( ⁇ H ) determined by the dry density measurement using helium is 1.18 or more.
  • the plant-derived organic material includes a coffee bean-derived organic material, the carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode according to any one of [1] to [7], [9] A step of deashing an organic material derived from a plant having an average particle size of 100 ⁇ m or more using an acidic solution having a pH of 3.0 or less, and deashing the decalcified organic material at a temperature of 300 ° C.
  • a method for producing an intermediate for producing a carbonaceous material for a negative electrode of a non-aqueous electrolyte secondary battery [10] The method for producing an intermediate for producing a carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode according to [9], wherein the decalcification step is performed at a temperature of 0 ° C. or higher and 80 ° C. or lower. [11] Production of an intermediate for producing a carbonaceous material for a negative electrode of a nonaqueous electrolyte secondary battery according to [9] or [10], wherein the detarring step is performed at 300 ° C. to 800 ° C. in a combustion gas atmosphere.
  • the plant-derived organic substance is not subjected to a heat treatment at 500 ° C. or higher.
  • a method for producing an intermediate of [13] The method for producing an intermediate for producing a carbonaceous material for a negative electrode of a nonaqueous electrolyte secondary battery according to any one of [9] to [12], wherein the plant-derived organic matter includes coffee bean-derived organic matter,
  • a method for producing a carbonaceous material for a negative electrode of a non-aqueous electrolyte secondary battery comprising: [17] A method for producing a carbonaceous material for a negative electrode of a nonaqueous electrolyte secondary battery, comprising a step of firing the intermediate produced by the method according to [14] at 1000 ° C or higher and 1500 ° C or lower, [18] A carbonaceous material for a non-aqueous electrolyte secondary battery negative electrode obtained by the production method according to [16] or [17], [19] A negative electrode for a non-aqueous electrolyte secondary battery comprising the carbonaceous material for a non-aqueous electrolyte secondary battery negative electrode according to any one of [1] to [8] and [18], [20] The negative electrode for a nonaqueous electrolyte secondary battery according to [19], comprising a water-soluble poly
  • the present invention provides [28] The carbonaceous material for a non-aqueous electrolyte secondary battery negative electrode according to any one of [1] to [8], wherein the halogen content is 50 ppm or more and 10,000 ppm or less, [29] The non-aqueous electrolyte secondary battery negative electrode according to any one of [1] to [8], wherein the average particle diameter Dv 50 is 2 ⁇ m or more and 50 ⁇ m or less, and the particles of 1 ⁇ m or less are 2% by volume or less.
  • the average particle diameter Dv 50 is at 2 ⁇ m or more 8 ⁇ m or less
  • the non-aqueous electrolyte secondary battery negative electrode carbonaceous material according to any one of 1 ⁇ m or less of the particles is 10% or less from the 3] [8]
  • a non-pulverized intermediate produced by the method according to [31] comprising a step of firing at 1000 ° C.
  • a method for producing a carbonaceous material for a negative electrode of a nonaqueous electrolyte secondary battery comprising a step of firing the pulverized intermediate produced by the method according to [31] at 1000 ° C or higher and 1500 ° C or lower, [35] The non-aqueous electrolyte secondary battery negative electrode carbon according to any one of [16], [17], [33], and [34], wherein the firing is performed in an inert gas containing a halogen gas.
  • a metal compound such as potassium or calcium is present in the carbon, if it elutes into the electrolyte solution and the metal re-deposits, it may cause a short circuit and raise the battery temperature. Since the carbonaceous material obtained by the liquid phase deashing using the acid according to the present invention has very little of these impurities, it is possible to obtain a material having high safety when used as a battery.
  • a carbonaceous material obtained by liquid phase decalcification at a temperature of 0 ° C. or higher and 80 ° C. or lower has very few impurities and an appropriate value for the true density.
  • the discharge capacity and efficiency can be improved.
  • the ratio ( ⁇ H / ⁇ Bt ) of the true density ( ⁇ Bt ) determined by the pycnometer method using butanol and the true density ( ⁇ H ) determined by dry density measurement using helium is 1.18.
  • a carbonaceous material of ⁇ 1.38 exhibits excellent discharge capacity and efficiency.
  • the carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode of the present invention has an average particle diameter Dv 50 of 1 to 8 ⁇ m (particularly 2 to 8 ⁇ m) and a high purity nonaqueous electrolyte secondary battery having a specific structure. According to the carbonaceous material for the battery negative electrode, the resistance of the electrode using this is low, and the irreversible capacity of the battery can be reduced. Useful for use.
  • a negative electrode was formed in combination with a water-soluble polymer. Even in this case, since the water absorption of the electrode can be suppressed, it is a non-aqueous electrolyte secondary battery having a negative electrode formed from a non-graphitizable carbonaceous material and a water-soluble polymer. Good results can be obtained. As a result, it is possible to provide a nonaqueous electrolyte secondary battery excellent in both the exposure test and the cycle durability.
  • a water electrolyte secondary battery can be provided.
  • a non-aqueous electrolyte secondary battery it is possible to provide a vehicle such as an electric vehicle that requires less maintenance.
  • Carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery is carbonized plant-derived organic matter.
  • the carbonaceous material obtained by the above-described method having an atomic ratio (H / C) of hydrogen atom to carbon atom of 0.1 or less by elemental analysis, an average particle diameter Dv 50 of 2 to 50 ⁇ m, and determined by X-ray diffraction method 002
  • the average plane spacing is 0.365 to 0.400 nm
  • the potassium element content is 0.5 mass% or less
  • the calcium element content is 0.02 mass% or less.
  • the carbonaceous material for the negative electrode of the nonaqueous electrolyte secondary battery of the present invention is preferably a true density ( ⁇ Bt ) determined by a pycnometer method using butanol and a true density ( ⁇ H ) determined by dry density measurement using helium.
  • the carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode of the present invention preferably has an average particle diameter Dv 50 of 2 to 8 ⁇ m.
  • the carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode according to the present invention is preferably a carbonaceous material containing 0.02% by mass or more of phosphorus element and / or 0.05% by mass or more of sulfur element. .
  • the carbonaceous material of the present invention uses plant-derived organic matter as a carbon source, and is therefore a non-graphitizable carbonaceous material.
  • Non-graphitizable carbon has small cycle expansion and contraction due to lithium doping and dedoping reactions, and has high cycle durability.
  • Such plant-derived organic substances will be described in detail in the description of the production method of the present invention.
  • the average particle size (volume average particle size: Dv 50 ) of the carbonaceous material of the present invention is preferably 2 to 50 ⁇ m.
  • the average particle size is less than 2 ⁇ m, the fine powder increases, the specific surface area increases, the reactivity with the electrolyte increases, the irreversible capacity that does not discharge even when charged increases, and the capacity of the positive electrode increases. This is not preferable because a waste rate increases.
  • a negative electrode is manufactured, one gap formed between the carbonaceous materials is reduced, and movement of lithium in the electrolytic solution is suppressed, which is not preferable.
  • the lower limit is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, particularly preferably 4 ⁇ m or more (specifically, 8 ⁇ m or more).
  • the average particle size is 50 ⁇ m or less, the lithium free diffusion process in the particles is small, and rapid charge / discharge is possible.
  • the upper limit of the average particle diameter is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, still more preferably 30 ⁇ m or less, still more preferably 25 ⁇ m or less, and most preferably 20 ⁇ m or less.
  • the carbonaceous material may have an average particle size (volume average particle size: Dv 50 ) of 1 to 8 ⁇ m, preferably 2 to 8 ⁇ m.
  • the average particle diameter is 1 to 8 ⁇ m, the resistance of the electrode can be lowered, and thereby the irreversible capacity of the battery can be reduced.
  • the lower limit of the average particle diameter is preferably 1 ⁇ m, more preferably 3 ⁇ m.
  • the average particle size is 8 ⁇ m or less, the lithium free diffusion process in the particles is small, and rapid charge / discharge is possible. Furthermore, in a lithium ion secondary battery, it is important to increase the electrode area in order to improve input / output characteristics.
  • the coating thickness of the active material on the current collector plate during electrode preparation it is necessary to reduce the coating thickness of the active material on the current collector plate during electrode preparation.
  • the particle diameter of the active material it is necessary to reduce the particle diameter of the active material.
  • the upper limit of the average particle diameter is preferably 8 ⁇ m or less, more preferably 7 ⁇ m or less. If the thickness exceeds 8 ⁇ m, the surface area of the active material increases and the electrode reaction resistance increases, which is not preferable.
  • the carbonaceous material of the present invention is preferably one from which fine powder has been removed.
  • the carbonaceous material from which the fine powder has been removed is used as the negative electrode of the non-aqueous electrolyte secondary battery, the irreversible capacity is reduced and the charge / discharge efficiency is improved.
  • the active material can be sufficiently adhered with a small amount of binder. That is, the carbonaceous material containing a large amount of fine powder cannot sufficiently adhere the fine powder, and may be inferior in long-term durability.
  • the amount of fine powder contained in the carbonaceous material of the present invention is not limited, but in the case of an average particle diameter of 2 to 50 ⁇ m (preferably an average particle diameter of 8 to 50 ⁇ m), a ratio of particles of 1 ⁇ m or less is preferable. Is 2% by volume or less, more preferably 1% by volume or less, and still more preferably 0.5% by volume or less. If a carbonaceous material having a proportion of particles of 1 ⁇ m or less is more than 2% by volume, the irreversible capacity of the obtained battery is increased, and the cycle durability may be inferior.
  • the ratio of particles of 1 ⁇ m or less is preferably 10% by volume or less, more preferably 8% by volume or less, although it is not limited. More preferably, it is 6% by volume or less.
  • a carbonaceous material having a ratio of particles of 1 ⁇ m or less of more than 10% is used, the irreversible capacity of the obtained battery is increased and the cycle durability may be inferior.
  • a carbonaceous material having an average particle diameter of 10 ⁇ m a carbonaceous material containing 0.0 vol% of fine powder of 1 ⁇ m or less and a carbonaceous material containing 2.8 vol% of fine powder of 1 ⁇ m or less are used.
  • the present invention is a carbonaceous material obtained by carbonizing a plant-derived organic substance, and the atomic ratio (H / C) of hydrogen atoms to carbon atoms by elemental analysis is 0.1 or less, and the average particle diameter Dv 50 is 2 to 50 ⁇ m, the mean spacing of 002 planes determined by powder X-ray diffraction method is 0.365 nm to 0.400 nm, and the proportion of particles having a potassium element content of 0.5 mass% or less and 1 ⁇ m or less. It is related with the carbonaceous material for non-aqueous electrolyte secondary battery negative electrodes which is 2% or less.
  • the present invention also relates to a carbonaceous material obtained by carbonizing a plant-derived organic material, wherein an atomic ratio (H / C) of hydrogen atoms to carbon atoms by elemental analysis is 0.1 or less, and an average particle diameter Dv50. Is 1 to 8 ⁇ m, the mean spacing of 002 planes determined by powder X-ray diffraction method is 0.365 nm to 0.400 nm, and the proportion of particles having a potassium element content of 0.5 mass% or less and 1 ⁇ m or less is 10 % Of the carbonaceous material for a negative electrode of a non-aqueous electrolyte secondary battery.
  • Plant-derived organic substances contain alkali metals (for example, potassium and sodium), alkaline earth metals (for example, magnesium or calcium), transition metals (for example, iron and copper), and other elements, and these metals It is also preferable to reduce the content of the species. This is because if these metals are contained, impurities are eluted into the electrolytic solution during dedoping from the negative electrode, and the battery performance and safety are likely to be adversely affected.
  • alkali metals for example, potassium and sodium
  • alkaline earth metals for example, magnesium or calcium
  • transition metals for example, iron and copper
  • the potassium element content in the carbonaceous material of the present invention is 0.5% by mass or less, more preferably 0.2% by mass or less, and further preferably 0.1% by mass or less.
  • the dedoping capacity may decrease and the undoping capacity may increase.
  • the content of calcium in the carbonaceous material of the present invention is 0.02% by mass or less, more preferably 0.01% by mass or less, and further preferably 0.005% by mass or less.
  • a non-aqueous electrolyte secondary battery using a carbonaceous material for a negative electrode having a high calcium content there is a possibility of generating heat due to a short circuit. Moreover, there is a possibility that the doping characteristics and the dedoping characteristics are adversely affected.
  • the magnesium content in the carbonaceous material of the present invention is 0.01% by mass or less, more preferably 0.008% by mass or less, and still more preferably 0.005% by mass or less.
  • the silicon content in the carbonaceous material of the present invention is 0.02% by mass or less, more preferably 0.015% by mass or less, and still more preferably 0.01% by mass or less.
  • halogen content contained in the carbonaceous material of the present invention fired with a halogen gas-containing non-oxidizing gas described later is not limited, but is 50 to 10,000 ppm, more preferably 100 to 5000 ppm. Yes, more preferably from 200 to 3000 ppm.
  • the present invention is a carbonaceous material obtained by carbonizing a plant-derived organic substance, and the atomic ratio (H / C) of hydrogen atoms to carbon atoms by elemental analysis is 0.1 or less, and the average particle diameter Dv 50 is 2 to 50 ⁇ m, the mean spacing of 002 planes determined by powder X-ray diffraction method is 0.365 nm to 0.400 nm, the potassium element content is 0.5 mass% or less, and the halogen content is 50 to 50 ⁇ m. It is related with the carbonaceous material for nonaqueous electrolyte secondary battery negative electrodes which is 10000 ppm.
  • H / C of the carbonaceous material of the present invention is measured by elemental analysis of hydrogen atoms and carbon atoms. Since the hydrogen content of the carbonaceous material decreases as the degree of carbonization increases, H / C is It tends to be smaller. Therefore, H / C is effective as an index representing the degree of carbonization.
  • H / C of the carbonaceous material of this invention is not limited, it is 0.1 or less, More preferably, it is 0.08 or less. Especially preferably, it is 0.05 or less. If the ratio H / C of hydrogen atoms to carbon atoms exceeds 0.1, many functional groups are present in the carbonaceous material, and the irreversible capacity may increase due to reaction with lithium, which is not preferable.
  • the average layer spacing of the (002) plane of the carbonaceous material shows a smaller value as the crystal perfection is higher, that of an ideal graphite structure shows a value of 0.3354 nm, and the value increases as the structure is disturbed. Tend. Therefore, the average layer spacing is effective as an index indicating the carbon structure.
  • the average interplanar spacing of the 002 plane determined by the X-ray diffraction method of the carbonaceous material for a non-aqueous electrolyte secondary battery of the present invention is 0.365 nm or more, more preferably 0.370 nm or more, and further 0.375 nm or more. preferable.
  • the average spacing is 0.400 nm or less, more preferably 0.395 nm or less, and still more preferably 0.390 nm or less.
  • the 002 plane spacing is less than 0.365 nm, the dope capacity decreases when used as a negative electrode of a non-aqueous electrolyte secondary battery, or the expansion and contraction associated with lithium doping and dedoping increases. Since voids are generated between them and the conductive network between the particles is blocked, the repetitive characteristics are inferior. On the other hand, if it exceeds 0.400 nm, the undedoped capacity increases, which is not preferable.
  • true density of carbonaceous material The true density of the graphite material having an ideal structure is 2.2 g / cm 3 , and the true density tends to decrease as the crystal structure is disturbed. Therefore, the true density can be used as an index representing the structure of carbon.
  • True density of the carbonaceous material of the present invention but are not limited to, the lower limit is at 1.51 g / cm 3 or higher, preferably 1.54 g / cm 3 or more, more preferably 1.55 g / cm 3 or more, more preferably 1.56 g / cm 3 or more.
  • a carbonaceous material of less than 1.51 g / cm 3 is not preferable because closed pores may increase and the doping and dedoping capacity may be reduced.
  • the electrode density is lowered, the volume energy density is lowered, which is not preferable.
  • the true density is 1.65 g / cm 3 or less, more preferably 1.62 g / cm 3 or less, more preferably is 1.60 g / cm 3 or less .
  • the true density is greater than 1.65 g / cm 3 , the high-temperature cycle characteristics may be inferior when used in a battery.
  • the ratio ( ⁇ H / ⁇ ) of the true density ( ⁇ Bt ) determined by the pycnometer method using butanol and the true density ( ⁇ H ) determined by the pycnometer method using helium. Bt ) is between 1.18 and 1.38.
  • the lower limit of the true density ratio is 1.18 or more, more preferably 1.25 or more.
  • the upper limit is preferably 1.38 or less, more preferably 1.32 or less, and still more preferably 1.30 or less. If the ratio value increases beyond the upper limit, the irreversible capacity may increase.
  • the specific surface area (hereinafter sometimes referred to as “SSA”) obtained by the BET method of nitrogen adsorption of the carbonaceous material of the present invention is not limited, but is preferably 13 m 2 / g or less, more preferably 12 m. 2 / g or less, more preferably 10 m 2 / g or less, more preferably 8 m 2 / g or less, and most preferably 7.0 m 2 / g or less.
  • SSA Specific surface area of carbonaceous material
  • the lower limit of the specific surface area is preferably 1 m 2 / g or more, more preferably 1.5 m 2 / g or more, and still more preferably 2 m 2 / g or more. If a carbonaceous material having an SSA of less than 1 m 2 / g is used, the discharge capacity of the battery may be reduced.
  • the specific surface area is preferably 6 to 12 m 2 / g, more preferably 8 to 11 m 2 / g.
  • Method for producing carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery uses a plant-derived organic material having an average particle size of 100 ⁇ m or more as a raw material.
  • a step of deashing using an acidic solution having a pH of 3.0 or less (hereinafter sometimes referred to as “liquid phase deashing step”), (2) a decalcified organic substance, or a carbonized substance (after detarring)
  • a step of pulverizing any one of the carbonized product or the carbonized product after the main firing) to an average particle size of 2 to 50 ⁇ m (hereinafter sometimes referred to as “grinding step”), and (4) in a non-oxidizing atmosphere.
  • a method for producing a carbonaceous material which includes a step of firing at 1000 to 1500 ° C. (hereinafter sometimes referred to as a “baking step”).
  • the method for producing a carbonaceous material for a negative electrode of a non-aqueous electrolyte secondary battery is preferably (3) a step of detarring the deashed organic matter at 300 to 1000 ° C. (hereinafter sometimes referred to as “detarring step”) including. Therefore, the method for producing a carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode of the present invention includes a liquid phase decalcification step (1), a pulverization step (2), and a firing step (4), preferably a detarring step ( 3).
  • the liquid phase demineralization step (1) is preferably a step of treating plant-derived organic substances in an acidic solution having a pH of 3.0 or lower and a temperature of 0 ° C or higher and 80 ° C or lower.
  • plant-derived organic materials are used as raw materials, and at least (1) a step of decalcification using an acidic solution having a pH of 3.0 or less, (2) decalcified organic materials, or carbonized products (decalcification).
  • the manufacturing method of the carbonaceous material for water electrolyte secondary battery negative electrodes may be sufficient.
  • the plant as a raw material is not particularly limited. There may be mentioned hardwoods, conifers, bamboo, or rice husks. These plant-derived organic substances can be used alone or in combination of two or more.
  • the extraction residue obtained by extracting the beverage coffee component from the coffee beans has some minerals extracted and removed when extracting the coffee component, and in particular, the coffee extraction that has been industrially extracted The residue is particularly preferred because it is moderately ground and available in large quantities.
  • the carbonaceous material for negative electrode manufactured from these plant-derived organic substances can be doped with a large amount of active material
  • the negative electrode material of the non-aqueous electrolyte secondary battery Useful as.
  • plant-derived organic substances contain many metal elements, and particularly contain a lot of potassium and calcium.
  • a carbonaceous material produced from a plant-derived organic material containing a large amount of metal elements has an undesirable effect on electrochemical characteristics and safety when used as a negative electrode. Therefore, it is preferable to reduce the content of potassium element or calcium element contained in the carbonaceous material for negative electrode as much as possible.
  • the plant-derived organic material used in the present invention is preferably not heat-treated at 500 ° C. or higher. When the heat treatment is performed at 500 ° C. or higher, deashing may not be sufficiently performed due to carbonization of the organic matter.
  • the plant-derived organic material used in the present invention is preferably not heat-treated. When heat-treated, 400 ° C. or lower is preferable, 300 ° C. or lower is more preferable, 200 ° C. or lower is further preferable, and 100 ° C. or lower is most preferable. For example, when coffee bean extraction residue is used as a raw material, heat treatment at about 200 ° C. may be performed by roasting, but it can be sufficiently used as a plant-derived organic substance used in the present invention.
  • the plant-derived organic material used in the present invention is preferably one that has not been spoiled.
  • microorganisms may grow and organic substances such as lipids and proteins may be decomposed by storing for a long time in a state of containing a lot of water. Some of these organic substances undergo a cyclization reaction during the carbonization process, and become aromatic compounds to form a carbon structure. Therefore, when organic substances are decomposed by decay, the final carbon structure will be different. There is a case. When the coffee extraction residue which has progressed aerobic decay is used, the true density of the obtained carbonaceous material may be lowered.
  • the irreversible capacity may increase when used in a battery, which is not preferable. Moreover, since the water absorption of the carbonaceous material also increases, the degree of deterioration due to atmospheric exposure increases.
  • Liquid phase demineralization process processes a plant-derived organic substance in an acidic solution of pH 3.0 or less before detarring.
  • potassium element, calcium element and the like can be efficiently removed, and calcium element can be efficiently removed as compared with the case where no acid is particularly used. Further, other alkali metals, alkaline earth metals, and transition metals such as copper and nickel can be removed.
  • a secondary battery using a carbonaceous material obtained by liquid phase demineralization at 0 ° C. or more and less than 80 ° C. is particularly excellent in discharge capacity and efficiency.
  • the acid used for the liquid phase decalcification is not particularly limited, and examples thereof include strong acids such as hydrochloric acid, hydrofluoric acid, sulfuric acid and nitric acid, weak acids such as citric acid and acetic acid, and mixtures thereof. Preferably, it is hydrochloric acid or hydrofluoric acid.
  • the plant-derived organic substance used in the present invention is preferably not heat-treated at 500 ° C. or higher. However, when the carbonization of the organic substance is proceeding at 500 ° C. or higher, hydrofluoric acid should be used. It is possible to sufficiently deash.
  • the coffee extraction residue is detarred at 700 ° C., then liquid phase decalcified with 35% hydrochloric acid for 1 hour, washed with water three times, dried, pulverized to 10 ⁇ m, and then calcined at 1250 ° C. In this case, 409 ppm of potassium and 507 ppm of calcium remained.
  • potassium and calcium were below the detection limit (10 ppm or less) in the fluorescent X-ray measurement.
  • the pH in liquid phase demineralization is not limited as long as sufficient demineralization is achieved, but the pH is preferably 3.0 or less, more preferably 2.5 or less, and even more preferably 2 0.0 or less. If the pH exceeds 3.0, it may be inconvenient because sufficient decalcification may not be possible.
  • the liquid phase decalcification time varies depending on the pH and the treatment temperature and is not particularly limited, but the lower limit is preferably 1 minute, more preferably 5 minutes, and even more preferably 10 minutes.
  • the upper limit is preferably 300 minutes, more preferably 200 minutes, and even more preferably 150 minutes. If the length is short, decalcification cannot be sufficiently achieved, and if the length is long, it is inconvenient in terms of work efficiency.
  • the temperature of liquid phase demineralization can be carried out without any particular limitation within a wide range between 0 ° C and 100 ° C.
  • the deashing temperature is lower than 0 ° C., it is not preferable because the acid diffusion becomes slow and the efficiency of deashing is lowered.
  • the temperature is higher than 100 ° C., the volatilization of the acid occurs, which is not preferable because implementation facilities are limited.
  • the treatment temperature is preferably 0 ° C. or more and 80 ° C. or less, and the upper limit is preferably 80 ° C., more preferably 70 ° C., more preferably 40 ° C., and further preferably room temperature (20 to 40 ° C.). is there.
  • the treatment temperature is 80 ° C.
  • the true density of the carbonaceous material increases, and when the battery is used, the discharge capacity and efficiency of the battery are improved. Also, if the deashing temperature is low, it may take a long time to perform sufficient deashing. If the deashing temperature is high, the treatment may be done in a short time, but the true density using butanol, a carbonaceous material, Since it falls, it is not preferable.
  • the liquid phase demineralization step (1) in the present invention is a step for removing potassium and calcium contained in plant-derived organic substances.
  • 0.5 mass% or less is preferable, as for potassium content after a liquid phase demineralization process (1), 0.2 mass% or less is more preferable, and 0.1 mass% or less is still more preferable.
  • the calcium content is preferably 0.02% by mass or less, more preferably 0.01% by mass or less, and further preferably 0.005% by mass or less.
  • the dedoping capacity is reduced, This is because not only the undoped capacity is increased, but also these metal elements are eluted into the electrolytic solution, and when they are re-deposited, a short circuit is caused, which may cause a serious problem in safety.
  • the particle diameter of the plant-derived organic substance used for liquid phase demineralization is not particularly limited. However, if the particle size is too small, the permeability of the solution during filtration after decalcification is lowered, so the lower limit of the particle size is preferably 100 ⁇ m or more, more preferably 300 ⁇ m or more, and even more preferably 500 ⁇ m or more.
  • the upper limit of the particle diameter is preferably 10,000 ⁇ m or less, more preferably 8000 ⁇ m or less, and still more preferably 5000 ⁇ m or less.
  • the plant-derived organic matter Prior to the liquid phase decalcification, the plant-derived organic matter can be pulverized to an appropriate average particle size (preferably 100 to 50,000 ⁇ m, more preferably 100 to 10,000 ⁇ m, still more preferably 100 to 5000 ⁇ m). This pulverization is different from the pulverization step (2) in which the average particle size after firing is 2 to 50 ⁇ m.
  • Pulverization step The pulverization step in the production method of the present invention comprises an organic substance or carbonized product from which potassium and calcium have been removed (carbonized product after detarring or carbonized product after main calcination) having an average particle size of 2 to 2 after calcination.
  • This is a step of pulverizing to 50 ⁇ m. That is, the average particle diameter of the obtained carbonaceous material is adjusted to 2 to 50 ⁇ m by the pulverization step.
  • pulverization is performed so that the average particle size after firing is preferably 1 to 8 ⁇ m, more preferably 2 to 8 ⁇ m.
  • the carbonaceous material to be obtained is prepared so as to have an average particle diameter of 1 to 8 ⁇ m, more preferably 2 to 8 ⁇ m by the pulverization step.
  • the “carbonaceous precursor” or “intermediate” means the product after the detarring step. That is, in the present specification, the “carbonaceous precursor” and the “intermediate” are used in substantially the same meaning, and include those that are pulverized and those that are not pulverized.
  • the order of the pulverization step is not limited as long as the average particle size of the obtained carbonaceous material is 2 to 50 ⁇ m, but after the liquid phase deashing step (1), the detarring step (3) After and after the firing step (4).
  • the pulverizer used for pulverization is not particularly limited.
  • a jet mill, a ball mill, a hammer mill, or a rod mill can be used.
  • fine powder can be removed by classification after pulverization.
  • classification by sieve As classification, classification by sieve, wet classification, or dry classification can be mentioned.
  • the wet classifier include a classifier using a principle such as gravity classification, inertia classification, hydraulic classification, or centrifugal classification.
  • the dry classifier include a classifier using the principle of sedimentation classification, mechanical classification, or centrifugal classification.
  • pulverization and classification can be performed using one apparatus.
  • pulverization and classification can be performed using a jet mill having a dry classification function.
  • an apparatus in which the pulverizer and the classifier are independent can be used. In this case, pulverization and classification can be performed continuously, but pulverization and classification can also be performed discontinuously.
  • the ground carbonaceous precursor can be fired by a firing process. Depending on the firing conditions, shrinkage of about 0 to 20% occurs. Therefore, when pulverization is performed before firing and the firing step is performed, a non-aqueous electrolyte secondary battery having an average particle diameter Dv 50 of 2 to 50 ⁇ m is finally obtained.
  • the average sphere diameter after pulverization is not limited as long as the average particle diameter of the finally obtained carbonaceous material is 2 to 50 ⁇ m. Specifically, the average particle diameter Dv 50 is 2 to 63 ⁇ m.
  • the average particle diameter of the pulverized carbonaceous precursor is increased in the range of about 0 to 20%. It is preferable to prepare it.
  • the average sphere diameter after pulverization is not limited as long as the average particle diameter of the carbonaceous material finally obtained is 2 to 8 ⁇ m.
  • the carbon for nonaqueous electrolyte secondary battery negative electrode it is preferred to prepare the average particle diameter Dv 50 of the intermediate quality material 1 ⁇ 10 ⁇ m, 1 ⁇ 9 ⁇ m is more preferred.
  • the carbonaceous material of the present invention is preferably one from which fine powder has been removed.
  • the method for removing the fine powder is not particularly limited, and the fine powder can be removed in the pulverization step using, for example, a pulverizer such as a jet mill having a classification function.
  • a pulverizer such as a jet mill having a classification function.
  • fine powder can be removed by classification after pulverization.
