CN111847414A - 一种二维磷酸铁纳米片材料的制备方法及应用 - Google Patents

一种二维磷酸铁纳米片材料的制备方法及应用 Download PDF

Info

Publication number
CN111847414A
CN111847414A CN201910347417.8A CN201910347417A CN111847414A CN 111847414 A CN111847414 A CN 111847414A CN 201910347417 A CN201910347417 A CN 201910347417A CN 111847414 A CN111847414 A CN 111847414A
Authority
CN
China
Prior art keywords
dimensional
phosphate
preparation
iron phosphate
dimensional iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910347417.8A
Other languages
English (en)
Inventor
徐彦宾
王德
肖涤非
杨正龙
郭小玲
杨丽霞
王峰
殷平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ludong University
Original Assignee
Ludong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ludong University filed Critical Ludong University
Priority to CN201910347417.8A priority Critical patent/CN111847414A/zh
Publication of CN111847414A publication Critical patent/CN111847414A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/375Phosphates of heavy metals of iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/048Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing phosphorus, e.g. phosphates, apatites, hydroxyapatites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)

Abstract

本申请公布了一种制备二维磷酸铁纳米片Fe7(PO4)6材料的方法及其应用。通过本申请公开的制备方法,所得到二维磷酸铁纳米片Fe7(PO4)6材料单层或多层厚度在2‑12纳米左右,片层长度和宽度在100‑300纳米左右,将其应用于电催化析氧、超级电容、核素吸附等领域,均能表现出优异性能。此外,本申请所公开的二维磷酸铁的制备方法,可以推广应用于其他二维磷酸盐材料的制备。而且制备过程无需高温高压,无需特殊的生产设备,原料廉价易得,绿色经济,操作简便,能大幅度降低制备二维磷酸铁材料的制备成本,适合大规模生产。

