WO2014034401A1 - フェライト仮焼体、フェライト焼結磁石の製造方法及びフェライト焼結磁石 - Google Patents

フェライト仮焼体、フェライト焼結磁石の製造方法及びフェライト焼結磁石 Download PDF

Info

Publication number
WO2014034401A1
WO2014034401A1 PCT/JP2013/071463 JP2013071463W WO2014034401A1 WO 2014034401 A1 WO2014034401 A1 WO 2014034401A1 JP 2013071463 W JP2013071463 W JP 2013071463W WO 2014034401 A1 WO2014034401 A1 WO 2014034401A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinates
powder
calcined body
ferrite
raw material
Prior art date
Application number
PCT/JP2013/071463
Other languages
English (en)
French (fr)
Inventor
悦志 尾田
洋 岩崎
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2014532906A priority Critical patent/JP6119752B2/ja
Priority to CN201380044954.6A priority patent/CN104584149A/zh
Priority to US14/423,891 priority patent/US9601248B2/en
Priority to EP13834048.4A priority patent/EP2892058B1/en
Priority to KR1020157006878A priority patent/KR101836964B1/ko
Publication of WO2014034401A1 publication Critical patent/WO2014034401A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0054Mixed oxides or hydroxides containing one rare earth metal, yttrium or scandium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • C04B2235/3277Co3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites

Definitions

  • the present invention relates to a calcined ferrite body, a method for producing a sintered ferrite magnet, and a sintered ferrite magnet.
  • Ferrite sintered magnets are used in various applications such as various motors, generators, and speakers.
  • Sr ferrite (SrFe 12 O 19 ) and Ba ferrite (BaFe 12 O 19 ) having a hexagonal M-type magnetoplumbite structure are known.
  • These sintered ferrite magnets are manufactured at a relatively low cost by powder metallurgy using iron oxide and strontium (Sr) or barium (Ba) carbonate as raw materials.
  • Sr ferrite in which a part of Sr is substituted with a rare earth element such as La and a part of Fe is substituted with Co or the like (hereinafter referred to as “SrLaCo ferrite”). ) Is excellent in magnet properties, and instead of conventional Sr ferrite and Ba ferrite, it is being widely used in various applications, but further improvement in magnet properties is also desired.
  • Ca ferrite is also known as a ferrite sintered magnet together with the Sr ferrite and Ba ferrite. It is known that Ca ferrite has a stable structure represented by a composition formula of CaO—Fe 2 O 3 or CaO—2Fe 2 O 3 and forms hexagonal ferrite by adding La. However, the obtained magnet characteristics are similar to those of the conventional Ba ferrite and are not sufficiently high.
  • Patent No. 3181559 the improvement of B r and H cJ of the Ca ferrite, and for improving the temperature characteristics of the H cJ, were replaced with rare earth elements of La such a portion of Ca, Co, etc. for a portion of Fe
  • the Ca ferrite having an anisotropic magnetic field H A of 20 kOe or more (hereinafter referred to as “CaLaCo ferrite”), which is replaced by the above, is disclosed, and this anisotropic magnetic field H A is 10% higher than that of the Sr ferrite. It is described that there is.
  • CaLaCo ferrite although having a high magnetic anisotropy field H A, B r and H cJ are comparable to SrLaCo ferrite, while the H k / H cJ is very poor, high H cJ and high H k / H cJ cannot be satisfied, and it has not yet been applied to various uses such as motors.
  • Japanese Patent Laid-Open No. 2006-104050 proposes a CaLaCo ferrite in which the atomic ratio and molar ratio n of each constituent element are optimized, and La and Co are contained at a specific ratio.
  • / 060757 proposes CaLaCo ferrites in which part of Ca is replaced by La and Ba
  • International Publication No. 2007/077811 proposes CaLaCo ferrites in which part of Ca is replaced by La and Sr. Yes.
  • International Publication No. 2008/105449 includes a first finely pulverizing step and a first pulverization step in a composition region having more Sr and / or Ba than International Publication No. 2007/060757 and International Publication No. 2007/077811.
  • a pulverization step (hereinafter referred to as “heat treatment re-pulverization step”) comprising a step of heat-treating the powder obtained by the fine pulverization step and a second pulverization step of pulverizing the powder subjected to the heat treatment again.
  • heat treatment re-pulverization step comprising a step of heat-treating the powder obtained by the fine pulverization step and a second pulverization step of pulverizing the powder subjected to the heat treatment again.
  • the CaLaCo ferrite described in JP-A-2006-104050, International Publication No. 2007/060757, International Publication No. 2007/077811 and International Publication No. 2008/105449 is the same as the CaLaCo ferrite proposed in Patent No. 3181559.
  • the magnet characteristics have improved, the Co content needs to be about 0.3 in atomic ratio, and the SrLaCo ferrite sintered magnet currently offered on the market has the Co content (about 0.2 in atomic ratio).
  • the price of Co is 10 to several tens of times that of iron oxide, the main component of ferrite magnets. Therefore, there is a problem that an increase in raw material cost is inevitable and the price of the sintered ferrite magnet increases.
  • sintered ferrite magnets are inexpensive. Therefore, even a ferrite sintered magnet having high magnet properties is not accepted in the market if the price is high.
  • An object of the present invention is to provide in the inexpensive ferrite sintered magnet that combines a high B r and high H cJ.
  • the ferrite calcined body of the present invention has a general formula: Ca 1-xy La x (Sry y Ba 1-y ' indicating the atomic ratio of Ca, La, Sr, Ba, Fe and Co metal elements. ) In y Fe 2n-z Co z 1 ⁇ x ⁇ y, x and y are (x, y, 1-xy) triangular coordinates (see FIG.
  • the method for producing a sintered ferrite magnet of the present invention has the general formula Ca 1-xy La x (Sry ' Ba 1-y indicating the atomic ratio of Ca, La, Sr, Ba, Fe and Co metal elements. ' ) In y Fe 2n-z Co z 1 ⁇ x ⁇ y, x and y are (x, y, 1-xy) triangular coordinates (see FIG.
  • Another method for producing a sintered ferrite magnet of the present invention is a general formula indicating the atomic ratio of Ca, La, Sr, Ba, Fe and Co metal elements: In Ca 1-xy La x (Sry ' Ba 1-y' ) y Fe 2n-z Co z 1 ⁇ x ⁇ y, x and y are (x, y, 1-xy) triangular coordinates (see FIG.
  • the ferrite sintered magnet of the present invention is a ferrite sintered magnet obtained by the method for producing a ferrite sintered magnet, General formula showing atomic ratio of metallic elements of Ca, La, Sr, Ba, Fe and Co: In Ca 1-xy La x (Sry ' Ba 1-y' ) y Fe 2n-z Co z 1 ⁇ x ⁇ y, x and y are (x, y, 1-xy) triangular coordinates (see FIG.
  • the ferrite calcined body of the present invention By using the ferrite calcined body of the present invention, it is possible to provide a ferrite sintered magnet that combines a high B r and high H cJ. Further, since it is possible to reduce the Co content than conventional CaLaCo ferrite, it can be provided by inexpensive ferrite sintered magnet that combines a high B r and high H cJ.
  • the residual magnetic flux density B r at 23 ° C. (mT) and intrinsic coercive force H cJ (kA / m) is higher B r that satisfies the relationship B r + H cJ /4 ⁇ 535.5 Because it has a high H cJ , it can sufficiently cope with thinning.
  • the ferrite sintered magnet according to the present invention By using the ferrite sintered magnet according to the present invention, it is possible to provide various electric motor parts such as various motors, generators, and speakers, electric equipment parts, etc., which are reduced in size, weight and efficiency.
  • 6 is a graph showing the relationship between z and H k / H cJ in a calcined body of a sintered ferrite magnet of Example 4.
  • Ferrite calcined body has a general formula indicating the atomic ratio of Ca, La, Sr, Ba, Fe and Co metal elements: Ca 1-xy La x (Sry ′ In Ba 1 ⁇ y ′ ) y Fe 2n ⁇ z Co z 1 ⁇ x ⁇ y, x and y are (x, y, 1-xy) triangular coordinates (see FIG.
  • a ferrite sintered magnet with a ferrite calcined body of the present invention can be provided in the inexpensive ferrite sintered magnet that combines a high B r and high H cJ.
  • the ferrite calcined body of the present invention is mainly composed of a ferrite phase having a hexagonal M-type magnetoplumbite structure.
  • a compound that determines the properties (physical properties, magnet properties, etc.) of the magnetic material is defined as “main phase”.
  • the main phase in the ferrite calcined body of the present invention that is, a ferrite phase having a hexagonal M-type magnetoplumbite structure also determines basic parts such as physical properties of the ferrite calcined body of the present invention.
  • Having a hexagonal M-type magnetoplumbite structure means that the X-ray diffraction pattern of the hexagonal M-type magnetoplumbite structure is measured when X-ray diffraction of the calcined ferrite is measured under general conditions. Mainly observed.
  • the (x, y, 1-xy) triangular coordinates shown in FIG. 1 are the Ca content ratio (1-xy), La content ratio (x), and (Sr + Ba) content ratio (y) [where x, y, 1 The sum of -xy is 1. ]
  • the base of the triangular coordinate contains Ca content (1-xy)
  • the right oblique side contains La content (x)
  • the left oblique side contains (Sr + Ba) It is an axis
  • Arbitrary points ( ⁇ , ⁇ , ⁇ ) in triangular coordinates indicate points having a distance ⁇ from the base, a distance ⁇ from the right oblique side, and a distance ⁇ from the left oblique side.
  • 1-x-y is the Ca content.
  • x, x, and y take values in the region I, the range of 1-xy is 0.23 ⁇ 1-x-y ⁇ 0.4. If 1-x-y is less than 0.23 or more than 0.4, it is not preferable because heterogeneous phases such as an orthoferrite phase and a perovskite phase are likely to be formed and the magnetic properties are degraded.
  • X is the content of La, and when 1-xy, x and y take values in the region I, the range of x is 0.3 ⁇ x ⁇ 0.47. If x is less than 0.3, a different phase such as a spinel ferrite phase is likely to be generated, and the magnet characteristics are deteriorated. If x exceeds 0.47, it is not preferable because a different phase such as an orthoferrite phase or a hematite phase is likely to be generated and the magnetic properties are deteriorated.
  • y is the total content of Sr and Ba.
  • 1-xy, x, and y take values in the region I, the range of y is 0.2 ⁇ y ⁇ 0.4. If y is less than 0.2 or more than 0.4, it is not preferable because heterogeneous phases such as orthoferrite phase, SrFeO 3 , BaFe 2 O 4 and the like are easily generated and the magnetic properties are deteriorated.
  • y ′ represents the content ratio of Sr with respect to the sum of Sr and Ba, and 0.5 ⁇ y ′ ⁇ 1. If y ′ is less than 0.5, the magnetic properties, particularly H cJ, are not preferable.
  • z is the Co content, and 0.2 ⁇ z ⁇ 0.25. Since Co is expensive, it is preferable to reduce it as much as possible in order to reduce the raw material cost. However, if z is less than 0.2, it is not preferable because magnet characteristics, particularly HcJ , deteriorates. If z is 0.25 or more, a hetero phase such as a spinel ferrite phase is likely to be generated, and the magnet characteristics, particularly the squareness of the demagnetization curve, is significantly deteriorated.
  • the molar ratio n is 5.2 ⁇ n ⁇ 5.6. When n is 5.2 or less and 5.6 or more, the magnet characteristics are deteriorated, which is not preferable.
  • composition containing oxygen (O) is In the general formula: Ca 1-xy La x (Sr y ' Ba 1-y' ) y Fe 2n-z Co z O ⁇ 1 ⁇ x ⁇ y, x and y are (x, y, 1-xy) triangular coordinates (see FIG.
  • the number of moles of oxygen varies depending on the valence of Fe and Co, the n value, and the like. Further, the ratio of oxygen to the metal element changes due to oxygen vacancies, changes in the valence of Fe in the ferrite phase, changes in the valence of Co, and the like. Therefore, the actual mole number ⁇ of oxygen may deviate from 19. Therefore, in the present invention, the composition is expressed by the atomic ratio of the metal element whose composition is most easily specified.
  • the method for producing a ferrite sintered magnet according to the present invention is a general formula indicating the atomic ratio of Ca, La, Sr, Ba, Fe and Co metal elements: Ca 1-xy In La x (Sr y ′ Ba 1 ⁇ y ′ ) y Fe 2n ⁇ z Co z , 1 ⁇ x ⁇ y, x and y are (x, y, 1-xy) triangular coordinates (see FIG.
  • another method for producing a sintered ferrite magnet of the present invention has a general formula indicating the atomic ratio of metallic elements of Ca, La, Sr, Ba, Fe and Co: In Ca 1-xy La x (Sry ' Ba 1-y' ) y Fe 2n-z Co z 1 ⁇ x ⁇ y, x and y are (x, y, 1-xy) triangular coordinates (see FIG.
  • a sintered ferrite magnet described later can be obtained by any of the pre-addition method and the post-addition method. Each step will be described below.
  • the raw material powder can use oxides, carbonates, hydroxides, nitrates, chlorides, and the like of each metal.
  • dissolved raw material powder may be sufficient.
  • the Ca compound include Ca carbonate, oxide, chloride and the like.
  • the La compound include oxides such as La 2 O 3 , hydroxides such as La (OH) 3 , carbonates such as La 2 (CO 3 ) 3 ⁇ 8H 2 O, and the like.
  • the element A compound include Ba and / or Sr carbonates, oxides, and chlorides.
  • the iron compound include iron oxide, iron hydroxide, iron chloride, and mill scale.
  • Co compounds include oxides such as CoO and Co 3 O 4 , and hydroxides such as CoOOH, Co (OH) 2 , and Co 3 O 4 ⁇ m 1 H 2 O (m 1 is a positive number). , Carbonates such as CoCO 3 , and basic carbonates such as m 2 CoCO 3 ⁇ m 3 Co (OH) 2 ⁇ m 4 H 2 O (m 2 , m 3 and m 4 are positive numbers) Can be mentioned.
  • the Co raw material powder for example, Co 3 O 4 powder
  • the Co raw material powder may be added in the raw material powder mixing step (before the calcination step) (pre-addition method) or one of the Co raw material powders. Part or all may be added after the calcination step and before the molding step (post-addition method).
  • a compound containing B such as B 2 O 3 or H 3 BO 3 may be added up to about 1% by mass as necessary.
  • H 3 BO 3 is effective in further improvement of H cJ and B r.
  • the amount of H 3 BO 3 added is preferably 0.3% by mass or less, and most preferably about 0.2% by mass.
  • Amount of H 3 BO 3 is less effect of improving low and B r than 0.1 wt%, B r is reduced as more than 0.3 mass%.
  • H 3 BO 3 also has the effect of controlling the shape and size of crystal grains during sintering, so it may be added after the calcination process (before pulverization or before sintering). You may add both after a baking process.
  • each raw material powder to make a mixed raw material powder.
  • Mixing of the raw material powders may be performed either by a wet method or a dry method. When stirring with a medium such as a steel ball, the raw material powder can be mixed more uniformly. In the case of wet, it is preferable to use water as the solvent.
  • a known dispersant such as ammonium polycarboxylate or calcium gluconate may be used.
  • the mixed raw material slurry may be calcined as it is, or after dehydrating the raw material slurry, it may be calcined.
  • the calcination step is preferably performed in an atmosphere having an oxygen concentration of 5% or more.
  • the oxygen concentration is less than 5%, abnormal grain growth, generation of a heterogeneous phase, and the like are caused.
  • a more preferable oxygen concentration is 20% or more.
  • the calcination temperature is preferably 1100 to 1450 ° C, more preferably 1200 to 1350 ° C.
  • the calcination time is preferably 0.5 to 5 hours.
  • sintering aids SiO 2 and CaCO 3 are added as sintering aids.
  • SiO 2 after the raw material powder mixing step, before the forming step the mixed raw material powder, calcined body or calcined body powder, 0.1% to 100% by mass of the mixed raw material powder, calcined body or calcined body powder. More than 1.5% by mass is added. That is, 0.1% by mass or more and less than 1.5% by mass with respect to 100% by mass of the mixed material powder is added to the mixed material powder (addition pattern 1), and 0.1% by mass or more with respect to 100% by mass of the calcined body.
  • addition pattern 2 Any addition pattern of adding less than 1.5% by mass (addition pattern 2), adding 0.1% by mass or more and less than 1.5% by mass to 100% by mass of the calcined powder (addition pattern 3).
  • SiO 2 is added depending on a combination of these patterns. When the patterns are added in combination, they are added so that the total amount added by each pattern is 0.1% by mass or more and less than 1.5% by mass.
  • CaCO 3 is added to the calcined body or calcined body powder in an amount of 0 to 2% by mass in terms of CaO with respect to 100% by mass of the calcined body or calcined body powder after the calcining step and before the molding step. That is, 0 to 2% by mass is added to the calcined body with respect to 100% by mass of the calcined body (addition pattern 4), and 0 to 2% by mass with respect to 100% by mass of the calcined body powder is added to the calcined body powder.
  • the SiO 2 When adding the SiO 2 to the mixed raw material powder (in the case of the addition pattern 1), it may be added at any timing before, during or after the mixed raw material powder adjustment.
  • the mixed raw material powder is further mixed after the addition.
  • SiO 2 or CaCO 3 is added to the calcined body (in the case of the above pattern 2 or 4) or added to the calcined body powder (in the case of the above pattern 3 or 5)
  • the grinding step is performed, the sintering aid is added during the grinding step, or the sintering aid is added to and mixed with the calcined powder after the grinding step.
  • a method such as performing a post-molding process can be employed.
  • SiO 2 With the addition of SiO 2 is lowered becomes the H cJ than 1.5 mass%, undesirably drops B r and H k / H cJ.
  • SiO 2 is most preferably added to the calcined body, as described above, a part of the total addition amount can be added before the calcining step (in the raw material powder mixing step). By adding before the calcination step, it is possible to control the size of crystal grains during calcination.
  • CaCO 3 is added in an amount of 0 to 2% by mass in terms of CaO with respect to 100% by mass of the calcined body.
  • the addition of CaCO 3 can be improved B r and H cJ. It is not preferable because the amount of CaCO 3 exceeds 2% by mass B r and H k / H cJ is reduced.
  • the amount of CaCO 3 added is all expressed in terms of CaO.
  • the addition amount of CaCO 3 from the addition amount in terms of CaO is calculated by the formula: (Molecular weight of CaCO 3 ⁇ added amount in terms of CaO) / CaO molecular weight.
  • CaLaCo ferrite since Ca is contained as a main phase component, a liquid phase is generated and sintered without adding CaCO 3 as a sintering aid (only by adding SiO 2 ). can do.
  • CaCO 3 is possible to implement the present invention even without the addition, it is preferable to add CaCO 3 in order to prevent a decrease in H cJ.
  • SiO 2 and CaCO 3 , Cr 2 O 3 , Al 2 O 3, etc. can be added after the calcining step and before the molding step described later in order to improve magnet properties.
  • Each of these addition amounts is preferably 5% by mass or less.
  • the calcined body is pulverized by a vibration mill, ball mill, attritor or the like to obtain a calcined powder.
  • the average particle size of the calcined powder is preferably about 0.4 to 0.8 ⁇ m (air permeation method).
  • the pulverization step may be either dry pulverization or wet pulverization, but is preferably performed in combination.
  • the wet pulverization is performed using water and / or a non-aqueous solvent (organic solvent such as acetone, ethanol, xylene) as a dispersion medium.
  • a non-aqueous solvent organic solvent such as acetone, ethanol, xylene
  • a slurry in which the dispersion medium and the calcined powder are mixed is generated. It is preferable to add a known dispersant and / or surfactant to the slurry in a solid content ratio of 0.2 to 2% by mass. After the wet pulverization, it is preferable to concentrate and knead the slurry.
  • the pulverization step the first fine pulverization step, the step of heat-treating the powder obtained by the first fine pulverization step, and the heat-treated powder again
  • a heat treatment re-grinding step consisting of a second fine grinding step to pulverize
  • the particle size of the crystal particles is reduced, the density of the magnet is increased, and further, the magnetic properties are improved by controlling the shape of the crystal particles I am letting.
  • the ferrite calcined body composed of the composition by producing a ferrite sintered magnet by the method, were both high B r and high H cJ without performing heat treatment regrinding step
  • a ferrite sintered magnet can be provided.
  • Firing step The compact obtained by press molding is degreased as necessary and then fired (sintered). Firing is performed using an electric furnace, a gas furnace, or the like. Firing is preferably performed in an atmosphere having an oxygen concentration of 10% or more. If the oxygen concentration is less than 10%, abnormal grain growth, generation of a heterogeneous phase, and the like are caused, and the magnet characteristics deteriorate. The oxygen concentration is more preferably 20% or more, and most preferably 100%.
  • the firing temperature is preferably 1150 to 1250 ° C.
  • the firing time is preferably 0.5 to 2 hours.
  • the average crystal grain size of the sintered magnet obtained by the firing process is about 0.5-2 ⁇ m.
  • a ferrite sintered magnet is finally manufactured through known manufacturing processes such as a processing step, a cleaning step, and an inspection step.
  • the ferrite sintered magnet of the present invention is a ferrite sintered magnet obtained by the method for producing a ferrite sintered magnet, General formula showing atomic ratio of metallic elements of Ca, La, Sr, Ba, Fe and Co: In Ca 1-xy La x (Sry ' Ba 1-y' ) y Fe 2n-z Co z 1 ⁇ x ⁇ y, x and y are (x, y, 1-xy) triangular coordinates (see FIG.
  • the sintered ferrite magnet of the present invention has a ferrite phase having a hexagonal M-type magnetoplumbite structure as a main phase.
  • a magnetic material particularly a sintered magnet
  • main phase a compound that determines the characteristics (physical properties, magnet characteristics, etc.) of the magnetic material.
  • the main phase in the present invention that is, the ferrite phase having a hexagonal M-type magnetoplumbite structure also determines basic parts such as physical properties and magnet characteristics of the sintered ferrite magnet of the present invention.
  • Having hexagonal M-type magnetoplumbite structure means that the X-ray diffraction pattern of hexagonal M-type magnetoplumbite structure is measured when X-ray diffraction of sintered ferrite magnets is measured under general conditions. Mainly observed.
  • the ferrite sintered magnet of the present invention has a grain boundary phase containing Si.
  • the calcined body is 100% by mass of the calcined body, and 0.1% by mass or more and less than 1.5% by mass of SiO 2 and CaO. In terms of conversion, 0 to 2% by mass of CaCO 3 is added.
  • These SiO 2 and CaCO 3 mainly form a grain boundary phase. Therefore, the grain boundary phase contains Si. Since the grain boundary phase is difficult to observe with an X-ray diffraction pattern, it is preferably confirmed with a transmission electron microscope or the like.
  • the grain boundary phase is referred to as “two-grain grain boundary phase” by those skilled in the art, and is present at the grain boundary between the main phase and the main phase when an arbitrary cross section of the sintered ferrite magnet is observed.
  • Grain boundary phases that appear linear, and those skilled in the art are referred to as “three-point grain boundary phases”. When an arbitrary cross-section of a sintered ferrite magnet is observed, there are almost triangles that exist between three or more main phases. , Both grain boundaries that appear to be polygonal or indefinite.
  • the sintered ferrite magnet of the present invention may have a third phase having a higher atomic ratio of La than the main phase, in addition to the main phase and the grain boundary phase.
  • the third phase means ⁇ third phase '' when the main phase is the first phase and the grain boundary phase is the second phase, and the composition ratio, the precipitation order, etc. are not defined. Absent.
  • the third phase is not an essential constituent phase in the present invention, and the configuration and effects of the present invention are not impaired by the presence or absence of the third phase.
  • the presence of a heterogeneous phase (such as a spinel phase) or an impurity phase observed by a very small amount (about 5% by mass or less) by X-ray diffraction or the like is allowed.
  • Techniques such as Rietveld analysis can be used to quantify heterogeneous phases from X-ray diffraction.
  • the residual magnetic flux density B r at 23 ° C. (mT) and intrinsic coercive force H cJ (kA / m) is higher B r that satisfies the relationship B r + H cJ /4 ⁇ 535.5 And has a high H cJ . Therefore, in recent years, it is possible to sufficiently cope with the reduction in the thickness of a sintered ferrite magnet required for a motor used particularly for an automobile electrical component.
  • Example 1 In the composition formula Ca 1-xy La x (Sr y ′ Ba 1-y ′ ) y Fe 2n-z Co z indicating the atomic ratio of the metal element, the CaCO 3 powder, La ( OH) 3 powder, SrCO 3 powder, BaCO 3 powder, Fe 2 O 3 powder and Co 3 O 4 powder are added, and 0.1% by mass of H 3 BO 3 powder is added to 100% by mass of the combined powder.
  • a mixed raw material powder was prepared. The mixed raw material powder is mixed for 4 hours in a wet ball mill, dried and sized, then calcined in air at 1250 ° C. for 3 hours, and the resulting calcined body is coarsely pulverized by a hammer mill and coarsely pulverized powder Got.
  • the composition shown in Table 1 represents the composition of the calcined body.
  • the average particle size by the air permeation method is 0.6.
  • the obtained finely pulverized slurry was molded at a pressure of about 50 MPa while applying a magnetic field of about 1.3 T so that the pressure direction and the magnetic field direction were parallel while removing the dispersion medium.
  • the obtained compact was fired at about 1200 ° C. for 1 hour in the air to obtain a sintered magnet.
  • Samples Nos. 11 to 18 are comparative examples based on the composition of Sample No. 13 described in Examples of International Publication No. 2008/105449.
  • the composition of the sample No. 13 is the same as that of many examples (samples Nos. 29 to 40, 51 to 58, 64 to 79, 82, 85 to 92, 93 to 94 in the examples of International Publication No. 2008/105449).
  • 101-102, 103-104, 131-136, 137-139, 146-157) and therefore, used as a representative composition in International Publication No. 2008/105449 for a comparative example.
  • samples 1-6 respectively, of the sintered ferrite magnet of Sample 7-10 and samples 11-18, the relationship between the value and the B r and H cJ of the molar ratio n in the calcined body Indicates.
  • square plot of B r, plots of triangles indicates H cJ.
  • the sintered ferrite magnets according to the present invention (Sample Nos. 2 to 4 and 8 to 10) are shown as black plots.
  • the molar ratio n in the calcined body of the present invention was limited to 5.2 ⁇ n ⁇ 5.6.
  • the values of 1-xy, x, and y in the calcined body are within the range of the region I shown in FIG. 1, and high Br and high H with 5.2 ⁇ n ⁇ 5.6. Ferrite sintered magnets that are compatible with cJ can be obtained. On the other hand, in International Publication No. 2008/105449, a sintered ferrite magnet having high magnetic characteristics with n ⁇ 5.6 is obtained, and it can be seen that the tendency is different from that of the present invention.
  • Example 2 In the composition formula Ca 1-x-y La x (Sr y 'Ba 1-y') y Fe 2n-z Co z showing the atomic ratio of metal elements was blended raw material powder so as to have the composition shown in Table 2 A sintered magnet was obtained in the same manner as Example 1 except for the above.
  • the calcined body compositions of Samples Nos. 3, 9, and 19 to 37 and the composition range of the calcined body specified in the present invention are shown in FIG.
  • Measurement results of the B r and H cJ of the resultant sintered magnets are shown in Table 2 and Figure 8. In Table 2, those marked with * next to the sample number are comparative examples.
  • FIG. 7 shows the values of 1-xy, x and y in the calcined body in (x, y, 1-xy) triangular coordinates, coordinates a: (0.470, 0.297, 0.233), Coordinate b: (0.300, 0.392, 0.308), Coordinate c: (0.300, 0.300, 0.400), Coordinate d: (0.400, 0.200, 0.400) and Coordinate e: (0.470, 0.200, 0.330) )
  • X and y values are plotted.
  • the composition of the ferrite calcined body according to the present invention is shown by a black square plot, and the composition of the ferrite calcined body according to the comparative example is shown by a circular plot.
  • Figure 8 shows the relationship between H cJ and B r of the sample No.3,9 and 19-37
  • the black square plot represents the ferrite sintered magnet according to the present invention
  • the circular plot represents the ferrite sintered magnet according to the comparative example.
  • the values of 1-xy, x, and y in the calcined body are the coordinates a: (0.470, 0.297, 0.233) and coordinates b: ( 0.300, 0.392, 0.308), coordinates c: (0.300, 0.300, 0.400), coordinates d: (0.400, 0.200, 0.400) and coordinates e: existing in the area (area I) surrounded by (0.470, 0.200, 0.330)
  • all sintered ferrite magnets using a calcined ferrite body in which y ′, z, and n satisfy the provisions of the present invention black square plots in the figure) have B r + H cJ / 4 of 535.5 or more. it is seen to have superior magnetic characteristics having both high B r and high H cJ.
  • Example 3 In the composition formula Ca 1-x-y La x (Sr y 'Ba 1-y') y Fe 2n-z Co z showing the atomic ratio of metal elements was blended raw material powder so as to have the composition shown in Table 3 A sintered magnet was obtained in the same manner as Example 1 except for the above. Measurement results of the B r and H cJ of the resultant sintered magnets are shown in Table 3 and FIGS. 9 and 10. In Table 3, an asterisk next to the sample number is a comparative example.
  • Figure 9 is a ferrite sintered magnet of the sample 3 and 38-44, shows the relationship between y 'and B r and H cJ of the calcined body.
  • a sintered ferrite magnet according to the present invention is shown by a black square plot, and a sintered ferrite magnet according to a comparative example is shown by a circular plot.
  • Example 4 In the composition formula Ca 1-xy La x (Sr y ′ Ba 1 ⁇ y ′ ) y Fe 2n-z Co z indicating the atomic ratio of the metal element, the composition shown in Table 4 (z is described in the column of “when blended”) The total of 100 powders after blending CaCO 3 powder, La (OH) 3 powder, SrCO 3 powder, BaCO 3 powder, Fe 2 O 3 powder and Co 3 O 4 powder H 3 BO 3 powder was prepared added and mixed raw material powder 0.1 wt% relative to the weight%. Note that the molar ratio n is that of sample Nos. 3 and 45 to 49 (pre-addition method), and that of sample No.
  • n was 5.4 (so that n in the mixture of calcined body and Co 3 O 4 powder (without adding sintering aid) was 5.4) .
  • n when compounding sample No. 50 is 5.38
  • n when compounding sample No. 51 is 5.355
  • n when compounding sample No. 52 is 5.33
  • n when compounding sample No. 53 is 5.305
  • N at the time of compounding of sample No. 54 was 5.28.
  • the mixed raw material powder is mixed for 4 hours in a wet ball mill, dried and sized, then calcined in air at 1250 ° C. for 3 hours, and the resulting calcined body is coarsely pulverized by a hammer mill and coarsely pulverized powder Got.
  • the Co 3 O 4 powder is added to the column “z” during Table 4 in Table 4
  • the obtained finely pulverized slurry was molded at a pressure of about 50 MPa while applying a magnetic field of about 1.3 T so that the pressure direction and the magnetic field direction were parallel while removing the dispersion medium.
  • the obtained compact was fired at about 1200 ° C. for 1 hour in the air to obtain a sintered magnet.
  • FIG. 11 shows the relationship between z and B r and H cJ, the square plots B r, plots of triangles indicates H cJ.
  • FIG. 12 shows the relationship between z and H k / H cJ .
  • H k is, J in the second quadrant of the (magnetization magnitude) -H (field strength) curve, J is the value of the position of H to a value of 0.95B r is there.
  • a sintered ferrite magnet according to the present invention is shown by a black square plot, and a sintered ferrite magnet according to a comparative example is shown by a circular plot.
  • Example 5 CaCO 3 powder, La (OH) 3 powder, SrCO 3 powder, BaCO 3 powder, Fe 2 O 3 powder and Co so that the composition formula Ca 0.275 La 0.385 Sr 0.340 Fe 10.56 Co 0.24 indicating the atomic ratio of the metal element 3 O 4 powder was blended, and 0.1 wt% of H 3 BO 3 powder was added to a total of 100 wt% of the powder after blending to prepare a mixed raw material powder.
  • the mixed raw material powder is mixed for 4 hours in a wet ball mill, dried and sized, then calcined in air at 1250 ° C. for 3 hours, and the resulting calcined body is coarsely pulverized by a hammer mill and coarsely pulverized powder Got.
  • the addition amounts of CaCO 3 powder and SiO 2 powder shown in Table 5 were added to 100% by mass of the coarsely pulverized powder.
  • the amount of CaCO 3 powder added is a value in terms of CaO.
  • the mixture was finely pulverized with a wet ball mill using water as a dispersion medium until the average particle size by the air permeation method became 0.6 ⁇ m.
  • the obtained finely pulverized slurry was molded at a pressure of about 50 MPa while applying a magnetic field of about 1.3 T so that the pressure direction and the magnetic field direction were parallel while removing the dispersion medium.
  • the obtained compact was fired at about 1200 ° C. for 1 hour in the air to obtain a sintered magnet.
  • Example 6 Sample No. 3 of Example 1, Sample Nos. 31 and 32 of Example 2, Component analysis of each ferrite sintered magnet of Sample Nos. 55, 61 and 63 of Example 5, and the atomic ratio of the metal element and Table 6 shows the results expressed in terms of molar ratio n.
  • Component analysis was performed with an ICP emission spectroscopic analyzer (ICPV-1017 manufactured by Shimadzu Corporation).
  • ICPV-1017 manufactured by Shimadzu Corporation.
  • SiO 2 is contained with respect to a total of 100 mass% of CaCo 3 , La (OH) 3 , SrCO 3 , Fe 2 O 3 , and Co 3 O 4. It was expressed as a ratio (mass%).
  • the values of 1-xy, x and y are included in the region II shown in FIG. 2, and y ′ and z, and n representing the molar ratio are 0.5 ⁇ y ′ ⁇ 1, It can be seen that 0.147 ⁇ z ⁇ 0.25 and 3.88 ⁇ n ⁇ 5.6 are satisfied.
  • the sintered ferrite magnet according to the present invention can be suitably used for automobile electrical parts such as various motors, generators, speakers, etc., and parts for electrical equipment. Particularly, these parts are reduced in size, weight and efficiency. Can contribute.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Hard Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

Ca、La、Sr、Ba、Fe及びCoの金属元素の原子比率を示す一般式:Ca1-x-yLax(Sry'Ba1-y')yFe2n-zCozにおいて、1-x-y、x及びyが、(x,y,1-x-y)三角座標における座標a:(0.470,0.297,0.233)、座標b:(0.300,0.392,0.308)、座標c:(0.300,0.300,0.400)、座標d:(0.400,0.200,0.400)及び座標e:(0.470,0.200,0.330)で囲まれる領域内の値であり、y'、z、及びモル比nが、0.5≦y'≦1、0.2≦z<0.25及び5.2<n<5.6を満足するように原料粉末を混合する工程、この混合原料粉末を仮焼する工程、得られた仮焼体を粉砕する工程、この仮焼体粉末を成形する工程、前記成形体を焼成する工程を含み、前記混合原料粉末、仮焼体又は仮焼体粉末に0.1質量%以上1.5質量%未満のSiO2を添加するとともに、前記仮焼体又は仮焼体粉末にCaO換算で0~2質量%のCaCO3を添加する。

Description

フェライト仮焼体、フェライト焼結磁石の製造方法及びフェライト焼結磁石
 本発明は、フェライト仮焼体、フェライト焼結磁石の製造方法及びフェライト焼結磁石に関する。
 フェライト焼結磁石は、各種モータ、発電機、スピーカ等、種々の用途に使用されている。代表的なフェライト焼結磁石として、六方晶のM型マグネトプランバイト構造を有するSrフェライト(SrFe12O19)及びBaフェライト(BaFe12O19)が知られている。これらのフェライト焼結磁石は、酸化鉄とストロンチウム(Sr)又はバリウム(Ba)の炭酸塩等とを原料とし、粉末冶金法によって比較的安価に製造される。
 近年、環境に対する配慮などから、自動車用電装部品、電気機器用部品等において、部品の小型・軽量化及び高効率化を目的として、フェライト焼結磁石の高性能化が要望されている。特に、自動車用電装部品に用いられるモータには、高い残留磁束密度Br(以下、単に「Br」という)を保持しながら、薄型化した際の強い反磁界によっても減磁しない高い保磁力HcJ(以下、単に「HcJ」という)を有するフェライト焼結磁石が要望されている。
 フェライト焼結磁石の磁石特性の向上を図るため、上記のSrフェライトにおけるSrの一部をLa等の希土類元素で置換し、Feの一部をCoで置換することにより、HcJ及びBrを向上させる方法が特開平10-149910号や特開平11-154604号によって提案されている。
 特開平10-149910号及び特開平11-154604号に記載の、Srの一部をLa等の希土類元素で置換し、Feの一部をCo等で置換したSrフェライト(以下「SrLaCoフェライト」という)は、磁石特性に優れることから、従来のSrフェライトやBaフェライトに代わり、各種用途に多用されつつあるものの、さらなる磁石特性の向上も望まれている。
 一方、フェライト焼結磁石として、上記SrフェライトやBaフェライトとともに、Caフェライトも知られている。Caフェライトは、CaO-Fe2O3又はCaO-2Fe2O3の組成式で表される構造が安定であり、Laを添加することによって六方晶フェライトを形成することが知られている。しかし、得られる磁石特性は、従来のBaフェライトの磁石特性と同程度であり、充分に高くはなかった。
 特許第3181559号は、CaフェライトのBr及びHcJの向上、並びにHcJの温度特性の改善を図るため、Caの一部をLa等の希土類元素で置換し、Feの一部をCo等で置換した、20kOe以上の異方性磁界HAを有するCaフェライト(以下「CaLaCoフェライト」という)を開示しており、この異方性磁界HAはSrフェライトに比べて10%以上高い値であると記載している。
 しかしながら、CaLaCoフェライトは、高い異方性磁界HAを有するものの、Br及びHcJはSrLaCoフェライトと同程度であり、一方でHk/HcJが非常に悪く、高いHcJと高いHk/HcJとを満足することができず、モータ等の各種用途に応用されるまでには至っていない。
 CaLaCoフェライトの磁石特性を改良すべく、種々の提案がなされている。例えば、特開2006-104050号は、各構成元素の原子比率及びモル比nの値を最適化し、かつLa及びCoを特定の比率で含有させたCaLaCoフェライトを提案しており、国際公開第2007/060757号は、Caの一部をLaとBaで置換したCaLaCoフェライトを提案しており、国際公開第2007/077811号は、Caの一部をLa及びSrで置換したCaLaCoフェライトを提案している。
 また、国際公開第2008/105449号は、国際公開第2007/060757号及び国際公開第2007/077811号よりもSr及び/又はBaが多い組成領域において、第一の微粉砕工程と、前記第一の微粉砕工程によって得られた粉末に熱処理を施す工程と、前記熱処理が施された粉末を再度粉砕する第二の微粉砕工程とからなる粉砕工程(以下「熱処理再粉砕工程」という)を含むことによって、結晶粒子の粒径を小さくするとともに磁石の密度を高め、さらに、結晶粒子の形状を制御することによって磁石特性を向上させる方法を提案している。
 しかしながら、特開2006-104050号、国際公開第2007/060757号、国際公開第2007/077811号及び国際公開第2008/105449号に記載のCaLaCoフェライトは、特許第3181559号で提案されたCaLaCoフェライトに対していずれも磁石特性は向上しているものの、Co含有量が原子比率で0.3程度必要であり、現在市場に提供されているSrLaCoフェライト焼結磁石のCo含有量(原子比率で0.2程度)に比べCoを多く使用しなければならない。Coの価格はフェライト磁石の主成分である酸化鉄の十倍から数十倍に相当する。従って、原料コストの増大が避けられず、フェライト焼結磁石の価格が上昇するという問題がある。特に、国際公開第2008/105449号は、熱処理再粉砕工程を行うため、製造工程の増加に伴うコストアップも避けられず、原料費と工程費との二重のコストアップとなり、市場における価格面の要求を満足することができない。
 フェライト焼結磁石の最大の特徴は安価であるという点にある。従って、例え高い磁石特性を有するフェライト焼結磁石であっても、価格が高いと市場では受け入れられ難い。
 上記問題に鑑み、CaLaCoフェライトにおいて、Co含有量を原子比率で0.3未満にすると、磁石特性はSrLaCoフェライトと同等程度となってしまい、高い異方性磁界HA を有するCaLaCoフェライトの特徴が失われることとなる。
 本発明の目的は、高いBrと高いHcJとを両立させたフェライト焼結磁石を安価にして提供することである。
 上記目的に鑑み鋭意研究の結果、発明者らは、CaLaCoフェライトの仮焼体組成において、モル比nが化学量論組成(n=6)よりも大幅に小さい領域で、それぞれの元素の含有量を特定範囲とすることにより、Co含有量を従来のCaLaCoフェライト(原子比率で0.3程度)よりも少なくしても、高いBrと高いHcJとを両立させることができる最適な領域があることを見出し、この発明を完成させた。
 すなわち、本発明のフェライト仮焼体は、Ca、La、Sr、Ba、Fe及びCoの金属元素の原子比率を示す一般式:Ca1-x-yLax(Sry'Ba1-y')yFe2n-zCozにおいて、
1-x-y、x及びyが、(x,y,1-x-y)三角座標(図1参照)において、座標a:(0.470,0.297,0.233)、座標b:(0.300,0.392,0.308)、座標c:(0.300,0.300,0.400)、座標d:(0.400,0.200,0.400)及び座標e:(0.470,0.200,0.330)で囲まれる領域内の値であり、
y'及びz、並びにモル比を表わすnが、
0.5≦y'≦1、
0.2≦z<0.25、及び
5.2<n<5.6
を満足することを特徴とする。
 本発明のフェライト焼結磁石の製造方法は、Ca、La、Sr、Ba、Fe及びCoの金属元素の原子比率を示す一般式:Ca1-x-yLax(Sry'Ba1-y')yFe2n-zCozにおいて、
1-x-y、x及びyが、(x,y,1-x-y)三角座標(図1参照)において、座標a:(0.470,0.297,0.233)、座標b:(0.300,0.392,0.308)、座標c:(0.300,0.300,0.400)、座標d:(0.400,0.200,0.400)及び座標e:(0.470,0.200,0.330)で囲まれる領域内の値であり、
y'及びz、並びにモル比を表わすnが、
0.5≦y'≦1、
0.2≦z<0.25、及び
5.2<n<5.6
を満足するように原料粉末を混合し、混合原料粉末を得る原料粉末混合工程、
前記混合原料粉末を仮焼し、仮焼体を得る仮焼工程、
前記仮焼体を粉砕し、仮焼体粉末を得る粉砕工程、
前記仮焼体粉末を成形し、成形体を得る成形工程、
前記成形体を焼成し、焼結体を得る焼成工程を含み、
前記混合原料粉末、仮焼体又は仮焼体粉末に、混合原料粉末、仮焼体又は仮焼体粉末100質量%に対して0.1質量%以上1.5質量%未満のSiO2を添加すること、及び
前記仮焼体又は仮焼体粉末に、仮焼体又は仮焼体粉末100質量%に対してCaO換算で0~2質量%のCaCO3を添加することを特徴とする。
 本発明のフェライト焼結磁石の他の製造方法は、Ca、La、Sr、Ba、Fe及びCoの金属元素の原子比率を示す一般式:
Ca1-x-yLax(Sry'Ba1-y')yFe2n-zCozにおいて、
1-x-y、x及びyが、(x,y,1-x-y)三角座標(図1参照)において、座標a:(0.470,0.297,0.233)、座標b:(0.300,0.392,0.308)、座標c:(0.300,0.300,0.400)、座標d:(0.400,0.200,0.400)及び座標e:(0.470,0.200,0.330)で囲まれる領域内の値であり、
、y'及びz、並びにモル比を表わすnが、
0.5≦y'≦1、
0≦z<0.25、及び
5.2<n<5.6
を満足するように原料粉末を混合し、混合原料粉末を得る原料粉末混合工程、
前記混合原料粉末を仮焼し、仮焼体を得る仮焼工程、
前記仮焼体を粉砕し、仮焼体粉末を得る粉砕工程、
前記仮焼体粉末を成形し、成形体を得る成形工程、
前記成形体を焼成し、焼結体を得る焼成工程を含み、
前記仮焼体又は仮焼体粉末に、前記zが合計で0.2≦z<0.25となるように、Coの原料粉末を添加すること、
前記混合原料粉末、仮焼体又は仮焼体粉末に、混合原料粉末、仮焼体又は仮焼体粉末100質量%に対して0.1質量%以上1.5質量%未満のSiO2を添加すること、及び
前記仮焼体又は仮焼体粉末に、仮焼体又は仮焼体粉末100質量%に対してCaO換算で0~2質量%のCaCO3を添加することを特徴とする。
 本発明のフェライト焼結磁石は、前記フェライト焼結磁石の製造方法によって得られたフェライト焼結磁石であって、
Ca、La、Sr、Ba、Fe及びCoの金属元素の原子比率を示す一般式:
Ca1-x-yLax(Sry'Ba1-y')yFe2n-zCozにおいて、
1-x-y、x及びyが、(x,y,1-x-y)三角座標(図2参照)において、座標a:(0.470,0.297,0.233)、座標b:(0.300,0.392,0.308)、座標f:(0.221,0.289,0.490)、座標g:(0.221,0.221,0.558)、座標h:(0.295,0.147,0.558)、座標i:(0.346, 0.147, 0.507)及び座標e:(0.470,0.200,0.330)で囲まれる領域内の値であり、
y'及びz、並びにモル比を表わすnが、
0.5≦y'≦1、
0.147≦z<0.25及び
3.88≦n<5.6
を満足し、
23℃における残留磁束密度Br(mT)及び固有保磁力HcJ(kA/m)が、Br+HcJ/4≧535.5の関係を満足することを特徴とする。
 本発明のフェライト仮焼体を用いることにより、高いBrと高いHcJとを両立させたフェライト焼結磁石を提供することができる。また、従来のCaLaCoフェライトよりもCo含有量を少なくすることができるため、高いBrと高いHcJとを両立させたフェライト焼結磁石を安価にして提供することができる。
 本発明によるフェライト焼結磁石は、23℃における残留磁束密度Br(mT)及び固有保磁力HcJ(kA/m)が、Br+HcJ/4≧535.5の関係を満足する高いBrと高いHcJを有するため、薄型化にも十分対応できる。
 本発明によるフェライト焼結磁石を使用することにより、小型・軽量化、高能率化された各種モータ、発電機、スピーカ等の自動車用電装部品、電気機器用部品等を提供することができる。
本発明の仮焼体の組成範囲を三角座標中で示すグラフである。 本発明のフェライト焼結磁石の組成範囲を三角座標中で示すグラフである。 実施例1の試料1~6のフェライト焼結磁石の仮焼体におけるモル比nの値とBr及びHcJとの関係を示すグラフである。 実施例1の試料7~10のフェライト焼結磁石の仮焼体におけるモル比nの値とBr及びHcJとの関係を示すグラフである。 実施例1の試料11~18のフェライト焼結磁石の仮焼体におけるモル比nの値とBr及びHcJとの関係を示すグラフである。 実施例1のフェライト焼結磁石のHcJとBrとの関係を示すグラフである。 実施例2の各試料の仮焼体組成と、本発明の仮焼体の組成範囲とを三角座標で示すグラフである。 実施例2のフェライト焼結磁石のHcJとBrとの関係を示すグラフである。 実施例3のフェライト焼結磁石の仮焼体におけるy'とBr及びHcJとの関係を示すグラフである。 実施例3のフェライト焼結磁石のHcJとBrとの関係を示すグラフである。 実施例4のフェライト焼結磁石の仮焼体におけるzとBr及びHcJとの関係を示すグラフである。 実施例4のフェライト焼結磁石の仮焼体におけるzとHk/HcJとの関係を示すグラフである。 実施例4のフェライト焼結磁石のHcJとBrとの関係を示すグラフである。 実施例5のフェライト焼結磁石のHcJとBrとの関係を示すグラフである。
[1]フェライト仮焼体
 本発明によるフェライト仮焼体は、Ca、La、Sr、Ba、Fe及びCoの金属元素の原子比率を示す一般式:Ca1-x-yLax(Sry'Ba1-y')yFe2n-zCozにおいて、
1-x-y、x及びyが、(x,y,1-x-y)三角座標(図1参照)において、座標a:(0.470,0.297,0.233)、座標b:(0.300,0.392,0.308)、座標c:(0.300,0.300,0.400)、座標d:(0.400,0.200,0.400)及び座標e:(0.470,0.200,0.330)で囲まれる領域(領域I)内の値であり、
y'及びz、並びにモル比を表わすnが、
0.5≦y'≦1、
0.2≦z<0.25、及び
5.2<n<5.6、
を満足することを特徴とする。
 本発明のフェライト仮焼体を用いてフェライト焼結磁石を製造することにより、高いBrと高いHcJとを両立させたフェライト焼結磁石を安価にして提供することができる。
 本発明のフェライト仮焼体は、六方晶のM型マグネトプランバイト構造を有するフェライト相を主相とする。一般に、その磁性材料の特性(物性、磁石特性など)を決定づけている化合物が「主相」と定義される。本発明のフェライト仮焼体における主相、すなわち、六方晶のM型マグネトプランバイト構造を有するフェライト相も、本発明のフェライト仮焼体の物性などの基本部分を決定づけている。
 「六方晶のM型マグネトプランバイト構造を有する」とは、フェライト仮焼体のX線回折を一般的な条件で測定した場合に、六方晶のM型マグネトプランバイト構造のX線回折パターンが主として観察されることをいう。
 図1に示す(x,y,1-x-y)三角座標は、Ca含有比率(1-x-y)、La含有比率(x)及び(Sr+Ba)含有比率(y)[ただしx,y,1-x-yの合計は1である。]を正三角形の各辺を軸としてプロットしたものであり、三角座標の底辺がCa含有比率(1-x-y)、右斜辺がLa含有比率(x)、及び左斜辺が(Sr+Ba)含有比率(y)を示す軸である。三角座標中の任意の点(α,β,γ)は、底辺からの距離α、右斜辺からの距離β及び左斜辺からの距離γの点を示す。
 以下に、上記各元素の組成の限定理由を説明する。
 1-x-yはCaの含有量であり、1-x-y、x及びyが、前記領域I内の値を取るとき、1-x-yの範囲は0.23≦1-x-y≦0.4である。1-x-y が0.23未満及び0.4を超えるとオルソフェライト相やペロブスカイト相などの異相が生成し易くなり磁石特性が低下するため好ましくない。
 xはLaの含有量であり、1-x-y、x及びyが、前記領域I内の値を取るとき、xの範囲は0.3≦x≦0.47である。xが0.3未満ではスピネルフェライト相などの異相が生成し易くなり磁石特性が低下するため好ましくない。xが0.47を超えるとオルソフェライト相やヘマタイト相などの異相が生成し易くなり磁石特性が低下するため好ましくない。
 yはSr及びBaの合計含有量であり、1-x-y、x及びyが、前記領域I内の値を取るとき、yの範囲は0.2≦y≦0.4である。yが0.2未満及び0.4を超えるとオルソフェライト相、SrFeO3、BaFe2O4等の異相が生成し易くなり磁石特性が低下するため好ましくない。
 y'はSr及びBaの合計に対するSrの含有比率を示し、0.5≦y'≦1である。y'が0.5未満では磁石特性、特にHcJが低下するため好ましくない。
 zはCoの含有量であり、0.2≦z<0.25である。Coは高価であるため原料コストを抑えるためにも極力少ない方が好ましいが、zが0.2未満では磁石特性、特にHcJが低下するため好ましくない。zが0.25以上になるとスピネルフェライト相などの異相が生成し易くなり、磁石特性、特に減磁曲線の角型性が大幅に低下するため好ましくない。
 nは(Fe+Co)と(Ca+La+Sr+Ba)とのモル比を反映する値で、2n=(Fe+Co)/(Ca+La+A)で表される。モル比nは5.2<n<5.6である。nが5.2以下及び5.6以上では磁石特性が低下するため好ましくない。
 前記の組成は、金属元素の原子比率で示したが、酸素(O)を含む組成は、
一般式:Ca1-x-yLax(Sry'Ba1-y')yFe2n-zCoz Oαにおいて、
1-x-y、x及びyが、(x,y,1-x-y)三角座標(図1参照)において、座標a:(0.470,0.297,0.233)、座標b:(0.300,0.392,0.308)、座標c:(0.300,0.300,0.400)、座標d:(0.400,0.200,0.400)及び座標e:(0.470,0.200,0.330)で囲まれる領域(領域I)内の値であり、
y'及びz、並びにモル比を表わすnが、
0.5≦y'≦1、
0.2≦z<0.25、及び
5.2<n<5.6
を満たし、LaとFeが3価でCoが2価であり、x=zでかつn=6の時の化学量論組成比を示した場合はα=19である。)で表される。
 前記酸素(O)を含めたフェライト仮焼体の組成において、酸素のモル数は、Fe及びCoの価数、n値などによって異なってくる。また、酸素の空孔(ベイカンシー)、フェライト相におけるFeの価数の変化、Coの価数の変化等により金属元素に対する酸素の比率が変化する。従って、実際の酸素のモル数αは19からずれる場合がある。そのため、本発明においては、最も組成が特定し易い金属元素の原子比率で組成を表記している。
[2]フェライト焼結磁石の製造方法
 本発明のフェライト焼結磁石の製造方法は、Ca、La、Sr、Ba、Fe及びCoの金属元素の原子比率を示す一般式:Ca1-x-yLax(Sry'Ba1-y')yFe2n-zCozにおいて、
1-x-y、x及びyが、(x,y,1-x-y)三角座標(図1参照)において、座標a:(0.470,0.297,0.233)、座標b:(0.300,0.392,0.308)、座標c:(0.300,0.300,0.400)、座標d:(0.400,0.200,0.400)及び座標e:(0.470,0.200,0.330)で囲まれる領域(領域I)内の値であり、
y'及びz、並びにモル比を表わすnが、
0.5≦y'≦1、
0.2≦z<0.25、及び
5.2<n<5.6
を満足するように原料粉末を混合し、混合原料粉末を得る原料粉末混合工程、
前記混合原料粉末を仮焼し、仮焼体を得る仮焼工程、
前記仮焼体を粉砕し、仮焼体粉末を得る粉砕工程、
前記仮焼体粉末を成形し、成形体を得る成形工程、
前記成形体を焼成し、焼結体を得る焼成工程を含み、
前記混合原料粉末、仮焼体又は仮焼体粉末に、混合原料粉末、仮焼体又は仮焼体粉末100質量%に対して0.1質量%以上1.5質量%未満のSiO2を添加すること、及び
前記仮焼体又は仮焼体粉末に、仮焼体又は仮焼体粉末100質量%に対してCaO換算で0~2質量%のCaCO3を添加することを特徴とする。この方法は、仮焼工程前に、全ての原料粉末(焼結助剤として添加するSiO2及びCaCO3を除く)を全量添加する方法(以下「前添加法」という)である。
 また、本発明のフェライト焼結磁石の他の製造方法は、Ca、La、Sr、Ba、Fe及びCoの金属元素の原子比率を示す一般式:
Ca1-x-yLax(Sry'Ba1-y')yFe2n-zCozにおいて、
1-x-y、x及びyが、(x,y,1-x-y)三角座標(図1参照)において、座標a:(0.470,0.297,0.233)、座標b:(0.300,0.392,0.308)、座標c:(0.300,0.300,0.400)、座標d:(0.400,0.200,0.400)及び座標e:(0.470,0.200,0.330)で囲まれる領域(領域I)内の値であり、
y'及びz、並びにモル比を表わすnが、
0.5≦y'≦1、
0≦z<0.25、及び
5.2<n<5.6
を満足するように原料粉末を混合し、混合原料粉末を得る原料粉末混合工程、
前記混合原料粉末を仮焼し、仮焼体を得る仮焼工程、
前記仮焼体を粉砕し、仮焼体粉末を得る粉砕工程、
前記仮焼体粉末を成形し、成形体を得る成形工程、
前記成形体を焼成し、焼結体を得る焼成工程を含み、
前記仮焼体又は仮焼体粉末に、前記zが合計で0.2≦z<0.25となるように、Coの原料粉末を添加すること、
前記混合原料粉末、仮焼体又は仮焼体粉末に、混合原料粉末、仮焼体又は仮焼体粉末100質量%に対して0.1質量%以上1.5質量%未満のSiO2を添加すること、及び
前記仮焼体又は仮焼体粉末に、仮焼体又は仮焼体粉末100質量%に対してCaO換算で0~2質量%のCaCO3を添加することを特徴とする。この方法は、仮焼工程前に、Coの原料粉末を除く全ての原料粉末(焼結助剤として添加するSiO2及びCaCO3を除く)を全量添加するか、又はCoの原料粉末の一部とCoを除く全ての原料粉末(焼結助剤として添加するSiO2及びCaCO3を除く)の全量を添加し、仮焼工程後、成形工程前において、前記仮焼体又は仮焼体粉末に、前記zが合計で0.2≦z<0.25となるように、Coの原料の全部又は残りの一部を添加する方法(以下「後添加法」という)である。
 本発明において、前記前添加法及び前記後添加法のいずれによっても、後述するフェライト焼結磁石を得ることができる。各工程について以下に説明する。
(a)原料粉末混合工程
 Ca、La、Sr、Ba、Fe及びCoの金属元素の原子比率を示す一般式:
Ca1-x-yLax(Sry'Ba1-y')yFe2n-zCozにおいて、
1-x-y、x及びyが、(x,y,1-x-y)三角座標(図1参照)において、前記領域I内の値であり、
y'及びz、並びにモル比を表わすnが、
0.5≦y'≦1、
0.2≦z<0.25、及び
5.2<n<5.6
で表される組成を満足するようにそれぞれの金属を含有する原料粉末を準備する。
 原料粉末は、価数にかかわらず、それぞれの金属の酸化物、炭酸塩、水酸化物、硝酸塩、塩化物等を使用することができる。原料粉末を溶解した溶液であってもよい。Caの化合物としては、Caの炭酸塩、酸化物、塩化物等が挙げられる。Laの化合物としては、La2O3等の酸化物、La(OH)3等の水酸化物、La2(CO3)3・8H2O等の炭酸塩等が挙げられる。A元素の化合物としては、Ba及び/又はSrの炭酸塩、酸化物、塩化物等が挙げられる。鉄の化合物としては、酸化鉄、水酸化鉄、塩化鉄、ミルスケール等が挙げられる。Coの化合物としては、CoO、Co3O4等の酸化物、CoOOH、Co(OH)2、Co3O4・m1H2O(m1は正の数である)等の水酸化物、CoCO3等の炭酸塩、及びm2CoCO3・m3Co(OH)2・m4H2O等の塩基性炭酸塩(m2、m3、m4は正の数である)が挙げられる。
 前記の通り、Coの原料粉末(例えばCo3O4粉末)は、原料粉末混合工程で(仮焼工程前に)全量を添加してもよいし(前添加法)、Coの原料粉末の一部又は全部を、仮焼工程後、成形工程前に添加してもよい(後添加法)。
 仮焼時の反応促進のため、必要に応じてB2O3、H3BO3等のBを含む化合物を1質量%程度まで添加しても良い。特にH3BO3の添加は、HcJ及びBrのさらなる向上に有効である。H3BO3の添加量は、0.3質量%以下であるのが好ましく、0.2質量%程度が最も好ましい。H3BO3の添加量が0.1質量%よりも少ないとBrの向上効果が小さく、0.3質量%よりも多いとBrが低下する。またH3BO3は、焼結時に結晶粒の形状やサイズを制御する効果も有するため、仮焼工程後(微粉砕前や焼結前)に添加してもよく、仮焼工程前及び仮焼工程後の両方で添加してもよい。
 準備したそれぞれの原料粉末を混合し、混合原料粉末とする。原料粉末の混合は、湿式及び乾式のいずれで行ってもよい。スチールボール等の媒体とともに撹拌すると原料粉末をより均一に混合することができる。湿式の場合は、溶媒に水を用いるのが好ましい。原料粉末の分散性を高める目的でポリカルボン酸アンモニウム、グルコン酸カルシウム等の公知の分散剤を用いてもよい。混合した原料スラリーはそのまま仮焼してもよいし、原料スラリーを脱水した後、仮焼してもよい。
(b)仮焼工程
 乾式混合又は湿式混合することによって得られた混合原料粉末は、電気炉、ガス炉等を用いて加熱することで、固相反応により、六方晶のM型マグネトプランバイト構造のフェライト化合物を形成する。このプロセスを「仮焼」と呼び、得られた化合物を「仮焼体」と呼ぶ。
 仮焼工程は、酸素濃度が5%以上の雰囲気中で行うのが好ましい。酸素濃度が5%未満であると、異常粒成長、異相の生成等を招く。より好ましい酸素濃度は20%以上である。
 仮焼工程では、温度の上昇とともにフェライト相が形成される固相反応が進行する。仮焼温度が1100℃未満では、未反応のヘマタイト(酸化鉄)が残存するため磁石特性が低くなる。一方、仮焼温度が1450℃を超えると結晶粒が成長し過ぎるため、粉砕工程において粉砕に多大な時間を要することがある。従って、仮焼温度は1100~1450℃であるのが好ましく、1200~1350℃であるのがより好ましい。仮焼時間は0.5~5時間であるのが好ましい。
 仮焼前にH3BO3を添加した場合は、フェライト化反応が促進されるため、1100℃~1300℃で仮焼を行うことができる。
(c)焼結助剤の添加
 焼結助剤として、SiO2、CaCO3を添加する。SiO2は、前記原料粉末混合工程以降、成形工程前において、前記混合原料粉末、仮焼体又は仮焼体粉末に、混合原料粉末、仮焼体又は仮焼体粉末100質量%に対して0.1質量%以上1.5質量%未満添加する。すなわち、混合原料粉末に、混合原料粉末100質量%に対して0.1質量%以上1.5質量%未満添加する(添加パターン1)、仮焼体に、仮焼体100質量%に対して0.1質量%以上1.5質量%未満添加する(添加パターン2)、仮焼体粉末に、仮焼体粉末100質量%に対して0.1質量%以上1.5質量%未満添加する(添加パターン3)、のいずれかの添加パターンか、あるいはそれらのパターンの組み合わせによってSiO2を添加する。前記パターンを組み合わせて添加する場合は、各パターンによる添加量の合計が0.1質量%以上1.5質量%未満になるように添加する。
 CaCO3は、前記仮焼工程後、成形工程前において、仮焼体又は仮焼体粉末に、仮焼体又は仮焼体粉末100質量%に対してCaO換算で0~2質量%添加する。すなわち、仮焼体に、仮焼体100質量%に対して0~2質量%添加する(添加パターン4)、仮焼体粉末に、仮焼体粉末100質量%に対して0~2質量%添加する(添加パターン5)、のいずれかの添加パターンか、あるいはパターン4と5の両方でCaCO3を添加する。前記パターン4と5の両方で添加する場合は、パターン4と5における添加量の合計が0~2質量%になるように添加する。
 前記のSiO2を混合原料粉末に添加する場合(前記添加パターン1の場合)は、混合原料粉末調整前、調整中又は調整後のいずれのタイミングで添加しても良く、調整後に添加した場合は、添加後に混合原料粉末をさらに混合する。SiO2又はCaCO3を仮焼体へ添加する場合(前記パターン2又は4の場合)又は仮焼体粉末に添加する場合(前記パターン3又は5の場合)は、仮焼工程によって得られた仮焼体に焼結助剤を添加した後、粉砕工程を実施する、粉砕工程の途中で焼結助剤を添加する、又は粉砕工程後の仮焼体粉末に焼結助剤を添加、混合した後成形工程を実施する、などの方法を採用することができる。
 SiO2の添加量が1.5質量%以上になるとHcJが低下するとともに、Br及びHk/HcJも低下するため好ましくない。なお、SiO2は仮焼体に対して添加するのが最も好ましいが、上記の通り、全添加量のうちの一部を仮焼工程前に(原料粉末混合工程で)添加することもできる。仮焼工程前に添加することにより、仮焼時の結晶粒のサイズ制御を行うことができる。
 CaCO3は、仮焼体100質量%に対してCaO換算で0~2質量%添加する。CaCO3の添加によってBr及びHcJを向上させることができる。CaCO3の添加量が2質量%を超えるとBr及びHk/HcJが低下するため好ましくない。なお、本発明において、CaCO3の添加量は全てCaO換算で表記する。CaO換算での添加量からCaCO3の添加量は、式:
 (CaCO3の分子量×CaO換算での添加量)/CaOの分子量
によって求めることができる。
 例えば、CaO換算で1.5質量%のCaCO3を添加する場合、
{(40.08[Caの原子量]+12.01[Cの原子量]+48.00[Oの原子量×3]=100.09[CaCO3の分子量])×1.5質量%[CaO換算での添加量]}/(40.08[Caの原子量] +16.00[Oの原子量]=56.08[CaOの分子量])=2.677質量%[CaCO3の添加量]、となる。
 本発明によるCaLaCoフェライトにおいては、主相成分としてCaが含まれているため、焼結助剤としてCaCO3を添加しなくても(SiO2の添加だけで)、液相が生成し、焼結することができる。CaCO3は添加しなくても本発明を実施することは可能であるが、HcJの低下を防止するためにCaCO3を添加することが好ましい。
 上述したSiO2及びCaCO3の他に、仮焼工程後、後述する成形工程前において、磁石特性向上のためにCr2O3、Al2O3等を添加することもできる。これらの添加量は、それぞれ5質量%以下であるのが好ましい。
(d)粉砕工程
 仮焼体は、振動ミル、ボールミル、アトライター等によって粉砕し、仮焼体粉末とする。仮焼体粉末の平均粒度は0.4~0.8μm程度(空気透過法)にするのが好ましい。粉砕工程は、乾式粉砕及び湿式粉砕のいずれもよいが、双方を組み合わせて行うのが好ましい。
 湿式粉砕は、分散媒として水及び/又は非水系溶剤(アセトン、エタノール、キシレン等の有機溶剤)を用いて行う。湿式粉砕により、分散媒と仮焼体粉末とが混合されたスラリーが生成される。スラリーには公知の分散剤及び/又は界面活性剤を固形分比率で0.2~2質量%を添加するのが好ましい。湿式粉砕後は、スラリーを濃縮及び混練するのが好ましい。
 国際公開第2008/105449号においては、粉砕工程として、第一の微粉砕工程と、前記第一の微粉砕工程によって得られた粉末に熱処理を施す工程と、前記熱処理が施された粉末を再度粉砕する第二の微粉砕工程とからなる熱処理再粉砕工程を行うことによって、結晶粒子の粒径を小さくするとともに磁石の密度を高め、さらに、結晶粒子の形状を制御することによって磁石特性を向上させている。しかし、本発明においては、前記組成からなるフェライト仮焼体を、前記方法によってフェライト焼結磁石を製造することにより、熱処理再粉砕工程を行わなくとも高いBrと高いHcJとを両立させたフェライト焼結磁石を提供することができる。
(e)成形工程
 粉砕工程後のスラリーは、分散媒を除去しながら磁界中又は無磁界中でプレス成形する。磁界中でプレス成形することにより、粉末粒子の結晶方位を整列(配向)させることができ、磁石特性を飛躍的に向上させることができる。さらに、配向を向上させるために、分散剤及び潤滑剤をそれぞれ0.01~1質量%添加しても良い。また成形前にスラリーを必要に応じて濃縮してもよい。濃縮は遠心分離、フィルタープレス等により行うのが好ましい。
(f)焼成工程
 プレス成形により得られた成形体は、必要に応じて脱脂した後、焼成(焼結)する。焼成は、電気炉、ガス炉等を用いて行う。焼成は、酸素濃度が10%以上の雰囲気中で行うのが好ましい。酸素濃度が10%未満であると、異常粒成長、異相の生成等を招き、磁石特性が劣化する。酸素濃度は、より好ましくは20%以上であり、最も好ましくは100%である。焼成温度は、1150~1250℃が好ましい。焼成時間は、0.5~2時間が好ましい。焼成工程によって得られる焼結磁石の平均結晶粒径は約0.5~2μmである。
 焼成工程の後は、加工工程、洗浄工程、検査工程等の公知の製造プロセスを経て、最終的にフェライト焼結磁石を製造する。
[3]フェライト焼結磁石
 本発明のフェライト焼結磁石は、前記フェライト焼結磁石の製造方法によって得られたフェライト焼結磁石であって、
Ca、La、Sr、Ba、Fe及びCoの金属元素の原子比率を示す一般式:
Ca1-x-yLax(Sry'Ba1-y')yFe2n-zCozにおいて、
1-x-y、x及びyが、(x,y,1-x-y)三角座標(図2参照)において、座標a:(0.470,0.297,0.233)、座標b:(0.300,0.392,0.308)、座標f:(0.221,0.289,0.490)、座標g:(0.221,0.221,0.558)、座標h:(0.295,0.147,0.558)、座標i:(0.346, 0.147, 0.507)及び座標e:(0.470,0.200,0.330)で囲まれる領域(領域II)内の値であり、
y'及びz、並びにモル比を表わすnが、
0.5≦y'≦1、
0.147≦z<0.25及び
3.88≦n<5.6
を満足し、
23℃における残留磁束密度Br(mT)及び固有保磁力HcJ(kA/m)が、Br+HcJ/4≧535.5の関係を満足することを特徴とする。なお図2に示す三角座標は、組成範囲を示す領域が異なる以外図1と同様のものである。
 本発明のフェライト焼結磁石は、六方晶のM型マグネトプランバイト構造を有するフェライト相を主相とする。一般に、磁性材料、特に焼結磁石は、複数の化合物から構成されており、その磁性材料の特性(物性、磁石特性など)を決定づけている化合物が「主相」と定義される。本発明における主相、すなわち、六方晶のM型マグネトプランバイト構造を有するフェライト相も、本発明のフェライト焼結磁石の物性、磁石特性などの基本部分を決定づけている。
 「六方晶のM型マグネトプランバイト構造を有する」とは、フェライト焼結磁石のX線回折を一般的な条件で測定した場合に、六方晶のM型マグネトプランバイト構造のX線回折パターンが主として観察されることをいう。
 本発明のフェライト焼結磁石には、Siを含む粒界相を有している。本発明においては、前記のフェライト焼結磁石の製造方法に示す通り、製造過程において、仮焼体に、仮焼体100質量%に対して、0.1質量%以上1.5質量%未満のSiO2及びCaO換算で0~2質量%のCaCO3が添加される。それらのSiO2やCaCO3が主として粒界相を形成している。従って、粒界相にはSiが含まれる。前記粒界相は、X線回折パターンで観察することが困難であるため、透過電子顕微鏡等で確認するのが好ましい。
 本発明において、粒界相とは、当業者において「2粒子粒界相」などと言われ、フェライト焼結磁石の任意の断面を観察した場合に、主相と主相の粒界に存在する線状に見える粒界相、及び当業者において「3重点粒界相」などと言われ、フェライト焼結磁石の任意の断面を観察した場合、三つ以上の主相の間に存在するほぼ三角形、ほぼ多角形又は不定形などに見える粒界相の両方のことを言う。
 本発明のフェライト焼結磁石は、前記主相、粒界相の他、主相よりもLaの原子比率が高い第3相が存在する場合がある。第3相とは、前記主相を第1相、前記粒界相を第2相とした場合における「3つ目の相」という意味であって、構成比率や析出順序などを定義したものではない。第3相は本発明においては必須構成相ではなく、第3相の有無により本発明の構成及び効果が損なわれるものではない。また、本発明のフェライト焼結磁石には、X線回折等により極少量(5質量%以下程度)観察される異相(スピネル相等)や不純物相の存在は許容される。X線回折からの異相の定量にはリートベルト解析のような手法を用いることができる。
 本発明によるフェライト焼結磁石は、23℃における残留磁束密度Br(mT)及び固有保磁力HcJ(kA/m)が、Br+HcJ/4≧535.5の関係を満足する高いBrと高いHcJを有している。従って、近年、特に自動車用電装部品に用いられるモータに要求されるフェライト焼結磁石の薄型化にも十分対応できる。
実施例
 本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。
実施例1
 金属元素の原子比率を示す組成式Ca1-x-yLax(Sry'Ba1-y')yFe2n-zCozにおいて、表1に示す組成となるように、CaCO3粉末、La(OH)3粉末、SrCO3粉末、BaCO3粉末、Fe2O3粉末及びCo3O4粉末を配合し、配合後の粉末の合計100質量%に対してH3BO3粉末を0.1質量%添加し混合原料粉末を準備した。前記混合原料粉末を湿式ボールミルで4時間混合し、乾燥して整粒した後、大気中において1250℃で3時間仮焼し、得られた仮焼体をハンマーミルで粗粉砕して粗粉砕粉を得た。なお表1に示す組成は仮焼体の組成を表す。
 前記粗粉砕粉100質量%に対して、CaCO3粉末をCaO換算で0.7質量%及びSiO2粉末を0.6質量%添加し、水を分散媒とした湿式ボールミルで、空気透過法による平均粒度が0.6μmになるまで微粉砕した。得られた微粉砕スラリーを、分散媒を除去しながら加圧方向と磁界方向とが平行になるように約1.3 Tの磁界をかけながら約50 MPaの圧力で成形した。得られた成形体を大気中で、約1200℃で1時間焼成し、焼結磁石を得た。
 得られた焼結磁石のBrとHcJの測定結果を表1及び図3~図6に示す。表1において試料番号の横に*印を付したものは比較例である。また、試料No.11~18は国際公開第2008/105449号の実施例に記載された試料No.13の組成に基づく比較例である。なお、前記試料No.13の組成は国際公開第2008/105449号の実施例における多くの試料(試料No.29~40、51~58、64~79、82、85~92、93~94、101~102、103~104、131~136、137~139、146~157)のベースとなっているため、国際公開第2008/105449号の代表的組成として比較例に用いた。
表1
Figure JPOXMLDOC01-appb-I000001
(注)*印を付したものは比較例である。
表1(続き)
Figure JPOXMLDOC01-appb-I000002
(注)*印を付したものは比較例である。
 図3、図4及び図5は、それぞれ試料1~6、試料7~10及び試料11~18のフェライト焼結磁石の、仮焼体におけるモル比nの値とBr及びHcJとの関係を示す。各図中、四角のプロットがBrを、三角のプロットがHcJを示す。なお、試料1~6(図3)は、仮焼体の(x,y,1-x-y)組成が図1に示す(x,y,1-x-y)三角座標中に記載した領域Iの範囲内[(x,y,1-x-y)=(0.385,0.340,0.275)]にある試料であり、試料7~10(図4)は、同様に前記領域Iの範囲内[(x,y,1-x-y)=(0.385,0.240,0.375)]にある試料であるが、試料11~18は、前記領域Iの範囲外[(x,y,1-x-y)=(0.390,0.410,0.200)]にある試料である。
 図6は試料No.1~18のHcJとBrとの関係を示し、図中の点線はBr+HcJ/4=535.5のラインであり、当該ラインより右上の領域がBr+HcJ/4=535.5以上、左下の領域がBr+HcJ/4=535.5以下であることを示す。四角のプロットが試料No.1~6[(x,y,1-x-y)=(0.385,0.340,0.275)]、菱形のプロットが試料No.7~10[(x,y,1-x-y)=(0.385,0.240,0.375)]、円形のプロットが試料No.11~18[(x,y,1-x-y)=(0.390,0.410,0.200)]である。本発明によるフェライト焼結磁石(試料No.2~4及び8~10)を黒塗りプロットで示した。
 表1及び図3の通り、図1に記載した領域Iの範囲内にある(x,y,1-x-y)=(0.385,0.340,0.275)では、nが5.2以下のときHcJが低く、nが5.6以上のときBrが低下したが、5.2<n<5.6で高いBrと高いHcJを両立したフェライト焼結磁石が得られることが分かる。また、表1及び図4の通り、図1に記載した領域Iの範囲内にある(x,y,1-x-y)=(0.385,0.240,0.375)でも同様に5.3≦n≦5.5で高いBrと高いHcJを両立したフェライト焼結磁石が得られることが分かる。これらの結果より、本発明の仮焼体におけるモル比nを、5.2<n<5.6に限定した。一方、表1及び図5の通り、(x,y,1-x-y)=(0.390,0.410,0.200)のように図1に記載した領域Iの範囲外になると、HcJの最大値が低下するとともに、HcJの最大値が得られるnの値及びBrが急激に低下するnの値が大きく(n≧5.6)なる傾向にあることが分かる。
 すなわち、国際公開第2008/105449号の実施例における代表的組成は(x,y,1-x-y)=(0.390,0.410,0.200)であるため、HcJの最大値が得られるモル比nの範囲はn≧5.6となる。この結果は、国際公開第2008/105449号の表5及び表7に示される結果と一致している。国際公開第2008/105449号の表5における試料No.51~58は、試料No.13の組成をベースとして、12zの値(本発明における「2n」に相当)を変化させたものであるが、国際公開第2008/105449号の表7の通り、HcJの最大値が得られているのは試料No.13、つまり12z=12.00(n=6)の時であり、また、Brの最大値が得られているのは試料No.54、つまり12z=11.8(n=5.9)の時である。なお、国際公開第2008/105449号の実施例においては、本実施例によるBr及びHcJよりも高い値が得られているが、これは、本実施例と国際公開第2008/105449号に記載された実施例とは製造工程における条件などが異なるためであり、双方のBr及びHcJの値を単純に比較することはできない。
 また、表1及び図6の通り、仮焼体における1-x-y、x及びyの値が、図1に示す領域Iの範囲内にあり、5.2<n<5.6とした本発明の仮焼体を用いたフェライト焼結磁石(図中、黒塗りのプロット)は、全てBr+HcJ/4=535.5以上となっており、高いBrと高いHcJを両立した優れた磁石特性を有していることが分かる。なお、国際公開第2008/105449号の実施例に記載された組成に基づく比較例である試料No.11~18のうち、試料No.14と15はBr+HcJ/4=535.5以上となっている。しかしながら、試料No.11~18はいずれもz=0.3(Co含有量が0.3)であり、本発明の実施例(z=0.24(Co含有量が0.24))よりもCo含有量が多い。従って、本発明の実施例と同等の優れた磁石特性は得られるもののフェライト焼結磁石の価格が高くなる。このように、本発明の仮焼体を用いることにより、高いBrと高いHcJを両立した優れた磁石特性を有するフェライト焼結磁石を安価にして提供することができる。
 以上の通り、本発明においては、仮焼体における1-x-y、x及びyの値が、図1に示す領域Iの範囲内にあり、5.2<n<5.6で高いBrと高いHcJを両立したフェライト焼結磁石が得られる。一方、国際公開第2008/105449号ではn≧5.6で高い磁石特性を有するフェライト焼結磁石が得られており、本発明とは異なる傾向を示していることが分かる。
実施例2
 金属元素の原子比率を示す組成式Ca1-x-yLax(Sry'Ba1-y')yFe2n-zCozにおいて、表2に示す組成となるように原料粉末を配合した以外は実施例1と同様にして焼結磁石を得た。試料No.3、9及び19~37の各仮焼体組成と、本発明で規定する仮焼体の組成範囲とを図7に三角座標で示す。得られた焼結磁石のBrとHcJの測定結果を表2及び図8に示す。表2において試料番号の横に*印を付したものは比較例である。
表2
Figure JPOXMLDOC01-appb-I000003
(注)*印を付したものは比較例である。
表2(続き)
Figure JPOXMLDOC01-appb-I000004
(注)*印を付したものは比較例である。
 図7は、仮焼体における1-x-y、x及びyの値を(x,y,1-x-y)三角座標中に示したものであり、座標a:(0.470,0.297,0.233)、座標b:(0.300,0.392,0.308)、座標c:(0.300,0.300,0.400)、座標d:(0.400,0.200,0.400)及び座標e:(0.470,0.200,0.330)で囲まれる領域(領域I)が本発明で規定する1-x-y、x及びyの値が取り得る範囲であり、丸及び四角で示した点が、試料No.3、9及び19~37の1-x-y、x及びyの値をプロットしたものである。本発明によるフェライト仮焼体の組成を黒塗り四角のプロットで示し、比較例によるフェライト仮焼体の組成を円形のプロットで示した。
 図8は試料No.3、9及び19~37のHcJとBrとの関係を示し、図中の点線はBr+HcJ/4=535.5のラインであり、当該ラインより右上の領域がBr+HcJ/4=535.5以上、左下の領域がBr+HcJ/4=535.5以下であることを示す。図中、黒塗り四角のプロットが本発明によるフェライト焼結磁石、円形のプロットが比較例によるフェライト焼結磁石である。
 表2、図7及び図8から,仮焼体における1-x-y、x及びyの値が、図7に示す三角座標において、座標a:(0.470,0.297,0.233)、座標b:(0.300,0.392,0.308)、座標c:(0.300,0.300,0.400)、座標d:(0.400,0.200,0.400)及び座標e:(0.470,0.200,0.330)で囲まれる領域(領域I)内に存在し、y'、z及びnが本発明の規定を満たすフェライト仮焼体を用いたフェライト焼結磁石(図中、黒塗り四角のプロット)は、全てBr+HcJ/4が535.5以上となっており、高いBrと高いHcJを両立した優れた磁石特性を有していることが分かる。
実施例3
 金属元素の原子比率を示す組成式Ca1-x-yLax(Sry'Ba1-y')yFe2n-zCozにおいて、表3に示す組成となるように原料粉末を配合した以外は実施例1と同様にして焼結磁石を得た。得られた焼結磁石のBrとHcJの測定結果を表3及び図9及び図10に示す。表3において試料番号の横に*印を付したものは比較例である。
表3
Figure JPOXMLDOC01-appb-I000005
(注)*印を付したものは比較例である。
表3(続き)
Figure JPOXMLDOC01-appb-I000006
(注)*印を付したものは比較例である。
 図9は試料3及び38~44のフェライト焼結磁石の、仮焼体におけるy'とBr及びHcJとの関係を示したものである。これらの試料の仮焼体の(x,y,1-x-y)組成[(x,y,1-x-y)=(0.385,0.340,0.275)]は、図1に示す(x,y,1-x-y)三角座標中に示した領域Iの範囲内にある。図中四角のプロットがBrを、三角のプロットがHcJを示す。また、図10は試料No.3及び38~44のフェライト焼結磁石のHcJとBrとの関係を示し、図中の点線はBr+HcJ/4=535.5のラインであり、当該ラインより右上の領域がBr+HcJ/4=535.5以上、左下の領域がBr+HcJ/4=535.5以下であることを示す。本発明によるフェライト焼結磁石を黒塗り四角のプロットで示し、比較例によるフェライト焼結磁石を円形のプロットで示した。
 表3及び図9の通り、仮焼体におけるy'が0.412以下の場合HcJが低いが、0.5≦y'≦1で高いBrと高いHcJを両立したフェライト焼結磁石が得られることが分かる。この結果より、仮焼体におけるy’の値を0.5≦y'≦1に限定した。また、図10の通り、0.5≦y'≦1とした本発明によるフェライト焼結磁石(図中、黒塗り四角のプロット)は、全てBr+HcJ/4=535.5以上となっており、高いBrと高いHcJを両立した優れた磁石特性を有していることが分かる。
実施例4
 金属元素の原子比率を示す組成式Ca1-x-yLax(Sry'Ba1-y')yFe2n-zCozにおいて、表4に示す組成(zは「配合時」の欄に記載された値)となるように、CaCO3粉末、La(OH)3粉末、SrCO3粉末、BaCO3粉末、Fe2O3粉末及びCo3O4粉末を配合し、配合後の粉末の合計100質量%に対してH3BO3粉末を0.1質量%添加し混合原料粉末を準備した。なお、モル比nは、試料No.3及び45~49(前添加法)は、配合時のnが5.4となるように、試料No.50~54(後添加法)は、微粉砕時にCo3O4粉末を添加した時のnが5.4となるように(仮焼体とCo3O4粉末との混合体(焼結助剤を添加しない状態)におけるnが5.4となるように)した。ちなみに、試料No.50の配合時のnは5.38、試料No.51の配合時のnは5.355、試料No.52の配合時のnは5.33、試料No.53の配合時のnは5.305、試料No.54の配合時のnは5.28とした。前記混合原料粉末を湿式ボールミルで4時間混合し、乾燥して整粒した後、大気中において1250℃で3時間仮焼し、得られた仮焼体をハンマーミルで粗粉砕して粗粉砕粉を得た。
 前記粗粉砕粉100質量%に対して、CaCO3粉末をCaO換算で0.7質量%、SiO2粉末を0.6質量%添加するとともに、Co3O4粉末を表4のz「微粉砕時」の欄に記載された値となるように添加し、水を分散媒とした湿式ボールミルで、空気透過法による平均粒度が0.6μmになるまで微粉砕した。得られた微粉砕スラリーを、分散媒を除去しながら加圧方向と磁界方向とが平行になるように約1.3 Tの磁界をかけながら約50 MPaの圧力で成形した。得られた成形体を大気中で、約1200℃で1時間焼成し、焼結磁石を得た。
 得られた焼結磁石のBr、HcJ及びHk・HcJ -1(Hk/HcJ)の測定結果を表4及び図11~図13に示す。表4において試料番号の横に*印を付したものは比較例である。図11はzとBr及びHcJとの関係を示し、四角のプロットがBrを、三角のプロットがHcJを示す。図12はzとHk/HcJとの関係を示す。なお、Hk/HcJにおいて、Hkは、J(磁化の大きさ)-H(磁界の強さ)曲線の第2象限において、Jが0.95Brの値になる位置のHの値である。
表4
Figure JPOXMLDOC01-appb-I000007
(注)*印を付したものは比較例である。
表4(続き)
Figure JPOXMLDOC01-appb-I000008
(注)*印を付したものは比較例である。
 図13は試料No.3及び45~54のHcJとBrとの関係を示し、図中の点線はBr+HcJ/4=535.5のラインであり、当該ラインより右上の領域がBr+HcJ/4=535.5以上、左下の領域がBr+HcJ/4=535.5以下であることを示す。本発明によるフェライト焼結磁石を黒塗り四角のプロットで示し、比較例によるフェライト焼結磁石を円形のプロットで示した。
 表4及び図11の通り、仮焼体におけるzの値が、0.2≦z<0.25で高いBrと高いHcJを両立したフェライト焼結磁石が得られることが分かる。比較例である試料No.49(z=0.25)でも高いBrと高いHcJが得られているが、表4及び図12の通りHk/HcJが大幅に低下しており、近年要望されているフェライト焼結磁石の薄型化への対応が困難となる。これらの結果より、仮焼体におけるzの値を0.2≦z<0.25に限定した。
 図13の通り、仮焼体におけるzの値を0.2≦z<0.25とした本発明によるフェライト焼結磁石(図中、黒塗り四角のプロット)は、全てBr+HcJ/4=535.5以上となっており、高いBrと高いHcJを両立した優れた磁石特性を有していることが分かる。さらに、Coは配合時に全量を添加した場合(前添加法)、あるいは配合時に一部添加するか又は全く添加せず、微粉砕時に残りの一部又は全量を添加した場合(後添加法)のいずれにおいても、高いBrと高いHcJが得られることが分かる。
実施例5
 金属元素の原子比率を示す組成式Ca0.275La0.385Sr0.340Fe10.56Co0.24となるように、CaCO3粉末、La(OH)3粉末、SrCO3粉末、BaCO3粉末、Fe2O3粉末及びCo3O4粉末を配合し、配合後の粉末の合計100質量%に対してH3BO3粉末を0.1質量%添加し混合原料粉末を準備した。前記混合原料粉末を湿式ボールミルで4時間混合し、乾燥して整粒した後、大気中において1250℃で3時間仮焼し、得られた仮焼体をハンマーミルで粗粉砕して粗粉砕粉を得た。
 前記粗粉砕粉100質量%に対して、表5に示す添加量のCaCO3粉末とSiO2粉末を添加した。なお、CaCO3粉末の添加量はCaO換算での値である。次に、水を分散媒とした湿式ボールミルで、空気透過法による平均粒度が0.6μmになるまで微粉砕した。得られた微粉砕スラリーを、分散媒を除去しながら加圧方向と磁界方向とが平行になるように約1.3 Tの磁界をかけながら約50 MPaの圧力で成形した。得られた成形体を大気中で、約1200℃で1時間焼成し、焼結磁石を得た。
 得られた焼結磁石のBr及びHcJの測定結果を表5及び図14に示す。表5において試料番号の横に*印を付したものは比較例である。図14は試料No.3及び55~64のHcJとBrとの関係を示し、図中の点線はBr+HcJ/4=535.5のラインであり、当該ラインより右上の領域がBr+HcJ/4=535.5以上、左下の領域がBr+HcJ/4=535.5以下であることを示す。本発明によるフェライト焼結磁石を黒塗り四角のプロットで示し、比較例によるフェライト焼結磁石を円形のプロットで示した。
表5
Figure JPOXMLDOC01-appb-I000009
(注)*印を付したものは比較例である。
 表5及び図14の通り、CaCO3(CaO換算値)、SiO2ともに、幅広い範囲で高いBrと高いHcJが得られ、Br+HcJ/4=535.5以上の優れた磁石特性を有するフェライト焼結磁石が得られることが分かる。ただし、CaCO3がCaO換算で2.1質量%以上、SiO2が1.5質量%以上になるとBrとHcJがともに低下し、近年要望されているフェライト焼結磁石の薄型化への対応が困難となる。
実施例6
 実施例1の試料No.3、実施例2の試料No.31及び32、実施例5の試料No.55、61及び63の各フェライト焼結磁石の成分分析を行い、金属元素の原子比率とモル比nに換算して表した結果を表6に示す。成分分析はICP発光分光分析装置(島津製作所製ICPV-1017)にて行った。なお、成分分析結果を金属元素の原子比率及びモル比に換算するに際して、SiO2はCaCo3、La(OH)3、SrCO3、Fe2O3、Co3O4の合計100質量%に対する含有比率(質量%)で表記した。
表6
Figure JPOXMLDOC01-appb-I000010
(注)*印を付したものは比較例である。
表6(続き)
Figure JPOXMLDOC01-appb-I000011
(注)*印を付したものは比較例である。
 本発明のフェライト焼結磁石は、1-x-y、x及びyの値が図2で示す領域IIに含まれるとともに、y'及びz、並びにモル比を表わすnが、0.5≦y'≦1、0.147≦z<0.25及び3.88≦n<5.6を満足していることが分かる。
 本発明によるフェライト焼結磁石は、各種モータ、発電機、スピーカ等の自動車用電装部品、電気機器用部品等に好適に利用することができ、特に、それら部品の小型・軽量化、高能率化に寄与できる。

Claims (4)

  1.  Ca、La、Sr、Ba、Fe及びCoの金属元素の原子比率を示す一般式:
    Ca1-x-yLax(Sry'Ba1-y')yFe2n-zCozにおいて、
    1-x-y、x及びyが、(x,y,1-x-y)三角座標において、座標a:(0.470,0.297,0.233)、座標b:(0.300,0.392,0.308)、座標c:(0.300,0.300,0.400)、座標d:(0.400,0.200,0.400)及び座標e:(0.470,0.200,0.330)で囲まれる領域内の値であり、
    y'及びz、並びにモル比を表わすnが、
    0.5≦y'≦1、
    0.2≦z<0.25、及び
    5.2<n<5.6
    を満足することを特徴とするフェライト仮焼体。
  2.  Ca、La、Sr、Ba、Fe及びCoの金属元素の原子比率を示す一般式:
    Ca1-x-yLax(Sry'Ba1-y')yFe2n-zCozにおいて、
    1-x-y、x及びyが、(x,y,1-x-y)三角座標において、座標a:(0.470,0.297,0.233)、座標b:(0.300,0.392,0.308)、座標c:(0.300,0.300,0.400)、座標d:(0.400,0.200,0.400)及び座標e:(0.470,0.200,0.330)で囲まれる領域内の値であり、
    y'及びz、並びにモル比を表わすnが、
    0.5≦y'≦1、
    0.2≦z<0.25、及び
    5.2<n<5.6
    を満足するように原料粉末を混合し、混合原料粉末を得る原料粉末混合工程、
    前記混合原料粉末を仮焼し、仮焼体を得る仮焼工程、
    前記仮焼体を粉砕し、仮焼体粉末を得る粉砕工程、
    前記仮焼体粉末を成形し、成形体を得る成形工程、
    前記成形体を焼成し、焼結体を得る焼成工程を含み、
    前記混合原料粉末、仮焼体又は仮焼体粉末に、混合原料粉末、仮焼体又は仮焼体粉末100質量%に対して0.1質量%以上1.5質量%未満のSiO2を添加すること、及び
    前記仮焼体又は仮焼体粉末に、仮焼体又は仮焼体粉末100質量%に対してCaO換算で0~2質量%のCaCO3を添加することを特徴とするフェライト焼結磁石の製造方法。
  3.  Ca、La、Sr、Ba、Fe及びCoの金属元素の原子比率を示す一般式:
    Ca1-x-yLax(Sry'Ba1-y')yFe2n-zCozにおいて、
    1-x-y、x及びyが、(x,y,1-x-y)三角座標において、座標a:(0.470,0.297,0.233)、座標b:(0.300,0.392,0.308)、座標c:(0.300,0.300,0.400)、座標d:(0.400,0.200,0.400)及び座標e:(0.470,0.200,0.330)で囲まれる領域内の値であり、
    y'及びz、並びにモル比を表わすnが、
    0.5≦y'≦1、
    0≦z<0.25、及び
    5.2<n<5.6
    を満足するように原料粉末を混合し、混合原料粉末を得る原料粉末混合工程、
    前記混合原料粉末を仮焼し、仮焼体を得る仮焼工程、
    前記仮焼体を粉砕し、仮焼体粉末を得る粉砕工程、
    前記仮焼体粉末を成形し、成形体を得る成形工程、
    前記成形体を焼成し、焼結体を得る焼成工程を含み、
    前記仮焼体又は仮焼体粉末に、前記zが合計で0.2≦z<0.25となるように、Coの原料粉末を添加すること、
    前記混合原料粉末、仮焼体又は仮焼体粉末に、混合原料粉末、仮焼体又は仮焼体粉末100質量%に対して0.1質量%以上1.5質量%未満のSiO2を添加すること、及び
    前記仮焼体又は仮焼体粉末に、仮焼体又は仮焼体粉末100質量%に対してCaO換算で0~2質量%のCaCO3を添加することを特徴とするフェライト焼結磁石の製造方法。
  4.  請求項2又は3に記載のフェライト焼結磁石の製造方法によって得られたフェライト焼結磁石であって、
    Ca、La、Sr、Ba、Fe及びCoの金属元素の原子比率を示す一般式:
    Ca1-x-yLax(Sry'Ba1-y')yFe2n-zCozにおいて、
    1-x-y、x及びyが、(x,y,1-x-y)三角座標において、座標a:(0.470,0.297,0.233)、座標b:(0.300,0.392,0.308)、座標f:(0.221,0.289,0.490)、座標g:(0.221,0.221,0.558)、座標h:(0.295,0.147,0.558)、座標i:(0.346, 0.147, 0.507)及び座標e:(0.470,0.200,0.330)で囲まれる領域内の値であり、
    y'及びz、並びにモル比を表わすnが、
    0.5≦y'≦1、
    0.147≦z<0.25及び
    3.88≦n<5.6
    を満足し、
    23℃における残留磁束密度Br(mT)及び固有保磁力HcJ(kA/m)が、Br+HcJ/4≧535.5の関係を満足することを特徴とするフェライト焼結磁石。
     
PCT/JP2013/071463 2012-08-31 2013-08-08 フェライト仮焼体、フェライト焼結磁石の製造方法及びフェライト焼結磁石 WO2014034401A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014532906A JP6119752B2 (ja) 2012-08-31 2013-08-08 フェライト仮焼体、フェライト焼結磁石の製造方法及びフェライト焼結磁石
CN201380044954.6A CN104584149A (zh) 2012-08-31 2013-08-08 铁氧体煅烧体、铁氧体烧结磁体的制造方法及铁氧体烧结磁体
US14/423,891 US9601248B2 (en) 2012-08-31 2013-08-08 Calcined ferrite, sintered ferrite magnet and its production method
EP13834048.4A EP2892058B1 (en) 2012-08-31 2013-08-08 Ferrite calcined body, method for producing ferrite sintered magnet, and ferrite sintered magnet
KR1020157006878A KR101836964B1 (ko) 2012-08-31 2013-08-08 페라이트 하소체, 페라이트 소결 자석의 제조 방법 및 페라이트 소결 자석

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012191216 2012-08-31
JP2012-191216 2012-08-31

Publications (1)

Publication Number Publication Date
WO2014034401A1 true WO2014034401A1 (ja) 2014-03-06

Family

ID=50183218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071463 WO2014034401A1 (ja) 2012-08-31 2013-08-08 フェライト仮焼体、フェライト焼結磁石の製造方法及びフェライト焼結磁石

Country Status (6)

Country Link
US (1) US9601248B2 (ja)
EP (1) EP2892058B1 (ja)
JP (1) JP6119752B2 (ja)
KR (1) KR101836964B1 (ja)
CN (1) CN104584149A (ja)
WO (1) WO2014034401A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014050433A1 (ja) * 2012-09-28 2016-08-22 日立金属株式会社 フェライト焼結磁石及びその製造方法
JP2019172507A (ja) * 2018-03-28 2019-10-10 Tdk株式会社 フェライト焼結磁石及びフェライト焼結磁石の製造方法
JP2020126931A (ja) * 2019-02-05 2020-08-20 Tdk株式会社 フェライト焼結磁石
JP2022007929A (ja) * 2020-03-24 2022-01-13 日立金属株式会社 フェライト仮焼体、フェライト焼結磁石及びその製造方法
JP2022144353A (ja) * 2021-03-19 2022-10-03 日立金属株式会社 フェライト仮焼体粉末及びフェライト焼結磁石の製造方法
US11776720B2 (en) 2020-03-24 2023-10-03 Proterial, Ltd. Calcined ferrite, and sintered ferrite magnet and its production method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105601265A (zh) * 2016-01-15 2016-05-25 哈尔滨理工大学 一种m型锶铁氧体磁性材料及其制备方法
JP7052479B2 (ja) * 2018-03-28 2022-04-12 Tdk株式会社 フェライト焼結磁石
CN111302783A (zh) * 2020-04-07 2020-06-19 南京溧水金洪磁性元件有限公司 一种用于低噪音永磁电机的永磁铁氧体生产方法及其使用方法
CN111453976A (zh) * 2020-04-07 2020-07-28 南京溧水金洪磁性元件有限公司 一种永磁铁氧体球磨混料制备工艺及其使用方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10149910A (ja) 1996-11-18 1998-06-02 Hitachi Metals Ltd フェライト磁石およびその製造方法
JPH11154604A (ja) 1997-02-25 1999-06-08 Tdk Corp 焼結磁石およびモータ
JP3181559B2 (ja) 1997-09-19 2001-07-03 ティーディーケイ株式会社 酸化物磁性材料、フェライト粒子、ボンディット磁石、焼結磁石、これらの製造方法および磁気記録媒体
WO2005027153A1 (ja) * 2003-09-12 2005-03-24 Neomax Co., Ltd. フェライト焼結磁石
JP2006104050A (ja) 2004-09-10 2006-04-20 Neomax Co Ltd 酸化物磁性材料および焼結磁石
WO2007060757A1 (ja) 2005-11-25 2007-05-31 Hitachi Metals, Ltd. 酸化物磁性材料及びその製造方法、並びにフェライト焼結磁石及びその製造方法
WO2007077811A1 (ja) 2005-12-28 2007-07-12 Hitachi Metals, Ltd. 酸化物磁性材料
JP2008137879A (ja) * 2005-12-19 2008-06-19 Tdk Corp フェライト磁性材料
WO2008105449A1 (ja) 2007-03-01 2008-09-04 Tdk Corporation フェライト焼結磁石
CN101552069A (zh) * 2009-01-08 2009-10-07 横店集团东磁股份有限公司 磁铅石永磁铁氧体及其制造方法
WO2011004791A1 (ja) * 2009-07-08 2011-01-13 Tdk株式会社 フェライト磁性材料
WO2011115129A1 (ja) * 2010-03-17 2011-09-22 Tdk株式会社 フェライト磁性材料、フェライト磁石、フェライト焼結磁石

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038654A1 (fr) 1997-02-25 1998-09-03 Tdk Corporation Materiau magnetique a base d'oxyde, particule de ferrite, aimant obtenu par frittage, aimant issu d'une liaison, support d'enregistrement magnetique et moteur
DE69839208T2 (de) 1997-09-19 2009-03-12 Tdk Corp. Sintermagnet
MXPA06015044A (es) 2004-09-10 2007-04-25 Neomax Co Ltd Material magnetico de oxido e iman sinterizado.
CN100578695C (zh) * 2005-12-19 2010-01-06 Tdk株式会社 铁氧体磁性材料
JP4883334B2 (ja) 2010-03-10 2012-02-22 日立金属株式会社 フェライト焼結磁石及びその製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10149910A (ja) 1996-11-18 1998-06-02 Hitachi Metals Ltd フェライト磁石およびその製造方法
JPH11154604A (ja) 1997-02-25 1999-06-08 Tdk Corp 焼結磁石およびモータ
JP3181559B2 (ja) 1997-09-19 2001-07-03 ティーディーケイ株式会社 酸化物磁性材料、フェライト粒子、ボンディット磁石、焼結磁石、これらの製造方法および磁気記録媒体
WO2005027153A1 (ja) * 2003-09-12 2005-03-24 Neomax Co., Ltd. フェライト焼結磁石
JP2006104050A (ja) 2004-09-10 2006-04-20 Neomax Co Ltd 酸化物磁性材料および焼結磁石
WO2007060757A1 (ja) 2005-11-25 2007-05-31 Hitachi Metals, Ltd. 酸化物磁性材料及びその製造方法、並びにフェライト焼結磁石及びその製造方法
JP2008137879A (ja) * 2005-12-19 2008-06-19 Tdk Corp フェライト磁性材料
WO2007077811A1 (ja) 2005-12-28 2007-07-12 Hitachi Metals, Ltd. 酸化物磁性材料
WO2008105449A1 (ja) 2007-03-01 2008-09-04 Tdk Corporation フェライト焼結磁石
CN101552069A (zh) * 2009-01-08 2009-10-07 横店集团东磁股份有限公司 磁铅石永磁铁氧体及其制造方法
WO2011004791A1 (ja) * 2009-07-08 2011-01-13 Tdk株式会社 フェライト磁性材料
WO2011115129A1 (ja) * 2010-03-17 2011-09-22 Tdk株式会社 フェライト磁性材料、フェライト磁石、フェライト焼結磁石

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014050433A1 (ja) * 2012-09-28 2016-08-22 日立金属株式会社 フェライト焼結磁石及びその製造方法
JP2019172507A (ja) * 2018-03-28 2019-10-10 Tdk株式会社 フェライト焼結磁石及びフェライト焼結磁石の製造方法
JP7047530B2 (ja) 2018-03-28 2022-04-05 Tdk株式会社 フェライト焼結磁石及びフェライト焼結磁石の製造方法
JP2020126931A (ja) * 2019-02-05 2020-08-20 Tdk株式会社 フェライト焼結磁石
JP7338161B2 (ja) 2019-02-05 2023-09-05 Tdk株式会社 フェライト焼結磁石
JP2022007929A (ja) * 2020-03-24 2022-01-13 日立金属株式会社 フェライト仮焼体、フェライト焼結磁石及びその製造方法
US11404188B2 (en) 2020-03-24 2022-08-02 Hitachi Metals, Ltd. Calcined ferrite, and sintered ferrite magnet and its production method
US11776720B2 (en) 2020-03-24 2023-10-03 Proterial, Ltd. Calcined ferrite, and sintered ferrite magnet and its production method
JP2022144353A (ja) * 2021-03-19 2022-10-03 日立金属株式会社 フェライト仮焼体粉末及びフェライト焼結磁石の製造方法
JP7238917B2 (ja) 2021-03-19 2023-03-14 株式会社プロテリアル フェライト仮焼体粉末及びフェライト焼結磁石の製造方法

Also Published As

Publication number Publication date
CN104584149A (zh) 2015-04-29
KR101836964B1 (ko) 2018-03-09
JP6119752B2 (ja) 2017-04-26
US20150262741A1 (en) 2015-09-17
KR20150048780A (ko) 2015-05-07
JPWO2014034401A1 (ja) 2016-08-08
EP2892058A1 (en) 2015-07-08
US9601248B2 (en) 2017-03-21
EP2892058B1 (en) 2019-12-18
EP2892058A4 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
JP6119752B2 (ja) フェライト仮焼体、フェライト焼結磁石の製造方法及びフェライト焼結磁石
JP5873333B2 (ja) フェライト焼結磁石の製造方法及びフェライト焼結磁石
JP5929764B2 (ja) フェライト焼結磁石及びその製造方法
JP6217640B2 (ja) フェライト焼結磁石の製造方法及びフェライト焼結磁石
KR101347851B1 (ko) 산화물 자성 재료
JP5626211B2 (ja) フェライト磁性材料
JP6152854B2 (ja) フェライト焼結磁石及びその製造方法
JP5408521B2 (ja) 焼結磁石の製造方法
JP2012209295A (ja) フェライト焼結磁石
JP2006104050A (ja) 酸化物磁性材料および焼結磁石
KR102434929B1 (ko) 페라이트 소결 자석 및 그 제조 방법
JP6860285B2 (ja) Ca−La−Co系フェライト焼結磁石の製造方法及びCa−La−Co系フェライト焼結磁石
JP5521622B2 (ja) 酸化物磁性材料、フェライト焼結磁石及びフェライト焼結磁石の製造方法
JP6070454B2 (ja) フェライト化合物
JP5804370B2 (ja) 酸化物磁性材料の製造方法
WO2014084059A1 (ja) フェライト化合物
JP5218716B2 (ja) フェライト磁性材料
JP4924794B2 (ja) フェライト磁性材料の製造方法
JP2020155609A (ja) フェライト焼結磁石の製造方法
CN117727518A (zh) 煅烧铁氧体和烧结铁氧体磁体及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13834048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014532906

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14423891

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157006878

Country of ref document: KR

Kind code of ref document: A