  • fine powder can be recovered using a cyclone or a bag filter.
  • Detarring step In the production method of the present invention, the carbon source is detarred to form a carbonaceous precursor.
  • the heat treatment for modifying the carbonaceous precursor to carbonaceous is called firing. Firing may be performed in one stage, or may be performed in two or more stages of low temperature and high temperature. In this case, firing performed at a relatively low temperature compared to the main firing is referred to as preliminary firing, and firing at the highest reached temperature is referred to as main firing.
  • the main purpose is not to remove volatile components from a carbon source to form a carbonaceous precursor (detarring) or to reform the carbonaceous precursor to carbonaceous (firing).
  • the case is called “non-carbonization heat treatment” and is distinguished from “detarring” and “calcination”.
  • Non-carbonization heat treatment means, for example, heat treatment at less than 500 ° C. More specifically, roasting of coffee beans at about 200 ° C. is included in the non-carbonization heat treatment.
  • the plant-derived organic material used in the present invention is preferably not heat-treated at 500 ° C. or higher. That is, the plant-derived organic material used in the present invention is a non-carbonized heat-treated material. it can.
  • Detarring is performed by firing a carbon source at 300 ° C. or higher and 1000 ° C. or lower. More preferably, it is 300 degreeC or more and 800 degrees C or less, or 400 degreeC or more and less than 900 degreeC. Detarring removes volatile components such as CO 2 , CO, CH 4 , and H 2 , and tar components, reduces the generation of these in the main calcination, and reduces the burden on the calcination furnace. . When the detarring temperature is less than 300 ° C., the detarring becomes insufficient, and there is a large amount of tar and gas generated in the main firing step after pulverization, which may adhere to the particle surface. This is not preferable because it cannot be maintained and the battery performance is lowered.
  • the detarring temperature exceeds 1000 ° C.
  • the tar generation temperature range is exceeded, and the energy efficiency to be used is lowered, which is not preferable.
  • the generated tar causes a secondary decomposition reaction, which adheres to the carbonaceous precursor, which is not preferable because it may cause a decrease in performance.
  • Detarring is performed in an inert gas atmosphere, and examples of the inert gas include nitrogen and argon. Moreover, detarring can also be performed under reduced pressure, for example, it can be performed at 10 KPa or less.
  • the time for detarring is not particularly limited, however, for example, 0.5 to 10 hours can be used, and 1 to 5 hours is more preferable. Moreover, you may perform the said grinding
  • the average particle diameter Dv 50 is preferably 2 to 63 ⁇ m, and more preferably 1 to 10 ⁇ m. If the average particle diameter is set within this range, the particle size of the carbonaceous material can be made within the scope of the present invention after shrinking through the subsequent firing step (preliminary firing, main firing). Moreover, it is preferable to adjust so that content of potassium and calcium may be 0.5 mass% or less and 0.02 mass% or less, respectively, in the intermediate. If it exists in this range, the density
  • detarring in oxygen-containing atmosphere can also be performed in an oxygen-containing atmosphere.
  • the oxygen-containing atmosphere is not limited.
  • air can be used, but it is preferable that the oxygen content is small.
  • the oxygen content in the oxygen-containing atmosphere is preferably 20% by volume or less, more preferably 15% by volume or less, still more preferably 10% by volume or less, and most preferably 5% by volume or less.
  • the oxygen content may be, for example, 1% by volume or more.
  • the present invention preferably includes a liquid phase demineralization step (1), a pulverization step (2), a detarring step (3) and a calcination step (4), and the detarring step (3) is performed in an oxygen-containing atmosphere.
  • the present invention relates to a method for producing a carbonaceous material for a non-aqueous electrolyte secondary battery.
  • the detarring step (3) when the detarring step (3) is performed in an oxygen-containing atmosphere using plant-derived organic matter (eg, coconut shell char) that has been heat-treated at 600 ° C., the carbonaceous matter that has undergone the firing step (4) thereafter.
  • the specific surface area of the material was 60 m 2 / g, but the detarring step (3) was performed in an oxygen-containing atmosphere using plant-derived organic matter (for example, coffee residue) that was not heat-treated at 500 ° C. or higher.
  • the specific surface area of the carbonaceous material that had undergone the firing step (4) was 6 m 2 / g, and no increase in the specific surface area was observed. This is a numerical value equivalent to that of a carbonaceous material that has been detarred in an inert gas atmosphere.
  • detarring is possible in an oxygen-containing atmosphere in the present invention. Since the plant-derived organic substance used in the present invention is not heat-treated at a high temperature, a large amount of tar and gas are generated in the detarring step. The generated tar content, gas, and oxygen are preferentially consumed by the oxidation reaction, and oxygen that reacts with plant-derived organic matter is depleted, so that it is assumed that activation does not occur.
  • detarring is possible in an oxygen-containing atmosphere, so that the atmosphere control can be simplified. Furthermore, the manufacturing cost can be reduced by reducing the amount of inert gas such as nitrogen.
  • the firing step in the production method of the present invention is a step of firing the pulverized carbonaceous precursor at 1000 ° C. to 1500 ° C. Preferably, it is performed in a non-oxidizing gas atmosphere. Firing at 1000 ° C. to 1500 ° C. is usually called “main firing” in the technical field of the present invention. Moreover, in the baking process of this invention, preliminary baking can be performed before this baking as needed.
  • Calcination in the production method of the present invention can be performed according to a normal procedure, and a carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode can be obtained by performing calcination.
  • the firing temperature is 1000 to 1500 ° C.
  • a calcination temperature of less than 1000 ° C. is not preferable because many functional groups remain in the carbonaceous material and the H / C value increases, and the irreversible capacity increases due to reaction with lithium.
  • the minimum of the calcination temperature of this invention is 1000 degreeC or more, More preferably, it is 1100 degreeC or more, Most preferably, it is 1150 degreeC or more.
  • the upper limit of the firing temperature of the present invention is 1500 ° C. or less, more preferably 1450 ° C. or less, and particularly preferably 1400 ° C. or less.
  • Calcination is preferably performed in a non-oxidizing gas atmosphere.
  • the non-oxidizing gas include helium, nitrogen, and argon, and these can be used alone or in combination.
  • firing in a gas atmosphere in which a halogen gas such as chlorine is mixed with the non-oxidizing gas.
  • the supply amount (circulation amount) of the gas is not limited, but is 1 mL / min or more, preferably 5 mL / min or more, more preferably 10 mL / min or more per 1 g of decalcified carbon precursor.
  • baking can also be performed under reduced pressure, for example, it can also be performed at 10 KPa or less.
  • the firing time is not particularly limited.
  • the residence time at 1000 ° C. or higher can be 0.05 to 10 hours, preferably 0.05 to 3 hours, and 0.05 to 1 Time is more preferred.
  • preliminary firing can be performed.
  • the preliminary firing is performed by firing the carbon source at 300 ° C. or higher and lower than 1000 ° C., preferably 300 ° C. or higher and lower than 900 ° C.
  • Pre-baking removes volatile components that remain even after the detarring process, such as CO 2 , CO, CH 4 , and H 2 , and tar components, and reduces the generation of these in the main firing, The burden on the vessel can be reduced. That is, in addition to the detarring step, CO 2 , CO, CH 4 , H 2 , or tar content may be further removed by preliminary calcination.
  • Pre-baking is performed in an inert gas atmosphere, and examples of the inert gas include nitrogen and argon. Pre-baking can also be performed under reduced pressure, for example, 10 KPa or less.
  • the pre-baking time is not particularly limited, but can be performed, for example, in 0.5 to 10 hours, and more preferably 1 to 5 hours. Moreover, you may perform the said grinding
  • the pre-calcination removes volatile components remaining after the detarring step, such as CO 2 , CO, CH 4 , and H 2 , and tar components, and reduces the generation of them in the main firing. , The burden on the calciner can be reduced.
  • the firing or preliminary firing in the present invention can be performed in a non-oxidizing gas containing a halogen gas.
  • a halogen gas used include chlorine gas, bromine gas, iodine gas, and fluorine gas, and chlorine gas is particularly preferable.
  • a substance that easily releases halogen at a high temperature such as CCl 4 or Cl 2 F 2 , can be supplied using an inert gas as a carrier. Firing or pre-firing with a halogen gas-containing non-oxidizing gas may be performed at the temperature of main baking (1000 to 1500 ° C.), but may be performed at a temperature lower than the main baking (for example, 300 ° C.
  • the temperature range is preferably 800 to 1400 ° C. As a minimum of temperature, 800 ° C is preferred and 850 ° C is still more preferred.
  • the upper limit is preferably 1400 ° C, more preferably 1350 ° C, and most preferably 1300 ° C.
  • the raw organic material When the raw organic material is heated and carbonized, it is carbonized through a process of heating in a halogen gas-containing atmosphere such as chlorine gas, whereby the obtained carbonaceous material shows an appropriate halogen content, and It has a fine structure suitable for occlusion of lithium. Thereby, a large charge / discharge capacity can be obtained.
  • a halogen gas-containing atmosphere such as chlorine gas
  • a mixed gas obtained by adding 0.04 L / min of chlorine gas to 0.2 L / min of nitrogen gas is supplied.
  • the discharge capacity increased by 7%.
  • the halogen content contained in the carbonaceous material of the present invention fired with a halogen gas-containing non-oxidizing gas is not limited, but is 50 to 10,000 ppm, more preferably 100 to 5000 ppm, and still more preferably. Is 200 to 3000 ppm.
  • a carbonaceous material for a negative electrode of a non-aqueous electrolyte secondary battery having a large charge / discharge capacity can be obtained by firing with a non-oxidizing gas containing halogen gas or preliminary firing is not clear, but halogen and hydrogen atoms in the carbonaceous material It is thought that carbonization proceeds in a state where hydrogen is rapidly removed from the carbonaceous material.
  • the halogen gas also has an effect of reducing residual ash by reacting with ash contained in the carbonaceous material. If the halogen content contained in the carbonaceous material is too small, hydrogen is not sufficiently removed in the course of the manufacturing process, and as a result, the charge / discharge capacity may not be sufficiently improved. Then, there may be a problem that the remaining halogen reacts with lithium in the battery to increase the irreversible capacity.
  • the present invention includes the liquid phase demineralization step (1), the pulverization step (2), the detarring step (3) and the firing step (4), and the firing is performed in an inert gas containing a halogen gas. It is related with the manufacturing method of the carbonaceous material for nonaqueous electrolyte secondary batteries.
  • the method for producing an intermediate (carbonaceous precursor) comprises a step of deashing a plant-derived organic substance having an average particle size of 100 ⁇ m or more using an acidic solution having a pH of 3.0 or less (liquid phase desorption). Ashing step) and a step of detarring the deashed organic matter at 300 to 1000 ° C. (detarring step), preferably further comprising a step of pulverizing the deashed organic matter (pulverization step). . Furthermore, it is preferable to perform the said liquid phase demineralization process at the temperature of 0 to 80 degreeC.
  • the liquid phase deashing step, the detarring step, and the pulverizing step are the same as the liquid phase deashing step, the detarring step, and the pulverizing step in the method for producing a carbonaceous material for a non-aqueous electrolyte secondary battery negative electrode of the present invention.
  • the pulverization step can be performed after the liquid phase decalcification step or after the detarring step. Note that the intermediate (carbonaceous precursor) obtained by the detarring step may be pulverized or not pulverized.
  • Nonaqueous electrolyte secondary battery negative electrode of the present invention includes the carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode of the present invention.
  • a binder (binder) is added to the carbonaceous material, and an appropriate solvent is added and kneaded to form an electrode mixture. It can be produced by pressure molding after coating and drying.
  • a conductive aid can be added.
  • the conductive assistant conductive carbon black, vapor grown carbon fiber (VGCF), nanotube, etc. can be used, and the amount added varies depending on the type of conductive assistant used, but the amount added is too small.
  • the binder is not particularly limited as long as it does not react with an electrolytic solution such as PVDF (polyvinylidene fluoride), polytetrafluoroethylene, and a mixture of SBR (styrene-butadiene rubber) and CMC (carboxymethylcellulose).
  • PVDF polyvinylidene fluoride
  • SBR styrene-butadiene rubber
  • CMC carbboxymethylcellulose
  • the preferred addition amount of the binder varies depending on the type of binder used, but it is preferably 3 to 13% by mass, more preferably 3 to 10% by mass in the case of a PVDF binder.
  • a binder using water as a solvent is often used by mixing a plurality of binders such as a mixture of SBR and CMC, and the total amount of all binders used is preferably 0.5 to 5% by mass. The amount is preferably 1 to 4% by mass.
  • the electrode active material layer is basically formed on both sides of the current collector plate, but may be on one side if necessary. A thicker electrode active material layer is preferable for increasing the capacity because fewer current collector plates and separators are required. However, the larger the electrode area facing the counter electrode, the better the input / output characteristics, and the thicker the active material layer. Too much is not preferable because the input / output characteristics deteriorate.
  • the thickness of the active material layer (per side) is preferably 10 to 80 ⁇ m, more preferably 20 to 75 ⁇ m, and particularly preferably 20 to 60 ⁇ m.
  • a water-soluble polymer can be mentioned as a binder used for the preferable nonaqueous electrolyte secondary battery negative electrode of this invention.
  • a water-soluble polymer for the negative electrode of the nonaqueous electrolyte secondary battery of the present invention a nonaqueous electrolyte secondary battery whose irreversible capacity does not increase by an exposure test can be obtained.
  • a nonaqueous electrolyte secondary battery having excellent cycle characteristics can be obtained.
  • Such a water-soluble polymer can be used without particular limitation as long as it is soluble in water.
  • cellulosic compounds include cellulosic compounds, polyvinyl alcohol, starch, polyacrylamide, poly (meth) acrylic acid, ethylene-acrylic acid copolymer, ethylene-acrylamide-acrylic acid copolymer, polyethyleneimine, etc. and their derivatives or Salt.
  • cellulose compounds, polyvinyl alcohol, poly (meth) acrylic acid and derivatives thereof are preferable.
  • CMC carboxymethyl cellulose
  • the mass average molecular weight of the water-soluble polymer of the present invention is 10,000 or more, more preferably 15,000 or more, and still more preferably 20,000 or more. If it is less than 10,000, the dispersion stability of the electrode mixture is inferior or it is easy to elute into the electrolytic solution, which is not preferable.
  • the mass average molecular weight of the water-soluble polymer is 6,000,000 or less, more preferably 5,000,000 or less. When the mass average molecular weight exceeds 6,000,000, the solubility in a solvent is lowered, which is not preferable.
  • a water-insoluble polymer can be used in combination as a binder. These are dispersed in an aqueous medium to form an emulsion.
  • Preferred water-insoluble polymers include diene polymers, olefin polymers, styrene polymers, (meth) acrylate polymers, amide polymers, imide polymers, ester polymers, and cellulose polymers.
  • thermoplastic resins used as the binder for the negative electrode can be used without particular limitation as long as they have a binding effect and have resistance to the non-aqueous electrolyte used and resistance to electrochemical reaction at the negative electrode. .
  • the two components of the water-soluble polymer and the emulsion are often used.
  • the water-soluble polymer is mainly used as a dispersibility imparting agent or a viscosity modifier, and the emulsion is important for imparting the binding property between the particles and the flexibility of the electrode.
  • preferred examples include homopolymers or copolymers of conjugated diene monomers and acrylate (including methacrylate) monomers, and specific examples thereof include polybutadiene, polyisoprene, and polymethyl.
  • a polymer (rubber) having rubber elasticity is particularly preferably used.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR styrene butadiene rubber
  • water-insoluble polymers those having a polar group such as a carboxyl group, a carbonyloxy group, a hydroxyl group, a nitrile group, a carbonyl group, a sulfonyl group, a sulfoxyl group, and an epoxy group are listed as preferred examples in terms of binding properties. It is done. Particularly preferred examples of the polar group are a carboxyl group, a carbonyloxy group, and a hydroxyl group.
  • the content of the water-soluble polymer in the binder is preferably 8 to 100% by mass. If it is less than 8% by mass, the water absorption resistance is improved, but the cycle durability of the battery is not sufficient.
  • the preferred amount of binder to be added varies depending on the type of binder used, but binders that use water as a solvent often use a mixture of a plurality of binders, such as a mixture of SBR and CMC, and use all of them.
  • the total amount of the binder is preferably 0.5 to 10% by mass, and more preferably 1 to 8% by mass.
  • the solvent that can be used is not particularly limited as long as it can dissolve the binder and can disperse the carbonaceous material satisfactorily.
  • one kind or two or more kinds selected from water, methyl alcohol, ethyl alcohol, propyl alcohol, N-methylpyrrolidone (NMP) and the like can be used.
  • the electrode active material layer is basically formed on both sides of the current collector plate, but may be on one side if necessary.
  • a thicker electrode active material layer is preferable for increasing the capacity because fewer current collectors and separators are required.
  • the thickness of the active material layer (per side) is preferably 10 to 80 ⁇ m, more preferably 20 to 75 ⁇ m, and particularly preferably 20 to 60 ⁇ m.
  • the press pressure in the production of the electrode using the carbonaceous material of the present invention is not particularly limited. However, it is preferably 2.0 to 5.0 tf / cm 2 , more preferably 2.5 to 4.5 tf / cm 2 , and still more preferably 3.0 to 4.0 tf / cm 2 .
  • the contact between the active materials is improved by applying the press pressure described above, and the conductivity is improved. Therefore, an electrode excellent in long-term cycle durability can be obtained.
  • the pressing pressure is too low, the contact between the active materials becomes insufficient, so that the resistance of the electrode is increased, and the coulomb efficiency is lowered, so that long-term durability may be inferior. If the press pressure is too high, the electrode may be bent by rolling, and winding may be difficult.
  • the cycle characteristics at 50 ° C. of a battery using an electrode manufactured using the carbonaceous material of the present invention at press pressures of 2.5 tf / cm 2 and 4.0 tf / cm 2 were examined.
  • the discharge capacity retention ratios at the 100th cycle were less than 70% and 83%, respectively, and the cycle durability was superior when the press pressure was 4.0 tf / cm 2 .
  • Nonaqueous electrolyte secondary battery of the present invention includes the negative electrode of the nonaqueous electrolyte secondary battery of the present invention.
  • the nonaqueous electrolyte secondary battery using the negative electrode for a nonaqueous electrolyte secondary battery using the carbonaceous material of the present invention has few impurities and ensures high reliability.
  • non-aqueous electrolyte secondary batteries Manufacture of non-aqueous electrolyte secondary batteries
  • other materials constituting the battery such as a positive electrode material, a separator, and an electrolytic solution are not particularly limited, and are nonaqueous solvents.
  • Various materials conventionally used or proposed as a secondary battery can be used.
  • the cathode material one represented layered oxide (LiMO 2, M is a metal: for example, LiCoO 2, LiNiO 2, LiMnO 2, or LiNi x Co y Mo z O 2 (where x, y, z represents a composition ratio), olivine system (represented by LiMPO 4 , M is a metal: for example, LiFePO 4 ), spinel system (represented by LiM 2 O 4 , M is a metal: for example, LiMn 2 O 4, etc.
  • LiMPO 4 olivine system
  • M is a metal: for example, LiFePO 4
  • spinel system represented by LiM 2 O 4
  • M is a metal: for example, LiMn 2 O 4, etc.
  • the composite metal chalcogen compound is preferable, and these chalcogen compounds may be mixed if necessary, and these positive electrode materials are molded together with an appropriate binder and a carbonaceous material for imparting conductivity to the electrode, A positive electrode is formed by forming a layer on a conductive current collector.
  • the nonaqueous solvent electrolyte used in combination of these positive electrode and negative electrode is generally formed by dissolving an electrolyte in a nonaqueous solvent.
  • the non-aqueous solvent include organic solvents such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, diethoxyethane, ⁇ -butyllactone, tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, or 1,3-dioxolane. These can be used alone or in combination of two or more.
  • the electrolyte LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiAsF 6 , LiCl, LiBr, LiB (C 6 H 5 ) 4 , or LiN (SO 3 CF 3 ) 2 is used.
  • the positive electrode layer and the negative electrode layer formed as described above are generally immersed in an electrolytic solution with a liquid-permeable separator made of nonwoven fabric or other porous material facing each other as necessary. It is formed by.
  • a non-woven fabric usually used for a secondary battery or a permeable separator made of another porous material can be used.
  • a solid electrolyte made of a polymer gel impregnated with an electrolytic solution can be used instead of or together with the separator.
  • the LUMO value calculated by using the semi-empirical molecular orbital AM1 (Austin Model 1) calculation method for the electrolyte is in the range of ⁇ 1.10 to 1.11 eV.
  • the nonaqueous electrolyte secondary battery using the negative electrode for a nonaqueous electrolyte secondary battery using the carbonaceous material and additive of the present invention has high dope and dedope capacity and exhibits excellent high temperature cycle characteristics.
  • a solid electrolyte film (SEI) is formed by reductive decomposition of an organic electrolyte solution at the first charge.
  • SEI solid electrolyte film
  • LUMO Large Unoccupied Molecular Orbital
  • LUMO represents a molecular orbital function having no electrons at the lowest energy level, and when a molecule accepts electrons, the electrons are buried in this energy level, and this value determines the degree of reduction. The lower the LUMO value, the higher the reduction property, and the higher the LUMO value, the reduction resistance.
  • the LUMO value of the compound added to the electrolytic solution was obtained by using the AM1 calculation method in the semi-empirical molecular orbital method, which is one of the quantum chemical calculation methods.
  • Semi-empirical calculation methods include AM1, PM3 (Parametric method 3), MNDO (Modified Negative of Different Overlap), CNDO (Complementary OverDifferential), depending on the types of assumptions and parameters. It is classified into MINDO (Modified Intermediate Neighbor of Differential Overlap) and the like.
  • the AM1 calculation method was developed in 1985 by Dewer et al. By partially improving the MNDO method so as to be suitable for hydrogen bond calculation.
  • the AM1 method in the present invention is provided by the computer program package Gaussian 03 (Gaussian), but is not limited thereto.
  • Gaussian 03 Gaussian
  • the operation procedure for calculating the LUMO value using Gaussian 03 is shown below.
  • the visualization function installed in the drawing program GaussView 3.0 was used for modeling of the molecular structure in the pre-calculation stage. After creating a molecular structure and optimizing the structure in the ground state, charge “0”, spin “singlet”, and solvent effect “none” using the AM1 method for the Hamiltonian, one-point calculation of energy at the same level went.
  • the LUMO value determined by the AM1 calculation method in the quantum chemistry calculation method is ⁇ 1.1 to 1.11 eV, more preferably ⁇ 0.6 to 1.0 eV, and more preferably 0 to 1. 0 eV is more preferable.
  • An LUMO value of 1.11 eV or more is not preferable because it may not act as an additive. Further, if the LUMO value is ⁇ 1.1 eV or less, side reactions may occur on the positive electrode side, which is not preferable.
  • additives having a LUMO value of ⁇ 1.10 to 1.11 eV include fluoroethylene carbonate (FEC, 0.9829 eV), trimethylsilyl phosphate (TMSP, 0.415 eV), lithium tetrafluoroborate (LiBF 4, 0.2376 eV), chloroethylene carbonate (ClEC, 0.1056 eV), propane sultone (PS, 0.0656 eV), ethylene sulfite (ES, 0.0248 eV), vinylene carbonate (VC, 0.0155 eV), vinyl ethylene carbonate (VEC, -0.5736 eV), dioxathiolane dioxide (DTD, -0.7831 eV), lithium bis (oxalato) borate (LiBOB, -1.0427 eV), and the like.
  • FEC fluoroethylene carbonate
  • TMSP trimethylsilyl phosphate
  • TMSP trimethylsilyl phosphate
  • the battery includes a positive electrode, a separator, and an electrolyte solution, in addition to containing at least vinylene carbonate or fluoroethylene carbonate in the electrolyte.
  • the other materials to be used are not particularly limited, and various materials conventionally used or proposed as non-aqueous solvent secondary batteries can be used.
  • the electrolyte used for the nonaqueous electrolyte secondary battery of the present invention has a LUMO value calculated using the AM1 calculation method in the semi-empirical molecular orbital method in the range of ⁇ 1.10 to 1.11 eV.
  • Additives are included and can be used alone or in combination of two or more.
  • the content in the electrolytic solution is preferably 0.1 to 6% by mass, and more preferably 0.2 to 5% by mass. If the content is less than 0.1% by mass, a film derived from the reductive decomposition of the additive is not sufficiently formed, so that the high-temperature cycle characteristics are not improved, and if it exceeds 6% by mass, a thick film is formed on the negative electrode. As a result, resistance increases and input / output characteristics deteriorate.
  • the positive electrode layer and the negative electrode layer formed as described above are generally immersed in an electrolytic solution with a liquid-permeable separator made of nonwoven fabric or other porous material facing each other as necessary. It is formed by.
  • a non-woven fabric usually used for a secondary battery or a permeable separator made of another porous material can be used.
  • a solid electrolyte made of a polymer gel impregnated with an electrolytic solution can be used instead of or together with the separator.
  • the lithium ion secondary battery of the present invention is suitable as a battery (typically a lithium ion secondary battery for driving a vehicle) mounted on a vehicle such as an automobile.
  • the vehicle according to the present invention can be targeted without particular limitation, such as a vehicle normally known as an electric vehicle, a hybrid vehicle with a fuel cell or an internal combustion engine, and at least a power supply device including the battery, An electric drive mechanism that is driven by power supply from the power supply device and a control device that controls the electric drive mechanism are provided.
  • a mechanism for charging the lithium ion secondary battery by converting the energy generated by braking into electricity by providing a power generation brake or a regenerative brake may be provided.
  • the physical properties of the carbonaceous material for non-aqueous electrolyte secondary batteries of the present invention (“average particle diameter by laser diffraction method”, “hydrogen / carbon atomic ratio (H / C)”, “specific surface area”, “ash content” ”,“ True density by pycnometer method using butanol (hereinafter “butanol method”) ”,“ True density by dry density measurement method using helium (hereinafter “helium method”) ”, and“ Although the measurement method of the average layer surface distance d 002 ′)) is described, the physical property values described in this specification including the examples are based on values obtained by the following methods.
  • Measurement was performed in accordance with the method defined in JIS M8819. That is, the mass ratio of hydrogen and carbon in the sample obtained by elemental analysis using a CHN analyzer (Perkin-elmer 2400II) was divided by the mass number of each element to obtain the ratio of hydrogen / carbon atoms.
  • the amount of nitrogen adsorbed on the carbonaceous material at the liquid nitrogen temperature was measured as follows.
  • the sample tube is filled with the carbonaceous material, and the sample tube is cooled to ⁇ 196 ° C. while flowing a helium gas containing nitrogen gas at a concentration of 20 mol%, so that the carbonaceous material is adsorbed with nitrogen. Then return the tube to room temperature.
  • the amount of nitrogen desorbed from the sample was measured with a thermal conductivity detector, and the amount of adsorbed gas v was obtained.
  • Fluorescence X-ray analysis was performed using LAB CENTER XRF-1700 manufactured by Shimadzu Corporation under the following conditions. Using the upper irradiation system holder, the sample measurement area was within the circumference of 20 mm in diameter. The sample to be measured was placed by placing 0.5 g of the sample to be measured in a polyethylene container having an inner diameter of 25 mm, pressing the back with a plankton net, and covering the measurement surface with a polypropylene film for measurement. The X-ray source was set to 40 kV and 60 mA.
  • LiF (200) was used as the spectroscopic crystal and a gas flow proportional coefficient tube was used as the detector, and 2 ⁇ was measured in the range of 90 to 140 ° at a scanning speed of 8 ° / min.
  • LiF (200) was used as the spectroscopic crystal, and a scintillation counter was used as the detector, and 2 ⁇ was measured in the range of 56 to 60 ° at a scanning speed of 8 ° / min.
  • ⁇ B The true density ( ⁇ B ) is calculated by the following formula. This is designated as ⁇ Bt . (Where d is the specific gravity of water at 30 ° C. (0.9946))
  • ⁇ H (True density by helium method)
  • the measuring device has a sample chamber and an expansion chamber, and the sample chamber has a pressure gauge for measuring the pressure in the chamber.
  • the sample chamber and the expansion chamber are connected by a connecting pipe having a valve.
  • a helium gas introduction pipe having a stop valve is connected to the sample chamber, and a helium gas discharge pipe having a stop valve is connected to the expansion chamber.
  • the volume of the sample chamber (V CELL ) and the volume of the expansion chamber (V EXP ) are measured in advance using a calibration sphere with a known volume.
  • the sample is placed in the sample chamber, fills the system with helium, the system pressure at that time and P a. Then closing the valve, is increased to a pressure P 1 added sample chamber only helium gas. After that, when the valve is opened and the expansion chamber and the sample chamber are connected, the system pressure decreases to P 2 due to expansion.
  • the volume of the sample (V SAMP ) is calculated by the following equation. Therefore, if the sample mass is W SAMP , the density is It becomes.
  • the carbonaceous material powder was filled in the sample holder and measured by a symmetrical reflection method using X'Pert PRO manufactured by PANalytical.
  • the scanning range was 8 ⁇ 2 ⁇ ⁇ 50 °, and the applied current / applied voltage was 45 kV / 40 mA.
  • the wavelength of the CuK ⁇ ray was 0.15418 nm, and d 002 was calculated according to the Bragg formula.
  • Example 1 300 g of 1% hydrochloric acid was added to 100 g of the coffee residue after extraction, and the mixture was stirred at 100 ° C. for 1 hour and then filtered. Next, 300 g of boiling water was added and the mixture was stirred for 1 hour and then filtered and washed with water three times for deashing treatment to obtain a deashed coffee extraction residue. The obtained deashed coffee extraction residue was dried in a nitrogen gas atmosphere and then detarred at 700 ° C. to prepare a carbonaceous precursor. This was pulverized using a rod mill to obtain carbonaceous precursor fine particles. Next, this carbon precursor was fully fired at 1250 ° C. for 1 hour to obtain a carbonaceous material 1 having an average particle diameter of 10 ⁇ m.
  • Example 2 A carbonaceous material 2 was obtained in the same manner as in Example 1 except that the acid used in the deashing was changed to sulfuric acid.
  • Example 3 A carbonaceous material 3 was obtained in the same manner as in Example 1 except that the acid used in the deashing was citric acid.
  • Example 4 A carbonaceous material 4 was obtained in the same manner as in Example 1 except that the hydrochloric acid concentration was 0.5%.
  • Example 5 A carbonaceous material 5 was obtained in the same manner as in Example 1 except that the hydrochloric acid concentration was 0.1%.
  • Comparative Example 1 A comparative carbonaceous material 1 was obtained in the same manner as in Example 1 except that the deashing step was not performed.
  • Comparative Example 4 A comparative carbonaceous material 4 was obtained in the same manner as in Comparative Example 3 except that the hydrochloric acid concentration during deashing was 35%.
  • Comparative Example 5 Comparative carbonaceous material 4 was obtained in the same manner as in Example 1 except that only washing with water was repeated without using an acid during deashing.
  • Tables 1 and 2 show the deashing and firing conditions and the contents of elements contained in the obtained carbonaceous material, respectively.
  • Electrode preparation NMP was added to 90 parts by mass of the carbonaceous material and 10 parts by mass of polyvinylidene fluoride (“KF # 1100” manufactured by Kureha Co., Ltd.) to form a paste, which was uniformly applied on the copper foil. After drying, it was punched out from a copper foil into a disk shape having a diameter of 15 mm and pressed to obtain an electrode. The amount of carbonaceous material in the electrode was adjusted to about 10 mg.
  • the carbonaceous material of the present invention is suitable for constituting the negative electrode of a non-aqueous electrolyte secondary battery, but the discharge capacity (de-doping amount) and irreversible capacity (non-desorption) of the battery active material.
  • a lithium secondary battery is configured using the electrode obtained above, using lithium metal with stable characteristics as a counter electrode, Its characteristics were evaluated.
  • the lithium electrode was prepared in a glove box in an Ar atmosphere.
  • a 16 mm diameter stainless steel mesh disk is spot-welded to the outer lid of a 2016 coin-sized battery can, and then a 0.8 mm thick metal lithium sheet is punched into a 15 mm diameter disk shape.
  • the electrode pair thus produced was used, and as the electrolyte, LiPF 6 was mixed at a rate of 1.5 mol / L in a mixed solvent in which ethylene carbonate, dimethyl carbonate, and methyl ethyl carbonate were mixed at a volume ratio of 1: 2: 2.
  • a polyethylene gasket is used as a separator of a borosilicate glass fiber fine pore membrane having a diameter of 19 mm, and a 2016 coin-sized non-aqueous electrolyte lithium secondary battery is used in an Ar glove box. The next battery was assembled.
  • the lithium doping reaction on the carbon electrode will be described as “charging”.
  • “discharge” is a charging reaction in the test battery, but is referred to as “discharge” for convenience because it is a dedoping reaction of lithium from the carbonaceous material.
  • the charging method adopted here is a constant current constant voltage method. Specifically, constant current charging is performed at 0.5 mA / cm 2 until the terminal voltage reaches 0 mV, and after the terminal voltage reaches 0 mV, the terminal voltage is increased. The constant voltage charge was performed at 0 mV, and the charge was continued until the current value reached 20 ⁇ A.
  • the value obtained by dividing the supplied amount of electricity by the mass of the carbonaceous material of the electrode was defined as the charge capacity (mAh / g) per unit mass of the carbonaceous material.
  • the battery circuit was opened for 30 minutes and then discharged.
  • the discharge was a constant current discharge at 0.5 mA / cm 2 and the final voltage was 1.5V.
  • a value obtained by dividing the quantity of electricity discharged at this time by the mass of the carbonaceous material of the electrode is defined as a discharge capacity (mAh / g) per unit mass of the carbonaceous material.
  • the irreversible capacity is calculated as charge capacity-discharge capacity.
  • the carbonaceous materials of the examples all have a lower content of metal elements such as potassium, calcium and magnesium than those of the comparative examples.
  • the content of potassium and calcium of the carbonaceous material of Example 1 was greatly reduced. That is, it is possible to efficiently remove ash contained in organic matter derived from plants without using fine powder by deashing plant-derived organic matter having no heat history of 500 ° C. or higher using acid as it is. It was. In addition, this eliminates the need for a pulverization step before decalcification, and can prevent deterioration in workability due to the use of fine powder in the deashing step.
  • an optimal carbonaceous material for a negative electrode of a nonaqueous electrolyte secondary battery can be obtained by including elements other than plant-derived carbon such as phosphorus and sulfur is not clear, but some of them are covalently bonded to carbon atoms. It is thought that there is.
  • the carbon-carbon bond distance of the benzene ring is 1.337 mm, and the bond distance is increased by the bonding of the above atoms.
  • the bond distance increases, the crystallite structure of the carbonaceous material breaks down, resulting in a random structure, new pores are formed, and a lithium ion dope source is formed.
  • the doping amount of lithium ions is different from the doping amount based on the structure control accompanying the formation of new pores in addition to the elements other than carbon.
  • the amount of doping accompanying affinity is increased, the amount of doping of the carbonaceous material is further increased, the cycle performance and load characteristics are excellent, and the charge / discharge capacity and charge / discharge efficiency can be improved.
  • Example 6 300 g of 1% hydrochloric acid (pH 0.5) was added to 100 g of coffee residue after extracting the blended coffee beans, and the mixture was stirred at 20 ° C. for 1 hour and then filtered. A water washing operation of adding 300 g of water at 20 ° C. and stirring for 1 hour and then filtering was repeated 3 times to perform a decalcification treatment to obtain a deashed coffee extraction residue.
  • the obtained deashed coffee extraction residue was dried in a nitrogen gas atmosphere and then detarred at 700 ° C. to prepare a carbonaceous precursor. This was pulverized using a rod mill to obtain carbonaceous precursor fine particles. Next, the carbonaceous precursor fine particles were finally fired at 1250 ° C. for 1 hour to obtain a carbonaceous material 6 having an average particle size of 9.8 ⁇ m.
  • Table 4 shows the deashing and firing conditions and the physical properties of the obtained carbonaceous material.
  • Example 7 Carbonaceous materials 7 to 9 were obtained in the same manner as in Example 6 except that the deashing temperatures were 5 ° C., 40 ° C., and 70 ° C., respectively.
  • Table 4 shows the physical properties of the obtained carbonaceous material.
  • Example 10 A carbonaceous material 10 was obtained in the same manner as in Example 6 except that the residue after extracting the Brazilian beans (Arabica species) was used as the used coffee residue. Table 4 shows the physical properties of the obtained carbonaceous material.
  • Example 11 A carbonaceous material 11 was obtained in the same manner as in Example 6 except that the residue after extracting Brazilian beans (Arabica seeds) with different roasting degrees was used as the used coffee residue. Table 4 shows the physical properties of the obtained carbonaceous material.
  • Example 12 A carbonaceous material 12 was obtained in the same manner as in Example 6 except that the residue after extracting Vietnamese beans (Kanefora sp.) was used as the used coffee residue. Table 4 shows the physical properties of the obtained carbonaceous material.
  • Example 13 As a deashing treatment, 300 g of 1% hydrochloric acid was added to 100 g of coffee residue, stirred at 100 ° C. for 1 hour, and then filtered. A carbonaceous material 13 was obtained in the same manner as in Example 6 except that 300 g of boiling water was added and the water washing operation of filtering after stirring for 1 hour was repeated three times. Table 4 shows the physical properties of the obtained carbonaceous material.
  • Comparative Example 6 A comparative carbonaceous material 6 was obtained in the same manner as in Example 6 except that the deashing step was not performed. Table 4 shows the physical properties of the obtained carbonaceous material.
  • Comparative carbonaceous material 7 was obtained in the same manner as in Example 6 except that hydrochloric acid was not used for the decalcification treatment and water (pH 7.5) was used. Table 4 shows the physical properties of the obtained carbonaceous material.
  • the carbonaceous material of Example 6 has significantly reduced potassium and calcium contents compared to those of Comparative Example 6 and Comparative Example 7.
  • Examples 6 to 12 and Example 13 are compared, a case where a high-temperature acid is used by performing decalcification using an acid within a preferable temperature range (0 ° C. to 80 ° C.) in the present invention and It was confirmed that the irreversible capacity was lowered and the charge / discharge efficiency was improved while maintaining the discharge capacity of the battery using this carbonaceous material as it was while maintaining the same potassium and calcium contents.
  • Example 14 300 g of 1% hydrochloric acid is added to 100 g of the coffee residue after extraction, and the mixture is stirred for 1 hour at 20 ° C. and then filtered. The washing operation of adding 300 g of 20 ° C. water and washing with water is repeated three times to deash, An ash coffee extraction residue was obtained.
  • the obtained deashed coffee extraction residue was dried at 150 ° C. in a nitrogen gas atmosphere, and then pre-carbonized by detarring at 700 ° C. for 1 hour in a tube furnace under a nitrogen stream. This was pulverized using a rod mill and then sieved with a 38 ⁇ m sieve to cut coarse particles to obtain carbon precursor fine particles. Next, this carbon precursor was put into a horizontal tubular furnace and carbonized by flowing at 1250 ° C. for 1 hour while flowing nitrogen gas, to obtain a carbonaceous material 14 having an average particle diameter of 6.1 ⁇ m.
  • Example 15 A carbonaceous material 15 was obtained in the same manner as the carbonaceous material 14 except that the coffee residue used was extracted from Brazilian beans (Arabica seeds) with different roasting degrees.
  • Example 16 A carbonaceous material 16 was obtained in the same manner as the carbonaceous material 14 except that a coffee bean residue used was extracted from Vietnamese beans (canephora seeds).
  • Example 17 171 g of 35% hydrochloric acid (special grade manufactured by Junsei Chemical Co., Ltd.) and 5830 g of pure water were added to 2000 g of coffee residue (water content 65%) after extraction to adjust the pH to 0.5. After stirring at a liquid temperature of 20 ° C. for 1 hour, the mixture was filtered to obtain an acid-treated coffee extraction residue. Thereafter, 6000 g of pure water was added to the acid-treated coffee extraction residue, and the water washing operation of stirring for 1 hour was repeated three times for deashing treatment to obtain a deashed coffee extraction residue.
  • hydrochloric acid special grade manufactured by Junsei Chemical Co., Ltd.
  • the obtained deashed coffee extraction residue was dried at 150 ° C. in a nitrogen gas atmosphere, and then detarred at 380 ° C. for 1 hour in a tubular furnace to obtain a detarned deashed coffee extraction residue.
  • 50 g of the resulting detar-decalcified coffee extraction residue was put in an alumina case and subjected to an oxidation treatment at 260 ° C. for 1 hour in an air stream in an electric furnace to obtain an oxidation-treated coffee extraction residue.
  • Example 18 A carbonaceous material 18 was obtained in the same manner as in Example 13 except that the average particle diameter was 11 ⁇ m.
  • Comparative Example 8 Comparative carbonaceous material 8 was obtained in the same manner as in Example 13 except that the main firing temperature was 800 ° C.
  • Table 7 shows the resistance values measured by the methods shown below and battery characteristics measured in the same manner as described above, by preparing negative electrodes using the carbonaceous materials of Examples and Comparative Examples.
  • NMP was added to 94 parts by mass of each of the carbonaceous materials obtained in the above Examples or Comparative Examples and 6 parts by mass of polyvinylidene fluoride (Kureha KF # 9100) to form a paste, which was uniformly applied on the copper foil. After drying, the coated electrode was punched into a disk shape having a diameter of 15 mm, and this was pressed to produce a negative electrode.
  • NMP was added to 94 parts by mass of lithium cobaltate (LiCoO2, “CELLSEED C-5H” manufactured by Nippon Kagaku Kogyo Co., Ltd.), 3 parts by mass of carbon black, and 3 parts by mass of polyvinylidene fluoride (KF # 1300 from Kureha) to form a paste. It was uniformly applied on the foil. After drying, the coated electrode is punched onto a disk having a diameter of 14 mm. The amount of lithium cobaltate in the positive electrode was adjusted so as to be 95% of the charge capacity of the negative electrode active material measured in (c). The capacity of lithium cobaltate was calculated as 150 mAh / g.
  • the electrode pair thus prepared was used, and the electrolyte was LiPF at a ratio of 1.5 mol / liter in a mixed solvent in which ethylene carbonate, dimethyl carbonate and methyl ethyl carbonate were mixed at a volume ratio of 1: 2: 2.
  • a mixed solvent in which ethylene carbonate, dimethyl carbonate and methyl ethyl carbonate were mixed at a volume ratio of 1: 2: 2.
  • aging is performed by repeating charging and discharging twice. Conversion of the current value in aging to the C rate was calculated from the electric capacity and mass of the lithium cobalt oxide defined above.
  • Charging is performed with constant current and constant voltage. Charging is performed at a constant current of 0.2 C (current value necessary for charging in 1 hour is defined as 1 C) until 4.2 V is reached, and then the voltage is maintained at 4.2 V The current value is attenuated (while maintaining a constant voltage) and charging is continued until the current value reaches (1/100) C. After completion of charging, the battery circuit was opened for 30 minutes and then discharged. Discharging was performed at a constant current of 0.2 C until the battery voltage reached 2.75V. In the second charge / discharge, the current value was set to 0.4C.
  • pulse charging / discharging was performed in a low-temperature incubator (at 0 ° C. atmosphere). Pulse charge / discharge is measured at each current of 0.5C, 1C, and 2C, with 600 seconds open circuit after charging for 10 seconds at a constant current, 10 seconds after discharge, and 600 seconds open circuit as one set. The voltage change with respect to each current was plotted, and the slope of the linear approximation was calculated as the DC resistance.
  • the resistance of the negative electrode using the carbonaceous materials of Examples 14 to 17 having a small particle diameter is small, and the irreversible capacity of the battery using this is also small.
  • the carbonaceous material of the present invention having particularly high purity and specific physical properties is useful as a secondary battery for a hybrid vehicle (HEV) that requires high input / output characteristics that repeat supply and acceptance of large currents at the same time. It turns out that it is.
  • HEV hybrid vehicle
  • Example 19 300 g of 1% hydrochloric acid was added to 100 g of the blended coffee residue after extraction, and the mixture was stirred at 20 ° C. for 1 hour and then filtered. Next, 300 g of water at 20 ° C. was added and the mixture was stirred for 1 hour and then filtered and washed with water three times for deashing treatment to obtain a deashed coffee extraction residue. The obtained deashed coffee extraction residue was dried in a nitrogen gas atmosphere, and then detarred at 700 ° C. for preliminary carbonization. This was pulverized using a rod mill to obtain carbon precursor fine particles. Next, this carbon precursor was subjected to main firing at 1250 ° C. for 1 hour to obtain a carbonaceous material 19 having an average particle diameter of 10 ⁇ m. Table 8 shows various characteristics of the carbonaceous materials examined.
  • Example 20 A carbonaceous material 20 was obtained in the same manner as in Example 19 except that the coffee residue used was obtained by extracting lightly roasted Brazilian beans. Table 8 shows various characteristics of the obtained carbonaceous material.
  • Example 21 A carbonaceous material 21 was obtained in the same manner as in Example 19 except that a deep roasted Brazilian bean was used as the used coffee residue. Table 8 shows various characteristics of the obtained carbonaceous material.
  • Example 22 A carbonaceous material 22 was obtained in the same manner as in Example 19 except that the firing temperature was 800 ° C. Table 8 shows various characteristics of the obtained carbonaceous material.
  • Electrode preparation A solvent was added to the carbonaceous material and the binder to form a paste, which was uniformly coated on the copper foil. After drying, it was punched out into a disk shape having a diameter of 15 mm from a copper foil and pressed to obtain electrodes of Examples 23 to 27 and Comparative Examples 10 to 12.
  • Table 9 shows the carbonaceous material used, the binder, and the blending ratio.
  • surface is as follows.
  • SBR Styrene-butadiene rubber
  • CMC Carboxymethylcellulose
  • PAA Polyacrylate
  • PVDF Polyvinylidene fluoride (“KF # 9100” manufactured by Kureha Corporation)
  • Example carbon 1 (C) Cycle test (Preparation of negative electrode)
  • the electrode mixture of Example carbon 1 was uniformly applied on one side of a copper foil having a thickness of 18 ⁇ m, and this was heated and dried at 120 ° C. for 25 minutes. After drying, it was punched into a disk shape having a diameter of 15 mm and pressed to produce a negative electrode.
  • the mass of the active material which a disk shaped negative electrode has was adjusted so that it might be set to 10 mg.
  • NMP is added to 94 parts by mass of lithium cobaltate (Nippon Chemical Industrial “Cellseed C-5”), 3 parts by mass of carbon black, 3 parts by mass of polyvinylidene fluoride (KF # 1300 manufactured by Kureha Corporation), and 3 parts by mass of carbon black. And mixed to prepare a positive electrode mixture.
  • the obtained mixture was uniformly applied onto an aluminum foil having a thickness of 50 ⁇ m. After drying, the coated electrode was punched into a disk shape having a diameter of 14 mm to produce a positive electrode.
  • the amount of lithium cobalt oxide in the positive electrode was adjusted to be 95% of the charge capacity per unit mass of the active material in Example 23 measured by the method described above.
  • the capacity of lithium cobaltate was calculated as 150 mAh / g.
  • LiPF6 was mixed at a rate of 1.5 mol / liter in a mixed solvent in which ethylene carbonate, dimethyl carbonate and methyl ethyl carbonate were mixed at a volume ratio of 1: 2: 2 as an electrolyte.
  • a cycle test was started.
  • the constant current and constant voltage conditions employed in the cycle test are such that charging is performed at a constant current density of 2.5 mA / cm 2 until the battery voltage reaches 4.2 V, and then the voltage is maintained at 4.2 V ( Charging is continued until the current value reaches 50 ⁇ A by continuously changing the current value (while maintaining a constant voltage).
  • the battery circuit was opened for 10 minutes and then discharged.
  • Discharging was performed at a constant current density of 2.5 mA / cm 2 until the battery voltage reached 3.0V. This charge and discharge were repeated 100 times at 50 ° C., and the discharge capacity after 100 times was determined. Further, a value obtained by dividing the discharge capacity after 100 times by the initial discharge capacity was defined as a maintenance ratio (%).
  • Table 10 shows the exposure test and cycle characteristics of the prepared lithium secondary battery.
  • the carbonaceous material of the present invention was used for the electrode, the irreversible capacity of the battery after the exposure test did not increase even when a water-soluble resin was used as a binder.
  • the carbonaceous material for a negative electrode of the present invention obtained by performing a decalcification treatment in an acidic solution having a pH of 3.0 or less is low in moisture adsorption despite being a non-graphitizable carbonaceous material.
  • a highly hygroscopic binder such as a water-soluble resin
  • it does not have a hygroscopic property that causes a problem as an electrode.
  • the non-aqueous electrolyte secondary battery of the present invention showed good durability in the exposure test.
  • excellent durability is exhibited even in a cycle test.
  • the positive electrode was manufactured as follows. N-methyl-2-pyrrolidone was added to 94 parts by mass of the produced negative electrode material (carbonaceous material) and 6 parts by mass of polyvinylidene fluoride to form a paste, and the paste was uniformly applied on the copper foil and dried. Thereafter, a sheet-like electrode was punched into a disk shape having a diameter of 15 mm and pressed to obtain an electrode. The mass of the carbonaceous material (negative electrode material) in the electrode is adjusted to 10 mg so that the filling rate of the carbonaceous material (carbonaceous material density in the electrode / true density by butanol method) is about 61%. Pressed.
  • the negative electrode (lithium electrode) was prepared in a glove box in an Ar gas atmosphere.
  • a 16 mm diameter stainless steel mesh disk was spot welded to the outer lid of a 2016 coin-sized battery can, and then a 0.8 mm thick metal lithium sheet was punched into a 15 mm diameter disk. It was crimped to a disk to form an electrode.
  • charge / discharge test was done using the charge / discharge test apparatus ("TOSCAT" by Toyo System), and charge / discharge was performed by the constant current constant voltage method.
  • charge is a discharge reaction in the test battery, but in this case, it is a lithium insertion reaction into the carbonaceous material, and therefore “charge” is described for convenience.
  • discharge is a charge reaction in a test battery, but is a lithium desorption reaction from a carbonaceous material, and is therefore referred to as “discharge” for convenience.
  • the constant current / constant voltage method employed here is charged at a constant current density of 0.5 mA / cm 2 until the battery voltage reaches 0V, and then maintains the voltage at 0V (while maintaining the constant voltage). ) Continue charging until the current value reaches 20 ⁇ A by continuously changing the current value. A value obtained by dividing the amount of electricity supplied at this time by the mass of the carbonaceous material of the electrode was defined as a charge capacity (doping capacity) (mAh / g) per unit mass of the carbonaceous material. After completion of charging, the battery circuit was opened for 30 minutes and then discharged.
  • Discharging is performed at a constant current density of 0.5 mA / cm 2 until the battery voltage reaches 1.5 V, and the value obtained by dividing the amount of electricity discharged at this time by the mass of the carbonaceous material of the electrode is per unit mass of the carbonaceous material.
  • Discharge capacity (de-doped capacity) (mAh / g).
  • the irreversible capacity (non-dedoped capacity) (mAh / g) is calculated as charge amount ⁇ discharge amount, and the efficiency (%) is calculated as (discharge capacity / charge capacity) ⁇ 100.
  • NMP was added to 94 parts by mass of lithium cobaltate (LiCoO 2 , “Cellseed C-5H” manufactured by Nippon Chemical Industry Co., Ltd.), 3 parts by mass of carbon black and 3 parts by mass of polyvinylidene fluoride (Kureha KF # 1300) to form a paste. It applied uniformly on the aluminum foil. After drying, the coated electrode is punched into a disk shape having a diameter of 14 mm. The amount of lithium cobaltate in the positive electrode was adjusted so as to be 95% of the charge capacity of the negative electrode active material measured in (c). At this time, the capacity of lithium cobaltate was calculated as 150 mAh / g.
  • the electrolyte used was the same as that used in the active material dope-dedope test, and a borosilicate glass fiber microporous membrane having a diameter of 19 mm was used.
  • a 2032 size coin-type non-aqueous electrolyte lithium secondary battery was assembled in an Ar glove box using a polyethylene gasket as a separator.
  • (B) Cycle test Charging is performed with constant current and constant voltage. Charging is performed at a constant current (2C; the current value required for charging in 1 hour is defined as 1C) until 4.2V, and then the voltage is held at 4.2V. The current value is attenuated (while maintaining a constant voltage) and charging is continued until the current value reaches (1/100) C. After completion of charging, the battery circuit was opened for 30 minutes and then discharged. Discharging was performed at a constant current (2C) until the battery voltage reached 2.75V. The first three cycles were performed at 25 ° C., and the subsequent cycles were performed in a constant temperature bath at 50 ° C. The evaluation of cycle characteristics is based on the first charge / discharge transferred to a constant temperature bath at 50 ° C. as the first cycle, and the value obtained by dividing the discharge capacity after 150 cycles by the discharge capacity at the first cycle as the discharge capacity maintenance rate (%). went.
  • Table 11 shows the characteristics of the additive used and the lithium secondary battery prepared by the above manufacturing method. Comparing Comparative Example 13 with Examples 28 to 31, it can be seen that the high temperature cycle characteristics of the battery are improved by using the additive having the LUMO of -1.10 to 1.11 eV. The same applies to Examples 32 and 33. Further, it can be seen from Comparative Example 14 that the high-temperature cycle characteristics are not improved when the LUMO exceeds 1.10 eV. On the other hand, in Comparative Example 15, since the carbonaceous material having d 002 or H / C outside the range is used for the negative electrode, the initial battery characteristics are poor.
  • VC vinylene carbonate (0.0155 eV)
  • FEC Fluoroethylene carbonate (0.9829 eV)
  • CIEC Chloroethylene carbonate (0.1056eV)
  • PC Propylene carbonate (1.3132 eV)
  • Electrolyte and LUMO EC ethylene carbonate (1.2417 eV)
  • DMC Dimethyl carbonate (1.1366 eV)
  • EMC Ethyl methyl carbonate (1.1301 eV)
  • a carbonaceous material obtained by carbonizing an organic material of plant origin, the atomic ratio of hydrogen atoms and carbon atoms by elemental analysis (H / C) is 0.1 or less, an average particle diameter Dv 50 or more 2 ⁇ m 50 ⁇ m or less, 002 plane average plane spacing determined by X-ray diffraction method is 0.365 nm to 0.400 nm, potassium element content is 0.5 mass% or less, calcium element content is 0.02 mass%
  • the ratio ( ⁇ H / ⁇ Bt ) of the true density ( ⁇ Bt ) determined by the pycnometer method using butanol and the true density ( ⁇ H ) determined by dry density measurement using helium is 1.18 or more.
  • a carbonaceous material for a negative electrode of a non-aqueous electrolyte secondary battery that is 1.38 or less [2]
  • the plant-derived organic material includes a coffee bean-derived organic material, the carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode according to [2], [3]
  • a method for producing an intermediate for producing a carbonaceous material for a non-aqueous electrolyte secondary battery comprising: [4] The method according to [3], wherein the plant-derived organic matter includes coffee bean-derived organic matter, [5] The method according to [3] or [4], further comprising a step of pulverizing the decalcified organic matter, [6] A step of firing the intermediate produced by the method according to [3] or [4] at 1000 ° C. or higher and 1500 ° C. or lower, and a step of pulverizing the intermediate or a heat-treated product thereof.
  • a method for producing a carbonaceous material for a nonaqueous electrolyte secondary battery comprising a step of firing the intermediate produced by the method according to [5] at 1000 ° C. or more and 1500 ° C. or less, [8] The carbonaceous material for a nonaqueous electrolyte secondary battery according to [1] or [2], or the carbonaceous material for a nonaqueous electrolyte secondary battery manufactured by the method according to [6] or [7].
  • a negative electrode for a non-aqueous electrolyte secondary battery containing the material [9] A nonaqueous electrolyte secondary battery comprising the negative electrode for a nonaqueous electrolyte secondary battery according to [8], and a vehicle equipped with the nonaqueous electrolyte secondary battery according to [10] [9], Is disclosed.
  • the plant-derived organic material includes a coffee bean-derived organic material, the carbonaceous material for a negative electrode of a nonaqueous electrolyte secondary battery according to any one of [1] to [3], [5] An intermediate for producing a carbonaceous material for a negative electrode of a non-aqueous electrolyte secondary battery obtained by carbonizing a plant-derived organic substance, having a potassium content of 0.5% by mass or less and an average particle diameter Dv 50 An intermediate of 1 ⁇ m or more and 10 ⁇ m or less, [6] The intermediate according to [5], wherein the calcium content of the intermediate is 0.02% by mass or less, [7] The intermediate according to [5] or [6], wherein the plant-derived organic matter includes an organic
  • Negative electrode for non-aqueous electrolyte secondary battery [2] The negative electrode for a nonaqueous electrolyte secondary battery according to [1], wherein the calcium content of the carbonaceous material is 0.02% by mass or less. [3] The negative electrode for a nonaqueous electrolyte secondary battery according to [1] or [2], wherein the true density determined by the butanol method is 1.51 g / cm 3 or more and 1.65 g / cm 3 or less, [4] The negative electrode for a non-aqueous electrolyte secondary battery according to any one of [1] to [3], wherein the plant-derived organic substance includes an organic substance derived from coffee beans, [5] The carbonaceous material has a ratio ( ⁇ H / ⁇ Bt ) of the true density ( ⁇ Bt ) determined by the butanol method and the true density ( ⁇ H ) determined by dry density measurement using helium to 1.18.
  • Negative electrode for, [7] The negative electrode for a nonaqueous electrolyte secondary battery according to any one of [1] to [6], wherein the water-soluble polymer has a mass average molecular weight of 10,000 or more and 6,000,000 or less
  • [8] The negative electrode for a nonaqueous electrolyte secondary battery according to any one of [1] to [7], wherein the water-soluble polymer includes a polymer containing a conjugated diene or (meth) acrylic acid ester as a structural unit.
  • a nonaqueous electrolyte secondary battery comprising the negative electrode for a nonaqueous electrolyte secondary battery according to any one of [1] to [8], and a nonaqueous electrolyte secondary battery according to [10] [9] Vehicles equipped with, Is disclosed.
  • a carbonaceous material obtained by carbonizing a plant-derived organic material having a potassium content of 0.5% by mass or less, an average particle diameter Dv 50 of 2 ⁇ m or more and 50 ⁇ m or less, and determined by a powder X-ray diffraction method.
  • Carbonaceous material for a negative electrode of a nonaqueous electrolyte secondary battery having an average 002 plane spacing of 0.365 nm or more and 0.400 nm or less and an atomic ratio (H / C) of hydrogen atoms to carbon atoms by elemental analysis of 0.1 or less
  • an electrolyte containing an additive having a LUMO value in the range of ⁇ 1.10 eV to 1.11 eV calculated using AM1 (Austin Model 1) calculation method of semi-empirical molecular orbital method Including non-aqueous electrolyte secondary battery [2] The nonaqueous electrolyte secondary battery according to [1], wherein a calcium content of the carbonaceous material is 0.02% by mass or less, [3] The nonaqueous electrolyte secondary battery according to [1] or [2], wherein a true density determined by a butanol method is 1.51 g / cm 3 or more and 1.65 g / cm 3 or less, [4] The
  • a carbonaceous material for a negative electrode of a nonaqueous electrolyte secondary battery having a calcium element content of 5 mass% or less and a calcium element content of 0.02 mass% or less [2] The carbonaceous material for a non-aqueous electrolyte secondary battery negative electrode according to [2], wherein the true density determined by a pycnometer method using butanol is 1.54 g / cm 3 or more, [3] The carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode according to [1] or [2], wherein the magnesium element content is 0.01% by mass or less, [4] The carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode according to any one of [1] to [3], wherein the silicon element content is 0.02% by mass or less, [5] The carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode according to any one of [1] to [4], having a specific surface area of 13 m 2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 本発明の目的は、植物由来の有機物を原料とし、カリウム元素のようなアルカリ金属及びカルシウム元素のようなアルカリ土類金属が十分に脱灰された純度が高く、放電容量や効率に優れた非水電解質二次電池負極用炭素質材料、及び前記炭素質材料を効率よく大量に生産できる新たな製造方法、並びに前記炭素質材料を用いたリチウムイオン二次電池を提供することである。 前記課題は、植物由来の有機物を炭素化して得られる炭素質材料であって、元素分析による水素原子と炭素原子との原子比(H/C)が0.1以下、平均粒子径Dv50が2~50μm、粉末X線回折法により求めた002面の平均面間隔が0.365nm~0.400nmであり、カリウム元素含有量が0.5質量%以下、カルシウム元素含有量が0.02質量%以下である非水電解質二次電池負極用炭素質材料によって解決することができる。

Description

非水電解質二次電池負極用炭素質材料及びその製造方法
 本発明は、非水電解質二次電池負極用炭素質材料及びその製造方法に関する。
 近年、環境問題への関心の高まりから、エネルギー密度が高く、出力特性の優れた大型のリチウムイオン二次電池の電気自動車への搭載が検討されている。携帯電話やノートパソコンといった小型携帯機器用途では、体積当たりの容量が重要となるため、密度の大きい黒鉛質材料が主に負極活物質として利用されてきた。しかし、車載用リチウムイオン二次電池においては大型で且つ高価であることから途中での交換は困難である。従って、少なくとも自動車と同じ耐久性が必要であり、10年以上の寿命性能の実現(高耐久性)が求められる。黒鉛質材料又は黒鉛構造の発達した炭素質材料では、リチウムのドープ、脱ドープの繰り返しによる結晶の膨張収縮により破壊が起きやすく、充放電の繰り返し性能が劣るため、高いサイクル耐久性が求められる車載用リチウムイオン二次電池用負極材料としては適していない。これに対し、難黒鉛化性炭素はリチウムのドープ、脱ドープ反応による粒子の膨張収縮が小さく、高いサイクル耐久性を有するという観点からは自動車用途での使用に適している(特許文献1)。
 従来、難黒鉛性炭素の炭素源としては、ピッチ類、高分子化合物、そして植物系の有機物などが検討されてきた。ピッチには石油系と石炭系があり、これには多くの金属不純物が多く含まれるため、使用時にはこれらの除去が必要となる。石油系の範疇に入るものとしてナフサなどからエチレンを製造する工程で精製するボトム油があり、不純物が少なく良質な炭素原料となるが、軽質分が多く、炭素化収率が低いという問題もある。これらのピッチ類は熱処理により易黒鉛化性炭素(コークスなど)を生成する性質があり、難黒鉛化性炭素を製造するには架橋処理を必須とする。このように、ピッチ類から難黒鉛
化性炭素を調製するには、多くの工程が必要となる。
 高分子化合物、中でも、フェノール樹脂やフラン樹脂などの熱硬化性樹脂を熱処理することで難黒鉛化性炭素を得ることができる。しかし、高分子化合物を得るためのモノマーの合成に始まり、重合、炭素化など多くの工程が必要となり、製造コストが高くなり、安価で大量に製造する必要がある大型電池用負極材の製造方法としては多くの問題がある。
 これに対し、本発明者らは、植物由来の有機物による炭素源が、多量の活物質をドープすることが可能であることから、負極材料として有望であることを見出した(特許文献2)。更に、負極用炭素質材料の炭素源として植物由来の有機物を用いた場合、有機物原料中に存在するカリウム元素やカルシウム元素などの灰分が、負極として使用される炭素質材料のドープ及び脱ドープ特性に好ましくない影響を及ぼすことから、植物由来の有機物を酸洗浄による脱灰処理(以下、液相脱灰と称する)することによって、カリウム元素の含有量を低減させる方法が提案されている(特許文献2及び3)。
 前記特許文献3には、液相脱灰において、脱灰時の被処理物の粒径が大きいと脱灰率が著しく低下するため、炭素質材料の粒子径が100μm以下であることが好ましいことが開示されており、特許文献3の実施例では、実際には25μmの炭素質材料前駆体が用いられている。しかしながら、液相脱灰においては、灰分が溶出した溶液をろ過により除去する必要があるところ、ろ過する粒子の平均粒子径が小さくなると、ろ過時に炭素前駆体の充填層内を洗浄水が透過するのに長時間を要するため、短時間で効率よく溶液を除くことが非常に困難であった。たとえ溶液を除去できたとしても、コストが高くなり、工業的には液相脱灰を用いて平均粒子径20μm未満の非水電解質二次電池負極用炭素質材料の製造の実用化は困難であった。
 一方、特許文献4には300℃以上の熱処理が行われていない廃コーヒー豆を用いた温水での脱灰が開示されている。高温での熱処理履歴のない原料を用いたこの方法では、粒子径が1mm以上の原料を用いた場合でもカリウム含有量を0.1質量%以下に低減することが可能であり、ろ過性も改善される。しかしながら、この方法でもカルシウム元素は十分に除去できない。
特開平8-64207号公報 特開平9-161801号公報 特開平10-21919号公報 特開2000-268823号公報 特開2001-223030号公報 特開2005-317469号公報 特開2007-134286号公報
 前記特許文献3に記載の脱灰処理ではアルカリ金属であるカリウムなどは除去できてもカルシウムなどのアルカリ土類金属の除去は困難であり、特に10年以上の寿命性能の実現(高耐久性)が求められる車載用リチウムイオン二次電池用負極材料としては信頼性の点で不十分である。そこで、不純物の少ない高純度の難黒鉛化性炭素及びその材料を、安価で大量に生産する方法の開発が期待される。
 本発明の第1の目的は、植物由来の有機物を原料とし、カリウム元素のようなアルカリ金属及びカルシウム元素のようなアルカリ土類金属が十分に脱灰された純度が高く、放電容量や効率に優れた非水電解質二次電池負極用炭素質材料、及び前記炭素質材料を効率よく大量に生産できる新たな製造方法、並びに前記炭素質材料を用いたリチウムイオン二次電池を提供することにある。また、本発明の第2の目的は、カリウム元素のようなアルカリ金属及びカルシウム元素のようなアルカリ土類金属が十分に脱灰されるとともに、リン元素又は硫黄元素を特定量で含有する非水電解質二次電池負極用炭素質材料、及び、前記炭素質材料を効率よく大量に生産できる新たな製造方法を提供することにある。
 更に、植物由来の有機物を炭素源とする負極材料は、耐久性あるいは安全性という観点からは車載用途に好適であるが、車載用途の中でもハイブリッド自動車(HEV)では、低速下や軽負荷の走行モード時、あるいはブレーキによる回生時など、短時間での大電流供給と受け入れを繰り返す、高い入出力特性が同時に求められており、負極の抵抗や電池の不可逆容量を更に低減することも求められている。しかしながら、植物性原料は単純に焼成すると植物由来によるハニカム構造となってしまう。そのため、粉砕すると粒子構造が湾曲状又は薄片状になってしまい、電池の負極として用いた場合に粒子間の接触が悪く従来の非晶質炭素に比べて十分な出力特性を得ることができない問題が生じた。
 したがって、本発明の第3の目的は、抵抗が低く、かつ不可逆容量の小さい高純度の非水電解質二次電池負極用炭素質材料、およびそれを用いた非水電解質二次電池を提供することにある。
 また、リチウムイオン二次電池は、電池内に水分が混入すると、電池内において水分が非水電解液と反応し、これを分解させることに起因して、電池の初期不可逆容量が増大したり、充放電のサイクル特性が低下することが知られている。そのため、非水リチウムイオン二次電池は通常密封構造により外部と完全に遮断されている。
 またリチウムイオン二次電池に含まれる水分を低減させて、充放電サイクル特性を向上させることが提案されている(特許文献5)。一方、非水電解液中に水分が入り込む原因の一つに、電池内に充填された後に、電極板より放出される水分もあることが知られている。通常、電極板は厳重な環境の下に製造されるが、集電基板に電極活物質を塗工してなる電極板を捲回若しくは積層して形成される容量の大きい電池においては、電極活物質等に吸着されている水分は、通常の乾燥工程程度で完全に除去できるものではない。
 一般に電極活物質はバインダーを用いて集電基板上に塗工され、テープ状等の所定形状に成形されるが、この成形の際に、電極活物質は有機溶剤や水を用いてスラリー状やペースト状とした上で用いられる。この成形時の乾燥が不十分な場合、電極板に水分が残存してしまう。またスラリー等を作製する際に、乾燥が不十分な電極活物質原料を用いたり、スラリー等の作製に使用した有機溶媒の水分濃度が管理されていない等水分管理が不徹底な場合にも、水分が電極活物質に吸着されている可能性は極めて高い。
 更に、スラリー等を成形する際の雰囲気や成形後の保管条件が適切なものとされていない場合、外部から水分が電極活物質に吸着する恐れもある。このような電極活物質に吸着している微量水分は、電池の組立段階での乾燥処理で完全に除去することは困難である。
 前記の難黒鉛化性炭素は、一般的に、易黒鉛化性炭素等に比べ多くの空孔を有するため、吸水し易いという課題を有しており、従って吸水により二次電池の充放電のサイクル特性が低下する可能性があった。
 従って、本発明の第4の目的は、植物由来の有機物を原料とする難黒鉛化性炭素質材料を用い、サイクル特性及び暴露試験に優れた結果をもたらす高耐久性の非水電解質二次電池負極を提供することにある。
 また、前記植物由来の負極用炭素質材料は平均層面間隔d002が一般的な難黒鉛化性炭素のそれよりも短く、リチウムのドープ、脱ドープに伴う結晶の膨張収縮が大きいため、特に高温でのサイクル特性が低い問題を抱えていることがわかった。
 従って、本発明の第5の目的は、植物由来の有機物を原料として得られる、金属不純物が低減され、かつ高温サイクル特性が向上した炭素質材料及び電池を提供することにある。また、そのような非水電解質二次電池を適用することで、メンテナンスの手間の少ない電気自動車などの車両を提供することにある。
 本発明者らは、植物由来の負極用炭素質材料の製造方法において、工業的に用いることのできる脱灰方法について、鋭意研究した結果、平均粒子径100μm以上の植物由来の有機物を、脱タールする前に、pH3.0以下の酸性溶液中で脱灰処理を行うことによってカリウム及びカルシウムを除去することが可能であり、植物由来の負極用炭素質材料を、工業的に且つ大量に製造することができることを見出し、本発明を完成するに至った。また得られた炭素質材料は、リン元素又は硫黄元素を特定量で含有するものであった。
 更に、本発明者らは、脱タールする前に、0℃以上80℃未満のpH3.0以下の酸性溶液中で特定の温度範囲内で脱灰処理を行うことによってカリウム及びカルシウムを除去し、且つ、ブタノールを用いたピクノメータ法により求めた真密度(ρBt)とヘリウムを用いた乾式密度測定により求めた真密度(ρ)の比(ρ/ρBt)を所定範囲にすることが可能であり、植物由来の負極用炭素質材料を用いた高性能のリチウムイオン二次電池を製造することができることを見出した。
 更に、本発明者らは、平均粒子径Dv50が1~8μm(特には2~8μm)であり、かつ特定の構造を有する炭素質材料を用いた電極が、高純度かつ抵抗が低く、また電池の不可逆容量を低減できることを見出した。
 なお、特許文献6及び7には、平均粒径を8μm以下とすることにより、湾曲状及び薄片状の粒子を減少し、出力特性に優れた負極材料とする試みが開示されている。しかしながら、特許文献6及び7に記載の植物由来の難黒鉛性炭素においては、アルカリ金属であるカリウムの除去は行われておらず、特に10年以上の寿命性能の実現(高耐久性)が求められる車載用リチウムイオン二次電池用負極材料としては信頼性の点で不十分である。他方、カリウムを除去しようとしても、脱灰工程により、得られる炭素質材料の構造や物性が異なってくるため、カリウム量が少ないときに、優れた出力特性を維持することが可能かは不明である。
 更に、本発明者らは、植物由来の有機物を、脱タールする前に、脱灰処理を行うことによって得た、カリウム含有量、平均面間隔、元素分析による水素原子と炭素原子の原子比がそれぞれ特定の範囲内にある炭素質材料は、難黒鉛化性炭素質材料であるにもかかわらず水分吸着性が低いために、水溶性高分子をバインダーとして使用することができることを見出した。そして、水溶性高分子をバインダーとして用いることにより、暴露試験及びサイクル特性の優れた非水電解質二次電池を製造できることを見出した。
 黒鉛の電極を形成するためのバインダーとしては、水溶性高分子を使用することが多い。この水溶性高分子は、黒鉛を電極として用いた二次電池のサイクル特性を向上させることができることが知られている。しかしながら、水溶性高分子は吸水性が高く、同じように高吸水性の難黒鉛化性炭素と組み合わせることは、二次電池の暴露試験の結果を悪化させるため困難であった。本発明において、特定の物性を有する植物由来の炭素質材料及び水溶性高分子を含む負極を製造できたことは、驚くべきことである。
 更に、本発明者らは、特定の特性値を有す炭素質材料を用いること、及び電解液に特定の物質(添加物)を含有させることにより、高温サイクル特性に優れた非水電解質二次電池を製造することができることを見出した。
 従って、本発明は、
[1]植物由来の有機物を炭素化して得られる炭素質材料であって、元素分析による水素原子と炭素原子との原子比(H/C)が0.1以下、平均粒子径Dv50が2μm以上50μm以下、粉末X線回折法により求めた002面の平均面間隔が0.365nm以上0.400nm以下であり、カリウム元素含有量が0.5質量%以下、カルシウム元素含有量が0.02質量%以下である非水電解質二次電池負極用炭素質材料、
[2]ブタノールを用いたピクノメータ法により求めた真密度(ρBt)とヘリウムを用いた乾式密度測定により求めた真密度(ρ)との比(ρ/ρBt)が1.18以上1.38以下である、[1]に記載の非水電解質二次電池負極用炭素質材料、
[3]平均粒子径Dv50が2μm以上8μm以下である[1]又は[2]に記載の非水電解質二次電池負極用炭素質材料、
[4]ブタノールを用いたピクノメータ法により求めた真密度が1.51g/cm以上である[1]から[3]のいずれかに記載の非水電解質二次電池負極用炭素質材料、
[5]マグネシウム元素含有量が0.01質量%以下である[1]から[4]のいずれかに記載の非水電解質二次電池負極用炭素質材料、
[6]ケイ素元素含有量が0.02質量%以下である[1]から[5]のいずれかに記載の非水電解質二次電池負極用炭素質材料、
[7]比表面積が13m/g以下である[1]から[6]のいずれに記載の非水電解質二次電池負極用炭素質材料、
[8]前記植物由来の有機物は、コーヒー豆由来の有機物を含む[1]から[7]のいずれかに記載の非水電解質二次電池負極用炭素質材料、
[9]平均粒子径が100μm以上である植物由来の有機物に対し、pH3.0以下の酸性溶液を用いて脱灰をする工程と、前記脱灰された有機物を300℃以上1000℃以下で脱タールする工程と、を含む非水電解質二次電池負極用炭素質材料製造用の中間体の製造方法、
[10]前記脱灰工程を、0℃以上80℃以下の温度で行う、[9]に記載の非水電解質二次電池負極用炭素質材料製造用の中間体の製造方法、
[11]前記脱タール工程を、燃焼ガス雰囲気下、300℃以上800℃以下で行う[9]又は[10]に記載の非水電解質二次電池負極用炭素質材料製造用の中間体の製造方法、
[12]前記植物由来の有機物は、500℃以上での熱処理が行われていないものである[9]から[11]のいずれかに記載の非水電解質二次電池負極用炭素質材料製造用の中間体の製造方法、
[13]前記植物由来の有機物は、コーヒー豆由来の有機物を含む[9]から[12]のいずれかに記載の非水電解質二次電池負極用炭素質材料製造用の中間体の製造方法、
[14]前記脱灰された有機物を粉砕する工程を更に含む[9]から[13]のいずれかに記載の非水電解質二次電池負極用炭素質材料製造用の中間体の製造方法、
[15][9]から[14]のいずれかに記載の方法によって得られる中間体、
[16][9]から[13]のいずれかに記載の方法で製造した前記中間体を、1000℃以上1500℃以下で焼成する工程と、前記中間体又はその焼成物を粉砕する工程と、を含む非水電解質二次電池負極用炭素質材料の製造方法、
[17][14]に記載の方法で製造した前記中間体を、1000℃以上1500℃以下で焼成する工程を含む非水電解質二次電池負極用炭素質材料の製造方法、
[18][16]又は[17]に記載の製造方法によって得られる非水電解質二次電池負極用炭素質材料、
[19][1]から[8]及び[18]のいずれかに記載の非水電解質二次電池負極用炭素質材料を含む非水電解質二次電池用負極電極、
[20]水溶性高分子を含む、[19]に記載の非水電解質二次電池用負極電極、
[21]前記水溶性高分子が、共役ジエン又はアクリル酸エステルを構成単位として含む重合体である、[20]に記載の非水電解質二次電池用負極電極、
[22]前記水溶性高分子が、カルボキシメチルセルロース誘導体、ポリビニルアルコール誘導体、ポリアクリル酸塩から選択される少なくとも1種である、[20]又は[21]に記載の非水電解質二次電池用負極電極、
[23]前記水溶性高分子の質量平均分子量が10,000以上6,000,000以下である[20]から[22]のいずれかに記載の非水電解質二次電池用負極電極、
[24][19]から[23]のいずれかに記載の非水電解質二次電池用負極電極を備える非水電解質二次電池、
[25]半経験的分子軌道法のAM1(Austin Model 1)計算法を使用して算出したLUMOの値が-1.10eV以上1.11eV以下の範囲である添加剤を含む電解液を含む[24]に記載の非水電解質二次電池、
[26]前記添加剤が、フルオロエチレンカーボネート、トリメチルシリルリン酸、四フッ化ホウ酸リチウム、クロロエチレンカーボネート、プロパンスルトン、エチレンサルファイト、ビニレンカーボネート、ビニルエチレンカーボネート、ジオキサチオランジオキシド、及びリチウムビス(オキサラト)ボレートからなる群から選択される1つ以上の添加剤である、[25]に記載の非水電解質二次電池、及び
[27][24]から[26]のいずれかに記載の非水電解質二次電池を搭載した車両、
に関する。
 更に、本発明は、
[28]ハロゲン含有量が50ppm以上10000ppm以下である[1]から[8]のいずれかに記載の非水電解質二次電池負極用炭素質材料、
[29]平均粒子径Dv50が2μm以上50μm以下であり、かつ1μm以下の粒子が2体積%以下である、[1]から[8]のいずれかに記載の非水電解質二次電池負極用炭素質材料、
[30]平均粒子径Dv50が2μm以上8μm以下であり、1μm以下の粒子が10%以下である[3]から[8]のいずれかに記載の非水電解質二次電池負極用炭素質材料、
[31]前記脱タールを、酸素含有雰囲気下で行う、[9]から[14]のいずれかに記載の非水電解質二次電池負極用炭素質材料製造用の中間体の製造方法、
[32][9]から[14]及び[31]のいずれかに記載の方法によって得られる中間体、
[33][31]に記載の方法で製造した粉砕されていない前記中間体を、1000℃以上1500℃以下で焼成する工程と、前記中間体又はその焼成物を粉砕する工程と、を含む非水電解質二次電池負極用炭素質材料の製造方法、
[34][31]に記載の方法で製造した粉砕された前記中間体を、1000℃以上1500℃以下で焼成する工程を含む非水電解質二次電池負極用炭素質材料の製造方法、
[35]前記焼成を、ハロゲンガスを含有する不活性ガス中で行う、[16]、[17]、[33]、及び[34]のいずれかに記載の非水電解質二次電池負極用炭素質材料の製造方法、
[36][16]、[17]、[33]から[35]のいずれかに記載の製造方法によって得られる非水電解質二次電池負極用炭素質材料、
[37][1]から[7]及び[36]のいずれかに記載の非水電解質二次電池負極用炭素質材料を含む非水電解質二次電池用負極電極、
[38]水溶性高分子を含む、[37]に記載の非水電解質二次電池用負極電極、
[39]前記水溶性高分子が、共役ジエン又はアクリル酸エステルを構成単位として含む重合体である、[38]に記載の非水電解質二次電池用負極電極、
[40]前記水溶性高分子が、カルボキシメチルセルロース誘導体、ポリビニルアルコール誘導体、ポリアクリル酸塩から選択される少なくとも1種である、[38]又は[39]に記載の非水電解質二次電池用負極電極、
[41]前記水溶性高分子の質量平均分子量が10,000以上6,000,000以下である[38]から[40]のいずれかに記載の非水電解質二次電池用負極電極、
[42]プレス圧が2.0~5.0tf/cmで製造された、[19]から[23]及び[38]から[41]のいずれかに記載の非水電解質二次電池用負極電極、
[43][37]から[42]のいずれかに記載の非水電解質二次電池用負極電極を備える非水電解質二次電池、
[44]半経験的分子軌道法のAM1(Austin Model 1)計算法を使用して算出したLUMOの値が-1.10eV以上1.11eV以下の範囲である添加剤を含む電解液を含む[43]に記載の非水電解質二次電池、
[45]前記添加剤が、フルオロエチレンカーボネート、トリメチルシリルリン酸、四フッ化ホウ酸リチウム、クロロエチレンカーボネート、プロパンスルトン、エチレンサルファイト、ビニレンカーボネート、ビニルエチレンカーボネート、ジオキサチオランジオキシド、及びリチウムビス(オキサラト)ボレートからなる群から選択される1つ以上の添加剤である、[44]に記載の非水電解質二次電池、及び
[46][43]から[45]のいずれかに記載の非水電解質二次電池を搭載した車両、
に関する。
 本発明の非水電解質二次電池負極用炭素質材料の製造方法によれば、負極用炭素質材料の負極としての電気的特性において優れた植物由来の負極用炭素質材料を工業的に、且つ大量に得ることができる。具体的には、カリウム元素及びカルシウム元素が除去された植物由来の負極用炭素質材料を効率よく得ることができる。
 カリウムやカルシウムなどの金属化合物が炭素中に存在すると、電解液に溶出して金属が再析出した場合には、微小短絡を引き起こし電池の温度が上昇する可能性がある。本発明による酸を用いた液相脱灰により得られた炭素質材料は、これら不純物が非常に少ないため、電池とした場合の安全性が高いものを得ることができる。
 特に、0℃以上80℃以下の温度での液相脱灰により得られた炭素質材料は、これら不純物が非常に少ないうえ、真密度が適切な値となるため、電池とした場合、電池の放電容量や効率を向上することができる。具体的には、ブタノールを用いたピクノメータ法により求めた真密度(ρBt)とヘリウムを用いた乾式密度測定により求めた真密度(ρ)の比(ρ/ρBt)が1.18~1.38である炭素質材料は、優れた放電容量及び効率を示す。
 更に、本発明の非水電解質二次電池負極用炭素質材料の平均粒子径Dv50が1~8μm(特には2~8μm)であり、かつ特定の構造を有する高純度の非水電解質二次電池負極用炭素質材料によれば、これを利用した電極の抵抗が低く、かつ電池の不可逆容量を低減することができるため、耐久性と同時に高い入出力特性が同時に求められるハイブリッド自動車(HEV)用として有用である。
 更に、本発明の非水電解質二次電池負極用炭素質材料(特に、コーヒー豆由来の非水電解質二次電池負極用炭素質材料)によれば、水溶性高分子と併用し負極を形成した場合であっても、電極の吸水性を抑えることができるため、難黒鉛化性炭素質材料と水溶性高分子から形成された負極を有した非水電解質二次電池でありながら、暴露試験において良好な結果を得ることができる。その結果、暴露試験とサイクル耐久性のいずれにも優れた非水電解質二次電池を提供することができる。
 更に、LUMO値が-1.10~1.11eVの添加剤を含む電解液によれば、植物由来の有機物を原料とする炭素質材料を負極に使用した場合において、高温サイクル特性に優れた非水電解質二次電池を提供することができる。また、そのような非水電解質二次電池を適用することで、メンテナンスの手間の少ない電気自動車などの車両を提供することが可能となる。
 以下、本発明の実施形態について説明する。
[1]非水電解質二次電池負極用炭素質材料
 本発明の非水電解質二次電池負極用炭素質材料(以下、単に炭素質材料ということもある。)は、植物由来の有機物を炭素化して得られる炭素質材料であって、元素分析による水素原子と炭素原子の原子比(H/C)が0.1以下、平均粒子径Dv50が2~50μm、X線回折法により求めた002面の平均面間隔が0.365~0.400nmであり、カリウム元素含有量が0.5質量%以下、カルシウム元素含有量が0.02質量%以下であることを特徴とする。本発明の非水電解質二次電池負極用炭素質材料は、好ましくはブタノールを用いたピクノメータ法により求めた真密度(ρBt)とヘリウムを用いた乾式密度測定により求めた真密度(ρ)の比(ρ/ρBt)が1.18~1.38である。また、本発明の非水電解質二次電池負極用炭素質材料は、好ましくは平均粒子径Dv50が2~8μmである。また、本発明の非水電解質二次電池負極用炭素質材料は、好ましくはリン元素を0.02質量%以上かつ/又は硫黄元素を0.05質量%以上の量で含む炭素質材料である。
 上記本発明の炭素質材料は、植物由来の有機物を炭素源とするものであり、従って難黒鉛化性炭素質材料である。難黒鉛化性炭素はリチウムのドープ、脱ドープ反応による粒子の膨張収縮が小さく、高いサイクル耐久性を有する。このような植物由来の有機物としては、本発明の製造方法の説明において詳述する。
 本発明の炭素質材料の平均粒子径(体積平均粒子径:Dv50)は、2~50μmが好ましい。平均粒子径が2μm未満の場合、微粉が増加するために、比表面積が増加し、電解液との反応性が高くなり充電しても放電しない容量である不可逆容量が増加し、正極の容量が無駄になる割合が増加するため好ましくない。また、負極電極を製造した場合、炭素質材料の間に形成される1つの空隙が小さくなり、電解液中のリチウムの移動が抑制されるため好ましくない。平均粒子径として、下限は2μm以上が好ましいが、更に好ましくは3μm以上、特に好ましくは4μm以上(具体的には8μm以上)である。一方、平均粒子径が50μm以下の場合、粒子内でのリチウムの拡散自由行程が少なく、急速な充放電が可能である。更に、リチウムイオン二次電池では、入出力特性の向上には電極面積を大きくすることが重要であり、そのため電極調製時に集電板への活物質の塗工厚みを薄くする必要がある。塗工厚みを薄くするには、活物質の粒子径を小さくする必要がある。このような観点から、平均粒子径の上限としては50μm以下が好ましいが、より好ましくは40μm以下であり、更に好ましくは30μm以下であり、更に好ましくは25μm以下であり、最も好ましくは20μm以下である。
 本発明の特別な態様においては、炭素質材料の平均粒子径(体積平均粒子径:Dv50)は1~8μmであってもよいが、好ましくは2~8μmである。平均粒子径が1~8μmであることにより、電極の抵抗を低くすることが可能であり、それによって電池の不可逆容量を低減することができる。この場合、平均粒子径の下限は1μmであることが好ましいが、更に好ましくは3μmである。また、平均粒子径が8μm以下の場合、粒子内でのリチウムの拡散自由行程が少なく、急速な充放電が可能である。更に、リチウムイオン二次電池では、入出力特性の向上には電極面積を大きくすることが重要であり、そのため電極調製時に集電板への活物質の塗工厚みを薄くする必要がある。塗工厚みを薄くするには、活物質の粒子径を小さくする必要がある。このような観点から、平均粒子径の上限としては8μm以下が好ましいが、より好ましくは7μm以下である。8μmを超えると、活物質の表面積が増加して、電極反応抵抗を増加させてしまうため好ましくない。
(微粉の除去)
 本発明の炭素質材料は、微粉が除去されているものが好ましい。微粉が除去された炭素質材料を非水電解質二次電池の負極として用いると、不可逆容量が低下し、充放電効率が向上する。微粉が少ない炭素質材料の場合、少量のバインダーで活物質を十分に接着させることができる。すなわち、微粉を多く含む炭素質材料は、微粉を十分に接着することができず、長期の耐久性に劣ることがある。
 本発明の炭素質材料に含まれる微粉の量としては、限定されるものではないが、平均粒子径2~50μm(好ましくは平均粒子径8~50μm)の場合、1μm以下の粒子の割合が好ましくは2体積%以下、より好ましくは1体積%以下、更に好ましくは0.5体積%以下である。1μm以下の粒子の割合が2体積%より多い炭素質材料を用いると、得られる電池の不可逆容量が大きくなり、サイクル耐久性に劣ることがある。また、平均粒子径1~8μm(好ましくは平均粒子径2~8μm)の場合、限定されるものではないが、1μm以下の粒子の割合が好ましくは10体積%以下、より好ましくは8体積%以下、更に好ましくは6体積%以下である。1μm以下の粒子の割合が10%より多い炭素質材料を用いると、得られる電池の不可逆容量が大きくなり、サイクル耐久性に劣ることがある。
 平均粒子径10μmの炭素質材料において、1μm以下の微粉を0.0体積%含む(ほとんど含んでいない)炭素質材料と、1μm以下の微粉を2.8体積%含む炭素質材料とを用いて製造した二次電池の放電容量/不可逆容量を比較すると、それぞれ444/57(mAh/g)及び454/77(mAh/g)であり、微粉が少ないことにより、不可逆容量が低下することがわかった。
 従って、本発明は、植物由来の有機物を炭素化して得られる炭素質材料であって、元素分析による水素原子と炭素原子との原子比(H/C)が0.1以下、平均粒子径Dv50が2~50μm、粉末X線回折法により求めた002面の平均面間隔が0.365nm~0.400nmであり、カリウム元素含有量が0.5質量%以下、1μm以下の粒子の割合が2%以下である、非水電解質二次電池負極用炭素質材料に関する。
 また、本発明は、植物由来の有機物を炭素化して得られる炭素質材料であって、元素分析による水素原子と炭素原子との原子比(H/C)が0.1以下、平均粒子径Dv50が1~8μm、粉末X線回折法により求めた002面の平均面間隔が0.365nm~0.400nmであり、カリウム元素含有量が0.5質量%以下、1μm以下の粒子の割合が10%以下である、非水電解質二次電池負極用炭素質材料に関する。
(炭素質材料中の元素)
 植物由来の有機物は、アルカリ金属(例えば、カリウム、ナトリウム)、アルカリ土類金属(例えばマグネシウム、又はカルシウム)、遷移金属(例えば、鉄や銅)及びその他の元素類を含んでおり、これらの金属類の含有量も減少させることが好ましい。これらの金属を含んでいると負極からの脱ドープ時に不純物が電解液中に溶出し、電池性能や安全性に悪影響を及ぼす可能性が高いからである。
 本発明の炭素質材料中のカリウム元素含有量は、0.5質量%以下であり、0.2質量%以下がより好ましく、0.1質量%以下が更に好ましい。カリウム含有量が0.5質量%を超えた負極用炭素質材料を用いた非水電解質二次電池では、脱ドープ容量が小さくなること、及び非脱ドープ容量が大きくなることがある。
 本発明の炭素質材料中のカルシウムの含有量は、0.02質量%以下であり、0.01質量%以下がより好ましく、0.005質量%以下が更に好ましい。カルシウムの含有量が多い負極用炭素質材料を用いた非水電解質二次電池では、微小短絡により発熱を起こす可能性がある。また、ドープ特性及び脱ドープ特性に、悪影響を与える可能性もある。
 本発明の炭素質材料中のマグネシウムの含有量は、0.01質量%以下であり、0.008質量%以下がより好ましく、0.005質量%以下が更に好ましい。
 本発明の炭素質材料中のケイ素の含有量は、0.02質量%以下であり、0.015質量%以下がより好ましく、0.01質量%以下が更に好ましい。
 また、後述のハロゲンガス含有非酸化性ガスによる焼成された本発明の炭素質材料に含まれるハロゲン含有量は、限定されるものではないが、50~10000ppmであり、より好ましくは100~5000ppmであり、更に好ましくは200~3000ppmである。
 従って、本発明は、植物由来の有機物を炭素化して得られる炭素質材料であって、元素分析による水素原子と炭素原子との原子比(H/C)が0.1以下、平均粒子径Dv50が2~50μm、粉末X線回折法により求めた002面の平均面間隔が0.365nm~0.400nmであり、カリウム元素含有量が0.5質量%以下、ハロゲン含有量が、50~10000ppmである、非水電解質二次電池負極用炭素質材料に関する。
 本発明の炭素質材料のH/Cは、水素原子及び炭素原子を元素分析により測定されたものであり、炭素化度が高くなるほど炭素質材料の水素含有率が小さくなるため、H/Cが小さくなる傾向にある。したがって、H/Cは、炭素化度を表す指標として有効である。本発明の炭素質材料のH/Cは、限定されないが0.1以下であり、より好ましくは0.08以下である。特に好ましくは0.05以下である。水素原子と炭素原子の比H/Cが0.1を超えると、炭素質材料に官能基が多く存在し、リチウムとの反応により不可逆容量が増加することがあるので好ましくない。
(炭素質材料の平均面間隔)
 炭素質材料の(002)面の平均層面間隔は、結晶完全性が高いほど小さな値を示し、理想的な黒鉛構造のそれは、0.3354nmの値を示し、構造が乱れるほどその値が増加する傾向がある。したがって、平均層面間隔は、炭素の構造を示す指標として有効である。本発明の非水電解質二次電池用炭素質材料のX線回折法により求めた002面の平均面間隔は、0.365nm以上であり、0.370nm以上がより好ましく、0.375nm以上が更に好ましい。同じく、上記平均面間隔は、0.400nm以下であり、0.395nm以下がより好ましく、0.390nm以下が更に好ましい。002面の面間隔が0.365nm未満であると、非水電解質二次電池の負極として用いた場合にドープ容量が小さくなるため、あるいはリチウムのドープ、脱ドープに伴う膨張収縮が大きくなり、粒子間に空隙を生じてしまい、粒子間の導電ネットワークを遮断してしまうことから、繰り返し特性に劣るため、特に自動車用途として好ましくない。また0.400nmを超えると非脱ドープ容量が大きくなるため好ましくない。
(炭素質材料の真密度)
 理想的な構造を有する黒鉛質材料の真密度は2.2g/cmであり、結晶構造が乱れるに従い真密度が小さくなる傾向がある。したがって、真密度は炭素の構造を表す指標として用いることができる。本発明の炭素質材料の真密度は、限定されるものではないが、下限は1.51g/cm以上であり、好ましくは1.54g/cm以上であり、より好ましくは1.55g/cm以上であり、更に好ましくは1.56g/cm以上である。1.51g/cm未満の炭素質材料は、閉孔が多くなる場合があり、ドープ及び脱ドープ容量が小さくなることがあるので好ましくない。更に電極密度が低下するため、体積エネルギー密度の低下をもたらすので好ましくない。また、真密度の上限は限定されるものではないが、1.65g/cm以下であり、より好ましくは1.62g/cm以下であり、更に好ましくは1.60g/cm以下である。1.65g/cmを超える場合、炭素質材料の結晶性が高くなり、エッジ面の割合が減少して、入出力性能が低下するため好ましくない。真密度が1.65g/cm超であると電池に使用した場合、高温サイクル特性が劣ることがある。
 本発明の炭素質材料の好ましい態様においては、ブタノールを用いたピクノメータ法により求めた真密度(ρBt)とヘリウムを用いたピクノメータ法により求めた真密度(ρ)の比(ρ/ρBt)が1.18~1.38にある。本発明において真密度の比の下限は、1.18以上であり、より好ましくは1.25以上である。比の値が下限値を超えて低くなると、放電容量が低くなる。また、上限は1.38以下が好ましく、より好ましくは1.32以下であり、更に好ましくは1.30以下である。比の値が上限値を超えて大きくなると、不可逆容量が大きくなることがある。
(炭素質材料の比表面積)
 本発明の炭素質材料の窒素吸着のBET法により求めた比表面積(以下「SSA」と記すことがある)は、限定されるものではないが、好ましくは13m/g以下、より好ましくは12m/g以下、更に好ましくは10m/g以下、更に好ましくは8m/g以下、最も好ましくは、7.0m/g以下である。SSAが13m/gより大きい炭素質材料を用いると、得られる電池の不可逆容量が大きくなることがある。また、その比表面積の下限は、好ましくは1m/g以上、より好ましくは1.5m/g以上、更に好ましくは、2m/g以上である。SSAが1m/g未満の炭素質材料を使用すると、電池の放電容量が小さくなることがある。なお、平均粒子径Dv50が1~8μm(特には2~8μm)の場合の比表面積は6~12m/gが好ましく、8~11m/gが更に好ましい。
[2]非水電解質二次電池負極用炭素質材料の製造方法
 本発明の非水電解質二次電池負極用炭素質材料の製造方法は、平均粒径100μm以上の植物由来の有機物を原料とし、少なくとも(1)pH3.0以下の酸性溶液を用いて脱灰する工程(以下、「液相脱灰工程」と称することがある)、(2)脱灰した有機物、あるいは炭素化物(脱タール後の炭素化物、又は本焼成後の炭素化物)のいずれかを平均粒子径が2~50μmに粉砕する工程(以下、「粉砕工程」と称することがある)、及び(4)非酸化性雰囲気下1000~1500℃で焼成する工程(以下、「焼成工程」と称することがある)を含む、炭素質材料の製造方法である。非水電解質二次電池負極用炭素質材料の製造方法は、好ましくは(3)脱灰された有機物を300~1000℃で脱タールする工程(以下、「脱タール工程」と称することがある)を含む。従って、本発明の非水電解質二次電池負極用炭素質材料の製造方法は、液相脱灰工程(1)、粉砕工程(2)及び焼成工程(4)を含み、好ましくは脱タール工程(3)を含む。更に、前記液相脱灰工程(1)は、好ましくは植物由来の有機物を、0℃以上80℃以下のpH3.0以下の酸性溶液中で処理する工程である。
 また本発明の特別な態様においては、植物由来の有機物を原料とし、少なくとも(1)pH3.0以下の酸性溶液を用いて脱灰する工程、(2)脱灰した有機物、あるいは炭素化物(脱タール後の炭素化物、又は本焼成後の炭素化物)のいずれかを平均粒子径が2~50μmに粉砕する工程、及び(3)非酸化性雰囲気下1000~1500℃で焼成する工程を含む非水電解質二次電池負極用炭素質材料の製造方法であってもよい。
(植物由来の有機物)
 本発明に用いることのできる植物由来の有機物において、原料となる植物は、特に限定されるものではないが、例えば、コーヒー豆、ヤシ殻、茶葉、サトウキビ、果実(みかん、又はバナナ)、藁、広葉樹、針葉樹、竹、又は籾殻を挙げることができる。これらの植物由来の有機物を、単独で又は2種以上組み合わせて使用することができる。前記植物由来の有機物の中で、コーヒー豆から飲料コーヒー成分を抽出した抽出残渣はコーヒー成分を抽出する際に一部のミネラル分が抽出除去されており、中でも工業的に抽出処理されたコーヒー抽出残渣は適度に粉砕されており、且つ大量に入手可能であることから特に好ましい。
 これらの植物由来の有機物(特に、コーヒー豆の抽出残渣)から製造された負極用炭素質材料は、多量の活物質をドープすることが可能であることから、非水電解質二次電池の負極材料として有用である。しかしながら、植物由来の有機物は多くの金属元素を含有し、特にカリウムとカルシウムを多く含んでいる。また、多量の金属元素を含んだ植物由来の有機物から製造された炭素質材料は、負極として用いた場合、電気化学的な特性や安全性に好ましくない影響を与える。従って、負極用炭素質材料に含まれるカリウム元素やカルシウム元素などの含有量は、極力低下させた方が好ましい。
 本発明に用いる植物由来の有機物は、500℃以上で熱処理されていないものが好ましい。500℃以上で熱処理されている場合、有機物の炭素化により、脱灰が十分に行われないことがある。本発明に用いる植物由来の有機物は、熱処理されていないものが好ましい。熱処理されている場合、400℃以下が好ましく、300℃以下がより好ましく、200℃以下が更に好ましく、100℃以下が最も好ましい。例えば、コーヒー豆の抽出残渣を原料として用いる場合、焙煎により200℃程度の熱処理が行われていることがあるが、本発明に用いる植物由来の有機物として、十分に使用可能である。
 本発明に用いる植物由来の有機物は、腐敗が進行していないものが好ましい。例えば、コーヒーの抽出残渣を用いる場合、水分を多く含んだ状態で長期に保管することにより、微生物が増殖し、脂質やたんぱく質等の有機物が分解されることがある。これらの有機物は炭素化の過程において、一部は環化反応が進行し芳香族化合物となって炭素構造を形成するため、腐敗により有機物が分解されると最終的な炭素構造が異なるものになる場合がある。
 好気性腐敗が進んだコーヒー抽出残渣を用いると、得られた炭素質材料の真密度が低下することがある。炭素質材料の真密度が低下すると、電池に用いた場合に不可逆容量が大きくなることがあるので好ましくない。また炭素質材料の吸水性も高くなるため、大気暴露による劣化の度合いが大きくなる。
1.液相脱灰工程
 本発明の製造方法における液相脱灰工程は、植物由来の有機物を、脱タールの前に、pH3.0以下の酸性溶液中で処理するものである。この液相脱灰によって、カリウム元素及びカルシウム元素などを効率よく除去することができ、特に酸を用いない場合と比較して、カルシウム元素を効率よく除去することができる。また、他のアルカリ金属、アルカリ土類金属、更には銅やニッケルなどの遷移金属を除去することが可能である。液相脱灰工程においては、植物由来の有機物を、0℃以上80℃以下のpH3.0以下の酸性溶液中で処理することが好ましい。0℃以上80℃未満で液相脱灰することによって得られた炭素質材料を用いた二次電池は、放電容量及び効率において特に優れている。
 液相脱灰に用いる酸は、特に限定されるものではなく、例えば、塩酸、フッ化水素酸、硫酸、硝酸、などの強酸や、クエン酸、酢酸などの弱酸、又はそれらの混合物を挙げることができるが、好ましくは塩酸、又はフッ化水素酸である。
 本発明に用いる植物由来の有機物は、500℃以上で熱処理されていないものが好ましいが、500℃以上で熱処理されて有機物の炭素化が進行している場合には、フッ化水素酸を用いることで十分に脱灰を行うことが可能である。例えば、コーヒー抽出残渣を700℃で脱タールした後、35%塩酸を用いて1時間液相脱灰を行い、その後3回水洗し、乾燥させた後に10μmに粉砕してから1250℃本焼成した場合、カリウムが409ppm、カルシウムが507ppm残存した。一方、8.8%塩酸+11.5%フッ化水素酸混合溶液を用いた場合、蛍光X線測定においてカリウムとカルシウムは検出限界以下(10ppm以下)であった。
 液相脱灰におけるpHは十分な脱灰が達成される限り、限定されるものではないが、好ましくはpHが3.0以下であり、より好ましくは2.5以下であり、更に好ましくは2.0以下である。pHが3.0を超えると、十分に脱灰をすることができないことがあるので不都合である。
 液相脱灰の時間は、pHや処理温度により異なり、特に限定されるものではないが、下限は好ましくは1分であり、より好ましくは5分であり、更に好ましくは10分である。上限は好ましくは300分であり、より好ましくは200分であり、更に好ましくは150分である。短ければ十分に脱灰をすることができず、長いと作業効率の面で不都合である。
 液相脱灰の温度は、0℃~100℃の間の広い範囲で特に限定されることなく行うことができる。脱灰温度が0℃より低い場合は、酸の拡散が遅くなり脱灰の効率が低下するため好ましくない。100℃より高い場合は、酸の揮発などが起こり、実施設備が制限されるため好ましくない。また、処理温度は0℃以上80℃以下が好ましく、上限は好ましくは80℃であり、より好ましくは70℃であり、より好ましくは40℃であり、更に好ましくは室温(20~40℃)である。処理温度が80℃以下の場合、炭素質材料の真密度が高くなり、電池とした場合、電池の放電容量や効率が向上する。また、脱灰温度が低い場合、十分な脱灰を行うために長時間を要することがあり、脱灰温度高い場合、短時間の処理ですむが、炭素質材料のブタノールを用いた真密度が低下するので好ましくない。
 本発明における液相脱灰工程(1)は、植物由来の有機物に含まれているカリウム及びカルシウムなどを除去するための工程である。液相脱灰工程(1)後のカリウム含有量は、0.5質量%以下が好ましく、0.2質量%以下がより好ましく、0.1質量%以下が更に好ましい。また、カルシウム含有量は、0.02質量%以下が好ましく、0.01質量%以下がより好ましく、0.005質量%以下が更に好ましい。カリウム含有量が0.5質量%及びカルシウム含有率が0.02質量%を超えると、得られた負極用炭素質材料を用いた非水電解質二次電池において、脱ドープ容量が小さくなること、及び非脱ドープ容量が大きくなるだけでなく、これらの金属元素が電解液に溶出し、再析出した際に短絡を引き起こし、安全性に大きな問題を引き起こすことがあるからである。
 液相脱灰に用いられる植物由来の有機物の粒子径は、特に限定されるものではない。しかしながら、粒子径が小さすぎる場合、脱灰後のろ過時の溶液の透過性が低下することから、粒子径の下限は100μm以上が好ましく、300μm以上がより好ましく、500μm以上が更に好ましい。また、粒子径の上限は10000μm以下が好ましく、8000μm以下がより好ましく、5000μm以下が更に好ましい。
 なお、液相脱灰の前に、植物由来の有機物を適当な平均粒子径(好ましくは100~50000μm、より好ましくは100~10000μm、更に好ましくは100~5000μm)に粉砕することができる。この粉砕は、焼成後の平均粒子径を2~50μmになるように粉砕する粉砕工程(2)とは、異なるものである。
 本発明の製造方法における液相脱灰によって、カリウム、他のアルカリ金属、アルカリ土類金属、及び遷移金属などが、効率よく除去できるメカニズムは明確ではないが、以下のように考えられる。500℃以上の熱処理を受けると炭素化が進行し、疎水性となるため有機物の内部まで液酸が浸漬しないのに対して、熱処理を受けていない場合は親水性であり、有機物の内部まで液酸が浸漬することで、植物由来の有機物に含まれているカリウムなどの金属が塩化物などとして析出し、水洗によって除去されると考えられるが、本発明は、前記の説明に限定されるものではない。
2.粉砕工程
 本発明の製造方法における粉砕工程は、カリウム及びカルシウムを除去した有機物、あるいは炭素化物(脱タール後の炭素化物、又は本焼成後の炭素化物)を、焼成後の平均粒子径が2~50μmになるように粉砕する工程である。すなわち、粉砕工程によって、得られる炭素質材料の平均粒子径が2~50μmとなるように調整する。粉砕工程は、焼成後の平均粒子径が好ましくは1~8μm、より好ましくは2~8μmになるように粉砕する。すなわち、粉砕工程によって、得られる炭素質材料の平均粒子径が1~8μm、より好ましくは2~8μmとなるように調製する。
 なお、本明細書において「炭素質前駆体」又は「中間体」とは、脱タール工程を終えたものを意味する。すなわち、本明細書において「炭素質前駆体」及び「中間体」は、実質的に同じ意味で用いられ、粉砕されたもの及び粉砕されていないものを含む。
 粉砕工程の順番は、得られる炭素質材料の平均粒子径が、2~50μmとなる限りにおいて限定されるものではないが、液相脱灰工程(1)の後、脱タール工程(3)の後、及び焼成工程(4)の後に行うことができる。
 粉砕に用いる粉砕機は、特に限定されるものではなく、例えばジェットミル、ボールミル、ハンマーミル、又はロッドミルなどを使用することができるが、微粉の発生が少ないという点で分級機能を備えたジェットミルが好ましい。一方、ボールミル、ハンマーミル、又はロッドミルなどを用いる場合は、粉砕後に分級を行うことで微粉を除くことができる。
 分級として、篩による分級、湿式分級、又は乾式分級を挙げることができる。湿式分級機としては、例えば重力分級、慣性分級、水力分級、又は遠心分級などの原理を利用した分級機を挙げることができる。また、乾式分級機としては、沈降分級、機械的分級、又は遠心分級の原理を利用した分級機を挙げることができる。
 粉砕工程において、粉砕と分級は1つの装置を用いて行うこともできる。例えば、乾式の分級機能を備えたジェットミルを用いて、粉砕と分級を行うことができる。更に、粉砕機と分級機とが独立した装置を用いることもできる。この場合、粉砕と分級とを連続して行うこともできるが、粉砕と分級とを不連続に行うこともできる。
 粉砕炭素質前駆体は、焼成工程により焼成され得る。焼成の条件により、0~20%程度の収縮がおきるため、焼成前に粉砕を行い、そして焼成工程を行う場合は、最終的に平均粒子径Dv50が2~50μmの非水電解質二次電池用炭素質材料を得るために、粉砕炭素質前駆体の平均粒子径を、0~20%程度の範囲で大きめに調整することが好ましい。粉砕後の平均球子径は、最終的に得られる炭素質材料の平均粒子径が2~50μmとなる限り、限定されるものではないが、具体的には平均粒子径Dv50を2~63μmに調整することが好ましく、2~50μmがより好ましく、2~38μmが更に好ましく、2~32μmが更に好ましく、3~25μmが最も好ましい。また焼成後に、平均粒子径Dv50が1~8μmの非水電解質二次電池用炭素質材料を得るためには、粉砕炭素質前駆体の平均粒子径を、0~20%程度の範囲で大きめに調製することが好ましい。粉砕後の平均球子径は、最終的に得られる炭素質材料の平均粒子径が2~8μmとなる限り、限定されるものではないが、具体的には非水電解質二次電池負極用炭素質材料の中間体の平均粒子径Dv50を1~10μmに調製することが好ましく、1~9μmがより好ましい。
(微粉の除去)
 本発明の炭素質材料は、微粉が除去されているものが好ましい。微粉を除去することにより、二次電池の長期の耐久性を上昇させることができる。また、二次電池の不可逆容量を低下させることができる。
 微粉を除去する方法としては、特に限定されるものではなく、例えば分級機能を備えたジェットミルなどの粉砕機を用いて、粉砕工程において、微粉を除去することができる。一方、分級機能を持たない粉砕機を用いる場合は、粉砕後に分級を行うことで微粉を除くことができる。更には粉砕の後、もしくは分級の後にサイクロンやバグフィルターを用いて微粉を回収することができる。
3.脱タール工程
 本発明の製造方法においては、炭素源に対して脱タールを行い、炭素質前駆体を形成する。また、炭素質前駆体を炭素質へ改質するための熱処理を、焼成という。焼成は一段階で行ってもよいし、低温及び高温の二段階以上に分割して行うこともできる。この場合、本焼成と比べて比較的低温で行う焼成を予備焼成と呼び、到達温度が最も高い温度における焼成を本焼成と呼ぶ。なお、本明細書においては、炭素源から揮発分などを除去し炭素質前駆体を形成すること(脱タール)や炭素質前駆体を炭素質へ改質すること(焼成)を主目的としない場合を「非炭素化熱処理」といい、「脱タール」や「焼成」と区別する。非炭素化熱処理とは、例えば500℃未満の熱処理を意味する。より具体的には、200℃程度でのコーヒー豆の焙煎などが非炭素化熱処理に含まれる。前記のように、本発明に用いる植物由来の有機物は、500℃以上で熱処理されていないものが好ましいが、すなわち本発明に用いる植物由来の有機物は、非炭素化熱処理されたものを用いることができる。
 脱タールは、炭素源を300℃以上1000℃以下で焼成することによって行う。更に好ましくは、300℃以上800℃以下、又は400℃以上900℃未満である。脱タールは、揮発分、例えばCO、CO、CH、及びHなどと、タール分とを除去し、本焼成において、それらの発生を軽減し、焼成炉の負担を軽減することができる。脱タール温度が300℃未満であると脱タールが不十分となり、粉砕後の本焼成工程で発生するタール分やガスが多く、粒子表面に付着する可能性があり、粉砕したときの表面性を保てず電池性能の低下を引き起こすので好ましくない。一方、脱タール温度が1000℃を超えるとタール発生温度領域を超えることになり、使用するエネルギー効率が低下するため好ましくない。更に、発生したタールが二次分解反応を引き起こしそれらが炭素質前駆体に付着し、性能の低下を引き起こすことがあるので好ましくない。
 脱タールは、不活性ガス雰囲気中で行い、不活性ガスとしては、窒素、又はアルゴンなどを挙げることができる。また、脱タールは、減圧下で行うこともでき、例えば、10KPa以下で行うことができる。脱タールの時間も特に限定されるものではないが、例えば0.5~10時間で行うことができ、1~5時間がより好ましい。また、前記粉砕工程を脱タールの後に行ってもよい。
 脱タール工程の後の中間体(炭素質前駆体)を粉砕した場合、平均粒子径Dv50は、2~63μmとすることが好ましく、1~10μmとすることがより好ましい。平均粒子径をこの範囲に設定すれば、続く焼成工程(予備焼成、本焼成)を経て収縮した後に、炭素質材料の粒経を本発明の範囲内とすることができる。また、中間体には、カリウム、カルシウムの含有量は、それぞれ0.5質量%以下、0.02質量%以下で含まれるように調節することが好ましい。この範囲内にあれば、焼成後の炭素質材料中に含まれる各イオンの濃度を本願発明の数値範囲内とすることができる。
(酸素含有雰囲気中での脱タール)
 本発明においては、脱タールを含酸素雰囲気中で行うことも可能である。含酸素雰囲気は限定されるものではなく、例えば空気を用いることができるが、酸素含有量が少ないほうが好ましい。従って、含酸素雰囲気中の酸素含有量は、好ましくは20容量%以下であり、より好ましくは15容量%以下であり、更に好ましくは10容量%以下であり、最も好ましくは5容量%以下である。なお、酸素含有量は、例えば1容量%以上であってよい。
 従って、本発明は、好ましくは液相脱灰工程(1)、粉砕工程(2)、脱タール工程(3)及び焼成工程(4)を含み、脱タール工程(3)を含酸素雰囲気中で行う、非水電解質二次電池用炭素質材料の製造方法に関する。
 通常、含酸素雰囲気中で脱タールを行うと、賦活などの副反応が発生し、炭素質材料の比表面積が増大するなどの悪影響を及ぼす。従って、通常は、不活性ガス(例えば、窒素、又はアルゴン)雰囲気下で脱タールを行う必要がある。しかしながら、本発明においては、含酸素雰囲気中で脱タールを行っても、比表面積の増加が見られない。
 賦活発生の有無は脱タール後に焼成工程(4)を経た炭素質材料の比表面積から推測が可能であり、賦活が生じた材料では比表面積が増大する。例えば、600℃で熱処理された植物由来の有機物(例えば、椰子殻チャー)を用いて、脱タール工程(3)を含酸素雰囲気中で行った場合、その後に焼成工程(4)を経た炭素質材料の比表面積は60m/gであったが、500℃以上で熱処理されていない植物由来の有機物(例えば、コーヒー残渣)を用いて、脱タール工程(3)を含酸素雰囲気中で行った場合、焼成工程(4)を経た炭素質材料の比表面積は6m/gであり、比表面積の増加が見られなかった。これは不活性ガス雰囲気中で脱タールを行った炭素質材料と同等の数値である。
 本発明において含酸素雰囲気中で脱タールが可能な理由は明らかではないが、以下のように考えられる。本発明に用いる植物由来の有機物は、高温での熱処理が行われていないため、脱タール工程において大量のタール分やガスが発生する。発生したタール分やガスと酸素が酸化反応によって優先的に消費され、植物由来の有機物と反応する酸素が枯渇するために、賦活が起こらないものと推測される。
 本発明においては、含酸素雰囲気中で脱タールが可能であり、従って、雰囲気制御を簡略化することができる。更に、窒素等の不活性ガスの使用量を低減させることにより、製造コストを低減させることができる。
4.焼成工程
 本発明の製造方法における焼成工程は、粉砕した炭素質前駆体を、1000℃~1500℃で焼成する工程である。好ましくは、非酸化性ガス雰囲気下で行う。1000℃~1500℃の焼成は、本発明の技術分野においては、通常「本焼成」と呼ばれている焼成である。また、本発明の焼成工程においては、必要に応じて、本焼成の前に予備焼成を行うことができる。
 本発明の製造方法における焼成は、通常の手順にしたがって行うことができ、焼成を行うことにより、非水電解質二次電池負極用炭素質材料を得ることができる。焼成の温度は、1000~1500℃である。焼成温度が1000℃未満では、炭素質材料に官能基が多く残存してH/Cの値が高くなり、リチウムとの反応により不可逆容量が増加するため好ましくない。本発明の焼成温度の下限は1000℃以上であり、より好ましくは1100℃以上であり、特に好ましくは1150℃以上である。一方、焼成温度が1500℃を超えると炭素六角平面の選択的配向性が高まり放電容量が低下するため好ましくない。本発明の焼成温度の上限は1500℃以下であり、より好ましくは1450℃以下であり、特に好ましくは1400℃以下である。
 焼成は、非酸化性ガス雰囲気中で行うことが好ましい。非酸化性ガスとしては、ヘリウム、窒素又はアルゴンなどを挙げることができこれらを単独又は混合して用いることができる。更には塩素などのハロゲンガスを上記非酸化性ガスと混合したガス雰囲気中で焼成を行うことも可能である。ガスの供給量(流通量)も、限定されるものではないが、脱灰済みの炭素前駆体1g当たり、1mL/分以上、好ましくは5mL/分以上、更に好ましくは10mL/分以上である。また、焼成は、減圧下で行うこともでき、例えば、10KPa以下で行うことも可能である。焼成の時間も特に限定されるものではないが、例えば1000℃以上に滞留する時間としては、0.05~10時間で行うことができ、0.05~3時間が好ましく、0.05~1時間がより好ましい。また、前記粉砕工程を焼成の後に行ってもよい。
(予備焼成)
 本発明の製造方法においては、予備焼成を行うことができる。予備焼成は、炭素源を300℃以上1000℃未満、好ましくは300℃以上900℃未満で焼成することによって行う。予備焼成は、脱タール工程をへても残存する揮発分、例えばCO、CO、CH、及びHなどと、タール分とを除去し、本焼成において、それらの発生を軽減し、焼成器の負担を軽減することができる。すなわち、脱タール工程に加えて、更にCO、CO、CH、H、又はタール分を予備焼成により除去してもよい。
 予備焼成は、不活性ガス雰囲気中で行い、不活性ガスとしては、窒素、又はアルゴンなどを挙げることができる。また、予備焼成は、減圧下で行うこともでき、例えば、10KPa以下で行うことができる。予備焼成の時間も特に限定されるものではないが、例えば0.5~10時間で行うことができ、1~5時間がより好ましい。また、前記粉砕工程を予備焼成の後に行ってもよい。また、予備焼成により、脱タール工程をへても残存する揮発分、例えばCO、CO、CH、及びHなどと、タール分とを除去し、本焼成において、それらの発生を軽減し、焼成器の負担を軽減することができる。
(ハロゲンガス含有非酸化性ガスによる焼成)
 本発明における焼成又は予備焼成は、ハロゲンガスを含有した非酸化性ガス中で行うことができる。用いるハロゲンガスとしては、塩素ガス、臭素ガス、ヨウ素ガス、又はフッ素ガスを挙げることができるが、塩素ガスが特に好ましい。更に、CCl、Clのような高温で容易にハロゲンを放出する物質を、不活性ガスをキャリアとして供給することも可能である。
 ハロゲンガス含有非酸化性ガスによる焼成又は予備焼成は、本焼成の温度(1000~1500℃)で行ってもよいが、本焼成よりも低い温度(例えば、300℃~1000℃)で行うこともできる。その温度域は好ましくは800~1400℃である。温度の下限としては800℃が好ましく、850℃が更に好ましい。上限としては1400℃が好ましく、1350℃が更に好ましく、1300℃が最も好ましい。
 原料有機物を加熱し、炭素化する際に、塩素ガス等のハロゲンガス含有雰囲気中で加熱する工程を経て炭素化することによって、得られた炭素質材料は適当なハロゲン含有量を示し、更にはリチウムの吸蔵に適した微細構造を有するようになる。これにより大きな充放電容量を得ることができる。例えば、炭素前駆体1g当たり、窒素ガス0.2L/分を供給しながら焼成した場合と比較して、窒素ガス0.2L/分に塩素ガス0.04L/分を加えた混合ガスを供給しながら焼成を行った場合、放電容量が7%増加した。
 ハロゲンガス含有非酸化性ガスによる焼成された本発明の炭素質材料に含まれるハロゲン含有量は、限定されるものではないが、50~10000ppmであり、より好ましくは100~5000ppmであり、更に好ましくは200~3000ppmである。
 ハロゲンガス含有非酸化性ガスによる焼成又は予備焼成を行うことにより充放電容量が大きい非水電解質二次電池負極用炭素質材料が得られる理由は定かでないが、ハロゲンと炭素質材料中の水素原子とが反応し、炭素質材料から速やかに水素が除去された状態で炭素化が進むためと考えられる。またハロゲンガスは炭素質材料中に含まれる灰分とも反応し、残存灰分を低減させる効果もあると考えられる。なお、炭素質材料に含まれるハロゲン含有量が過小であると、その製造プロセスの過程で十分に水素が除去されず、結果的に充放電容量が十分に向上しないおそれがある一方、過大であると、残存するハロゲンが電池内でリチウムと反応し不可逆容量が増加するという問題があり得る。
 従って、本発明は、前記液相脱灰工程(1)、粉砕工程(2)、脱タール工程(3)及び焼成工程(4)を含み、焼成がハロゲンガスを含有する不活性ガス中で行われる、非水電解質二次電池用炭素質材料の製造方法に関する。
《中間体の製造方法》
 本発明の中間体(炭素質前駆体)の製造方法は、平均粒子径が100μm以上である植物由来の有機物に対し、pH3.0以下の酸性溶液を用いて脱灰をする工程(液相脱灰工程)と、前記脱灰された有機物を300~1000℃で脱タールする工程(脱タール工程)とを含み、好ましくは前記脱灰された有機物を粉砕する工程(粉砕工程)を更に含むものである。更に、前記液相脱灰工程を、0℃以上80℃以下の温度で行うことが好ましい。
 液相脱灰工程、脱タール工程、及び粉砕工程は、本発明の非水電解質二次電池負極用炭素質材料の製造方法における液相脱灰工程、脱タール工程、及び粉砕工程と同様である。本発明の中間体の製造方法においては、粉砕工程を液相脱灰工程の後、又は脱タール工程の後に行うことができる。なお、脱タール工程によって得られる中間体(炭素質前駆体)は、粉砕されていても、粉砕されていなくてもよい。
[3]非水電解質二次電池負極
 本発明の非水電解質二次電池負極は、本発明の非水電解質二次電池負極用炭素質材料を含むものである。
(負極電極の製造)
 本発明の炭素質材料を用いる負極電極は、炭素質材料に結合剤(バインダー)を添加し適当な溶媒を適量添加、混練し、電極合剤とした後に、金属板などからなる集電板に塗布・乾燥後、加圧成形することにより製造することができる。本発明の炭素質材料を用いることにより特に導電助剤を添加しなくとも高い導電性を有する電極を製造することができるが、更に高い導電性を賦与することを目的に必要に応じて電極合剤を調製時に、導電助剤を添加することができる。導電助剤としては、導電性のカーボンブラック、気相成長炭素繊維(VGCF)、ナノチューブなどを用いることができ、添加量は使用する導電助剤の種類によっても異なるが、添加する量が少なすぎると期待する導電性が得られないので好ましくなく、多すぎると電極合剤中の分散が悪くなるので好ましくない。このような観点から、添加する導電助剤の好ましい割合は0.5~10質量%(ここで、活物質(炭素質材料)量+バインダー量+導電助剤量=100質量%とする)であり、更に好ましくは0.5~7質量%、特に好ましくは0.5~5質量%である。結合剤としては、PVDF(ポリフッ化ビニリデン)、ポリテトラフルオロエチレン、及びSBR(スチレン・ブタジエン・ラバー)とCMC(カルボキシメチルセルロース)との混合物などの電解液と反応しないものであれば特に限定されない。中でもPVDFは、活物質表面に付着したPVDFがリチウムイオン移動を阻害することが少なく、良好な入出力特性を得るために好ましい。PVDFを溶解しスラリーを形成するためにN-メチルピロリドン(NMP)などの極性溶媒が好ましく用いられるが、SBRなどの水性エマルジョンやCMCを水に溶解して用いることもできる。結合剤の添加量が多すぎると、得られる電極の抵抗が大きくなるため、電池の内部抵抗が大きくなり電池特性を低下させるので好ましくない。また、結合剤の添加量が少なすぎると、負極材料粒子相互及び集電材との結合が不十分となり好ましくない。結合剤の好ましい添加量は、使用するバインダーの種類によっても異なるが、PVDF系のバインダーでは好ましくは3~13質量%であり、更に好ましくは3~10質量%である。一方、溶媒に水を使用するバインダーでは、SBRとCMCとの混合物など、複数のバインダーを混合して使用することが多く、使用する全バインダーの総量として0.5~5質量%が好ましく、更に好ましくは1~4質量%である。電極活物質層は集電板の両面に形成するのが基本であるが、必要に応じて片面でもよい。電極活物質層が厚いほど、集電板やセパレータなどが少なくて済むため高容量化には好ましいが、対極と対向する電極面積が広いほど入出力特性の向上に有利なため活物質層が厚すぎると入出力特性が低下するため好ましくない。好ましい活物質層(片面当たり)の厚みは、10~80μmであり、更に好ましくは20~75μm、特に好ましくは20~60μmである。
(水溶性高分子バインダー)
 本発明の好ましい非水電解質二次電池負極に用いるバインダーとして水溶性高分子をあげることができる。本発明の非水電解質二次電池負極に水溶性高分子を用いることによって、暴露試験によって不可逆容量が増加しない非水電解質二次電池を得ることができる。また、サイクル特性の優れた非水電解質二次電池を得ることができる。
 このような水溶性高分子としては、水に溶解するものであれば特に限定されることなく使用できる。具体例には、セルロース系化合物、ポリビニルアルコール、スターチ、ポリアクリルアミド、ポリ(メタ)アクリル酸、エチレン-アクリル酸共重合体、エチレン-アクリルアミド-アクリル酸共重合体、ポリエチレンイミン等及びそれらの誘導体又は塩が挙げられる。これらのなかでも、セルロース系化合物、ポリビニルアルコール、ポリ(メタ)アクリル酸及びそれらの誘導体が好ましい。また、カルボキシメチルセルロース(CMC)誘導体、ポリビニルアルコール誘導体、ポリアクリル酸塩を用いることが、更に好ましい。これらは、単独または2種類以上を組み合わせて使用することができる。
 本発明の水溶性高分子の質量平均分子量は、10,000以上であり、より好ましくは15,000以上であり、更に好ましくは20,000以上である。10,000未満だと、電極合剤の分散安定性に劣ったり、電解液へ溶出しやすくなるため好ましくない。また、水溶性高分子の質量平均分子量は、6,000,000以下であり、より好ましくは5,000,000以下である。質量平均分子量が6,000,000を超えると溶媒への溶解性が低下し好ましくない。
 本発明においては、バインダーとして、非水溶性ポリマーを併用することもできる。これらは、水系媒体中に分散してエマルションを形成する。好ましい非水溶性ポリマーとしては、ジエン系ポリマー、オレフィン系ポリマー、スチレン系ポリマー、(メタ)アクリレート系ポリマー、アミド系ポリマー、イミド系ポリマー、エステル系ポリマー、セルロース系ポリマーが挙げられる。
 負極のバインダーとして用いるその他の熱可塑性樹脂としては、結着効果があり、使用する非水電解液に対する耐性や、負極での電気化学反応に対する耐性を有するものであれば特に限定することなく使用できる。具体的には、前記水溶性高分子とエマルションの2つの成分が使用されることが多い。水溶性高分子は主に分散性付与剤や、粘度調整剤として用いられ、エマルションは、粒子間の結着性及び電極の可とう性の付与に重要である。
 これらの中でも、共役ジエン系モノマーやアクリル酸エステル系(メタクリル酸エステル系も含む)モノマーの単独重合体又は共重合体が好ましい例として挙げられ、その具体例としては、ポリブタジエン、ポリイソプレン、ポリメチルメタクリレート、ポリメチルアクリレート、ポリエチルアクリレート、ポリブチルアクリレート、天然ゴム、インプレン-イソブチレン共重合体、スチレン-1,3-ブタジエン共重合体、スチレン-イソプレン共重合体、1,3-ブタジエン-イソプレン-アクリロニトリル共重合体、スチレン-1,3-ブタジエン-イソプレン共重合体、1,3-ブタジエン-アクリロニトリル共重合体、スチレン-アクリロニトリル-1,3-ブタジエン-メタクリル酸メチル共重合体、スチレン-アクリロニトリル-1,3-ブタジエン-イタコン酸共重合体、スチレン-アクリロニトリル-1,3-ブタジエン-メタクリル酸メチル-フマル酸共重合体、スチレン-1,3-ブタジエン-イタコン酸-メタクリル酸メチル-アクリロニトリル共重合体、アクリロニトリル-1,3-ブタジエン-メタクリル酸-メタクリル酸メチル共重合体、スチレン-1,3-ブタジエン-イタコン酸-メタクリル酸メチル-アクリロニトリル共重合体、スチレン-アクリル酸n-ブチル-イタコン酸-メタクリル酸メチル-アクリロニトリル共重合体、スチレン-アクリル酸n-ブチル-イタコン酸-メタクリル酸メチル-アクリロニトリル共重合体、アクリル酸2-エチルヘキシル-アクリル酸メチル-アクリル酸-メトキシポリエチレングリコールモノメタクリレート等が挙げられる。なかでも特に、ゴム弾性のあるポリマー(ゴム)が好適に用いられる。PVDF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、及びSBR(スチレン・ブタジエン・ラバー)も好ましい。
 更に非水溶性ポリマーとして、カルボキシル基、カルボニルオキシ基、ヒドロキシル基、ニトリル基、カルボニル基、スルホニル基、スルホキシル基、エポキシ基等の極性基を有するものが、結着性の点で好ましい例として挙げられる。極性基の特に好ましい例はカルボキシル基、カルボニルオキシ基、ヒドロキシル基である。
 前記バインダー中の水溶性高分子の含有割合は、8~100質量%であることが好ましい。8質量%未満では、耐吸水性は向上する反面、電池のサイクル耐久性が十分でなくなる。
 バインダーの添加量が多すぎると、得られる電極の抵抗が大きくなるため、電池の内部抵抗が大きくなり電池特性を低下させるので好ましくない。また、バインダーの添加量が少なすぎると、負極材料粒子相互及び集電材との結合が不十分となり好ましくない。バインダーの好ましい添加量は、使用するバインダーの種類によっても異なるが、溶媒に水を使用するバインダーでは、SBRとCMCとの混合物等、複数のバインダーを混合して使用することが多く、使用する全バインダーの総量として0.5~10質量%が好ましく、更に好ましくは1~8質量%である。
 用いることのできる溶媒は、上記バインダーを溶解し、且つ炭素質材料を良好に分散し得るものであれば特に制限なく使用できる。例えば、水、メチルアルコール、エチルアルコール、プロピルアルコール、N―メチルピロリドン(NMP)等のなかから選ばれる、1種あるいは2種以上を使用することができる。
 電極活物質層は集電板の両面に形成するのが基本であるが、必要に応じて片面でもよい。電極活物質層が厚いほど、集電板やセパレータ等が少なくて済むため高容量化には好ましいが、対極と対向する電極面積が広いほど入出力特性の向上に有利なため活物質層が厚すぎると入出力特性が低下するため好ましくない。好ましい活物質層(片面当たり)の厚みは、10~80μmであり、更に好ましくは20~75μm、特に好ましくは20~60μmである。
(プレス圧)
 本発明の炭素質材料を用いた電極の製造におけるプレス圧は、特に限定されるものではない。しかしながら、好ましくは2.0~5.0tf/cmであり、より好ましくは2.5~4.5tf/cmであり、更に好ましくは3.0~4.0tf/cmである。炭素質材料を塗工、乾燥した後に、前記のプレス圧をかけることで活物質同士の接触が良くなり導電性が向上する。従って、長期のサイクル耐久性に優れた電極を得ることができる。なお、プレス圧力が低すぎる場合は、活物質同士の接触が不十分となるため電極の抵抗が高くなり、クーロン効率が低下するため長期の耐久性に劣ることがある。また、プレス圧力が高すぎる場合は、圧延により電極が湾曲し、捲回が困難になることがある。
 例えば、本発明の炭素質材料を用い2.5tf/cm及び4.0tf/cmのプレス圧で製造した電極を用いた電池の50℃におけるサイクル特性を検討した。その結果、100サイクル目の放電容量維持率は、それぞれ70%未満及び83%であり、プレス圧を4.0tf/cmにして製造した場合の方がサイクル耐久性に優れた。
[4]非水電解質二次電池
 本発明の非水電解質二次電池は、本発明の非水電解質二次電池負極を含むものである。本発明の炭素質材料を使用した非水電解質二次電池用負極電極を用いた非水電解質二次電池は、不純物が少なく高い信頼性が担保される。
(非水電解質二次電池の製造)
 本発明の負極材料を用いて、非水電解質二次電池の負極電極を形成した場合、正極材料、セパレータ、及び電解液など電池を構成する他の材料は特に限定されることなく、非水溶媒二次電池として従来使用され、あるいは提案されている種々の材料を使用することが可能である。
 例えば、正極材料としては、層状酸化物系(LiMOと表されるもので、Mは金属:例えば、LiCoO、LiNiO、LiMnO、又はLiNiCoMo(ここでx、y、zは組成比を表す)、オリビン系(LiMPOで表され、Mは金属:例えばLiFePOなど)、スピネル系(LiMで表され、Mは金属:例えばLiMnなど)の複合金属カルコゲン化合物が好ましく、これらのカルコゲン化合物を必要に応じて混合してもよい。これらの正極材料を適当なバインダーと電極に導電性を付与するための炭素質材料とともに成形して、導電性の集電材上に層形成することにより正極が形成される。
 これら正極と負極との組み合わせで用いられる非水溶媒型電解液は、一般に非水溶媒に電解質を溶解することにより形成される。非水溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、ジエトキシエタン、γ-ブチルラクトン、テトラヒドロフラン、2-メチルテトラヒドロフラン、スルホラン、又は1,3-ジオキソランなどの有機溶媒の一種又は二種以上を組み合わせて用いることができる。また、電解質としては、LiClO、LiPF、LiBF、LiCFSO、LiAsF、LiCl、LiBr、LiB(C、又はLiN(SOCFなどが用いられる。二次電池は、一般に上記のようにして形成した正極層と負極層とを必要に応じて不織布、その他の多孔質材料などからなる透液性セパレータを介して対向させ電解液中に浸漬させることにより形成される。セパレータとしては、二次電池に通常用いられる不織布、その他の多孔質材料からなる透過性セパレータを用いることができる。あるいはセパレータの代わりに、もしくはセパレータと一緒に、電解液を含浸させたポリマーゲルからなる固体電解質を用いることもできる。
(電解液添加剤)
 本発明の非水電解質二次電池は、好ましくは電解質に半経験的分子軌道法のAM1(Austin Model 1)計算法を使用して算出したLUMOの値が-1.10~1.11eVの範囲である添加剤を含むものである。本発明の炭素質材料及び添加剤を使用した非水電解質二次電池用負極電極を用いた非水電解質二次電池は、高いドープ、脱ドープ容量を有し、優れた高温サイクル特性を示す。
 本発明の非水電解質二次電池に用いられる添加剤について説明する。一般に初回充電時に有機電解液の還元分解により固体電解質被膜(SEI)が形成される。ここで、電解液よりも早く還元分解する添加剤を用いることにより、SEIの性質を制御し、高温サイクル特性を向上させることが可能となる。このような添加剤を選定するためにLUMO(LowestUnoccupied Molecular Orbital)理論を適用することができる。LUMOは、最低エネルギー準位に電子のない分子軌道関数を表し、分子が電子を受け入れる際、このエネルギー準位に電子が埋まることになるが、この値によって還元の程度が決められる。LUMO値が低いほど還元性が高い特性があり、LUMO値が高いほど耐還元性がある。
電解液に添加される化合物のLUMO値は、量子化学的計算方法中の一つである半経験的分子軌道法中の、AM1計算方法を利用した。
 半経験的計算方法としては、仮定及びパラメータの種類によってAM1、PM3(Parametric method 3)、MNDO(Modified Neglect of Differential Overlap)、CNDO(Complete Neglect of Differential Overlap)、INDO(Intermediate Neglect of Differential Overlap)、MINDO(Modified Intermediate Neglect of Differential Overlap)などに分類される。AM1計算法は、1985年Dewerらが水素結合計算に適するようにMNDO法を部分的に改善して開発したものである。本発明におけるAM1法は、コンピュータプログラムパッケージGaussian03(Gaussian社)により提供されたものであるが、これに限定されるものではない。
 以下に、Gaussian03を使用してLUMO値を計算する操作手順を示す。計算の前段階における分子構造のモデリングには描画プログラムGaussView3.0に搭載されている可視化機能を使用した。分子構造を作成し、ハミルトニアンにAM1法を用いて「基底状態」、電荷「0」、スピン「Singlet」、溶媒効果「なし」にて構造最適化を行った後、同じレベルでエネルギー一点計算を行った。構造最適化によって得られた全電子エネルギーの値が最も小さい構造を最安定構造とし、その分子構造における最低空軌道に対応する数値をLUMO値とした。結果は単位が原子単位で与えられるため、1a.u.=27.2114eVを用いて電子ボルトに換算した。
 本発明の添加剤は、量子化学計算方法中、AM1計算法により求められたLUMO値が-1.1~1.11eVであり、-0.6~1.0eVがより好ましく、0~1.0eVが更に好ましい。LUMO値が1.11eV以上だと添加剤として作用しないことがあるので好ましくない。また、LUMO値がー1.1eV以下だと正極側で副反応を起こすことがあるので好ましくない。
 LUMO値が-1.10~1.11eVの添加剤としては、例えば、フルオロエチレンカーボネート(FEC、0.9829eV)、トリメチルシリルリン酸(TMSP、0.415eV)、四フッ化ホウ酸リチウム(LiBF4、0.2376eV)、クロロエチレンカーボネート(ClEC、0.1056eV)、プロパンスルトン(PS、0.0656eV)、エチレンサルファイト(ES、0.0248eV)、ビニレンカーボネート(VC、0.0155eV)、ビニルエチレンカーボネート(VEC、-0.5736eV)、ジオキサチオランジオキシド(DTD、-0.7831eV)、リチウムビス(オキサラト)ボレート(LiBOB、-1.0427eV)、などが挙げられるが、これらに限定されるものではない。
 本発明の負極材料を用いて、非水電解質二次電池の負極電極を形成した場合、電解質に少なくともビニレンカーボネート又はフルオロエチレンカーボネートを含むこと以外に,正極電極、セパレータ、及び電解液など電池を構成する他の材料は特に限定されることなく、非水溶媒二次電池として従来使用され、あるいは提案されている種々の材料を使用することが可能である。
 本発明の非水電解質二次電池に使用される電解液には、半経験的分子軌道法中のAM1計算法を使用して算出したLUMOの値が-1.10~1.11eVの範囲の添加剤が含まれ、1種又は2種以上を併用して使用できる。その電解液中の含有量としては、0.1~6質量%が好ましく、0.2~5質量%が更に好ましい。含有量が0.1質量%未満であれば、添加剤の還元分解に由来する被膜が十分に形成しないため、高温サイクル特性が改善せず、6質量%を超えて存在すると負極に厚い皮膜が生じるため抵抗が大きくなり、入出力特性が低下する。
 二次電池は、一般に上記のようにして形成した正極層と負極層とを必要に応じて不織布、その他の多孔質材料などからなる透液性セパレータを介して対向させ電解液中に浸漬させることにより形成される。セパレータとしては、二次電池に通常用いられる不織布、その他の多孔質材料からなる透過性セパレータを用いることができる。あるいはセパレータの代わりに、もしくはセパレータと一緒に、電解液を含浸させたポリマーゲルからなる固体電解質を用いることもできる。
[5]車両
 本発明のリチウムイオン二次電池は、例えば自動車などの車両に搭載される電池(典型的には車両駆動用リチウムイオン二次電池)として好適である。
 本発明による車両とは、通常電動車両として知られるものや燃料電池や内燃機関とのハイブリッド車など、特に制限されることなく対象とすることができるが、少なくとも上記電池を備えた電源装置と、該電源装置からの電源供給により駆動する電動駆動機構と、これを制御する制御装置を備えるものである。更に、発電ブレーキや回生ブレーキを備え制動によるエネルギーを電気に変換して当該リチウムイオン二次電池に充電する機構を備えてもよい。
 以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。
 以下に本発明の非水電解質二次電池用炭素質材料の物性値(「レーザー回折法による平均粒子径」、「水素/炭素の原子比(H/C)」、「比表面積」、「灰分」、「ブタノールを用いたピクノメータ法(以下、「ブタノール法」)による真密度」、「ヘリウムを用いた乾式密度測定法(以下、「ヘリウム法」)による真密度」、及び「炭素質材料の平均層面間隔d002」)の測定法を記載するが、実施例を含めて、本明細書中に記載する物性値は、以下の方法により求めた値に基づくものである。
(レーザー回折法による平均粒子径)
 試料約0.01gに対し、分散剤(カチオン系界面活性剤「SNウェット366」(サンノプコ社製))を3滴加え、試料に分散剤を馴染ませる。つぎに、純水30mLを加え、超音波洗浄機で約2分間分散させたのち、粒径分布測定器(島津製作所製「SALD-3000S」)で、粒径0.5~3000μmの範囲の粒径分布を求めた。粒子の屈折率は2.0~0.1iとした。得られた粒径分布から、累積容積が50%となる粒径をもって平均粒子径Dv50(μm)とした。
(水素/炭素(H/C)の原子比)
 JIS M8819に定められた方法に準拠し測定した。すなわち、CHNアナライザー(Perkin-elmer社製2400II)による元素分析により得られる試料中の水素及び炭素の質量割合をそれぞれの元素の質量数で除し、水素/炭素の原子数の比を求めた。
(比表面積)
 JIS Z8830に定められた方法に準拠し、比表面積(SSA)を測定した。概要を以下に記す。BETの式から誘導された近似式v=1/(v(1-x))を用いて液体窒素温度における、窒素吸着による1点法(相対圧力x=0.2)によりvを求め、次式により試料の比表面積を計算した:
  比表面積(SSA)=4.35×v(m/g)
(ここで、vは試料表面に単分子層を形成するに必要な吸着量(cm/g)、vは実測される吸着量(cm/g)、xは相対圧力である。)
 具体的には、MICROMERITICS社製「Flow Sorb II2300」を用いて、以下のようにして液体窒素温度における炭素質物質への窒素の吸着量を測定した。炭素質材料を試料管に充填し、窒素ガスを20モル%濃度で含有するヘリウムガスを流しながら、試料管を-196℃に冷却し、炭素質材料に窒素を吸着させる。つぎに試験管を室温に戻す。このとき試料から脱離してくる窒素量を熱伝導度型検出器で測定し、吸着ガス量vとした。
(灰分)
 カリウム、カルシウム、マグネシウム、ケイ素、リンの含有率の測定のために、予め所定の各元素を含有する炭素試料を調製し、蛍光X線分析装置を用い、カリウムKα線の強度とカリウム含有量との関係、及びカルシウム、マグネシウム、ケイ素についても同様にKα線の強度と含有量との関係に関する検量線を作成した。ついで試料について蛍光X線分析におけるKα線の強度を測定し、先に作成した検量線より各元素の含有量を求めた。
 蛍光X線分析は、(株)島津製作所製LAB CENTER XRF-1700を用い、以下の条件で行った。上部照射方式用ホルダーを用い、試料測定面積を直径20mmの円周内とした。被測定試料の設置は、内径25mmのポリエチレン製容器の中に被測定試料を0.5g入れ、裏をプランクトンネットで押さえ、測定表面をポリプロピレン製フィルムで覆い測定を行った。X線源は40kV、60mAに設定した。カリウムについては、分光結晶にLiF(200)、検出器にガスフロー型比例係数管を使用し、2θが90~140°の範囲を、走査速度8°/minで測定した。カルシウムについては、分光結晶にLiF(200)、検出器にシンチレーションカウンターを使用し、2θが56~60°の範囲を、走査速度8°/minで測定した。
(硫黄)
 炭素質試料をボンブ燃焼法にて燃焼させた後、イオンクロマトグラフ法によって含有量を測定した。
(ブタノール法による真密度)
 JIS R7212に定められた方法に準拠し、ブタノールを用いて測定した。概要を以下に記す。内容積約40mLの側管付比重びんの質量(m)を正確に量る。次に、その底部に試料を約10mmの厚さになるように平らに入れた後、その質量(m)を正確に量る。これに1-ブタノールを静かに加えて、底から20mm程度の深さにする。次に比重びんに軽い振動を加えて、大きな気泡の発生がなくなったのを確かめた後、真空デシケーター中に入れ、徐々に排気して2.0~2.7kPaとする。その圧力に20分間以上保ち、気泡の発生が止まったのち取り出して、更に1-ブタノールで満たし、栓をして恒温水槽(3.0±0.03℃に調節してあるもの)に15分間以上浸し、1-ブタノールの液面を標線に合わせる。次に、これを取り出して外部をよくぬぐって室温まで冷却した後、質量(m)を正確に量る。次に同じ比重びんに1-ブタノールで満たし、前記と同じようにして恒温水槽に浸し、標線を合わせた後、質量(m)を量る。また、使用直前に沸騰させて溶解した期待を除いた蒸留水を比重びんにとり、前と同様に恒温水槽に浸し、標線を合わせた後質量(m)を量る。真密度(ρ)は次の式により計算する。これを、ρBtとする。
Figure JPOXMLDOC01-appb-M000001
 
