WO2011019171A2 - 리튬티타네이트 나노입자의 제조방법 - Google Patents

리튬티타네이트 나노입자의 제조방법 Download PDF

Info

Publication number
WO2011019171A2
WO2011019171A2 PCT/KR2010/005193 KR2010005193W WO2011019171A2 WO 2011019171 A2 WO2011019171 A2 WO 2011019171A2 KR 2010005193 W KR2010005193 W KR 2010005193W WO 2011019171 A2 WO2011019171 A2 WO 2011019171A2
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
lithium titanate
reactor
reaction
titanate nanoparticles
Prior art date
Application number
PCT/KR2010/005193
Other languages
English (en)
French (fr)
Other versions
WO2011019171A3 (ko
Inventor
박연정
장동규
김천중
박지호
양우영
Original Assignee
삼성정밀화학(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성정밀화학(주) filed Critical 삼성정밀화학(주)
Priority to JP2012524637A priority Critical patent/JP5598545B2/ja
Priority to CN201080035853.9A priority patent/CN102471086B/zh
Priority to EP10808320.5A priority patent/EP2465821B1/en
Priority to US13/389,502 priority patent/US8398953B2/en
Publication of WO2011019171A2 publication Critical patent/WO2011019171A2/ko
Publication of WO2011019171A3 publication Critical patent/WO2011019171A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • lithium comprising the step of injecting a reaction raw material containing lithium and titanium into the reactor, mixing at the molecular level (nucleating) by chemical reaction (mixing at the molecular level) and chemical reaction (chemical reaction)
  • a method for producing titanate nanoparticles is disclosed.
  • Lithium titanate (Li 4 Ti 5 O 12 , hereinafter referred to as LTO) is a material that is expected to be used as a negative electrode active material of a lithium secondary battery.
  • the solid phase method is a method for producing LTO by mixing and heat-treating the reaction materials of the solid phase, it is difficult to manufacture uniform nanoparticles due to the high heat treatment temperature, as well as using a fine powder reaction raw material for the production of uniform nanoparticles Since there is a need to increase the dependence on the reaction raw materials there is a problem that the price competitiveness falls.
  • the sol-gel method (Sol-Gel) is a method of preparing a LTO by gelling the metal alkoxide to a sol state, and then drying and heat-treating the same, the reaction material used is expensive and reaction based on organic solvents Because of this, there are no commercialized cases with high manufacturing costs.
  • One embodiment of the present invention includes the step of injecting a reaction raw material containing lithium and titanium into the reactor to mix at the molecular level and chemical reaction (nucleating) by the chemical reaction (chemical reaction) It provides a method for producing lithium titanate nanoparticles.
  • It provides a method for producing lithium titanate nanoparticles comprising the step of chemical reaction (nucleating) the reaction raw material in the reactor (nucleating).
  • the chemical reaction may be an acid group reaction.
  • the reaction raw material may be injected into the reactor in the form of at least one of a solution form and a suspension form.
  • the reaction raw material may include an acid raw material and a basic raw material, the acid raw material may be injected into the reactor through a first raw material injection line, and the basic raw material may be injected into the reactor through a second raw material injection line.
  • the acidic raw material may include lithium and titanium, and the basic raw material may include a metal hydroxide.
  • the acidic raw material may include titanium, and the basic raw material may include lithium.
  • the acidic raw material may include lithium, and the basic raw material may include titanium.
  • the basic raw material may include lithium and titanium, and the acidic raw material may include at least one of an inorganic acid and an organic acid.
  • the time (T M ) required for mixing at the molecular level may be shorter than the time (T N ) required for nucleation.
  • the T M may be 10 to 100 ⁇ s, and the T N may be 1 ⁇ m or less.
  • the internal temperature of the reactor may be maintained at 0 ⁇ 90 °C.
  • the molar ratio (Li / Ti) of lithium and titanium in the reaction raw material may be 0.8 to 1.0.
  • the residence time of the reaction raw material in the reactor may be 1ms ⁇ 10s.
  • the reactor includes a chamber defining an internal space, a rotatable permeable packed bed disposed in the chamber and filled with a porous filler, and at least one raw material injection for injecting the reaction raw material into the internal space. It may be a high gravity rotating packed bed reactor having a line and a slurry outlet for discharging the slurry from the inner space.
  • the reactor may further include a gas outlet for discharging gas from the internal space.
  • the porous filler may contain titanium.
  • Centrifugal acceleration of the permeable packed layer may be maintained at 10 ⁇ 100,000 m / s 2 .
  • high purity lithium titanate in which Li 2 TiO 3 peaks are not substantially detected in an X-ray diffraction pattern may prepare nanoparticles.
  • a reaction raw material including lithium and titanium into a reactor, mixing at the molecular level and chemical reaction to produce nucleating crystals.
  • Lithium titer capable of inexpensively obtaining high purity nanoparticles in which the particle size distribution is uniform and the Li 2 TiO 3 peak of the (133) plane whose 2 ⁇ is around 43 to 44 degrees in the X-ray diffraction pattern is not substantially detected.
  • FIG. 1 is a cross-sectional view schematically showing a high gravity rotary packed bed reactor used in the method for producing lithium titanate nanoparticles according to an embodiment of the present invention.
  • Example 2 is a TEM photograph of the lithium titanate powder prepared in Example 1 of the present invention.
  • Example 3 is an X-ray diffraction pattern of the lithium titanate powder prepared in Example 1 of the present invention.
  • Example 4 is a TEM photograph of the lithium titanate powder prepared in Example 2 of the present invention.
  • Example 5 is an X-ray diffraction pattern of the lithium titanate powder prepared in Example 2 of the present invention.
  • Example 6 is a TEM photograph of the lithium titanate powder prepared in Example 3 of the present invention.
  • Example 7 is an X-ray diffraction pattern of the lithium titanate powder prepared in Example 3 of the present invention.
  • Example 8 is a TEM photograph of the lithium titanate powder prepared in Example 4 of the present invention.
  • Example 9 is an X-ray diffraction pattern of the lithium titanate powder prepared in Example 4 of the present invention.
  • Method for producing lithium titanate nanoparticles is a step of injecting a reaction raw material containing lithium and titanium into the reactor mixing at the molecular level in the reactor (mixing at the molecular level), and Chemical reaction of the reaction raw materials in a reactor to produce nucleating and crystal-growing them. Thereafter, the slurry discharged from the reaction may be filtered, washed, dried and / or heat treated to obtain a uniform nano-sized lithium titanate (LTO).
  • LTO nano-sized lithium titanate
  • 'lithium' means a lithium compound, a lithium atom and / or a lithium ion in some cases
  • 'titanium' means a titanium compound, a titanium atom and / or a titanium ion in some cases.
  • the "molecular level of mixing” means the level of mixing at which each molecule is mixed.
  • 'mixing' can be divided into 'macro-mixing' and 'micro-mixing', where 'macro mixing' means mixing at the vessel scale.
  • 'micro mixing' is the same as the above-described molecular level mixing.
  • the reaction raw material may be injected into the reactor in the form of at least one of a solution form and a suspension form.
  • the reaction raw material may include an acid raw material and a basic raw material.
  • the acidic raw material may be injected into the reactor through a first raw material injection line
  • the basic raw material may be injected into the reactor through a second raw material injection line.
  • the acidic raw material and the basic raw material are injected into the reactor through the first raw material injection line and the second raw material injection line, respectively, mixed at the molecular level in the reactor, and then subjected to a chemical reaction such as an acid salt group reaction to LTO nanoparticles. Will form particles.
  • the acidic raw material may include lithium and titanium.
  • the acidic raw material may include lithium chloride and titanium chloride.
  • the acidic raw material may be, for example, an aqueous LiCl / TiCl 4 solution or a water suspension.
  • the basic raw material may include a metal hydroxide such as NaOH.
  • the acidic raw material may include titanium, and the basic raw material may include lithium.
  • the acidic raw material may include titanium chloride such as TiCl 4, and the basic raw material may include lithium hydroxide such as LiOH.
  • the acidic raw material may include lithium
  • the basic raw material may include titanium
  • the acidic raw material may include lithium chloride such as LiCl
  • the basic raw material may include titanium hydroxide such as Ti (OH) 4 .
  • the basic raw material may include lithium and titanium.
  • the basic raw material may include lithium hydroxide and titanium hydroxide.
  • the basic raw material may be, for example, an LiOH / Ti (OH) 4 aqueous solution or a water suspension.
  • the acidic raw material may include an inorganic acid and / or an organic acid such as HCl or acetic acid.
  • Such lithium chloride, titanium chloride, lithium hydroxide and titanium hydroxide can be inexpensive to reduce the manufacturing cost of lithium titanate nanoparticles.
  • the chemical reaction may be an acid group reaction in which the acid and the base in the reaction raw material react by one equivalent, thereby losing the properties of the acid and the base.
  • the time (T M ) required for mixing at the molecular level may be shorter than the time (T N ) required for nucleation.
  • 'T M ' refers to the time taken from the start of mixing until the composition of the mixture becomes spatially uniform
  • 'T N ' means that the seed formation rate is in equilibrium from the point where the seed starts to form. It means the time it takes to reach and produce seed at a constant rate.
  • T M when the maximum mixing between molecules is made before the start of nucleation in the reactor, nanoparticle-sized LTO particles having a uniform particle size distribution can be prepared.
  • the T M is 10 ⁇ 100 ⁇ s
  • the T N may be 1 ⁇ or less. If the T M is less than 10 GPa, it is not preferable from the economical point of view. In addition, when the T N exceeds 1 kPa, an appropriate level of reaction does not occur and thus yield is not preferable.
  • the internal temperature of the reactor may be maintained at 0 ⁇ 90 °C, for example, 20 ⁇ 80 °C. If the temperature is less than 0 ° C., an appropriate level of yield cannot be secured, which is not preferable. If the temperature is higher than 90 ° C., T N is difficult to control, which is not preferable.
  • the molar ratio (Li / Ti) of lithium and titanium in the reaction raw material may be 0.8 ⁇ 1.0. If the molar ratio (Li / Ti) is less than 0.8, it is not preferable because Ti-rich crystals are produced as by-products.
  • the residence time of the reaction raw material in the reactor may be 1ms ⁇ 10s, for example, 10ms ⁇ 5s. If the residence time of the reaction raw material is less than 1 ms, an appropriate level of reaction does not occur, and it is not preferable. If it exceeds 10 s, size adjustment becomes difficult, and economical efficiency is not preferable.
  • FIG. 1 is a cross-sectional view schematically showing a high gravity rotating packed bed reactor used in the method for producing lithium titanate nanoparticles according to an embodiment of the present invention.
  • This high gravity rotary packed reactor 10 is a chamber 11 defining an interior space, a rotatable permeable packed bed disposed in the chamber 11 and filled with a porous filler 12a ( 12) at least one raw material injection line for injecting the reaction raw material into the inner space; And a slurry outlet 15 for discharging the slurry from the inner space.
  • the reactor 10 may further include a gas outlet 16 for discharging gas from the internal space.
  • Porous filler 12a may contain titanium which is highly corrosion resistant. Specifically, the porous filler 12a may be titanium foam.
  • the permeable packed layer 12 is filled with a porous filler 12a therein and may transmit the reaction raw material injected into the reactor 10 in the form of a solution or a suspension, and may be rotated by the drive shaft 13. have.
  • the centrifugal acceleration of the permeable filler 12 can be maintained at 10 ⁇ 100,000 m / s 2 . If the centrifugal acceleration of the permeable packed layer 12 is less than 10 m / s 2, the reaction may not proceed to an appropriate level. On the other hand, the centrifugal acceleration of the transparent packed layer 12 is hard to exceed 100,000 m / s 2 .
  • the reaction raw materials can be mixed at the molecular level by high centrifugal force by controlling the rotational speed of the permeable packed bed 12, so that the reaction proceeds smoothly even at low temperatures. You can. In other words, by uniformly mixing the reaction material of the fine droplets before the LTO particles grow, it is possible to obtain uniform LTO nanoparticles at low temperature.
  • the LTO prepared by the method for preparing lithium titanate nanoparticles according to the embodiment of the present invention may have a spinel structure, and an average particle diameter thereof may be 0.01 to 10 ⁇ m, for example, 0.05 to 0.8 ⁇ m.
  • the height ratio of the Li 2 TiO 3 peak on the (133) plane and the Li 4 Ti 5 O 12 peak on the (400) plane having a 2 ⁇ of around 43 to 44 degrees is 0.5 / 100 (measurement limit of the XRD equipment)
  • the prepared lithium titanate nanoparticles can be used for the negative electrode material of the lithium secondary battery.
  • a reactor 10 similar to the reactor of FIG. 1 was manufactured by itself.
  • the specifications of the manufactured reactor 10 were as follows.
  • Permeable filling layer 12 cylindrical, stainless steel, inner diameter 10 cm, outer diameter 30 cm, thickness 10 cm
  • Porous filler (12a) 4 titanium foams (about 400 voids / m, outer diameter 30cm, inner diameter 10.5cm, axial thickness 2.5cm)
  • the drive shaft 13 of the reactor 10 is rotated to rotate the permeable packed bed 12 at a speed of 3000 rpm (centrifugal acceleration: 10000 m / s 2 ) while the reactor 10
  • the internal temperature of was maintained at 80 ° C.
  • the drive shaft 13 of the reactor 10 prepared in Example 1 was rotated to make the permeable packed bed 12 at a speed of 3000 rpm (centrifugal acceleration: 500 m / s 2 ).
  • the internal temperature of the reactor 10 was maintained at 90 ° C. while rotating.
  • LTO nanoparticles were prepared in the same manner as in Example 2, except that the LTO nanoparticles were continuously injected into the reactor 10 at a flow rate of 40 L / min, filtered, washed, and dried to obtain LTO powder.
  • a 6.0 mol / L aqueous HCl solution, a 2.0 mol / L LiOH aqueous solution and a 2.0 mol / L Ti (OH) 4 aqueous solution are prepared, and the aqueous LiOH aqueous solution and Ti (OH) 4 aqueous solution are mixed.
  • the molar ratio (Li / Ti) of Li and Ti in the mixed solution was 1.0.
  • the HCl aqueous solution and the LiOH / Ti (OH) 4 mixed solution were respectively 40 L / in the reactor 10 through the first raw material injection line 4-1 and the second raw material injection line 4-1.
  • LTO nanoparticles were prepared in the same manner as in Example 1, except that the mixture was continuously injected at a flow rate of min, and subjected to heat treatment at a temperature of 850 ° C. for 3 hours after filtration, washing, and drying to obtain LTO powder. .
  • Li 2 CO 3 and 5 mol of TiO 2 were mixed with 10 mol of water for 24 hours in a ball mill, dried in an oven at 120 ° C., and heat-treated at 950 ° C. for 3 hours to obtain LTO powder.
  • the manufacturing method according to an embodiment of the present invention LTO particles having a relatively uniform particle size distribution and nano-sized particle size, despite the use of inexpensive reaction raw materials, compared to the manufacturing method of the comparative example It can be seen that can be obtained. Specifically, it can be seen from FIGS. 2, 4, 6, and 8 that the particles prepared in Examples 1 to 4 have a nano size and that the particle size distribution of each particle is uniform, and FIGS. 3, 5, and 7 From 9 and it can be seen that each particle produced is LTO (Li 4 Ti 5 O 12 ). From the XRD pattern (Fig.
  • each numerical value (for example, 200 nm in FIG. 2) shown in FIGS. 2, 4, 6, 8, and 10 means the length of the thick bar shown in each figure, and FIGS. 3, 5, 7, 9
  • each numerical value (eg, (111) in FIG. 3) indicated by 11 means a crystal plane index.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

리튬티타네이트 나노입자의 제조방법이 개시된다. 개시된 리튬 및 티타늄을 포함하는 반응원료를 반응기에 주입하여 상기 반응기내에서 분자 수준으로 혼합(mixing at the molecular level)하는 단계 및 상기 반응기 내에서 상기 반응원료를 화학반응(chemical reaction)시켜 결정핵을 생성(nucleating)하는 단계를 포함한다.

Description

리튬티타네이트 나노입자의 제조방법
리튬티타네이트 나노입자의 제조방법이 개시된다. 보다 상세하게는, 리튬 및 티타늄을 포함하는 반응원료를 반응기에 주입하여 분자 수준으로 혼합(mixing at the molecular level)하고 화학반응(chemical reaction)시켜 결정핵을 생성(nucleating)하는 단계를 포함하는 리튬티타네이트 나노입자의 제조방법이 개시된다.
리튬티타네이트(Li4Ti5O12, 이하 LTO라고 함)는 리튬 2차전지의 음극 활물질로 사용될 것으로 기대되고 있는 물질이다.
이러한 LTO의 제조방법으로는, 예를 들어, 고상법 및 졸겔법이 있다.
상기 고상법은 고상의 반응원료를 혼합하고 열처리하여 LTO를 제조하는 방법으로서, 열처리온도가 높아 균일한 나노입자의 제조가 어려울뿐만 아니라, 균일한 나노입자의 제조를 위해서는 미립의 분말 반응원료를 사용하여야 하기 때문에 반응원료에 대한 의존도가 높아져서 가격 경쟁력이 떨어지는 문제점이 있다.   
상기 졸겔법(Sol-Gel)은 금속 알콕사이드를 졸 상태로 만든 후 축합반응을 통해 겔화시킨 다음, 이를 건조 및 열처리하여 LTO를 제조하는 방법으로서, 사용되는 반응원료의 가격이 높고 유기용매에 기초한 반응이기 때문에 제조비용이 높아 상업화된 사례가 전무한 실정이다.
본 발명의 일 구현예는 리튬 및 티타늄을 포함하는 반응원료를 반응기에 주입하여 분자 수준으로 혼합(mixing at the molecular level)하고 화학반응(chemical reaction)시켜 결정핵을 생성(nucleating)하는 단계를 포함하는 리튬티타네이트 나노입자의 제조방법을 제공한다.
본 발명의 일 측면은,
리튬 및 티타늄을 포함하는 반응원료를 반응기에 주입하여 상기 반응기내에서 분자 수준으로 혼합(mixing at the molecular level)하는 단계; 및
상기 반응기 내에서 상기 반응원료를 화학반응(chemical reaction)시켜 결정핵을 생성(nucleating)하는 단계를 포함하는 리튬티타네이트 나노입자의 제조방법을 제공한다.
상기 화학반응은 산염기 반응일 수 있다.
상기 반응원료는 용액 형태 및 현탁액 형태 중 적어도 하나의 형태로 상기 반응기에 주입될 수 있다.
상기 반응원료는 산성 원료 및 염기성 원료를 포함하고, 상기 산성원료는 제1 원료 주입라인을 통해 상기 반응기에 주입되고, 상기 염기성 원료는 제2 원료 주입라인을 통해 상기 반응기에 주입될 수 있다.
상기 산성 원료는 리튬 및 티타늄을 포함하고, 상기 염기성 원료는 금속 수산화물을 포함할 수 있다.
상기 산성 원료는 티타늄을 포함하고, 상기 염기성 원료는 리튬을 포함할 수 있다.
상기 산성 원료는 리튬을 포함하고, 상기 염기성 원료는 티타늄을 포함할 수 있다.
상기 염기성 원료는 리튬 및 티타늄을 포함하고, 상기 산성 원료는 무기산 및 유기산 중 적어도 1종을 포함할 수 있다.
상기 분자 수준의 혼합에 소요되는 시간(TM)은 상기 결정핵 생성에 소요되는 시간(TN) 보다 짧을 수 있다.
상기 TM은 10~100㎲이고, 상기 TN은 1㎳ 이하일 수 있다.
상기 반응기의 내부 온도는 0~90℃로 유지될 수 있다.
상기 반응원료 중 리튬과 티타늄의 몰비(Li/Ti)는 0.8~1.0일 수 있다.
상기 반응기 내에서 상기 반응원료의 체류시간은 1㎳~10s일 수 있다.
상기 반응기는, 내부공간을 한정하는 챔버(chamber), 상기 챔버내에 배치되고 다공성 충전재가 충전된 회전가능한 투과성 충전층(permeable packed bed), 상기 반응원료를 상기 내부공간에 주입하는 적어도 하나의 원료 주입라인, 및 상기 내부공간으로부터 슬러리를 배출하는 슬러리 배출구를 구비하는 고중력 회전 충전형 반응기(high gravity rotating packed bed reactor)일 수 있다.
상기 반응기는 상기 내부공간으로부터 가스를 배출하는 가스 배출구를 추가로 구비할 수 있다.
상기 다공성 충전재는 티타늄을 함유할 수 있다.
상기 투과성 충전층의 원심 가속도는 10~100,000m/s2로 유지될 수 있다.
상기 리튬티타네이트 나노입자의 제조방법은 X선 회절 패턴에서 Li2TiO3 피크가 실질적으로 검출되지 않는 고순도의 리튬티타네이트는 나노입자를 제조할 수 있다.
본 발명의 일 구현예에 의하면, 리튬 및 티타늄을 포함하는 반응원료를 반응기에 주입하여 분자 수준으로 혼합(mixing at the molecular level)하고 화학반응(chemical reaction)시켜 결정핵을 생성(nucleating)하는 단계를 포함함으로써, 입도분포가 균일하고 X선 회절 패턴에서 2θ가 43~44도 근방인 (133)면의 Li2TiO3 피크가 실질적으로 검출되지 않는 고순도의 나노입자를 저렴하게 얻을 수 있는 리튬티타네이트 나노입자의 제조방법이 제공된다.
도 1은 본 발명의 일 구현예에 따른 리튬티타네이트 나노입자의 제조방법에 사용되는 고중력 회전 충전층 반응기를 개략적으로 도시한 단면도이다.
도 2는 본 발명의 실시예 1에서 제조된 리튬티타네이트 분말의 TEM 사진이다.
도 3은 본 발명의 실시예 1에서 제조된 리튬티타네이트 분말의 X선 회절 패턴이다.
도 4는 본 발명의 실시예 2에서 제조된 리튬티타네이트 분말의 TEM 사진이다.
도 5는 본 발명의 실시예 2에서 제조된 리튬티타네이트 분말의 X선 회절 패턴이다.
도 6은 본 발명의 실시예 3에서 제조된 리튬티타네이트 분말의 TEM 사진이다.
도 7은 본 발명의 실시예 3에서 제조된 리튬티타네이트 분말의 X선 회절 패턴이다.
도 8은 본 발명의 실시예 4에서 제조된 리튬티타네이트 분말의 TEM 사진이다.
도 9는 본 발명의 실시예 4에서 제조된 리튬티타네이트 분말의 X선 회절 패턴이다.
도 10은 본 발명의 비교예에서 제조된 리튬티타네이트 분말의 TEM 사진이다.
도 11은 본 발명의 비교예에서 제조된 리튬티타네이트 분말의 X선 회절 패턴이다.
이어서, 본 발명의 일 구현예에 따른 리튬티타네이트 나노입자의 제조방법에 관하여 상세히 설명한다.
본 발명의 일 구현예에 따른 리튬티타네이트 나노입자의 제조방법은 리튬 및 티타늄을 포함하는 반응원료를 반응기에 주입하여 상기 반응기내에서 분자 수준으로 혼합(mixing at the molecular level)하는 단계, 및 상기 반응기 내에서 상기 반응원료를 화학반응(chemical reaction)시켜 결정핵을 생성(nucleating)하고 이를 나노크기로 성장시키는(crystal growing) 단계를 포함한다. 이후 상기 반응에서 배출된 슬러리를 여과, 세척, 건조 및/또는 열처리시킴으로써 균일한 나노크기의 리튬티타네이트(LTO)를 얻을 수 있다.
본 명세서에서, '리튬'이란 경우에 따라 리튬 화합물, 리튬 원자 및/또는 리튬 이온을 의미하고, '티타늄'이란 경우에 따라 티타늄 화합물, 티타늄 원자 및/또는 티타늄 이온을 의미한다.
또한 본 명세서에서, '분자 수준의 혼합'이란 각 분자끼리 혼합되는 수준의 혼합을 의미한다. 일반적으로, '혼합(mixing)' 은 '매크로 혼합(macro-mixing)' 과 '마이크로 혼합(micro-mixing)'으로 구분될 수 있는데, '매크로 혼합'은 용기 수준(vessel scale)의 혼합을 의미하고, '마이크로 혼합'은 전술한 분자 수준의 혼합과 같은 의미이다.
상기 반응원료는 용액 형태 및 현탁액 형태 중 적어도 하나의 형태로 상기 반응기에 주입될 수 있다.
상기 반응원료는 산성 원료 및 염기성 원료를 포함할 수 있다. 이 경우, 상기 산성원료는 제1 원료 주입라인을 통해 상기 반응기에 주입되고, 상기 염기성 원료는 제2 원료 주입라인을 통해 상기 반응기에 주입될 수 있다. 따라서, 상기 산성 원료와 염기성 원료는 각각 상기 제1 원료 주입라인 및 제2 원료 주입라인을 통해 상기 반응기에 주입되어 상기 반응기 내에서 분자 수준으로 혼합된 후 산염기 반응과 같은 화학반응을 거쳐 LTO 나노입자를 형성하게 된다.
상기 산성 원료는 리튬 및 티타늄을 포함할 수 있다. 구체적으로, 상기 산성 원료는 리튬 염화물 및 티타늄 염화물을 포함할 수 있다. 상기 산성 원료는, 예를 들어, LiCl/TiCl4 수용액 또는 수현탁액일 수 있다. 이 경우, 상기 염기성 원료는 NaOH와 같은 금속 수산화물을 포함할 수 있다.
또한, 상기 산성 원료는 티타늄을 포함하고, 상기 염기성 원료는 리튬을 포함할 수 있다. 구체적으로, 상기 산성 원료는 TiCl4와 같은 티타늄 염화물을 포함하고, 상기 염기성 원료는 LiOH와 같은 리튬 수산화물을 포함할 수 있다.
또한, 상기 산성 원료는 리튬을 포함하고, 상기 염기성 원료는 티타늄을 포함할 수 있다. 구체적으로, 상기 산성 원료는 LiCl과 같은 리튬 염화물을 포함하고, 상기 염기성 원료는 Ti(OH)4와 같은 티타늄 수산화물을 포함할 수 있다.
또한, 상기 염기성 원료는 리튬 및 티타늄을 포함할 수 있다. 구체적으로, 상기 염기성 원료는 리튬 수산화물 및 티타늄 수산화물을 포함할 수 있다. 상기 염기성 원료는, 예를 들어, LiOH/Ti(OH)4 수용액 또는 수현탁액일 수 있다. 이 경우, 상기 산성 원료는 HCl 또는 아세트산과 같은 무기산 및/또는 유기산을 포함할 수 있다.
이러한 리튬 염화물, 티타늄 염화물, 리튬 수산화물 및 티타늄 수산화물은 가격이 저렴하여 리튬 티타네이트 나노입자의 제조비용을 절감시킬 수 있다.
상기 화학반응은 상기 반응원료 중의 산과 염기가 1당량씩 반응하여 산 및 염기로서의 성질을 잃는 산염기 반응일 수 있다.
상기 분자 수준의 혼합에 소요되는 시간(TM)은 상기 결정핵 생성에 소요되는 시간(TN) 보다 짧을 수 있다.
본 명세서에서, 'TM'은 혼합 개시 시점에서부터 혼합물의 조성이 공간적으로 균일해질 때까지 걸리는 시간을 의미하고, 'TN'은 결정핵이 생성되기 시작하는 시점에서부터 결정핵 생성속도가 평형에 도달하여 결정핵이 일정한 속도로 생성될 때까지 소요되는 시간을 의미한다.
이와 같이 TM을 TN 보다 짧도록 조절함으로써, 반응기내에서 핵생성이 시작되기 전에 분자간의 최대 혼합이 이루어지게 되면 입도분포가 균일한 나노크기의 LTO 입자를 제조할 수 있다. 구체적으로, 상기 TM은 10~100㎲이고, 상기 TN은 1㎳ 이하일 수 있다. 상기 TM이 10㎲ 미만이면 경제성 측면에서 바람직하지 않고, 100㎲를 초과하면 입도 균일도가 떨어져서 바람직하지 않다. 또한, 상기 TN이 1㎳를 초과하면 적정한 수준의 반응이 일어나지 않아 수율이 떨어지므로 바람직하지 않다.
상기 LTO 나노입자의 제조시 상기 반응기의 내부 온도는 0~90℃, 예를 들어, 20~80℃로 유지될 수 있다. 상기 온도가 0℃ 미만이면 적정한 수준의 수율을 확보할 수 없어서 바람직하지 않고, 90℃를 초과하면 TN의 조절이 어려워져서 바람직하지 않다. 또한, 상기 반응원료 중 리튬과 티타늄의 몰비(Li/Ti)는 0.8~1.0일 수 있다. 상기 몰비(Li/Ti)가 0.8 미만이면 부생성물로 Ti-rich한 결정이 생성되기 때문에 바람직하지 않고, 1.0을 초과하면 부생성물로 Li-rich한 결정이 생성되기 때문에 바람직하지 않다.
상기 반응기 내에서 상기 반응원료의 체류시간은 1㎳~10s, 예를 들어, 10㎳~5s일 수 있다. 상기 반응원료의 체류시간이 1㎳ 미만이면 적정한 수준의 반응이 일어나지 않아서 바람직하지 않고, 10s를 초과하면 사이즈 조절이 어려워지고, 경제성이 떨어져서 바람직하지 않다.
도 1은 본 발명의 일 구현예에 따른 리튬티타네이트 나노입자의 제조방법에 사용되는 고중력 회전 충전층 반응기(high gravity rotating packed bed reactor)를 개략적으로 도시한 단면도이다.
이러한 고중력 회전 충전형 반응기(10)는 내부공간을 한정하는 챔버(chamber)(11), 챔버(11)내에 배치되고 다공성 충전재(12a)가 충전된 회전가능한 투과성 충전층(permeable packed bed)(12), 상기 내부공간에 상기 반응원료를 주입하는 적어도 하나의 원료 주입라인; 및 상기 내부공간으로부터 슬러리를 배출하는 슬러리 배출구(15)를 구비할 수 있다.
또한, 상기 반응기(10)는 상기 내부공간으로부터 가스를 배출하는 가스 배출구(16)를 추가로 구비할 수 있다.
다공성 충전재(12a)는 내부식성 강한 티타늄을 함유할 수 있다. 구체적으로, 이러한 다공성 충전재는(12a)은 티타늄 폼(titanium foam)일 수 있다.
투과성 충전층(12)은 그 내부에 다공성 충전재(12a)가 충전되어 있으며 용액 형태 또는 현탁액 형태로 반응기(10)에 주입된 반응원료를 투과시킬 수 있는 것으로, 구동축(13)에 의해 회전될 수 있다. 이러한 투과성 충전충(12)의 원심 가속도는 10~100,000m/s2로 유지될 수 있다. 상기 투과성 충전층(12)의 원심 가속도가 10m/s2 미만이면 반응이 적정수준으로 진행되지 못한다. 한편, 상기 투과성 충전층(12)의 원심 가속도는 100,000m/s2를 초과하기 어렵다.
상기와 같은 구성을 갖는 반응기(10)는 대기압하에서 작동되지만 투과성 충전층(12)의 회전속도를 조절함으로써 높은 원심력에 의해 반응원료를 분자 수준으로 혼합할 수 있기 때문에, 저온에서도 반응을 원활하게 진행시킬 수 있다. 즉, 미세한 액적의 반응원료를 LTO 입자가 성장하기 전에 잘 혼합함으로써 저온에서 균일한 LTO 나노입자를 얻을 수 있다.
본 발명의 일 구현예에 따른 리튬티타네이트 나노입자의 제조방법에 의해 제조된 LTO는 스피넬 구조를 가질 수 있으며, 그 평균입경이 0.01~10㎛, 예를 들어, 0.05~0.8㎛일 수 있다. 또한 X선 회절 패턴에서 2θ가 43~44도 근방인 (133)면의 Li2TiO3 피크와 (400) 면의 Li4Ti5O12 피크의 높이 비가 0.5/100 (XRD 장비의 측정 한계) 이하로서, 실질적으로 Li2TiO3 피크가 검출되지 않는 고순도의 리튬티타네이트 제조가 가능하다. 따라서, 상기 제조된 리튬티타네이트 나노입자는 리튬 2차전지의 음극재료 등에 사용될 수 있다.
이하, 실시예들을 들어 본 발명에 관하여 더욱 상세히 설명하지만, 본 발명이 이러한 실시예들에 한정되는 것은 아니다.
실시예
실시예 1
(1) 6.0mol/L의 NaOH 수용액을 제조하였다.
(2) 2.0mol/L의 LiCl 수용액 및 2.0mol/L의 TiCl4 수용액을 각각 제조한 후 상기 2종의 금속 염화물 수용액을 서로 혼합하였다. 이때, 상기 혼합용액 중 Li와 Ti의 몰비(Li/Ti)는 0.8이었다.
(3) 도 1의 반응기와 유사한 반응기(10)를 자체 제작하였다. 제작된 반응기(10)의 사양은 하기와 같았다.
Figure PCTKR2010005193-appb-I000001
투과성 충전층(12): 스테인리스 스틸 재질, 내경 10cm, 외경 30cm, 두께 10cm인 원통형
Figure PCTKR2010005193-appb-I000002
다공성 충전재(12a): 4장의 티타늄 폼(약 400개의 공극/m, 외경 30cm, 내경 10.5cm, 축방향 두께 2.5cm)
(4) LTO 나노입자의 제조를 위해, 상기 반응기(10)의 구동축(13)을 회전시켜 투과성 충전층(12)을 3000rpm의 속도(원심 가속도: 10000m/s2)로 회전시키면서 반응기(10)의 내부온도를 80℃로 유지시켰다.
(5) 상기 (1)에서 제조한 NaOH 수용액 및 상기 (2)에서 제조한 LiCl/TiCl4 혼합용액을 각각 제1 원료 주입라인(4-1) 및 제2 원료 주입라인(4-2)을 통해 상기 반응기(10)에 각각 40L/min의 유속으로 연속적으로 주입하여 LTO 나노입자를 얻었다.
(6) 상기 제조된 LTO 나노입자를 함유하는 슬러리를 슬러리 배출구(15)로 배출시켰다.
(7) 상기 슬러리를 필터로 여과하고, 물로 세척한후, 건조기에서 120℃의 온도로 건조시켜 LTO 분말을 얻었다.
실시예 2
(1) 2.0mol/L의 LiOH 수용액을 제조하였다.
(2) 2.0mol/L의 TiCl4 수용액을 제조하였다.
(3) LTO 나노입자의 제조를 위해, 상기 실시예 1에서 제조한 반응기(10)의 구동축(13)을 회전시켜 투과성 충전층(12)을 3000rpm의 속도(원심 가속도: 500m/s2)로 회전시키면서 반응기(10)의 내부온도를 90℃로 유지시켰다.
(4) 상기 (1)에서 제조한 LiOH 수용액 및 상기 (2)에서 제조한 TiCl4 수용액을 각각 제1 원료 주입라인(4-1) 및 제2 원료 주입라인(4-1)을 통해 상기 반응기(10)에 각각 40L/min의 유속으로 연속적으로 주입하여 LTO 나노입자를 얻었다. 이때, 상기 LiOH 수용액과 중 TiCl4 수용액 중 Li와 Ti의 몰비(Li/Ti)는 1.0이었다.
(5) 상기 제조된 LTO 나노입자를 함유하는 슬러리를 슬러리 배출구(15)로 배출시켰다.
(6) 상기 슬러리를 필터로 여과하고, 물로 세척한후, 건조기에서 120℃의 온도로 건조시켜 LTO 분말을 얻었다.
실시예 3
2.0mol/L의 LiCl 수용액 및 2.0mol/L의 Ti(OH)4 수용액을 제조한 후, 상기 각 수용액을 각각 제1 원료 주입라인(4-1) 및 제2 원료 주입라인(4-1)을 통해 상기 반응기(10)에 각각 40L/min의 유속으로 연속적으로 주입한 것을 제외하고는, 상기 실시예 2와 동일한 방법으로 LTO 나노입자를 제조하고, 여과, 세척 및 건조하여 LTO 분말을 얻었다.
실시예 4
6.0mol/L의 HCl 수용액, 2.0mol/L의 LiOH 수용액 및 2.0mol/L의 Ti(OH)4 수용액을 제조하고, 상기 LiOH 수용액 및 Ti(OH)4 수용액을 혼합한다. 이때, 상기 혼합용액 중 Li와 Ti의 몰비(Li/Ti)는 1.0 이었다. 이후, 상기 HCl 수용액 및 상기 LiOH/Ti(OH)4 혼합용액을 각각 제1 원료 주입라인(4-1) 및 제2 원료 주입라인(4-1)을 통해 상기 반응기(10)에 각각 40L/min의 유속으로 연속적으로 주입한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 LTO 나노입자를 제조하고, 여과, 세척 및 건조 후 850℃의 온도에서 3시간 동안 열처리를 진행하여 LTO 분말을 얻었다.
비교예
2mol의 Li2CO3와 5mol의 TiO2를 10mol의 물과 섞어 볼밀에서 24시간 혼합한 후 120℃ 오븐에 건조하고, 950℃의 온도에서 3시간 동안 열처리를 진행하여 LTO 분말을 얻었다.
분석예
상기 실시예 1~4 및 비교예에서 제조한 리튬티타네이트 분말의 TEM 사진 및 X선 회절 패턴을 분석하여 도 2 내지 도 11에 각각 나타내었다. 사용된 TEM 및 XRD의 사양 및 분석조건을 하기 표 1에 나타내었다.
표 1
TEM XRD
사양 제조사 JEOL Rikagu
모델명 2100F D/Max-2500VK/PC
분석조건 200kV CuKa radiation, speed 4°min-1
도 2 내지 도 11을 참조하면, 본 발명의 일 구현예에 따른 제조방법은 비교예의 제조방법과 비교하여, 가격이 저렴한 반응원료를 사용하였음에도 불구하고 입도분포가 비교적 균일하고 나노사이즈를 갖는 LTO 입자를 얻을 수 있음을 확인할 수 있다. 구체적으로, 도 2, 4, 6 및 8로부터는 실시예 1~4에서 제조된 입자가 나노사이즈를 갖는다는 사실 및 각 입자의 입도분포가 균일하다는 사실을 알 수 있고, 도 3, 5, 7 및 9로부터는 상기 제조된 각 입자가 LTO(Li4Ti5O12)라는 사실을 알 수 있다. 비교예에서 제조한 LTO 입자의 XRD 패턴(도 11)으로부터, (133)면의 Li2TiO3 피크와 (400)면의 Li4Ti5O12 피크의 높이 비가 4.48/100인 것을 감안하여, 본 발명의 일 구현예에 따른 제조방법에 따라 제조된 LTO 나노 입자의 XRD 패턴인 도 3, 5, 7 및 9에서는 2θ가 43~44도 근방인 (133)면의 Li2TiO3 피크 높이와 (400)면의 Li4Ti5O12 피크의 높이를 상호 비교하면, Li2TiO3 피크가 실질적으로 관찰되지 않는(trace) 고순도의 리튬티타네이트 제조가 가능하다는 것을 알 수 있다. 참고로, 도 2, 4, 6, 8 및 10에 표시된 각 수치(예를 들어, 도 2의 200㎚)는 각 도면에 도시된 굵은 바의 길이를 의미하고, 도 3, 5, 7, 9 및 11에 표시된 각 수치(예를 들어, 도 3의 (111))는 결정면지수를 의미한다.
이상에서 도면 및 실시예를 참조하여 본 발명에 따른 바람직한 실시예가 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 보호범위는 첨부된 특허청구범위에 의해서 정해져야 할 것이다.

Claims (16)

  1. 리튬 및 티타늄을 포함하는 반응원료를 반응기에 주입하여 상기 반응기내에서 분자 수준으로 혼합(mixing at the molecular level)하는 단계; 및
    상기 반응기 내에서 상기 반응원료를 화학반응(chemical reaction)시켜 결정핵을 생성(nucleating)하는 단계를 포함하는 리튬티타네이트 나노입자의 제조방법.
  2. 제1항에 있어서,
    상기 화학반응은 산염기 반응인 리튬티타네이트 나노입자의 제조방법.
  3. 제1항에 있어서,
    상기 반응원료는 용액 형태 및 현탁액 형태 중 적어도 하나의 형태로 상기 반응기에 주입되는 리튬티타네이트 나노입자의 제조방법.
  4. 제3항에 있어서,
    상기 반응원료는 산성 원료 및 염기성 원료를 포함하고, 상기 산성원료는 제1 원료 주입라인을 통해 상기 반응기에 주입되고, 상기 염기성 원료는 제2 원료 주입라인을 통해 상기 반응기에 주입되는 리튬티타네이트 나노입자의 제조방법.
  5. 제4항에 있어서,
    상기 산성 원료는 리튬 및 티타늄을 포함하고, 상기 염기성 원료는 금속 수산화물을 포함하는 리튬티타네이트 나노입자의 제조방법.
  6. 제4항에 있어서,
    상기 산성 원료는 티타늄을 포함하고, 상기 염기성 원료는 리튬을 포함하는 리튬티타네이트 나노입자의 제조방법.
  7. 제4항에 있어서,
    상기 산성 원료는 리튬을 포함하고, 상기 염기성 원료는 티타늄을 포함하는 리튬티타네이트 나노입자의 제조방법.
  8. 제4항에 있어서,
    상기 염기성 원료는 리튬 및 티타늄을 포함하고, 상기 산성 원료는 무기산 및 유기산 중 적어도 1종을 포함하는 리튬티타네이트 나노입자의 제조방법.
  9. 제1항에 있어서,
    상기 분자 수준의 혼합에 소요되는 시간(TM)은 상기 결정핵 생성에 소요되는 시간(TN) 보다 짧은 리튬티타네이트 나노입자의 제조방법.
  10. 제9항에 있어서,
    상기 TM은 10~100㎲이고, 상기 TN은 1㎳ 이하인 리튬티타네이트 나노입자의 제조방법.
  11. 제1항에 있어서,
    상기 반응기의 내부 온도는 0~90℃로 유지되는 리튬티타네이트 나노입자의 제조방법.
  12. 제1항에 있어서,
    상기 반응원료 중 리튬과 티타늄의 몰비(Li/Ti)는 0.8~1.0인 리튬티타네이트 나노입자의 제조방법.
  13. 제1항에 있어서,
    상기 반응기 내에서 상기 반응원료의 체류시간은 1㎳~10s인 리튬티타네이트 나노입자의 제조방법.
  14. 제1항에 있어서,
    상기 반응기는,
    내부공간을 한정하는 챔버(chamber);
    상기 챔버내에 배치되고 다공성 충전재가 충전된 회전가능한 투과성 충전층(permeable packed bed);
    상기 내부공간에 상기 반응원료를 주입하는 적어도 하나의 원료 주입라인; 및
    상기 내부공간으로부터 슬러리를 배출하는 슬러리 배출구를 구비하는 고중력 회전 충전형 반응기(high gravity rotating packed bed reactor)인 리튬티타네이트 나노입자의 제조방법.
  15. 제14항에 있어서,
    상기 투과성 충전층의 원심 가속도는 10~100,000m/s2로 유지되는 리튬티타네이트 나노입자의 제조방법.
  16. 제 1항에 있어서,
    X선 회절 패턴에서 Li2TiO3 피크가 실질적으로 검출되지 않는 고순도의 리튬티타네이트 나노입자의 제조방법.
PCT/KR2010/005193 2009-08-11 2010-08-09 리튬티타네이트 나노입자의 제조방법 WO2011019171A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012524637A JP5598545B2 (ja) 2009-08-11 2010-08-09 チタン酸リチウムナノ粒子の製造方法
CN201080035853.9A CN102471086B (zh) 2009-08-11 2010-08-09 钛酸锂纳米粒子的制造方法
EP10808320.5A EP2465821B1 (en) 2009-08-11 2010-08-09 Method for producing nanoscale lithium titanate particles
US13/389,502 US8398953B2 (en) 2009-08-11 2010-08-09 Method of preparing lithium titanate nanoparticles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090073999A KR101128860B1 (ko) 2009-08-11 2009-08-11 리튬티타네이트 나노입자의 제조방법
KR10-2009-0073999 2009-08-11

Publications (2)

Publication Number Publication Date
WO2011019171A2 true WO2011019171A2 (ko) 2011-02-17
WO2011019171A3 WO2011019171A3 (ko) 2011-05-19

Family

ID=43586621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/005193 WO2011019171A2 (ko) 2009-08-11 2010-08-09 리튬티타네이트 나노입자의 제조방법

Country Status (6)

Country Link
US (1) US8398953B2 (ko)
EP (1) EP2465821B1 (ko)
JP (1) JP5598545B2 (ko)
KR (1) KR101128860B1 (ko)
CN (1) CN102471086B (ko)
WO (1) WO2011019171A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9537149B2 (en) 2010-04-30 2017-01-03 Samsung Sdi Co., Ltd. Method for manufacturing a lithium transition metal phosphate

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9428396B2 (en) * 2011-04-28 2016-08-30 Ishihara Sangyo Kaisha, Ltd Method for producing lithium titanate precursor, method for producing lithium titanate, lithium titanate, electrode active material, and electricity storage device
KR20120140396A (ko) * 2011-06-21 2012-12-31 삼성정밀화학 주식회사 전지 특성을 개선시키는 전극 활물질 제조 방법 및 그로부터 제조된 전극 활물질을 포함하는 리튬이차전지
KR101973052B1 (ko) 2012-08-10 2019-04-26 삼성에스디아이 주식회사 리튬 금속인산화물의 제조방법
WO2014056111A1 (en) * 2012-10-10 2014-04-17 HYDRO-QUéBEC Layered and spinel lithium titanates and processes for preparing the same
CN103035898A (zh) * 2012-12-21 2013-04-10 深圳市天骄科技开发有限公司 一种纳米片状锂离子电池正极材料及其制备方法
KR102048839B1 (ko) * 2013-12-27 2019-11-27 삼성전기주식회사 티탄산바륨의 제조방법
CN104192873B (zh) * 2014-09-23 2016-08-24 中国科学院青海盐湖研究所 一种通过控制物料浓度提高碳酸锂碳化效率的方法
US11001506B2 (en) * 2017-02-21 2021-05-11 International Advanced Research Centre For Powder Metallurgy And New Materials (Arci) Method of producing high performance lithium titanate anode material for lithium ion battery applications
KR102615856B1 (ko) 2021-06-14 2023-12-20 우석대학교 산학협력단 리튬 이차전지 음극재

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0002568B1 (en) * 1977-12-01 1984-06-20 Imperial Chemical Industries Plc Mass transfer apparatus and its use
JPH09309726A (ja) 1996-03-18 1997-12-02 Ishihara Sangyo Kaisha Ltd チタン酸リチウム水和物およびその製造方法
JP3894614B2 (ja) * 1996-03-18 2007-03-22 石原産業株式会社 チタン酸リチウムの製造方法
CA2421157A1 (en) * 2000-09-05 2002-03-14 Altair Technologies, Inc. Method for producing mixed metal oxides and metal oxide compounds
US6827921B1 (en) * 2001-02-01 2004-12-07 Nanopowder Enterprises Inc. Nanostructured Li4Ti5O12 powders and method of making the same
ATE285379T1 (de) * 2001-07-20 2005-01-15 Altair Nanomaterials Inc Verfahren zur herstellung von lithiumtitanat
CN1313378C (zh) * 2002-09-24 2007-05-02 北京化工大学 制备钛酸锶粉体的方法
CN100335415C (zh) * 2003-02-28 2007-09-05 新加坡纳米材料科技有限公司 一种制备各种晶态钙钛矿类化合物粉体的方法
DE10319464A1 (de) * 2003-04-29 2004-11-18 Basf Ag Verfahren zur Herstellung von nanokristallinen Lithiumtitanat-Spinellen
JP4668539B2 (ja) 2004-02-25 2011-04-13 石原産業株式会社 チタン酸リチウムの製造方法及びリチウム電池の製造方法
KR20080023931A (ko) * 2006-09-12 2008-03-17 삼성에스디아이 주식회사 플라즈마 표시 장치 및 그 구동 방법
KR101045416B1 (ko) * 2006-09-12 2011-06-30 주식회사 엘지화학 리튬티탄산화물 분말, 그 제조방법, 이를 포함하는 전극,및 이차전지
KR100759401B1 (ko) * 2006-11-20 2007-09-19 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 그의 제조 방법 및 그를포함하는 리튬 이차 전지
WO2008122148A1 (zh) * 2007-04-06 2008-10-16 Ningbo Wanhua Polyurethanes Co., Ltd. 一种制备多亚甲基多苯基多胺的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2465821A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9537149B2 (en) 2010-04-30 2017-01-03 Samsung Sdi Co., Ltd. Method for manufacturing a lithium transition metal phosphate

Also Published As

Publication number Publication date
KR101128860B1 (ko) 2012-03-23
CN102471086B (zh) 2014-06-04
WO2011019171A3 (ko) 2011-05-19
KR20110016341A (ko) 2011-02-17
JP5598545B2 (ja) 2014-10-01
EP2465821A2 (en) 2012-06-20
US8398953B2 (en) 2013-03-19
CN102471086A (zh) 2012-05-23
US20120141360A1 (en) 2012-06-07
JP2013501704A (ja) 2013-01-17
EP2465821A4 (en) 2014-01-08
EP2465821B1 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
WO2011019171A2 (ko) 리튬티타네이트 나노입자의 제조방법
JP3963962B2 (ja) ペロブスカイト化合物の結晶性セラミック粉体の合成方法
WO2014025125A1 (ko) 리튬 금속인산화물의 제조방법
WO2014025126A1 (ko) 나노사이즈 철인산염 입자의 제조 방법
JP3283475B2 (ja) 板状ベーマイト及び板状アルミナ並びにそれらの製造方法
CN101498063B (zh) 全稳定立方相氧化锆晶体纤维的制备方法
JP2004513869A (ja) 微細結晶粒粒子の製造
CN101293674A (zh) 纺锤状α-Fe2O3纳米粉体的制备方法
WO2012033252A1 (ko) 저온에서 pva를 이용한 나노 크기의 이트리아 분말의 합성방법
WO2011136497A9 (ko) 리튬 전이금속 인산염의 제조방법
US20050019248A1 (en) High-gravity reactive precipitation process for the preparation of barium titanate powders
CN113603134A (zh) 一种单分散四方相钛酸钡空心微球批量生产方法
US7182930B2 (en) Methods of fabricating barium titanate powders
WO2011136466A2 (ko) 리튬 망간 산화물의 제조방법
JPH0353255B2 (ko)
WO2015080304A1 (ko) 티탄산바륨의 제조방법 및 이로부터 제조되는 티탄산바륨
WO2019004755A1 (ko) 산화니켈 나노입자의 제조방법 및 이를 이용하여 제조된 산화니켈 나노입자
WO2015080303A1 (ko) 바륨티타닐옥살레이트의 제조방법 및 티탄산바륨의 제조방법
WO2011136467A2 (ko) 리튬 전이금속 산화물의 제조방법
Potdar et al. Low temperature synthesis of ultrafine strontium titanate (SrTiO3) powdersa
JPS6090825A (ja) チタン酸バリウムまたはチタン酸ストロンチウムの製造方法
WO2014084429A1 (ko) 티탄산바륨의 제조방법, 및 이에 의하여 제조된 티탄산바륨
WO2015099203A1 (ko) 바륨티타닐옥살레이트의 제조방법, 티탄산바륨의 제조방법, 및 티탄산바륨
KR100562520B1 (ko) 이산화티탄졸을 이용한 티탄산바륨 입자의 제조방법
JP2005330112A (ja) チタン酸バリウム粉体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080035853.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10808320

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13389502

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010808320

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010808320

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012524637

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE