WO2014034889A1 - 耐薬品性に優れた手袋及び該手袋用組成物 - Google Patents

耐薬品性に優れた手袋及び該手袋用組成物 Download PDF

Info

Publication number
WO2014034889A1
WO2014034889A1 PCT/JP2013/073411 JP2013073411W WO2014034889A1 WO 2014034889 A1 WO2014034889 A1 WO 2014034889A1 JP 2013073411 W JP2013073411 W JP 2013073411W WO 2014034889 A1 WO2014034889 A1 WO 2014034889A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
glove
elastomer
emulsion composition
component
Prior art date
Application number
PCT/JP2013/073411
Other languages
English (en)
French (fr)
Inventor
憲秀 榎本
太一 小川
ローレンス・シュー・ティアン リン
シーク・ピング リー
エング・ロング オング
Original Assignee
ミドリ安全株式会社
コッサン エスディーエヌ. ビーエイチディー.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミドリ安全株式会社, コッサン エスディーエヌ. ビーエイチディー. filed Critical ミドリ安全株式会社
Priority to CN201380045410.1A priority Critical patent/CN104768985B/zh
Priority to JP2014533130A priority patent/JP6078071B2/ja
Priority to EP13833395.0A priority patent/EP2891668B1/en
Priority to US14/424,741 priority patent/US9587091B2/en
Publication of WO2014034889A1 publication Critical patent/WO2014034889A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/0055Plastic or rubber gloves
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/12Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to a glove and a composition for the glove. Specifically, the present invention relates to a glove having improved chemical resistance while maintaining flexibility by being composed of a predetermined combination of elastomers, and a composition for producing the glove.
  • Rubber gloves are widely used in various industrial and medical fields such as the electronic component manufacturing industry and the pharmaceutical industry.
  • a glove obtained by dip molding a latex composition obtained by crosslinking a carboxylated acrylonitrile-butadiene copolymer with a sulfur vulcanization accelerator such as sulfur and thiazole as a rubber glove having excellent tensile strength and oil resistance.
  • sulfur vulcanization accelerators such as sulfur and thiazole
  • Patent Document 1 discloses a glove using acid-modified nitrile rubber having a high content of methyl ethyl ketone insoluble matter.
  • Patent Document 2 discloses a glove using a carboxylic acid-modified nitrile copolymer containing a monomer containing a crosslinkable functional group such as a glycidyl group as a constituent unit.
  • Patent Document 3 discloses a glove using a self-crosslinking carboxylated acrylonitrile butadiene.
  • An object of the present invention is to provide a glove having excellent chemical resistance and flexibility and a composition for producing the glove.
  • the present invention is a carboxylated acrylonitrile butadiene elastomer comprising 30 to 40% by weight of acrylonitrile residues and 3 to 8% by weight of unsaturated carboxylic acid residues of the elastomer weight, and neutralization titration of the elastomer combustion product.
  • the present invention also relates to (1) a carboxylated acrylonitrile butadiene elastomer comprising 30 to 40% by weight of acrylonitrile residues and 3 to 8% by weight of unsaturated carboxylic acid residues of the elastomer weight, An elastomer having a content of elemental sulfur detected by the neutralization titration method of 1% by weight or less of the weight of the elastomer and a Mooney viscosity (ML (1 + 4) (100 ° C.)) of 100 to 220, and ( 2) Poly (acrylonitrile butadiene) having a weight average molecular weight of 7,000 to 500,000 in terms of styrene An emulsion composition comprising a weight ratio of component (1) / component (2) of 70/30 to 90/10.
  • the present invention is a glove obtained from the above composition.
  • the carboxylated acrylonitrile butadiene elastomer of the present invention has a non-sulfur crosslinked structure, does not cause problems such as allergies, and is excellent in chemical resistance.
  • By forming the glove by combining the elastomer with poly (acrylonitrile butadiene) having a predetermined molecular weight it is possible to produce a glove having excellent chemical resistance and excellent flexibility.
  • this is because the inclusion of a predetermined amount of acrylonitrile is excellent in chemical resistance, but the carboxylated acrylonitrile butadiene elastomer having relatively low flexibility has a high compatibility with the elastomer.
  • carboxylated acrylonitrile butadiene elastomer (hereinafter referred to as “XNBR”) is widely used as acrylonitrile and butadiene constituting the main chain of rubber, at least one unsaturated carboxylic acid, and optionally other copolymerizable monomers.
  • the elastomer containing the carboxyl group obtained by copolymerizing is included. Further, a part of the carboxyl group may be derivatized (for example, ester, amide, etc.) to form a crosslinked structure.
  • XNBR contains acrylonitrile residues of 30 to 40% by weight, preferably 32 to 38% by weight of the XNBR weight.
  • the amount of acrylonitrile residue in XNBR can be determined by converting the amount of nitrile groups from the amount of nitrogen atoms determined by elemental analysis.
  • XNBR contains 4 to 8% by weight, preferably 4 to 6% by weight of unsaturated carboxylic acid residues of the XNBR weight.
  • the content of the unsaturated carboxylic acid residue is less than 4% by weight, the crosslinking formation by divalent ions described later is not sufficient, and the crosslinking structure in XNBR is not sufficiently formed.
  • it exceeds 8% by weight the cross-linked structure becomes excessive, leading to a decrease in physical properties such as tensile strength and tensile stress (modulus) of the final product, rubber gloves.
  • the unsaturated carboxylic acid acrylic acid and / or methacrylic acid (hereinafter referred to as “(meth) acrylic acid”) is used, and methacrylic acid is preferably used.
  • the amount of the unsaturated carboxylic acid residue in XNBR can be determined by quantifying the carboxyl group and the carbonyl group derived from the carboxyl group by infrared spectroscopy (IR) or the like.
  • XNBR XNBR
  • a butadiene residue and a crosslinked structure As the butadiene constituting the butadiene residue, 1,3-butadiene is preferable.
  • the amount of the butadiene residue is 52 to 66% by weight, preferably 56 to 64% by weight, based on the total of the butadiene residue, the acrylonitrile residue and the unsaturated carboxylic acid residue. .
  • the amount of the butadiene residue is within the range, a final product having excellent physical properties such as tensile properties and fatigue properties can be obtained.
  • the crosslinked structure of XNBR is a non-sulfur crosslinked structure.
  • the content of elemental sulfur detected by the neutralization titration method of the XNBR combustion gas absorption liquid can be suppressed to 1.0% by weight or less of the XNBR weight.
  • the quantification method is such that a combustion gas generated by burning 0.01 g of an XNBR sample in air at 1350 ° C. for 10 to 12 minutes is absorbed in H 2 O 2 water to which a mixed indicator is added, and a 0.01 N NaOH aqueous solution is absorbed.
  • the neutralization titration method is used.
  • the non-sulfur crosslinked structure in the present invention is not particularly limited, for example, crosslinking between main chains by organic peroxides, oximes, etc., crosslinking between carboxyl groups such as acid anhydrides, crosslinking agents such as polyepoxides, polyols, Crosslinking between carboxyl groups using polyimide, mono and polycarbodiimide, polyisocyanate, etc., introducing a structural unit having a carboxyl group and a reactive group such as a glycidyl group into the main chain, and reacting the group with the carboxyl group And the like.
  • self-crosslinking i.e., crosslinking that is stable under normal storage conditions, but formed, for example, by evaporating or heating water, or by changing pH, without the addition of a separate cross-linking agent.