(ここでdは水の30℃における比重(0.9946)である。)
(ヘリウム法による真密度)
 ρHの測定は、島津製作所社製乾式自動密度計アキュピック1330を用いた。試料は予め200℃で5時間以上乾燥してから測定を行った。10cmのセルを用い、試料を1g入れ、周囲温度は23℃で行った。パージ回数は5回とし、体積値が繰り返し測定で0.5%以内で一致することを確認したn=5の平均値をρとした。
 測定装置は試料室及び膨張室を有し、試料室は室内の圧力を測定するための圧力計を有する。試料室と膨張室はバルブを備える連結管により接続されている。試料室にはストップバルブを備えるヘリウムガス導入管が接続され、膨張室にはストップバルブを備えるヘリウムガス排出管が接続されている。
 具体的には、測定は以下のようにして行った。
試料室の容積(VCELL)及び膨張室の容積(VEXP)は体積既知の校正球を使用して予め測定しておく。試料室に試料を入れ、系内をヘリウムで満たし、その時の系内圧力をPとする。次にバルブを閉じ、試料室のみヘリウムガスを加え圧力Pまで増加させる。その後バルブを開け、膨張室と試料室を接続すると、膨張により系内圧力はPまで減少する。
 このとき試料の体積(VSAMP)は次式で計算する。
Figure JPOXMLDOC01-appb-M000002
 
 したがって、試料の質量をWSAMPとすると密度は
Figure JPOXMLDOC01-appb-M000003
 
となる。
(炭素質材料の平均層面間隔d002
 炭素質材料粉末を試料ホルダーに充填し、PANalytical社製X’Pert PROを用いて、対称反射法にて測定した。走査範囲は8<2θ<50°で印加電流/印加電圧は45kV/40mAの条件で、Niフィルターにより単色化したCuKα線(λ=1.5418Å)を線源とし、X線回折図形を得た。標準物質用高純度シリコン粉末の(111)面の回折ピークを用いて補正した。CuKα線の波長を0.15418nmとし、Braggの公式によりd002を計算した。
(実施例1)
 抽出後のコーヒー残渣100gに対して1%塩酸300gを加え、100℃で1時間攪拌した後ろ過した。次に沸騰水300gを加えて1時間攪拌した後ろ過する水洗操作を3回繰り返して脱灰処理し、脱灰コーヒー抽出残渣を得た。得られた脱灰コーヒー抽出残渣を窒素ガス雰囲気中で乾燥させたのち、700℃で脱タールして炭素質前駆体を調製した。これをロッドミルを用いて粉砕し、炭素質前駆体微粒子とした。次にこの炭素前駆体を1250℃で1時間本焼成し、平均粒子径10μmの炭素質材料1を得た。
(実施例2)
 脱灰で用いた酸を硫酸にした以外は、実施例1と同様にして炭素質材料2を得た。
(実施例3)
 脱灰で用いた酸をクエン酸とした以外は、実施例1と同様にして炭素質材料3を得た。
(実施例4)
 塩酸濃度を0.5%とした以外は、実施例1と同様にして炭素質材料4を得た。
(実施例5)
 塩酸濃度を0.1%とした以外は、実施例1と同様にして炭素質材料5を得た。
(比較例1)
 脱灰工程を行わなかった以外は、実施例1と同様にして比較炭素質材料1を得た。
(比較例2)
 抽出後のコーヒー残渣を窒素ガス雰囲気中で乾燥させたのち、700℃で脱タールして予備炭素化を行った。予備炭素化を行ったコーヒー残渣100gに対して1%塩酸300gを加え、100℃で1時間攪拌した後ろ過した。次に沸騰水300gを加えて1時間攪拌した後ろ過する水洗操作を3回繰り返して脱灰処理し、脱灰コーヒー抽出残渣を得た。これをロッドミルを用いて粉砕し、炭素質前駆体微粒子とした。次にこの炭素前駆体を1250℃で1時間本焼成し、平均粒子径10μmの比較炭素質材料2を得た。
(比較例3)
 抽出後のコーヒー残渣を窒素ガス雰囲気中で乾燥させたのち、700℃で脱タールして予備炭素化を行った。これをロッドミルを用いて粉砕し、微粉状とした。予備炭素化を行った微粉状のコーヒー残渣100gに対して1%塩酸300gを加え、100℃で1時間攪拌した後ろ過した。次に沸騰水300gを加えて1時間攪拌した後ろ過する水洗操作を3回繰り返して脱灰処理し、脱灰コーヒー抽出残渣を得た。次にこの炭素質前駆体を1250℃で1時間本焼成し、平均粒子径10μmの比較炭素質材料3を得た。
(比較例4)
 脱灰時の塩酸濃度を35%とした以外は、比較例3と同様にして比較炭素質材料4を得た。
(比較例5)
 脱灰時に酸を用いず水洗のみ繰り返した以外は、実施例1と同様にして比較炭素質材料4を得た。
 脱灰及び焼成の条件、並びに得られた炭素質材料中に含まれる元素の含有量を、表1及び2にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
(活物質のドープ-脱ドープ試験)
 実施例1~5及び比較例1~5で得られた炭素質材料1~5及び比較炭素質材料1~5を用いて、以下の(a)~(c)の操作を行い、負極電極及び非水電解質二次電池を作製し、そして電極性能の評価を行った。
(a)電極作製
 上記炭素質材料90質量部、ポリフッ化ビニリデン(株式会社クレハ製「KF#1100」)10質量部にNMPを加えてペースト状にし、銅箔上に均一に塗布した。乾燥した後、銅箔より直径15mmの円板状に打ち抜き、これをプレスして電極とした。なお、電極中の炭素質材料の量は約10mgになるように調整した。
(b)試験電池の作製
 本発明の炭素質材料は非水電解質二次電池の負極電極を構成するのに適しているが、電池活物質の放電容量(脱ドープ量)及び不可逆容量(非脱ドープ量)を、対極の性能のバラツキに影響されることなく精度良く評価するために、特性の安定したリチウム金属を対極として、上記で得られた電極を用いてリチウム二次電池を構成し、その特性を評価した。
 リチウム極の調製は、Ar雰囲気中のグローブボックス内で行った。予め2016サイズのコイン型電池用缶の外蓋に直径16mmのステンレススチール網円盤をスポット溶接した後、厚さ0.8mmの金属リチウム薄板を直径15mmの円盤状に打ち抜いたものをステンレススチール網円盤に圧着し、電極(対極)とした。
 このようにして製造した電極の対を用い、電解液としてはエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートを容量比で1:2:2で混合した混合溶媒に1.5mol/Lの割合でLiPFを加えたものを使用し、直径19mmの硼珪酸塩ガラス繊維製微細細孔膜のセパレータとして、ポリエチレン製のガスケットを用いて、Arグローブボックス中で、2016サイズのコイン型非水電解質系リチウム二次電池を組み立てた。
(c)電池容量の測定
 上記構成のリチウム二次電池について、充放電試験装置(東洋システム製「TOSCAT」)を用いて充放電試験を行った。炭素極へのリチウムのドープ反応を定電流定電圧法により行い、脱ドープ反応を定電流法で行った。ここで、正極にリチウムカルコゲン化合物を使用した電池では、炭素極へのリチウムのドープ反応が「充電」であり、本発明の試験電池のように対極にリチウム金属を使用した電池では、炭素極へのドープ反応が「放電」と呼ぶことになり、用いる対極により同じ炭素極へのリチウムのドープ反応の呼び方が異なる。そこでここでは、便宜上炭素極へのリチウムのドープ反応を「充電」と記述することにする。逆に「放電」とは試験電池では充電反応であるが、炭素質材料からのリチウムの脱ドープ反応であるため便宜上「放電」と記述することにする。ここで採用した充電方法は定電流定電圧法であり、具体的には端子電圧が0mVになるまで0.5mA/cmで定電流充電を行い、端子電圧を0mVに達した後、端子電圧0mVで定電圧充電を行い電流値が20μAに達するまで充電を継続した。このとき、供給した電気量を電極の炭素質材料の質量で除した値を炭素質材料の単位質量当たりの充電容量(mAh/g)と定義した。充電終了後、30分間電池回路を開放し、その後放電を行った。放電は0.5mA/cmで定電流放電を行い、終止電圧を1.5Vとした。このとき放電した電気量を電極の炭素質材料の質量で除した値を炭素質材料の単位質量当たりの放電容量(mAh/g)と定義する。不可逆容量は、充電容量-放電容量として計算される。同一試料を用いて作製した試験電池についてのn=3の測定値を平均して充放電容量及び不可逆容量を決定した。表3に電池特性を示す。
Figure JPOXMLDOC01-appb-T000006
 
 実施例の炭素質材料は、いずれも、比較例のものより、カリウム、カルシウム、マグネシウムなどの金属元素の含有量が低いことが確認できた。実施例1の炭素質材料は、比較例2及び比較例3のそれと比べ、カリウム及びカルシウムの含有量が大幅に低減された。すなわち、500℃以上の熱履歴のない植物由来の有機物を、そのまま酸を用いて脱灰することで、微粉を用いなくても効率的に植物由来の有機物に含まれる灰分の除去が可能となった。更に、これにより、脱灰前に粉砕工程が不要となるほか、脱灰工程で微粉を用いることによる作業性の低下を防止できる。
 更に、表3の結果から、本発明の方法で炭素質材料中のカリウム及びカルシウムなどの含有量を低減することにより、これを用いたリチウムイオン二次電池の充放電特性を大幅に向上できることを確認した。
 更に、実施例1の炭素質材料は、リン及び硫黄が本願発明の範囲内にあり、カリウム及びカルシウムの含有量が、比較例2及び比較例3のそれと比べ大幅に低減された。また、本発明の方法で炭素質材料中のカリウム及びカルシウムなどの含有量を低減することにより、これを非水電解質二次電池用負極電極に用いて電池とした場合に、充放電容量及び充放電効率を向上させることができる。
 リンや硫黄といった植物由来の炭素以外の元素を含むことにより、最適な非水電解質二次電池負極用炭素質材料が得られる理由は定かではないが、一部は炭素原子と共有結合をしているものと考えられる。例えば、ベンゼン環の炭素-炭素間の結合距離は、1.337Åであり、そこに上記原子が結合することにより、該結合距離が増加する。このように、結合距離が増加することにより、炭素質材料の結晶子構造が崩れ、ランダム構造となり、新たな細孔が形成し、リチウムイオンのドープ源となる。また、前記炭素以外の元素は、リチウムイオンとの親和性が高いために、リチウムイオンのドープ量は、新たな細孔形成に伴う構造制御によるドープ量の他に、前記炭素以外の元素との親和性に伴うドープ量になり、炭素質材料のドープ量は更に増加し、サイクル性及び負荷特性に優れるとともに、充放電容量及び充放電効率を向上させることができる。また一部のリンや硫黄は電気的に安定な化合物の状態で炭素構造中に取り込まれ、性能には悪影響を与えることはないものと推測される。
(実施例6)
 ブレンドコーヒー豆を抽出後のコーヒー残渣100gに対して1%塩酸300g(pH0.5)を加え、20℃で1時間攪拌した後ろ過した。20℃の水300gを加えて1時間攪拌した後ろ過する水洗操作を3回繰り返して脱灰処理し、脱灰コーヒー抽出残渣を得た。得られた脱灰コーヒー抽出残渣を窒素ガス雰囲気中で乾燥させたのち、700℃で脱タールして炭素質前駆体を調製した。これをロッドミルを用いて粉砕し、炭素質前駆体微粒子とした。次にこの炭素質前駆体微粒子を1250℃で1時間本焼成し、平均粒子径9.8μmの炭素質材料6を得た。脱灰及び焼成の条件、並びに得られた炭素質材料の物性を表4に示す。
(実施例7~9)
 脱灰温度を、それぞれ、5℃、40℃、70℃とした以外は、実施例6と同様にして、炭素質材料7~9を得た。得られた炭素質材料の物性を表4に示す。
(実施例10)
 使用コーヒー残渣として、ブラジル豆(アラビカ種)を抽出した後の残渣を使用した以外は、実施例6と同様にして、炭素質材料10を得た。得られた炭素質材料の物性を表4に示す。
(実施例11)
 使用コーヒー残渣として、焙煎度の異なるブラジル豆(アラビカ種)を抽出した後の残渣を使用した以外は、実施例6と同様にして、炭素質材料11を得た。得られた炭素質材料の物性を表4に示す。
(実施例12)
 使用コーヒー残渣として、ベトナム豆(カネフォラ種)を抽出した後の残渣を使用した以外は、実施例6と同様にして、炭素質材料12を得た。得られた炭素質材料の物性を表4に示す。
(実施例13)
 脱灰処理として、コーヒー残渣100gに対して1%塩酸300gを加え、100℃で1時間攪拌した後ろ過した。沸騰水300gを加えて1時間攪拌した後ろ過する水洗操作を3回繰り返して行う以外は、実施例6と同様にして、炭素質材料13を得た。得られた炭素質材料の物性を表4に示す。
(比較例6)
 脱灰工程を行わなかった以外は、実施例6と同様にして比較炭素質材料6を得た。得られた炭素質材料の物性を表4に示す。
(比較例7)
 脱灰処理に、塩酸を使用せず水(pH7.5)を使用した以外は、実施例6と同様にして、比較炭素質材料7を得た。得られた炭素質材料の物性を表4に示す。
Figure JPOXMLDOC01-appb-T000007
 
(活物質のドープ-脱ドープ試験)
 実施例6~13並びに比較例6及び7で得られた炭素質材料6~13及び比較炭素質材料6~7を用いて、前記「(活物質のドープ-脱ドープ試験)」の(a)~(c)の操作を行い、負極電極及び非水電解質二次電池を作製し、そして電極性能の評価を行った。表5に電池特性を示す。
Figure JPOXMLDOC01-appb-T000008
 
 実施例6の炭素質材料は、比較例6及び比較例7のそれと比べ、カリウム及びカルシウムの含有量が大幅に低減された。一方、実施例6~12と実施例13とを比較するに、酸を用い本発明における好ましい温度範囲内(0℃~80℃)で脱灰を行うことにより、高温の酸を用いた場合と同程度のカリウム及びカルシウムの含有量としつつ、この炭素質材料を使用した電池の放電容量をそのままに不可逆容量が低下し、充放電効率が向上することを確認できた。
(実施例14)
 抽出後のコーヒー残渣100gに対して1%塩酸300gを加え、20℃で1時間攪拌した後ろ過し、20℃の水300gを加えて水洗する洗浄操作を3回繰り返して脱灰処理し、脱灰コーヒー抽出残渣を得た。得られた脱灰コーヒー抽出残渣を窒素ガス雰囲気中150℃で乾燥させたのち、管状炉で窒素気流下、700℃で1時間脱タールして予備炭素化を行った。これをロッドミルを用いて粉砕した後、38μmの篩で篩分し、粗大粒子をカットして炭素前駆体微粒子とした。次にこの炭素前駆体を横型管状炉に入れ、窒素ガスを流しながら、1250℃で1時間保持して炭素化し、平均粒子径6.1μmの炭素質材料14を得た。
(実施例15)
 使用コーヒー残渣として、焙煎度の異なるブラジル豆(アラビカ種)を抽出したものを使用した以外は、炭素質材料14と同様にして、炭素質材料15を得た。
(実施例16)
 使用コーヒー残渣として、ベトナム豆(カネフォラ種)を抽出したものを使用した以外は、炭素質材料14と同様にして、炭素質材料16を得た。
(実施例17)
 抽出後のコーヒー残渣2000g(含水率65%)に対して、35%塩酸(純正化学株式会社製 特級)171g、純水5830gを加え、pH0.5とした。液温20℃で1時間攪拌した後、ろ過し、酸処理コーヒー抽出残渣を得た。その後、酸処理コーヒー抽出残渣に、純水6000gを加え、1時間攪拌する水洗操作を3回繰り返して脱灰処理し、脱灰コーヒー抽出残渣を得た。
 得られた脱灰コーヒー抽出残渣を窒素ガス雰囲気中150℃で乾燥させた後、管状炉にて、380℃で1時間脱タールして、脱タール脱灰コーヒー抽出残渣を得た。得られた脱タール脱灰コーヒー抽出残渣50gを、アルミナケースに入れ、電気炉で空気気流下、260℃、1時間酸化処理を行い、酸化処理コーヒー抽出残渣を得た。
 つづいて、この酸化処理コーヒー抽出残渣30gを、管状炉にて、窒素気流下、700℃で1時間脱タールして予備炭素化を行った。これをロッドミルで粉砕し、炭素前駆体微粒子とした。次にこの炭素前駆体微粒子を横型管状炉に入れ、窒素ガスを流しながら、1250℃で1時間保持して炭素化し、平均粒子径6.2μmの炭素質材料17を得た。
(実施例18)
 平均粒子径を11μmにした以外は、実施例13と同様にして炭素質材料18を得た。
(比較例8)
 本焼成温度を800℃とした以外は実施例13と同様にして、比較炭素質材料8を得た。
 表7に、実施例及び比較例の炭素質材料を用いた負極電極を作成し、以下に示す方法で測定した抵抗値並びに上記と同様にして測定した電池特性を示す。
(測定セルの作成方法)
 上記実施例又は比較例で得られた炭素質材料各94質量部、ポリフッ化ビニリデン(クレハ製KF#9100)6質量部にNMPを加えてペースト状にし、銅箔上に均一に塗布した。乾燥した後、塗工電極を直径15mmの円板状に打ち抜き、これをプレスすることで負極電極を作製した。
 コバルト酸リチウム(LiCoO2,日本化学工業製「セルシードC-5H」)94質量部、カーボンブラック3質量部、ポリフッ化ビニリデン(クレハ製KF#1300)3質量部にNMPを加えてペースト状にし、アルミニウム箔上に均一に塗布した。乾燥した後、塗工電極を直径14mmの円板上に打ち抜く。なお、(c)で測定した負極活物質の充電容量の95%となるよう正極電極中のコバルト酸リチウムの量を調整した。コバルト酸リチウムの容量を150mAh/gとして計算した。
 このようにして調製した電極の対を用い、電解液としてはエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートを容量比で1:2:2で混合した混合溶媒に1.5モル/リットルの割合でLiPFを加えたものを使用し、直径19mmの硼珪酸塩ガラス繊維製微細細孔膜のセパレータとして、ポリエチレン製のガスケットを用いて、Arグローブボックス中で、2032サイズのコイン型非水電解質系リチウム二次電池を組み立てた。
(直流抵抗の測定方法)
 はじめに2回充放電を繰り返してエージングを行う。エージングにおける電流値のCレートへの換算は、先に規定したコバルト酸リチウムの電気容量と質量から算出した。充電は定電流定電圧により行う。充電条件は4.2Vになるまで一定の電流0.2C(1時間で充電するために必要な電流値が1Cと定義される)で充電を行い、その後、電圧を4.2Vに保持するように(定電圧に保持しながら)電流値を減衰させて、電流値が(1/100)Cに達するまで充電を継続する。充電終了後、30分間電池回路を開放し、その後放電を行った。放電は電池電圧が2.75Vに達するまで一定の電流0.2Cで行った。2回目の充放電は電流値をそれぞれ0.4Cとした。
 次に、容量がSOC(State of Charge)50%に達するまで、0.4Cで充電した後、低温恒温器内(0℃雰囲気)でパルス充放電を行った。パルス充放電は一定電流で10秒充電した後に600秒開回路、10秒放電した後に600秒開回路を1セットとして、0.5C、1C、2Cの各電流で測定する。各電流に対する電圧変化をプロットし、その線形近似の傾きを直流抵抗として算出した。
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
 
 表6から明らかなように、粒径の小さい実施例14~17の炭素質材料を使用した負極電極の抵抗は小さく、その上、これを使用した電池の不可逆容量も小さい。以上の結果から、大電流供給と受け入れを繰り返す高い入出力特性が同時に求められるハイブリッド自動車(HEV)用二次電池用として、特に純度が高く特定の物性を有す本発明の炭素質材料が有用であることが分かる。
(炭素質材料調製)
 本実施例、比較例においては、コーヒー豆残渣及びヤシガラを以下の方法で負極用炭素質材料粉末とする。植物由来の有機物を原料とする炭素質材料粉末は、以下の方法で作成する。
(実施例19)
 抽出後のブレンドコーヒー残渣100gに対して1%塩酸300gを加え、20℃で1時間攪拌した後ろ過した。次に20℃の水300gを加えて1時間攪拌した後ろ過する水洗操作を3回繰り返して脱灰処理し、脱灰コーヒー抽出残渣を得た。得られた脱灰コーヒー抽出残渣を窒素ガス雰囲気中で乾燥させたのち、700℃で脱タールして予備炭素化を行った。これをロッドミルを用いて粉砕し、炭素前駆体微粒子とした。次にこの炭素前駆体を1250℃で1時間本焼成し、平均粒子径10μmの炭素質材料19を得た。検討した炭素質材料の諸特性を、表8にそれぞれ示す。
(実施例20)
 使用コーヒー残渣として、浅煎りブラジル豆を抽出したものを使用した以外は、実施例19と同様にして、炭素質材料20を得た。得られた炭素質材料の諸特性を、表8に示す。
(実施例21)
 使用コーヒー残渣として、深煎りブラジル豆を抽出したものを使用した以外は、実施例19と同様にして、炭素質材料21を得た。得られた炭素質材料の諸特性を、表8に示す。
(実施例22)
 焼成温度を800℃とした以外は実施例19と同様にして、炭素質材料22を得た。得られた炭素質材料の諸特性を、表8にそれぞれ示す。
(比較例9)
 椰子殻チャーを窒素ガス雰囲気中(常圧)で600℃で1時間仮焼成した後、粉砕し、平均粒径19μmの粉末状炭素前駆体とした。次に、この粉末状炭素前駆体を、35%塩酸に1時間浸漬した後、沸騰した水で1時間洗浄する洗浄操作を2回繰り返して脱灰処理し、脱灰粉末状炭素前駆体を得た。得られた脱灰粉末状炭素前駆体10gを、横型管状炉中に置き、窒素雰囲気下、1200℃で1時間本焼成を行い、比較炭素質材料9を得た。得られた比較炭素質材料9の諸特性を表8に示す。
Figure JPOXMLDOC01-appb-T000011
 
(活物質のドープ-脱ドープ試験)
(a)電極作製
 上記炭素質材料とバインダに溶媒を加えてペースト状にし、銅箔上に均一に塗布した。乾燥した後、銅箔より直径15mmの円板状に打ち抜き、これをプレスして実施例23~27及び比較例10~12の電極とした。表9に、用いた炭素質材料およびバインダ、配合比をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000012
 
 なお、表中、使用されている略号のバインダーは以下のとおりである。
SBR:スチレン・ブタジエン・ラバー
CMC:カルボキシメチルセルロース
PVA:ポリビニルアルコール
PAA:ポリアクリル酸塩
PVDF:ポリフッ化ビニリデン(株式会社クレハ製「KF#9100」)
 前記「(活物質のドープ-脱ドープ試験)」の(b)及び(c)の操作を行い、負極電極及び非水電解質二次電池を作製し、そして電極性能の評価を行った。表10に、電池の初期特性を示す。
(b)電池暴露試験
 上記構成のリチウム二次電池について、25℃、50%RH、空気中に1週間放置した。試験電池の作製と電池容量の測定は、暴露後の電極を試験極として用いた以外は暴露前の試験と同様に行った。
(c)サイクル試験
 (負極電極の作製)
 実施炭素1の電極合剤を厚み18μmの銅箔の片面上に均一に塗布し、これを120℃25分加熱・乾燥した。乾燥後、直径15mmの円盤状に打ち抜き、これをプレスすることで負極電極を作製した。なお円盤状負極電極が有する活物質の質量は10mgとなるように調整した。
 (正極電極の作製)
 コバルト酸リチウム(日本化学工業性「セルシードC-5」)94質量部、カーボンブラック3質量部、ポリフッ化ビニリデン(株式会社クレハ製KF#1300)3質量部、カーボンブラック3質量部にNMPを添加し、混合して正極用合剤を調製した。得られた合剤を厚さ50μmのアルミ箔上に均一に塗布した。乾燥した後、塗工電極を直径14mmの円盤状に打ち抜き、正極電極を作製した。なお、前述に記載の方法で測定した実施例23における活物質の単位質量あたりの充電容量の95%となるよう正極電極中のコバルト酸リチウムの量を調整した。コバルト酸リチウムの容量を150mAh/gとして計算した。
 このようにして製造した電極の対を用い、電解液としてエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとを体積比で1:2:2に混合した混合溶媒に1.5モル/リットルの割合でLiPF6を加えたものを使用し、直径19mmの硼珪酸塩ガラス繊維製微細細孔膜をセパレータとして、ポリエチレン製のガスケットを用いてArグローブボックス中で2032サイズのコイン型非水電解質系リチウム二次電池を組み立てた。
 ここではじめに3回充放電を繰り返してエージングを行った後、サイクル試験を開始した。サイクル試験で採用した定電流定電圧条件は、電池電圧が4.2Vになるまで、一定の電流密度2.5mA/cmで充電を行い、その後、電圧を4.2Vに保持するように(定電圧に保持しながら)電流値を連続的に変化させて電流値が50μAに達するまで充電を継続する。充電終了後、10分間電池回路を開放し、その後放電を行った。放電は電池電圧が3.0Vに達するまで一定の電流密度2.5mA/cmで行った。この充電および放電を50℃で100回繰り返し、100回後の放電容量を求めた。また、100回後の放電容量を初回の放電容量で除した値を維持率(%)とした。
 表10に、作成したリチウム二次電池について、暴露試験及びサイクルの特性を示す。
Figure JPOXMLDOC01-appb-T000013
 
 電極に本願発明の炭素質材料を使用すると、水溶性樹脂をバインダーとして使用しても、暴露試験後の電池の不可逆容量は増加しないことが確認できた。これは、pH3.0以下の酸性溶液中で脱灰処理を行うことによって得た本願発明の負極用炭素質材料が、難黒鉛化性炭素質材料であるにもかかわらず水分吸着性が低いために、水溶性樹脂のような吸湿性の高いバインダーを使用しても、電極として問題となるほどの吸湿性を有さないためと考えられる。このため、本願発明の非水電解質二次電池は、暴露試験において良好な耐久性を示した。更に、水溶性樹脂の使用が可能となった結果、サイクル試験においても、優れた耐久性を示す。
 前記実施例19~22で製造した炭素質材料を用いて、本発明の非水電解質二次電池に用いられる添加剤の効果を検討した。
(活物質のドープ-脱ドープ試験)
(a)電極作製
 前記各実施例及び比較例で製造した負極材料を用いて、以下のようにして非水電解液二次電池を作成し、その特性を評価した。本発明の負極材料は非水電解質二次電池の負極として適しているが、電池活物質の放電容量及び不可逆容量を、対極性能のバラツキに影響されることなく精度良く評価するために、特性の安定したリチウム金属を対極として、前記で得られた電極を用いてリチウム二次電池を構成し、その特性を評価した。
 正極(炭素極)は次のようにして製造した。製造した負極材料(炭素質材料)を94質量部、ポリフッ化ビニリデン6質量部に、N-メチル-2-ピロリドンを加えてペースト状とし、ペーストを銅箔上に均一に塗布し、乾燥させた後、シート状の電極を直径15mmの円板状に打ち抜き、これをプレスして電極とした。電極中の炭素質材料(負極材料)の質量は10mgになるように調整し、炭素質材料の充填率(電極中の炭素質材料密度/ブタノール法による真密度)が約61%となるようにプレスした。
 負極(リチウム極)の調製は、Arガス雰囲気中のグローブボックス内で行った。予め2016サイズのコイン型電池用缶の外蓋に直径16mmのステンレススチール網円盤をスポット溶接した後、厚さ0.8mmの金属リチウム薄板を直径15mmの円板状に打ち抜いたものをステンレススチール網円盤に圧着し、電極とした。
(b)試験電池の作製
 上記正極及び負極を用い、電解液としてはエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートを容量比1:2:2で混合した混合溶媒に1.5mol/Lの割合でLiPFを、1あるいは3wt%の割合で表11に示した添加剤を加えたものを使用し、直径19mmの硼珪酸塩ガラス繊維製微細細孔膜のセパレータとして、ポリエチレン製のガスケットを用いて、Ar雰囲気のグローブボックス内で2016サイズのコイン型非水電解質リチウム二次電池を組み立てた。また、添加剤を用いない以外は同様のものを、比較電解質とし、比較例及び参考例(表11)にて使用した。
(c)電池容量の測定
 上記構成のリチウム二次電池について、充放電試験装置(東洋システム製「TOSCAT」)を用いて充放電試験を行い、充放電は定電流定電圧法により行った。ここで、「充電」は試験電池では放電反応であるが、この場合は炭素質材料へのリチウム挿入反応であるので、便宜上「充電」と記述する。逆に「放電」とは試験電池では充電反応であるが、炭素質材料からのリチウムの脱離反応であるため、便宜上「放電」と記述することにする。ここで採用した定電流定電圧法は、電池電圧が0Vになるまで一定の電流密度0.5mA/cmで充電を行い、その後、電圧を0Vに保持するように(定電圧を保持しながら)電流値を連続的に変化させて電流値が20μAに達するまで充電を継続する。このとき供給した電気量を電極の炭素質材料の質量で除した値を炭素質材料の単位質量あたりの充電容量(ドープ容量)(mAh/g)と定義した。充電終了後、30分間電池回路を開放し、その後放電を行った。放電は電池電圧が1.5Vに達するまで一定の電流密度0.5mA/cmで行い、このとき放電した電気量を電極の炭素質材料の質量で除した値を炭素質材料の単位質量あたりの放電容量(脱ドープ容量)(mAh/g)と定義する。不可逆容量(非脱ドープ容量)(mAh/g)は、充電量-放電量として計算され、効率(%)は(放電容量/充電容量)×100として算出される。同一試料を用いて作製した試験電池についてのn=3の測定値を平均して充放電容量及び不可逆容量を決定した。
(高温サイクル試験)
(a)測定セルの作成方法
上記炭素質材料94質量部、ポリフッ化ビニリデン(クレハ製KF#9100)6質量部にNMPを加えてペースト状にし、銅箔上に均一に塗布した。乾燥した後、塗工電極を直径15mmの円板状に打ち抜き、これをプレスすることで負極電極を作製した。
 コバルト酸リチウム(LiCoO,日本化学工業製「セルシードC-5H」)94質量部、カーボンブラック3質量部、ポリフッ化ビニリデン(クレハ製KF#1300)3質量部にNMPを加えてペースト状にし、アルミニウム箔上に均一に塗布した。乾燥した後、塗工電極を直径14mmの円板状に打ち抜く。なお、(c)で測定した負極活物質の充電容量の95%となるよう正極電極中のコバルト酸リチウムの量を調整した。このとき、コバルト酸リチウムの容量を150mAh/gとして計算した。
 このようにして調製した電極の対を用い、電解液としては活物質のドープ-脱ドープ試験で使用したものと同じものを使用して、直径19mmの硼珪酸塩ガラス繊維製微細細孔膜のセパレータとして、ポリエチレン製のガスケットを用いて、Arグローブボックス中で、2032サイズのコイン型非水電解質系リチウム二次電池を組み立てた。
(b)サイクル試験
 充電は定電流定電圧により行う。充電条件は4.2Vになるまで一定の電流(2C;1時間で充電するために必要な電流値が1Cと定義される)で充電を行い、その後、電圧を4.2Vに保持するように(定電圧に保持しながら)電流値を減衰させて、電流値が(1/100)Cに達するまで充電を継続する。充電終了後、30分間電池回路を開放し、その後放電を行った。放電は電池電圧が2.75Vに達するまで一定の電流(2C)で行った。初めの3サイクルは25℃で行い、以降のサイクルは50℃の恒温槽内で行った。
 サイクル特性の評価は、50℃の恒温槽に移した初めの充放電を1サイクル目として、150サイクル後の放電容量を1サイクル目の放電容量で除した値を放電容量維持率(%)として行った。
 表11に使用した添加剤及び上記の製造方法にて作成したリチウム二次電池の特性を示す。比較例13と実施例28~31とを比較すると、本発明のLUMOが-1.10~1.11eVの添加剤を使用することにより、電池の高温サイクル特性が向上することがわかる。実施例32、及び33についても同様である。また、比較例14からLUMOが1.10eVを超えると高温サイクル特性が改善しないことがわかる。一方、比較例15ではd002やH/Cなどが範囲外にある炭素質材料を負極に用いたため、電池初期特性が悪い。
Figure JPOXMLDOC01-appb-T000014
 
(表中の添加剤の略号とLUMO)
VC:ビニレンカーボネート(0.0155eV)
FEC:フルオロエチレンカーボネート(0.9829eV)
CIEC:クロロエチレンカーボネート(0.1056eV)
PC:プロピレンカーボネート(1.3132eV)
電解液とLUMO
EC:エチレンカーボネート(1.2417eV)
DMC:ジメチルカーボネート(1.1366eV)
EMC:エチルメチルカーボネート(1.1301eV)
 更に、本明細書は、
[1]植物由来の有機物を炭素化して得られる炭素質材料であって、元素分析による水素原子と炭素原子の原子比(H/C)が0.1以下、平均粒子径Dv50が2μm以上50μm以下、X線回折法により求めた002面の平均面間隔が0.365nm以上0.400nm以下であり、カリウム元素含有量が0.5質量%以下、カルシウム元素含有量が0.02質量%以下であり、ブタノールを用いたピクノメータ法により求めた真密度(ρBt)とヘリウムを用いた乾式密度測定により求めた真密度(ρ)の比(ρ/ρBt)が1.18以上1.38以下である非水電解質二次電池負極用炭素質材料、
[2]前記植物由来の有機物は、コーヒー豆由来の有機物を含む[2]に記載の非水電解質二次電池負極用炭素質材料、
[3]植物由来の有機物に対し、pH3.0以下の酸性溶液を用いて0℃以上80℃未満の温度で脱灰をする工程と、前記脱灰をされた有機物を脱タールする工程と、を含む非水電解質二次電池用炭素質材料製造用の中間体の製造方法、
[4]前記植物由来の有機物は、コーヒー豆由来の有機物を含む[3]に記載の方法、
[5]前記脱灰をされた有機物を粉砕する工程を更に含む[3]又は[4]に記載の方法、
[6][3]又は[4]に記載の方法で製造した前記中間体を、1000℃以上1500℃以下で焼成する工程と、前記中間体又はその被熱処理物を粉砕する工程と、を含む非水電解質二次電池用炭素質材料の製造方法、
[7][5]に記載の方法で製造した前記中間体を、1000℃以上1500℃以下で焼成する工程を含む非水電解質二次電池用炭素質材料の製造方法、
[8][1]又は[2]に記載の非水電解質二次電池用炭素質材料、又は、[6]又は[7]に記載の方法で製造される非水電解質二次電池用炭素質材料を含む非水電解質二次電池用負極電極、
[9][8]に記載の非水電解質二次電池用負極電極を備える非水電解質二次電池、及び
[10][9]に記載の非水電解質二次電池を搭載した車両、
を開示する。
 更に、本明細書は、
[1]植物由来の有機物を炭素化して得られる炭素質材料であって、カリウム含有量が0.5質量%以下、平均粒子径Dv50が1μm以上8μm以下、粉末X線回折法により求められる002面の平均面間隔が0.365nm以上0.400nm以下、元素分析による水素原子と炭素原子の原子比(H/C)が0.1以下である非水電解質二次電池負極用炭素質材料、
[2]前記炭素質材料のカルシウム含有量が0.02質量%以下である[1]に記載の非水電解質二次電池負極用炭素質材料、
[3]ブタノール法により求めた真密度が1.51g/cm以上1.65g/cm以下である[1]又は[2]に記載の非水電解質二次電池負極用炭素質材料、
[4]前記植物由来の有機物は、コーヒー豆由来の有機物を含む[1]から[3]のいずれかに記載の非水電解質二次電池負極用炭素質材料、
[5]植物由来の有機物を炭素化して得られる非水電解質二次電池負極用炭素質材料製造用の中間体であって、カリウム含有量が0.5質量%以下、平均粒子径Dv50が1μm以上10μm以下である中間体、
[6]前記中間体のカルシウム含有量が0.02質量%以下である[5]に記載の中間体、
[7]前記植物由来の有機物は、コーヒー豆由来の有機物を含む[5]又は[6]に記載の中間体、
[8][1]から[4]のいずれかに記載の非水電解質二次電池負極用炭素質材料を含む非水電解質二次電池用負極電極、
[9][8]に記載の非水電解質二次電池用負極電極を備える非水電解質二次電池、及び
[10][9]に記載の非水電解質二次電池を搭載した車両、
を開示する。
 更に、本明細書は、
[1]植物由来の有機物を炭素化して得られる炭素質材料であって、カリウム含有量が0.5質量%以下、平均粒子径Dv50が2μm以上50μm以下、粉末X線回折法により求められる002面の平均面間隔が0.365nm以上0.400nm以下、元素分析による水素原子と炭素原子の原子比(H/C)が0.1以下である炭素質材料と、水溶性高分子を含む非水電解質二次電池用負極電極、
[2]前記炭素質材料のカルシウム含有量が0.02質量%以下である[1]に記載の非水電解質二次電池用負極電極、
[3]ブタノール法により求めた真密度が1.51g/cm以上1.65g/cm以下である[1]又は[2]に記載の非水電解質二次電池用負極電極、
[4]前記植物由来の有機物がコーヒー豆由来の有機物を含む[1]から[3]のいずれか記載の非水電解質二次電池用負極電極、
[5]前記炭素質材料は、ブタノール法により求めた真密度(ρBt)とヘリウムを用いた乾式密度測定により求めた真密度(ρ)の比(ρ/ρBt)が1.18以上1.38以下である[1]から[4]のいずれかに記載の非水電解質二次電池用負極電極、
[6]前記水溶性高分子は、カルボキシメチルセルロース誘導体、ポリビニルアルコール誘導体、ポリアクリル酸塩から選択される少なくとも1種を含む[1]から[5]のいずれかに記載の非水電解質二次電池用負極電極、
[7]前記水溶性高分子の質量平均分子量が10,000以上6,000,000以下である[1]から[6]のいずれかに記載の非水電解質二次電池用負極電極、
[8]前記水溶性高分子は、共役ジエン又は(メタ)アクリル酸エステルを構成単位として含む重合体を含む[1]から[7]のいずれかに記載の非水電解質二次電池用負極電極、
[9][1]から[8]のいずれかに記載の非水電解質二次電池用負極電極を備える非水電解質二次電池、及び
[10][9]に記載の非水電解質二次電池を搭載した車両、
を開示する。
 更に、本明細書は、
[1]植物由来の有機物を炭素化して得られる炭素質材料であって、カリウム含有量が0.5質量%以下、平均粒子径Dv50が2μm以上50μm以下、粉末X線回折法により求められる002面の平均面間隔が0.365nm以上0.400nm以下、元素分析による水素原子と炭素原子の原子比(H/C)が0.1以下である非水電解質二次電池負極用炭素質材料を含む負極と、半経験的分子軌道法のAM1(Austin Model 1)計算法を使用して算出したLUMOの値が-1.10eV以上1.11eV以下の範囲である添加剤を含む電解液を含む非水電解質二次電池、
[2]前記炭素質材料のカルシウム含有量が0.02質量%以下である[1]に記載の非水電解質二次電池、
[3]ブタノール法により求めた真密度が1.51g/cm以上1.65g/cm以下である[1]又は[2]に記載の非水電解質二次電池、
[4]前記植物由来の有機物がコーヒー豆由来の有機物を含む[1]から[3]のいずれかに記載の非水電解質二次電池、及び
[5][1]から[4]のいずれかに記載の非水電解質二次電池を搭載した車両、
を開示する。
 更に、本明細書は、
[1]リン元素を0.02質量%以上かつ/又は硫黄元素を0.05質量%以上の量で含む炭素質材料であって、元素分析による水素原子と炭素原子の原子比(H/C)が0.1以下、平均粒子径Dv50が2μm以上50μm以下、X線回折法により求めた002面の平均面間隔が0.365nm以上0.400nm以下であり、カリウム元素含有量が0.5質量%以下、カルシウム元素含有量が0.02質量%以下である非水電解質二次電池負極用炭素質材料、
[2]ブタノールを用いたピクノメータ法により求めた真密度が1.54g/cm以上である[2]に記載の非水電解質二次電池負極用炭素質材料、
[3]マグネシウム元素含有量が0.01質量%以下である[1]又は[2]に記載の非水電解質二次電池負極用炭素質材料、
[4]ケイ素元素含有量が0.02質量%以下である[1]から[3]のいずれか一項に記載の非水電解質二次電池負極用炭素質材料、
[5]比表面積が13m/g以下である[1]から[4]のいずれかに記載の非水電解質二次電池負極用炭素質材料、
[6][1]から[5]のいずれかに記載の非水電解質二次電池負極用炭素質材料を含む非水電解質二次電池用負極電極、
[7][6]に記載の非水電解質二次電池用負極電極を備える非水電解質二次電池、及び
[8][7]に記載の非水電解質二次電池を搭載した車両、
を開示する。

Claims (27)

  1.  植物由来の有機物を炭素化して得られる炭素質材料であって、元素分析による水素原子と炭素原子との原子比(H/C)が0.1以下、平均粒子径Dv50が2μm以上50μm以下、粉末X線回折法により求めた002面の平均面間隔が0.365nm以上0.400nm以下であり、カリウム元素含有量が0.5質量%以下、カルシウム元素含有量が0.02質量%以下である非水電解質二次電池負極用炭素質材料。
  2.  ブタノールを用いたピクノメータ法により求めた真密度(ρBt)とヘリウムを用いた乾式密度測定により求めた真密度(ρ)との比(ρ/ρBt)が1.18以上1.38以下である、請求項1に記載の非水電解質二次電池負極用炭素質材料。
  3.  平均粒子径Dv50が2μm以上8μm以下である請求項1又は2に記載の非水電解質二次電池負極用炭素質材料。
  4.  ブタノールを用いたピクノメータ法により求めた真密度が1.51g/cm以上である請求項1から3のいずれか一項に記載の非水電解質二次電池負極用炭素質材料。
  5.  マグネシウム元素含有量が0.01質量%以下である請求項1から4のいずれか一項に記載の非水電解質二次電池負極用炭素質材料。
  6.  ケイ素元素含有量が0.02質量%以下である請求項1から5のいずれか一項に記載の非水電解質二次電池負極用炭素質材料。
  7.  比表面積が13m/g以下である請求項1から6のいずれか一項に記載の非水電解質二次電池負極用炭素質材料。
  8.  前記植物由来の有機物は、コーヒー豆由来の有機物を含む請求項1から7のいずれか一項に記載の非水電解質二次電池負極用炭素質材料。
  9.  平均粒子径が100μm以上である植物由来の有機物に対し、pH3.0以下の酸性溶液を用いて脱灰をする工程と、
     前記脱灰された有機物を300℃以上1000℃以下で脱タールする工程と、
    を含む非水電解質二次電池負極用炭素質材料製造用の中間体の製造方法。
  10.  前記脱灰工程を、0℃以上80℃以下の温度で行う、請求項9に記載の非水電解質二次電池負極用炭素質材料製造用の中間体の製造方法。
  11.  前記脱タール工程を、燃焼ガス雰囲気下、300℃以上800℃以下で行う請求項9又は10に記載の非水電解質二次電池負極用炭素質材料製造用の中間体の製造方法。
  12.  前記植物由来の有機物は、500℃以上での熱処理が行われていないものである請求項9から11のいずれか一項に記載の非水電解質二次電池負極用炭素質材料製造用の中間体の製造方法。
  13.  前記植物由来の有機物は、コーヒー豆由来の有機物を含む請求項9から12のいずれか一項に記載の非水電解質二次電池負極用炭素質材料製造用の中間体の製造方法。
  14.  前記脱灰された有機物を粉砕する工程を更に含む請求項9から13のいずれか一項に記載の非水電解質二次電池負極用炭素質材料製造用の中間体の製造方法。
  15.  請求項9から14のいずれか一項に記載の方法によって得られる中間体。
  16.  請求項9から13のいずれか一項に記載の方法で製造した前記中間体を、1000℃以上1500℃以下で焼成する工程と、
     前記中間体又はその焼成物を粉砕する工程と、
    を含む非水電解質二次電池負極用炭素質材料の製造方法。
  17.  請求項14に記載の方法で製造した前記中間体を、1000℃以上1500℃以下で焼成する工程を含む非水電解質二次電池負極用炭素質材料の製造方法。
  18.  請求項16又は17に記載の製造方法によって得られる非水電解質二次電池負極用炭素質材料。
  19.  請求項1から8及び請求項18のいずれか一項に記載の非水電解質二次電池負極用炭素質材料を含む非水電解質二次電池用負極電極。
  20.  水溶性高分子を含む、請求項19に記載の非水電解質二次電池用負極電極。
  21.  前記水溶性高分子が、共役ジエン又はアクリル酸エステルを構成単位として含む重合体である、請求項20に記載の非水電解質二次電池用負極電極。
  22.  前記水溶性高分子が、カルボキシメチルセルロース誘導体、ポリビニルアルコール誘導体、ポリアクリル酸塩から選択される少なくとも1種である、請求項20又は21に記載の非水電解質二次電池用負極電極。
  23.  前記水溶性高分子の質量平均分子量が10,000以上6,000,000以下である請求項20から22のいずれか一項に記載の非水電解質二次電池用負極電極。
  24.  請求項19から23のいずれか一項に記載の非水電解質二次電池用負極電極を備える非水電解質二次電池。
  25.  半経験的分子軌道法のAM1(Austin Model 1)計算法を使用して算出したLUMOの値が-1.10以上1.11eV以下の範囲である添加剤を含む電解液を含む請求項24に記載の非水電解質二次電池。
  26.  前記添加剤が、フルオロエチレンカーボネート、トリメチルシリルリン酸、四フッ化ホウ酸リチウム、クロロエチレンカーボネート、プロパンスルトン、エチレンサルファイト、ビニレンカーボネート、ビニルエチレンカーボネート、ジオキサチオランジオキシド、及びリチウムビス(オキサラト)ボレートからなる群から選択される1つ以上の添加剤である、請求項25に記載の非水電解質二次電池。
  27.  請求項24から26のいずれか一項に記載の非水電解質二次電池を搭載した車両。
PCT/JP2013/073425 2012-09-06 2013-08-30 非水電解質二次電池負極用炭素質材料及びその製造方法 WO2014038491A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13835914.6A EP2894702A4 (en) 2012-09-06 2013-08-30 CARBONACEOUS MATERIAL FOR NEGATIVE ELECTRODE OF NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, AND METHOD OF MANUFACTURING THE SAME
CN201380033327.2A CN104412425B (zh) 2012-09-06 2013-08-30 非水电解质二次电池负极用碳质材料及其制造方法
JP2014534335A JP6345116B2 (ja) 2012-09-06 2013-08-30 非水電解質二次電池負極用炭素質材料及びその製造方法
US14/420,385 US20150188137A1 (en) 2012-09-06 2013-08-30 Carbonaceous material for anode of nonaqueous electrolyte secondary battery, and method for manufacturing the same
KR1020147035350A KR101665843B1 (ko) 2012-09-06 2013-08-30 비수 전해질 2차 전지 음극용 탄소질 재료 및 이의 제조 방법

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2012-196561 2012-09-06
JP2012196561 2012-09-06
JP2012-196564 2012-09-06
JP2012-196562 2012-09-06
JP2012196562 2012-09-06
JP2012-196565 2012-09-06
JP2012196567 2012-09-06
JP2012196564 2012-09-06
JP2012196565 2012-09-06
JP2012-196567 2012-09-06
JP2012-196571 2012-09-06
JP2012196571 2012-09-06

Publications (1)

Publication Number Publication Date
WO2014038491A1 true WO2014038491A1 (ja) 2014-03-13

Family

ID=50237102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073425 WO2014038491A1 (ja) 2012-09-06 2013-08-30 非水電解質二次電池負極用炭素質材料及びその製造方法

Country Status (7)

Country Link
US (1) US20150188137A1 (ja)
EP (1) EP2894702A4 (ja)
JP (1) JP6345116B2 (ja)
KR (1) KR101665843B1 (ja)
CN (1) CN104412425B (ja)
TW (1) TWI641178B (ja)
WO (1) WO2014038491A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059892A1 (ja) * 2013-10-21 2015-04-30 株式会社クラレ 非水電解質二次電池負極用炭素質材料
WO2016035669A1 (ja) * 2014-09-02 2016-03-10 株式会社クラレ 植物由来炭素前駆体の精製方法
JP2016052956A (ja) * 2014-09-02 2016-04-14 株式会社クラレ 植物由来炭素前駆体の精製方法
JP2016052955A (ja) * 2014-09-02 2016-04-14 株式会社クラレ 植物由来炭素前駆体の精製方法
JP2016052954A (ja) * 2014-09-02 2016-04-14 株式会社クラレ 植物由来炭素前駆体の精製方法
JP2016052957A (ja) * 2014-09-02 2016-04-14 株式会社クラレ 植物由来炭素前駆体の精製方法
JP2016052958A (ja) * 2014-09-02 2016-04-14 株式会社クラレ 珈琲豆由来の炭化物の製造方法
KR20160129863A (ko) * 2014-03-31 2016-11-09 가부시끼가이샤 구레하 비수전해질 이차전지 음극용 탄소질 재료, 비수전해질 이차전지용 음극 전극, 비수전해질 이차전지 및 차량
WO2016199840A1 (ja) * 2015-06-12 2016-12-15 株式会社クラレ 電子材料用炭素質材料
EP3136482A4 (en) * 2014-03-31 2017-03-01 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrode secondary battery, and vehicle
WO2017057146A1 (ja) * 2015-09-30 2017-04-06 株式会社クレハ ナトリウムイオン二次電池負極用炭素質材料及びそれを用いたナトリウムイオン二次電池
JPWO2015152093A1 (ja) * 2014-03-31 2017-04-13 株式会社クレハ 非水電解質二次電池負極用炭素質材料、非水電解質二次電池用負極電極、非水電解質二次電池及び車両
WO2017073686A1 (ja) * 2015-10-30 2017-05-04 株式会社クラレ 非水電解質二次電池用炭素質材料、非水電解質二次電池用負極および非水電解質二次電池
WO2017073687A1 (ja) * 2015-10-30 2017-05-04 株式会社クラレ 非水電解質二次電池用炭素質材料、非水電解質二次電池用負極、非水電解質二次電池および非水電解質二次電池用炭素質材料の製造方法
JP2017084706A (ja) * 2015-10-30 2017-05-18 株式会社クラレ 非水電解質二次電池用炭素質材料、非水電解質二次電池用負極および非水電解質二次電池
JP2017084707A (ja) * 2015-10-30 2017-05-18 株式会社クラレ 非水電解質二次電池用炭素質材料の製造方法
WO2018034155A1 (ja) * 2016-08-16 2018-02-22 株式会社クラレ 非水電解質二次電池の負極活物質用の炭素質材料、非水電解質二次電池用負極、非水電解質二次電池ならびに炭素質材料の製造方法
WO2020071547A1 (ja) * 2018-10-04 2020-04-09 株式会社クラレ 炭素質材料、非水電解質二次電池用負極、非水電解質二次電池および炭素質材料の製造方法、並びに炭化物および炭化物の製造方法
WO2024154864A1 (ko) * 2023-01-17 2024-07-25 (주) 매그나텍 커피박 조성물 및 이를 포함하는 이차전지용 음극재

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101647960B1 (ko) * 2014-10-31 2016-08-17 한국에너지기술연구원 탄소 전극 및 이의 제조 방법
JP6698658B2 (ja) * 2015-08-04 2020-05-27 株式会社クラレ 植物原料由来の炭素前駆体
KR101994912B1 (ko) * 2016-03-28 2019-09-30 주식회사 엘지화학 전극 활물질 슬러리 및 이를 포함하는 리튬 이차전지
CN105858636A (zh) * 2016-04-05 2016-08-17 陕西科技大学 松针叶衍生微纳结构硬碳材料的制备方法
CN106082193B (zh) * 2016-06-14 2018-03-16 陕西科技大学 一种以藻类植物为碳源制备多级结构碳材料的方法
US20190157678A1 (en) * 2016-06-29 2019-05-23 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
KR102591739B1 (ko) 2017-07-06 2023-10-19 주식회사 쿠라레 비수 전해질 이차 전지의 부극 활물질용의 탄소질 재료, 비수 전해질 이차 전지용 부극, 비수 전해질 이차 전지 그리고 탄소질 재료의 제조 방법
CN110799456B (zh) 2017-07-06 2023-07-11 株式会社可乐丽 非水电解质二次电池的负极活性物质用的碳质材料、非水电解质二次电池用负极、非水电解质二次电池以及碳质材料的制造方法
TWI679795B (zh) * 2018-06-22 2019-12-11 楊玉琳 導電極板及其製備方法
US11360531B1 (en) * 2019-06-14 2022-06-14 Amazon Technologies, Inc. Redeployment of energy storage units
JPWO2021070825A1 (ja) * 2019-10-10 2021-04-15
US20210234198A1 (en) * 2020-01-29 2021-07-29 GM Global Technology Operations LLC Electrolyte for high-energy density, graphite-containing battery
CN111249765B (zh) * 2020-02-25 2021-04-06 中国科学院化学研究所 一种去除碳材料中金属离子的加压流体提取系统和方法
JP7190030B2 (ja) * 2020-03-27 2022-12-14 寧徳新能源科技有限公司 負極活物質及びそれを用いた電気化学デバイス及び電子設備
CN114335783B (zh) * 2021-12-29 2024-03-29 星恒电源股份有限公司 一种实现锂离子电池二次寿命的方法和应用
WO2023245534A1 (zh) * 2022-06-23 2023-12-28 宁德新能源科技有限公司 电化学装置及电子设备
CN114824165B (zh) * 2022-06-30 2022-10-14 宁德新能源科技有限公司 负极极片、电化学装置及电子设备
CN117882218A (zh) * 2022-08-30 2024-04-12 宁德新能源科技有限公司 电化学装置和电子设备
EP4442641A1 (en) 2023-04-06 2024-10-09 Haycarb Plc A process for preparing a high purity hard carbon material for sodium ion battery application

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07230803A (ja) * 1994-02-18 1995-08-29 Nippon Sanso Kk リチウム二次電池用の炭素負極材
JPH0864207A (ja) 1994-08-23 1996-03-08 Kureha Chem Ind Co Ltd 二次電池電極用炭素質材料およびその製造法
JPH08115723A (ja) * 1994-08-23 1996-05-07 Kureha Chem Ind Co Ltd 二次電池電極用炭素質材料
JPH09161801A (ja) 1995-10-03 1997-06-20 Kureha Chem Ind Co Ltd 非水溶媒系二次電池の電極用炭素質材料及びその製造方法、並びに非水溶媒系二次電池
JPH1021919A (ja) 1996-06-28 1998-01-23 Kureha Chem Ind Co Ltd 非水溶媒系二次電池の電極用炭素質材料およびその製造方法、並びに非水溶媒系二次電池
JPH10284089A (ja) * 1997-04-03 1998-10-23 Sony Corp 非水溶媒系二次電池の電極用炭素質材料及びその製造方法、並びに非水溶媒系二次電池
JP2000182670A (ja) * 1998-12-10 2000-06-30 Alcatel 低温での使用が可能な充電式リチウム電気化学電池
JP2000268823A (ja) 1999-03-19 2000-09-29 Sony Corp 炭素材料及び非水電解質電池の製造方法
JP2001223030A (ja) 2000-02-09 2001-08-17 Ngk Insulators Ltd リチウム二次電池
JP2005317469A (ja) 2004-04-30 2005-11-10 Nissan Motor Co Ltd リチウムイオン二次電池用負極、およびこれを用いてなるリチウムイオン二次電池
JP2006114507A (ja) * 1995-03-06 2006-04-27 Sony Corp 非水電解液二次電池用負極材料及びそれを用いた非水電解液二次電池
JP2007134286A (ja) 2005-11-14 2007-05-31 Hitachi Plant Technologies Ltd リチウム二次電池用負極材料及びリチウム二次電池
JP2009238681A (ja) * 2008-03-28 2009-10-15 Nissan Motor Co Ltd リチウムイオン電池用電極
WO2010035828A1 (ja) * 2008-09-29 2010-04-01 日清オイリオグループ株式会社 電池部品及び電池
WO2011157013A1 (zh) * 2010-06-18 2011-12-22 深圳市贝特瑞新能源材料股份有限公司 锂离子电池复合硬碳负极材料及其制备方法
JP2012160456A (ja) * 2007-04-04 2012-08-23 Sony Corp 二次電池用電極材料及びその製造方法、並びに、電気二重層キャパシタ用材料及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2156675C (en) * 1994-08-23 1999-03-09 Naohiro Sonobe Carbonaceous electrode material for secondary battery
JPH08138676A (ja) * 1994-09-16 1996-05-31 Sony Corp 負極材料及び非水電解液二次電池
JP4022926B2 (ja) * 1995-03-06 2007-12-19 ソニー株式会社 非水電解液二次電池用負極材料、その製造方法及びそれを用いた非水電解液二次電池
DE69602405T2 (de) * 1995-10-03 1999-12-16 Kureha Kagaku Kogyo K.K., Tokio/Tokyo Elektrodenmaterial aus Kohlenstoff für Sekundärbatterie und Verfahren zu seiner Herstellung
JP4975433B2 (ja) * 2004-04-05 2012-07-11 株式会社クレハ 大電流入出力非水電解質二次電池用負極材料、その製造方法および負極材料を用いる電池
JP4618308B2 (ja) * 2007-04-04 2011-01-26 ソニー株式会社 多孔質炭素材料及びその製造方法、並びに、吸着剤、マスク、吸着シート及び担持体
CN101916845B (zh) * 2010-08-05 2012-12-05 深圳市贝特瑞新能源材料股份有限公司 适合于动力与储能电池用的硬碳材料及其制备方法
GB201117242D0 (en) * 2011-10-06 2011-11-16 Fujifilm Mfg Europe Bv Method and device for manufacturing a barrier layer on a flexible subtrate
CN102403534A (zh) * 2011-12-01 2012-04-04 香河昆仑化学制品有限公司 一种高温锂离子电池电解液及制备方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07230803A (ja) * 1994-02-18 1995-08-29 Nippon Sanso Kk リチウム二次電池用の炭素負極材
JPH0864207A (ja) 1994-08-23 1996-03-08 Kureha Chem Ind Co Ltd 二次電池電極用炭素質材料およびその製造法
JPH08115723A (ja) * 1994-08-23 1996-05-07 Kureha Chem Ind Co Ltd 二次電池電極用炭素質材料
JP2006114507A (ja) * 1995-03-06 2006-04-27 Sony Corp 非水電解液二次電池用負極材料及びそれを用いた非水電解液二次電池
JPH09161801A (ja) 1995-10-03 1997-06-20 Kureha Chem Ind Co Ltd 非水溶媒系二次電池の電極用炭素質材料及びその製造方法、並びに非水溶媒系二次電池
JPH1021919A (ja) 1996-06-28 1998-01-23 Kureha Chem Ind Co Ltd 非水溶媒系二次電池の電極用炭素質材料およびその製造方法、並びに非水溶媒系二次電池
JPH10284089A (ja) * 1997-04-03 1998-10-23 Sony Corp 非水溶媒系二次電池の電極用炭素質材料及びその製造方法、並びに非水溶媒系二次電池
JP2000182670A (ja) * 1998-12-10 2000-06-30 Alcatel 低温での使用が可能な充電式リチウム電気化学電池
JP2000268823A (ja) 1999-03-19 2000-09-29 Sony Corp 炭素材料及び非水電解質電池の製造方法
JP2001223030A (ja) 2000-02-09 2001-08-17 Ngk Insulators Ltd リチウム二次電池
JP2005317469A (ja) 2004-04-30 2005-11-10 Nissan Motor Co Ltd リチウムイオン二次電池用負極、およびこれを用いてなるリチウムイオン二次電池
JP2007134286A (ja) 2005-11-14 2007-05-31 Hitachi Plant Technologies Ltd リチウム二次電池用負極材料及びリチウム二次電池
JP2012160456A (ja) * 2007-04-04 2012-08-23 Sony Corp 二次電池用電極材料及びその製造方法、並びに、電気二重層キャパシタ用材料及びその製造方法
JP2009238681A (ja) * 2008-03-28 2009-10-15 Nissan Motor Co Ltd リチウムイオン電池用電極
WO2010035828A1 (ja) * 2008-09-29 2010-04-01 日清オイリオグループ株式会社 電池部品及び電池
WO2011157013A1 (zh) * 2010-06-18 2011-12-22 深圳市贝特瑞新能源材料股份有限公司 锂离子电池复合硬碳负极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2894702A4 *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015059892A1 (ja) * 2013-10-21 2017-03-09 株式会社クラレ 非水電解質二次電池負極用炭素質材料
US10381637B2 (en) 2013-10-21 2019-08-13 Kuraray Co., Ltd. Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries
WO2015059892A1 (ja) * 2013-10-21 2015-04-30 株式会社クラレ 非水電解質二次電池負極用炭素質材料
US9991517B2 (en) 2014-03-31 2018-06-05 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anode, non-aqueous electrolyte secondary battery anode, non-aqueous electrolyte secondary battery, and vehicle
US9812711B2 (en) 2014-03-31 2017-11-07 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anode, non-aqueous electrolyte secondary battery anode, non-aqueous electrolyte secondary battery, and vehicle
EP3131144A4 (en) * 2014-03-31 2017-05-17 Kureha Corporation Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and vehicle
KR101984052B1 (ko) * 2014-03-31 2019-05-30 가부시끼가이샤 구레하 비수전해질 이차전지 음극용 탄소질 재료, 비수전해질 이차전지용 음극 전극, 비수전해질 이차전지 및 차량
KR20160129863A (ko) * 2014-03-31 2016-11-09 가부시끼가이샤 구레하 비수전해질 이차전지 음극용 탄소질 재료, 비수전해질 이차전지용 음극 전극, 비수전해질 이차전지 및 차량
CN106165162A (zh) * 2014-03-31 2016-11-23 株式会社吴羽 非水电解质二次电池负极用碳质材料、非水电解质二次电池用负极电极、非水电解质二次电池和车辆
JPWO2015152093A1 (ja) * 2014-03-31 2017-04-13 株式会社クレハ 非水電解質二次電池負極用炭素質材料、非水電解質二次電池用負極電極、非水電解質二次電池及び車両
EP3136482A4 (en) * 2014-03-31 2017-03-01 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrode secondary battery, and vehicle
JPWO2015152090A1 (ja) * 2014-03-31 2017-04-13 株式会社クレハ 非水電解質二次電池負極用炭素質材料、非水電解質二次電池用負極電極、非水電解質二次電池及び車両
WO2016035669A1 (ja) * 2014-09-02 2016-03-10 株式会社クラレ 植物由来炭素前駆体の精製方法
JP2016052955A (ja) * 2014-09-02 2016-04-14 株式会社クラレ 植物由来炭素前駆体の精製方法
JP2016052958A (ja) * 2014-09-02 2016-04-14 株式会社クラレ 珈琲豆由来の炭化物の製造方法
JP2016052956A (ja) * 2014-09-02 2016-04-14 株式会社クラレ 植物由来炭素前駆体の精製方法
JP2016052957A (ja) * 2014-09-02 2016-04-14 株式会社クラレ 植物由来炭素前駆体の精製方法
JP2016052954A (ja) * 2014-09-02 2016-04-14 株式会社クラレ 植物由来炭素前駆体の精製方法
WO2016199840A1 (ja) * 2015-06-12 2016-12-15 株式会社クラレ 電子材料用炭素質材料
JPWO2016199840A1 (ja) * 2015-06-12 2018-05-24 株式会社クラレ 電子材料用炭素質材料
JPWO2017057146A1 (ja) * 2015-09-30 2018-08-30 株式会社クラレ ナトリウムイオン二次電池負極用炭素質材料及びそれを用いたナトリウムイオン二次電池
WO2017057146A1 (ja) * 2015-09-30 2017-04-06 株式会社クレハ ナトリウムイオン二次電池負極用炭素質材料及びそれを用いたナトリウムイオン二次電池
WO2017073686A1 (ja) * 2015-10-30 2017-05-04 株式会社クラレ 非水電解質二次電池用炭素質材料、非水電解質二次電池用負極および非水電解質二次電池
WO2017073687A1 (ja) * 2015-10-30 2017-05-04 株式会社クラレ 非水電解質二次電池用炭素質材料、非水電解質二次電池用負極、非水電解質二次電池および非水電解質二次電池用炭素質材料の製造方法
JP2017084707A (ja) * 2015-10-30 2017-05-18 株式会社クラレ 非水電解質二次電池用炭素質材料の製造方法
JPWO2017073686A1 (ja) * 2015-10-30 2017-11-02 株式会社クラレ 非水電解質二次電池用炭素質材料、非水電解質二次電池用負極および非水電解質二次電池
US10734650B2 (en) 2015-10-30 2020-08-04 Kuraray Co., Ltd. Carbonaceous material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing carbonaceous material for non-aqueous electrolyte secondary battery
US11355755B2 (en) 2015-10-30 2022-06-07 Kuraray Co., Ltd. Carbonaceous material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte
JP2017084706A (ja) * 2015-10-30 2017-05-18 株式会社クラレ 非水電解質二次電池用炭素質材料、非水電解質二次電池用負極および非水電解質二次電池
JPWO2018034155A1 (ja) * 2016-08-16 2019-01-10 株式会社クラレ 非水電解質二次電池の負極活物質用の炭素質材料、非水電解質二次電池用負極、非水電解質二次電池ならびに炭素質材料の製造方法
WO2018034155A1 (ja) * 2016-08-16 2018-02-22 株式会社クラレ 非水電解質二次電池の負極活物質用の炭素質材料、非水電解質二次電池用負極、非水電解質二次電池ならびに炭素質材料の製造方法
US11345601B2 (en) 2016-08-16 2022-05-31 Kuraray Co., Ltd. Carbonaceous material for negative pole active substance of nonaqueous electrolyte secondary battery, negative pole for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing carbonaceous material
WO2020071547A1 (ja) * 2018-10-04 2020-04-09 株式会社クラレ 炭素質材料、非水電解質二次電池用負極、非水電解質二次電池および炭素質材料の製造方法、並びに炭化物および炭化物の製造方法
WO2024154864A1 (ko) * 2023-01-17 2024-07-25 (주) 매그나텍 커피박 조성물 및 이를 포함하는 이차전지용 음극재

Also Published As

Publication number Publication date
EP2894702A4 (en) 2016-06-01
JP6345116B2 (ja) 2018-06-20
EP2894702A1 (en) 2015-07-15
CN104412425B (zh) 2017-07-21
CN104412425A (zh) 2015-03-11
KR20150021045A (ko) 2015-02-27
TWI641178B (zh) 2018-11-11
TW201419639A (zh) 2014-05-16
JPWO2014038491A1 (ja) 2016-08-08
US20150188137A1 (en) 2015-07-02
KR101665843B1 (ko) 2016-10-12

Similar Documents

Publication Publication Date Title
JP6345116B2 (ja) 非水電解質二次電池負極用炭素質材料及びその製造方法
KR101700048B1 (ko) 비수 전해질 2차 전지 음극용 탄소질 재료 및 이의 제조 방법 과 상기 탄소질 재료를 이용한 음극 및 비수 전해질 2차 전지
US9478805B2 (en) Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries and method for producing same
US9537176B2 (en) Material for non-aqueous electrolyte secondary battery negative electrode
WO2017022486A1 (ja) 満充電して用いる非水電解質二次電池用の難黒鉛化炭素質材料、その製造方法、非水電解質二次電池用負極材、および満充電された非水電解質二次電池
JP6573549B2 (ja) 非水電解質二次電池負極用炭素質材料
JPWO2016140368A1 (ja) 非水電解質二次電池用混合負極材料の製造方法及びその製造方法によって得られる非水電解質二次電池用混合負極材料
JP6463875B2 (ja) 非水電解質二次電池の負極活物質用の炭素質材料、非水電解質二次電池用負極、非水電解質二次電池ならびに炭素質材料の製造方法
WO2014038493A1 (ja) 非水電解質二次電池負極用炭素質材料の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835914

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014534335

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147035350

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013835914

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14420385

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE