WO2014032401A1 - 一种清洁的d,l-蛋氨酸制备方法 - Google Patents

一种清洁的d,l-蛋氨酸制备方法 Download PDF

Info

Publication number
WO2014032401A1
WO2014032401A1 PCT/CN2013/070129 CN2013070129W WO2014032401A1 WO 2014032401 A1 WO2014032401 A1 WO 2014032401A1 CN 2013070129 W CN2013070129 W CN 2013070129W WO 2014032401 A1 WO2014032401 A1 WO 2014032401A1
Authority
WO
WIPO (PCT)
Prior art keywords
methionine
solution
reaction
liquid
continuous
Prior art date
Application number
PCT/CN2013/070129
Other languages
English (en)
French (fr)
Inventor
陈志荣
王存超
赵初秋
王苏娟
张成锋
龙涛
刘信洪
Original Assignee
浙江新和成股份有限公司
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020157007639A priority Critical patent/KR101689366B1/ko
Application filed by 浙江新和成股份有限公司, 浙江大学 filed Critical 浙江新和成股份有限公司
Priority to MX2015002752A priority patent/MX362811B/es
Priority to SG11201501553PA priority patent/SG11201501553PA/en
Priority to ES13833235.8T priority patent/ES2687247T3/es
Priority to MYPI2015700650A priority patent/MY191517A/en
Priority to US14/425,310 priority patent/US9206120B2/en
Priority to RU2015111118/04A priority patent/RU2604064C2/ru
Priority to JP2015528838A priority patent/JP6026663B2/ja
Priority to BR112015004487A priority patent/BR112015004487B1/pt
Priority to EP13833235.8A priority patent/EP2894147B1/en
Priority to AU2013307993A priority patent/AU2013307993B2/en
Publication of WO2014032401A1 publication Critical patent/WO2014032401A1/zh
Priority to ZA2015/02259A priority patent/ZA201502259B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/57Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C323/58Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups with amino groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/20Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/34Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/36Oxygen or sulfur atoms
    • C07D207/382-Pyrrolones

Definitions

  • This invention relates to the field of the synthesis of compounds, and in particular to a process for the preparation of clean D,L-methionine. Background technique
  • L-methionine is a sulfur-containing essential amino acid that is closely related to the metabolism of various sulfur compounds in living organisms. Methionine cannot be synthesized spontaneously in animals. It needs to be taken from food. It is the first limiting amino acid. It can be added to the vocabulary to promote the growth of poultry, increase the amount of meat, and shorten the wording cycle. Methionine can also use it. The methyl group carries a detoxification effect on the methylation of toxic substances or drugs.
  • methionine can be used to prevent liver diseases such as chronic or acute hepatitis and cirrhosis, and can also be used to alleviate arsenic, chloroform, and tetra Toxic reactions of harmful substances such as carbon chloride, benzene, pyridine and quinoline.
  • liver diseases such as chronic or acute hepatitis and cirrhosis
  • methionine can also be used to alleviate arsenic, chloroform, and tetra Toxic reactions of harmful substances such as carbon chloride, benzene, pyridine and quinoline.
  • the market demand for methionine in the world has reached 1 million tons per year. In recent years, the demand for methionine has increased at a rate of 4% per year, while the demand for methionine in China has increased at a rate of 7% per year.
  • 5-H-methylthioethyl:)hydantoin is prepared in one step by using methyl mercaptan and acrolein as raw materials, thereby simplifying the operation process and improving 5-( ⁇ -methylthioethyl)hydantoin
  • the preparation yield but the subsequent addition of a basic substance to the saponification process, the intentional addition of a mixture of neutral amino acids and organic acids will inevitably participate in the reaction, the production of metal salts, accumulated in the final mother liquor, so that the mother liquor It cannot be recycled, and eventually a large amount of wastewater containing S and strontium organic matter is produced.
  • Degussa Corporation proposes to react methylthiopropanal with HCN and ammonia to obtain an aminonitrile compound, which is then hydrolyzed in the presence of a ketone catalyst to give an amino amide.
  • the synthetic route of methionine is obtained by high temperature hydrolysis in the presence of a basic catalyst.
  • This methionine synthesis route has special features compared to the current industrial production route, but there are also some defects.
  • the biggest drawback is the large amount of waste water, such as the addition of a ketone catalyst to the aminoamide during the preparation of the aminoamide. It is necessary to use the column method for separation and purification. It is not suitable for this large-scale product to adopt this separation and purification method in the industrialization process. From the perspective of the whole process, the problem of large amount of wastewater is not well solved.
  • Li Kuanyi proposed a process for the continuous cleaning and synthesis of methionine.
  • the method of synthesizing methyl thiopropanal synthesized from acrolein and methyl mercaptan was obtained by reacting with hydrocyanic acid.
  • the intermediate 2-hydroxy-4-methylthiobutyronitrile, the intermediate 2-hydroxy-4-methylthiobutyronitrile is continuously reacted in the presence of excess ammonia and carbon dioxide in the first reaction bed of the combined reactor to obtain hydantoin a solution
  • the hydantoin solution is discharged from the first reaction bed through the analytical column to release excess carbon dioxide and ammonia
  • the analyzed hydantoin solution flows into the second reaction bed of the combined reactor and is hydrolyzed under alkaline conditions to obtain an aqueous solution of potassium methionate
  • the potassium methionine aqueous solution is neutralized with carbon dioxide to obtain an aqueous solution of methionine and potassium hydrogencarbonate, and methionine is crystallized and separated from the aqueous solution
  • potassium hydrogencarbonate is recovered and applied with the mother liquor through subsequent treatment.
  • This process line looks like a very clean and very suitable process for industrial large-scale production.
  • the process requires a relatively large amount of water to participate in the reaction in the preparation of hydantoin, and the crystallization mother liquor is applied in the hydrolysis process of hydantoin, rather than in the preparation of hydantoin, thus in the crystallization mother
  • it is necessary to distill a large part of the water jacket to the hydantoin preparation process, so that the remaining part of the mother liquor can be applied to the hydrolysis process of hydantoin, which consumes a large amount of heat and electric energy.
  • the main technical problem to be solved by the present invention is to provide a simple operation and a clean process. DL-methionine preparation method.
  • the present invention provides a method for preparing a clean D,L-methionine, the steps of which include -
  • Step (5) The aqueous layer continuously extracted by the countercurrent is fed into the continuous crystallizer, and the CO 2 gas is pressed into the continuous crystallizer for acidification, so that the pH of the reaction liquid in the continuous crystallizer is 6 to 9 Crystallized mixture;
  • the K 2 CO 3 -containing mother liquor obtained in the step (9) is used for absorbing HCN gas to prepare a KCN solution, and the obtained KCN solution is used as the 5-( ⁇ -methylthioethyl) B in the step (1).
  • the molar ratio of 3-methylthiopropanal: KCN:NH 4 HC0 3 is preferably 1:1 to 1.1: 2 to 3, and the optimum 3-methylthiopropene is present.
  • the pipe reactor is preferably gradually heated in the range of 50 to 150 ° C for a reaction time of 3 to 15 minutes.
  • the preferred temperature for decomposing the saponification reaction is 140 to 220 ° C for 2 to 15 minutes.
  • the D,L-methionine potassium solution is cooled to 0 to 40 ° C, and then subjected to countercurrent continuous extraction with an organic solvent having a weight of 0.5 to 2 times the weight of the D,L-methionine potassium solution.
  • the organic solvent used for countercurrent continuous extraction is preferably toluene, ethylbenzene, xylene, n-butanol, isobutanol, n-pentanol, 2-methyl-1-butanol, isovaran Alcohol, sec-pentanol, 3-pentanol, tert-amyl alcohol, n-hexanol, 4-methyl-2-pentanol, 2-ethylbutanol, 2-methylpentanol, heptanol, 2-heptanol, 3-heptanol, 2-ethylhexanol, 2-octanol, octanol, 3,5,5-trimethylhexanol, diethyl ether, methyl tert-butyl ether, diisopropyl ether, n-propyl ether, positive Butyl ether, isoamyl ether, hexyl ether, hex
  • the temperature of the continuous crystallization is 0 to 40 ° C, and the residence time of the reaction liquid in the continuous crystallizer is 0.5 to 5 hours.
  • the temperature of the decomposition column is 110 to 160 ° C
  • the pressure of the decomposition column is 0.15 to 0.8 MPa
  • the decomposition reaction time is 1 to 4 hours.
  • reaction formula of the step (1) is -
  • reaction formula of the step (2) and the step (3) is as follows:
  • reaction formula of the above step (4) is - NH 3 + C0 2 + H 2 0 »- NH 4 HC0
  • reaction formula of the step (6) is:
  • the reaction formula of the step (9) is - 2 KI IC0 3 ⁇ K 2 C0 3 + C0 2 + H 2 0
  • reaction formula of the step (10) is as follows:
  • step (5) the by-products generated in the reaction process are removed in time by the extraction method, and the process water can be provided for multiple times or even unlimited recycling.
  • the invention utilizes the method of heating to decompose KHC0 3 into K 2 C0 3 , and uses the crystallization mother liquid containing K 2 C0 3 as the HCN absorption liquid to prepare the KCN solution, so that no additional metal salt is added during the whole process, for the whole preparation.
  • the process of all process water used in the process has been laid.
  • the present invention processes 5-8-methylthioethyl)hydantoin and NH 3 and CO 2 gas generated by the saponification process are absorbed and re-prepared into NH 4 HC0 3 , and NH 4 HC0 3 is again a raw material for the preparation of 5-( ⁇ -methylthioethyl)hydantoin, so that the excipients produced in the process are utilized to the utmost extent.
  • the process of the invention prevents the generation of waste water from the source, and comprehensively utilizes the exhaust gas generated in the production process to ensure that substantially no waste gas is generated in the process, so the D, L-methionine synthesis process of the invention is a clean process. , suitable for industrial production process routes.
  • Figure 1 is a schematic flow chart of the present invention.
  • T1 is the HCN absorption tower
  • T2 is the C0 2 and NH 3 absorption tower
  • 1 is the first pipeline reactor
  • 2 is the pressure relief tank
  • 3 is the second pipeline reactor
  • T3 is the desorption tower
  • T4 is the continuous extraction tower.
  • T5 is an organic solvent recovery distillation column
  • T6 is a continuous crystallizer
  • S 1 is a first solid-liquid separation device
  • 4 is a scrubber
  • S2 is a second solid-liquid separation device
  • T7 is a KHC0 3 decomposition tower.
  • the treated crystallization mother liquor (10% K 2 CO 3 solution for the first start) is metered by a liquid metering pump
  • the flow rate of 700Kg/h is sent to the HCN absorption tower T1, and 5.4Kg/h of HCN gas is introduced into the HCN absorption tower, and the KCN solution is prepared in the HCN absorption tower T1, and is sent to the first pipeline reaction by the liquid transfer pump.
  • the aqueous ammonium hydrogencarbonate solution in which the ammonia gas and the carbon dioxide are absorbed in the 0 ( 3 ⁇ 4 and > 3 ⁇ 4 3 absorption towers T2) is simultaneously sent to the first pipeline reactor R1 by a liquid transfer pump at a rate of 200 kg/h (the first One-time start with 16% ammonium bicarbonate solution), and then use liquid metering transfer pump to deliver 3-methylthiopropanal to the first pipeline reactor R1 at a rate of 20.8Kg/h.
  • the reaction solution is at 50 °C. After staying for 7 minutes, the temperature is raised to 100 ° C for 7 minutes, and then heated to 150 ° C for 1 minute.
  • reaction liquid from the first pipeline reactor R1 is discharged through the pressure relief tank R2 to discharge excess ammonia and carbon dioxide to C0.
  • pressure relief tank R2 In a 2 and NH 3 absorption column T2, a 910 kg/h solution of 5-( ⁇ -methylthioethyl)hydantoin was obtained.
  • the prepared 5-( ⁇ -methylthioethyl)hydantoin solution was sent to the second pipe reactor R3 at a rate of 910 Kg/h by a transfer pump, and the second pipe reaction of the reaction liquid at 140 ° C was carried out.
  • the reactor R3 is allowed to stand for 15 minutes, and the reaction liquid after the completion of the saponification reaction is depressurized in the desorption column T3, and the ammonia gas and carbon dioxide generated by the reaction are discharged to the CO 2 and 3 absorption towers T2 for absorption, and the saponification liquid is cooled by the heat exchanger.
  • the saponification solution cooled by the pump was sent to the continuous extraction column T4 at a rate of 906 Kg / h, while 453 Kg / h of ethylene glycol dipropyl ether was fed into the continuous extraction column T4 for continuous Countercurrent extraction, the ethylene glycol dipropyl ether layer is continuously steamed in the organic solvent recovery distillation column T5, and the recovered solvent can be recycled for the extraction process, and the waste material is incinerated.
  • the aqueous layer is fed into the continuous crystallizer T6 at a rate of 935 Kg/h, while the CO 2 gas is introduced into the continuous crystallizer T6 for acidification, so that the pH of the reaction system reaches 8; continuous crystallization is performed at 4 (TC).
  • the reaction liquid has a residence time of 3 hours in the continuous crystallizer, and the crystallization liquid is continuously centrifuged to be solid-liquid separated by the first solid-liquid separation device S1, and the crude product of D, L-methionine is filtered, and the crystallization mother liquid is used; D, L-methionine is coarse
  • the product is quantitatively fed into the scrubber R4 at a speed of about 34Kg/h, and the screw is 3 ⁇ 4, and 40Kg/h of water is continuously input into the scrubber R4 to control the temperature of the material in the scrubber R4.
  • the solid material stays in the scrubber R4 for 15 minutes, and the mixture after continuous washing by the scrubber R4 is continuously centrifuged and solid-liquid separated by the second solid-liquid separation device S2, and the filtrate is washed.
  • the filtered D, L-methionine filter cake is air-dried at 110 ° C under N 2 protection to obtain 27.5Kg / h D, L-methionine finished product.
  • methionine content methionine content of 99.5%, based on 3-methylthiopropanal
  • the total molar reaction yield was 92.3%.
  • the crystallization mother liquor and the washing filtrate were continuously fed into the KHC0 3 decomposition tower T7 at a rate of 977 Kg/h, and left at 160 ° C for 1 hour to completely decompose the potassium hydrogencarbonate in the mother liquor into potassium carbonate, while at the same time from the top of the tower.
  • the distilled water is circulated to the scrubber R4 at 40Kg h for 3 ⁇ 4 use, 170Kg/h for C0 2 and NH 3 absorption tower T2.
  • the distilled ethylene glycol dipropyl ether is recycled to the continuous extraction column T4; the liberated 00 2 gas is compressed and used for the continuous crystallizer T6 acidification crystallization process; the mother liquor containing the potassium carbonate solution is discharged at the bottom of the column After cooling, it is circulated to the HCN absorption tower T1 during the absorption of hydrogen cyanide.
  • Example 2
  • the treated crystallization mother liquid (10% K 2 CO 3 solution for the first start) was fed into the HCN absorption tower T1 at a flow rate of 552 Kg/h by a liquid metering transfer pump while introducing 5.94 Kg into the HCN absorption tower.
  • the HCN gas of h is prepared as a KCN solution in the HCN absorption tower T1, and is sent to the first pipeline reactor R1 by a liquid transfer pump, while absorbing carbonic acid and carbon dioxide in the CO 2 and NH 3 absorption tower T2.
  • the aqueous ammonium hydrogen carbonate solution was fed into the first pipe reactor R1 at a rate of 250 Kg/h by a liquid transfer pump (first start with 16% ammonium hydrogencarbonate solution), and at the same time using a liquid metering transfer pump at a rate of 20.8 Kg/h.
  • 3-methylthiopropanal was sent to the first pipe reactor R1, the reaction solution was kept at 60 ° C for 3 minutes, heated to 12 CTC for 3 minutes, and then heated to 15 CTC for 1 minute, from the first pipe reactor R1
  • the reaction liquid discharged from the pressure relief tank R2 discharges excess ammonia gas and carbon dioxide to the CO 2 and NH 3 absorption tower T2 to obtain 805 Kg/h of 5-( ⁇ -methylthioethyl) hydantoin solution. .
  • the prepared 5-( ⁇ -methylthioethyl)hydantoin solution was sent to the second pipe reactor R3 at a rate of 805 Kg/h by a transfer pump, and the reaction liquid was at the second pipe reactor R3 of 22 CTC. After staying for 2 minutes, the reaction liquid after the completion of the saponification reaction is depressurized in the desorption column T3, and the ammonia gas and carbon dioxide generated by the reaction are discharged to the CO 2 and 3 absorption towers T2 for absorption, and the saponification liquid is cooled to 0 by the heat exchanger.
  • the toluene layer is The organic solvent recovery distillation column T5 is continuously steamed, and the recovered solvent can be recycled for the extraction process, and the waste material is incinerated.
  • the aqueous layer is fed into the continuous crystallizer T6 at a rate of 790 Kg/h, and simultaneously subjected to acidification by introducing CO 2 gas into the continuous crystallizer T6 to bring the pH of the reaction system to 6 ; continuous crystallization is carried out at 0 ° C.
  • the reaction liquid has a residence time of 0.5 hours in the continuous crystallizer, and the crystallization liquid is continuously centrifuged and solid-liquid separated by the first solid-liquid separation device S1, and the crude product of D,L-methionine is filtered out, and the crystallization mother liquid is used; D,L-methionine
  • the crude product is quantitatively fed into the scrubber R4 by a solid conveying device at a rate of about 34 Kg/h, while continuously inputting 102 Kg/h of water into the scrubber R4, and controlling the temperature of the material in the scrubber R4 to 0.
  • the solid material stays in the scrubber R4 for 5 minutes, and the mixture after continuous washing of the scrubber R4 is continuously centrifuged and solid-liquid separated by the second solid-liquid separation device S2, and the filtrate is washed. Incorporated into the crystallization mother liquor, The filtered D,L-methionine filter cake was air-dried at 110 ° C under N protection to obtain 27.2 Kg / h D, L-methionine finished product. According to GB-T17810-2009 feed grade DL-methionine quality standard, the methionine content was 99.3%, and the total molar reaction yield based on 3-methylthiopropanal was 91.3%.
  • the crystallization mother liquor and the washing filtrate were continuously fed into the KHC0 3 decomposition tower T7 at a rate of 890 Kg/h, and left at 130 ° C for 3 hours to completely decompose the potassium hydrogencarbonate in the mother liquor into potassium carbonate, and at the same time from the top of the tower.
  • the treated crystallization mother liquid (10% K 2 CO 3 solution for the first start) was fed into the HCN absorption tower T1 at a flow rate of 828 Kg/h by a liquid metering transfer pump while introducing 5.67 Kg into the HCN absorption tower.
  • the HCN gas of h is prepared as a KCN solution in the HCN absorption tower T1, and is sent to the first pipeline reactor R1 by a liquid transfer pump, while absorbing carbonic acid and carbon dioxide in the CO 2 and NH 3 absorption tower T2.
  • the aqueous ammonium hydrogen carbonate solution was fed into the first pipe reactor R1 at a rate of 300 Kg/h by a liquid transfer pump (first start with 16% ammonium hydrogencarbonate solution), and at the same time using a liquid metering transfer pump at a rate of 20.8 Kg/h.
  • 3-methylthiopropanal is sent to the first pipe reactor R1, the reaction solution is kept at 90 ° C for 1 minute, heated to 120 ° C for 2 minutes, and then heated to 150 ° C for 2 minutes, from the first
  • the reaction liquid from the pipe reactor R1 is discharged through the pressure relief tank R2 to discharge excess ammonia gas and carbon dioxide to the C0 2 and NH 3 absorption tower T2 to obtain 1122 Kg/h of 5-( ⁇ -methylthioethyl) B.
  • a lactam solution is sent to the first pipe reactor R1
  • the reaction solution is kept at 90 ° C for 1 minute, heated to 120 ° C for 2 minutes, and then heated to 150 ° C for 2 minutes, from the first
  • the reaction liquid from the pipe reactor R1 is discharged through the pressure relief tank R2 to discharge excess ammonia gas and carbon dioxide to the C0 2 and NH 3 absorption tower T2 to obtain 1122 Kg/h of 5-( ⁇ -methylthioethyl) B.
  • the prepared 5-( ⁇ -methylthioethyl)hydantoin solution was sent to the second pipeline reactor R3 at a rate of 1122 kg/h by a transfer pump, and the second pipeline reaction of the reaction solution at 200 ° C was carried out.
  • the reactor R3 is left for 4 minutes, and the reaction liquid after the completion of the saponification reaction is depressurized in the desorption column T3, and the ammonia gas and carbon dioxide generated by the reaction are discharged into the 00 2 and NH 3 absorption tower T2 for absorption, and the saponification liquid is cooled by the heat exchanger.
  • the saponification solution cooled by the pump is sent to the continuous extraction column T4 at a rate of 1117 Kg / h, while 1000 Kg / h of hexanol is fed into the continuous extraction column T4 for continuous countercurrent extraction.
  • the hexanol layer is continuously distilled in the organic solvent recovery distillation column T5, and the recovered solvent can be recycled for the extraction process, and the waste material is incinerated.
  • the aqueous layer is fed into the continuous crystallizer T6 at a rate of 1130 Kg/h, and simultaneously subjected to acidification by introducing CO 2 gas into the continuous crystallizer T6 to bring the pH of the reaction system to 8; continuous crystallization is carried out at 20 ° C.
  • the reaction solution has a residence time of 5 hours in a continuous crystallizer.
  • the crystallization liquid is continuously centrifuged and solid-liquid separated by the first solid-liquid separation device S1, and the crude product of D, L-methionine is filtered out, and the crystallization mother liquid is used; D, L-methionine coarse
  • the product is quantitatively fed into the rinsing machine R4 at a rate of about 35 kg/h using a solid conveying device.
  • the spiral is washed 3 ⁇ 4, and 70Kg/h of water is continuously input into the scrubber R4, the temperature of the material in the scrubber R4 is controlled at 20 ° C, and the residence time of the solid material in the scrubber R4 is 10 minutes,
  • the mixture after continuous washing by the scrubber R4 is continuously centrifuged to be solid-liquid separated by the second solid-liquid separation device S2, and the washing filtrate is incorporated into the crystallization mother liquid, and the filtered D, L-methionine filter cake is protected under N 2 Air drying at 140 ° C gave 27.9 Kg / h D, L-methionine finished product.
  • the methionine content was 99.4%
  • the total molar reaction yield based on 3-methylthiopropanal was 93.6%.
  • the crystallization mother liquor and the washing filtrate were continuously fed into the KHC0 3 decomposition tower T7 at a rate of 1207 Kg/h, and left at 110 ° C for 4 hours to completely decompose the potassium hydrogencarbonate in the mother liquor into potassium carbonate while simultaneously from the top of the tower.
  • the distilled water is circulated at 70Kg/h to the scrubber R4 for beating. 258Kg h is used for C0 2 and NH 3 absorption tower T2.
  • the treated crystallization mother liquid (10% K 2 CO 3 solution for the first start) was fed into the HCN absorption tower T1 at a flow rate of 700 Kg/h by a liquid metering transfer pump while introducing 5.4 Kg/ into the HCN absorption tower.
  • the HCN gas of h is prepared as a KCN solution in the HCN absorption tower T1, and is sent to the first pipeline reactor R1 by a liquid transfer pump, while absorbing carbonic acid and carbon dioxide in the CO 2 and NH 3 absorption tower T2.
  • the aqueous ammonium hydrogen carbonate solution was fed into the first pipe reactor R1 at a rate of 200 Kg/h by a liquid transfer pump (first start with 16% ammonium hydrogencarbonate solution), and at the same time using a liquid metering transfer pump at a rate of 20.8 Kg/h.
  • 3-methylthiopropanal is sent to the first pipe reactor R1, the reaction liquid is kept at 150 ° C for 3 minutes, and the reaction liquid from the first pipe reactor R1 is discharged through the pressure relief tank R2 to discharge excess ammonia.
  • Gas and carbon dioxide were passed to the CO 2 and 3 absorbers T2 to obtain a 910 kg/h solution of 5-( ⁇ -methylthioethyl)hydantoin.
  • the prepared 5-( ⁇ -methylthioethyl)hydantoin solution was sent to the second pipe reactor R3 at a rate of 910 Kg/h by a transfer pump, and the second pipe reaction of the reaction liquid at 170 ° C was carried out.
  • the reaction liquid after the completion of the saponification reaction is depressurized in the desorption column T3, and the ammonia gas and carbon dioxide generated by the reaction are discharged into the CO 2 and NH 3 absorption towers T2 for absorption, and the saponification liquid is cooled by the heat exchanger.
  • the saponification solution cooled by the pump was sent to the continuous extraction column T4 at a rate of 905 Kg / h, while 905 Kg / h of diethyl ether was fed into the continuous extraction column T4 for continuous countercurrent extraction, and the ether was distilled.
  • the layer is continuously steamed in the organic solvent recovery distillation column T5, and the recovered solvent can be recycled for the extraction process, and the waste material is incinerated.
  • the aqueous layer is fed into the continuous crystallizer T6 at a rate of 915 Kg/h, and acidification is carried out by introducing 00 2 gas into the continuous crystallizer T6 to adjust the pH of the reaction system.
  • the temperature of the material in the scrubber R4 is controlled at 10 ° C
  • the residence time of the solid material in the scrubber R4 is 10 minutes
  • the mixture after the washing of the scrubber R4 is continuously washed 3 ⁇ 4 through the second solid
  • the liquid separation device S2 is continuously centrifuged for solid-liquid separation, the washing filtrate is incorporated into the crystallization mother liquid, and the filtered D, L-methionine filter cake is air-dried at 130 ° C under N protection to obtain 28.0 Kg/h D, L. - Finished methionine.
  • the methionine content was 99.2%
  • the total molar reaction yield based on 3-methylthiopropanal was 94.0%.
  • the crystallization mother liquor and the washing filtrate were continuously fed into the KHC0 3 decomposition tower T7 at a rate of 947 Kg/h, and left at 150 ° C for 1.5 hours to completely decompose the potassium hydrogencarbonate in the mother liquor into potassium carbonate while simultaneously from the top of the tower.
  • 207 Kg h of water and 18 Kg of Zh diethyl ether were distilled off, and the distilled water was circulated at 35 Kg/h to the scrubber R4 for use, 172 Kg/h for the CO 2 and NH 3 absorbers T2; the distilled ether was circulated.
  • the treated crystallization mother liquid (10% K 2 CO 3 solution for the first start) was fed into the HCN absorption tower T1 at a flow rate of 828 Kg/h by a liquid metering transfer pump while introducing 5.5 Kg/ into the HCN absorption tower.
  • the HCN gas of h is prepared as a KCN solution in the HCN absorption tower T1, and is sent to the first pipeline reactor R1 by a liquid transfer pump, while absorbing carbonic acid and carbon dioxide in the CO 2 and NH 3 absorption tower T2.
  • the aqueous ammonium hydrogen carbonate solution was fed into the first pipe reactor R1 at a rate of 220 Kg/h by a liquid transfer pump (first start with 16% ammonium hydrogencarbonate solution), and at the same time using a liquid metering transfer pump at a rate of 20.8 Kg/h.
  • 3-methylthiopropanal is sent to the first pipe reactor R1, the reaction solution is kept at 60 ° C for 3 minutes, heated to 100 ° C for 3 minutes, and then heated to 140 ° C for 4 minutes, from the first
  • the reaction liquid from the pipe reactor R1 is discharged through the pressure relief tank R2 to discharge excess ammonia gas and carbon dioxide into the C0 2 and NH 3 absorption tower T2 to obtain 1062 Kg/h of 5-( ⁇ -methylthioethyl) B.
  • a lactam solution is sent to the first pipe reactor R1
  • the reaction solution is kept at 60 ° C for 3 minutes, heated to 100 ° C for 3 minutes, and then heated to 140 ° C for 4 minutes, from the first
  • the reaction liquid from the pipe reactor R1 is discharged through the pressure relief tank R2 to discharge excess ammonia gas and carbon dioxide into the C0 2 and NH 3 absorption tower T2 to obtain 1062 Kg/h of 5-( ⁇ -methylthioethyl) B.
  • the prepared 5-( ⁇ -methylthioethyl)hydantoin solution was sent to the second pipe reactor R3 at a rate of 1062 kg/h by a transfer pump, and the second pipe reaction of the reaction liquid at 190 ° C was carried out.
  • the reactor R3 is left for 9 minutes, and the reaction liquid after the completion of the saponification reaction is depressurized in the desorption column T3, and the ammonia gas and carbon dioxide generated by the reaction are discharged into the 00 2 and NH 3 absorption tower T2 for absorption, and the saponification liquid is cooled by the heat exchanger.
  • the saponification solution cooled by the pump was sent to the continuous extraction column T4 at a rate of 1056 Kg / h, while feeding 1200 Kg / h of 2- to the continuous extraction column T4
  • Ethylhexanol is subjected to continuous countercurrent extraction, and the 2-ethylhexanol layer is continuously distilled in an organic solvent recovery distillation column T5, and the recovered solvent can be recycled for the extraction process, and the waste material is incinerated.
  • the aqueous layer is fed into the continuous crystallizer T6 at a rate of 1050 kg/h, and simultaneously subjected to acidification by introducing CO 2 gas into the continuous crystallizer T6 to bring the pH of the reaction system to 9; continuous crystallization is carried out at 30 ° C,
  • the reaction solution has a residence time of 3 hours in the continuous crystallizer.
  • the crystallization liquid is continuously centrifuged and solid-liquid separated by the first solid-liquid separation device S1, and the crude product of D,L-methionine is filtered out, and the crystallization mother liquid is used; D,L-methionine coarse
  • the product is quantitatively fed into the scrubber R4 at a speed of about 35Kg/h, and the steam is continuously washed.
  • the crystallization mother liquor and the washing filtrate were continuously fed into the KHC0 3 decomposition tower T7 at a rate of 1106 Kg/h, and left at 120 ° C for 3 hours to completely decompose the potassium hydrogencarbonate in the mother liquor into potassium carbonate while simultaneously from the top of the tower.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种清洁的DL-蛋氨酸制备方法,其步骤包括:以含碳酸钾的结晶母液为吸收液吸收氢氰酸制备氰化钾溶液,然后将该氰化钾溶液与3-甲硫基丙醛、碳酸氢铵溶液在50〜150°C下反应3〜15分钟得到5-(β-甲硫基乙基)乙内酰脲溶液,再将该5-(β-甲硫基乙基)乙内酰脲溶液升温至140〜220°C皂化反应2〜15分钟,皂化毕,降温到0〜40°C,用有机溶剂进行萃取,水相用CO2进行中和、结晶,然后经过滤、洗涤、千燥后得到合格D,L-蛋氨酸产品;过滤产生的D,L-蛋氨酸结晶母液经升温至110〜160°C脱除CO2后,全部循环套用作为氢氰酸吸收液。本发明的工艺路线是一条适合连续化、基本没有废水和废气产生的清洁生产路线。

Description

一种清洁的 D,L-蛋氨酸制备方法
技术领域
本发明涉及化合物的合成领域, 具体地说是一种清洁的 D,L-蛋氨酸制备方法。 背景技术
D,L-蛋氨酸是一种含硫的人体必需氨基酸, 与生物体内各种含硫化合物的代 谢密切相关。 蛋氨酸无法在动物体内自行合成, 需从食物中摄入, 是第一限制性氨基 酸, 将它加入词料中, 可以促进禽畜生长、 增加痩肉量、 缩短词养周期; 蛋氨酸还可 利用其所带的甲基, 对有毒物或药物进行甲基化而起到解毒的作用, 因此, 蛋氨 酸可用于防治慢性或急性肝炎、肝硬化等肝脏疾病, 也可用于缓解砷、三氯甲烷、 四氯化碳、 苯、 吡啶和喹啉等有害物质的毒性反应。 据相关资料统计, 全世界蛋氨 酸的巿场需求量巳经达到 100万吨 /年, 近年来蛋氨酸需求量以每年 4%速度在增长, 而我国的蛋氨酸需求量则以每年 7%速度高速增长。
根据文献介绍, D,L-蛋氨酸合成方法主要有以下几种- 在公开号为 CN1923807A的专利文献中, 日本住友化学株式会社提出用碱性钾化 合物进行 5-0 -甲硫基乙基)乙内酰脲的水解, 然后通过压入 C02气体进行酸化, 再加 入聚乙烯醇后经分步浓缩结晶得到 D,L-蛋氨酸。 这种方法虽然可以循环利用 C02 气体, 但由于人为加入了聚乙烯醇, 结晶母液不能循环利用, 只能废弃, 从而产生大 量含 S和 N有机物的废水, 此外, 由于采用分步浓缩的方法, 还需大量消耗热能, 大 大增加了 D,L-蛋氨酸生产成本。
在公开号为 CN85108505A的专利文献中, 王建华提出在制备 5-(β-甲硫基乙基)乙 内酰脲过程中加入 10%丙烯醛量的中性氨基酸与有机酸的混合物作为催化剂, 以甲硫 醇、 丙烯醛为原料一步法制备 5-0 -甲硫基乙基:)乙内酰脲, 从而简化了操作过程和提 高了 5-(β-甲硫基乙基)乙内酰脲的制备收率, 但其后续的加入碱性物质进行皂化过程 中, 有意加入的中性氨基酸与有机酸的混合物不可避免地会参与反应, 生产金属盐, 在最后的母液中累积, 从而使母液不能循环利用, 最终产生大量含 S和 Ν有机物的废 水。
在公开号为 CN85108531A的专利文献中, 王建华提出用碱性钠化合物将 5-(β-甲 硫基乙基)乙内酰脲进行皂化后, 加入硫酸进行酸化, 最后用分步浓缩、 分步结晶的方 法分离出 D,L-蛋氨酸。 该方法会产生大量的副产物硫酸钠, 分离和处理硫酸钠成 为生产过程很大的负担。
在公开号为 CN1589259A的专利文献中, 日本曹达株式会社为了得到一种可以稳 定地得到粒状或厚板状的、且容积密度高、品质好的蛋氨酸结晶的蛋氨酸的制备方法, 其提出用金属氢氧化物、金属碳酸盐、金属碳酸氢盐中一种金属化合物,水解 5-(β- 甲硫基乙基)乙内酰脲得到蛋氨酸金属盐, 在 co2气体加压下, 中和蛋氨酸金属盐使 蛋氨酸结晶, 将蛋氨酸从滤液中分离, 使滤液能够再次利用于 5-(β-甲硫基乙基)乙内 酰脲的水解的工序的蛋氨酸制备。这种方法虽然将结晶母液一部份套用回水解过程中, 但中间过程由于没有进行除去一些脚料和副产物, 势必会造成积累, 影响套用效果和 产品质量; 同时由于母液没有套用到制备 5-(β-甲硫基乙基)乙内酰脲过程中, 在制备 5-(β-甲硫基乙基)乙内酰脲时需较大的水量, 造成整条工艺的水量不能平衡, 每套用一 次都需除去制备 5-(β-甲硫基乙基)乙内酰脲的用水量, 能耗较大。
在公开号为 CN1103066A 的专利文献中, 德古萨股份公司提出将甲硫基丙醛与 HCN和氨反应得到氨基腈化合物, 在一种酮催化剂的存在下再将其水解, 得到氨基酰 胺, 最后在碱性催化剂的存在下, 通过高温水解得到蛋氨酸的合成工艺路线。 这条蛋 氨酸合成路线相对于现在工业化的生产路线有特别之处, 但也存在着一些缺陷, 最大 的一个缺陷就是废水量大, 如在制备氨基酰胺过程中加入酮类催化剂, 得到氨基酰胺 后, 需用过柱的方法进行分离提纯, 对这种大品种产品在工业化过程中采用这种分离 提纯方法是不适合的, 从整个工艺来看, 还是没有很好地解决废水量大的问题。
在公开号为 CN102399177A的专利文献介绍中,李宽义提出一种连续化合成蛋氨 酸环保清洁的工艺方法: 以丙烯醛、 甲硫醇合成的甲硫基代丙醛为原料, 经与氢氰酸 反应得到中间体 2-羟基 -4-甲硫基丁腈,中间体 2-羟基 -4-甲硫基丁腈在过量氨和二氧化 碳存在下, 在联合反应器的第一反应床中连续反应得到海因溶液, 这种海因溶液从第 一反应床流出经过解析塔释放过量的二氧化碳和氨, 解析后的海因溶液流入联合反应 器的第二反应床并在碱性条件下水解得到蛋氨酸钾水溶液; 蛋氨酸钾水溶液用二氧化 碳中和得到蛋氨酸和碳酸氢钾水溶液, 蛋氨酸从水溶液中结晶分离出来; 碳酸氢钾随 母液经后续处理回收套用。 这条工艺路线看上去是一条非常清洁, 也非常适合工业化 大生产的工艺路线, 但是根据其专利介绍, 从工业化大生产角度进行分析, 这条工艺 路线还是存着一些不足。首先, 该工艺在制备海因过程中需要较大量的水参与反应的, 而结晶母液是套用在海因水解过程中, 而不是在海因制备过程中, 这样一来在结晶母 液套用时必须先蒸馏出很大一部份的水套用到海因制备过程中, 才能把剩下的那部份 母液套用到海因水解过程中, 这个过程需消耗大量的热能和电能, 增加了生产成本; 其次, 在整个工艺过程中, 各步化学反应过程中产生的副产物没有得到及时清除, 如 此必然会严重影响最后产品的质量, 加大最后产品的纯化难度, 同时也会对母液套用 量和套用批次产生影响。 这样就加大了工业化生产过程中的废水排放量。
在 US2004/0039228A1 中提出, 将一部份结晶母液与新鲜的海因溶液、 一定量的 而 3和 C02—起在 60°C下反应, 反应完后在催化剂 Ti02的存在下, 于 180-300 °C下皂 化, 最后用 C02中和, 析出 D,L-蛋氨酸。 这个方法虽然是利用了一部份的结晶母液进 行套用, 减少了废水的排放量, 但由于在工艺过程中加入了 Ti02作为催化剂, 就产生 了如果将全部结晶母液进行套用的话, Ti02就会积累的问题, 并且结晶过滤出来的 D,L-蛋氨酸产品中也会有夹带有 Ή02, 使产品中含有 Ti金属, 造成产品质量下降, 产 品后处理较为复杂和困难。
在 EP1761074A1 ( CN101602700A) 专利文献中日本住友公司提出, 以碱性 钾化合物为催化剂进行 5-(β-甲硫基乙基)乙内酰脲的皂化, 用 C02进行中和结晶, 将经过前二次分级浓缩结晶后的结晶母液套用到下批 5-(β-甲硫基乙基)乙内酰脲反 应液皂化过程中, 余下的母液经再次浓缩后加入聚乙烯醇进行结晶, 此时的母液废 弃不再套用, 这条工艺也是日本住友公司 D,L-蛋氨酸的工业化大生产工艺。 但这 条工艺也存在着较多问题, 特别是在绿色清洁生产方面, 其过程中结晶母液的套 用只是一部份, 大部份的母液还是一次废弃, 产生相当数量的废水。 发明内容
针对现有工业化生产 D,L-蛋氨酸过程中所存在的含 N和 S有机物废水产生量大, 对环境污染严重的问题, 本发明所要解决的主要技术问题是提供一种操作简单、 工艺 清洁的 DL-蛋氨酸制备方法。
为此, 本发明提供了一种清洁的 D,L-蛋氨酸制备方法, 其步骤包括-
( 1 ) 以 3-甲硫基丙醛、 KCN溶液、 NH4HC03溶液为原料, 在逐步升温的管道反 应器中连续反应制备出 5-(β-甲硫基乙基)乙内酰脲反应液;
( 2) 将上述 5-(β-甲硫基乙基)乙内酰脲反应液泄压脱出 ΝΗ3 和 C02后送入另一 管道反应器中进行分解皂化反应, 得到皂化反应液;
( 3 )将皂化反应液通过解吸脱除在分解皂化反应中产生的 NH3 和 C02,得到 D,L- 蛋氨酸钾溶液; ( 4) 将步骤 (2 )、 步骤(3) 脱出的 NH3 和 C02用水喷淋吸收得到 NH4HC03溶 液, 直接用作步骤 (1 ) 的 5-(β-甲硫基乙基)乙内酰脲制备的原料;
( 5 )将步骤(3 )得到的 D,L-蛋氨酸钾溶液降温, 用有机溶剂进行逆流连续萃取; 有机溶剂层经蒸馏, 回收的有机溶剂直接回到逆流连续萃取中使用, 蒸馏后的残液作 为废液处理;
( 6) 步骤 (5 ) 逆流连续萃取的水层送入连续结晶器中, 同时向连续结晶器中压 入 C02气体进行酸化, 使连续结晶器中反应液的 pH值为 6〜9, 得到结晶混合液;
( 7) 将结晶混合液固液分离, 得到 D,L-蛋氨酸粗产品、 结晶母液; 将 D,L-蛋氨 酸粗产品用水洗涤、 固液分离后得到 D,L-蛋氨酸滤饼、 洗洚滤液;
( 8) D,L-蛋氨酸滤饼在惰性气体保护下烘干, 得到 D,L-蛋氨酸产品;
( 9)将步骤(7) 的结晶母液和洗洚滤液合并后送入分解塔中, 使其中的 KHC03 完全分解成 K2C03并释放出 C02气体; 释放出的 C02气体经压缩后送入步骤 (6) 的 连续结晶器中用于酸化结晶过程;
( 10)将步骤(9 )得到的含有 K2C03母液用于吸收 HCN气体以制备 KCN溶液, 所得的 KCN溶液用作步骤 (1 ) 的 5-(β-甲硫基乙基)乙内酰脲制备的原料。
所述的步骤(1 ) 中, 3-甲硫基丙醛: KCN: NH4HC03的摩尔比优选为 1 : 1〜1.1: 2〜3, 此时有最佳的 3-甲硫基丙醛单程转化率和设备利用率。
所述的步骤 (1 ) 中, 管道反应器优选在 50〜150°C范围内逐步升温, 反应时间为 3-15分钟。
所述的步骤(2) 中, 分解皂化反应的优选温度为 140〜220°C, 时间为 2〜15分钟。 所述的步骤 (5) 中, D,L-蛋氨酸钾溶液降温至 0〜40°C, 再用相对于 D,L-蛋氨酸 钾溶液重量 0.5〜2倍的有机溶剂进行逆流连续萃取。
所述的步骤 (5) 中, 逆流连续萃取所用的有机溶剂优选为甲苯、 乙苯、 二甲苯、 正丁醇、 异丁醇、 正戊醇、 2-甲基 -1-丁醇、 异戊醇、 仲戊醇、 3-戊醇、 叔戊醇、 正己 醇、 4-甲基 -2-戊醇、 2-乙基丁醇、 2-甲基戊醇、 庚醇、 2-庚醇、 3-庚醇、 2-乙基己醇、 2-辛醇、 辛醇、 3,5,5-三甲基己醇、 乙醚、 甲基叔丁基醚、 异丙醚、 正丙醚、 正丁醚、 异戊醚、 己醚、 2-甲基四氢呋喃、 苯甲醚、 苯乙醚、 3-甲基苯甲醚、 乙基苄基醚、 乙 二醇二乙醚、 乙二醇二丙醚、 乙二醇二丁醚中的一种或几种;
5-(β-甲硫基乙基:)乙内酰脲、 D,L-蛋氨酸钾的制备过程中会生成一些油溶性的粘稠 副产物, 易被上述的有机溶剂萃取, 而 D,L-蛋氨酸钾为强水溶性物质, 难溶于上述的 有机溶剂, 因此副产物通过有机溶剂萃取被及时除去。 所述的步骤 (6) 中, 连续结晶的温度为 0〜40°C, 反应液在连续结晶器中停留时 间为 0.5〜5小时。
所述的步骤(9) 中, 分解塔的温度为 110〜160°C, 分解塔的压力为 0.15〜0.8MPa, 分解反应时间为 1〜4小时。
所述的步骤 (1) 的反应式为-
Figure imgf000007_0001
Figure imgf000007_0002
所述的步骤 (2)、 步骤 (3) 的反应式为:
Figure imgf000007_0003
2KHCO 3 2C03 十 C02 + H20 所述的步骤 (4) 的反应式为- NH3 + C02 + H20 »- NH4HC0 所述的步骤 (6) 的反应式为:
Figure imgf000008_0001
所述的步骤 (9 ) 的反应式为- 2 KI IC03 ► K2C03 + C02 + H20
所述的步骤 (10) 的反应式为:
HCN + K2C03 KCN + HC03
所述的步骤(5 )中, 利用萃取的方法将反应过程中产生的副产物及时除去, 为工 艺用水可以多次乃至于无限制的循环利用提供保障。
本发明利用加热的方法将 KHC03分解成 K2C03,以含 K2C03的结晶母液作为 HCN 吸收液来制备 KCN 溶液, 从而使整个工艺过程中没有另外的金属盐加入, 为整个制 备工艺中的所有工艺用水得到循环套用奠定了基础。
为保证工艺的清洁, 本发明将 5-03-甲硫基乙基)乙内酰脲制备及皂化过程产生的 NH3和 C02气体都经过吸收、重新制备成 NH4HC03, 而 NH4HC03又是制备 5-(β-甲硫 基乙基)乙内酰脲所需原料, 从而使工艺过程产生的辅料得到最大程度的利用。
从工业化生产过程分析, 目前文献所报导的合成方法中, 制备 D,L-蛋氨酸的工 艺过程中都产生了相当数量废水, 且废水中含有 N和 S的有机物, 对环境污染非常严 重, 处理成本高。 本发明工艺从源头上防止废水的产生, 再加上对生产过程中产生的 废气进行综合利用, 可以保证工艺过程中基本没有废气产生, 因此本发明的 D,L-蛋氨 酸合成工艺为一条清洁的、 适合工业化生产的工艺路线。 附图说明
图 1为本发明流程示意图。
其中: T1为 HCN吸收塔, T2为 C02和 NH3吸收塔, 1为第一管道反应器, 2为 泄压罐, 3为第二管道反应器, T3为解吸塔, T4为连续萃取塔, T5为有机溶剂回收蒸馏 塔, T6为连续结晶器, S 1为第一固液分离装置, 4为洗绦器, S2为第二固液分离装置, T7为 KHC03分解塔。 具体实施方式
本发明将参考下面的具体实例来描述, 这些实例只是为了阐述而不能视为限制本 发明的范围或实施本发明的方法。 实施例 1
将处理后的结晶母液 (第一次启动用 10% K2CO3溶液) 用液体计量输送泵以
700Kg/h的流量送入 HCN吸收塔 T1中, 同时向 HCN吸收塔中通入 5.4Kg/h的 HCN 气体, 在 HCN吸收塔 T1中制备成 KCN溶液, 并用液体输送泵送入第一管道反应器 1中, 同时将在 0(¾和>¾3吸收塔 T2中吸收了氨气和二氧化碳的碳酸氢铵水溶液以 200Kg/h的速度用液体输送泵送入第一管道反应器 R1中(第一次启动用 16%碳酸氢铵 溶液), 同时再用液体计量输送泵以 20.8Kg/h的速度将 3-甲硫基丙醛送入第一管道反 应器 R1中, 反应液在 50°C停留 7分钟, 升温到 100°C停留 7分钟, 再升温到 150°C停 留 1分钟,从第一管道反应器 R1出来的反应液经泄压罐 R2泄压排放多余的氨气和二 氧化碳至 C02和 NH3吸收塔 T2中, 得到 910Kg/h的 5-(β-甲硫基乙基)乙内酰脲溶液。
将制备得到的 5-(β-甲硫基乙基)乙内酰脲溶液用输送泵以 910Kg/h的速度送入第 二管道反应器 R3中, 反应液在 140°C的第二管道反应器 R3中停留 15分钟, 皂化反 应完成后的反应液在解吸塔 T3泄压, 将反应产生的氨气和二氧化碳排至 C02和而 3 吸收塔 T2中进行吸收, 皂化液通过换热器降温至 40°C, 用泵将巳经降温的皂化液以 906Kg/h的速度送入连续萃取塔 T4中, 同时向连续萃取塔 T4中送入 453Kg/h的乙二 醇二丙醚, 进行连续逆流萃取, 将乙二醇二丙醚层在有机溶剂回收蒸馏塔 T5 进行连 续简蒸, 回收得到的溶剂可以循环套用于萃取过程, 脚料进行焚烧处理。 将水层以 935Kg/h的速度送入连续结晶器 T6中, 同时向连续结晶器 T6中通入 C02气体进行酸 化, 使反应体系的 pH值达到 8; 在 4(TC下进行连续结晶, 反应液在连续结晶器中停 留时间为 3小时, 结晶液经第一固液分离装置 S1连续离心固液分离, 过滤出 D,L-蛋 氨酸粗产品, 结晶母液待用; D,L-蛋氨酸粗产品用固体输送设备以约 34Kg/h的速度定 量送入洗绦器 R4中螺旋打¾洗绦, 同时向洗滏器 R4中连续输入 40Kg/h的水, 将洗 滏器 R4中物料温度控制在 5°C下, 固体物料在洗绦器 R4中停留时间为 15分钟, 将 经洗涤器 R4连续打 ¾洗涤后的混合液经第二固液分离装置 S2连续离心固液分离, 洗 涤滤液并入结晶母液中,过滤出的 D,L-蛋氨酸滤饼在 N2保护下于 110°C进行气流烘干, 得到 27.5Kg/h D,L-蛋氨酸成品。 按 GB-T17810-2009词料级 DL-蛋氨酸质量标准进行 检测, 蛋氨酸含量达 99.5%, 基于 3-甲硫基丙醛的总摩尔反应收率为 92.3%。 将结晶母液和洗绦滤液以 977 Kg/h的速度连续送入 KHC03分解塔 T7中,在 160°C 下停留 1小时, 使母液中的碳酸氢钾完全分解成碳酸钾, 同时从塔顶蒸出 210Kg/h的 水和 45Kg/h的乙二醇二丙醚, 蒸出的水中以 40Kg h循环至洗洚器 R4中打 ¾使用, 170Kg/h用于 C02和 NH3吸收塔 T2中; 蒸出的乙二醇二丙醚循环至连续萃取塔 T4中 使用; 分解放出的 002气体经压缩后用于连续结晶器 T6酸化结晶过程; 在塔底排出 含碳酸钾溶液的母液经冷却后循环至 HCN吸收塔 T1吸收氢氰酸过程中。 实施例 2
将处理后的结晶母液 (第一次启动用 10% K2CO3溶液) 用液体计量输送泵以 552Kg/h的流量送入 HCN吸收塔 T1中, 同时向 HCN吸收塔中通入 5.94Kg/h的 HCN 气体, 在 HCN吸收塔 T1中制备成 KCN溶液, 并用液体输送泵送入第一管道反应器 R1中, 同时将在 C02和 NH3吸收塔 T2中吸收了氨气和二氧化碳的碳酸氢铵水溶液以 250Kg/h的速度用液体输送泵送入第一管道反应器 R1中(第一次启动用 16%碳酸氢铵 溶液), 同时再用液体计量输送泵以 20.8Kg/h的速度将 3-甲硫基丙醛送入第一管道反 应器 R1中, 反应液在 60°C停留 3分钟, 升温到 12CTC停留 3分钟, 再升温到 15CTC停 留 1分钟,从第一管道反应器 R1出来的反应液经泄压罐 R2泄压排放多余的氨气和二 氧化碳至 C02和 NH3吸收塔 T2中, 得到 805Kg/h的 5-(β-甲硫基乙基)乙内酰脲溶液。
将制备得到的 5-(β-甲硫基乙基)乙内酰脲溶液用输送泵以 805Kg/h的速度送入第 二管道反应器 R3中, 反应液在 22CTC的第二管道反应器 R3中停留 2分钟, 皂化反应 完成后的反应液在解吸塔 T3泄压, 将反应产生的氨气和二氧化碳排至 C02和而 3吸 收塔 T2 中进行吸收, 皂化液通过换热器降温至 0 °C, 用泵将巳经降温的皂化液以 800Kg/h的速度送入连续萃取塔 T4中,同时向连续萃取塔 T4中送入 1600Kg/h的甲苯, 进行连续逆流萃取, 将甲苯层在有机溶剂回收蒸馏塔 T5 进行连续简蒸, 回收得到的 溶剂可以循环套用于萃取过程, 脚料进行焚烧处理。 将水层以 790Kg/h的速度送入连 续结晶器 T6中, 同时向连续结晶器 T6中通入 C02气体进行酸化, 使反应体系的 pH 值达到 6; 在 0°C下进行连续结晶, 反应液在连续结晶器中停留时间为 0.5小时, 结晶 液经第一固液分离装置 S 1连续离心固液分离, 过滤出 D,L-蛋氨酸粗产品, 结晶母液 待用; D,L-蛋氨酸粗产品用固体输送设备以约 34Kg/h的速度定量送入洗涤器 R4中螺 旋打 ¾洗洚, 同时向洗涤器 R4中连续输入 102Kg/h的水, 将洗涤器 R4中物料温度控 制在 0°C下, 固体物料在洗滏器 R4中停留时间为 5分钟, 将经洗绦器 R4连续打 ¾洗 浇后的混合液经第二固液分离装置 S2连续离心固液分离, 洗浇滤液并入结晶母液中, 过滤出的 D,L-蛋氨酸滤饼在 N 护下于 110°C进行气流烘干,得到 27.2Kg/h D,L-蛋氨 酸成品。 按 GB-T17810-2009 饲料级 DL-蛋氨酸质量标准进行检测, 蛋氨酸含量达 99.3%, 基于 3-甲硫基丙醛的总摩尔反应收率为 91.3%。
将结晶母液和洗绦滤液以 890 Kg/h的速度连续送入 KHC03分解塔 T7中,在 130°C 下停留 3小时, 使母液中的碳酸氢钾完全分解成碳酸钾, 同时从塔顶蒸出 312Kg/h的 水和 5Kg/h的甲苯, 蒸出的水中以 102Kg/h循环至洗绦器 R4中打 ¾使用, 210Kg/h用 于 C02和 NH3吸收塔 T2中; 蒸出的甲苯循环至连续萃取塔 T4中使用; 分解放出的 C02气体经压缩后用于连续结晶器 T6酸化结晶过程;在塔底排出含碳酸钾溶液的母液 经冷却后循环至 HCN吸收塔 T1吸收氢氰酸过程中。 实施例 3
将处理后的结晶母液 (第一次启动用 10% K2CO3溶液) 用液体计量输送泵以 828Kg/h的流量送入 HCN吸收塔 T1中, 同时向 HCN吸收塔中通入 5.67Kg/h的 HCN 气体, 在 HCN吸收塔 T1中制备成 KCN溶液, 并用液体输送泵送入第一管道反应器 R1中, 同时将在 C02和 NH3吸收塔 T2中吸收了氨气和二氧化碳的碳酸氢铵水溶液以 300Kg/h的速度用液体输送泵送入第一管道反应器 R1中(第一次启动用 16%碳酸氢铵 溶液), 同时再用液体计量输送泵以 20.8Kg/h的速度将 3-甲硫基丙醛送入第一管道反 应器 R1中, 反应液在 90°C停留 1分钟, 升温到 120°C停留 2分钟, 再升温到 150°C停 留 2分钟,从第一管道反应器 R1出来的反应液经泄压罐 R2泄压排放多余的氨气和二 氧化碳至 C02和 NH3吸收塔 T2中,得到 1122Kg/h的 5-(β-甲硫基乙基)乙内酰脲溶液。
将制备得到的 5-(β-甲硫基乙基)乙内酰脲溶液用输送泵以 1122Kg/h的速度送入第 二管道反应器 R3中, 反应液在 200°C的第二管道反应器 R3中停留 4分钟, 皂化反应 完成后的反应液在解吸塔 T3泄压, 将反应产生的氨气和二氧化碳排至 002和 NH3吸 收塔 T2 中进行吸收, 皂化液通过换热器降温至 20°C, 用泵将巳经降温的皂化液以 1117Kg/h的速度送入连续萃取塔 T4中, 同时向连续萃取塔 T4中送入 1000Kg/h的己 醇, 进行连续逆流萃取, 将己醇层在有机溶剂回收蒸馏塔 T5 进行连续简蒸, 回收得 到的溶剂可以循环套用于萃取过程, 脚料进行焚烧处理。将水层以 1130Kg/h的速度送 入连续结晶器 T6中, 同时向连续结晶器 T6中通入 C02气体进行酸化, 使反应体系的 pH值达到 8; 在 20°C下进行连续结晶, 反应液在连续结晶器中停留时间为 5小时, 结 晶液经第一固液分离装置 S1连续离心固液分离, 过滤出 D,L-蛋氨酸粗产品, 结晶母 液待用; D,L-蛋氨酸粗产品用固体输送设备以约 35Kg/h的速度定量送入洗浇器 R4中 螺旋打 ¾洗绦, 同时向洗绦器 R4中连续输入 70Kg/h的水, 将洗滏器 R4中物料温度 控制在 20°C下, 固体物料在洗涤器 R4中停留时间为 10分钟, 将经洗洚器 R4连续打 ¾洗涤后的混合液经第二固液分离装置 S2连续离心固液分离,洗涤滤液并入结晶母液 中,过滤出的 D,L-蛋氨酸滤饼在 N2保护下于 140°C进行气流烘干,得到 27.9Kg/h D,L- 蛋氨酸成品。按 GB-T17810-2009饲料级 DL-蛋氨酸质量标准进行检测,蛋氨酸含量达 99.4%, 基于 3-甲硫基丙醛的总摩尔反应收率为 93.6%。
将结晶母液和洗绦滤液以 1207 Kg/h的速度连续送入 KHC03分解塔 T7 中, 在 110°C下停留 4小时,使母液中的碳酸氢钾完全分解成碳酸钾,同时从塔顶蒸出 328Kg h 的水和 25Kg/h的己醇, 蒸出的水中以 70Kg/h循环至洗洚器 R4中打浆使用, 258Kg h 用于 C02和 NH3吸收塔 T2中;蒸出的己醇循环至连续萃取塔 T4中使用;分解放出的 C02气体经压缩后用于连续结晶器 T6酸化结晶过程;在塔底排出含碳酸钾溶液的母液 经冷却后循环至 HCN吸收塔 T1吸收氢氰酸过程中。 实施例 4
将处理后的结晶母液 (第一次启动用 10% K2CO3溶液) 用液体计量输送泵以 700Kg/h的流量送入 HCN吸收塔 T1中, 同时向 HCN吸收塔中通入 5.4Kg/h的 HCN 气体, 在 HCN吸收塔 T1中制备成 KCN溶液, 并用液体输送泵送入第一管道反应器 R1中, 同时将在 C02和 NH3吸收塔 T2中吸收了氨气和二氧化碳的碳酸氢铵水溶液以 200Kg/h的速度用液体输送泵送入第一管道反应器 R1中(第一次启动用 16%碳酸氢铵 溶液), 同时再用液体计量输送泵以 20.8Kg/h的速度将 3-甲硫基丙醛送入第一管道反 应器 R1中, 反应液在 150°C停留 3分钟, 从第一管道反应器 R1出来的反应液经泄压 罐 R2泄压排放多余的氨气和二氧化碳至 C02和而 3吸收塔 T2中, 得到 910Kg/h的 5-(β-甲硫基乙基)乙内酰脲溶液。
将制备得到的 5-(β-甲硫基乙基)乙内酰脲溶液用输送泵以 910Kg/h的速度送入第 二管道反应器 R3中, 反应液在 170°C的第二管道反应器 R3中停留 10分钟, 皂化反 应完成后的反应液在解吸塔 T3泄压, 将反应产生的氨气和二氧化碳排至 C02和 NH3 吸收塔 T2中进行吸收, 皂化液通过换热器降温至 10°C, 用泵将巳经降温的皂化液以 905Kg/h的速度送入连续萃取塔 T4中,同时向连续萃取塔 T4中送入 905Kg/h的乙醚, 进行连续逆流萃取, 将乙醚层在有机溶剂回收蒸馏塔 T5 进行连续简蒸, 回收得到的 溶剂可以循环套用于萃取过程, 脚料进行焚烧处理。 将水层以 915Kg/h的速度送入连 续结晶器 T6中, 同时向连续结晶器 T6中通入 002气体进行酸化, 使反应体系的 pH 值达到 7.5; 在 10°C下进行连续结晶, 反应液在连续结晶器中停留时间为 2小时, 结 晶液经第一固液分离装置 S1连续离心固液分离, 过滤出 D,L-蛋氨酸粗产品, 结晶母 液待用; D,L-蛋氨酸粗产品用固体输送设备以约 35Kg h的速度定量送入洗洚器 R4中 螺旋打 ¾洗绦, 同时向洗绦器 R4中连续输入 35Kg/h的水, 将洗滏器 R4中物料温度 控制在 10°C下, 固体物料在洗涤器 R4中停留时间为 10分钟, 将经洗洚器 R4连续打 ¾洗滏后的混合液经第二固液分离装置 S2连续离心固液分离,洗滏滤液并入结晶母液 中,过滤出的 D,L-蛋氨酸滤饼在 N 护下于 130°C进行气流烘干,得到 28.0Kg/h D,L- 蛋氨酸成品。按 GB-T17810-2009饲料级 DL-蛋氨酸质量标准进行检测,蛋氨酸含量达 99.2%, 基于 3-甲硫基丙醛的总摩尔反应收率为 94.0%。
将结晶母液和洗洚滤液以 947 Kg/h的速度连续送入 KHC03分解塔 T7中,在 150°C 下停留 1.5 小时, 使母液中的碳酸氢钾完全分解成碳酸钾, 同时从塔顶蒸出 207Kg h 的水和 18KgZh的乙醚, 蒸出的水中以 35Kg/h循环至洗绦器 R4中打衆使用, 172Kg/h 用于 C02和 NH3吸收塔 T2中;蒸出的乙醚循环至连续萃取塔 T4中使用;分解放出的 C02气体经压缩后用于连续结晶器 T6酸化结晶过程;在塔底排出含碳酸钾溶液的母液 经冷却后循环至 HCN吸收塔 T1吸收氢氰酸过程中。 实施例 5
将处理后的结晶母液 (第一次启动用 10% K2CO3溶液) 用液体计量输送泵以 828Kg/h的流量送入 HCN吸收塔 T1中, 同时向 HCN吸收塔中通入 5.5Kg/h的 HCN 气体, 在 HCN吸收塔 T1中制备成 KCN溶液, 并用液体输送泵送入第一管道反应器 R1中, 同时将在 C02和 NH3吸收塔 T2中吸收了氨气和二氧化碳的碳酸氢铵水溶液以 220Kg/h的速度用液体输送泵送入第一管道反应器 R1中(第一次启动用 16%碳酸氢铵 溶液), 同时再用液体计量输送泵以 20.8Kg/h的速度将 3-甲硫基丙醛送入第一管道反 应器 R1中, 反应液在 60°C停留 3分钟, 升温到 100°C停留 3分钟, 再升温到 140 °C停 留 4分钟,从第一管道反应器 R1出来的反应液经泄压罐 R2泄压排放多余的氨气和二 氧化碳至 C02和 NH3吸收塔 T2中,得到 1062Kg/h的 5-(β-甲硫基乙基)乙内酰脲溶液。
将制备得到的 5-(β-甲硫基乙基)乙内酰脲溶液用输送泵以 1062Kg/h的速度送入第 二管道反应器 R3中, 反应液在 190°C的第二管道反应器 R3中停留 9分钟, 皂化反应 完成后的反应液在解吸塔 T3泄压, 将反应产生的氨气和二氧化碳排至 002和 NH3吸 收塔 T2 中进行吸收, 皂化液通过换热器降温至 30°C, 用泵将巳经降温的皂化液以 1056Kg/h的速度送入连续萃取塔 T4中, 同时向连续萃取塔 T4中送入 1200Kg/h的 2- 乙基己醇, 进行连续逆流萃取, 将 2-乙基己醇层在有机溶剂回收蒸馏塔 T5进行连续 简蒸, 回收得到的溶剂可以循环套用于萃取过程, 脚料进行焚烧处理。 将水层以 1050Kg/h的速度送入连续结晶器 T6中, 同时向连续结晶器 T6中通入 C02气体进行 酸化, 使反应体系的 pH值达到 9; 在 30°C下进行连续结晶, 反应液在连续结晶器中 停留时间为 3小时, 结晶液经第一固液分离装置 S1连续离心固液分离, 过滤出 D,L- 蛋氨酸粗产品, 结晶母液待用; D,L-蛋氨酸粗产品用固体输送设备以约 35Kg/h的速度 定量送入洗绦器 R4中螺旋打 ¾洗滏, 同时向洗绦器 R4中连续输入 60Kg/h的水, 将 洗洚器 R4中物料温度控制在 30°C下, 固体物料在洗涤器 R4中停留时间为 10分钟, 将经洗涤器 R4连续打浆洗涤后的混合液经第二固液分离装置 S2连续离心固液分离, 洗洚滤液并入结晶母液中,过滤出的 D,L-蛋氨酸滤饼在 N2保护下于 130°C进行气流烘 干, 得到 27.8Kg/h D,L-蛋氨酸成品。 按 GB-T17810-2009饲料级 DL-蛋氨酸质量标准 进行检测, 蛋氨酸含量达 99.3%, 基于 3-甲硫基丙醛的总摩尔反应收率为 93.3%。
将结晶母液和洗绦滤液以 1106 Kg/h的速度连续送入 KHC03分解塔 T7中, 在 120°C下停留 3小时,使母液中的碳酸氢钾完全分解成碳酸钾,同时从塔顶蒸出 245Kg h 的水和 7Kg h的 2-乙基己醇, 蒸出的水中以 60Kg/h循环至洗涤器 R4中打桨使用, 185Kg/h用于 C02和 NH3吸收塔 T2中;蒸出的 2-乙基己醇循环至连续萃取塔 T4中使 用; 分解放出的 002气体经压缩后用于连续结晶器 T6酸化结晶过程; 在塔底排出含 碳酸钾溶液的母液经冷却后循环至 HCN吸收塔 T1吸收氢氰酸过程中。

Claims

权 利 要 求 书
1、 一种清洁的 D,L-蛋氨酸制备方法, 其步骤包括:
( 1 ) 以 3-甲硫基丙醛、 KCN溶液、 NH4HC03溶液为原料, 在逐步升温的管道反 应器中连续反应制备出 5-(β-甲硫基乙基)乙内酰脲反应液;
( 2) 将上述 5-(β-甲硫基乙基)乙内酰脲反应液泄压脱出 ΝΗ3 和 C02后送入另一 管道反应器中进行分解皂化反应, 得到皂化反应液;
( 3 )将皂化反应液通过解吸脱除在分解皂化反应中产生的 NH3 和 C02,得到 D,L- 蛋氨酸钾溶液;
( 4) 将步骤 (2 )、 步骤(3) 脱出的 NH3 和 C02用水喷淋吸收得到 NH4HC03溶 液, 直接用作步骤 (1 ) 的 5-(β-甲硫基乙基)乙内酰脲制备的原料;
( 5 )将步骤(3 )得到的 D,L-蛋氨酸钾溶液降温, 用有机溶剂进行逆流连续萃取; 有机溶剂层经蒸馏, 回收的有机溶剂直接回到逆流连续萃取中使用, 蒸馏后的残液作 为废液处理;
( 6) 步骤 (5 ) 逆流连续萃取的水层送入连续结晶器中, 同时向连续结晶器中压 入 C02气体进行酸化, 使连续结晶器中反应液的 pH值为 6〜9, 得到结晶混合液;
( 7) 将结晶混合液固液分离, 得到 D,L-蛋氨酸粗产品、 结晶母液; 将 D,L-蛋氨 酸粗产品用水洗涤、 固液分离后得到 D,L-蛋氨酸滤饼、 洗洚滤液;
( 8) D,L-蛋氨酸滤饼在惰性气体保护下烘干, 得到 D,L-蛋氨酸产品;
( 9)将步骤(7) 的结晶母液和洗绦滤液合并后送入分解塔中, 使其中的 KHC03 完全分解成 K2C03并释放出 C02气体; 释放出的 C02气体经压缩后送入步骤 (6) 的 连续结晶器中用于酸化结晶过程;
( 10)将步骤(9 )得到的含有 K2C03母液用于吸收 HCN气体以制备 KCN溶液, 所得的 KCN溶液用作步骤 (1 ) 的 5-(β-甲硫基乙基)乙内酰脲制备的原料。
2、 根据权利要求 1所述的清洁的 D,L-蛋氨酸制备方法, 其特征在于, 所述的步 骤 (1 ) 中, 3-甲硫基丙醛: KCN: NH4HC03的摩尔比为 1 : 1〜1.1: 2〜3。
3、 根据权利要求 1所述的清洁的 D,L-蛋氨酸制备方法, 其特征在于, 所述的步 骤 (1 ) 中, 管道反应器在 50〜150°C范围内逐步升温, 反应时间为 3〜15分钟。
4、 根据权利要求 1所述的清洁的 D,L-蛋氨酸制备方法, 其特征在于, 所述的步 骤 (2) 中, 分解皂化反应的温度为 140〜220°C, 时间为 2〜15分钟。
5、 根据权利要求 1所述的清洁的 D,L-蛋氨酸制备方法, 其特征在于, 所述的步 骤(5 )中, D,L-蛋氨酸钾溶液降温至 0〜40°C,再用相对于 D,L-蛋氨酸钾溶液重量 0.5〜2 倍的有机溶剂进行逆流连续萃取。
6、 根据权利要求 1或 5所述的清洁的 D,L-蛋氨酸制备方法, 其特征在于, 所述 的步骤 (5 ) 中, 逆流连续萃取所用的有机溶剂是甲苯、 乙苯、 二甲苯、 正丁醇、 异丁 醇、 正戊醇、 2-甲基 -1-丁醇、 异戊醇、 仲戊醇、 3-戊醇、 叔戊醇、 正己醇、 4-甲基 -2- 戊醇、 2-乙基丁醇、 2-甲基戊醇、 庚醇、 2-庚醇、 3-庚醇、 2-乙基己醇、 2-辛醇、 辛醇、 3,5,5-三甲基己醇、 乙醚、 甲基叔丁基醚、 异丙醚、 正丙醚、 正丁醚、 异戊醚、 己醚、 2-甲基四氢呋喃、 苯甲醚、 苯乙醚、 3-甲基苯甲醚、 乙基苄基醚、 乙二醇二乙醚、 乙 二醇二丙醚或乙二醇二丁醚中的一种或几种。
7、 根据权利要求 1所述的清洁的 D,L-蛋氨酸制备方法, 其特征在于, 所述的步 骤(6 )中,连续结晶的温度为 0〜40°C,反应液在连续结晶器中停留时间为 0.5〜5小时。
8、 根据权利要求 1所述的清洁的 D,L-蛋氨酸制备方法, 其特征在于, 所述的步 骤 (9 ) 中, 分解塔的温度为 110〜160°C, 分解塔的压力为 0.15〜0.8MPa, 分解反应时 间为 1〜4小时。
PCT/CN2013/070129 2012-09-03 2013-01-06 一种清洁的d,l-蛋氨酸制备方法 WO2014032401A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US14/425,310 US9206120B2 (en) 2012-09-03 2013-01-06 Clean method for preparing D,L-methionine
MX2015002752A MX362811B (es) 2012-09-03 2013-01-06 Método limpio de preparación de una d,l-metionina.
SG11201501553PA SG11201501553PA (en) 2012-09-03 2013-01-06 Clean method for preparing d,l-methionine
ES13833235.8T ES2687247T3 (es) 2012-09-03 2013-01-06 Método de limpieza para preparar D,L-metionina
MYPI2015700650A MY191517A (en) 2012-09-03 2013-01-06 A clean method for preparing d, l-methionine
KR1020157007639A KR101689366B1 (ko) 2012-09-03 2013-01-06 청정 d,l-메티오닌 제조 방법
RU2015111118/04A RU2604064C2 (ru) 2012-09-03 2013-01-06 Чистый метод приготовления d, l-метионина
EP13833235.8A EP2894147B1 (en) 2012-09-03 2013-01-06 Clean method for preparing d,l-methionine
BR112015004487A BR112015004487B1 (pt) 2012-09-03 2013-01-06 método para preparar d,l-metionina
JP2015528838A JP6026663B2 (ja) 2012-09-03 2013-01-06 クリーンなdl−メチオニンの製造方法
AU2013307993A AU2013307993B2 (en) 2012-09-03 2013-01-06 Clean method for preparing D,L-methionine
ZA2015/02259A ZA201502259B (en) 2012-09-03 2015-04-07 Clean method for preparing d,l-methionine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210320297.0A CN102796033B (zh) 2012-09-03 2012-09-03 一种清洁的d,l-蛋氨酸制备方法
CN201210320297.0 2012-09-03

Publications (1)

Publication Number Publication Date
WO2014032401A1 true WO2014032401A1 (zh) 2014-03-06

Family

ID=47195373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070129 WO2014032401A1 (zh) 2012-09-03 2013-01-06 一种清洁的d,l-蛋氨酸制备方法

Country Status (14)

Country Link
US (1) US9206120B2 (zh)
EP (1) EP2894147B1 (zh)
JP (1) JP6026663B2 (zh)
KR (1) KR101689366B1 (zh)
CN (1) CN102796033B (zh)
AU (1) AU2013307993B2 (zh)
BR (1) BR112015004487B1 (zh)
ES (1) ES2687247T3 (zh)
MX (1) MX362811B (zh)
MY (1) MY191517A (zh)
RU (1) RU2604064C2 (zh)
SG (1) SG11201501553PA (zh)
WO (1) WO2014032401A1 (zh)
ZA (1) ZA201502259B (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102796033B (zh) * 2012-09-03 2014-02-26 浙江新和成股份有限公司 一种清洁的d,l-蛋氨酸制备方法
JP2014108956A (ja) * 2012-12-04 2014-06-12 Sumitomo Chemical Co Ltd メチオニンの製造方法
CN105061193B (zh) * 2015-08-10 2017-03-22 蓝星(北京)技术中心有限公司 蛋氨酸生产废水处理中回收有机物的方法
CN105296557A (zh) * 2015-10-31 2016-02-03 高大元 一种D,L-α-蛋氨酸钙的合成方法
CN106119311A (zh) * 2016-07-11 2016-11-16 雷春生 一种腐乳废水制备高纯蛋氨酸的方法
CN106432018A (zh) * 2016-09-14 2017-02-22 宁夏紫光天化蛋氨酸有限责任公司 一种d,l‑蛋氨酸的环保清洁生产方法
CN106432020B (zh) * 2016-09-14 2018-11-20 宁夏紫光天化蛋氨酸有限责任公司 一种d,l-蛋氨酸的分离纯化方法
CN106565608A (zh) * 2016-09-30 2017-04-19 宁夏紫光天化蛋氨酸有限责任公司 一种高纯度5‑(2‑甲硫基乙基)‑乙内酰脲的制备方法
EP3725770B1 (en) * 2017-12-13 2022-08-10 Sumitomo Chemical Company, Limited Method for producing methionine
EP3730479B1 (en) * 2017-12-19 2022-10-19 Sumitomo Chemical Company, Limited Method for manufacturing methionine
JP6983256B2 (ja) * 2017-12-27 2021-12-17 住友化学株式会社 精製メチオニンの製造方法
EP3733645B1 (en) * 2017-12-28 2022-07-20 Sumitomo Chemical Company, Limited Method for producing methionine
CN109232335B (zh) * 2018-10-15 2021-02-26 天宝动物营养科技股份有限公司 一种蛋氨酸制备方法
KR20200138606A (ko) 2019-06-01 2020-12-10 장환석 치약 칫솔
CN112445254B (zh) * 2019-09-05 2022-11-08 中石油吉林化工工程有限公司 脱氢氰酸塔塔顶冷凝器液位与塔顶温度的控制系统及方法
CN111362453B (zh) * 2020-03-18 2020-11-03 北京百灵天地环保科技股份有限公司 一种高矿化度煤矿矿井水达标处理及资源化利用装置及其使用方法
CN112661682B (zh) * 2020-12-21 2023-08-01 宁夏紫光天化蛋氨酸有限责任公司 一种生产dl-蛋氨酸的方法
CN112679399A (zh) * 2020-12-22 2021-04-20 宁夏紫光天化蛋氨酸有限责任公司 一种蛋氨酸结晶母液后处理方法及分离设备
CN112694428B (zh) * 2020-12-24 2023-09-26 宁夏紫光天化蛋氨酸有限责任公司 一种蛋氨酸生产中油相杂质的处理方法
CN116535338B (zh) * 2023-04-25 2023-11-03 重庆渝化新材料有限责任公司 一种d,l-蛋氨酸生产过程中钾盐回收循环工艺
CN116675631B (zh) * 2023-06-07 2023-12-12 重庆渝化新材料有限责任公司 一种d,l-蛋氨酸的循环生产方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85108531A (zh) 1985-11-14 1987-05-20 西北大学 5-(β-甲硫基乙基)海因水解制备蛋氨酸的方法
CN85108505A (zh) 1985-11-14 1987-05-20 西北大学 5-(β-甲硫基乙基)海因的催化一步合成法
CN1103066A (zh) 1992-10-20 1995-05-31 底古萨股份公司 蛋氨酸或蛋氨酸衍生物的连续生产方法
US20040039228A1 (en) 2002-08-21 2004-02-26 Martin Korfer Process for the preparation of alpha-amino acids by hydrolysis of hydantoins at elevated pressure and elevated temperature
CN1589259A (zh) 2001-11-29 2005-03-02 日本曹达株式会社 蛋氨酸的制备方法
CN1923807A (zh) 2005-08-29 2007-03-07 住友化学株式会社 制备蛋氨酸的方法
CN101602700A (zh) 2008-06-09 2009-12-16 住友化学株式会社 生产蛋氨酸的方法
CN102399177A (zh) 2010-09-15 2012-04-04 李宽义 连续化合成蛋氨酸的环保清洁工艺方法
CN102796033A (zh) * 2012-09-03 2012-11-28 浙江新和成股份有限公司 一种清洁的d,l-蛋氨酸制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069251A (en) * 1969-02-08 1978-01-17 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Continuous process for the manufacture of methionine
JPS49818B1 (zh) * 1970-08-12 1974-01-10
DE19547236A1 (de) * 1995-12-18 1997-07-03 Degussa Verfahren zur Herstellung von D,L-Methionin oder dessen Salz
JP3292119B2 (ja) * 1997-11-26 2002-06-17 住友化学工業株式会社 メチオニンの製造方法
ES2365849T3 (es) * 2004-02-14 2011-10-11 Evonik Degussa Gmbh Procedimiento para producir metionina.
DE102005060316A1 (de) * 2005-12-16 2007-06-21 Kiefer, Hans, Dr. Verfahren zur Herstellung von Methionin
JP2008266298A (ja) * 2007-03-27 2008-11-06 Sumitomo Chemical Co Ltd メチオニンの製造方法
JP5307512B2 (ja) * 2008-11-07 2013-10-02 住友化学株式会社 メチオニンの製造方法
JP2010111642A (ja) * 2008-11-07 2010-05-20 Sumitomo Chemical Co Ltd メチオニンの製造方法
JP2010111640A (ja) * 2008-11-07 2010-05-20 Sumitomo Chemical Co Ltd メチオニンの製造方法
FR2938535B1 (fr) * 2008-11-20 2012-08-17 Arkema France Procede de fabrication de methylmercaptopropionaldehyde et de methionine a partir de matieres renouvelables
JP2011126794A (ja) * 2009-12-15 2011-06-30 Sumitomo Chemical Co Ltd メチオニンの製造方法
JP5524736B2 (ja) * 2010-06-29 2014-06-18 住友化学株式会社 メチオニンの製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85108531A (zh) 1985-11-14 1987-05-20 西北大学 5-(β-甲硫基乙基)海因水解制备蛋氨酸的方法
CN85108505A (zh) 1985-11-14 1987-05-20 西北大学 5-(β-甲硫基乙基)海因的催化一步合成法
CN1103066A (zh) 1992-10-20 1995-05-31 底古萨股份公司 蛋氨酸或蛋氨酸衍生物的连续生产方法
CN1589259A (zh) 2001-11-29 2005-03-02 日本曹达株式会社 蛋氨酸的制备方法
US20040039228A1 (en) 2002-08-21 2004-02-26 Martin Korfer Process for the preparation of alpha-amino acids by hydrolysis of hydantoins at elevated pressure and elevated temperature
CN1923807A (zh) 2005-08-29 2007-03-07 住友化学株式会社 制备蛋氨酸的方法
CN101602700A (zh) 2008-06-09 2009-12-16 住友化学株式会社 生产蛋氨酸的方法
CN102399177A (zh) 2010-09-15 2012-04-04 李宽义 连续化合成蛋氨酸的环保清洁工艺方法
CN102796033A (zh) * 2012-09-03 2012-11-28 浙江新和成股份有限公司 一种清洁的d,l-蛋氨酸制备方法

Also Published As

Publication number Publication date
MX362811B (es) 2019-02-13
US20150284323A1 (en) 2015-10-08
MX2015002752A (es) 2015-09-25
CN102796033A (zh) 2012-11-28
RU2015111118A (ru) 2016-10-27
JP2015526485A (ja) 2015-09-10
EP2894147A4 (en) 2016-05-25
SG11201501553PA (en) 2015-05-28
JP6026663B2 (ja) 2016-11-16
CN102796033B (zh) 2014-02-26
BR112015004487B1 (pt) 2020-04-14
EP2894147A1 (en) 2015-07-15
AU2013307993B2 (en) 2017-02-02
AU2013307993A1 (en) 2015-04-30
ZA201502259B (en) 2016-06-29
US9206120B2 (en) 2015-12-08
EP2894147B1 (en) 2018-07-18
MY191517A (en) 2022-06-28
KR101689366B1 (ko) 2016-12-26
ES2687247T3 (es) 2018-10-24
RU2604064C2 (ru) 2016-12-10
BR112015004487A2 (pt) 2017-08-08
KR20150084774A (ko) 2015-07-22

Similar Documents

Publication Publication Date Title
WO2014032401A1 (zh) 一种清洁的d,l-蛋氨酸制备方法
EP3296290B1 (en) Cyclic process for producing taurine
US9926265B1 (en) Cyclic process for producing taurine
CN1041086C (zh) 高能效的尿素生产方法
SG161197A1 (en) Process for producing methionine
US20180361315A1 (en) Method for removing carbon dioxide in acidic gas and apparatus therefor
US8388916B2 (en) Process for production of commercial quality potassium nitrate from polyhalite
CN104557721B (zh) 一种生产5,5‑二甲基海因的方法
WO2017140465A1 (en) Method for revamping a high pressure melamine plant
RU2713178C2 (ru) Способ получения меламина с разделением и выделением высокочистых CO2 и NH3
CN101544574A (zh) 连续化合成亚氨基二乙酸(盐)环保清洁工艺方法
CN106631850B (zh) 一种对羟基苯甘氨酸合成的后处理工艺
JP7128808B2 (ja) 回収二酸化炭素の精製方法、および回収二酸化炭素の精製工程を包含するメチオニンの製造方法
CN105502296A (zh) 由生产氨噻肟酸的含溴废水制备溴素的方法
ITMI20081185A1 (it) Procedimento per la produzione di melammina da urea con recupero separato ad alta purezza dei co-prodotti ammoniaca ed anidride carbonica
CN111491916B (zh) 甲硫氨酸的制造方法
CN103145538A (zh) 利用5-醛基香兰素合成邻位香兰素的方法
CN106986802B (zh) 一种合成硫代卡巴肼的方法
CN117430270A (zh) 一种氯乙酸法甘氨酸生产废水资源化利用的方法
CN105237601B (zh) 一种5-甲基尿苷的合成方法
RU2087466C1 (ru) Способ получения карбамида
CN1188108A (zh) 尿素生产方法
Hasselbach et al. Process for purifying CO 2 gas streams
CN104193661A (zh) 一种无臭的蛋氨酸的合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833235

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14425310

Country of ref document: US

Ref document number: MX/A/2015/002752

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2015528838

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201501513

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 20157007639

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015111118

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013307993

Country of ref document: AU

Date of ref document: 20130106

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015004487

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015004487

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150227