  • cross-linking include those by auto-oxidation of carboxyl groups, those in which n-methylolacrylamide units are introduced and self-condensed, and Michael reaction of acetoacetoxy groups and unsaturated bonds.
  • XNBR can be prepared by emulsion polymerization of acrylonitrile, (meth) acrylic acid, 1,3-butadiene and, if necessary, other unsaturated monomers for forming a crosslinked structure or the like according to a conventional method.
  • emulsion polymerization commonly used emulsifiers, polymerization initiators, molecular weight modifiers, and the like can be used.
  • unsaturated monomers include aromatic vinyl monomers such as styrene, ⁇ -methylstyrene and dimethylstyrene; ethylenically unsaturated carboxylic acids such as (meth) acrylamide, N, N-dimethylacrylamide and N-methylolacrylamide Amide monomers; Ethylenically unsaturated carboxylic acid alkyl ester monomers such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate; and acetic acid Vinyl etc. are mentioned.
  • the emulsifier examples include anionic surfactants such as dodecylbenzene sulfonate and aliphatic sulfonate; cationic surfactants such as polyethylene glycol alkyl ether and polyethylene glycol alkyl ester; and amphoteric surfactants. Of these, an anionic surfactant is preferably used.
  • the polymerization initiator is not particularly limited as long as it is a radical initiator, but inorganic peroxides such as ammonium persulfate and potassium perphosphate; t-butyl peroxide, cumene hydroperoxide, p-menthane hydroperoxide, diester Organic peroxides such as t-butyl peroxide, t-butylcumyl peroxide, dibenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide and t-butylperoxyisobutyrate; azobisisobuty Examples include azo compounds such as rhonitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, and methyl azobisisobutyrate.
  • inorganic peroxides such as ammonium persulfate and potassium perphosphate
  • t-butyl peroxide cumene hydroperoxide
  • the molecular weight modifier examples include mercaptans such as t-dodecyl mercaptan and n-dodecyl mercaptan; halogenated hydrocarbons such as carbon tetrachloride, methylene chloride and methylene bromide. Of these, mercaptans are preferably used. Furthermore, a dispersing agent, a pH adjuster, etc. can be used as needed.
  • the polymer obtained by emulsion polymerization is subjected to a non-sulfur crosslinking step by heating or evaporating water to obtain XNBR.
  • this step may be performed simultaneously with crosslinking with divalent ions, which will be described later, or in a heating step after the ion crosslinking.
  • the resulting XNBR has a molecular weight such that the Mooney viscosity (ML (1 + 4) (100 ° C.)) is from 100 to 220, preferably from 100 to 190.
  • Mooney viscosity is less than 100, it is difficult to obtain a sufficient strength of XNBR.
  • the upper limit is an actual measurement limit of Mooney viscosity, and if it exceeds this, the viscosity becomes high and molding processing becomes difficult.
  • XNBR has a toluene weight swelling ratio of 190 to 400% by weight, preferably 200 to 400% by weight.
  • the swelling ratio is less than 190% by weight, the degree of cross-linking is low, the strength when formed into a glove is insufficient, and when it exceeds 400% by weight, the flexibility of the glove is insufficient.
  • the emulsion composition of the present invention is an emulsion-like composition containing poly (acrylonitrile butadiene) (hereinafter referred to as “NBR”) in addition to the above XNBR.
  • NBR poly (acrylonitrile butadiene)
  • the NBR has a weight average molecular weight in terms of styrene of 7,000 to 50,000, preferably 9,000 to 30,000. When the molecular weight is less than 7,000, there is a concern about bleeding that NBR moves to the surface of the glove, and when it exceeds 50,000, the flexibility of the glove may be insufficient.
  • NBR contains acrylonitrile residues of 20 to 50% by weight, preferably 30 to 40% by weight of the NBR weight, and the rest is butadiene residues. This is because when the content of the acrylonitrile residue is less than 20% by weight, the chemical resistance of the glove decreases, and when it exceeds 50% by weight, the molecular chain becomes rigid and the flexibility of the glove is impaired.
  • the mixing ratio of XNBR (hereinafter referred to as “component (1)”) and NBR (hereinafter referred to as “component (2)”) in the emulsion composition of the present invention is the weight ratio of component (1) / component (2). 70/30 to 90/10, preferably 70/30 to 85/15. If the weight ratio is less than 70/30, the chemical resistance of the glove is insufficient, and if it exceeds 90/10, it is difficult to achieve sufficient flexibility of the glove. As described in detail in the examples, the weight ratio can be determined by extracting component (2) by methyl ethyl ketone extraction under reflux.
  • the emulsion composition contains a divalent metal oxide and a dispersant in addition to the components (1) and (2).
  • the divalent metal oxide mainly ion-crosslinks between carboxyl groups in the component (1).
  • Examples of the divalent metal oxide include oxides such as zinc, calcium, and magnesium. Among these, zinc oxide is preferably used.
  • the content of the divalent metal oxide is 0.5 to 4.0 parts by weight, preferably 0 when the resin component, that is, the total of the components (1) and (2) is 100 parts by weight. 0.7 to 3.0 parts by weight.
  • an anionic surfactant is preferable, for example, carboxylate, sulfonate, phosphate, polyphosphate ester, polymerized alkylarylsulfonate, polymerized sulfonated naphthalene and polymerized naphthalene. / Formaldehyde condensation polymer and the like, preferably sulfonate is used.
  • the content of the dispersant is 0.5 to 4 parts by weight, preferably 1 to 3 parts by weight, when the total of component (1) and component (2) is 100 parts by weight.
  • the emulsion composition can contain conventional additives in addition to the above components.
  • the additive include a pH adjuster, a pigment, an antioxidant, a chain transfer agent, and a polymerization initiator.
  • a pH adjuster potassium hydroxide is usually used.
  • the amount of potassium hydroxide used is usually 0.1 to 2.0 parts by weight per 100 parts by weight of the emulsion composition.
  • the pigment for example, titanium dioxide is used.
  • the antioxidant a hindered phenol type antioxidant can be used.
  • chain transfer agent mercaptans represented by t-dodecyl mercaptan and the like can be used.
  • the polymerization initiator is not particularly limited, and inorganic peroxides such as sodium sulfate, organic peroxides such as benzoyl peroxide, and chelating agents such as sodium ethylenediaminetetraacetate can be used.
  • the emulsion composition of the present invention is produced by mixing the component (1), the component (2), the divalent metal oxide, the dispersant, each additive and water with a conventional mixing means such as a mixer. Can do.
  • the emulsion composition of the present invention has a solid content of 30 to 60% by weight, preferably 40 to 50% by weight, based on the total weight of the emulsion composition.
  • the glove of the present invention can be produced by the following known dipping method using the above emulsion composition.
  • a dip molding die (hereinafter referred to as “former”) is immersed in a coagulant solution to adhere the coagulant to the former.
  • a coagulant solution any inorganic salt having an effect of precipitating the elastomer may be used.
  • a 5 to 20% by weight aqueous solution of calcium chloride or magnesium chloride is used.
  • the former After drying the former with the coagulant attached at 50 to 70 ° C., the former is immersed in the emulsion composition of the present invention for a period of time corresponding to the desired thickness of the glove, usually about 1 to 20 seconds.
  • the former coated with the emulsion composition is heated at 80 to 120 ° C. for 20 to 70 seconds and then washed with water.
  • the gloves obtained as described above are highly flexible while being resistant to chemicals such as hydrofluoric acid.
  • XNBR-B was prepared in the same manner as XNBR-A except that the amount of acrylonitrile was 34 parts by weight, N-methylolacrylamide was 0.4 parts by weight, the temperature during the reaction was 30 ° C.
  • XNBR-C has an acrylonitrile amount of 25 parts by weight, N-methylolacrylamide of 0.3 parts by weight, a reaction temperature of 40 ° C., a reaction time of 18 hours, and all other conditions are XNBR-A. It was prepared in the same manner as above.
  • XNBR-D has an acrylonitrile amount of 34 parts by weight, N-methylolacrylamide of 0.5 parts by weight, a reaction temperature of 40 ° C., a reaction time of 24 hours, and all other conditions are the same as those of XNBR-A.
  • XNBR-E had an acrylonitrile amount of 34 parts by weight, N-methylolacrylamide was not used, the reaction temperature was 50 ° C., the reaction time was 16 hours, and all other conditions were the same as for XNBR-A. Prepared.
  • Unsaturated carboxylic acid residue amount (wt%) [Abs (1699 cm ⁇ 1 ) / Abs (2237 cm ⁇ 1 )] / 0.2661
  • “0.2661” is a coefficient obtained by creating a calibration curve from data of a plurality of samples whose amounts of unsaturated carboxylic acid residues and acrylonitrile residues are known.
  • the obtained solid rubber was taken out and stirred and washed with about 1000 ml of ion-exchanged water 10 times, then the solid rubber was squeezed and dehydrated, and vacuum dried (60 ° C., 72 hours) to prepare a rubber sample for measurement. did.
  • the obtained rubber for measurement was passed through a 6-inch roll having a roll temperature of 50 ° C. and a roll gap of about 0.5 mm several times until the rubber was collected.
  • JIS K6300-1 2001 “Unvulcanized rubber—physical characteristics, It was measured according to “How to Obtain Viscosity and Scorch Time Using a 1-Part Mooney Viscometer”.
  • the viscosity Mooney of XNBR-D exceeded the upper limit of measurement at a measurement temperature of 100 ° C.
  • aqueous ammonia pH 13.3 was added dropwise to adjust the pH of the copolymer latex to 8 or more, and the concentration was adjusted to obtain a solid.
  • NBR-a having a weight average molecular weight of 19700 in terms of polystyrene was obtained at a partial concentration of 45%.
  • NBR-b having a weight average molecular weight of 10900 was prepared in the same manner as above except that the amount of t-dodecyl mercaptan was changed to 0.5 parts by weight. Further, NBR-c having a weight average molecular weight of 6600 was prepared by the same method except that the amount of t-dodecyl mercaptan was changed to 0.8 parts by weight. Table 2 shows the weight average molecular weight and solid content concentration of each NBR.
  • the dispersant is sodium alkylbenzene sulfonate
  • the antioxidant is 2,4,6-tri-tert-butylphenol
  • the colorant is Fast Green FCF.
  • gloves (Examples 1 and 2 and Comparative Examples 1 to 6) were produced by the following dipping method.
  • a former which is a glove
  • a cleaning liquid and then with cold water and dried
  • calcium nitrate as a coagulant is dissolved in water in an amount such that the Ca 2+ ion concentration is 10% by weight Soaked for 15 seconds.
  • the former with the coagulant adhered was dried at 60 ° C. for about 1 minute.
  • the former was immersed in an emulsion composition adjusted to 30 ° C. for 20 seconds.
  • the former was removed from the emulsion composition, washed with water, and then immersed in hot water (50 ° C.) for 140 seconds.
  • the former covered with the film of the emulsion composition was dried at 120 ° C. for 300 seconds and then maintained at 60 ° C. for 80 seconds, and the resulting gloves were removed from the former.
  • ⁇ Toluene swelling ratio of gloves> The gloves were immersed in toluene at room temperature, and the swelling ratio (%) was determined by dividing the weight after 72 hours by the initial weight. The lower the swelling ratio of toluene, the higher the crosslink density in the glove.
  • a cross-linked polymer such as gloves is immersed in a good solvent such as toluene, the good solvent dissolves and spreads the polymer chain, but the cross-linked polymer cross-links because it is suppressed by the elasticity of the cross-linked polymer network and reaches the swelling parallel.
  • the density is inversely proportional to the parallel swelling rate in the good solvent.
  • ⁇ Flexibility of gloves> The flexibility of the glove was evaluated by tensile properties.
  • a dumbbell-shaped No. 5 test piece of JIS K6251: 2010 was cut out from the glove, and using a TENSILON universal tensile tester “RTC-1310A” manufactured by A & D Co., Ltd.
  • Tensile strength (MPa), elongation at break (%), and 500% elastic modulus (MPa) were measured to evaluate the strength and flexibility of rubber gloves.
  • the tensile strength indicates the strength of the rubber glove, and the larger the value, the higher the strength.
  • the elongation at break indicates the flexibility of rubber gloves, and the greater the value, the higher the flexibility.
  • the 500% elastic modulus indicates the flexibility of rubber gloves, and the greater the value, the lower the flexibility.
  • ⁇ Chemical resistance of gloves> The chemical resistance of the gloves was examined by the following method using the amount of the drug permeating the gloves. Turn the glove over and put 10 ml of a chemical solution selected from 47% hydrofluoric acid (HF) acid, 50% sulfuric acid, physiological saline, methanol, ethanol, acetone, and N-methylpyrrolidone (NMP) into the middle finger of the glove. In this state, the middle finger portion was immersed in 30 ml of pure water, allowed to stand at room temperature for 2 hours, and then the weight (g) of each compound eluted in pure water was quantified by ion chromatography or gas chromatography. In Table 5, “ND” indicates that it was below the detection limit.
  • HF hydrofluoric acid
  • NMP N-methylpyrrolidone
  • the gloves of the examples all had high tensile strength and elongation at break, while having a low 500% elastic modulus, and were excellent in flexibility. Further, the gloves of the examples had low permeation amount for any compound, that is, the permeation amount of each compound from the front surface to the back surface of the glove was small, and the total chemical permeation amount was also small, so that the chemical resistance was excellent .
  • the gloves (Comparative Example 1) obtained from the composition containing XNBR-C having a low acrylonitrile residue amount had a higher chemical permeation amount and lower chemical resistance than the gloves of the Examples.
  • a glove obtained from an emulsion composition having a low NBR content (Comparative Example 2), a glove obtained from an emulsion composition containing a low molecular weight NBR (Comparative Example 3), and an emulsion composition having a high NBR content (Comparative Example 4), a glove obtained from an emulsion composition containing XNBR-D having a high Mooney viscosity (Comparative Example 5), a glove obtained from an emulsion composition containing XNBR-E having a low Mooney viscosity (Comparative Example 4) All of Comparative Examples 6) were very inferior in tensile strength, elongation at break or tensile properties of 500% elastic modulus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Gloves (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 (1)カルボキシル化アクリロニトリルブタジエンエラストマーであって、該エラストマー重量の30~40重量%のアクリロニトリル残基及び3~8重量%の不飽和カルボン酸残基を含み、エラストマー燃焼物の中和滴定法により検出される硫黄元素の含有量が該エラストマー重量の1重量%以下であり、且つムーニー粘度(ML(1+4)(100℃))が100~220である、エラストマー、及び(2)スチレン換算値の重量平均分子量が7,000~500,000のポリ(アクリロニトリルブタジエン)を、成分(1)/成分(2)の重量比70/30~90/10で含む手袋製造用のエマルジョン組成物、並びに、該エマルジョン組成物を含むことによって、耐薬品性に優れると共に、柔軟性を備えた手袋。

Description

耐薬品性に優れた手袋及び該手袋用組成物
 本発明は、手袋及び該手袋用組成物に関する。詳細には、本発明は、所定のエラストマーの組み合わせから構成されることによって、柔軟性を維持しつつ、耐薬品性が向上された手袋及び該手袋を製造するための組成物に関する。
 ゴム手袋は、電子部品製造業、製薬業などの種々の工業分野及び医療分野等において幅広く使用されている。従来、引張強度及び耐油性等に優れるゴム手袋として、カルボキシル化アクリロニトリル-ブタジエン共重合体を硫黄及びチアゾール等の硫黄系加硫促進剤で架橋したラテックス組成物を、ディップ成形することにより得られる手袋が多用されている。しかし、硫黄及び硫黄系加硫促進剤が、種々の問題、特にIV型アレルギーを引き起こすことが問題となっている。
 そこで、非硫黄系の架橋を用いた手袋が種々提案されている。例えば、特許文献1には、メチルエチルケトン不溶分の含有量が高い酸変性ニトリルゴムを用いた手袋が開示されている。また、特許文献2には、グリシジル基等の架橋性官能基を含む単量体を構成単位として含むカルボン酸変性ニトリル共重合体を用いた手袋が開示されている。また、特許文献3には、自己架橋性のカルボキシル化アクリロニトリルブタジエンを用いた手袋が開示されている。
特開2007-177091号公報 特開2010-144163号公報 国際公開2011/068394号
 しかし、メチルエチルケトン不溶分の含有量を高くするためには、重合温度を55~95℃と高くする等の特殊な重合方法を用いなければならず、実際的ではない。一方、グリシジル基変性を利用したカルボン酸変性ニトリル共重合体、又は自己架橋性のラテックスを用いた手袋の場合はそのような問題は無いが、発明者らが検討したところ、そのような手袋はクリーンルーム内で多用される弗酸等に対する耐薬品性が十分ではない。
 本発明は、耐薬品性に優れると共に、柔軟性を備えた手袋、及び該手袋製造用の組成物を提供することを目的とする。
 本発明は、カルボキシル化アクリロニトリルブタジエンエラストマーであって、該エラストマー重量の30~40重量%のアクリロニトリル残基及び3~8重量%の不飽和カルボン酸残基を含み、該エラストマー燃焼物の中和滴定法により検出される硫黄元素の含有量が該エラストマー重量の1重量%以下であり、且つ、ムーニー粘度(ML(1+4)(100℃))が100~220である、カルボキシル化アクリロニトリルブタジエンエラストマーである。
 また、本発明は、(1)カルボキシル化アクリロニトリルブタジエンエラストマーであって、該エラストマー重量の30~40重量%のアクリロニトリル残基及び3~8重量%の不飽和カルボン酸残基を含み、エラストマー燃焼物の中和滴定法により検出される硫黄元素の含有量が該エラストマー重量の1重量%以下であり、且つ、ムーニー粘度(ML(1+4)(100℃))が100~220であるエラストマー、及び
(2)スチレン換算値の重量平均分子量が7,000~500,000のポリ(アクリロニトリルブタジエン)
を含むエマルジョン組成物であって、成分(1)/成分(2)の重量比が70/30~90/10であるエマルジョン組成物である。
 さらに、本発明は、上記組成物から得られる手袋である。
 本発明のカルボキシル化アクリロニトリルブタジエンエラストマーは、非硫黄架橋構造を有し、アレルギー等の問題を引き起こすことなく、且つ、耐薬品性に優れる。該エラストマーを、所定の分子量のポリ(アクリロニトリルブタジエン)と組合せて手袋を形成することによって、耐薬品性に優れると共に、柔軟性に優れた手袋を製造することができる。本発明を限定する趣旨ではないが、これは、所定量のアクリロニトリルを含むことによって耐薬品性には優れるものの、比較的柔軟性が低いカルボキシル化アクリロニトリルブタジエンエラストマーに、該エラストマーと相溶性が高いポリ(アクリロニトリルブタジエン)を組合せることによって、柔軟性が補われるためと考えられる。また、ポリ(アクリロニトリルブタジエン)は、所定の分子量を有するので、該ポリ(アクリロニトリルブタジエン)が手袋表面へ移行するという問題も生じない。
<カルボキシル化アクリロニトリルブタジエンエラストマー>
 本発明において、カルボキシル化アクリロニトリルブタジエンエラストマー(以下、「XNBR」という)は、広く、ゴムの主鎖を構成するアクリロニトリル及びブタジエン、少なくとも一種の不飽和カルボン酸、並びに、所望により他の共重合性モノマーを共重合させて得られるカルボキシル基を含むエラストマーを包含する。また、該カルボキシル基の一部は、誘導体化(例えばエステル、アミド等)されて架橋構造を形成していてよい。
 XNBRは、該XNBR重量の30~40重量%、好ましくは32~38重量%のアクリロニトリル残基を含む。アクリロニトリル残基の含有量が30重量%未満の場合、得られるXNBRの耐薬品性が十分ではない傾向がある。一方、アクリロニトリル残基の含有量が40重量%を超える場合、得られるXNBRの柔軟性が十分ではない傾向がある。XNBR中のアクリロニトリル残基の量は、ニトリル基の量を元素分析により求められる窒素原子の量から換算して求めることができる。
 XNBRは、該XNBR重量の4~8重量%、好ましくは4~6重量%の不飽和カルボン酸残基を含む。不飽和カルボン酸残基の含有量が4重量%未満の場合、後述する二価イオンによる架橋形成が十分ではなくXNBR中の架橋構造が十分に形成されない。一方、8重量%を超える場合、架橋構造が過多となり、最終製品であるゴム手袋の引張強度や引張応力(モジュラス)といった物性の低下を導く。不飽和カルボン酸としては、アクリル酸及び/又はメタクリル酸(以下、「(メタ)アクリル酸」という)が使用され、好ましくはメタクリル酸が使用される。XNBR中の不飽和カルボン酸残基の量は、カルボキシル基、及び、カルボキシル基由来のカルボニル基を赤外分光(IR)等により定量することによって求めることができる。
 XNBRの他の構成要素は、ブタジエン残基と架橋構造である。該ブタジエン残基を構成するブタジエンとしては、1、3-ブタジエンが好ましい。また、ブタジエン残基の量は、該ブタジエン残基、上記アクリロニトリル残基及び上記不飽和カルボン酸残基との合計に対して、52~66重量%であり、好ましくは56~64重量%である。該ブタジエン残基の量が該範囲内である場合、引張り特性や疲労特性といった物性に優れた最終製品を得ることができる。
 本発明において、XNBRの架橋構造は、非硫黄架橋構造である。架橋構造が非硫黄架橋構造であることによって、該XNBR燃焼ガス吸収液の中和滴定法により検出される硫黄元素の含有量を、該XNBR重量の1.0重量%以下に抑えることができる。該定量方法は、XNBR試料0.01gを空気中、1350℃で10~12分燃焼させて発生する燃焼ガスを、混合指示薬を加えたH水に吸収させ、0.01NのNaOH水溶液で中和滴定する方法である。
 本発明における非硫黄架橋構造としては、特に限定されず、例えば、有機過酸化物、オキシム等による主鎖間の架橋、酸無水物等のカルボキシル基間の架橋、架橋剤、例えばポリエポキシド、ポリオール、ポリイミド、モノ及びポリカルボジイミド、ポリイソシアネート等を用いたカルボキシル基間の架橋、カルボキシル基と反応性の基、例えばグリシジル基、を有する構成単位を主鎖に導入し、該基とカルボキシル基との反応による架橋等、が挙げられる。好ましくは、自己架橋、即ち、通常の保存状態では安定であるが、例えば、水を蒸発させもしくは加熱することによって、或いはpHの変化によって、別途架橋剤を加えずとも、形成される架橋であることが好ましい。このような架橋の例としては、カルボキシル基の自動酸化によるもの、n-メチロールアクリルアミド単位を導入し、それらを自己縮合させたもの、アセトアセトキシ基と不飽和結合のマイケル反応等が挙げられる。
 XNBRは、アクリロニトリル、(メタ)アクリル酸、1,3-ブタジエン、及び、必要に応じて架橋構造等を形成するための他の不飽和モノマーを、定法に従い乳化重合することによって調製することができる。乳化重合に際しては、通常用いられる乳化剤、重合開始剤及び分子量調整剤等を使用することができる。
 他の不飽和モノマーとしては、スチレン、α-メチルスチレン及びジメチルスチレン等の芳香族ビニル単量体;(メタ)アクリルアミド、N,N-ジメチルアクリルアミド及びN-メチロールアクリルアミド等のエチレン性不飽和カルボン酸アミド単量体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル及び(メタ)アクリル酸2-エチルヘキシル等のエチレン性不飽和カルボン酸アルキルエステル単量体;及び酢酸ビニル等が挙げられる。
 乳化剤としては、ドデシルベンゼンスルホン酸塩及び脂肪族スルホン酸塩等のアニオン性界面活性剤;ポリエチレングリコールアルキルエーテル及びポリエチレングリコールアルキルエステル等のカチオン性界面活性剤;及び両性界面活性剤が挙げられる。これらのうち、好ましくはアニオン性界面活性剤が用いられる。
 重合開始剤としては、ラジカル開始剤であれば特に限定されないが、過硫酸アンモニウム及び過リン酸カリウム等の無機過酸化物;t-ブチルパーオキサイド、クメンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジベンゾイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド及びt-ブチルパーオキシイソブチレート等の有機過酸化物;アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビスシクロヘキサンカルボニトリル及びアゾビスイソ酪酸メチル等のアゾ化合物等が挙げられる。
 分子量調整剤としては、t-ドデシルメルカプタン及びn-ドデシルメルカプタン等のメルカプタン類;四塩化炭素、塩化メチレン及び臭化メチレン等のハロゲン化炭化水素が挙げられる。これらのうち、好ましくはメルカプタン類が用いられる。さらに、必要に応じて分散剤及びpH調整剤等を用いることができる。
 次いで、乳化重合をすることにより得られたポリマーを、加熱し、もしくは水を蒸発させる等して、非硫黄架橋工程に付しXNBRを得る。但し、該工程は、後述する二価イオンによる架橋と同時に、もしくは、該イオン架橋の後の加熱工程で行ってもよい。
 得られるXNBRは、ムーニー粘度(ML(1+4)(100℃))が100~220であり、好ましくは100~190であるような分子量を備える。ムーニー粘度が100未満の場合、XNBRの十分な強度を得ることが難しくなる。一方、前記上限値はムーニー粘度の実際上の測定限界であり、これを超えるものは、粘度が高く成形加工が困難となる。
 また、XNBRは、トルエン重量膨潤比率が190~400重量%であり、好ましくは200~400重量%である。該膨潤率が190重量%未満の場合、架橋度が低く、手袋にした際の強度が不足し、400重量%を超える場合、手袋の柔軟性が不足する。
<エマルジョン組成物>
 本発明のエマルジョン組成物は、上記XNBRに加え、ポリ(アクリロニトリルブタジエン)(以下、「NBR」という)を含むエマルジョン状の組成物である。該NBRは、スチレン換算の重量平均分子量が7,000~50,000であり、好ましくは9,000~30,000である。分子量が7,000未満の場合、NBRが手袋表面へ移行するブリードが懸念され、50,000を超える場合、手袋の柔軟性が不足する場合がある。
 NBRは、該NBR重量の20~50重量%、好ましくは30~40重量%のアクリロニトリル残基を含み、残りがブタジエン残基である。アクリロニトリル残基の含有量が20重量%未満の場合、手袋の耐薬品性が低下し、50重量%を超える場合、分子鎖が剛直となり手袋の柔軟性が損なわれるからである。
 本発明のエマルジョン組成物におけるXNBR(以下、「成分(1)」という)とNBR(以下、「成分(2)」という)の混合比は、成分(1)/成分(2)の重量比で70/30~90/10であり、好ましくは70/30~85/15である。該重量比が70/30未満では、手袋の耐薬品性が不十分となり、90/10を超える場合には、手袋の十分な柔軟性を達成することが難しい。実施例において詳述するように、該重量比は、還流下でのメチルエチルケトン抽出で成分(2)を抽出することによって求めることができる。
 上記エマルジョン組成物は、成分(1)と成分(2)に加えて、二価金属酸化物と分散剤を含む。二価金属酸化物は、主として、成分(1)中のカルボキシル基の間をイオン架橋するものである。該二価金属酸化物としては、亜鉛、カルシウム及びマグネシウム等の酸化物が挙げられ、これらのうち、好ましくは酸化亜鉛が用いられる。該二価金属酸化物の含有量は、樹脂分、即ち成分(1)と成分(2)の合計を100重量部とした場合に、0.5~4.0重量部であり、好ましくは0.7~3.0重量部である。
 分散剤としては、アニオン界面活性剤が好ましく、例えば、カルボン酸塩、スルホン酸塩、リン酸塩、ポリリン酸エステル、高分子化アルキルアリールスルフォネート、高分子化スルホン化ナフタレン及び高分子化ナフタレン/ホルムアルデヒド縮合重合体等が挙げられ、好ましくはスルホン酸塩が用いられる。該分散剤の含有量は、成分(1)と成分(2)の合計を100重量部とした場合に、0.5~4重量部であり、好ましくは1~3重量部である。
 上記エマルジョン組成物は、上記各成分に加え、慣用の添加剤を含むことができる。該添加剤としては、pH調整剤、顔料、酸化防止剤、連鎖移動剤及び重合開始剤等が挙げられる。該pH調整剤としては、通常、水酸化カリウムが用いられる。水酸化カリウムの使用量は、通常、エマルジョン組成物100重量部に対して0.1~2.0重量部である。また、顔料としては、例えば二酸化チタンが使用される。酸化防止剤としては、ヒンダードフェノールタイプの酸化防止剤を使用することができる。連鎖移動剤としては、t-ドデシルメルカプタン等に代表されるメルカプタン類を使用することができる。重合開始剤としては、特に限定されないが、加硫酸ナトリウム等の無機過酸化物、ベンゾイルパーオキサイド等の有機過酸化物、及び、エチレンジアミン四酢酸ナトリウム等のキレート化剤等を使用することができる。
 本発明のエマルジョン組成物は、成分(1)、成分(2)、二価金属酸化物、分散剤、各添加剤及び水を、慣用の混合手段、例えば、ミキサー等で混合して製造することができる。本発明のエマルジョン組成物は、エマルジョン組成物の全重量に対し、固形分の含有量が30~60重量%であり、好ましくは40~50重量%である。
 本発明の手袋は、上記エマルジョン組成物を用い、下記の公知のディッピング法により製造することができる。
 1)ディップ成形型(以下、「フォーマ」という)を凝固剤液中に浸して、該凝固剤をフォーマに付着させる。該凝固剤としては、エラストマーを析出させる効果を有する無機塩であれば任意のものであってよく、例えば、塩化カルシウム又は塩化マグネシウムの5~20重量%水溶液が使用される。
 2)凝固剤が付着したフォーマを50~70℃で乾燥させた後、本発明のエマルジョン組成物中に、手袋の目的とする厚みに応じた時間、通常、1~20秒程度浸す。
 3)エマルジョン組成物でコーティングされたフォーマを80~120℃で、20~70秒間加熱した後、水洗する。
 4)水洗後、ビーディング(袖巻き工程)し、120~150℃の後加熱工程に付する。
 上記のようにして得られる手袋は、弗酸等の薬品に耐性でありながら、柔軟性に富む。
[実施例]
 以下、本発明を実施例により説明するが、本発明はこれらに限定されるものではない。
[エラストマーの調製]
1)XNBRの調製
 表1に示す5種類のXNBRを、以下の手順に従って調製した。
 攪拌機つきの耐圧重合反応器に、イオン交換水120重量部、アクリロ二トリル35重量部、1,3-ブタジエン59重量部、メタクリル酸6重量部、N-メチロールアクリルアミド0.3重量部、ドデシルベンゼンスルホン酸ナトリウム3重量部、加硫酸カリウム0.3重量部、及びエチレンジアミン四酢酸ナトリウム0.05重量部からなる乳化液を仕込み、40℃に保持して18時間反応させた後、反応停止剤を添加して重合を終了させ、共重合体ラテックスを得た。得られた共重合体ラテックスから未反応単量体を除去した後、アンモニア水(pH 13.3)を滴下して共重合体ラテックスのpHを8以上に調整し、さらに濃度を調整して、固形分濃度45%のXNBR-Aを得た。
 XNBR-Bは、アクリロニトリル量を34重量部とし、N-メチロールアクリルアミドを0.4重量部とし、反応時の温度を30℃とし、それ以外の条件はすべてXNBR-Aと同様にして調製した。XNBR-Cは、アクリロニトリル量を25重量部とし、N-メチロールアクリルアミドを0.3重量部とし、反応時の温度を40℃とし、反応時間を18時間とし、それ以外の条件はすべてXNBR-Aと同様にして調製した。XNBR-Dは、アクリロニトリル量を34重量部とし、N-メチロールアクリルアミド0.5重量部とし、反応時の温度を40℃とし、反応時間を24時間とし、それ以外の条件はすべてXNBR-Aと同様にして調製した。XNBR-Eは、アクリロニトリル量を34重量部とし、N-メチロールアクリルアミドを用いず、反応時の温度を50℃とし、反応時間を16時間とし、それ以外の条件はすべてXNBR-Aと同様にして調製した。
 得られた各XNBRの特性を、以下の方法で測定した。結果を表1に示す。
<不飽和カルボン酸残基>
 各XNBRのエマルジョンを乾燥してフィルムを作成した。該フィルムをFT-IRで測定し、1699cm-1と2237cm-1における吸光度(Abs)の比を求め、下記式から不飽和カルボン酸残基量を求めた。
 不飽和カルボン酸残基量(wt%)
 =[Abs(1699cm-1)/Abs(2237cm-1)]/0.2661
 上式において、「0.2661」は、不飽和カルボン酸残基量とアクリロニトリル残基量が既知の複数の試料のデータから検量線を作って求めた係数である。
<ムーニー粘度>
 硝酸カルシウムと炭酸カルシウムの重量比4:1混合物の飽和水溶液200mlを室温にて攪拌し、各XNBRのエマルジョンをピペットにより滴下し、固形ゴムを析出させた。得られた固形ゴムを取り出し、イオン交換水約1000mlでの攪拌洗浄を10回繰り返した後、固形ゴムを搾って脱水し、真空乾燥(60℃、72時間)して、測定用ゴム試料を調製した。得られた測定用ゴムをロール温度50℃、ロール間隙約0.5mmの6インチロールにゴムがまとまるまで数回通したものを、JIS K6300-1:2001 「未加硫ゴム-物理特性、第1部ムーニー粘度計による粘度およびスコーチタイムの求め方」に準拠して測定した。なお、XNBR-Dの粘度ムーニーは、測定温度100℃での測定上限値を超えていた。
<硫黄元素の含有量>
 各XNBRのエマルジョン中の固形物0.1gを1350℃で12分間、燃焼炉で燃焼し、発生した燃焼ガスを吸収液(希硫酸を1~数滴加えたH水混合液)へ吸収させた後、0.01NaOH水を用いて中和滴定して定量した。
<固形分の含有量>
 各XNBRのエマルジョンを1g精秤し、105℃で24時間乾燥した後、残留する固形物量を計量し、固形分量とした。
Figure JPOXMLDOC01-appb-T000001
2)NBRの調製
 攪拌機つきの耐圧重合反応器に、イオン交換水120重量部、アクリロ二トリル35重量部、1,3-ブタジエン65重量部、ドデシルベンゼンスルホン酸ナトリウム3重量部、加硫酸カリウム0.3重量部、及びエチレンジアミン四酢酸ナトリウム0.05重量部、t-ドデシルメルカプタン1.0重量部からなる乳化液を仕込み、60~80℃で5時間反応させた後、反応停止剤を添加して重合を終了させ、共重合ラテックスを得た。得られた共重合ラテックスから未反応単量体を除去した後、アンモニア水(pH 13.3)を滴下して共重合体ラテックスのpHを8以上に調整し、さらに濃度を調整して、固形分濃度45%で、ポリスチレン換算の重量平均分子量19700のNBR-aを得た。
 t-ドデシルメルカプタンの量を0.5重量部に変更した以外は同上の方法で、重量平均分子量10900のNBR-bを調製した。また、t-ドデシルメルカプタンの量を0.8重量部に変更した以外は同上の方法で、重量平均分子量6600のNBR-cを調製した。
 各NBRの重量平均分子量と固形分濃度を表2に示す。
Figure JPOXMLDOC01-appb-T000002
[エマルジョン組成物の調製]
 上記各エラストマーを表3に示す重量比(樹脂分)で混合し、該混合樹脂分100重量部に対して、表4の添加剤を加えて、ミキサーで攪拌し、エマルジョン組成物1~8を調製した。表3において、A~EはそれぞれXNBR-A~Eを、a~cはそれぞれNBR-a~bを表す。例えば、実施例1は、XNBR-A樹脂85重量部とNBR-a樹脂15重量部が混合されていることを示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表4において、分散剤はアルキルベンゼンスルホン酸ナトリウムであり、抗酸化剤は2,4,6-トリ-tert-ブチルフェノールであり、着色剤はファストグリーンFCFである。
[手袋の製造]
 上記各エマルジョン組成物を用いて、以下のディッピング法により手袋(実施例1及び2、並びに、比較例1~6)を製造した。
(1)手袋の型であるフォーマを、洗浄液、次いで冷水で洗浄して乾燥した後、凝固剤である硝酸カルシウムがCa2+イオン濃度が10重量%となる量で水に溶解されている水溶液中に15秒間浸した。
(2)凝固剤が付着したフォーマを60℃で1分程度フォーマを乾燥した。
(3)30℃に調整したエマルジョン組成物中にフォーマを20秒間浸した。
(4)フォーマをエマルジョン組成物から取り出して水で洗浄した後、熱水(50℃)中に140秒間浸した。
(5)エマルジョン組成物の膜で覆われたフォーマを120℃で300秒間乾燥した後、60℃で80秒間維持し、得られた手袋をフォーマから取り外した。
[手袋の物性評価]
 得られた手袋の諸物性を以下の方法で評価した。結果を表5に示す。
<手袋のメチルエチルケトン熱抽出成分>
 手袋をメチルエチルケトン(MEK)に浸漬し、還流下で8時間抽出した後、得られた抽出液を回収し、濃縮・乾燥後の残留物を4桁天秤で計量した。
<手袋のトルエン膨潤比率>
 手袋を常温でトルエンに浸漬し、72時間後の重量を初期重量で除して膨潤比率(%)求めた。トルエンの膨潤比率が低い程、手袋における架橋密度は高くなる。手袋のような架橋ポリマーをトルエンのような良溶媒中に浸漬すると、良溶媒はポリマー鎖を溶かし広げようとするが、架橋ポリマーの網目の弾力で抑えられ膨潤平行に達するため、架橋ポリマーの架橋密度は良溶媒中の平行膨潤率と逆比例の関係になる。
<手袋の柔軟性>
 手袋の柔軟性を、引張り特性により評価した。
 手袋からJIS K6251:2010のダンベル状5号試験片を切り出し、株式会社A&D製のTENSILON万能引張試験機「RTC-1310A」を用い、試験速度500mm/min、チャック間75mm、標線間25mmで、引張強度(MPa)、破断時伸び(%)、及び、500%弾性率(MPa)を測定し、ゴム手袋の強度及び柔軟性を評価した。引張強度は、ゴム手袋の強度を示し数値が大きい程強度が高い。また、破断時伸びは、ゴム手袋の柔軟性を示し数値が大きい程柔軟性が高い。また、500%弾性率は、ゴム手袋の柔軟性を示し数値が大きい程柔軟性が低い。
<手袋の耐薬品性>
 以下の方法で、手袋を透過する薬剤量により、手袋の耐薬品性を調べた。
 手袋を裏返し、手袋の中指部分に47%フッ化水素(HF)酸、50%硫酸、生理食塩水、メタノール、エタノール、アセトン、及びN-メチルピロリドン(NMP)から選ばれる一種の薬液を10ml入れた状態で、該中指部分を純水30mlに浸漬し、室温で2時間放置後、純水中に溶出してきた上記各化合物の重量(g)をイオンクロマトグラフィー又はガスクロマトグラフィー等により定量した。表5において、「ND」は検出限界以下であったことを示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示すとおり、実施例の手袋は、いずれも引張強度及び破断時伸びの値が大きく、一方、500%弾性率の値が小さいことから柔軟性に優れていた。また、実施例の手袋は、いずれの化合物についても透過量が少なく、すなわち、手袋の表面から裏面への各化合物の透過量が少なく、薬液透過合計量も少ないことから耐薬品性に優れていた。これに対して、アクリロニトリル残基量が低いXNBR-Cを含む組成物から得られた手袋(比較例1)は、実施例の手袋に比べて薬液透過量が多く、耐薬品性が低かった。また、NBR含有量が少ないエマルジョン組成物から得られた手袋(比較例2)、低分子量のNBRを含有するエマルジョン組成物から得られた手袋(比較例3)、NBR含有量が多いエマルジョン組成物から得られた手袋(比較例4)、ムーニー粘度が高いXNBR-D含むエマルジョン組成物から得られた手袋(比較例5)、ムーニー粘度が低いXNBR-E含むエマルジョン組成物から得られた手袋(比較例6)は、いずれも引張強度、破断時伸び又は500%弾性率のいずれかの引張り特性が極めて劣っていた。

Claims (11)

  1.  カルボキシル化アクリロニトリルブタジエンエラストマーであって、該エラストマー重量の30~40重量%のアクリロニトリル残基及び3~8重量%の不飽和カルボン酸残基を含み、該エラストマー燃焼物の中和滴定法により検出される硫黄元素の含有量が該エラストマー重量の1重量%以下であり、且つ、ムーニー粘度(ML(1+4)(100℃))が100~220である、カルボキシル化アクリロニトリルブタジエンエラストマー。
  2. (1)カルボキシル化アクリロニトリルブタジエンエラストマーであって、該エラストマー重量の30~40重量%のアクリロニトリル残基及び3~8重量%の不飽和カルボン酸残基を含み、エラストマー燃焼物の中和滴定法により検出される硫黄元素の含有量が該エラストマー重量の1重量%以下であり、且つムーニー粘度(ML(1+4)(100℃))が100~220である、エラストマー、及び
    (2)スチレン換算値の重量平均分子量が7,000~500,000のポリ(アクリロニトリルブタジエン)
    を含むエマルジョン組成物であって、成分(1)/成分(2)の重量比が70/30~90/10であるエマルジョン組成物。
  3.  成分(1)のムーニー粘度が100~200である、請求項2記載のエマルジョン組成物。
  4.  成分(2)の重量平均分子量が9,000~30,000である、請求項2又は3記載のエマルジョン組成物。
  5.  成分(1)/(2)の重量比が、70/30~85/15である、請求項2~4のいずれか1項記載のエマルジョン組成物。
  6.  成分(1)と成分(2)の合計100重量部に対して、
    (3)0.5~4.0重量部の二価金属酸化物、
    (4)0.5~2.0重量部の分散剤、
    をさらに含む、請求項2~5のいずれか1項記載のエマルジョン組成物。
  7.  固形分がエマルジョン組成物の30~60重量%である、請求項2~6のいずれか1項記載のエマルジョン組成物。
  8.  手袋調製用の組成物である、請求項2~7のいずれか1項記載のエマルジョン組成物。
  9.  請求項8記載の組成物から得られる手袋。
  10.  還流下でのメチルエチルケトン抽出分が手袋の15~30重量%である、請求項9記載の手袋。
  11.  下記方法:
     手袋を裏返し、手袋の中指部分に47%フッ化水素酸、メタノール、エタノール、アセトン、及びN-メチルピロリドンから選ばれる一種の薬液を10ml入れた状態で、該中指部分を純水30mlに浸漬し、室温で2時間放置後、純水中に溶出してきた該薬剤を、イオンクロマトグラフィー又はガスクロマトグラフィーにより定量する、
     により測定されるフッ素イオン透過量が0.1g以下、メタノール透過量及びエタノール透過量が、夫々、0.3g以下、アセトン透過量が5.0g以下、N-メチルピロリドン透過量が0.15g以下である、請求項9又は10記載の手袋。
PCT/JP2013/073411 2012-08-31 2013-08-30 耐薬品性に優れた手袋及び該手袋用組成物 WO2014034889A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380045410.1A CN104768985B (zh) 2012-08-31 2013-08-30 耐药品性优异的手套和该手套用组合物
JP2014533130A JP6078071B2 (ja) 2012-08-31 2013-08-30 耐薬品性に優れた手袋及び該手袋用組成物
EP13833395.0A EP2891668B1 (en) 2012-08-31 2013-08-30 Glove having excellent chemical resistance and composition for said glove
US14/424,741 US9587091B2 (en) 2012-08-31 2013-08-30 Glove having excellent chemical resistance and composition for said glove

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-191264 2012-08-31
JP2012191264 2012-08-31

Publications (1)

Publication Number Publication Date
WO2014034889A1 true WO2014034889A1 (ja) 2014-03-06

Family

ID=50183692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073411 WO2014034889A1 (ja) 2012-08-31 2013-08-30 耐薬品性に優れた手袋及び該手袋用組成物

Country Status (7)

Country Link
US (1) US9587091B2 (ja)
EP (1) EP2891668B1 (ja)
JP (2) JP6078071B2 (ja)
CN (1) CN104768985B (ja)
MY (1) MY173046A (ja)
TW (1) TWI606069B (ja)
WO (1) WO2014034889A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129871A1 (ja) * 2014-02-28 2015-09-03 ミドリ安全株式会社 手袋及び手袋用組成物
WO2017130889A1 (ja) * 2016-01-27 2017-08-03 日本ゼオン株式会社 ラテックス組成物
JP2018506592A (ja) * 2014-12-23 2018-03-08 エルジー・ケム・リミテッド ディップ成形用ラテックス組成物及びこれから製造されたディップ成形品
WO2019003743A1 (ja) * 2017-06-29 2019-01-03 日本ゼオン株式会社 ラテックス組成物
KR20190019143A (ko) * 2016-06-16 2019-02-26 미도리안젠 가부시키가이샤 장갑의 제조 방법, 장갑, 및 장갑용 에멀젼 조성물
WO2022065491A1 (ja) * 2020-09-25 2022-03-31 ミドリ安全株式会社 ディップ成形用組成物、及びその成形体
WO2022081002A2 (en) 2020-10-12 2022-04-21 Ci Technology Sdn Bhd Method of preparing a heterogeneous composite chemical curative dispersion for making elastomeric article
CN114395174A (zh) * 2022-01-19 2022-04-26 山东景元记劳保用品有限公司 一种耐磨防油丁腈贴片手套及其制备方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105492179B (zh) 2013-07-16 2019-03-08 皮肤防护有限公司 形成弹性体膜的组合物和由所述弹性体膜制成的制品
MY196814A (en) * 2016-12-19 2023-05-03 Midori Anzen Co Ltd Glove dipping composition, method for manufacturing gloves, and gloves
EP3434437B1 (en) * 2017-07-25 2021-09-29 Skinprotect Corporation SDN BHD Elastomeric gloves and methods for their production
JP6446115B1 (ja) * 2017-11-17 2018-12-26 ショーワグローブ株式会社 手袋及び手袋の製造方法
WO2019102985A1 (ja) 2017-11-24 2019-05-31 ミドリ安全株式会社 手袋、ディップ成形用組成物及び手袋の製造方法
WO2019139082A1 (ja) 2018-01-12 2019-07-18 日本ゼオン株式会社 ラテックス組成物
JP7264153B2 (ja) * 2018-03-22 2023-04-25 日本ゼオン株式会社 カルボキシル基含有ニトリルゴムのラテックス中に含まれる、未反応のα,β-エチレン性不飽和ニトリル単量体の回収方法
EP3575357B1 (en) * 2018-04-06 2022-04-20 Midori Anzen Co., Ltd. Composition for dip molding, method for producing gloves, and gloves
WO2020004415A1 (ja) * 2018-06-27 2020-01-02 ミドリ安全株式会社 ディップ成形用組成物、手袋の製造方法及び手袋
KR102497309B1 (ko) * 2019-10-07 2023-02-06 주식회사 엘지화학 딥 성형용 라텍스 조성물, 이로부터 성형된 성형품 및 이의 제조방법
KR102563062B1 (ko) * 2020-03-31 2023-08-03 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스
JP7408212B2 (ja) * 2020-03-31 2024-01-05 エルジー・ケム・リミテッド カルボン酸変性ニトリル系共重合体ラテックス
EP3950815A4 (en) * 2020-03-31 2022-04-20 Lg Chem, Ltd. CARBON ACID MODIFIED NITRILE BASED COPOLYMER LATEX, LATEX COMPOSITION FOR DIP FORMING THEREOF AND MOLDED ARTICLES THEREOF
EP3936564B1 (en) * 2020-03-31 2023-05-24 Lg Chem, Ltd. Carbonic acid modified nitrile-based copolymer latex, latex composition comprising same for dip molding, and molded article molded therefrom
WO2021201416A1 (ko) * 2020-03-31 2021-10-07 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 성형된 성형품
WO2021201418A1 (ko) * 2020-03-31 2021-10-07 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스
CN114316395B (zh) * 2022-01-11 2023-06-02 星宇医疗科技股份有限公司 一种复合胶乳的制备方法和应用
WO2023234491A1 (ko) 2022-05-30 2023-12-07 금호석유화학 주식회사 딥 성형용 라텍스 조성물, 그 제조방법 및 그로부터 제조된 딥 성형품

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026547A (ja) * 1998-05-05 2000-01-25 Goodyear Tire & Rubber Co:The 乳化剤を含まないカルボキシル化ニトリルゴムラテックスゴム
JP2007177091A (ja) 2005-12-28 2007-07-12 Nippon Zeon Co Ltd ディップ成形用ラテックス及びディップ成形品
JP2009203272A (ja) * 2008-02-26 2009-09-10 Nippon Zeon Co Ltd カルボキシル基含有ニトリルゴムの製造方法
JP2010144163A (ja) 2008-12-16 2010-07-01 Lg Chem Ltd カルボン酸変性ニトリル系共重合体ラテックス、これを含むディップ成形用ラテックス組成物
WO2011068394A1 (en) 2009-12-01 2011-06-09 Kossan Sdn Bhd Elastomeric rubber and rubber products without the use of vulcanizing accelerators and sulfur
JP2011132355A (ja) * 2009-12-24 2011-07-07 Nippon Zeon Co Ltd 接着剤用ニトリルゴムラテックスおよびその製造方法
WO2012043893A1 (ja) * 2010-09-30 2012-04-05 コッサン エスディーエヌ ビーエイチ ディー 加硫促進剤及び硫黄を用いないクリーンルーム用エラストマーゴム手袋
WO2012043894A1 (ja) * 2010-09-30 2012-04-05 コッサン エスディーエヌ ビーエイチ ディー 加硫促進剤及び硫黄を用いないエラストマーゴム及びエラストマーゴム製品

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6846871B2 (en) * 2003-04-25 2005-01-25 Milliken & Company Antimicrobial resin cured rubber articles and prevulcanized compositions
JP2005139300A (ja) * 2003-11-06 2005-06-02 Inoac Corp フォームラバー
CN101020732A (zh) 2005-09-12 2007-08-22 上海强丰合成胶有限公司 一种羧基丁腈胶乳的制备方法
JP2012191264A (ja) * 2011-03-08 2012-10-04 Kyocera Corp 基地局システム、無線制御部及び通信制御方法
CA2850773C (en) * 2011-10-04 2020-04-28 Vessix Vascular, Inc. Apparatus and method for treatment of in-stent restenosis
JP2016218945A (ja) * 2015-05-26 2016-12-22 株式会社リコー 情報処理システム、及び表示制御方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026547A (ja) * 1998-05-05 2000-01-25 Goodyear Tire & Rubber Co:The 乳化剤を含まないカルボキシル化ニトリルゴムラテックスゴム
JP2007177091A (ja) 2005-12-28 2007-07-12 Nippon Zeon Co Ltd ディップ成形用ラテックス及びディップ成形品
JP2009203272A (ja) * 2008-02-26 2009-09-10 Nippon Zeon Co Ltd カルボキシル基含有ニトリルゴムの製造方法
JP2010144163A (ja) 2008-12-16 2010-07-01 Lg Chem Ltd カルボン酸変性ニトリル系共重合体ラテックス、これを含むディップ成形用ラテックス組成物
WO2011068394A1 (en) 2009-12-01 2011-06-09 Kossan Sdn Bhd Elastomeric rubber and rubber products without the use of vulcanizing accelerators and sulfur
JP2011132355A (ja) * 2009-12-24 2011-07-07 Nippon Zeon Co Ltd 接着剤用ニトリルゴムラテックスおよびその製造方法
WO2012043893A1 (ja) * 2010-09-30 2012-04-05 コッサン エスディーエヌ ビーエイチ ディー 加硫促進剤及び硫黄を用いないクリーンルーム用エラストマーゴム手袋
WO2012043894A1 (ja) * 2010-09-30 2012-04-05 コッサン エスディーエヌ ビーエイチ ディー 加硫促進剤及び硫黄を用いないエラストマーゴム及びエラストマーゴム製品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Rubber, Unvulcanized - Physical Property - Part 1, Determination of Viscosity and Scorch Time with Mooney Viscometer", JIS K 6300-1, 2001
See also references of EP2891668A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129871A1 (ja) * 2014-02-28 2015-09-03 ミドリ安全株式会社 手袋及び手袋用組成物
EP3112411A4 (en) * 2014-02-28 2017-08-09 Midori Anzen Co., Ltd. Glove and glove composition
US9834665B2 (en) 2014-02-28 2017-12-05 Kossan Sdn Bhd Glove and glove composition
JP2018506592A (ja) * 2014-12-23 2018-03-08 エルジー・ケム・リミテッド ディップ成形用ラテックス組成物及びこれから製造されたディップ成形品
US10100179B2 (en) 2014-12-23 2018-10-16 Lg Chem, Ltd. Latex composition for dip forming and dip-formed article prepared therefrom
WO2017130889A1 (ja) * 2016-01-27 2017-08-03 日本ゼオン株式会社 ラテックス組成物
JPWO2017130889A1 (ja) * 2016-01-27 2018-11-22 日本ゼオン株式会社 ラテックス組成物
US11098148B2 (en) 2016-01-27 2021-08-24 Zeon Corporation Latex composition
KR20190019143A (ko) * 2016-06-16 2019-02-26 미도리안젠 가부시키가이샤 장갑의 제조 방법, 장갑, 및 장갑용 에멀젼 조성물
KR102205129B1 (ko) 2016-06-16 2021-01-19 미도리안젠 가부시키가이샤 장갑의 제조 방법, 장갑, 및 장갑용 에멀젼 조성물
WO2019003743A1 (ja) * 2017-06-29 2019-01-03 日本ゼオン株式会社 ラテックス組成物
WO2022065491A1 (ja) * 2020-09-25 2022-03-31 ミドリ安全株式会社 ディップ成形用組成物、及びその成形体
WO2022081002A2 (en) 2020-10-12 2022-04-21 Ci Technology Sdn Bhd Method of preparing a heterogeneous composite chemical curative dispersion for making elastomeric article
WO2022081002A3 (en) * 2020-10-12 2023-03-16 Ci Technology Sdn Bhd Method of preparing a heterogeneous composite chemical curative dispersion for making elastomeric article
CN114395174A (zh) * 2022-01-19 2022-04-26 山东景元记劳保用品有限公司 一种耐磨防油丁腈贴片手套及其制备方法
CN114395174B (zh) * 2022-01-19 2023-08-18 山东景元记劳保用品有限公司 一种耐磨防油丁腈贴片手套及其制备方法

Also Published As

Publication number Publication date
US9587091B2 (en) 2017-03-07
MY173046A (en) 2019-12-20
EP2891668B1 (en) 2017-07-26
TW201420617A (zh) 2014-06-01
TWI606069B (zh) 2017-11-21
JP6078071B2 (ja) 2017-02-08
EP2891668A1 (en) 2015-07-08
EP2891668A4 (en) 2016-03-30
CN104768985B (zh) 2017-07-28
JP2017036459A (ja) 2017-02-16
US20150218352A1 (en) 2015-08-06
CN104768985A (zh) 2015-07-08
JPWO2014034889A1 (ja) 2016-08-08

Similar Documents

Publication Publication Date Title
JP6078071B2 (ja) 耐薬品性に優れた手袋及び該手袋用組成物
JP6554088B2 (ja) 手袋及び手袋用組成物
TWI682001B (zh) 手套、浸漬成形用組成物以及手套的製造方法
TW201833145A (zh) 丙烯酸橡膠之製造方法、丙烯酸橡膠組成物之製造方法及橡膠交聯物之製造方法
JP7104299B2 (ja) クロロプレン重合体ラテックスとその製造方法
WO2016013666A1 (ja) エマルション組成物及び手袋
CN109952327A (zh) 丙烯酸共聚物及其交联物
TW201945455A (zh) 丙烯酸橡膠之製造方法及藉由此製造方法獲得之丙烯酸橡膠、橡膠組成物、橡膠交聯物
TW201817802A (zh) 丙烯酸橡膠之製造方法、丙烯酸橡膠組成物之製造方法以及橡膠交聯物之製造方法
JP2021505730A (ja) カルボン酸変性ニトリル系共重合体ラテックス組成物、その製造方法、これを含むディップ成形用のラテックス組成物およびこれから成形された成形品
JP2014074112A (ja) 酸化亜鉛を含まない又は酸化亜鉛含有量を低減したエラストマー成形物及びエラストマー製品
JP6860698B2 (ja) ディップ成形用組成物、手袋の製造方法及び手袋
WO2019087876A1 (ja) アクリルゴム
JP2005187544A (ja) ディップ成形用共重合体ラテックス、ディップ成形用組成物およびディップ成形物
JP7452008B2 (ja) 耐熱性と耐水性に優れるアクリルゴム
WO2021010334A1 (ja) ディップ成形用組成物、手袋の製造方法及び手袋
JP6646949B2 (ja) エラストマー及びその製造方法
CN112673063B (zh) 氯丁二烯共聚物胶乳组合物和其成型物
JP7452263B2 (ja) 保存安定性に優れるアクリルゴム
JP7452009B2 (ja) 耐熱性と耐水性に優れるアクリルゴム
JP3749207B2 (ja) クロロプレン系ゴム組成物
JP2817980B2 (ja) ゴムブーツ
JP2004269594A (ja) クロロプレン系ゴム組成物
JP2004323572A (ja) クロロプレン系ゴム組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014533130

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14424741

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013833395

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013833395

Country of ref document: EP