WO2014025126A1 - 나노사이즈 철인산염 입자의 제조 방법 - Google Patents

나노사이즈 철인산염 입자의 제조 방법 Download PDF

Info

Publication number
WO2014025126A1
WO2014025126A1 PCT/KR2013/004224 KR2013004224W WO2014025126A1 WO 2014025126 A1 WO2014025126 A1 WO 2014025126A1 KR 2013004224 W KR2013004224 W KR 2013004224W WO 2014025126 A1 WO2014025126 A1 WO 2014025126A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron phosphate
iron
nano
phosphate particles
particles
Prior art date
Application number
PCT/KR2013/004224
Other languages
English (en)
French (fr)
Inventor
송현아
장동규
양우영
키안 쏘웨이
쉔쯔강
짱찌요
가오링얀
Original Assignee
삼성정밀화학 주식회사
나노머티리얼즈 테크놀로지 피티이 엘티디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성정밀화학 주식회사, 나노머티리얼즈 테크놀로지 피티이 엘티디 filed Critical 삼성정밀화학 주식회사
Priority to CN201380039048.7A priority Critical patent/CN104619634A/zh
Priority to US14/419,607 priority patent/US20150203354A1/en
Priority to JP2015526458A priority patent/JP6419071B2/ja
Publication of WO2014025126A1 publication Critical patent/WO2014025126A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/375Phosphates of heavy metals of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention relates to a method for producing nanosized iron phosphate particles.
  • lithium secondary batteries with high energy density and voltage, long cycle life, and low self discharge rate It is commercially used and widely used.
  • Lithium-containing cobalt oxide (LiCoO 2 ) is mainly used as the positive electrode active material, and lithium-containing manganese oxides such as LiMnO 2 having a layered crystal structure and LiMn 2 O 4 having a spinel crystal structure, and lithium-containing nickel oxide (LiNiO 2 ) The use of is also considered.
  • LiFePO 4 has a ⁇ 3.5 V voltage and a high bulk density of 3.6 g / cm 3 compared to lithium, and has a theoretical capacity of 170 mAh / g, which is superior in high temperature stability to cobalt (Co) and uses inexpensive Fe as a raw material. Therefore, the possibility of application to a cathode active material for lithium secondary batteries is high in the future.
  • Crystalline ferrous or ferric phosphate has a similar crystal structure to olivine, which enables the synthesis of high-quality lithium iron phosphate even at low firing temperatures.
  • As a general method for synthesizing crystalline iron phosphate there is an expensive hydrothermal synthesis method or a method using a general reaction tank. When using a general reaction tank takes a long time in the crystallization step, there is a difficulty in controlling the particle size and P / Fe ratio of the product.
  • Patent Document 1 Korean Patent Publication No. 2010-0133231
  • Patent Document 2 Korean Patent Publication No. 2011-0117552
  • the present invention is to provide a method for producing nano-sized iron phosphate particles with a uniform particle size distribution.
  • the present invention is to provide a method for preparing nano-sized iron phosphate particles that are easy to control particles, easy to scale up, and low in process cost.
  • One embodiment of the invention comprises the steps of mixing the iron salt solution and the phosphate solution in the reactor to form a suspension containing amorphous or crystalline iron phosphate precipitate; And applying a shear force to the mixed solution in the reactor during the mixing step, and adjusting the shear force and the conditions in the reactor to form a suspension containing nano-sized iron phosphate precipitated particles. It may be a method for producing the iron phosphate particles.
  • This embodiment may further comprise the step of separating the iron phosphate precipitated particles from the suspension.
  • the present embodiment may further comprise the step of aging the nano-size iron phosphate precipitated particles.
  • the aging step may be performed under the conditions in which crystalline nano-sized iron phosphate precipitated particles are formed.
  • the iron salt solution may include one or more selected from the group consisting of iron acetate salt, iron halide salt, iron nitrate salt, iron sulfate salt, iron hydroxide salt, hydrates and mixtures thereof.
  • the present embodiment may further include selecting the phosphate solution as a precipitation solution.
  • the phosphate solution may comprise PO 4 3- .
  • Applying the shear force may include stirring the mixed solution with a stirrer.
  • the stirrer may include a packed bed located in a closed chamber, and the packed bed may rotate about a rotation axis.
  • the filling layer is in the form of a cylinder and may include at least one mesh layer.
  • the shear force may form a flow condition of Reynolds number 2,000 ⁇ 200,000 in the reactor.
  • the nano-size iron phosphate precipitated particles may have a narrow particle size distribution (narrow particle size distribution) less than 3.
  • the mixed solution may further include a surfactant.
  • the surfactant may include one or more selected from the group consisting of anionic surfactants, cationic surfactants, nonionic surfactants, polymer surfactants, and mixtures thereof.
  • the concentration of the surfactant may be 0.05 to 10% by weight of the mixture.
  • the mixed solution may further include a dispersant.
  • the concentration of the dispersant may be 0.05 to 10% by weight of the mixture.
  • the nano-sized iron phosphate precipitated particles may be amorphous.
  • the embodiment may further comprise the step of aging the suspension under conditions in which crystalline iron phosphate particles are formed.
  • the mixing may be performed under conditions in which precipitates containing mainly iron phosphate are formed.
  • the condition may be a condition in which the iron phosphate intermediate species is not formed.
  • the shear force application may be performed under conditions in which at least one of nanosized amorphous iron phosphate and crystalline iron phosphate particles are formed.
  • a second embodiment of the present invention comprises the steps of mixing the iron salt solution and phosphate solution under the conditions that the nano-size amorphous iron phosphate particles are formed; It may be a method for producing nano-sized crystalline iron phosphate particles, including; aging the nano-sized amorphous iron phosphate particles under the conditions that the nano-sized crystalline iron phosphate particles are formed.
  • a third embodiment of the present invention comprises the steps of mixing the iron salt solution and phosphate solution in the reactor under the conditions that the nano-size amorphous iron phosphate particles are formed; Applying a shear force to the mixed solution in the reactor during the mixing step, and adjusting the shear force and the conditions in the reactor to form nano-size amorphous iron phosphate particles; And aging the nano-size amorphous iron phosphate particles under conditions in which the nano-sized iron phosphate particles are formed.
  • the present embodiment may further include applying a shear force to the mixture containing nano-size amorphous iron phosphate particles during the aging step, and adjusting the shear force and the conditions in the mixture to form the nano-sized iron phosphate particles; have.
  • a fourth embodiment of the present invention comprises the steps of mixing the iron salt solution and phosphate solution in the reactor under the conditions that a mixture containing nano-size amorphous iron phosphate particles is formed; Applying a shear force to the mixed solution in the reactor during the mixing step, and adjusting the shear force and the conditions in the reactor to form nano-size amorphous iron phosphate particles; Separating the amorphous iron phosphate particles from the mixture containing nanosize amorphous iron phosphate particles; Aging the nanosize amorphous iron phosphate particles under conditions such that a mixture containing nanosize iron phosphate particles is formed; Applying a shear force to the mixture containing nano-size amorphous iron phosphate particles during the aging step, and adjusting the shear force and the conditions in the mixture to form the nano-sized iron phosphate particles; Separating the crystalline iron phosphate particles from the mixture containing nanosize iron phosphate particles; And drying the crystalline iron phosphate particles to form a crystalline iron phosphat
  • the iron salt solution is a group consisting of iron (III) acetate salt, iron (III) halide salt, iron (III) nitrate salt, iron (III) sulfate salt, hydrates and mixtures thereof It may include one or more selected from.
  • the formed iron phosphate precipitated particles may include ferric phosphate, and the ferric phosphate may be amorphous ferric phosphate, crystalline ferric phosphate, these It may comprise one or more selected from the group consisting of hydrates and mixtures thereof.
  • the iron salt solution is iron (II) acetate salt, iron (II) halide salt, iron (II) nitrate salt, iron (II) sulfate salt, iron (II) ) hydroxides, hydrates thereof, and mixtures thereof.
  • the formed iron phosphate precipitated particles include ferrous phosphate, and the ferrous phosphate includes amorphous ferrous phosphate, crystalline ferrous phosphate, hydrates thereof, and It may include one or more selected from the group consisting of a mixture thereof.
  • HGCP High Gravity Controlled Precipitation
  • FIG. 1 is a schematic diagram of a system for preparing iron phosphate.
  • FIG. 2 is an SEM image of amorphous iron phosphate particles prepared according to Example 1.
  • FIG. 2 is an SEM image of amorphous iron phosphate particles prepared according to Example 1.
  • Example 3 is a SEM photograph of crystalline iron phosphate particles prepared according to Example 2.
  • FIG. 5 is an XRD diffraction pattern of the iron phosphate particles prepared according to Example 2.
  • Example 6 is a SEM photograph of the iron phosphate particles prepared according to Example 7.
  • Example 7 is an XRD diffraction pattern of the iron phosphate particles prepared according to Example 7.
  • a first embodiment of the present invention includes mixing an iron salt solution and a phosphate solution in a reactor to form a suspension containing an amorphous or crystalline iron phosphate precipitate; And applying a shear force to the mixed solution in the reactor during the mixing step, and adjusting the shear force and the conditions in the reactor to form a suspension containing nanosize precipitated particles. It may be a method for producing the particles.
  • the present embodiment relates to a method for producing nano-sized iron phosphate particles
  • the nano-sized iron phosphate particles produced by the present embodiment may be amorphous or crystalline iron phosphate (iron phophate) or iron phosphate hydrate (iron phosphate hydrate) have.
  • Crystalline ferrous or ferric phosphate has a similar crystal structure to olivine, allowing high-quality synthesis of lithium iron phosphate even at low firing temperatures.
  • “nano size” means a case where the average particle size is smaller than 1000 nm, particularly, smaller than 200 nm, may be more specifically 1 ⁇ 100nm.
  • an iron salt solution and a phosphate solution can be prepared.
  • Iron salt solution means that iron salt is dissolved in the solvent, and the solvent is a water solvent, an organic solvent (eg, ethanol), a mixture of water solvent and organic solvent, or a mixture of organic solvents. It may be a mixture.
  • the anion of the iron salt solution may include one or more selected from the group consisting of halides, sulphates, nitrates, and acetate.
  • Cl - can include at least one selected from the group consisting of -, Br -, SO 4 2- , CH 3 COO -, NO 3 -, OH.
  • Iron salts may be compounds comprising at least one anion and at least one cation.
  • Iron salts within the positive and negative ions is Fe 2+, Fe 3+, Cl - ions stage (single atom ion), or CH 3 COO, such as -, NO 3 2-, SO 4 2-, OH - like compound Ions (polyatomic ions).
  • At least one of the cations in the iron salt may be Fe 3+ or Fe 2+ .
  • the iron salt is not particularly limited as long as it can be completely or partially dissolved in a selected solvent, but preferably iron acetate salt, iron halide salt, iron nitrate salt, iron sulphate salt, iron hydroxide salt, hydrates thereof and mixtures thereof Can be selected from.
  • the phosphate salt solution refers to a solution in which a solute containing PO 4 3- is dissolved in a solvent, and precipitated particles may be formed or grown when added to the iron salt solution.
  • the phosphate solution may be prepared by dissolving a solid salt comprising phosphate in a solvent, and the solvent may comprise water, an organic liquid (eg alcohol) and mixtures thereof.
  • Anions of phosphate HPO 4 2-, H 2 PO 4- or PO 4 3- may include at least one selected from the group consisting of a hydrate of the foregoing, and mixtures thereof. However, at least one of the phosphate anion in the PO 4 Can be 3- .
  • the iron salt solution and the phosphate solution may be mixed in the reactor.
  • the iron ions in the iron salt solution and the phosphate ions in the phosphate solution may react to form iron phosphate, and the precipitated iron phosphate particles may be evenly dispersed in the mixed solution to form a suspension. .
  • the mixing of the iron salt solution and the phosphate solution may be performed under conditions in which at least one of the nanosize amorphous iron phosphate particles and the crystalline iron phosphate particles is precipitated. That is, when the iron salt solution and the phosphate solution are mixed, nano-size amorphous iron phosphate particles may be precipitated, or nano-size crystalline iron phosphate particles may be precipitated, or nano-size amorphous and crystalline particles may be precipitated together.
  • the reactor refers to a region in which the iron salt solution and the phosphate solution react to form iron phosphate, which is described in detail in the molecular level mixing apparatus and the manufacturing system.
  • a shear force can be applied to the mixed solution in the reactor during the mixing step.
  • the precipitated nano-sized iron phosphate particles may have a relatively narrow particle size distribution.
  • the optical narrowness of the particle size distribution can be expressed as a steepness ratio.
  • the kurtosis ratio may be defined as the average diameter of particles corresponding to 75 mass percent divided by the average diameter of particles corresponding to 25 mass percent. If the kurtosis ratio is large, the particle size distribution curve is wider, and if the kurtosis ratio is small, the particle size distribution curve is narrower and more sharp.
  • the particle size distribution can be represented by SediGraph, which shows the cumulative mass percent by particle size. Cumulative mass percentage refers to the percentage (mass) of the portion whose particle size is equal to or less than a certain value.
  • the average particle size is the precipitated particle size at 50% of SediGraph.
  • the kurtosis ratio may be less than three. Preferably less than 2, less than 1.9, less than 1.8, less than 1.7, less than 1.6, or less than 1.5, and even less than 1.3.
  • Shear force may be generated by agitating the mixed solution in the reactor with a stirrer, the description of which will be detailed later in the relevant section. Applying shear forces can result in fluid flows with Reynolds numbers of 2,000 to 200,000, 5,000 to 150,000 or 8,000 to 100,000. This allows the materials in the reactor to be well mixed, resulting in a substantially homogeneous mixture.
  • the average particle size of the nano-size amorphous or crystalline iron phosphate precipitated particles formed according to the present embodiment may be 1 to 100 nm, preferably 1 to 20 nm, 5 to 30 nm, 5 to 50 nm, 10 to 20 nm. , 10-50 nm, 20-50 nm, 15-30 nm, 10-100 nm, 10-60 nm or 15-20 nm.
  • surfactant can be further added to the said mixed solution.
  • the surfactant can be selected from the group consisting of anionic surfactants, cationic surfactants, nonionic surfactants, polymeric surfactants, and mixtures thereof.
  • the surfactant is ammonium dodecyl-sulfate, ammonium lauryl sulfate, ammonium laurate, dioctyl sodium sulphosuccinate, TWEEN® (polyethylene sorbitan monooleate), SPAN 80® (sorbitan monooleate), SPAN 85® (sorbitan trioleate), PLURONIC® (Ethylene Oxide) / Propylene Oxide block copolymer), polyoxyethylene fatty acid esters, poly (vinylpyrrolidone), polyoxyethylene alcohol, polyethylene glycol, monodiglyceride, benzalkonium chloride, bis-2-hydroxyethyl oleyl amine, hydroxypropyl cellulose, hydroxypropyl
  • the surfactant concentration can be 0.05-10% by weight of the mixture. If the concentration of the surfactant is less than 0.05% by weight may be difficult to play a role, if the concentration is greater than 10% by weight may have a problem that can interfere with the formation of the product.
  • concentration of the surfactant is 0.05 to 5% by weight, 0.05 to 1% by weight, 0.05 to 0.5%, 0.05 to 0.1% by weight, 0.1 to 10% by weight, 0.5 to 10% by weight, 1 to 10% by weight, 5 10 wt% or 0.1-2 wt%.
  • a dispersant may be added to the mixed solution in order to suppress aggregation of the precipitated particles.
  • Dispersants may be added during the mixing step.
  • the dispersant may be an organic solvent and may be used in admixture with water.
  • Dispersants may be selected from the group consisting of imidazoline, oleyl alcohol and ammonium citrate.
  • Dispersants suitable for micro to nanosize particles are disclosed in Organic Additives And Ceramic Processing, by D. J. Shanefield, Kluwer Academic Publishing, Boston, 1996.
  • the nano-size precipitated particles are stable because they may exist in a dispersed state, and generally do not form aggregates for a considerable period of time, and the characteristics of the particles do not change over time.
  • the concentration of the dispersant may be about 0.05-10% by weight of the mixture. If the concentration of the dispersant is less than 0.05% by weight there may be a problem of aggregation of the product, if greater than 10% by weight there may be a problem that can interfere with the formation of the product.
  • gas can be injected into the reactor while applying shear force.
  • the gas may specifically be an inert gas such as oxygen, ammonia gas, air, or nitrogen.
  • an oxidizing atmosphere is required, air or oxygen can be injected, when a reducing atmosphere is required, ammonia gas can be injected, and when an inert atmosphere is required, an inert gas such as nitrogen can be injected.
  • the nano-sized iron phosphate precipitated particles may be amorphous.
  • the embodiment may further comprise the step of aging the suspension under conditions in which crystalline iron phosphate particles are formed.
  • Aging may refer to a process of maintaining the suspension of the precipitated particles under specific conditions (temperature, pressure, pH, and stirring speed) so that the precipitated particles have a substantially crystalline structure.
  • the crystalline structure of the precipitated particles can be formed by rapid nucleation or partial dissolution and recrystallization of the precipitated particles, whereby complete crystallized particles or larger precipitated particles are formed as the particles dissolved on the undissolved particles are recrystallized.
  • Chemical aging may refer to a process of adding a chemical, such as an acid or a base, to the reaction mixture during the aging process to promote the aging process.
  • the conditions under which the crystalline ferric phosphate particles are formed from the nano-sized amorphous ferric phosphate particles may include, for example, the following (1) (2) (3) processes. (1) while the suspension is constantly stirred, the temperature is gradually raised to heat the precipitated particle suspension (eg, heated at a constant rate from 25 ° C. to about 95 ° C. with constant stirring); (2) maintaining the pH of the suspension in an appropriate range (eg, about pH 3-5 or 2-4) at about 95 ° C. for about 1-5 hours; And (3) cooling the suspension to room temperature (i.e., 25 ° C).
  • the heating step (1) may change the saturation amount of the solvent, which may reinforce the recrystallization or cause Ostwald ripening phenomenon, and the precipitated particles grow or recrystallize to form particles having a crystal structure or larger Particles of size can be formed.
  • gas can be injected into the suspension during the aging step.
  • the gas may be an inert gas such as oxygen, ammonia gas, air or nitrogen.
  • air or oxygen can be injected
  • ammonia gas can be injected
  • an inert gas such as nitrogen can be injected.
  • the mixing of the iron salt solution and the phosphate solution may be performed under the conditions in which a precipitate containing iron phosphate is formed. Under these conditions, formation of intermediate iron phosphate species can be prevented.
  • Intermediate iron phosphate species may include metal hydroxide oxide compounds formed during the precipitation of iron salts and precipitation solutions. For example, when the pH value of the precipitation solution is greater than 7, the hydroxide ions (OH ⁇ ) are the iron cations (Fe 3+ , Fe 2+ ) of the iron salts (ie, iron chlorides (FeCl 3 , FeCl 2 )) in the solution. It can react immediately with it to form a precipitate.
  • Precipitates may be present in combination of hydroxides and oxides rather than a single iron hydroxide or a single iron oxide phase.
  • the intermediate species may further react to form a complete iron oxide crystal when heat is applied in the sintering or aging step, or may further form Fe 2 O 3 particles by bubbling air or oxygen.
  • it is more preferable that the intermediate species are not formed, and cations (Fe 3+ and Fe 2+ ) react directly with phosphate ions (PO 4 3- ) to form iron phosphate.
  • the shear force application may be performed under conditions in which at least one of the nanosize amorphous iron phosphate particles and the crystalline iron phosphate particles are formed.
  • This embodiment comprises the steps of (a) providing iron salt to prepare an iron salt solution; (b) providing a phosphate solution selected from the group consisting of HPO 4 2- , H 2 PO 4 - or PO 4 3- and salts containing mixtures thereof; (c) mixing the iron salt solution and the phosphate solution to form a reaction mixture, wherein the mixing is performed under conditions for forming a nanosize amorphous iron phosphate precipitated particle suspension; (d) separating the amorphous iron phosphate particles from the suspension to obtain the iron phosphate particles; (e) aging the nanosize amorphous iron phosphate particles to form nanosize crystalline iron phosphate particles; And (f) separating the crystalline iron phosphate particles from the suspension to obtain the nanosize crystalline ferric phosphate particles that are substantially free of byproducts.
  • Aging step (e) may be chemical aging involving the addition of chemicals such as acids or bases to facilitate the aging process.
  • the aging step (e) may be carried out under the conditions in which the crystalline iron phosphate particles are formed from the formed nanosized amorphous iron phosphate particles.
  • the condition may include, for example, the following process. (1) while the suspension is constantly stirred, the temperature is gradually raised to heat the precipitated particle suspension (eg, heated at a constant rate from 25 ° C. to about 95 ° C. with constant stirring); (2) maintaining the pH of the suspension in an appropriate range (eg, about pH 3-5 or 2-4) at about 95 ° C. for about 1-5 hours; And (3) cooling the suspension to room temperature (eg, 25 ° C.).
  • the solubility (saturation) of the solvent can be changed by the heating step (1), which can intensify recrystallization or cause Ostwald ripening.
  • the precipitated particles may grow or recrystallize to form particles having a crystal structure or to form particles of larger size.
  • a second embodiment of the present invention comprises the steps of mixing the iron salt solution and phosphate solution under the conditions that the nano-size amorphous iron phosphate particles are formed; It may be a method for producing nano-sized crystalline iron phosphate particles, including; aging the nano-sized amorphous iron phosphate particles under the conditions that the nano-sized crystalline iron phosphate particles are formed.
  • This embodiment is related with the manufacturing method of a nanosize crystalline iron phosphate particle.
  • composition substantially free of Y may include the case where Y is not present at all (completely).
  • the terms used in the present embodiment are the same as those described in the first embodiment.
  • a third embodiment of the present invention comprises the steps of mixing the iron salt solution and phosphate solution in the reactor under the conditions that the nano-size amorphous iron phosphate particles are formed; Applying a shear force to the mixed solution in the reactor during the mixing step, and adjusting the shear force and the conditions in the reactor to form nano-size amorphous iron phosphate particles; And aging the nano-size amorphous iron phosphate particles under conditions in which the nano-sized iron phosphate particles are formed.
  • applying the shear force to the mixture containing the nano-size amorphous iron phosphate particles during the aging step, and adjusting the shear force and the conditions in the mixture to form the nano-sized iron phosphate particles; Can be.
  • a fourth embodiment of the present invention comprises the steps of mixing the iron salt solution and phosphate solution in the reactor under the conditions that a mixture containing nano-size amorphous iron phosphate particles is formed; Applying a shear force to the mixed solution in the reactor during the mixing step, and adjusting the shear force and the conditions in the reactor to form nano-size amorphous iron phosphate particles; Separating the amorphous iron phosphate particles from the mixture containing nanosize amorphous iron phosphate particles; Aging the nanosize amorphous iron phosphate particles under conditions such that a mixture containing nanosize iron phosphate particles is formed; Applying a shear force to the mixture containing nano-size amorphous iron phosphate particles during the aging step, and adjusting the shear force and the conditions in the mixture to form the nano-sized iron phosphate particles; Separating the crystalline iron phosphate particles from the mixture containing nanosize iron phosphate particles; And drying the crystalline iron phosphate particles to form crystalline iron phosphate powder
  • the reaction mixture may be a solution including a mixture of an iron salt solution and a phosphate solution, may react to form precipitated particles, or may react to form precipitated particles.
  • Isolating or isolation may refer to a process associated with removing precipitated particles from the reaction medium. For example, there may be filtration, centrifugation, spray drying, lyophilization or other known methods for removing solids from other liquids.
  • separation does not necessarily mean that the precipitated particles are completely removed from the reaction medium.
  • separation may include the case where the reaction medium is completely removed from the particles.
  • the iron salt solution is selected from the group consisting of iron (III) acetate salt, iron (III) halide salt, iron (III) nitrate salt, iron (III) sulfate salt, hydrates and mixtures thereof It may include one or more.
  • the formed iron phosphate precipitated particles may include ferric phosphate, which is selected from the group consisting of amorphous ferric phosphate, crystalline ferric phosphate, hydrates thereof, and mixtures thereof. It may include one or more.
  • the iron salt solution comprises iron (II) acetate salt, iron (II) halide salt, iron (II) nitrate salt, iron (II) sulfate salt, iron (II) hydroxide, hydrates thereof and It may include one or more selected from the group consisting of a mixture.
  • the formed iron phosphate precipitated particles may include ferrous phosphate, wherein the ferrous phosphate is selected from the group consisting of amorphous ferrous phosphate, crystalline ferrous phosphate, hydrates thereof, and mixtures thereof. It may include one or more.
  • the reactor may be located in a closed chamber of the molecular level mixer.
  • the molecular level mixing device may include an agitator in a closed chamber.
  • the molecular level mixing device may include at least two fluid inlets for introducing fluid into the enclosed chamber and optionally further include one outlet for removing suspended precipitate from the chamber.
  • a stirrer can be used to impart high shear forces to the reaction mixture and the solutions can be mixed appropriately and uniformly within a very short time (less than 10 s, preferably less than 1 s, more preferably less than 10 ms), Precipitates can be prepared.
  • the reaction mixture may be a solution including a mixture of an iron salt solution and a phosphate solution, may react to form precipitated particles, or may react to form precipitated particles.
  • the molecular level mixing device can be operated in turbulent conditions.
  • the two solutions can mix faster due to turbulence.
  • d is the diameter of the pipe (or distributor) for supplying the reaction solution to the molecular level mixer
  • u is the flow rate of the liquid
  • is the density of the liquid
  • is the viscosity of the liquid
  • the flow rate is determined by the flux. Pressure is required to maintain the blowout flux.
  • the diameter, flux, pressure and Reynolds number of the pipe are the parameters associated with each other.
  • the blowing flux is preferably 0.1-3000 m 3 / hr, more preferably 0.1-800 m 3 / hr.
  • the ejection pressure is preferably 30-3000 kg / cm 2 , more preferably 50-1000 kg / cm 2 .
  • Reynolds number Re of the jet stream is preferably 2,000-200,000, more preferably 8,000-100,000.
  • Molecular-level chemical homogeneity in the reactor can be achieved in a very short time, preventing formation of large intermediate aggregates and formation of intermediate species such as iron hydroxide, hydrous ferric oxides and ferrous oxides or amorphous ferric oxyhydroxide during iron phosphate synthesis. Due to this, the precipitate may consist mainly of iron phosphate.
  • the stirrer may include a rotor-stator located in a closed chamber.
  • the rotor can rotate about the axis of rotation to impart high shear forces to the reaction mixture.
  • Stirrers comprising a rotor-stator located in a closed chamber are disclosed in US Pat. No. 6,458,335.
  • the stirrer may comprise a packed bed located in a closed chamber.
  • the packed bed can rotate about an axis of rotation to impart shear forces to the mixture.
  • the packed bed may have a surface area of 100-3000 m 2 / m 3 .
  • the filling layer may or may not have a constant structure.
  • the packed layer may be a wire mesh type made of a relatively inert material such as stainless steel, ordinary metal alloy, titanium metal or plastic.
  • the fill layer is substantially in the form of a cylinder and may include at least one mesh layer.
  • the filling layer may comprise a plurality of overlapping mesh layers. Shear means may be used to apply shear force to the mixed solution.
  • the shearing means may be in the form of a cylinder shaped scroll mesh, and the cylinder shaped portion may have sides formed by a plurality of overlapping mesh layers.
  • the mesh size may be 0.05-3 mm or 0.1-0.5 mm.
  • Mesh porosity can be at least 90% or 95%.
  • the packed bed is mounted to a shaft in the reactor and can rotate in the reactor. As the packed bed rotates, the packed bed can exert a high shear force on the injected liquid.
  • the rotating packed layer may have a cylindrical shape.
  • the high gravity level can be adjusted by the following equation:
  • N is the rotation speed (rpm) of the stirrer
  • d in is the inner diameter of the stirrer
  • d out is the outer diameter
  • High gravity levels can be between 100 and 15,000 m / s 2 , 500 and 2,000 m / s 2 , 1,000 and 5,000 m / s 2, or 800 and 5000 m / s 2 . Due to the use of a strong high gravity level stirrer, the liquids in the reactor can be subjected to strong shear forces as soon as they are injected into the reactor.
  • the iron salt solution and the phosphate solution may be injected into the void formed by the vortex as the stirrer rotates in the reactor.
  • the liquids are injected directly onto the stirrer and the injection speed can be at least 1 m / s, at least 2 m / s, at least 3 m / s, at least 4 m / s or at least 5 m / s.
  • Vortex should be interpreted broadly to include the spiral motion of the reaction mixture in the reactor. Spiral motion of the reaction mixture tends to move the reaction mixture to its center. The generation of vortices may depend on the rate of stirring in the chamber, the viscosity of the reaction mixture, the shape and dimensions of the chamber.
  • the reactor can be defined by the chamber, the shape and dimensions of the chamber.
  • Mathematical models for vortex formation of incompressible fluids are already known. For example, Transport Phenomena, Bird et al, Chapter 3, John Wiley & Sons, 1960, describes a general discussion of the vortex fluid flow, especially on pages 108-111 for predictions of vortex depth in stirred tanks. A mathematical model is disclosed. Whirlpools in stirred tanks are described in Memoirs of the Faculty of Engineering, Kyoto University, Vol. XVII, No. III, July 1955 by S Nagata et al. Experimentally in the literature.
  • the iron salt solution and the phosphate solution can be injected into the reactor through a plurality of inlets extending through the reaction chamber surrounding the reactor.
  • the inlets may be arranged in various ways depending on the structure of the molecular level mixing device.
  • the inlet may be located in the dispenser.
  • the distributor may distribute the iron salt solution and the phosphate solution into the void space formed by the vortex in the reactor.
  • the distributor may include a body having a plurality of inlets for each of the iron salt solution and the phosphate solution.
  • the iron salt solution and the phosphate solution may be ejected alternately from the holes in the distributor.
  • the inlet is preferably projected to the inner edge of the stirrer where the shear force is generated.
  • the iron salt solution and the phosphate solution may each be injected into the reactor through separate inlets.
  • the mixer may include at least one liquid outlet for withdrawing the mixture from the reactor.
  • FIG. 1 shows a system 10 for producing nanosized iron phosphate precipitated particles.
  • the system may include a molecular level mixing device 100.
  • the molecular level mixing apparatus 100 may include a chamber 101 surrounding the enclosed space, and may define the enclosed space as a reactor 101A in which a reaction between the iron salt solution and the phosphate solution occurs.
  • Chamber 101 may include an agitator in the form of a packed bed 102.
  • the packed bed 102 may impart shear forces to the reaction mixture in the reactor 101A.
  • the packed bed 102 may include a distributor 103 having two liquid inlets 104a and 104b for supplying the iron salt solution and the phosphate solution to the reactor 101A, respectively.
  • the filling layer 102 may be mounted to a rotating shaft 105 located on the axis of rotation represented by line 130. Filling layer 102 may be mounted close to the length of dispenser 103.
  • the packed bed 102 can be driven by the motor 106 through the gear and pulley system 106A. Indeed, the motor 106 may rotate the shaft 105 about the axis of rotation 130.
  • the packed bed 102 is connected to the distributor 103 so that the fluid can move.
  • Dispenser 103 can include a body having a flow path through which liquid can be transferred onto packed layer 102.
  • the distributor 103 is connected to the inflow flow paths 104a and 104b so that the fluid can move, and each of the inflow flow paths 104a and 104b moves the fluid to the iron salt solution supply tank 113 and the phosphate solution supply tank 118. Is connected.
  • the molecular level mixing device 100 may include an outlet flow path 107 for removing the suspension containing the precipitated particles from the chamber 101.
  • the material of the molecular level mixing device may be titanium and its alloys.
  • the filling layer 102 may be substantially cylindrical in shape, may be arranged in a specific structure, and may include a plurality of wire mesh layers having a mesh size of 0.05 mm. Wire mesh can also be made of titanium.
  • Thermal insulation jacket 108 may surround the chamber 101 to adjust the temperature of the reactor (101A).
  • Thermal insulation jacket 108 may include a jacket inlet 109 for the inlet of heated fluid and a jacket outlet 110 to allow fluid to flow out of the jacket 108.
  • the inflow passage 104a may be connected to the iron salt solution tank 113 in which the iron salt solution is stored by the pipe 111 and the valve 112.
  • the thermal insulation jacket 114 may surround the tank 113 and adjust the temperature of the iron salt solution in the tank 113.
  • the pump 115 disposed along the pipe 111 may pump the iron salt solution from the storage tank 113 to the reactor 101A of the molecular level mixing device 100.
  • the inflow passage 104b may be connected to the phosphate solution supply tank 118 in which the phosphate solution is stored by the pipe 116 and the valve 117.
  • the thermal insulation jacket 119 may surround the tank 118 and adjust the temperature in the tank 118.
  • a pump 120 may be disposed along the pipe 116 to supply the phosphate solution from the storage tank 118 to the reactor 101A of the molecular level mixing device 100.
  • a pair of wander gauges 121 and 122 may be disposed along the pipes 111 and 116 to adjust the flow rates of the iron salt solution and the phosphate solution into the inflow passages 104a and 104b, respectively.
  • the outer shell of the molecular level mixer of FIG. 1 may include a gas zone 131A above reactor 101A, which may contain an inert gas such as nitrogen, air or concentrated oxygen.
  • the gas zone 131A may be formed by pumping gas into the chamber 101 through the gas inlet 131, and the gas may be removed through the gas outlet 132.
  • gas zone 131A may be filled with nitrogen. If it is desirable to contact the reactor 101A with oxygen, the gas zone 131A can be filled with air or concentrated oxygen, thereby improving gas-liquid mass transfer. For this reason, the gas zone 131A can function as a barrier to block the reactor 101A from oxygen, and can also function as a gas purge for contacting air or oxygen with the reaction mixture.
  • the distributor 103 ejects the iron salt solution and the phosphate solution from the liquid inlets 104a and 104b to the inner side of the packed bed, and the iron salt solution and the phosphate solution are mixed and reacted in the packed bed 102 and the chamber 101. Mixtures may be formed. The mixture may move through the packed bed 102 in the radial direction to the outer surface of the packed bed.
  • a high shear force in the form of centrifugal force can be applied to the mixture because the shaft 105 and the packed bed 102 rotate about the rotation axis 130.
  • the mixture in the packed bed 102 spreads or splits under a high gravity field formed by centrifugal force to form a very fine droplet of droplets or a thin film of micrometers to nanometers so that mass transfer between the iron salt solution and the phosphate solution ) And heat transfer can be actively performed. It can also cause intense micro-mixing between the iron salt and phosphate solutions to form a highly homogeneous-saturated solution in a very short time (less than 10 ms). Depending on the phosphate solution used, precipitates of nanosized iron phosphate compounds can be formed in this process.
  • the magnitude of the centrifugal force acting on the mixture in the packed bed 102 may vary depending on the rotational speed of the shaft 105 and the packed bed 102. The higher the rotational speed of the shaft 105 and the packed bed 102, the greater the level of high gravity or shear force acting on the mixture.
  • Nanosized iron phosphate particles suspended in the mixture may be removed from the chamber 101 through the product outlet 107. Suspension of the nanosized iron phosphate particles may be collected in the product tank 140.
  • the product tank 140 may include a gas blanket 140B on top of the slurry in which the precipitated particles are suspended.
  • the gas barrier 140B may be formed by the gas distributor 143 connected by the gas inlet 142 and the gas outlet 144 at the bottom of the tank. It is possible to enhance the oxidation reaction of the precipitate by isolating it from the environment or by enhancing gas-liquid mass transfer.
  • the temperature of the precipitate slurry suspension may be gradually increased to a specific temperature through the thermal insulation jacket 141.
  • the suspension can also be stirred continuously via a stirrer.
  • the suspension can be neutralized with acid or base and maintained at a set pH value.
  • the precipitate suspension may then be separated and washed to obtain nanosized iron phosphate particles.
  • Particle size of iron phosphate was measured using Hitachi S-4200 FE-SEM (15kV). Iron phosphate was ground to a fine powder, loaded on a carbon tape, and gold thin film sputtered to prepare a scanning electron microscope specimen. Particle size measurements were performed using scanning electron microscope (SEM) and ImageJ software at 80,000-150,000 magnification. Particle size distribution was performed using Microsoft Excel software based on particle size measurement data of ImageJ.
  • the crystal structure was confirmed by CuK ⁇ X-ray diffraction (Shimadzu XRD-6000 Powder Diffractometer). Powders prepared by drying the iron phosphate suspension in an oven at 70 ° C. were pressed into an aluminum plate to prepare an analytical sample.
  • iron phosphate particles were prepared using the system 10 of FIG. 1.
  • Iron chloride FeCl 3
  • a 2.52 L iron chloride solution having a concentration of 0.32 mol / L was filtered and stored in the iron salt tank 113.
  • Diammonium phosphate ((NH 4 ) 2 HPO 4 ) was dissolved in distilled water, and 2.52 liters of a diammonium phosphate ((NH 4 ) 2 HPO 4 ) solution having a concentration of 0.32 mol / L was filtered and stored in the tank 118.
  • the ferric chloride solution and the diammonium phosphate ((NH 4 ) 2 HPO 4 ) solution were simultaneously pumped into the reactor 101A of the molecular level mixer through a distributor 103 at a flow rate of 0.4 l / min.
  • the reaction was kept at room temperature (25 ° C.) during the mixing and reaction steps.
  • the high gravity level of the packed bed 102 was 1579 m / s 2
  • the injection speed of the two solutions was set to 5 m / s.
  • the residence time in the molecular level mixing apparatus 100 was 20 s.
  • the suspension suspended in yellow precipitate was collected in the product tank 104, and ammonium hydroxide solution (5.82 wt%) was added and stirred for 15 minutes under atmospheric conditions.
  • amorphous iron (ferric) phosphate nanoparticles According to the XRD pattern of the sample prepared according to the present example and the SEM analysis result of FIG. 2 , the amorphous spherical ferric phosphate nanoparticles, the average particle size is 15 nm, and the kurtosis ratio are 1.42.
  • the amorphous ferric phosphate particles were dispersed in water to prepare an amorphous ferric phosphate suspension having a pH of 3.7.
  • the temperature of the slurry suspension in tank 140 was changed from 25 ° C to 95 ° C.
  • the pH value was maintained at 2.41 by addition of phosphoric acid (H 3 PO 4 ) with a concentration of 85%. While the temperature was changed, the tank 140 was vigorously stirred to promote heat transfer and prevent precipitation of particles. After 90 minutes of treatment at 95 ° C., the yellow suspension turned the tank 140 into a pink-white color. Pink-white iron phosphate particles were centrifuged and washed so that the pH value of the supernatant was 3.27.
  • FIG. 3 shows a SEM picture of the iron phosphate particles prepared according to this embodiment, it can be seen that the uniform nanoparticles.
  • Figure 4 shows the particle size distribution for the iron phosphate particles prepared by the present embodiment, it can be seen that the kurtosis ratio (steepness ratio) (D75 / D25) is consistent with the point that 1.35.
  • Figure 5 shows the XRD pattern of the nano-sized iron phosphate particles prepared according to the present embodiment, from which it can be confirmed that the agreement with the literature data showing the meta-strengite I phase (meta-strengite I) .
  • Ferric phosphate particles were prepared in the same manner as in Example 2, except that 6.36 g of phosphoric acid (H 3 PO 4 ) having a concentration of 85% was added to the yellow suspension and heat-treated at 80 ° C. for 90 minutes. Prepared. The obtained ferric phosphate particles had an average particle size of 28.7 nm and a kurtosis ratio of 1.47. According to the XRD diffraction pattern, it can be confirmed that ferric phosphate was formed by crystallization on meta-strengite I.
  • Crystalline iron except that 75 mL of a 75 mL phosphoric acid (H 3 PO 4 ) solution with a concentration of 3 wt% and 7.7 g of ammonium hydroxide solution (25 wt% as NH 3 ) were premixed, filtered and stored in the tank 118.
  • (ferric) phosphate particles were prepared by the same method as in Example 1.
  • Ferric phosphate particles have an average particle size of 38.7 nm and a kurtosis ratio of 1.42.
  • the XRD diffraction pattern shows that ferric phosphate is formed by crystallization on meta-strengite I.
  • the crystalline ferric phosphate particles were the same as in Example 1, except that a mixed solution of pH 9.87 was prepared by bubbling ammonia gas into 75 ml of a 75 ml phosphoric acid (H 3 PO 4 ) solution having a concentration of 3 wt%. It was prepared by the method. The mixed solution was previously filtered and stored in tank 118. Ferric phosphate particles have an average particle size of 35.9 nm and a steepness ratio of 1.46. According to the XRD diffraction pattern, it can be confirmed that ferric phosphate was formed by crystallization on meta-strengite I.
  • the high gravity level of the packed bed 102 was 1579 m / s 2 and the residence time in the molecular mixing unit 100 was 20 seconds.
  • the reactor temperature was set at 70 ° C., followed by further operation for 15 minutes.
  • the resulting reaction slurry was washed three times using a reduced pressure filter.
  • the washed cake was dried in a 90 ° C. oven to synthesize iron (II) phosphate.
  • Figure 6 shows a SEM picture of the iron (II) phosphatesized according to the present embodiment, it can be seen that the uniform nanoparticles.
  • Figure 7 shows the XRD diffraction pattern for the iron (II) phosphatesized according to this embodiment. Referring to FIG. 7, it can be confirmed that ferrous phosphate was formed by crystallization on vivianite.
  • aqueous iron sulfate (FeSO 4 ⁇ 7H 2 O) solution was added to an iron salt tank 113, and a diammonium phosphate ((NH 4 ) 2 HPO 4 ) aqueous solution was added to the tank 118, followed by stirring.
  • the ratio of the solid content to the solvent was 20%.
  • the above solution was injected into the reactor 101A, which is simultaneously injecting nitrogen gas at 5 L / min, at a pump speed of 0.4 L / min and at an injection speed of 5 m / s.
  • the tank and reactor temperatures were at room temperature (25 ° C). .
  • the high gravity level of the packed bed 102 was 1579 m / s 2 and the residence time in the molecular mixing unit 100 was 20 seconds.
  • 5 mL of 10 wt% sodium hydroxide (NaOH) aqueous solution was added to make the pH more than 7.
  • the reactor temperature was set at 70 ° C., followed by further operation for 15 minutes.
  • the resulting reaction slurry was washed three times using a reduced pressure filter.
  • the washed cake was dried in a 90 ° C. oven to synthesize iron (II) phosphate. According to the XRD diffraction pattern, it can be confirmed that ferrous phosphate was formed by crystallization on vivianite.
  • the above solution was injected into the reactor 101A, which is simultaneously injecting nitrogen gas at 5 L / min, at a pump speed of 0.4 L / min and an injection rate of 5 m / s.
  • the tank and reactor temperatures were room temperature (25 ° C). .
  • the high gravity level of the packed bed 102 was 1579 m / s 2 and the residence time in the molecular mixing unit 100 was 20 seconds.
  • a saturated ammonium hydroxide (NH 4 OH) aqueous solution was added to pH 6.5.
  • the reactor temperature was set at 70 ° C., followed by further operation for 15 minutes.
  • the resulting reaction slurry was washed three times using a reduced pressure filter.
  • the washed cake was dried in a 90 ° C. oven to synthesize iron (II) phosphate. According to the XRD diffraction pattern, it can be confirmed that ferrous phosphate was formed by crystallization on vivianite.

Abstract

본 발명은 나노사이즈 철인산염 입자의 제조 방법에 관한 것이다. 본 발명은 비정질 또는 결정질 철인산염 석출물을 함유하는 서스펜션을 만들기 위하여 철염 용액과 인산염 용액을 반응기에서 혼합하는 단계; 및 상기 혼합 단계 동안 상기 반응기 내의 상기 혼합용액에 전단력을 가하는 단계;를 포함하고, 상기 전단력 및 상기 반응기 내의 조건에 의하여 나노사이즈 철인산염 석출 입자를 함유하는 서스펜션이 형성되는 것을 특징으로 한다. 본 발명에 의하면 Nucleation 보다 micro-mixing이 더 빨리 이루어지게 함으로써 나노입자의 제조에 유리하며 입도 분포가 균일한 입자를 제조할 수 있다.

Description

나노사이즈 철인산염 입자의 제조 방법
본 발명은 나노사이즈 철인산염 입자의 제조 방법에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 전압을 가지고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
양극 활물질로는 주로 리튬 함유 코발트 산화물(LiCoO2)이 사용되고 있고, 그 외에 층상 결정구조의 LiMnO2, 스피넬 결정구조의 LiMn2O4등의 리튬 함유 망간 산화물과, 리튬함유 니켈 산화물(LiNiO2)의 사용도 고려되고 있다.
이에, 최근 리튬 전이금속 인산화물을 양극 활물질로서 이용하는 방법이 연구되고 있다. 특히 LiFePO4는 리튬 대비 ~3.5V 전압과 3.6 g/cm3의 높은 용적 밀도를 갖고, 이론용량 170 mAh/g의 물질로서, 코발트(Co)에 비해서 고온 안정성이 우수하고 저가의 Fe를 원료로 하기 때문에, 향후 리튬 이차전지용 양극 활물질로의 적용 가능성이 높다.
결정질 철(Ⅱ or Ⅲ)인산염(crystalline ferrous or ferric phosphate)은 올리빈과 결정구조가 비슷하여 낮은 소성 온도에서도 고품질의 리튬철인산염(lithium iron phosphate) 합성이 가능하다. 결정질 철인산염을 합성하는 일반적인 방법에는 고가의 수열합성법이나 일반 반응조를 이용하는 방법이 있다. 일반 반응조를 이용하는 경우 결정화 단계에서 장시간이 소요되고, 생성물의 입자 크기 및 P/Fe 비율을 조절하는데 어려움이 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 1. 한국공개특허 제2010-0133231호
(특허문헌 2) 2. 한국공개특허 제2011-0117552호
본 발명은 입도 분포가 균일한 나노사이즈 철인산염 입자를 제조하는 방법을 제공하고자 한다.
또한, 입자 제어가 용이하고, 스케일 업이 쉬우며, 공정 비용이 저렴한 나노사이즈 철인산염 입자의 제조 방법을 제공하고자 한다.
본 발명의 일 실시 형태는 비정질 또는 결정질 철인산염 석출물을 함유하는 서스펜션을 형성하기 위하여 철염 용액과 인산염 용액을 반응기에서 혼합하는 단계; 및 상기 혼합 단계 중 상기 반응기 내의 혼합용액에 전단력을 인가하는 단계;를 포함하고, 상기 전단력 및 상기 반응기 내 조건을 조절하여 나노사이즈 철인산염 석출입자를 함유하는 서스펜션을 형성하는 것을 특징으로 하는 나노사이즈 철인산염 입자의 제조방법일 수 있다.
본 실시 형태는 상기 서스펜션으로부터 철인산염 석출입자를 분리하는 단계를 더 포함할 수 있다.
본 실시 형태는 상기 나노사이즈 철인산염 석출입자를 에이징하는 단계를 더 포함할 수 있다.
상기 에이징 단계는 결정질 나노사이즈 철인산염 석출입자가 형성되는 조건 하에서 수행될 수 있다.
상기 철염 용액은 iron acetate salt, iron halide salt, iron nitrate salt, iron sulfate salt, iron hydroxide salt, 이들의 수화물 및 혼합물로 이루어진 그룹에서 선택된 1종 이상을 포함할 수 있다.
본 실시 형태는 석출용액으로서 상기 인산염 용액을 선택하는 단계를 더 포함할 수 있다.
상기 인산염 용액은 PO4 3- 을 포함할 수 있다.
상기 전단력을 인가하는 단계는 상기 혼합용액을 교반기로 교반하는 단계를 포함할 수 있다.
상기 교반기는 밀폐된 쳄버 내에 위치하는 충전층을 포함하고, 상기 충전층은 회전축을 중심으로 회전할 수 있다.
상기 충전층은 실린더 형태이고, 최소한 하나의 메쉬층을 포함할 수 있다.
상기 전단력에 의하여 상기 반응기 내에 레이놀즈 넘버(Reynolds number) 2,000~200,000의 흐름 조건이 형성될 수 있다.
상기 나노사이즈 철인산염 석출입자는 첨도가 3보다 작은 폭이 좁은 입자사이즈분포(narrow particle size distribution)를 가질 수 있다.
상기 혼합용액은 계면활성제를 더 포함할 수 있다.
상기 계면활성제는 음이온 계면활성제, 양이온 계면활성제, 비이온 계면활성제, 폴리머 계면활성제 및 이들의 혼합물로 이루어진 그룹에서 선택된 1종 이상을 포함할 수 있다.
상기 계면활성제의 농도는 혼합물의 0.05~10중량%일 수 있다.
상기 혼합용액은 분산제를 더 포함할 수 있다.
상기 분산제의 농도는 혼합물의 0.05~10중량%일 수 있다.
상기 나노사이즈 철인산염 석출입자는 비정질일 수 있다.
본 실시 형태는 결정질 철인산염 입자가 형성되는 조건 하에서 상기 서스펜션을 에이징하는 단계를 더 포함할 수 있다.
상기 혼합은 철인산염을 주로 함유하는 석출물이 형성되는 조건 하에서 이루어질 수 있다.
상기 조건은 철인산염 중간종이 형성되지 않는 조건일 수 있다.
상기 전단력 인가는 나노사이즈 비정질 철인산염 및 결정질 철인산염 입자 중 최소한 하나가 형성되는 조건 하에서 수행될 수 있다.
본 발명의 제2 실시 형태는 나노사이즈 비정질 철인산염 입자가 형성되는 조건 하에서 철염 용액 및 인산염 용액을 혼합하는 단계; 실질적으로 나노사이즈 결정질 철인산염 입자가 형성되는 조건 하에서 상기 나노사이즈 비정질 철인산염 입자를 에이징 하는 단계;를 포함하는 나노사이즈 결정질 철인산염 입자의 제조방법일 수 있다.
본 발명의 제3 실시 형태는 나노사이즈 비정질 철인산염 입자가 형성되는 조건 하에서 반응기 내의 철염 용액 및 인산염 용액을 혼합하는 단계; 상기 혼합단계 중 상기 반응기 내의 상기 혼합용액에 전단력을 인가하고, 상기 전단력 및 상기 반응기 내 조건을 조절하여 나노사이즈 비정질 철인산염 입자를 형성시키는 단계; 및 나노사이즈 철인산염 입자가 형성되는 조건 하에서 상기 나노사이즈 비정질 철인산염 입자를 에이징하는 단계;를 포함하는 나노사이즈 결정질 철인산염 입자의 제조방법일 수 있다.
본 실시 형태는 상기 에이징 단계 중 나노사이즈 비정질 철인산염 입자를 함유하는 혼합물에 전단력을 인가하고, 상기 전단력 및 상기 혼합물 내 조건을 조절하여 상기 나노사이즈 철인산염 입자를 형성시키는 단계;를 더 포함할 수 있다.
본 발명의 제4 실시 형태는 나노사이즈 비정질 철인산염 입자를 함유하는 혼합물이 형성되는 조건 하에서 반응기 내의 철염 용액 및 인산염 용액을 혼합하는 단계; 상기 혼합단계 중 상기 반응기 내의 상기 혼합용액에 전단력을 인가하고, 상기 전단력 및 상기 반응기 내 조건을 조절하여 나노사이즈 비정질 철인산염 입자를 형성시키는 단계; 나노사이즈 비정질 철인산염 입자를 함유하는 혼합물로부터 비정질 철인산염 입자를 분리하는 단계; 나노사이즈 철인산염 입자를 함유하는 혼합물이 형성되는 조건 하에서 상기 나노사이즈 비정질 철인산염 입자를 에이징 하는 단계; 상기 에이징 단계 중 나노사이즈 비정질 철인산염 입자를 함유하는 혼합물에 전단력을 인가하고, 상기 전단력 및 상기 혼합물 내 조건을 조절하여 상기 나노사이즈 철인산염 입자를 형성시키는 단계; 나노사이즈 철인산염 입자를 함유하는 혼합물로부터 결정질 철인산염 입자를 분리하는 단계; 및 결정질 철인산염 분말을 형성하기 위하여 결정질 철인산염 입자를 건조하는 단계;를 포함하는 나노사이즈 결정질 철인산염 입자의 제조 방법일 수 있다,
제1 내지 제4 실시 형태에 있어서, 상기 철염 용액은 iron(Ⅲ) acetate salt, iron(Ⅲ) halide salt, iron(Ⅲ) nitrate salt, iron(Ⅲ) sulfate salt, 이들의 수화물 및 혼합물로 이루어진 그룹으로부터 선택된 1종 이상을 포함할 수 있다.
제1 내지 제4 실시 형태에 있어서, 상기 형성된 철인산염 석출입자는 철(ferric) 인산염을 포함할 수 있고, 상기 철(ferric) 인산염은 비정질 철(ferric) 인산염, 결정질 철(ferric) 인산염, 이들의 수화물 및 이들의 혼합물로 이루어진 그룹에서 선택된 1종 이상을 포함할 수 있다.
제1 내지 제4 실시 형태에 있어서 상기 실시 형태에 있어서, 상기 철염 용액은 iron(Ⅱ) acetate salt, iron(Ⅱ) halide salt, iron(Ⅱ) nitrate salt, iron(Ⅱ) sulfate salt, iron (Ⅱ) hydroxide, 이들의 수화물 및 혼합물로 이루어진 그룹에서 선택된 1종 이상을 포함할 수 있다.
제1 내지 제4 실시 형태에 있어서 상기 형성된 철인산염 석출입자는 철(ferrous) 인산염을 포함하고, 상기 철(ferrous) 인산염은 비정질 철(ferrous) 인산염, 결정질 철(ferrous) 인산염, 이들의 수화물 및 이들의 혼합물로 이루어진 그룹에서 선택된 1종 이상을 포함할 수 있다.
HGCP(High Gravity Controlled Precipitation)을 이용한 합성은 회전하는 충전층을 통과하는 원료가 분자레벨로 혼합되어 순간적으로 반응이 일어난다. Nucleation 보다 micro-mixing이 더 빨리 이루어지게 함으로써 나노입자의 제조에 유리하며 입도 분포가 균일하게 제조할 수 있다. 이 합성법은 bottom up approach로 입자 제어가 용이하고, 스케일 업이 쉬우며, 공정 비용이 저렴하다는 장점이 있다.
도 1은 철인산염의 제조 시스템에 대한 개략도이다.
도 2는 실시예 1에 따라 제조된 비정질 철인산염 입자의 SEM 사진이다.
도 3는 실시예 2에 따라 제조된 결정질 철인산염 입자의 SEM 사진이다.
도 4는 실시예 2에 따라 제조된 철인산염 입자의 주 입자사이즈분포이다.
도 5는 실시예 2에 따라 제조된 철인산염 입자의 XRD 회절 패턴이다.
도 6는 실시예 7에 따라 제조된 철인산염 입자의 SEM 사진이다.
도 7은 실시예 7에 따라 제조된 철인산염 입자의 XRD 회절 패턴이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태들을 설명한다. 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시 형태는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있으며, 도면상의 동일한 부호로 표시되는 요소는 동일한 요소이다.
본 발명의 제1 실시 형태는 비정질 또는 결정질 철인산염 석출물을 함유하는 서스펜션을 형성하기 위하여 철염 용액과 인산염 용액을 반응기에서 혼합하는 단계; 및 상기 혼합 단계 동안 상기 반응기 내의 상기 혼합용액에 전단력을 가하는 단계;를 포함하고, 상기 전단력 및 상기 반응기 내의 조건을 조절하여 나노사이즈 석출입자를 함유하는 서스펜션을 형성하는 것을 특징으로 하는 나노사이즈 철인산염 입자의 제조 방법일 수 있다.
본 실시 형태는 나노사이즈 철인산염 입자의 제조방법에 관한 것으로, 본 실시 형태에 의하여 제조된 나노사이즈 철인산염 입자는 비정질 또는 결정질 철인산염(iron phophate)이거나 또는 철인산염 수화물(iron phosphate hydrate)일 수 있다. 결정질 철인산염(crystalline ferrous or ferric phosphate)은 올리빈과 결정구조가 비슷하여 낮은 소성 온도에서도 고품질의 리튬철인산염(lithium iron phosphate) 합성이 가능하다. 여기서 “나노사이즈”는 평균 입자 사이즈가 1000nm 보다 작은 경우를 의미하고, 특별하게는 200nm 보다 작은 경우, 더욱 특별하게는 1~100nm 인 경우일 수 있다.
먼저, 철염 용액 및 인산염 용액을 마련할 수 있다.
철염 용액(iron salt solution)은 철염(iron salt)이 용매에 용해되어 있는 것을 의미하며, 용매는 물 용매, 유기 용매(예를 들면, 에탄올), 물 용매 및 유기 용매의 혼합물, 또는 유기 용매들의 혼합물일 수 있다. 철염 용액의 음이온은 halides, sulphates, nitrates, 및 acetate 으로 이루어진 그룹에서 선택된 1종 이상을 포함할 수 있다. 이에 제한되는 것은 아니나 구체적인 예로서 음이온은 Cl-, Br-, SO4 2-, CH3COO-, NO3 -, OH- 로 이루어진 그룹에서 선택된 1종 이상을 포함할 수 있다.
철염(iron salt)은 최소 하나의 음이온 및 최소 하나의 양이온을 포함하는 화합물일 수 있다. 철염(iron salt) 내 양이온 및 음이온은 Fe2+, Fe3+, Cl- 같은 단 이온(단원자 이온)이거나, 또는 CH3COO-, NO3 2-, SO4 2-, OH- 같은 복합 이온(다원자 이온)일 수 있다. 철염(iron salt) 내 양이온 중 최소한 하나는 Fe3+ 또는 Fe2+ 일 수 있다. 철염은 선택된 용매에 완전하게 또는 부분적으로 용해될 수 있는 것이면 특별한 제한은 없으나, 바람직하게는 iron acetate salt, iron halide salt, iron nitrate salt, iron sulphate salt, iron hydroxide salt, 이들의 수화물 및 이들의 혼합물에서 선택될 수 있다.
인산염 용액(phosphate salt solution)은 PO4 3- 를 함유하는 용질이 용매에 용해되어 있는 용액을 의미하며, 철염 용액에 첨가되면 석출입자가 형성되거나 또는 성장할 수 있다. 인산염 용액은 인산염을 포함하는 고체염을 용매에 용해시켜 제조할 수 있으며, 용매는 물, 유기 액체(예를 들어, 알콜) 및 이들의 혼합물을 포함할 수 있다. 인산염의 음이온은 HPO4 2-, H2PO4- 또는 PO4 3-, 이들의 수화물 및 이들의 혼합물로 이루어진 그룹에서 선택된 1종 이상을 포함할 수 있으나, 인산염 내 음이온 중 최소한 하나는 PO4 3- 일 수 있다.
다음으로, 철염 용액과 인산염 용액을 반응기에서 혼합할 수 있다. 철염 용액과 인산염 용액을 혼합하면 철염 용액 중의 철이온과 인산염 용액 중의 인산염 이온이 반응하여 철인산염을 형성하여 석출될 수 있으며, 석출된 철인산염 입자는 혼합용액 중에 고르게 분산되어 서스펜션을 형성할 수 있다.
본 실시 형태에서 철염 용액 및 인산염 용액의 혼합은 나노사이즈 비정질 철인산염 입자 및 결정질 철인산염 입자 중 최소 하나 이상이 석출되는 조건 하에서 이루어질 수 있다. 즉 철염 용액 및 인산염 용액의 혼합하면 나노사이즈 비정질 철인산염 입자가 석출될 수 있고, 또는 나노사이즈 결정질 철인산염 입자가 석출될 수도 있고, 또는 나노사이즈 비정질 및 결정질 입자가 함께 석출될 수도 있다.
반응기는 철염 용액과 인산염 용액이 반응하여 철인산염을 형성하는 영역을 의미하는데, 이에 대하여는 분자레벨 혼합장치 및 제조시스템에 관한 부분에서 상술한다.
다음으로, 혼합 단계 동안 반응기 내의 혼합용액에 전단력을 가할 수 있다.
혼합용액에 전단력을 가하면 석출된 나노사이즈 철인산염 입자는 상대적으로 좁은 입자사이즈분포(particle size distribution)를 가질 수 있다. 입자사이즈분포의 광협은 첨도 비율(steepness ratio)로 표시할 수 있다. 첨도 비율(steepness ratio)는 75 질량퍼센트에 대응되는 입자의 평균직경을 25 질량퍼센트에 대응되는 입자의 평균직경으로 나눈 값으로 규정할 수 있다. 첨도 비율이 크면 입자크기분포 곡선의 폭이 넓고, 첨도 비율이 작으면 입자크기분포 곡선의 폭이 좁고 더 뾰족한 형태를 나타낼 수 있다. 입자크기분포는 SediGraph 에 의하여 표시될 수 있는데, SediGraph 는 입자크기에 따른 누적질량퍼센트(cumulative mass percent)를 도시한다. 누적질량퍼센트는 입자 크기가 특정 값과 동일하거나 이보다 작은 부분이 차지하는 퍼센트(질량)을 의미한다. 평균입자크기는 SediGraph 50% 지점에서의 석출입자 크기이다. 본 실시 형태에 있어서, 첨도 비율(steepness ratio)이 3 미만일 수 있다. 바람직하게는 2 미만, 1.9 미만, 1.8 미만, 1.7 미만, 1.6 미만, 또는 1.5 미만, 더 나아가서는 1.3 미만일 수도 있다.
전단력은 반응기 내 혼합용액을 교반기로 교반함으로써 발생될 수 있는데, 교반기에 관한 설명은 뒤의 해당 부분에서 상술한다. 전단력을 가하면 반응기 내에는 레이놀즈 넘버(Reynolds number)가 2,000~200,000, 5,000~150,000 또는 8,000~100,000 인 유체흐름이 형성될 수 있다. 이로 인하여 반응기 내 물질은 혼합이 잘 이루어질 수 있으며, 실질적으로 균질한 혼합물이 형성될 수 있다.
본 실시 형태에 따라 형성된 나노사이즈 비정질 또는 결정질 철인산염 석출입자의 평균 입자사이즈는 1~100 nm일 수 있으며, 바람직하게는 1~20 nm, 5~30 nm, 5~50 nm, 10~20 nm, 10~50 nm, 20~50 nm, 15~30 nm, 10~100 nm, 10~60 nm 또는 15~20 nm일 수 있다.
본 실시 형태에서는 상기 혼합용액에 계면활성제를 더 첨가할 수 있다. 계면활성제는 음이온 계면활성제, 양이온 계면활성제, 비이온성 계면활성제, 폴리머 계면활성제 및 이들의 혼합물로 이루어진 그룹에서 선택될 수 있다. 구체적으로 계면활성제는 ammonium dodecyl-sulfate, ammonium lauryl sulfate, ammonium laurate, dioctyl sodium sulphosuccinate, TWEEN®(polyethylene sorbitan monooleate), SPAN 80®(sorbitan monooleate), SPAN 85®(sorbitan trioleate), PLURONIC®(Ethylene Oxide/Propylene Oxide block copolymer), polyoxyethylene fatty acid esters, poly(vinylpyrrolidone), polyoxyethylene alcohol, polyethylene glycol, monodiglyceride, benzalkonium chloride, bis-2-hydroxyethyl oleyl amine, hydroxypropyl cellulose, hydroxypropyl methylcellulose, quarternary ammonium salts such as cetyltrimethylammonium bromide, polymers with positively charged functional groups in the backbone 및 이들의 혼합물로 이루어진 그룹에서 선택될 수 있다. 계면활성제 농도는 혼합물의 0.05~10 중량%일 수 있다. 계면활성제의 농도가 0.05중량%보다 작은 경우에는 제 역할을 하기 힘든 문제점이 있을 수 있고, 10 중량%보다 큰 경우에는 생성물의 형성을 방해할 수 있는 문제점이 있을 수 있다. 바람직하게는 계면활성제의 농도는 0.05~5 중량%, 0.05~1 중량%, 0.05~0.5%, 0.05~0.1 중량%, 0.1~10 중량%, 0.5~10 중량%, 1~10 중량%, 5~10 중량% 또는 0.1~2 중량%일 수 있다.
본 실시 형태에서는 석출입자의 응집을 억제하기 위하여 혼합용액에 분산제를 첨가할 수 있다. 분산제는 혼합단계 중에 첨가될 수 있다. 분산제는 유기 용매일 수 있으며, 물과 혼합하여 사용될 수도 있다. 분산제는 imidazoline, oleyl alcohol 및 ammonium citrate로 이루어진 그룹에서 선택될 수 있다. 마이크로 내지 나노사이즈 입자에 적합한 분산제는 Organic Additives And Ceramic Processing, by D. J. Shanefield, Kluwer Academic Publishing, Boston, 1996 에 개시되어 있다. 특히 나노사이즈 석출입자는 분산된 상태로 존재할 수 있기 때문에 안정적이어서 일반적으로 상당 기간 동안 응집체를 형성하지 않을 수 있고, 입자의 특성은 시간이 경과하더라도 변하지 않는다. 분산제의 농도는 혼합물의 약 0.05~10중량%일 수 있다. 분산제의 농도가 0.05중량%보다 작은 경우에는 생성물의 응집 문제가 있을 수 있고, 10중량%보다 큰 경우에는 생성물의 형성을 방해 할 수 있는 문제가 있을 수 있다.
본 실시 형태에서는 전단력을 가하는 동안 반응기 안으로 가스를 주입할 수 있다. 가스는 구체적으로는 산소, 암모니아 가스, 공기, 또는 질소 같은 불활성 가스일 수 있다. 산화분위기가 필요한 경우에는 공기 또는 산소를 주입할 수 있고, 환원분위기가 필요한 경우에는 암모니아 가스를 주입할 수 있고, 비활성 분위기가 필요한 경우에는 질소 등의 비활성 가스를 주입할 수 있다.
본 실시 형태에서, 나노사이즈 철인산염 석출입자는 비정질일 수 있다.
본 실시 형태는 결정질 철인산염 입자가 형성되는 조건 하에서 상기 서스펜션을 에이징하는 단계를 더 포함할 수 있다. 에이징(ageing)은 석출입자가 실질적으로 결정질 구조를 가지도록 석출입자의 서스펜션을 특정 조건(온도, 압력, pH 및 교반속도) 하에서 일정 시간 유지하는 공정을 의미할 수 있다. 석출 입자의 결정질 구조는 빠른 핵 생성 또는 석출 입자의 부분적 용해 및 재결정화에 의하여 형성될 수 있는데, 미용해 입자 상에 용해된 입자가 재결정화되면서 완전한 결정질 입자가 형성되거나 더 큰 석출입자가 형성될 수 있다. 화학적 에이징(chemical ageing)은 에이징 공정을 촉진하기 위하여 에이징 공정 중에 산 또는 염기 같은 화학물질을 반응혼합물에 첨가하는 공정을 의미할 수 있다.
나노사이즈 비정질 철(ferric)인산염 입자로부터 결정질 철(ferric) 인산염 입자가 형성되는 조건은 예를 들면 다음과 같은 (1)(2)(3) 공정을 포함할 수 있다. (1) 서스펜션을 일정하게 교반하면서, 온도를 서서히 올려 석출입자 서스펜션을 가열 (예를 들어, 일정하게 교반하면서 25℃부터 약 95℃까지 일정한 속도로 가열); (2) 약 95℃ 에서 약 1~5시간 동안 서스펜션의 pH를 적절한 범위(예를 들면 약 pH 3~5 또는 2~4)로 유지; 및 (3) 상온(i.e., 25℃)까지 서스펜션을 냉각. 여기서, 가열 단계 (1)은 용매의 포화량을 변화시킬 수 있으며, 이는 재결정을 강화하거나 Ostwald ripening현상을 유발할 수 있고, 석출입자가 성장하거나 재결정화됨으로써 결정구조를 가지는 입자를 형성하거나 또는 더 큰 사이즈의 입자를 형성할 수 있다.
본 실시 형태에서 에이징 단계 동안 가스를 서스펜션 안으로 주입할 수 있다. 가스는 산소, 암모니아 가스, 공기 또는 질소 같은 불활성 가스일 수 있다. 산화분위기가 필요한 경우에는 공기 또는 산소를 주입할 수 있고, 환원분위기가 필요한 경우에는 암모니아 가스를 주입할 수 있고, 비활성 분위기가 필요한 경우에는 질소 등의 비활성 가스를 주입할 수 있다.
본 실시 형태에서 철염 용액 및 인산염 용액의 혼합은 철인산염을 함유하는 석출물이 형성되는 조건 하에서 수행될 수 있다. 상기 조건 하에서는 철인산염 중간종이 형성되는 것을 방지할 수 있다. 철인산염 중간종(intermediate iron phosphate species)에는 철염 및 석출용액의 석출 과정 중에 형성되는 금속수산화물 산화물 화합물을 포함될 수 있다. 예를 들면, 석출용액의 pH 값이 7보다 큰 경우, 수산화 이온(OH-)은 용액 내에서 철염(i.e., 염화철(FeCl3, FeCl2))의 철 양이온(Fe3+, Fe2+)과 반응하여 즉시 석출물을 형성할 수 있다. 석출물은 단일의 철수산화물 또는 단일의 철산화물 상이 아니라 수산화물 및 산화물의 조합으로 존재할 수 있다. 상기 중간종은 소결 또는 에이징 단계에서 열을 가하면 반응이 더 진행되어 완전한 철산화물 결정을 형성할 수 있고 또는 공기나 산소를 버블링하면 반응이 더 진행되어 Fe2O3 입자를 형성할 수 있다. 그러나 상기 중간종이 형성되지 않고, 양이온(Fe3+, Fe2+)이 인산염 이온(PO4 3-)과 직접 반응하여 철인산염을 형성하는 더 바람직하다.
본 실시 형태에서 전단력 인가는 나노사이즈 비정질 철인산염 및 결정질 철인산염 입자 중 최소한 하나 이상이 형성되는 조건 하에서 수행될 수 있다.
본 실시 형태는 (a) 철염 용액을 제조하기 위하여 철염을 제공하는 단계; (b) HPO4 2-, H2PO4 - or PO4 3- 및 이들의 혼합물을 함유하는 염으로 이루어진 그룹에서 선택된 인산염 용액을 제공하는 단계; (c) 반응혼합물을 형성하기 위하여 철염 용액과 인산염 용액을 혼합하되, 상기 혼합은 나노사이즈 비정질 철인산염 석출입자 서스펜션을 형성하기 위한 조건 하에서 수행되는 단계; (d) 상기 철인산염 입자를 얻기 위하여 비정질 철인산염 입자를 서스펜션으로부터 분리하는 단계; (e) 나노사이즈 결정질 철인산염 입자를 형성하기 위하여 나노사이즈 비정질 철인산염 입자를 에이징 하는 단계; 및 (f) 실질적으로 부산물이 없는 상기 나노사이즈 결정질 철(ferric) 인산염 입자를 얻기 위하여 결정질 철인산염 입자를 서스펜션으로부터 분리하는 단계를 포함할 수 있다.
에이징 단계 (e)는 에이징 공정을 촉진시키기 위하여 산이나 염기 같은 화학물질의 첨가를 수반하는 화학적 에이징일 수 있다. 에이징 단계 (e)는 상기 형성된 나노사이즈 비정질 철인산염 입자로부터 결정질 철인산염 입자가 형성되는 조건 하에서 수행될 수 있다.
상기 조건은 예를 들면 다음과 같은 공정을 포함할 수 있다. (1) 서스펜션을 일정하게 교반하면서, 온도를 서서히 올려 석출입자 서스펜션을 가열 (예를 들어, 일정하게 교반하면서 25℃부터 약 95℃까지 일정한 속도로 가열); (2) 약 95℃ 에서 약 1~5시간 동안 서스펜션의 pH를 적절한 범위(예를 들면 약 pH 3~5 또는 2~4)로 유지; 및 (3) 상온(예를 들면, 25℃)까지 서스펜션을 냉각.
가열단계 (1)에 의하여 용매의 용해도(포화도)가 변할 수 있는데, 이는 재결정을 강화하거나 Ostwald ripening현상을 유발할 수 있다. 석출입자가 성장하거나 재결정화됨으로써 결정구조를 가지는 입자를 형성하거나 또는 더 큰 사이즈의 입자를 형성할 수 있다.
본 발명의 제2 실시 형태는 나노사이즈 비정질 철인산염 입자가 형성되는 조건 하에서 철염 용액 및 인산염 용액을 혼합하는 단계; 실질적으로 나노사이즈 결정질 철인산염 입자가 형성되는 조건 하에서 상기 나노사이즈 비정질 철인산염 입자를 에이징 하는 단계;를 포함하는 나노사이즈 결정질 철인산염 입자의 제조방법일 수 있다.
본 실시 형태는 나노사이즈 결정질 철인산염 입자의 제조방법에 관한 것이다.
“실질적으로(substantially)”는 “완전하게(completely)”를 배제하지 않는다. 예를 들어 실질적으로 Y가 없는 조성은 Y가 전혀(완전하게) 존재하지 않는 경우도 포함할 수 있다. 본 실시 형태에서 사용되는 용어는 제1 실시 형태에서 설명한 바와 동일하다.
본 발명의 제3 실시 형태는 나노사이즈 비정질 철인산염 입자가 형성되는 조건 하에서 반응기 내의 철염 용액 및 인산염 용액을 혼합하는 단계; 상기 혼합단계 중 상기 반응기 내의 상기 혼합용액에 전단력을 인가하고, 상기 전단력 및 상기 반응기 내 조건을 조절하여 나노사이즈 비정질 철인산염 입자를 형성시키는 단계; 및 나노사이즈 철인산염 입자가 형성되는 조건 하에서 상기 나노사이즈 비정질 철인산염 입자를 에이징하는 단계;를 포함하는 나노사이즈 결정질 철인산염 입자의 제조방법일 수 있다.
본 실시 형태에 있어서, 상기 에이징 단계 중 나노사이즈 비정질 철인산염 입자를 함유하는 혼합물에 전단력을 인가하고, 상기 전단력 및 상기 혼합물 내 조건을 조절하여 상기 나노사이즈 철인산염 입자를 형성시키는 단계;를 포함할 수 있다.
본 발명의 제4 실시 형태는 나노사이즈 비정질 철인산염 입자를 함유하는 혼합물이 형성되는 조건 하에서 반응기 내의 철염 용액 및 인산염 용액을 혼합하는 단계; 상기 혼합단계 중 상기 반응기 내의 상기 혼합용액에 전단력을 인가하고, 상기 전단력 및 상기 반응기 내 조건을 조절하여 나노사이즈 비정질 철인산염 입자를 형성시키는 단계; 나노사이즈 비정질 철인산염 입자를 함유하는 혼합물로부터 비정질 철인산염 입자를 분리하는 단계; 나노사이즈 철인산염 입자를 함유하는 혼합물이 형성되는 조건 하에서 상기 나노사이즈 비정질 철인산염 입자를 에이징 하는 단계; 상기 에이징 단계 중 나노사이즈 비정질 철인산염 입자를 함유하는 혼합물에 전단력을 인가하고, 상기 전단력 및 상기 혼합물 내 조건을 조절하여 상기 나노사이즈 철인산염 입자를 형성시키는 단계; 나노사이즈 철인산염 입자를 함유하는 혼합물로부터 결정질 철인산염 입자를 분리하는 단계; 및 결정질 철인산염 분말을 형성하기 위하여 결정질 철인산염 입자를 건조하는 단계;를 포함하는 나노사이즈 결정질 철인산염 입자의 제조 방법일 수 있다.
반응혼합물(reaction mixture)은 철염 용액과 인산염 용액의 혼합물을 포함하는 용액일 수 있으며, 반응하여 석출입자를 형성할 수 있거나 또는 반응하여 이미 석출입자가 형성되어 있을 수도 있다.
분리(isolating or isolation)는 반응매개체로부터 석출입자를 제거하는 것과 연관된 공정을 의미할 수 있다. 예를 들면, 여과, 원심분리, 분무건조, 동결건조 또는 기타 액체로부터 고체를 제거하는 다른 공지된 방법 등이 있을 수 있다. 다만 반응매개체는 분리 단계 이후에도 석출입자 상에 잔존할 수 있는 것처럼, 분리는 반드시 석출입자가 완전히 반응 매개체로부터 제거된다는 것을 의미하는 것은 아니다. 그러나 분리는 입자로부터 반응 매개체를 완전히 제거하는 경우를 포함할 수 있다.
본 발명의 각 실시 형태에 있어서, 철염 용액은 iron(Ⅲ) acetate salt, iron(Ⅲ) halide salt, iron(Ⅲ) nitrate salt, iron(Ⅲ) sulfate salt, 이들의 수화물 및 혼합물로 이루어진 그룹으로부터 선택된 1종 이상을 포함할 수 있다. 형성된 철인산염 석출입자는 철(ferric) 인산염을 포함할 수 있으며, 상기 철(ferric) 인산염은 비정질 철(ferric) 인산염, 결정질 철(ferric) 인산염, 이들의 수화물 및 이들의 혼합물로 이루어진 그룹에서 선택된 1종 이상을 포함할 수 있다.
본 발명의 각 실시 형태에 있어서, 철염 용액은 iron(Ⅱ) acetate salt, iron(Ⅱ) halide salt, iron(Ⅱ) nitrate salt, iron(Ⅱ) sulfate salt, iron (Ⅱ) hydroxide, 이들의 수화물 및 혼합물로 이루어진 그룹에서 선택된 1종 이상을 포함할 수 있다.
형성된 철인산염 석출입자는 철(ferrous) 인산염을 포함할 수 있으며, 상기 철(ferrous) 인산염은 비정질 철(ferrous) 인산염, 결정질 철(ferrous) 인산염, 이들의 수화물 및 이들의 혼합물로 이루어진 그룹에서 선택된 1종 이상을 포함할 수 있다.
분자레벨 혼합장치
반응기는 분자레벨 혼합장치의 밀폐된 챔버 내에 위치할 수 있다.
분자레벨 혼합장치는 밀폐된 챔버 내에 교반기를 포함할 수 있다. 분자레벨 혼합장치는 밀폐된 챔버 내에 유체를 도입하기 위하여 최소한 두 개의 유체 유입구를 포함할 수 있고, 선택적으로 부유 석출물을 챔버로부터 제거하기 위한 한 개의 유출구를 더 포함할 수 있다.
교반기를 사용하여 반응혼합물에 높은 전단력을 부여할 수 있고, 매우 짧은 시간(10s 미만, 바람직하게는 1s 미만, 더욱 바람직하게는 10ms 미만) 내에 용액들이 적절하고 균일하게 혼합될 수 있어, 원하는 사이즈의 석출물을 제조할 수 있다.
반응혼합물(reaction mixture)은 철염 용액과 인산염 용액의 혼합물을 포함하는 용액일 수 있으며, 반응하여 석출입자를 형성할 수 있거나 또는 반응하여 이미 석출입자가 형성되어 있을 수도 있다.
매우 짧은 시간 내 반응물의 마이크로-혼합(micro-mixing) 요건을 충족시키고 높은 전단력을 반응혼합물에 부여하고 두 용액을 기계적으로 혼합하기 위하여, 분자레벨 혼합장치는 난류 상태에서 운전할 수 있다. 두 용액은 난류로 인하여 더 빠르게 혼합될 수 있다.
레이놀즈 넘버는 다음과 같은 식에 근거하여 조절할 수 있다.
Figure PCTKR2013004224-appb-I000001
여기서, d는 반응 용액을 분자레벨 혼합장치에 공급하는 파이프(또는 분배기)의 지름, u는 액체의 유속, ρ는 액체의 밀도, μ는 액체의 점도이다.
파이프 또는 분배기의 지름, 유속 및 플럭스 사이의 관계는 다음 식과 같다:
Figure PCTKR2013004224-appb-I000002
여기서,
Figure PCTKR2013004224-appb-I000003
는 플럭스이다.
일단 파이프 또는 분배기의 지름이 정해지면, 유속은 플럭스에 의하여 결정된다. 분출 플럭스를 유지하기 위하여는 압력이 필요하다. 따라서 파이프의 지름, 플럭스, 압력 및 레이놀즈 넘버는 서로 연관된 파라미터이다.
분출 플럭스는 0.1-3000 m3/hr 가 바람직하고, 더욱 바람직하게는 0.1-800 m3/hr 이다. 분출 압력은 30-3000 kg/cm2이 바람직하고, 더욱 바람직하게는 50-1000 kg/cm2이다. 분출 흐름의 레이놀즈 넘버 Re는 2,000-200,000이 바람직하고, 더욱 바람직하게는 8,000-100,000이다.
레이놀즈 넘버가 상기 범위인 경우 반응기 내에서는 핵이 생성되기 전에 분자 수준의 화학적 균질성을 얻을 수 있다. 이런 이유로 짧은 시간 안에 높은 과포화상태(super-saturation)를 얻을 수 있어, 석출 첫 단계에서 수많은 핵이 생성되어 입자사이즈분포가 균일한 미세한 석출입자를 제조할 수 있다.
반응기 내 분자 수준의 화학적 균질성을 매우 짧은 시간 안에 얻을 수 있기 때문에 철인산염 합성시 큰 중간 응집체의 형성 및 iron hydroxide, hydrous ferric oxides and ferrous oxides 또는 amorphous ferric oxyhydroxide 같은 중간종의 형성을 방지할 수 있고, 이로 인해 석출물은 주로 철인산염으로 이루어질 수 있다.
교반기는 밀폐된 챔버 내에 위치하는 회전자-고정자를 포함할 수 있다. 회전자는 회전축을 중심으로 회전할 수 있어 높은 전단력을 반응혼합물에 부여할 수 있다. 밀폐된 챔버 내에 위치하는 회전자-고정자를 포함하는 교반기는 미국등록특허 6,458,335에 개시되어 있다.
교반기는 밀폐된 챔버 내에 위치하는 충전층을 포함할 수 있다. 충전층은 회전축을 중심으로 회전할 수 있어 혼합물에 전단력을 부여할 수 있다. 충전층은 100-3000 m2/m3의 표면적을 가질 수 있다. 충전층은 일정한 구조를 가질 수도 있고, 일정한 구조를 가지지 않을 수도 있다. 충전층은 스테인레스 스틸, 일반 금속합금, 티타늄금속 또는 플라스틱 같은 상대적으로 불활성 재료로 만들어진 철망(wire mesh) 타입일 수 있다. 충전층은 실질적으로 실리더 형태이고, 최소한 하나의 메쉬층을 포함할 수 있다. 충전층은 복수의 중첩된 메쉬층을 포함할 수 있다. 전단수단(shear means)을 이용하여 혼합용액에 전단력을 가할 수 있다. 전단 수단은 실리더 모양의 두루마리 메쉬 형태일 수 있고, 실리더 모양 부분은 복수의 중첩 메쉬층에 의하여 형성된 측면을 가질 수 있다. 메쉬 사이즈는 0.05~3mm 또는 0.1~0.5 mm 일 수 있다. 메쉬 기공율은 최소한 90% 또는 95% 를 넘을 수 있다. 충전층은 반응기 내 샤프트에 장착되며 반응기 내에서 회전할 수 있다. 충전층이 회전하면서 충전층은 주입된 액체에 높은 전단력을 가할 수 있다. 일례로, 회전하는 충전층은 실린더 형상을 가질 수 있다.
교반기를 반응기 내에서 빠르게 회전시킴으로써 반응기 내 액체에 높은 전단력을 가할 수 있기에 충분한 고중력 수준(high gravity level) gr(m/s2) 을 얻을 수 있다. 이로써 매우 짧은 시간 내에 마이크로-혼합(micro-mixing) 요건을 충족시킬 수 있다.
고중력 수준은 다음 식에 의하여 조절할 수 있다:
Figure PCTKR2013004224-appb-I000004
여기서, N은 교반기의 회전속도(rpm), din 은 교반기의 내경, dout 은 외경이다.
고중력 수준은 100~15,000 m/s2, 500~2,000 m/s2, 1,000~5,000 m/s2 또는 800~5000 m/s2일 수 있다. 강한 고중력 수준의 교반기를 사용하기 때문에 반응기 안으로 주입되는 즉시 반응기 내 액체들은 강한 전단력을 받을 수 있다.
일례로, 교반기가 반응기 안에서 회전할 때 철염 용액 및 인산염 용액은 소용돌이에 의하여 형성된 빈 공간으로 주입될 수 있다. 바람직하게는, 액체들은 교반기 상에 직접 주입되고 주입 속도는 최소 1 m/s, 최소 2 m/s, 최소 3 m/s, 최소 4 m/s 또는 최소 5 m/s 일 수 있다.
소용돌이(vortex)는 반응기 내 반응혼합물의 나선 운동을 포함하도록 넓게 해석되어야 한다. 반응혼합물의 나선 운동은 반응혼합물을 그 중심으로 이동시키는 경향이 있다. 소용돌이의 생성은 챔버 내 교반 속도, 반응혼합물의 점도, 챔버의 형태 및 치수에 의존할 수 있다. 챔버, 챔버의 형태 및 치수로 반응기를 규정할 수 있다. 비압축성 유체의 소용돌이 형성에 대한 수학적 모델은 이미 알려져 있다. 예를 들면, Transport Phenomena, Bird et al, Chapter 3, John Wiley & Sons, 1960에 소용돌이 유체의 흐름에 대한 일반적인 논의가 기재되어 있고, 특히 108-111 페이지에는 교반되는 탱크에서의 소용돌이 깊이의 예측에 대한 수학적 모델이 개시되어 있다. 교반되는 탱크 내 소용돌이에 대하여는 Memoirs of the Faculty of Engineering, Kyoto University, Vol. ⅩⅦ, No. Ⅲ, July 1955 by S Nagata et al. 등 문헌에서 실험적으로 연구되었다.
철염 용액 및 인산염 용액은, 반응기를 둘러싼 반응 챔버를 관통하여 연장된 복수 개의 유입구를 통하여, 반응기 안으로 주입될 수 있다. 유입구는 분자레벨 혼합장치의 구조에 따라 다양한 방식으로 배치될 수 있다.
유입구는 분배기 내에 위치할 수 있다. 분배기는 철염 용액 및 인산염 용액을 반응기 내 소용돌이에 의하여 형성된 빈 공간에 분배할 수 있다. 분배기는 철염 용액 및 인산염 용액 각각에 대하여 복수 개의 유입구를 가지는 몸체를 포함할 수 있다.
철염 용액 및 인산염 용액은 분배기의 구멍으로부터 번갈아가며 교대로 분출될 수 있다. 유입구는 전단력이 발생하는 교반기의 내부 가장자리로 돌출되어 있는 것이 바람직하다.
일례로, 철염 용액 및 인산염 용액은 각각 별개의 유입구를 통하여 반응기 안으로 주입될 수 있다.
분자레벨 혼합장치가 배치 모드 또는 연속 모드로 작동될 때, 혼합장치는 반응기로부터 혼합물을 빼내기 위한 액체 유출구를 최소한 1개 이상 포함할 수 있다.
석출입자 제조용 시스템
도1은 나노사이즈 철 인산염 석출입자를 제조하는 시스템(10)을 도시하고 있다.
도 1을 참조하면, 시스템은 분자레벨 혼합장치(100)를 포함할 수 있다. 분자레벨 혼합장치(100)는 밀폐된 공간을 둘러싸는 챔버(101)를 포함할 수 있으며, 밀폐된 공간을 그 안에서 철염 용액과 인산염 용액의 반응이 일어나는 반응기(101A)로 규정할 수 있다. 챔버(101)는 충전층(packed bed)(102) 형태의 교반기를 포함할 수 있다. 충전층(102)은 반응기(101A) 내의 반응혼합물에 전단력을 부여할 수 있다. 충전층(102)은 철염 용액 및 인산염 용액을 각각 반응기(101A)에 공급하는 두 개의 액체 유입구(104a, 104b)를 가지는 분배기(103)을 포함할 수 있다.
충전층(102)은 라인(130)으로 표현된 회전축 상에 위치한 회전 샤프트(105)에 장착될 수 있다. 충전층(102)은 분배기(103)의 길이에 근접하게 장착될 수 있다. 충전층(102)은 모터(106)에 의하여 기어 및 풀리 시스템(106A)를 통하여 구동될 수 있다. 실제로 모터(106)는 샤프트(105)를 회전축(130) 주위로 회전시킬 수 있다.
충전층(102)은 분배기(103)와 유체가 이동할 수 있도록 연결되어 있다. 분배기(103)는 충전층(102) 상에 액체를 전송할 수 있는 유로를 가지는 몸체를 포함할 수 있다. 분배기(103)는 유입 유로(104a, 104b)와 유체가 이동할 수 있도록 연결되어 있고, 유입 유로(104a, 104b) 각각은 철염 용액 공급 탱크(113) 및 인산염 용액 공급탱크(118)와 유체가 이동할 수 있도록 연결되어 있다.
분자레벨 혼합장치(100)는 석출입자를 함유하는 서스펜션을 챔버(101)로부터 제거하기 위한 유출 유로(107)을 포함할 수 있다. 분자레벨 혼합장치의 재질은 티타늄 및 그 합금일 수 있다.
충전층(102)은 실질적으로 실린더 모양일 수 있고, 특정 구조를 이루어 배열될 수 있고, 메쉬 크기가 0.05mm 인 복수의 와이어 메쉬층을 포함할 수 있다. 와이어 메쉬 또한 티타늄으로 만들어질 수 있다.
보온재킷(108)은 챔버(101)을 둘러싸며 반응기(101A)의 온도를 조절할 수 있다. 보온재킷(108)은 가열된 유체의 유입을 위한 재킷 유입구(109) 및 재킷(108)으로부터 유체가 유출되도록 하는 재킷 유출구(110)포함할 수 있다.
유입 유로(104a)는 파이프(111) 및 밸브(112)에 의하여 철염 용액이 저장된 철염 용액 탱크(113)에 연결될 수 있다. 보온재킷(114)은 탱크(113)를 둘러싸며 탱크(113) 내 철염 용액의 온도를 조절할 수 있다. 파이프(111)을 따라 배치된 펌프(115)는 철염 용액을 저장탱크(113)으로부터 분자레벨 혼합장치(100)의 반응기(101A)으로 펌핑할 수 있다.
유입 유로(104b)는 파이프(116) 및 밸브(117)에 의하여 인산염 용액이 저장된 인산염 용액 공급탱크(118)에 연결될 수 있다. 보온재킷(119)은 탱크(118)을 둘러싸며 탱크(118) 내 온도를 조절할 수 있다. 인산염 용액을 저장탱크(118)로부터 분자레벨 혼합장치(100)의 반응기(101A)로 공급하기 위하여 파이프(116)을 따라 펌프(120)가 배치될 수 있다.
각각 철염 용액 및 인산염 용액의 유입 유로(104a, 104b)로의 유량을 조절하기 위하여 한 쌍의 유랑계(121, 122)가 파이프(111, 116)를 따라 배치될 수 있다.
도 1의 분자레벨 혼합장치의 외각 쉘은 반응기(101A) 위에 가스구역(131A)를 포함할 수 있는데, 가스구역(131A)은 질소 같은 불활성 가스, 공기 또는 농축된 산소를 함유할 수 있다. 가스구역(131A)은 가스 유입구(131)를 통하여 가스를 챔버(101) 안으로 펌핑하여 형성될 수 있고, 가스는 가스 유출구(132)를 통하여 제거될 수 있다.
반응기(101A)를 산소로부터 차단하는 것이 바람직한 경우에는 가스구역(131A)을 질소로 채울 수 있다. 반응기(101A)를 산소에 접촉시키는 것이 바람직한 경우에는 가스구역(131A)을 공기 또는 농축된 산소로 채울 수 있고, 이로써 기체-액체 물질전달(mass transfer)을 향상시킬 수 있다. 이러한 이유로, 가스구역(131A)은 반응기(101A)를 산소로부터 차단하는 배리어로서 기능할 수 있고, 또한 공기 또는 산소를 반응혼합물과 접촉시키는 가스 퍼지(gas purge)로서 기능할 수 도 있다.
분배기(103)는 액체 유입구(104a, 104b)로부터 충전층의 안쪽 면으로 철염 용액 및 인산염 용액을 분출하고, 철염 용액 및 인산염 용액은 혼합 및 반응하여 충전층(102) 및 챔버(101) 내에서 혼합물을 형성할 수 있다. 혼합물은 충전층(102)을 방사 방향으로 관통하여 충전층의 외부 표면으로 이동할 수 있다.
충전층에서, 회전축(130)을 중심으로 샤프트(105) 및 충전층(102)이 회전하기 때문에 혼합물에는 원심력 형태의 높은 전단력이 작용할 수 있다.
그래서, 충전층(102) 내의 혼합물은 원심력에 의하여 형성된 고중력 필드 하에서 퍼지거나 쪼개져 마이크로미터 내지 나노미터의 매우 미세한 작은 방울의 실 또는 얇은 막으로 되어, 철염 용액 및 인산염 용액 간에 물질전달(mass transfer) 및 열전달(heat transfer)이 활발하게 이루어질 수 있다. 이는 또한 철염 및 인산염 용액 간 강렬한 마이크로-혼합을 일으켜 고균일-과포화 용액을 매우 짧은 시간(10ms 미만) 내에 형성할 수 있다. 사용하는 인산염 용액에 따라 다르지만 이 과정에서 나노사이즈의 철인산염 화합물의 석출물이 형성될 수 있다.
충전층(102) 내의 혼합물에 작용하는 원심력의 크기는 샤프트(105) 및 충전층(102)의 회전속도에 따라 다를 수 있다. 샤프트(105) 및 충전층(102)의 회전속도가 높을수록 혼합물에 작용하는 고중력 수준 또는 전단력의 크기는 더 커질 수 있다.
혼합물 내에 부유되어 있는 나노사이즈의 철인산염 입자는 생성물 유출구(107)를 통하여 챔버(101)로부터 제거될 수 있다. 나노사이즈의 철인산염 입자의 서스펜션은 생성물 탱크(140) 내에 모을 수 있다.
생성물 탱크(140)는 석출입자가 부유된 슬러리의 위에 가스 장막(gas blanket)(140B)을 포함할 수 있다. 가스 장막(140B)은 탱크 바닥의 가스 유입구(142) 및 가스 유출구(144)에 의하여 연결된 가스 분배기(143)에 의하여 형성될 수 있는데, 비활성 보호가스로서 질소를 이용하여 에이징 또는 후처리 공정을 산소 환경으로부터 격리하거나, 또는 기체-액체 물질전달을 강화함으로써 석출물의 산화반응을 강화할 수 있다.
석출물 슬러리 서스펜션의 온도는 보온재킷(141)을 통하여 특정 온도까지 점진적으로 증가시킬 수 있다. 서스펜션은 또한 교반기를 통하여 연속적으로 교반할 수 있다. 동시에, 서스펜션은 산 또는 염기를 사용하여 중화될 수 있고, 설정된 pH 값으로 유지될 수 있다. 그 후 나노사이즈의 철인산염 입자를 얻기 위하여 석출물 서스펜션을 분리 및 세척할 수 있다.
이하에서는, 실시예를 들어 본 발명에 대하여 더욱 상세하게 설명한다.
철인산염의 입자 사이즈는 Hitachi S-4200 FE-SEM(15kV)를 이용하여 측정하였다. 철인산염을 연마하여 미세한 분말로 만들고 이를 카본테이프 상에 로드하고 금 박막 스퍼터링하여 주사전자현미경 시편을 준비하였다. 입자 사이즈 측정에는 80,000-150,000 배율의 주사전자현미경(SEM)과 ImageJ 소프트웨어를 사용하였다. 입자사이즈 분포는 ImageJ 의 입자사이즈 측정 데이터를 근거로 Microsoft Excel 소프트웨어를 사용하였다.
결정구조는 CuKα X-선회절(Shimadzu XRD-6000 Powder Diffractometer)를 통하여 확인하였다. 철인산염의 서스펜션을 70℃의 오븐에서 건조 및 연마한 분말을 알루미늄 플레이트에 압입하여 분석시료를 준비하였다.
이하의 실시예에서는 도 1의 시스템(10)을 이용하여 철인산염 입자를 제조하였다.
실시예 1
비정질 철(Ⅲ)인산염 (ferric phosphate) (FePO 4 ㆍ2H 2 O) 의 합성
염화철(FeCl3)을 증류수에 용해시켜 농도가 0.32 ㏖/ℓ 인 2.52ℓ의 염화철 용액을 여과하여 철염 탱크(113)에 저장하였다. 인산이암모늄 ((NH4)2HPO4)을 증류수에 용해시켜 농도가 0.32 ㏖/ℓ 인 인산이암모늄 ((NH4)2HPO4) 용액 2.52 리터를 여과하여 탱크(118)에 저장하였다. 분배기(103)를 통하여 상기 염화철 용액 및 인산이암모늄 ((NH4)2HPO4) 용액을 각각 0.4 ℓ/min 의 유속으로 분자레벨 혼합장치의 반응기(101A) 안으로 동시에 펌핑하였다. 반응물은 혼합 및 반응 단계 동안 상온(25℃)으로 유지하였다. 이때 충전층(102)의 고중력 수준은 1579 m/s2 로 하고, 두 용액의 주입속도는 5 m/s 로 하였다. 분자레벨 혼합장치(100) 내 체류 시간은 20s로 하였다. 노란색의 석출물이 부유된 서스펜션을 생성물 탱크(104)에 모으고, 수산화암모늄 용액(5.82 wt%)을 첨가하고, 대기 조건 하에서 15 분간 교반하였다. 원심분리법을 통한 분리 및 세척 후, 70℃에서 16 시간 동안 건조하여 비정질 철(ferric) 인산염 나노입자를 제조하였다. 본 실시예에 따라 제조된 샘플에 대한 XRD 패턴 및 도 2의 SEM 분석 결과에 의하면, 비정질 구형 철(ferric) 인산염 나노입자이고, 평균 입자사이즈는 15nm 이고, 첨도 비율(steepness ratio)은 1.42 이다.
실시예 2
결정질 철(Ⅲ)인산염 (ferric phosphate) (FePO 4 ㆍ2H 2 O) 의 합성
상기의 비정질 철(ferric) 인산염 입자를 물 속에 분산하여 pH 3.7의 비정질 철(ferric) 인산염 서스펜션을 제조하였다. 탱크(140) 내 슬러리 서스펜션의 온도는 25℃에서 95℃로 변화시켰다. 농도가 85%인 인산(H3PO4)을 첨가함으로써 pH 값을 2.41로 유지하였다. 온도가 변화하는 동안 열전달을 촉진하고 입자의 침전을 막기 위하여 탱크(140)를 격렬하게 교반하였다. 95℃에서 90분 간 처리한 후 노란 서스펜션은 탱크(140)를 핑크-화이트 색으로 변하였다. 핑크-화이트 철인산염 입자들을 원심분리 및 세척하여 상청액(supernatant)의 pH 값이 3.27이 되도록 하였다.
원심분리된 케이크를 70℃에서 16 시간 동안 건조한 후 건조 분말 146g을 얻었다. 도 3은 본 실시예에 따라 제조된 철인산염 입자의 SEM 사진을 도시하고 있는데, 균일한 나노입자임을 확인할 수 있다. 도 4는 본 실시예에 의하여 제조된 철인산염 입자에 대한 입자사이즈분포를 도시하고 있는데, 첨도 비율(steepness ratio)(D75/D25)이 1.35라는 점과 일치함을 확인할 수 있다. 도 5는 본 실시예에 따라 제조된 나노사이즈 철인산염 입자의 XRD 패턴을 도시하고 있는데, 이로부터 메타-스트렌자이트 I (meta-strengite I) 상을 나타내는 문헌 데이터와 일치함을 확인할 수 있다. 원소분석 결과, Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES)에 의하면 Fe=28.5 wt%, P=17.5 wt% 이고, Ion Chromatography (IC) (검출한계=50ppm)에 의하면 Cl- 은 검출되지 않았다.
실시예 3
결정질 철(Ⅲ)인산염 (ferric phosphate) (FePO 4 ㆍ2H 2 O) 의 합성
농도가 85%인 인산(H3PO4) 6.36g을 노란색 서스펜션에 첨가하고, 80℃에서 90 분 동안 열처리한 점을 제외하고는, 실시예 2와 동일한 방법에 의하여 철(ferric) 인산염 입자를 제조하였다. 수득한 철(ferric) 인산염 입자는 평균 입자사이즈가 28.7nm이고, 첨도 비율이 1.47이다. XRD 회절 패턴에 의하면, 메타-스트렌자이트 I (meta-strengite I) 상에서 결정화되어 철(ferric) 인산염이 형성되었음을 확인할 수 있다.
실시예 4
결정질 철(Ⅲ)인산염 (ferric phosphate) (FePO 4 ㆍ2H 2 O) 의 합성
농도가 0.32 ㏖/ℓ 인 인산이암모늄 ((NH4)2HPO4) 용액 75 ㎖와 수산화암모늄 용액(5.82 wt% as NH3) 8.75g을 미리 혼합 및 여과하여 탱크(118)에 저장한 점을 제외하고는, 결정질 철(ferric) 인산염 입자는 실시예 1과 동일하게 제조되었다. 철(ferric) 인산염 입자는 평균 입자사이즈가 33.4nm이고, 첨도 비율이 1.39이다. XRD 회절 패턴에 의하면, 메타-스트렌자이트 I (meta-strengite I) 상에서 결정화되어 철(ferric) 인산염이 형성되었음을 확인할 수 있다.
실시예 5
결정질 철(Ⅲ)인산염 (ferric phosphate) (FePO 4 ㆍ2H 2 O) 의 합성
농도가 3wt%인 75mL 인산 (H3PO4) 용액 75mL 와 수산화암모늄 용액 (25 wt% as NH3) 7.7g을 미리 혼합, 여과하여 탱크(118)에 저장한 점을 제외하고는, 결정질 철(ferric) 인산염 입자는 실시예 1과 동일한 방법에 의하여 제조되었다.
철(ferric) 인산염 입자는 평균 입자사이즈가 38.7nm이고, 첨도 비율이 1.42이다. XRD 회절 패턴은 메타-스트렌자이트 I (meta-strengite I) 상에서 결정화되어 철(ferric) 인산염이 형성됨을 나타내고 있다.
실시예 6
결정질 철(Ⅲ)인산염 (ferric phosphate) (FePO 4 ㆍ2H 2 O) 의 합성
농도가 3wt%인 75㎖ 인산 (H3PO4)용액 75㎖ 에 암모니아 가스를 버블링하여 pH 9.87의 혼합용액을 제조한 점을 제외하고, 결정질 철(ferric) 인산염 입자는 실시예 1과 동일한 방법에 의하여 제조하였다. 혼합 용액은 미리 여과하여 탱크(118)에 저장하였다. 철(ferric) 인산염 입자는 평균 입자사이즈가 35.9nm이고, 첨도 비율(steepness ratio)이 1.46이다. XRD 회절 패턴에 의하면, 메타-스트렌자이트 I (meta-strengite I) 상에서 결정화되어 철(ferric) 인산염이 형성되었음을 확인할 수 있다.
실시예 7
철(Ⅱ)인산염 (ferrous phosphate hydrate) (Fe3(PO 4 ) 2 ㆍ8H 2 O) 의 합성
철염 탱크(Iron salt tank) (113)에 황산철 (FeSO4ㆍ7H2O) 수용액을 넣고 tank (118)에 제3인산나트륨 (Na3PO4ㆍ12H2O) 수용액을 넣고 교반하였다. 이때 원료의 몰비는 [Fe]:[P] =3:2 이 되도록 하였고, 고형분의 용매 대비 비율은 20%이였다. 위의 용액을 동시에 질소 가스를 5 L/min으로 주입 중인 반응기(101A)에 pump speed는 0.4 L/min, 주입속도는 5 m/s가 되도록 주입하였고, 탱크 및 반응기 온도는 상온(25℃)이었다. 이때 충전층(packed bed)(102)의 고중력 수준(high gravity level)은 1579 m/s2이고 분자레벨 혼합장치(molecular mixing unit) (100) 에서의 체류시간은 20초가 되도록 하였다. 이어서, 반응기의 온도를 70℃로 세팅 한 후 15분간 추가 작동시켰다. 결과의 반응 슬러리를 감압필터를 이용하여 3회 워싱하였다. 워싱된 케익을 90℃ 오븐에서 건조하여 철(Ⅱ)인산염을 합성하였다. 도 6에는 본 실시예에 따라 합성된 철(Ⅱ)인산염에 대한 SEM 사진이 도시되어 있는데, 이에 의하면 균일한 나노입자 임을 확인할 수 있다. 도 7에는 본 실시예에 따라 합성된 철(Ⅱ)인산염에 대한 XRD 회절패턴을 도시하였다. 도 7을 참조하면, 비비아나이트 (vivianite) 상에서 결정화되어 철(ferrous) 인산염이 형성되었음을 확인할 수 있다.
실시예 8
철(Ⅱ)인산염 (ferrous phosphate hydrate) (Fe 3 (PO 4 ) 2 ㆍ8H 2 O) 의 합성
철염 탱크(Iron salt tank) (113)에 황산철(FeSO4ㆍ7H2O) 수용액을 넣고 tank (118)에 인산이암모늄 ((NH4)2HPO4) 수용액을 넣고 교반하였다. 이때 원료의 몰비는 [Fe]:[P] =3:2가 되도록 하였고, 고형분의 용매 대비 비율은 20%이였다. 위의 용액을 동시에 질소 가스를 5 ℓ/min으로 주입 중인 반응기(101A)에 pump speed는 0.4 ℓ/min, 주입속도는 5 m/s가 되도록 주입하였고 탱크 및 반응기 온도는 상온(25℃)이었다. 이때 충전층(packed bed) (102)의 고중력 수준(high gravity level)은 1579 m/s2이고 분자레벨 혼합장치(molecular mixing unit) (100) 에서의 체류시간은 20초가 되도록 하였다. 원료 주입이 끝난 후 10wt% 수산화 나트륨 (NaOH) 수용액을 5mL 첨가하여 pH가 7 이상 이 되도록 하였다. 이어서, 반응기의 온도를 70℃로 세팅 한 후 15분간 추가 작동시켰다. 결과의 반응 슬러리를 감압필터를 이용하여 3회 워싱하였다. 워싱된 케익을 90℃ 오븐에서 건조하여 철(Ⅱ)인산염을 합성하였다. XRD 회절 패턴에 의하면, 비비아나이트 (vivianite) 상에서 결정화되어 철(ferrous) 인산염이 형성되었음을 확인할 수 있다.
실시예 9
철(Ⅱ)인산염 (ferrous phosphate hydrate) (Fe 3 (PO 4 ) 2 ㆍ8H 2 O) 의 합성
철염 용액 탱크(Iron salt tank) (113)에 황산제1철암모늄 (Fe(NH4)2(SO4)2ㆍ7H2O) 수용액을 넣고 탱크(118)에 인산디칼륨 (K2HPO4) 수용액을 넣고 교반하였다. 이때 원료의 몰비는 [Fe]:[P] = 3:2가 되도록 하였고, 고형분의 용매 대비 비율은 25%이였다. 위의 용액을 동시에 질소 가스를 5 L/min으로 주입 중인 반응기(101A)에 pump speed는 0.4 ℓ/min, 주입속도는 5 m/s가 되도록 주입하였고 탱크 및 반응기 온도는 상온(25℃)이었다. 이때 충전층(packed bed)(102)의 고중력 수준(high gravity level)은 1579 m/s2이고 분자레벨 혼합장치(molecular mixing unit) (100) 에서의 체류시간은 20초가 되도록 하였다. 원료 주입이 끝난 후 포화 수산화 암모늄 (NH4OH) 수용액을 첨가하여 pH가 6.5가 되도록 하였다. 이어서, 반응기의 온도를 70℃로 세팅 한 후 15분간 추가 작동시켰다. 결과의 반응 슬러리를 감압필터를 이용하여 3회 워싱하였다. 워싱된 케익을 90℃ 오븐에서 건조하여 철(Ⅱ)인산염을 합성하였다. XRD 회절 패턴에 의하면, 비비아나이트 (vivianite) 상에서 결정화되어 철(ferrous) 인산염이 형성되었음을 확인할 수 있다.
본 발명에서 사용한 용어는 특정한 실시예를 설명하기 위한 것으로, 본 발명을 한정하고자 하는 것이 아니다. 단수의 표현은 문맥상 명백하지 않는 한, 복수의 의미를 포함한다고 보아야 할 것이다.“포함하다” 또는 “가지다” 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성 요소 또는 이들을 조합한 것이 존재한다는 것을 의미하는 것이지, 이를 배제하기 위한 것이 아니다. 본 발명은 상술한 실시 형태 및 첨부된 도면에 의해 한정되는 것이 아니며, 첨부된 청구범위에 의해 한정하고자 한다. 따라서 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 당 기술 분야의 통상의 지식을 가진 자에 의해 다양한 형태의 치환, 변형 및 변경이 가능할 것이며, 이 또한 본 발명의 범위에 속한다고 할 것이다.

Claims (32)

  1. 비정질 또는 결정질 철인산염 석출물을 함유하는 서스펜션을 형성하기 위하여 철염 용액과 인산염 용액을 반응기에서 혼합하는 단계; 및
    상기 혼합 단계 중 상기 반응기 내의 혼합용액에 전단력을 인가하는 단계;를 포함하고,
    상기 전단력 및 상기 반응기 내 조건을 조절하여 나노사이즈 철인산염 석출입자를 함유하는 서스펜션을 형성하는 것을 특징으로 하는 나노사이즈 철인산염 입자의 제조방법.
  2. 제1항에 있어서,
    상기 서스펜션으로부터 철인산염 석출입자를 분리하는 단계를 더 포함하는 나노사이즈 철인산염 입자의 제조 방법.
  3. 제1항에 있어서,
    상기 나노사이즈 철인산염 석출입자를 에이징하는 단계를 더 포함하는 나노사이즈 철인산염 입자의 제조 방법.
  4. 제3항에 있어서,
    상기 에이징 단계는 결정질 나노사이즈 철인산염 석출입자가 형성되는 조건 하에서 수행되는 나노사이즈 철인산염 입자의 제조 방법.
  5. 제1항에 있어서,
    상기 철염 용액은 iron acetate salt, iron halide salt, iron nitrate salt, iron sulfate salt, iron hydroxide, 이들의 수화물 및 혼합물로 이루어진 그룹에서 선택된 1종 이상을 포함하는 나노사이즈 철인산염 입자의 제조방법.
  6. 제1항에 있어서,
    석출용액으로서 상기 인산염 용액을 선택하는 단계를 더 포함하는 나노사이즈 철인산염 입자의 제조방법.
  7. 제6항에 있어서,
    상기 인산염 용액은 PO4 3- 을 포함하는 나노사이즈 철인산염 입자의 제조방법.
  8. 제1항에 있어서,
    상기 전단력을 인가하는 단계는 상기 혼합용액을 교반기로 교반하는 단계를 포함하는 나노사이즈 철인산염 입자의 제조방법.
  9. 제8항에 있어서,
    상기 교반기는 밀폐된 쳄버 내에 위치하는 충전층을 포함하고, 상기 충전층은 회전축을 중심으로 회전하는 나노사이즈 철인산염 입자의 제조 방법.
  10. 제9항에 있어서,
    상기 충전층은 실린더 형태이고, 최소한 하나의 메쉬층을 포함하는 나노사이즈 철인산염 입자의 제조 방법.
  11. 제1항에 있어서,
    상기 전단력에 의하여 상기 반응기 내에 레이놀즈 넘버(Reynolds number) 2,000~200,000의 흐름 조건이 형성되는 나노사이즈 철인산염 입자의 제조방법.
  12. 제1항에 있어서,
    상기 나노사이즈 철인산염 석출입자는 첨도(steepness ratio)가 3보다 작은 폭이 좁은 입자사이즈분포(narrow particle size distribution)를 가지는 나노사이즈 철인산염 입자의 제조 방법.
  13. 제1항에 있어서,
    상기 혼합용액은 계면활성제를 더 포함하는 나노사이즈 철인산염 입자의 제조방법.
  14. 제13항에 있어서,
    상기 계면활성제는 음이온 계면활성제, 양이온 계면활성제, 비이온 계면활성제, 폴리머 계면활성제 및 이들의 혼합물로 이루어진 그룹에서 선택된 1종 이상을 포함하는 나노사이즈 철인산염 입자의 제조방법.
  15. 제13항에 있어서,
    상기 계면활성제의 농도는 혼합물의 0.05~10중량%인 나노사이즈 철인산염 입자의 제조방법.
  16. 제1항에 있어서,
    상기 혼합용액은 분산제를 더 포함하는 나노사이즈 철인산염 입자의 제조방법.
  17. 제16항에 있어서,
    상기 분산제의 농도는 혼합물의 0.05~10중량%인 나노사이즈 철인산염 입자의 제조방법.
  18. 제1항에 있어서,
    상기 나노사이즈 철인산염 석출입자는 비정질인 나노사이즈 철인산염 입자의 제조방법.
  19. 제18항에 있어서,
    결정질 철인산염 입자가 형성되는 조건 하에서 상기 서스펜션을 에이징하는 단계를 더 포함하는 나노사이즈 철인산염 입자의 제조방법.
  20. 제1항에 있어서,
    상기 혼합은 철인산염을 주로 함유하는 석출물이 형성되는 조건 하에서 이루어지는 나노사이즈 철인산염 입자의 제조방법.
  21. 제20항에 있어서,
    상기 조건은 철인산염 중간종이 형성되지 않는 조건인 나노사이즈 철인산염 입자의 제조방법.
  22. 제1항에 있어서,
    상기 전단력 인가는 나노사이즈 비정질 철인산염 및 결정질 철인산염 입자 중 최소한 하나가 형성되는 조건 하에서 수행되는 나노사이즈 철인산염 입자의 제조방법.
  23. 나노사이즈 비정질 철인산염 입자가 형성되는 조건 하에서 철염 용액 및 인산염 용액을 혼합하는 단계;
    실질적으로 나노사이즈 결정질 철인산염 입자가 형성되는 조건 하에서 상기 나노사이즈 비정질 철인산염 입자를 에이징 하는 단계;
    를 포함하는 나노사이즈 철인산염 입자의 제조방법.
  24. 나노사이즈 비정질 철인산염 입자가 형성되는 조건 하에서 반응기 내의 철염 용액 및 인산염 용액을 혼합하는 단계;
    상기 혼합단계 중 상기 반응기 내의 상기 혼합용액에 전단력을 인가하고, 상기 전단력 및 상기 반응기 내 조건을 조절하여 나노사이즈 비정질 철인산염 입자를 형성시키는 단계; 및
    나노사이즈 철인산염 입자가 형성되는 조건 하에서 상기 나노사이즈 비정질 철인산염 입자를 에이징하는 단계;
    를 포함하는 나노사이즈 철인산염 입자의 제조방법.
  25. 제24항에 있어서,
    상기 에이징 단계 중 나노사이즈 비정질 철인산염 입자를 함유하는 혼합물에 전단력을 인가하고, 상기 전단력 및 상기 혼합물 내 조건을 조절하여 상기 나노사이즈 결정질 철인산염 입자를 형성시키는 단계;
    를 더 포함하는 나노사이즈 철인산염 입자의 제조방법.
  26. 나노사이즈 비정질 철인산염 입자를 함유하는 혼합물이 형성되는 조건 하에서 반응기 내의 철염 용액 및 인산염 용액을 혼합하는 단계;
    상기 혼합단계 중 상기 반응기 내의 상기 혼합용액에 전단력을 인가하고, 상기 전단력 및 상기 반응기 내 조건을 조절하여 나노사이즈 비정질 철인산염 입자를 형성시키는 단계;
    나노사이즈 비정질 철인산염 입자를 함유하는 혼합물로부터 비정질 철인산염 입자를 분리하는 단계;
    나노사이즈 철인산염 입자를 함유하는 혼합물이 형성되는 조건 하에서 상기 나노사이즈 비정질 철인산염 입자를 에이징 하는 단계;
    상기 에이징 단계 중 나노사이즈 비정질 철인산염 입자를 함유하는 혼합물에 전단력을 인가하고, 상기 전단력 및 상기 혼합물 내 조건을 조절하여 나노사이즈 결정질 철인산염 입자를 형성시키는 단계;
    나노사이즈 결정질 철인산염 입자를 함유하는 혼합물로부터 나노사이즈 결정질 철인산염 입자를 분리하는 단계; 및
    결정질 철인산염 분말을 형성하기 위하여 나노사이즈 결정질 철인산염 입자를 건조하는 단계;
    를 포함하는 나노사이즈 철인산염 입자의 제조 방법.
  27. 제1항, 제23항, 제24항 및 제26항 중 어느 한 항에 있어서,
    상기 철염 용액은 iron(Ⅲ) acetate salt, iron(Ⅲ) halide salt, iron(Ⅲ) nitrate salt, iron(Ⅲ) sulfate salt, 이들의 수화물 및 혼합물로 이루어진 그룹으로부터 선택된 1종 이상을 포함하는 나노사이즈 철인산염 입자의 제조방법.
  28. 제1항, 제23항, 제24항 및 제26항 중 어느 한 항에 있어서,
    상기 형성된 철인산염 석출입자는 철(ferric) 인산염을 포함하는 나노사이즈 철인산염 입자의 제조방법.
  29. 제28항에 있어서,
    상기 철(ferric) 인산염은 비정질 철(ferric) 인산염, 결정질 철(ferric) 인산염, 이들의 수화물 및 이들의 혼합물로 이루어진 그룹에서 선택된 1종 이상을 포함하는 나노사이즈 철인산염 입자의 제조방법.
  30. 제1항, 제23항, 제24항 및 제26항 중 어느 한 항에 있어서,
    상기 철염 용액은 iron(Ⅱ) acetate salt, iron(Ⅱ) halide salt, iron(Ⅱ) nitrate salt, iron(Ⅱ) sulfate salt, iron(Ⅱ) hydroxide, 이들의 수화물 및 혼합물로 이루어진 그룹에서 선택된 1종 이상을 포함하는 나노사이즈 철인산염 입자의 제조방법.
  31. 제1항, 제23항, 제24항 및 제26항 중 어느 한 항에 있어서,
    상기 형성된 철인산염 석출입자는 철(ferrous) 인산염을 포함하는 나노사이즈 철인산염 입자의 제조방법.
  32. 제31항에 있어서,
    상기 철(ferrous) 인산염은 비정질 철(ferrous) 인산염, 결정질 철(ferrous) 인산염, 이들의 수화물 및 이들의 혼합물로 이루어진 그룹에서 선택된 1종 이상을 포함하는 나노사이즈 철인산염 입자의 제조방법.
PCT/KR2013/004224 2012-08-10 2013-05-13 나노사이즈 철인산염 입자의 제조 방법 WO2014025126A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380039048.7A CN104619634A (zh) 2012-08-10 2013-05-13 纳米级铁磷酸盐颗粒的制备方法
US14/419,607 US20150203354A1 (en) 2012-08-10 2013-05-13 Method for preparing nano-sized iron phosphate particles
JP2015526458A JP6419071B2 (ja) 2012-08-10 2013-05-13 ナノサイズ鉄リン酸塩粒子の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120088047A KR20140021843A (ko) 2012-08-10 2012-08-10 나노사이즈 철인산염 입자의 제조 방법
KR10-2012-0088047 2012-08-10

Publications (1)

Publication Number Publication Date
WO2014025126A1 true WO2014025126A1 (ko) 2014-02-13

Family

ID=50068317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004224 WO2014025126A1 (ko) 2012-08-10 2013-05-13 나노사이즈 철인산염 입자의 제조 방법

Country Status (5)

Country Link
US (1) US20150203354A1 (ko)
JP (1) JP6419071B2 (ko)
KR (1) KR20140021843A (ko)
CN (1) CN104619634A (ko)
WO (1) WO2014025126A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017124791A1 (de) 2017-10-24 2019-04-25 aquen aqua-engineering GmbH Verfahren und Vorrichtung zum Einmischen einer Substanz in ein strömendes Fluid
CN115701828A (zh) * 2022-11-25 2023-02-14 宁波新福钛白粉有限公司 一种用硫酸亚铁制备电池级无水磷酸铁的准连续式方法
US20230047467A1 (en) * 2015-07-20 2023-02-16 Nadia Adam Novel Non-crystalline iron-phosphate nanoparticles for remediating toxic heavy metals and radionuclides

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101778569B1 (ko) 2015-07-16 2017-09-14 전남대학교 산학협력단 비정질 전이금속 인산염계 전극활물질의 제조방법, 그 방법으로 제조된 비정질 전이금속 인산염계 전극활물질 및 상기 전극활물질을 포함하는 2차전지
CN105397104B (zh) * 2015-11-06 2018-01-05 南京师范大学 一种基于液相络合还原法制备纳米零价铁的方法
US20180319670A1 (en) * 2015-11-10 2018-11-08 Imerys Minerals Limited High absorption minerals
TWI586606B (zh) * 2016-07-25 2017-06-11 中國鋼鐵股份有限公司 矽酸鐵粉末的製造方法
IT201800002440A1 (it) * 2018-02-06 2019-08-06 Fabbrica Coop Perfosfati Cerea Soc Coop A R L Processo, e relativo impianto, per l’ottenimento di nanoparticelle di fosfati contenenti nutrienti minerali essenziali per la nutrizione delle piante
CN110048109B (zh) * 2019-04-25 2024-04-26 湖南桑瑞新材料有限公司 磷酸铁锂正极材料及其制备方法和电池
CN111847414A (zh) * 2019-04-28 2020-10-30 鲁东大学 一种二维磷酸铁纳米片材料的制备方法及应用
CN111115605A (zh) * 2020-01-09 2020-05-08 乳源东阳光磁性材料有限公司 一种无水磷酸铁的制备方法及生产装置
JPWO2021225068A1 (ko) * 2020-05-08 2021-11-11
CN112479175B (zh) * 2020-12-29 2023-03-14 铜陵纳源材料科技有限公司 磷酸铁连续合成装置及其合成方法
CN114644325B (zh) * 2021-12-07 2023-03-24 上海安赐环保科技股份有限公司 一种利用副产硫酸亚铁制备电池级磷酸铁的装置及方法
CN114348984A (zh) * 2022-01-17 2022-04-15 兰州兰石中科纳米科技有限公司 一种利用钛白副产制备纳米磷酸铁、纳米磷酸亚铁的方法
CN114558531A (zh) * 2022-02-23 2022-05-31 湖北宇浩高科新材料有限公司 一种磷酸铁合成反应装置及反应方法
CN115124012B (zh) * 2022-07-28 2023-09-05 四川龙蟒磷化工有限公司 一种高振实密度低硫高铁磷比磷酸铁的制备方法
CN115448275B (zh) * 2022-08-03 2023-11-24 宜都兴发化工有限公司 一种嵌段共聚物诱导制备介孔磷酸铁的方法
CN115432689A (zh) * 2022-09-30 2022-12-06 福建紫金锂元材料科技有限公司 一种高性能长寿命磷酸铁锂正极材料的制备方法
CN115571865B (zh) * 2022-10-28 2023-09-08 湖北虹润高科新材料有限公司 一种高品质磷酸铁的制备方法、高品质磷酸铁、电极
CN115537042B (zh) * 2022-11-04 2023-08-18 河北工业大学 利用铁尾矿制备环境友好型绿色复合颜料的方法
CN116281917B (zh) * 2023-03-01 2024-02-09 湖北宇浩高科新材料有限公司 电池级无水磷酸铁及其制备方法、应用、磷酸铁锂的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6458335B1 (en) * 1996-07-15 2002-10-01 Calcitech Ltd. Production of powders
JP2009029670A (ja) * 2007-07-27 2009-02-12 Kanto Denka Kogyo Co Ltd オリビン型リン酸鉄リチウム化合物及びその製造方法、並びにオリビン型リン酸鉄リチウム化合物を使用する正極活物質及び非水電解質電池
US20110068295A1 (en) * 2009-09-18 2011-03-24 A123 Systems, Inc. Ferric phosphate and methods of preparation thereof
JP2012012279A (ja) * 2009-09-09 2012-01-19 Toda Kogyo Corp リン酸第二鉄含水物粒子粉末及びその製造法、オリビン型リン酸鉄リチウム粒子粉末及びその製造法、並びに非水電解質二次電池。

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007101253A2 (en) * 2006-02-28 2007-09-07 Auburn Universtity In-situ immobilization of metals in contaminated sites using stabilized nanoparticles
TWI466370B (zh) * 2008-01-17 2014-12-21 A123 Systems Inc 鋰離子電池的混合式金屬橄欖石電極材料
CN101693531A (zh) * 2009-10-16 2010-04-14 清华大学 一种纳米磷酸铁的制备方法
KR101698762B1 (ko) * 2010-04-30 2017-01-23 삼성에스디아이 주식회사 리튬 전이금속 인산염의 제조방법
CN102456873B (zh) * 2011-04-20 2013-10-30 南京工业大学 一种锂离子电池用磷酸铁锂正极复合材料的制备方法
CN102530905B (zh) * 2011-12-22 2014-09-03 浙江天能能源科技有限公司 粒径可控的纳米FePO4的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6458335B1 (en) * 1996-07-15 2002-10-01 Calcitech Ltd. Production of powders
JP2009029670A (ja) * 2007-07-27 2009-02-12 Kanto Denka Kogyo Co Ltd オリビン型リン酸鉄リチウム化合物及びその製造方法、並びにオリビン型リン酸鉄リチウム化合物を使用する正極活物質及び非水電解質電池
JP2012012279A (ja) * 2009-09-09 2012-01-19 Toda Kogyo Corp リン酸第二鉄含水物粒子粉末及びその製造法、オリビン型リン酸鉄リチウム粒子粉末及びその製造法、並びに非水電解質二次電池。
US20110068295A1 (en) * 2009-09-18 2011-03-24 A123 Systems, Inc. Ferric phosphate and methods of preparation thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230047467A1 (en) * 2015-07-20 2023-02-16 Nadia Adam Novel Non-crystalline iron-phosphate nanoparticles for remediating toxic heavy metals and radionuclides
DE102017124791A1 (de) 2017-10-24 2019-04-25 aquen aqua-engineering GmbH Verfahren und Vorrichtung zum Einmischen einer Substanz in ein strömendes Fluid
DE102017124791B4 (de) 2017-10-24 2019-05-09 aquen aqua-engineering GmbH Verfahren und Vorrichtung zum Einmischen einer Substanz in ein strömendes Fluid
CN115701828A (zh) * 2022-11-25 2023-02-14 宁波新福钛白粉有限公司 一种用硫酸亚铁制备电池级无水磷酸铁的准连续式方法

Also Published As

Publication number Publication date
JP6419071B2 (ja) 2018-11-07
CN104619634A (zh) 2015-05-13
US20150203354A1 (en) 2015-07-23
JP2015524381A (ja) 2015-08-24
KR20140021843A (ko) 2014-02-21

Similar Documents

Publication Publication Date Title
WO2014025126A1 (ko) 나노사이즈 철인산염 입자의 제조 방법
WO2014025125A1 (ko) 리튬 금속인산화물의 제조방법
JP5442199B2 (ja) 細粒化粒子の生成方法
Huang et al. Layered cathode materials: Precursors, synthesis, microstructure, electrochemical properties, and battery performance
Xu et al. Synthesis of octahedral CuS nanocages via a solid–liquid reaction
US7674525B2 (en) Process for producing fine α-alumina particles
WO2015196866A1 (zh) 氧化亚铜的制备方法
US8846785B2 (en) Manufacturing method of core-shell-type ceria-polymer hybrid nanoparticles and dispersion sols of them
JP2010505736A (ja) 表面改質されたナノ粒子状の金属酸化物、金属水酸化物および/または金属オキシ水酸化物の製造方法
JP2008504199A5 (ko)
WO2011019171A2 (ko) 리튬티타네이트 나노입자의 제조방법
CN109336143B (zh) 一步热解法制备纳米氧化镁的方法
CN109721357A (zh) 一种单分散粒度可控的纳米钇稳定的氧化锆粉末及其制备方法和应用
CN111215032A (zh) 一种mof材料的快速制备方法
Sato et al. Hydrothermal synthesis of fine perovskite PbTiO 3 powders with a simple mode of size distribution
WO2013157775A1 (ko) 콜로이드 산화세륨 제조방법
Anzlovar et al. Sub micrometer and nano-ZnO as filler in PMMA materials
WO2021125655A2 (ko) 과산화리튬의 입도 조절 방법 및 입도가 조절된 리튬산화물의 제조방법
CN113292096B (zh) 一种非注入一步法合成无机钙钛矿纳米晶的制备方法
WO2015080304A1 (ko) 티탄산바륨의 제조방법 및 이로부터 제조되는 티탄산바륨
Chen et al. Fabrication of monodisperse zirconia-coated core–shell and hollow spheres in mixed solvents
TW200412328A (en) Method for manufacturing crystalline powder of a lithium and vanadium oxide
JP2014024957A (ja) ポリフェニレンサルファイド樹脂微粒子分散液の製造方法
WO2016111569A1 (ko) 초고압 균질기를 이용한 망간산화물 나노입자의 고속 제조 방법
JP2005330112A (ja) チタン酸バリウム粉体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828497

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14419607

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015526458

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13828497

Country of ref document: EP

Kind code of ref document: A1