Description

一种二维磷酸铁纳米片材料的制备方法及应用
技术领域
本发明属于二维材料领域,特别是涉及一种二维磷酸铁纳米片Fe7(PO4)6材料的制备方法及应用。
背景技术
近年来,研究者对二维材料的研究兴趣方兴未艾,特别是对新型二维材料(例如,石墨型氮化碳、过渡金属硫化物、层状双氢氧化物等)的研究更是瞩目。得益于二维材料在某一维度上的纳米尺度,材料表面暴露的活性位点要比相应的三维材料更为丰富,表现出更为优异的物化性质,在催化、储能、吸附等领域都引起广泛关注。相比于传统三维块体材料的开发利用,新型二维材料的制备可采用特定的物理化学方法对特殊结构的功能材料进行处理或者直接通过“自下而上”的方式可控生长,并在此基础上深入研究其特殊性能,具有非常重要的研究意义和经济价值。
磷酸铁作为一种比较常见,而且用途广泛的磷酸盐功能材料,具有绿色、经济、无毒等优点,起初曾用作食品和陶瓷中的添加剂。近年来,研究者发现磷酸铁材料还具有优异的催化特性、电化学性质和放射性屏蔽作用。但相关研究所涉及的磷酸铁材料多为三维结构,其表面所暴露的活性位点相对有限,未能充分发挥材料在二维尺度下的优异性能。因此,研究具有二维结构的磷酸铁纳米材料在物理化学反应中的活性位点效应,对于提升磷酸铁材料的催化、储能及吸附性能大有益处。
已见报道中涉及磷酸铁材料的制备方法较多,但其中鲜有涉及二维磷酸铁纳米片Fe7(PO4)6的制备方法。常规的二维材料的制备方法(如剥离法、化学气相沉积法等),往往针对某一特定结构材料,直接将其应用于磷酸盐类材料则难以达到预期效果。中国海洋大学曹立新教授和新加坡南洋理工大学张华教授分别采用有机溶剂热法和高温惰性煅烧的方式制备出无定型二维FePO4和Co3(PO4)2以及Mn3(PO4)2材料,但制备条件和过程非常复杂,且需多种有机溶剂配合使用。特别是有机溶剂热法的反应条件要求高温高压,隐患较多,而高温惰性煅烧法对加工设备的温度要求则更高(参见文献:Lei Yang, et al., Adv. Mater.2017, 29, 1704574; Yaoning Xi,et al., Chem. Mater. 2016, 28, 1355−1362; DanYang, et al., Angew. Chem. Int. Ed. 2014, 53, 9352–9355)。此外,已见CN105293463 A 公布了一种模版牺牲法制备二维水合磷酸盐(Fe3(PO4)2·8H2O,Co3(PO4)2·8H2O,Ni3(PO4)2·8H2O,Mn3(PO4)2·H2O)的方法,同时对合成机理也进行了详细地描述,并提供了材料在锂离子电池、光解制氢和磁性方面的应用,但材料制备过程还需全程处于惰性气氛保护,导致制备成本增加,不易获得理想的经济效益。
因此,急需寻找一种所需的原料廉价易得、制备过程简洁、无需特殊设备生产且易于工业化生产的方法来满足二维磷酸铁材料的合成及应用需求。
发明内容
本发明的一个目的是提供一种二维磷酸铁纳米片Fe7(PO4)6材料的制备方法,步骤如下:
(1)反应液的制备:将一定质量的可溶性的三价铁盐溶解在一定体积的二甘醇中,加入一定体积的可溶性磷源,磁力搅拌至均匀溶液,随后加入一定质量的表面活性剂,进一步磁力搅拌成均一溶液。
(2)热处理:将(1)中制备的均一溶液磁力搅拌加热至200摄氏度左右,保温4小时,自然冷却至室温,整个过程保持磁力搅拌。
(3)分离、干燥:离心分离热处理后的固液混合物,随后使用丙酮或者乙醇对得到的固体样品进行离心洗涤,洗涤至离心液无色透明,以去除材料上的有机杂质。最后在80摄氏度真空环境下,干燥6-8小时,得到二维磷酸铁纳米片Fe7(PO4)6材料的样品。
优选的,步骤(1)中,可溶性的三价铁盐可选择硝酸铁、氯化铁等;磷源选择化学纯的磷酸试剂(质量分数大于85%);表面活性剂可选择阴离子型表面活性剂十二或十六烷基三甲基溴化铵等。
优选的,步骤(1)中,反应液中铁源浓度在0.05-0.1mol/L,铁磷物质的量比在1:2~3。
优选的,步骤(2)中,加热方式可选择沙浴、油浴等加热方式;加热温度控制在200-230度;加热时间可选择2-6小时;冷却过程,仍保持磁力搅拌状态。
优选的,步骤(3)中,为保证去除材料上的有机杂质,一般需洗涤6-7次。
本发明的另一个目的是提供二维磷酸铁纳米片Fe7(PO4)6材料在电催化、储能、吸附等多个领域的应用。
本发明具有如下优点:
(1)本申请提供的二维磷酸铁制备方法,可以制备得到二维尺寸在2~12nm左右的磷酸铁纳米片Fe7(PO4)6材料。相比与有机溶剂热法和高温惰性煅烧等方式制备得到的磷酸盐材料,该制备过程无需高温高压,无需特殊的生产设备,原料廉价易得,绿色经济,操作简便,大幅度降低制备二维磷酸铁材料的制备成本,适合大规模生产。
(2)采用本申请提供的二维磷酸铁纳米片Fe7(PO4)6制备方法获得的二维磷酸铁材料在电催化析氧、电容储能及放射性废料的吸附处理方面有着优异的性能。详细地,在电流密度为10 mA/cm2处,电催化析氧电位仅为1.54V ( vs RHE), 优于商业的贵金属氧化物催化剂;超级电容容量能达到60.9F/g (0.2 A/g),此外,对放射性元素铀(Ⅵ)的吸附性能达到591.63 mg/g (pH = 5.0,298K),其吸附性能优于绝大多数吸附材料。
(3)本申请提供的二维磷酸铁纳米片Fe7(PO4)6材料的制备方法及其应用,也为其他二维磷酸盐功能材料的合成和应用提供了技术支持。
附图说明
图1是实施例1中二维磷酸铁纳米片Fe7(PO4)6材料的XRD图。
图2是实施例1中二维磷酸铁纳米片Fe7(PO4)6材料的FESEM、TEM图。
图3是实施例1中二维磷酸铁纳米片Fe7(PO4)6材料的AFM图。
图4是实施例1中二维磷酸铁纳米片Fe7(PO4)6材料在1M KOH中电催化析氧的线性伏安曲线和Tafel曲线。
图5是实施例1中二维磷酸铁纳米片Fe7(PO4)6材料用作电容储能的循环伏安图和恒流充放电图。
图6是实施例1中二维磷酸铁纳米片Fe7(PO4)6材料用作吸附放射性废料U(Ⅵ)的吸附等温线图和吸附热力学图。
图7是实施例1中二维磷酸铁纳米片Fe7(PO4)6材料用作吸附放射性废料U(Ⅵ)的等温线拟合数图。
图8是实施例1中二维磷酸铁纳米片Fe7(PO4)6材料用作吸附放射性废料U(Ⅵ)的吸附热力学数据图。
图9是实施例2中二维磷酸铁纳米片Fe7(PO4)6材料的SEM、TEM图。
图10是实施例3中二维磷酸铁纳米片Fe7(PO4)6材料的TEM图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本发明进行进一步的详细说明。应当理解,此处所描述的具体实例仅仅用来解释本发明,并不限于本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1
二维磷酸铁纳米片Fe7(PO4)6材料的制备,包括以下步骤:
(1)反应液的制备:将0.5050g Fe(NO3)3·9H2O磁力搅拌溶解在25mL二甘醇中,再加入0.2mL磷酸(质量分数>85%),磁力搅拌呈均匀溶液,随后加入0.0050g表面活性剂(十六烷基三甲基溴化铵),并进一步磁力搅拌至均一溶液。
(2)热处理:将(1)中制备的均一溶液磁力搅拌加热至200摄氏度,保温4小时,关闭加热开关,自然冷却至室温,整个过程保持磁力搅拌。
(3)分离、干燥:离心分离热处理后的固液混合物,随后使用丙酮溶液对固体样品离心洗涤6-7次,离心洗涤至上清液无色透明。最后在80摄氏度真空环境下,干燥6小时,得到二维磷酸铁纳米片Fe7(PO4)6材料样品。
对实施例1中得到的样品进行物相(X射线衍射)、形貌(场发射扫描电镜和透射电镜)及厚度(原子力显微镜)的表征,材料物相匹配Fe7(PO4)6, 属于三斜晶系。通过图2可以发现,所制备材料为长度和宽度为100~300nm左右的纳米片,图3的AFM图谱可以观察并分析得到纳米片材料的厚度在2-12nm左右(最小的单层厚度约2nm,堆积多层约12 nm)因此,通过实施例1的做法,制备得到了二维磷酸铁纳米片Fe7(PO4)6材料。
对实施例1中的二维磷酸铁样品进行电催化析氧性能(OER)测试,具体做法如下:
取4mg样品加入到盛有970微升乙醇溶液(V乙醇:V水 = 1:3)的玻璃瓶中,加入30微升Nafion(5%),超声分散2小时。移取100微升分散液滴涂在预先处理好的泡沫镍(1.5cm×1cm,1M HCl、去离子水、乙醇依次超声处理5 min,80 ℃真空干燥12小时),使得负载在泡沫镍上的质量为0.4 mg/cm2,40℃,干燥2小时,得到工作电极。以Hg/HgO为参比电极、石墨为对电极、负载样品的泡沫镍为工作电极,在三电极体系1M KOH溶液中测试材料的析氧性能。材料需预先进行活化(0-0.9V, CV, 80 mV/s,50圈); 线性伏安测试(LSV, 0.4-0.8V, 5mV/s);塔菲尔斜率由LSV数据处理得到。
图4A为碱性体系下转化为标准氢电极电势的线性伏安特性曲线,析氧电位越低表明材料的OER性能越优异。以10 mA/cm2的电流密度为基准,相比于泡沫镍(1.65V)和商业化贵金属氧化物氧化铱(1.61V),二维磷酸铁纳米片Fe7(PO4)6材料的析氧电位仅为1.54V,表现出优异的电催化析氧性能。塔菲尔曲线可进一步表征催化剂OER催化活性,其斜率代表电流每增加10倍时所需要的过电势,这也意味着塔菲尔斜率越低,样品的催化性能越好。由图4B中Tafel斜率可知,二维磷酸铁Tafel斜率为 74.2 mV/dec,比商业贵金属氧化铱(75.9mV/dec)比泡沫镍(101.2 mV/dec)更低,进一步说明了二维磷酸铁纳米片Fe7(PO4)6材料优异的OER性能。
对实施例1中的二维磷酸铁纳米片Fe7(PO4)6样品的超级电容性能测试,具体操作如下:
活性材料、乙炔黑、聚偏氟乙烯(PVDF)按照质量比例8:1:1的比例混合加入适量NMP研磨成浆,涂抹在处理好的泡沫镍上(1.5cm×1cm,1M HCl、去离子水、乙醇依次超声处理5min,80 ℃真空干燥12小时)。采用三电极体系,在CHI 660E 电化学工作站(上海辰华)上测试电容性能,其中工作电极为表面负载有二维磷酸铁纳米片Fe7(PO4)6材料(活性物质)的泡沫镍,对电极和参比电极分别采用铂片和汞/氧化汞电极。电解质溶液为3 mol /L 的KOH溶液,测试在室温下进行。电压范围:0-0.5V(vs Hg/HgO), 测试方法分别为循环伏安法(CV)、恒电流充放电(GCD)。
图5A为3M KOH体系中不同扫速(5、10、20、40、60、80、100、120、140、160mV/s)测得的循环伏安图,结果表明材料的电容量在5 mV/s扫速下能达到50.0 F/g。图5B为在3M KOH体系中不同充放电速率(0.2、0.5、2 A/g)下的恒流充放电测试数据,结果表明在0.2A/g充放电速率条件下,材料的电容达到60.9 F/g。
对实施例1中的二维磷酸铁纳米片Fe7(PO4)6样品进行放射性U元素的静态吸附实验,做法如下:
取适量吸附剂储备液(0.2 g/L)以及铀酰溶液(60 mg/L)加入离心管中以达到各成分所需的浓度值。加入微量的NaOH或HNO3调节每个管中的悬浮液的pH值,使其达到所需pH值,分别在25℃、35℃、45℃下恒温震荡24h。所有吸附实验均是在10mL聚乙烯离心管中进行的。震荡吸附之后,在8000转每分钟的转速下离心10min进行固液分离。采用U(VI)-偶氮氯膦分光光度法在669nm波长测定上清液中U(VI)的浓度。
图6A为二维磷酸铁样品在不同温度(298、308、318K)下对U吸附的吸附等温线图,由图可知,样品对铀铣离子的吸附容量能达到591.63mg/g(pH=5.0,298K,震荡时间 24小时)。图7为对吸附等温线进行朗格缪尔和弗瑞德里希模型的模拟结果参数,在不同温度下,朗格缪尔的相关系数均大于弗瑞德里希模型,且接近于1,表明吸附等温线更符合朗格缪尔模型,说明样品对U的吸附符合单分子层吸附,此外,最大理论吸附容量能达到 704.23mg/g,明显高于绝大多数吸附剂对U的吸附容量。图6B是对吸附等温线进行热力学参数的线性图,相应的结果参数在图8中。ΔS0大于0,说明该吸附过程是自发进行的,Δ H0大于0,表明该吸附过程是一个吸热过程。
实施例2
二维磷酸铁纳米片Fe7(PO4)6材料的制备,包括以下步骤:
(1)反应液的制备:将0.5050g Fe(NO3)3·9H2O磁力搅拌溶解在25mL二甘醇中,加入0.2mL磷酸(质量分数>85%),磁力搅拌至均匀溶液。
(2)热处理:将(1)中制备的均一溶液磁力搅拌加热至200摄氏度,保温4小时,关闭加热开关,自然冷却至室温,整个过程保持磁力搅拌。
(3)分离、干燥:离心分离热处理后的溶液,随后使用丙酮进行离心得到的固体样品进行洗涤6-7次,洗涤至离心液无色透明。最后在80摄氏度真空环境下,干燥6小时,得到二维磷酸铁纳米片Fe7(PO4)6材料样品。
本例制备的磷酸铁二维材料没有添加表面活性剂,如图9所示制备的磷酸铁样品仍然具有二维片层形貌,但有较多的片层团聚现象。
实施例3
二维磷酸铁纳米片Fe7(PO4)6材料的制备,包括以下步骤:
(1)反应液的制备:将1.010g Fe(NO3)3·9H2O磁力搅拌溶解在25mL二甘醇中,加入0.4mL磷酸(质量分数>85%),磁力搅拌至均匀溶液,随后加入0.010g表面活性剂(十六烷基三甲基溴化铵),进一步磁力搅拌至均一溶液。
(2)热处理:将(1)中制备的均一溶液磁力搅拌加热至200摄氏度,保温4小时,关闭加热开关,自然冷却至室温,整个过程保持磁力搅拌。
(3)分离、干燥:离心分离热处理后的溶液,随后使用丙酮进行离心,得到的固体样品再用丙酮离心洗涤6-7次,离心洗涤至上清液无色透明。最后在80摄氏度真空环境下,干燥6小时,得到二维磷酸铁材料样品。
本例制备的磷酸铁二维纳米片Fe7(PO4)6材料,原料浓度增大至0.1mol/L,如图10所示制备得到的样品仍然具有二维片层形貌但片层形状不规则。

Claims (12)

1.一种二维磷酸铁纳米片Fe7(PO4)6材料,其特征在于:单层或多层厚度为2-12纳米左右,片层长度和宽度约0.1-0.3微米。
2.如权力要求1所述的一种简单制备二维磷酸铁纳米片Fe7(PO4)6材料制备方法,其特征在于,包括如下步骤:
(1)反应液的制备:将一定质量的可溶性的铁盐溶于二甘醇,再加入一定体积的可溶性磷源,磁力搅拌至均匀溶液,随后加入一定质量的表面活性剂,进一步磁力搅拌至均一溶液。
3.(2)热处理:将(1)中制备的均一溶液磁力搅拌下加热至200-230摄氏度,保温4-6小时,自然冷却至室温,整个过程保持磁力搅拌。
4.(3)分离、干燥:离心分离热处理后的固液混合物,随后将离心得到的固体样品用丙酮或乙醇继续离心洗涤三次以上,离心洗至上清液无色透明,以去除材料上的少量有机杂质,80摄氏度真空环境下,干燥6-8小时,得到二维磷酸铁纳米片Fe7(PO4)6材料样品。
5.如权力要求2所述的制备方法,其特征在于,可溶性的铁盐可选择硝酸铁、氯化铁、草酸铁中的一种或多种。
6.如权力要求2所述的制备方法,其特征在于,磷源可选择化学纯的磷酸试剂(质量分数大于85%)、磷酸二氢钠、磷酸氢二钠中的一种或几种。
7.如权力要求2所述的制备方法,其特征在于,表面活性剂可选择阴离子型表面活性剂十二或十六烷基三甲基溴化铵中的一种或多种。
8.如权力要求2所述的制备方法,其特征在于,溶剂可选择二甘醇、四甘醇、乙二醇中的一种或多种。
9.如权力要求2所述的制备方法,其特征在于,所述反应液中铁源浓度为0.05~0.1mol/L,铁源和磷源的摩尔比为1: 2~3。
10.如权力要求2所述的制备方法,其特征在于,可溶性的铁盐可换用其他金属盐(镍、钴、铋、锰、锆、镉、镧、铈等)制备对应的二维磷酸盐纳米片材料,此外,也可任意选择其中的一种或多种进行相应的磷酸盐掺杂制备。
11.权力要求2-10任意一项制备方法制备得到的磷酸盐材料。
12.权力要求11所述的二维磷酸盐在电催化析氧、超级电容及吸附污染物中的应用。
CN201910347417.8A 2019-04-28 2019-04-28 一种二维磷酸铁纳米片材料的制备方法及应用 Pending CN111847414A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910347417.8A CN111847414A (zh) 2019-04-28 2019-04-28 一种二维磷酸铁纳米片材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910347417.8A CN111847414A (zh) 2019-04-28 2019-04-28 一种二维磷酸铁纳米片材料的制备方法及应用

Publications (1)

Publication Number Publication Date
CN111847414A true CN111847414A (zh) 2020-10-30

Family

ID=72964880

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910347417.8A Pending CN111847414A (zh) 2019-04-28 2019-04-28 一种二维磷酸铁纳米片材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN111847414A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102009968A (zh) * 2011-01-14 2011-04-13 武汉大学 一种纳米片状FePO4·2H2O的制备方法
US20150203354A1 (en) * 2012-08-10 2015-07-23 Samsung Fine Chemicals Co., Ltd Method for preparing nano-sized iron phosphate particles
CN105293463A (zh) * 2015-11-03 2016-02-03 北京大学深圳研究生院 一种二维材料及其制备方法和应用
CN105417517A (zh) * 2015-11-03 2016-03-23 山东精工电子科技有限公司 一种银耳状磷酸铁及其制备方法
CN107253706A (zh) * 2017-07-25 2017-10-17 黄冈林立新能源科技有限公司 具有纳米片-微米球二级结构的磷酸铁晶体的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102009968A (zh) * 2011-01-14 2011-04-13 武汉大学 一种纳米片状FePO4·2H2O的制备方法
US20150203354A1 (en) * 2012-08-10 2015-07-23 Samsung Fine Chemicals Co., Ltd Method for preparing nano-sized iron phosphate particles
CN105293463A (zh) * 2015-11-03 2016-02-03 北京大学深圳研究生院 一种二维材料及其制备方法和应用
CN105417517A (zh) * 2015-11-03 2016-03-23 山东精工电子科技有限公司 一种银耳状磷酸铁及其制备方法
CN107253706A (zh) * 2017-07-25 2017-10-17 黄冈林立新能源科技有限公司 具有纳米片-微米球二级结构的磷酸铁晶体的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DE WANG ET AL.: "Ultra-thin iron phosphate nanosheets for high efficient U(VI) adsorption", 《JOURNAL OF HAZARDOUS MATERIALS》, vol. 371, pages 83 - 93, XP085709292, DOI: 10.1016/j.jhazmat.2019.02.091 *

Similar Documents

Publication Publication Date Title
Wang et al. Recent advances and perspective in metal coordination materials-based electrode materials for potassium-ion batteries
Yue et al. Ni/Co-MOF@ aminated MXene hierarchical electrodes for high-stability supercapacitors
Hao et al. Composite material CCO/Co-Ni-Mn LDH made from sacrifice template CCO/ZIF-67 for high-performance supercapacitor
Li et al. Hollow shell-in-shell Ni 3 S 4@ Co 9 S 8 tubes derived from core–shell Ni-MOF-74@ Co-MOF-74 as efficient faradaic electrodes
Zhang et al. A novel 2D porous print fabric-like α-Fe2O3 sheet with high performance as the anode material for lithium-ion battery
Jiang et al. Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors
Wang et al. A phosphatized NiCo LDH 1D dendritic electrode for high energy asymmetric supercapacitors
Bian et al. Metal-organic framework-templated porous SnO/C polyhedrons for high-performance lithium-ion batteries
Gan et al. Flower-like NiCo2O4 from Ni-Co 1, 3, 5-benzenetricarboxylate metal organic framework tuned by graphene oxide for high-performance lithium storage
Hai et al. Cr-doped (Co, Ni) 3S4/Co9S8/Ni3S2 nanowires/nanoparticles grown on Ni foam for hybrid supercapacitor
Deng et al. Facile synthesis of hierarchically structured manganese oxides as anode for lithium-ion batteries
Yang et al. Rational construction of ternary ZnNiP arrayed structures derived from 2D MOFs for advanced hybrid supercapacitors and Zn batteries
El-Gendy et al. Green, single-pot synthesis of functionalized Na/N/P co-doped graphene nanosheets for high-performance supercapacitors
Wu et al. Controlled growth of hierarchical FeCo2O4 ultrathin nanosheets and Co3O4 nanowires on nickle foam for supercapacitors
Yao et al. Template-assisted synthesis of hierarchically porous Co3O4 with enhanced oxygen evolution activity
Huang et al. Hierarchical NiCoO2 mesoporous microspheres as anode for lithium ion batteries with superior rate capability
Xu et al. Porous Co 3 O 4 nanoparticles derived from a Co (ii)-cyclohexanehexacarboxylate metal–organic framework and used in a supercapacitor with good cycling stability
Yu et al. Highly dispersed Mn2O3 microspheres: Facile solvothermal synthesis and their application as Li-ion battery anodes
Huang et al. Bimetal-organic-framework derived CoTiO3 mesoporous micro-prisms anode for superior stable power sodium ion batteries
Chen et al. MOF-derived bimetal oxides NiO/NiCo 2 O 4 with different morphologies as anodes for high-performance lithium-ion battery
An et al. Porous nickel cobaltite nanorods: desired morphology inherited from coordination precursors and improved supercapacitive properties
Zhang et al. Porous ZnO/NiO microspherical structures prepared by thermolysis of heterobimetallic metal-organic framework as supercapacitor electrodes
Chen et al. Novel Co3O4 porous polyhedrons derived from metal–organic framework toward high performance for electrochemical energy devices
Mao et al. Metal-organic frameworks/carboxyl graphene derived porous carbon as a promising supercapacitor electrode material
Zhang et al. Hollow Fe 2 O 3 nanotubes derived from metal-organic framework for enhanced lithium storage and dye adsorption

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination