WO2014010510A1 - ビスフェノールaの製造方法 - Google Patents

ビスフェノールaの製造方法 Download PDF

Info

Publication number
WO2014010510A1
WO2014010510A1 PCT/JP2013/068397 JP2013068397W WO2014010510A1 WO 2014010510 A1 WO2014010510 A1 WO 2014010510A1 JP 2013068397 W JP2013068397 W JP 2013068397W WO 2014010510 A1 WO2014010510 A1 WO 2014010510A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenol
bisphenol
separated
reaction mixture
exchange resin
Prior art date
Application number
PCT/JP2013/068397
Other languages
English (en)
French (fr)
Inventor
岳志 早川
児玉 正宏
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to CN201380036299.XA priority Critical patent/CN104411670B/zh
Priority to RU2015100504A priority patent/RU2637311C2/ru
Priority to KR1020157000451A priority patent/KR102045735B1/ko
Priority to JP2014524772A priority patent/JP6163487B2/ja
Publication of WO2014010510A1 publication Critical patent/WO2014010510A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/72Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/74Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/74Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • C07C37/80Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by distillation by extractive distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/84Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/02Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring monocyclic with no unsaturation outside the aromatic ring
    • C07C39/04Phenol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • C07C39/16Bis-(hydroxyphenyl) alkanes; Tris-(hydroxyphenyl)alkanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/82Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by solid-liquid treatment; by chemisorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing bisphenol A, and more particularly to a method for producing bisphenol A from phenol and acetone.
  • Bisphenol A is known to be an important compound as a raw material for engineering plastics such as polycarbonate resin and polyarylate resin, or epoxy resin, and in recent years its demand has been increasing. Colorless and high-purity bisphenol A is required as a raw material for producing a high-quality resin.
  • Bisphenol A is usually produced by reacting phenol and acetone in the presence of an acidic catalyst.
  • an acidic catalyst a strongly acidic cation exchange resin partially modified with a sulfur-containing amine compound is known.
  • impurities containing sulfur or nitrogen flow out from a strongly acidic cation exchange resin partially modified with a sulfur-containing amine compound the quality of the produced bisphenol A deteriorates. It is known to start the reaction after washing with phenol (see, for example, Patent Document 1).
  • Patent Document 1 describes a method of recovering reusable phenol having a low nitrogen concentration by distilling the phenol solution after washing the strongly acidic cation exchange resin.
  • azeotropic distillation using an azeotropic agent typified by ethylbenzene or a solvent typified by methyl isobutyl ketone (MIBK) is used.
  • MIBK methyl isobutyl ketone
  • solvent extraction methods for extracting phenol are known (see, for example, Patent Documents 2 to 4).
  • the azeotropic method is a method for separating water and phenol by adding an azeotropic agent to wastewater containing phenol and subjecting it to azeotropic distillation.
  • the azeotropic method is excellent in that it can separate water and phenol and recover reusable phenol, but it separates azeotropic agent and water to recover reusable azeotropic agent. Therefore, there is a problem that the energy cost is high.
  • the solvent extraction method separates water and phenol by adding solvent to wastewater containing phenol and extracting phenol to the solvent side, and separating the phenol from the solvent by distillation or the like of the extract. Is the method.
  • the phenol solution after washing the strongly acidic cation exchange resin partially modified with the sulfur-containing amine compound contains impurities including sulfur or nitrogen such as free acid and amine compound. If the phenol containing such impurities is reused in the production of bisphenol A, the quality of the produced bisphenol A may be deteriorated.
  • Patent Document 1 describes that water is removed by distilling a phenol solution after washing a strongly acidic cation exchange resin partially modified with a sulfur-containing amine compound. However, it is difficult to separate phenol and water by a normal distillation method, and there is a problem that a high energy cost is required for sufficient separation.
  • Patent Document 2 describes a method of separating water and phenol using an azeotropic agent. However, there is a problem that the energy cost for recovering the reusable azeotropic agent by separating the azeotropic agent and water is high.
  • Patent Document 3 describes that phenol is extracted using methyl isobutyl ketone to separate water and phenol, and the recovered phenol is recycled to the bisphenol A production process for reuse.
  • Patent Document 4 describes a method of separating water and phenol by extracting phenol using a mixture containing methyl isobutyl ketone and anisole.
  • Patent Documents 3 and 4 do not disclose a strong acid cation exchange resin partially modified with a sulfur-containing amine compound, and free acids, amine compounds, and the like are contained in phenol separated from methyl isobutyl ketone. It is not assumed that impurities including sulfur or nitrogen are included.
  • the problem to be solved by the present invention is that a high-purity phenol is obtained from wastewater containing phenol produced when bisphenol A is produced using a strong acid cation exchange resin catalyst partially modified with a sulfur-containing amine compound. It is to provide a method for efficiently producing and reusing high-quality bisphenol A.
  • the present invention provides the following methods [1] to [10] for producing bisphenol A.
  • Obtaining a reaction mixture comprising (2) A step of separating a low boiling point component from the reaction mixture obtained in the step (1) to prepare a crystallization raw material containing concentrated bisphenol A, (3) The crystallization raw material prepared in the step (2) is cooled to crystallize an adduct of bisphenol A and phenol to produce a crystallized product of the adduct of bisphenol A and phenol, A step of separating the crystallized product from the reaction mixture; and (4) a step of removing phenol from the crystallized product of the adduct of bisphenol A and phenol obtained in step (3) to recover bisphenol A.
  • a method for producing bisphenol A comprising: (R1) Separating water and phenol from the wastewater containing phenol produced in the production process of bisphenol A using methyl isobutyl ketone and extracting the crude phenol; and (R2) the crude extracted in the step (R1). Including a step of distilling and purifying phenol to obtain a phenol having a sulfur concentration of 0.5 mass ppm or less and a nitrogen concentration of 0.1 mass ppm or less, wherein the phenol obtained in the step (R2) A method for producing bisphenol A, which is reused in at least one of the steps (4) to (4).
  • the method further comprises a step (F) of washing the strongly acidic cation exchange resin catalyst with phenol, and the wastewater containing phenol in the step (R1) is a step ( The method for producing bisphenol A according to [1], comprising the phenol solution after washing in F).
  • the step (2) includes the following steps (2a) and (2b), and the crystallization raw material is prepared using the column bottom liquid (ii) separated in the step (2a).
  • the wastewater containing phenol contains the tower top component (i) separated in the step (2a) and / or the tower bottom liquid (iv) separated in the step (2b).
  • the manufacturing method of bisphenol A of description is described.
  • the reaction mixture obtained in the above step (1) is distilled using a distillation tower, and a tower top component (i) containing a low boiling point component and a tower bottom solution containing bisphenol A and phenol (ii)
  • the top component (i) separated in the step (2a) is further distilled using a distillation column, and the top component (iii) containing unreacted acetone and Step [4] for separating into a tower bottom liquid (iv) containing reaction product water
  • the sulfur-containing amine compound is selected from the group consisting of 2-aminoethanethiol, 2,2-dimethylthiazolidine and 4-pyridineethanethiol.
  • the reactor used in the step (1) has an anion exchange resin as a free acid removal facility at its outlet.
  • the phenol-containing liquid is (I) the phenol solution after washing in step (F), (Ii) the reaction mixture obtained in step (1), and (iii) at least one selected from the group consisting of steps (F), (G), (1), (2), (3) and (4)
  • the crystallization product of the adduct of bisphenol A and phenol separated in the step (3) is washed with the phenol obtained in the step (R2). [1] to [9].
  • high-purity phenol is efficiently recovered from wastewater containing phenol produced when bisphenol A is produced using a strongly acidic cation exchange resin catalyst partially modified with a sulfur-containing amine compound. It is possible to efficiently produce high-quality bisphenol A by reusing the recovered phenol.
  • the method for producing bisphenol A of the present invention includes the following steps (1) to (4), and includes the following steps (R1) and (R2), wherein the phenol obtained in the step (R2) is converted into the step
  • This is a method of reusing in at least one step of (1) to (4).
  • (1) Using a reactor filled with a strongly acidic cation exchange resin catalyst partially modified with a sulfur-containing amine compound, phenol and acetone are subjected to a condensation reaction to produce bisphenol A, and the reaction includes bisphenol A.
  • (2) A step of separating a low boiling point component from the reaction mixture obtained in the step (1) to prepare a crystallization raw material containing concentrated bisphenol A.
  • the crystallization raw material prepared in the step (2) is cooled to crystallize an adduct of bisphenol A and phenol to produce a crystallized product of the adduct of bisphenol A and phenol, Separating the crystallized product from the reaction mixture; (4) A step of recovering bisphenol A by removing phenol from a crystallized product of an adduct of bisphenol A and phenol obtained in the step (3).
  • R1 A step of separating crude phenol from water and phenol using methyl isobutyl ketone from wastewater containing phenol produced in the production process of bisphenol A.
  • R2 A step of distilling and purifying the crude phenol extracted in the step (R1) to obtain a phenol having a sulfur concentration of 0.5 mass ppm or less and a nitrogen concentration of 0.1 mass ppm or less.
  • Step (1) using a reactor filled with a strong acid cation exchange resin catalyst partially modified with a sulfur-containing amine compound, phenol and acetone are subjected to a condensation reaction to produce bisphenol A.
  • step (2) using a reactor filled with a strong acid cation exchange resin catalyst partially modified with a sulfur-containing amine compound, phenol and acetone are subjected to a condensation reaction to produce bisphenol A.
  • step (1) using a reactor filled with a strong acid cation exchange resin catalyst partially modified with a sulfur-containing amine compound, phenol and acetone are subjected to a condensation reaction to produce bisphenol A.
  • IPP p-isopropenylphenol
  • a strong acidic cation exchange resin partially modified with a sulfur-containing amine compound is used as a catalyst from the viewpoint of corrosion of the apparatus, separation and recovery of the catalyst after the reaction, catalytic activity, and the like.
  • sulfur-containing amine compounds include aminoalkylthiols such as 2-aminoethanethiol, thiazolidines such as 2,2-dimethylthiazolidine, aminothiophenols such as 4-aminothiophenol, and pyridines such as 4-pyridineethanethiol. And alkanethiols.
  • the strongly acidic cation exchange resin a sulfonic acid cation exchange resin or the like is preferably used from the viewpoint of catalytic activity.
  • the sulfonic acid type cation exchange resin include sulfonated styrene-divinylbenzene copolymer, sulfonated crosslinked styrene polymer, phenol formaldehyde-sulfonic acid resin, benzeneformaldehyde-sulfonic acid resin, and the like. You may use these individually or in combination of 2 or more types.
  • a conventionally well-known method can be used.
  • it can be modified by reacting a strongly acidic cation exchange resin and a sulfur-containing amine compound in a suitable solvent, preferably an aqueous solvent such as water, so as to obtain a desired modification rate.
  • the reaction may be performed at room temperature, or may be performed with heating if necessary.
  • an ion exchange group (a sulfonic acid group in a sulfonic acid type cation exchange resin) reacts with an amino group in a sulfur-containing amine compound, and a sulfur-containing group is introduced into a part of the ion exchange group to be modified.
  • the modification rate of the strongly acidic cation exchange resin means the molar modification rate of the strongly acidic cation exchange resin by the sulfur-containing amine compound of the strongly acidic cation exchange resin.
  • the modification rate of the strongly acidic cation exchange resin with the sulfur-containing amine compound is preferably 5 to 50 mol%, more preferably 8 to 35 mol% from the viewpoint of the yield of bisphenol A.
  • a strongly acidic cation exchange resin partially modified with a sulfur-containing amine compound is controlled by controlling the modification rate of the strong acid cation exchange resin with a sulfur-containing amine compound within an appropriate range. It is preferable to wash with phenol before starting the reaction (step (F)). The washing is preferably carried out continuously or batchwise until the nitrogen concentration in the phenol solution after washing is 0.01 to 5 mass ppm. If the nitrogen concentration in the phenol solution after washing is too high, the quality of bisphenol A will deteriorate. In addition, if a large amount of phenol is used so that the nitrogen concentration is too low, the time required for cleaning increases, and this is economically disadvantageous.
  • LHSV liquid hourly space velocity
  • the washing temperature is preferably 45 to 110 ° C, more preferably 55 to 90 ° C. If the washing temperature is too high, decomposition of the ion exchange resin proceeds, and if the washing temperature is too low, the phenol may solidify.
  • the condensation reaction of phenol and acetone in step (1) is performed using a reactor packed with the catalyst.
  • the method of the condensation reaction is not particularly limited, and may be either batch type or continuous type.
  • a fixed bed continuous reaction method in which raw materials are continuously supplied and reacted is preferable, and a fixed bed circulation method that is an extrusion flow method is more preferable.
  • the reaction tower in the fixed bed continuous reaction system may be one, or may be a fixed bed multistage continuous reaction system in which two or more are arranged in series.
  • the raw material mixture LHSV liquid hourly space velocity
  • the reaction temperature is usually 50 to 100 ° C., preferably 60 to 90 ° C.
  • the phenol / acetone ratio is usually 3 to 30 (molar ratio), preferably 5 to 20 (molar ratio).
  • the method of the present invention preferably has a step of removing the free acid from the phenol-containing liquid in the system (step (C)).
  • step (C) free acid is removed by a free acid removal facility.
  • the reactor used in step (1) preferably has a free acid removal facility at the outlet. It is also preferable to have a free acid removal facility at the inlet and / or outlet of the isomerization reactor used in the isomerization treatment described later.
  • the free acid removal equipment those described in JP-A-1-215433, JP-A-2001-316313, etc. can be used.
  • anion exchange resins such as weakly basic ion exchange resins, activated carbon, basic inorganic oxides and the like can be used, and it is more preferable to use anion exchange resins.
  • the free acid removing equipment preferably an anion exchange resin
  • the free acid concentration in the crystallization raw material supplied to step (3) is preferably maintained at 0.001 to 0.5 meq / L, more preferably 0.001 to 0.10 meq / L. Done to get.
  • step (i) the phenol solution after washing in step (F) (feed solution to step (1)), (ii) the reaction mixture obtained in step (1), and (iii) step (F ), (G), (1), (2), (3) and (4) at least one phenol-containing liquid selected from among phenols reused in at least one step selected from the group consisting of It is preferable to apply to.
  • Step (2) is a step of preparing a crystallization raw material containing concentrated bisphenol A by separating low-boiling components from the reaction mixture obtained in step (1). By this step, low-boiling substances such as unreacted acetone, unreacted phenol and by-product water are removed from the reaction mixture, and the concentration of the produced bisphenol can be adjusted to an appropriate range. In this step, it is preferable to concentrate the reaction mixture by vacuum distillation using a distillation column.
  • Step (2) includes the following steps (2a) and (2b), and a crystal containing bisphenol A concentrated using the bottom liquid (ii) separated in step (2a). It is preferable that it is the process of preparing an analysis raw material.
  • (2a) The reaction mixture obtained in the above step (1) is distilled using a distillation tower, and a tower top component (i) containing a low boiling point component and a tower bottom solution containing bisphenol A and phenol (ii) ) And the process of separating.
  • (2b) The tower top component (i) separated in the step (2a) is further distilled using a distillation tower, and contains a tower top component (iii) containing unreacted acetone and reaction product water. The process of isolate
  • the reaction mixture obtained in the step (1) is distilled using a distillation column, and a column top component (i) containing a low boiling point component, a column bottom containing bisphenol A and phenol. It is a process of separating into liquid (ii).
  • the pressure is preferably 13 to 70 kPa, more preferably 20 to 50 kPa, and the temperature is preferably 30 to 180 ° C., more preferably 50 to 170 ° C., and still more preferably 60 ⁇ 160 ° C.
  • step (2a) a tower top component (i) containing a low-boiling substance such as unreacted acetone and by-product water and a part of phenol is obtained from the top of the distillation tower, and from the bottom of the distillation tower, A bottom liquid (ii) containing bisphenol A and phenol is obtained.
  • a tower top component (i) containing a low-boiling substance such as unreacted acetone and by-product water and a part of phenol is obtained from the top of the distillation tower, and from the bottom of the distillation tower, A bottom liquid (ii) containing bisphenol A and phenol is obtained.
  • the tower top component (i) separated in the step (2a) is further subjected to distillation separation in the step (2b).
  • the column top component (i) separated in the step (2a) is further distilled using a distillation column, and the column top component (iii) containing unreacted acetone and reaction product water And a column bottom liquid (iv) containing
  • the pressure is preferably 80 to 300 kPa, more preferably 110 to 200 kPa
  • the temperature is preferably 40 to 150 ° C., more preferably 50 to 130 ° C.
  • step (2b) a top component (iii) containing acetone is obtained from the top of the distillation column, and a bottom solution (iv) containing reaction product water and a part of phenol is obtained from the bottom of the distillation column. ) Is obtained. Acetone recovered as the top component (iii) is reused in the reaction step of the step (1).
  • column bottom liquid (iv) contains phenol, water and phenol are isolate
  • the tower bottom liquid (ii) separated in the step (2a) is prepared as a concentrated liquid in which the concentration of bisphenol A is increased by distilling off excess phenol by vacuum distillation.
  • This concentrated liquid is used in the step (3) described later as a crystallization raw material.
  • the conditions for distillation under reduced pressure are preferably a pressure of 4 to 70 kPa, more preferably 10 to 50 kPa, and a temperature of preferably 70 to 170 ° C., more preferably 80 to 140 ° C., and still more preferably 85 to 130 ° C. It is.
  • the concentration of bisphenol A in the concentrated liquid (crystallization raw material) thus obtained is preferably 20 to 60% by mass, more preferably 20 to 40% by mass. When the concentration is 20% by mass or more, the recovery rate of bisphenol A is sufficient. On the other hand, when it is 60% by mass or less, it is possible to prevent the adverse effect that the solidification temperature becomes high and the slurry transfer after crystallization becomes difficult.
  • Step (3) Crystallization-Solid-liquid separation step>
  • an adduct of bisphenol A and phenol is crystallized to crystallize an adduct of bisphenol A and phenol.
  • This is a step of producing a product (adduct crystal) and separating the crystallized product from the reaction mixture.
  • the crystallization can be carried out by cooling the crystallization raw material preferably at 70 to 170 ° C., preferably to 35 to 70 ° C., more preferably to 40 to 60 ° C. It may be cooled using an external heat exchanger, or may be cooled by a vacuum cooling crystallization method using the latent heat of vaporization of water under reduced pressure by adding water to the concentrate.
  • a reaction mixture (slurry) containing a crystallized adduct is obtained by crystallization.
  • the adduct is separated from the reaction mixture by solid-liquid separation of the obtained reaction mixture by filtration or centrifugation.
  • an apparatus used for the said separation For example, a belt filter, a drum filter, a tray filter, a centrifuge, etc. are mentioned.
  • the solid content (adduct) after crystallization and solid-liquid separation may be redissolved and the crystallization and solid-liquid separation may be repeated again.
  • impurities taken into the crystal can be reduced.
  • the re-dissolved solution include phenol, water, a water-phenol mixed solution, and the like.
  • recovered phenol may be used and the phenol supplied separately may be used.
  • the reaction mixture (mother liquor) from which the adduct has been separated in step (3) contains phenol, p-isopropenylphenol, bisphenol A, the 2,4'-isomer of bisphenol A, and the like. Therefore, the reaction mixture is appropriately processed and circulated or reused.
  • an isomerization treatment for isomerizing the 2,4′-isomer of bisphenol A to bisphenol A may be performed.
  • the isomerization treatment is performed by an isomerization reactor.
  • the reaction mixture and / or the isomerized solution may be crystallized and solid-liquid separated.
  • bisphenol A and its isomer may be decomposed into phenol and p-isopropenylphenol by performing an alkali decomposition treatment.
  • JP 2004-315387 A, JP 2004-359594 A, JP 2009-242316 A, and the like can be referred to.
  • Step (4) is a step of recovering bisphenol A by removing phenol from the crystallization product of the adduct of bisphenol A and phenol obtained in step (3).
  • the adduct crystals are preferably washed with phenol.
  • recovered phenol may be used and the phenol supplied separately may be used.
  • the solid content containing the adduct is heated and melted at 100 to 160 ° C. to obtain a melt obtained by decomposing the adduct into bisphenol A and phenol.
  • this molten liquid is sent to an evaporation tower, phenol is removed from this molten liquid by vacuum distillation or the like, and molten bisphenol A is recovered.
  • the vacuum distillation is preferably performed under conditions where the temperature is usually 150 to 190 ° C. and the pressure is usually 1.3 to 13.3 kPa, preferably 1 to 11 kPa.
  • the recovered molten bisphenol A preferably further removes the remaining phenol by steam stripping. High purity bisphenol A can be obtained through these steps.
  • the molten bisphenol A from which the phenol has been removed is made into droplets by a general granulator and cooled to solidify into a product.
  • Step (R1) is a step of separating crude phenol from water and phenol using methyl isobutyl ketone from wastewater containing phenol produced in the production process of bisphenol A.
  • phenol is used as a raw material and a cleaning liquid, and wastewater containing phenol is generated.
  • Wastewater containing phenol is desired to be discharged out of the system after separation of phenol from the viewpoint of environmental safety, and it is desirable to recover high purity phenol from the viewpoint of obtaining high purity product bisphenol A. It is.
  • the wastewater containing phenol is first cooled to preferably 20 to 50 ° C., mixed with methyl isobutyl ketone, and allowed to stand to separate into an aqueous phase and an oil phase. Most of the phenol in the wastewater is extracted into the oil phase with methyl isobutyl ketone. Since phenol is miscible with water and methyl isobutyl ketone, some phenol is also contained in the aqueous phase. Therefore, the separated aqueous phase is further sent to an extraction tower where it is brought into countercurrent contact with methyl isobutyl ketone, and phenol in the aqueous phase is extracted into methyl isobutyl ketone.
  • the extraction tower may be a normal perforated plate extraction tower, or a rotating disk extraction tower or a diaphragm tower type may be used.
  • Step (R2) is a step in which the crude phenol extracted in step (R1) is purified by distillation to obtain phenol having a sulfur concentration of 0.5 mass ppm or less and a nitrogen concentration of 0.1 mass ppm or less. Since the crude phenol extracted in the step (R1) contains impurities including sulfur or nitrogen such as free acid and amine compound, high purity phenol is recovered by further purification by distillation.
  • the sulfur concentration in the obtained phenol is 0.5 mass ppm or less, preferably 0.3 mass ppm or less, more preferably 0.2 mass ppm or less.
  • the nitrogen concentration in the obtained phenol is 0.1 mass ppm or less. If the sulfur concentration and nitrogen concentration in the phenol are within the above ranges, the quality of the produced bisphenol A does not deteriorate even if the recovered phenol is reused as a reaction raw material or a cleaning liquid.
  • the water content of the obtained phenol is preferably 300 ppm by mass or less, more preferably 200 ppm by mass or less, and still more preferably 100 ppm by mass or less.
  • the solubility of bisphenol A in phenol is low, so that the loss of adduct crystal dissolution is reduced when it is used as a cleaning liquid for adduct crystals.
  • the amount of bisphenol A / phenol circulating upstream decreases, so that the amount of utility usage and the size of equipment can be reduced.
  • the phenol obtained in step (R2) may be further purified with an ion exchange resin.
  • an acid type ion exchange resin can be used as the ion exchange resin.
  • the phenol obtained in step (R2) is a reaction raw material in at least one step selected from the group consisting of steps (F), (G), (1), (2), (3) and (4). It is reused as a strong acid cation exchange resin catalyst or anion exchange resin cleaning solution, adduct crystal cleaning solution, and the like.
  • Example 1 As a catalyst, 20 mol% of sulfonic acid group is partially modified with 2-aminoethanethiol to sulfonic acid type cation exchange resin (product name: “Diaion-SK104H” manufactured by Mitsubishi Chemical Corporation).
  • a fixed bed reactor filled with the catalyst as a catalyst an initial feed amount of a mixture of phenol 510 kg / h and acetone 45 kg / h is maintained at a liquid space velocity of 1.0 hr ⁇ 1 while maintaining the temperature of the catalyst layer at 80 ° C. Continuously. And bisphenol A was produced
  • step (C) The obtained reaction mixture was passed through an anion exchange resin (manufactured by Rohm and Haas, product name: “Amberlyst A21”) (step (C)), and from the reaction mixture, the temperature was 150 ° C. and the pressure was 40 kPa. Under the conditions, mainly the unreacted acetone, the reaction product water and the low-boiling substances are distilled off.
  • a crystallization raw material containing concentrated bisphenol A was obtained (step (2)).
  • the concentrated liquid is cooled from 90 ° C. to 45 ° C., and a solid content containing an adduct of bisphenol A and phenol is crystallized, and then separated by a centrifuge, Separated into 110 kg / h mother liquor (step (3)).
  • the solid (adduct crystal) was washed, melted and adduct decomposed, and then sent to a distillation column operated under the conditions of a temperature of 170 ° C. and a pressure of 2 kPa, and phenol was removed by distillation. Then, a solution containing bisphenol A was extracted from the bottom of the distillation column, and the residual phenol was completely removed from the solution by steam stripping to obtain 63 kg / h of bisphenol A (step (4)).
  • This crude phenol was further distilled in a distillation tower, and purified phenol was obtained from the top of the tower (step (R2)).
  • the obtained refined phenol had a sulfur concentration of 0.1 ppm or less and a nitrogen concentration of 0.1 ppm or less.
  • the water content of the obtained purified phenol was 100 mass ppm.
  • the purified phenol thus obtained was reused as a washing liquid for adduct crystals, and bisphenol A was subsequently produced as described above.
  • the hue (APHA) of bisphenol A produced was 10.
  • Example 2 The modified cation exchange resin catalyst used in Example 1 was washed with 4 times the amount of pure water and then with 4 times the amount of phenol (step (F)). As a result, 500 kg of phenol solution was produced as a cleaning waste liquid. After the catalyst was washed, bisphenol A was produced through steps (1) to (4) in the same manner as in Example 1. The phenol solution was mixed at 4 kg / hr (phenol 75% by mass) with the phenol waste water in Example 1, to obtain a crude phenol in the same manner as Example 1, and further to obtain purified phenol. The obtained crude phenol had a sulfur concentration of 1.7 ppm and a nitrogen concentration of 0.4 ppm.
  • the sulfur concentration in the obtained refined phenol was 0.1 ppm or less
  • the nitrogen concentration was also 0.1 ppm or less
  • the water content of the obtained refined phenol was 300 mass ppm.
  • Example 1 bisphenol A was produced in the same manner as in Example 1 while the crude phenol obtained from the phenol wastewater was not distilled and reused as it was as a cleaning liquid for adduct crystals.
  • the hue (APHA) of bisphenol A produced was 15.
  • Example 2 bisphenol A was produced in the same manner as in Example 2 while reusing the crude phenol obtained from the phenol wastewater as it was as a washing liquid for adduct crystals without being subjected to distillation treatment.
  • the hue (APHA) of bisphenol A produced was 25.
  • high-purity phenol is efficiently recovered from wastewater containing phenol produced when bisphenol A is produced using a strongly acidic cation exchange resin catalyst partially modified with a sulfur-containing amine compound. It is possible to efficiently produce high-quality bisphenol A by reusing the recovered phenol.
  • the obtained bisphenol A can be used as a raw material for engineering plastics such as polycarbonate resins and polyarylate resins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 (1)含硫黄アミン化合物で部分的に変性された強酸性陽イオン交換樹脂触媒を充填した反応器を用いて、フェノールとアセトンとを縮合反応させてビスフェノールAを生成し、ビスフェノールAを含む反応混合液を得る工程、(2)反応混合液から低沸点成分を分離して、濃縮されたビスフェノールAを含む晶析原料を調製する工程、(3)晶析原料を冷却することによりビスフェノールAとフェノールとの付加物を晶析させてビスフェノールAとフェノールとの付加物の晶析物を生成し、該晶析物を反応混合液から分離する工程、及び(4)前記晶析物からフェノールを除去し、ビスフェノールAを回収する工程を有するビスフェノールAの製造方法であって、(R1)ビスフェノールAの製造工程において生じるフェノールを含む排水からメチルイソブチルケトンを用いて水とフェノールとを分離し、粗フェノールを抽出する工程、及び(R2)粗フェノールを蒸留精製して、硫黄濃度が0.5質量ppm以下、窒素濃度が0.1質量ppm以下のフェノールを得る工程を含み、工程(R2)で得られたフェノールを、工程(1)~(4)の少なくとも1つの工程にて再利用する、ビスフェノールAの製造方法。

Description

ビスフェノールAの製造方法
 本発明は、ビスフェノールAの製造方法に関し、詳しくは、フェノール及びアセトンからビスフェノールAを製造する方法に関する。
 ビスフェノールAはポリカーボネート樹脂やポリアリレート樹脂等のエンジニアリングプラスチック、あるいはエポキシ樹脂等の原料として重要な化合物であることが知られており、近年その需要はますます増大する傾向にある。高品質の樹脂を製造するための原料として、無色かつ高純度のビスフェノールAが要求されている。
 ビスフェノールAは、通常、フェノールとアセトンとを酸性触媒の存在下に反応させることにより製造される。酸性触媒としては、含硫黄アミン化合物で部分的に変性された強酸性陽イオン交換樹脂が知られている。ここで、含硫黄アミン化合物で部分的に変性された強酸性陽イオン交換樹脂から硫黄又は窒素を含む不純物が流出すると、製造されるビスフェノールAの品質が悪化するため、前記強酸性陽イオン交換樹脂をフェノールで洗浄した後に反応を開始することが知られている(例えば、特許文献1を参照)。特許文献1には、前記強酸性陽イオン交換樹脂を洗浄した後のフェノール溶液を蒸留することで、窒素濃度の低い再利用可能なフェノールを回収する方法が記載されている。
 ところで、フェノールは水と相互に混和性を有するため、通常の蒸留法ではフェノールと水とを分離するのは困難である。そのため、フェノールを含有する排水からフェノールを回収する方法としては、エチルベンゼンに代表される共沸剤を用いて共沸蒸留するいわゆる共沸法や、メチルイソブチルケトン(MIBK)に代表される溶剤を用いてフェノールを抽出するいわゆる溶剤抽出法が知られている(例えば、特許文献2~4を参照)。
 共沸法は、フェノールを含有する排水に共沸剤を添加して共沸蒸留することで、水とフェノールとを分離する方法である。共沸法は、水とフェノールとを分離して再利用可能なフェノールを回収できる点では優れた方法であるが、共沸剤と水とを分離して再利用可能な共沸剤を回収するためのエネルギーコストが高いという問題がある。
 一方、溶剤抽出法は、フェノールを含有する排水に溶剤を添加してフェノールを溶剤側に抽出し、その抽出液を蒸留等してフェノールを溶剤から分離することで、水とフェノールとを分離する方法である。
特開2004-315387号公報 特開2000-107748号公報 特開昭58-15932号公報 特表2007-534471号公報
 含硫黄アミン化合物で部分的に変性された強酸性陽イオン交換樹脂を洗浄した後のフェノール溶液中には、遊離酸やアミン化合物等の硫黄又は窒素を含む不純物が含まれている。そのような不純物を含有するフェノールをビスフェノールAの製造に再利用すると、製造されるビスフェノールAの品質が悪化するおそれがある。
 特許文献1には、含硫黄アミン化合物で部分的に変性された強酸性陽イオン交換樹脂を洗浄した後のフェノール溶液を蒸留することで水を除去することが記載されている。しかし、通常の蒸留法ではフェノールと水とを分離するのは困難であり、また、十分な分離を行うためには高いエネルギーコストを要するという問題がある。
 特許文献2には、共沸剤を用いて水とフェノールとを分離する方法が記載されている。しかし、共沸剤と水とを分離して再利用可能な共沸剤を回収するためのエネルギーコストが高いという問題がある。
 特許文献3には、メチルイソブチルケトンを用いてフェノールを抽出して水とフェノールとを分離し、回収されたフェノールをビスフェノールA製造工程へ循環して再利用することが記載されている。また、特許文献4には、メチルイソブチルケトン及びアニソールを含む混合物を用いてフェノールを抽出して水とフェノールとを分離する方法が記載されている。しかし、特許文献3及び4には、含硫黄アミン化合物で部分的に変性された強酸性陽イオン交換樹脂について開示されておらず、メチルイソブチルケトンから分離したフェノール中に遊離酸やアミン化合物等の硫黄又は窒素を含む不純物が含まれることが想定されていない。
 本発明が解決しようとする課題は、含硫黄アミン化合物で部分的に変性された強酸性陽イオン交換樹脂触媒を用いてビスフェノールAを製造する際に生じたフェノールを含有する排水から高純度のフェノールを効率よく回収して再利用し、高品質のビスフェノールAを効率的に製造する方法を提供することにある。
 すなわち、本発明は、下記[1]~[10]のビスフェノールAの製造方法を提供する。
[1](1)含硫黄アミン化合物で部分的に変性された強酸性陽イオン交換樹脂触媒を充填した反応器を用いて、フェノールとアセトンとを縮合反応させてビスフェノールAを生成し、ビスフェノールAを含む反応混合液を得る工程、
 (2)前記工程(1)で得られた反応混合液から低沸点成分を分離して、濃縮されたビスフェノールAを含む晶析原料を調製する工程、
 (3)前記工程(2)で調製された晶析原料を冷却することによりビスフェノールAとフェノールとの付加物を晶析させてビスフェノールAとフェノールとの付加物の晶析物を生成し、該晶析物を反応混合液から分離する工程、及び
 (4)前記工程(3)で得られたビスフェノールAとフェノールとの付加物の晶析物からフェノールを除去し、ビスフェノールAを回収する工程
を有するビスフェノールAの製造方法であって、
 (R1)ビスフェノールAの製造工程において生じるフェノールを含む排水からメチルイソブチルケトンを用いて水とフェノールとを分離し、粗フェノールを抽出する工程、及び
 (R2)前記工程(R1)で抽出された粗フェノールを蒸留精製して、硫黄濃度が0.5質量ppm以下、窒素濃度が0.1質量ppm以下のフェノールを得る工程
を含み、前記工程(R2)で得られたフェノールを、前記工程(1)~(4)の少なくとも1つの工程にて再利用する、ビスフェノールAの製造方法。
[2]前記工程(1)の前に、前記強酸性陽イオン交換樹脂触媒をフェノールで洗浄する工程(F)を更に有し、かつ、前記工程(R1)におけるフェノールを含む排水が、工程(F)における洗浄後のフェノール溶液を含有する、[1]に記載のビスフェノールAの製造方法。
[3]前記工程(2)が、以下の工程(2a)及び(2b)を有し、かつ、工程(2a)で分離された塔底液(ii)を用いて前記晶析原料を調製する工程であり、
 前記のフェノールを含む排水が、工程(2a)で分離された塔頂成分(i)及び/又は工程(2b)で分離された塔底液(iv)を含む、[1]又は[2]に記載のビスフェノールAの製造方法。
 (2a)蒸留塔を使用して前記工程(1)で得られた反応混合液を蒸留し、低沸点成分を含有する塔頂成分(i)とビスフェノールA及びフェノールを含有する塔底液(ii)とに分離する工程
 (2b)前記工程(2a)で分離された塔頂成分(i)を、更に蒸留塔を使用して蒸留し、未反応のアセトンを含有する塔頂成分(iii)と反応生成水を含有する塔底液(iv)とに分離する工程
[4]前記含硫黄アミン化合物が、2-アミノエタンチオール、2,2-ジメチルチアゾリジン及び4-ピリジンエタンチオールからなる群から選ばれる少なくとも一種である、[1]~[3]のいずれかに記載のビスフェノールAの製造方法。
[5]遊離酸除去設備によって、系内のフェノール含有液から遊離酸を除去する工程(C)を有する、[1]~[4]のいずれかに記載のビスフェノールAの製造方法。
[6]前記遊離酸除去設備が陰イオン交換樹脂である、[5]に記載のビスフェノールAの製造方法。
[7]下記(a)~(c)のいずれか少なくとも一つを満足する、[5]又は[6]に記載のビスフェノールAの製造方法。
 (a)前記工程(1)で用いられる反応器が、その出口に、遊離酸除去設備として陰イオン交換樹脂を有する。
 (b)前記工程(3)にてアダクトが分離された反応混合液を異性化する異性化反応器を有し、該異性化反応器が、その入口に、遊離酸除去設備として陰イオン交換樹脂を有する。
 (c)前記工程(3)にてアダクトが分離された反応混合液を異性化する異性化反応器を有し、該異性化反応器が、その出口に、遊離酸除去設備として陰イオン交換樹脂を有する。
[8]前記遊離酸除去設備をフェノールで洗浄する工程(G)を有し、前記工程(R1)におけるフェノールを含む排水が、工程(G)における洗浄後のフェノール溶液を含有し、かつ、前記工程(R2)で得られたフェノールを、前記工程(F)、(G)及び(1)~(4)の少なくとも1つの工程にて再利用する、[5]~[7]のいずれかに記載のビスフェノールAの製造方法。
[9]前記フェノール含有液が、
 (i)工程(F)における洗浄後のフェノール溶液、
 (ii)工程(1)で得られる反応混合液、並びに
 (iii)工程(F)、(G)、(1)、(2)、(3)及び(4)からなる群から選ばれる少なくとも1つの工程にて再利用されるフェノール
の中から選ばれる少なくとも1種のフェノール含有液である、[5]~[8]のいずれかに記載のビスフェノールAの製造方法。
[10]前記工程(4)の前に、前記工程(R2)で得られたフェノールを用いて、前記工程(3)で分離されたビスフェノールAとフェノールとの付加物の晶析物を洗浄する、[1]~[9]のいずれかに記載のビスフェノールAの製造方法。
 本発明によれば、含硫黄アミン化合物で部分的に変性された強酸性陽イオン交換樹脂触媒を用いてビスフェノールAを製造する際に生じたフェノールを含有する排水から高純度のフェノールを効率よく回収することができ、回収したフェノールを再利用することで、高品質のビスフェノールAを効率的に製造することができる。
 本発明のビスフェノールAの製造方法は、下記工程(1)~(4)を有し、かつ、下記工程(R1)及び(R2)を含み、前記工程(R2)で得られたフェノールを前記工程(1)~(4)の少なくとも1つの工程にて再利用する方法である。
 (1)含硫黄アミン化合物で部分的に変性された強酸性陽イオン交換樹脂触媒を充填した反応器を用いて、フェノールとアセトンとを縮合反応させてビスフェノールAを生成し、ビスフェノールAを含む反応混合液を得る工程。
 (2)前記工程(1)で得られた反応混合液から低沸点成分を分離して、濃縮されたビスフェノールAを含む晶析原料を調製する工程。
 (3)前記工程(2)で調製された晶析原料を冷却することによりビスフェノールAとフェノールとの付加物を晶析させてビスフェノールAとフェノールとの付加物の晶析物を生成し、該晶析物を反応混合液から分離する工程。
 (4)前記工程(3)で得られたビスフェノールAとフェノールとの付加物の晶析物からフェノールを除去し、ビスフェノールAを回収する工程。
 (R1)ビスフェノールAの製造工程において生じるフェノールを含む排水からメチルイソブチルケトンを用いて水とフェノールとを分離し、粗フェノールを抽出する工程。
 (R2)前記工程(R1)で抽出された粗フェノールを蒸留精製して、硫黄濃度が0.5質量ppm以下、窒素濃度が0.1質量ppm以下のフェノールを得る工程。
<工程(1):反応工程>
 工程(1)は、含硫黄アミン化合物で部分的に変性された強酸性陽イオン交換樹脂触媒を充填した反応器を用いて、フェノールとアセトンとを縮合反応させてビスフェノールAを生成し、ビスフェノールAを含む反応混合液を得る工程である。
 本工程では、供給されるフェノールとアセトンとが縮合して、p-イソプロペニルフェノール(IPP)を生成した後、当該IPPとフェノールとが更に縮合して、ビスフェノールAを生成する。
 本発明では、装置の腐食、反応後の触媒の分離及び回収、並びに触媒活性等の観点から、触媒として、含硫黄アミン化合物で部分的に変性された強酸性陽イオン交換樹脂を用いる。
 含硫黄アミン化合物としては、2-アミノエタンチオール等のアミノアルキルチオール類、2,2-ジメチルチアゾリジン等のチアゾリジン類、4-アミノチオフェノール等のアミノチオフェノール類、4-ピリジンエタンチオール等のピリジンアルカンチオール類等が挙げられる。このなかで、2-アミノエタンチオール、2,2-ジメチルチアゾリジン及び4-ピリジンエタンチオールからなる群から選ばれる少なくとも一種が好ましい。
 強酸性陽イオン交換樹脂としては、触媒活性の観点から、スルホン酸型陽イオン交換樹脂等が好ましく用いられる。スルホン酸型陽イオン交換樹脂の具体例としては、スルホン化スチレン-ジビニルベンゼンコポリマー、スルホン化架橋スチレンポリマー、フェノールホルムアルデヒド-スルホン酸樹脂、ベンゼンホルムアルデヒド-スルホン酸樹脂等が挙げられる。これらは、単独で又は2種以上を組み合わせて用いてもよい。
 含硫黄アミン化合物を用いて強酸性陽イオン交換樹脂を部分変性する方法としては特に制限はなく、従来公知の方法を用いることができる。例えば適当な溶媒、好ましくは水等の水性溶媒中において、強酸性陽イオン交換樹脂と含硫黄アミン化合物とを所望の変性率になるように反応させることによって変性することができる。反応は常温で行ってもよく、必要であれば加温して行ってもよい。この反応により、イオン交換基(スルホン酸型陽イオン交換樹脂においてはスルホン酸基)と含硫黄アミン化合物におけるアミノ基とが反応し、イオン交換基の一部に硫黄含有基が導入され、変性される。
 ここで、強酸性陽イオン交換樹脂の変性率とは、強酸性陽イオン交換樹脂の強酸性イオン交換基の含硫黄アミン化合物によるモル変性率を意味する。本発明において、含硫黄アミン化合物による強酸性陽イオン交換樹脂の変性率は、ビスフェノールAの収率の観点から、5~50モル%が好ましく、8~35モル%がより好ましい。
 ビスフェノールAの収率を高める観点から、含硫黄アミン化合物による強酸性陽イオン交換樹脂の変性率を適当な範囲に制御し、含硫黄アミン化合物で部分的に変性された強酸性陽イオン交換樹脂を、反応開始前にフェノールで洗浄することが好ましい(工程(F))。
 洗浄は、連続式あるいは回分式で行い、洗浄後のフェノール溶液中の窒素濃度が0.01~5質量ppmとなるまで行うことが好ましい。洗浄後のフェノール溶液中の窒素濃度が高すぎると、ビスフェノールAの品質が悪化する。また、低すぎる窒素濃度となるような多量のフェノールを用いると、洗浄に要する時間が増加し、また、経済的にも不利になる。
 連続式で洗浄を行う場合、LHSV(液空間速度)は、通常0.02~10hr-1、好ましくは0.05~5hr-1である。LHSVが上記範囲内であれば多量のフェノールを必要とせず短時間で効率的に洗浄を行うことができる。洗浄温度は45~110℃が好ましく、55~90℃がより好ましい。洗浄温度が高すぎるとイオン交換樹脂の分解が進んでしまい、洗浄温度が低すぎるとフェノールが固化するおそれがある。
 工程(1)におけるフェノールとアセトンとの縮合反応は、前記触媒を充填した反応器を用いて行われる。
 縮合反応の方式は特に限定されず、回分式又は連続式のいずれであってもよい。原料を連続的に供給して反応させる固定床連続反応方式が好ましく、押し出し流れ方式である固定床流通方式がより好ましい。固定床連続反応方式における反応塔は、1基でもよく、2基以上を直列に配置した固定床多段連続反応方式としてもよい。
 固定床連続反応方式の場合、原料混合物のLHSV(液空間速度)は、通常0.2~30hr-1、好ましくは0.5~20hr-1の範囲である。反応温度は通常50~100℃、好ましくは60~90℃である。フェノール/アセトン比は通常3~30(モル比)、好ましくは5~20(モル比)である。
 遊離酸を実質的に含まない高品質のアダクト結晶を得る観点から、本発明の方法は、系内のフェノール含有液から遊離酸を除去する工程(工程(C))を有することが好ましい。工程(C)では、遊離酸除去設備によって遊離酸が除去される。例えば、工程(1)で用いられる反応器は、その出口に遊離酸除去設備を有することが好ましい。また、後述する異性化処理で用いられる異性化反応器の入口及び/又は出口に遊離酸除去設備を有することも好ましい。遊離酸除去設備としては、特開平1-211543号公報、特開2001-316313号公報等に記載されたものを使用することができる。例えば弱塩基性イオン交換樹脂等の陰イオン交換樹脂や、活性炭、塩基性無機酸化物等を使用することができ、陰イオン交換樹脂を使用することがより好ましい。遊離酸除去設備(好ましくは陰イオン交換樹脂)はフェノールで洗浄されることが好ましい(工程(G))。
 工程(C)は、工程(3)に供給される晶析原料中の遊離酸濃度を好ましくは0.001~0.5meq/L、より好ましくは0.001~0.10meq/Lに保持し得るように行われる。本発明では、(i)工程(F)における洗浄後のフェノール溶液(工程(1)への供給原料液)、(ii)工程(1)で得られる反応混合液、並びに(iii)工程(F)、(G)、(1)、(2)、(3)及び(4)からなる群から選ばれる少なくとも1つの工程にて再利用されるフェノールの中から選ばれる少なくとも1種のフェノール含有液に対して適用するのが好ましい。
<工程(2):濃縮工程>
 工程(2)は、前記工程(1)で得られた反応混合液から低沸点成分を分離して、濃縮されたビスフェノールAを含む晶析原料を調製する工程である。本工程により、反応混合液から、未反応アセトン、未反応フェノール、副生水等の低沸点物質等が除去されると共に、生成したビスフェノールの濃度を適度な範囲に調整することができる。
 本工程では、蒸留塔を用いた減圧蒸留により、反応混合液を濃縮することが好ましい。
 また、工程(2)は、以下の工程(2a)及び(2b)を有し、かつ、工程(2a)で分離された塔底液(ii)を用いて、濃縮されたビスフェノールAを含む晶析原料を調製する工程であることが好ましい。
 (2a)蒸留塔を使用して前記工程(1)で得られた反応混合液を蒸留し、低沸点成分を含有する塔頂成分(i)とビスフェノールA及びフェノールを含有する塔底液(ii)とに分離する工程。
 (2b)前記工程(2a)で分離された塔頂成分(i)を、更に蒸留塔を使用して蒸留し、未反応のアセトンを含有する塔頂成分(iii)と反応生成水を含有する塔底液(iv)とに分離する工程。
 工程(2a)は、蒸留塔を使用して前記工程(1)で得られた反応混合液を蒸留し、低沸点成分を含有する塔頂成分(i)とビスフェノールA及びフェノールを含有する塔底液(ii)とに分離する工程である。
 工程(2a)における蒸留条件としては、圧力が、好ましくは13~70kPa、より好ましくは20~50kPaであり、温度が、好ましくは30~180℃、より好ましくは50~170℃、更に好ましくは60~160℃である。
 工程(2a)において、蒸留塔の塔頂から、未反応アセトン、副生水等の低沸点物質及び一部のフェノールを含有する塔頂成分(i)が得られ、蒸留塔の塔底から、ビスフェノールA及びフェノールを含有する塔底液(ii)が得られる。
 工程(2a)で分離された塔頂成分(i)は、工程(2b)で更に蒸留分離が行われる。
 工程(2b)は、前記工程(2a)で分離された塔頂成分(i)を、更に蒸留塔を使用して蒸留し、未反応のアセトンを含有する塔頂成分(iii)と反応生成水を含有する塔底液(iv)とに分離する工程である。
 工程(2b)における蒸留条件としては、圧力が、好ましくは80~300kPa、より好ましくは110~200kPaであり、温度が、好ましくは40~150℃、より好ましくは50~130℃である。
 工程(2b)において、蒸留塔の塔頂から、アセトンを含有する塔頂成分(iii)が得られ、蒸留塔の塔底から、反応生成水及び一部のフェノールを含有する塔底液(iv)が得られる。塔頂成分(iii)として回収されたアセトンは、前記工程(1)の反応工程において再利用される。一方、塔底液(iv)は、フェノールを含有するため、後述する工程(R1)において水とフェノールとが分離され、フェノールが回収される。
 前記工程(2a)で分離された塔底液(ii)は、減圧蒸留によって過剰のフェノールを留去することで、ビスフェノールAの濃度を高くした濃縮液に調製される。この濃縮液は、晶析原料として後述する工程(3)において使用される。
 減圧蒸留の条件としては、圧力が、好ましくは4~70kPa、より好ましくは10~50kPaであり、温度が、好ましくは70~170℃、より好ましくは80~140℃、更に好ましくは85~130℃である。
 これによって得られる濃縮液(晶析原料)のビスフェノールAの濃度は、好ましくは20~60質量%、より好ましくは20~40質量%である。当該濃度が20質量%以上であれば、ビスフェノールAの回収率が十分である。一方、60質量%以下であれば、固化温度が高くなって晶析後のスラリー移送が困難となるといった弊害を防止することができる。
<工程(3):晶析-固液分離工程>
 工程(3)は、前記工程(2)で調製された晶析原料を冷却することによりビスフェノールAとフェノールとの付加物(アダクト)を晶析させてビスフェノールAとフェノールとの付加物の晶析物(アダクト結晶)を生成し、該晶析物を反応混合液から分離する工程である。
 晶析は、好ましくは70~170℃の晶析原料を、好ましくは35~70℃、より好ましくは40~60℃まで冷却することにより行うことができる。外部熱交換器を用いて冷却してもよく、また、濃縮液に水を加えて、減圧下での水の蒸発潜熱を利用する真空冷却晶析法により冷却してもよい。
 晶析によって、結晶化したアダクトを含有する反応混合液(スラリー)が得られる。得られた反応混合液をろ過又は遠心分離等によって固液分離することで、アダクトが反応混合液から分離される。当該分離に使用される機器としては、特に制限はないが、例えば、ベルトフィルター、ドラムフィルター、トレイフィルター、遠心分離器等が挙げられる。
 なお、晶析及び固液分離の後の固形分(アダクト)は、再溶解し、再度晶析及び固液分離を繰り返してもよい。晶析及び固液分離を多段で繰り返すことで、結晶内に取り込まれた不純物を減らすことができる。再溶解の溶解液としては、例えば、フェノール、水、水-フェノール混合液等が挙げられる。なお、フェノールは、回収したフェノールを用いてもよく、別途供給したフェノールを用いてもよい。
 工程(3)にてアダクトが分離された反応混合液(母液)には、フェノール、p-イソプロペニルフェノール、ビスフェノールA及びビスフェノールAの2,4’-異性体等が含まれている。そのため、反応混合液は適宜処理され、循環又は再利用される。例えば、ビスフェノールAの2,4’-異性体等をビスフェノールAに異性化する異性化処理を行ってもよい。異性化処理は、異性化反応器によって行われる。また、反応混合液及び/又は異性化処理後の溶液を晶析及び固液分離してもよい。また、アルカリ分解処理を行ってビスフェノールA及びその異性体をフェノール及びp-イソプロペニルフェノールに分解してもよい。これらの処理については、例えば、特開2004-315387号公報、特開2004-359594号公報、特開2009-242316号公報等を参照することができる。
<工程(4):アダクト分解工程>
 工程(4)は、前記工程(3)で得られたビスフェノールAとフェノールとの付加物の晶析物からフェノールを除去し、ビスフェノールAを回収する工程である。
 工程(4)の前に、アダクト結晶をフェノールで洗浄することが好ましい。なお、フェノールは、回収したフェノールを用いてもよく、別途供給したフェノールを用いてもよい。
 工程(4)では、アダクトを含む固形分を、100~160℃で加熱溶融して、アダクトをビスフェノールAとフェノールとに分解させた溶融液を得る。次いで、この溶融液を蒸発塔に送り、減圧蒸留等により、この溶融液からフェノールを除去し、溶融状態のビスフェノールAを回収する。当該減圧蒸留は、温度が通常150~190℃であり、圧力が通常1.3~13.3kPa、好ましくは1~11kPaである条件下で行うことが好ましい。また、回収した溶融状態のビスフェノールAは、更にスチームストリッピングにより残存するフェノールを除去することが好ましい。このような工程を経て、高純度のビスフェノールAを得ることができる。
 フェノールが除去された溶融状態のビスフェノールAは、一般的な造粒装置により液滴にされ、冷却固化されて製品となる。
<工程(R1):抽出工程>
 工程(R1)は、ビスフェノールAの製造工程において生じるフェノールを含む排水からメチルイソブチルケトンを用いて水とフェノールとを分離し、粗フェノールを抽出する工程である。
 ビスフェノールAの製造方法では、一般に、フェノールが原料及び洗浄液として使用されており、フェノールを含む排水が生じる。フェノールを含む排水は、環境安全性の観点からフェノールを分離した後に系外に排出されることが望まれ、高純度の製品ビスフェノールAを得るという観点からは高純度のフェノールを回収することが望まれる。ここで、含硫黄アミン化合物で部分的に変性された強酸性陽イオン交換樹脂触媒を使用する場合、フェノール溶液中には、遊離酸やアミン化合物等の硫黄又は窒素を含む不純物が含まれており、そのような不純物を含有するフェノールをビスフェノールAの製造に再利用すると、製造されるビスフェノールAの品質が悪化するおそれがある。これに対し、本発明では、フェノールを含む排水からメチルイソブチルケトンを用いて水とフェノールとを分離し、粗フェノールを抽出し、次いで、粗フェノールを蒸留精製することで高純度のフェノールを回収する。
 フェノールを含む排水としては、工程(F)における洗浄後のフェノール溶液、工程(G)における洗浄後のフェノール溶液、工程(2a)で分離された塔頂成分(i)、工程(2b)で分離された塔底液(iv)が挙げられ、真空発生装置から排出されるフェノールを含む排水なども含まれる。
 フェノールを含む排水は、まず、好ましくは20~50℃まで冷却され、メチルイソブチルケトンと混合後、静置することで、水相及び油相に分離される。排水中のフェノールの大半はメチルイソブチルケトンにより油相に抽出される。
 フェノールは水とメチルイソブチルケトンの相互に混和性を有するため、水相中にも一部のフェノールが含まれる。そのため、分離された水相は更に抽出塔に送られ、抽出塔においてメチルイソブチルケトンと向流接触され、水相中のフェノールはメチルイソブチルケトンに抽出される。これにより、水相中のフェノール濃度は3~10質量%から0.001~0.1質量%にまで低減され、排水として既存の方法で処理することができる。
 抽出処理については、特開昭58-15932号公報の記載を参照することができる。抽出塔は通常の多孔板抽出塔でもよく、また回転円板抽出塔や振動板塔式を用いることもできる。
<工程(R2):フェノール回収工程>
 工程(R2)は、前記工程(R1)で抽出された粗フェノールを蒸留精製して、硫黄濃度が0.5質量ppm以下、窒素濃度が0.1質量ppm以下のフェノールを得る工程である。
 工程(R1)で抽出された粗フェノールには、遊離酸やアミン化合物等の硫黄又は窒素を含む不純物が含まれているので、更に蒸留精製することで高純度のフェノールを回収する。
 得られるフェノール中の硫黄濃度は、0.5質量ppm以下であり、好ましくは0.3質量ppm以下、より好ましくは0.2質量ppm以下である。また、得られるフェノール中の窒素濃度は、0.1質量ppm以下である。フェノール中の硫黄濃度及び窒素濃度が上記範囲であれば、回収されたフェノールを反応原料や洗浄液として再利用しても、製造されるビスフェノールAの品質が悪化するおそれがない。
 また、得られるフェノールの含水率は、好ましくは300質量ppm以下、より好ましくは200質量ppm以下、更に好ましくは100質量ppm以下である。フェノールの含水率が上記範囲であると、フェノールに対するビスフェノールAの溶解度が低いため、アダクト結晶の洗浄液に利用した際にアダクト結晶の溶解ロスが低減する。これにより、上流へ循環するビスフェノールA/フェノールの量が低下するので用役使用量の低減や機器サイズの縮小が可能となる。
 工程(R2)で得られたフェノールを、さらにイオン交換樹脂により精製してもよい。この場合、イオン交換樹脂としては、酸型イオン交換樹脂を用いることができる。
 工程(R2)で得られたフェノールは、工程(F)、(G)、(1)、(2)、(3)及び(4)からなる群から選ばれる少なくとも1つの工程にて、反応原料、強酸性陽イオン交換樹脂触媒又は陰イオン交換樹脂の洗浄液、アダクト結晶の洗浄液等として再利用される。
 以下の本発明を実施例により更に具体的に説明するが、本発明はこれらの実施例になんら限定されるものではない。
 なお、以下の実施例及び比較例において、製造工程中に生成されたフェノール及びビスフェノールA等は、HPLC分析によって定量した。
 また、製造したビスフェノールAの色相(APHA)は、ビスフェノールA20gを、エタノール20mlに溶解し、分光光度計((株)日立製作所製、製品名:「U-3410型自記分光光度計」)を用いて、空気雰囲気下に260℃で10分間放置した後の色相をJIS K 4101に基づく比色法にて測定した。
実施例1
 触媒として、スルホン酸型陽イオン交換樹脂(三菱化学(株)製、製品名:「ダイヤイオン-SK104H」)に対して2-アミノエタンチオールにてスルホン酸基の20モル%を部分的に変性したものを触媒として充填した固定床反応器に、初期供給量フェノール510kg/hとアセトン45kg/hとの混合物を、触媒層の温度を80℃に保ちながら、液空間速度1.0hr-1にて連続的に供給した。そして、ビスフェノールAを生成して、該ビスフェノールAを含む反応混合液を得た(工程(1))。
 得られた反応混合液を陰イオン交換樹脂(ロームアンドハース社製、製品名:「アンバーリストA21」)に通した後(工程(C))、反応混合液から、温度150℃、圧力40kPaの条件下で、主として未反応アセトン、反応生成水、低沸点物質を留去し、次いで温度90℃、圧力10kPaの条件下で、主としてフェノールを留去することで、反応混合液を濃縮して、濃縮されたビスフェノールAを含む晶析原料を得た(工程(2))。
 この濃縮液を、90℃から45℃まで冷却して、ビスフェノールAとフェノールとの付加物(アダクト)を含む固形分を晶析させた後、遠心分離機により分離して、当該固形物と、110kg/hの母液とに分離した(工程(3))。
 固形物(アダクト結晶)を洗浄し、溶融して、アダクト分解した後、温度170℃、圧力2kPaの条件下に操作された蒸留塔に送り、フェノールを留去回収した。そして、蒸留塔の塔底からビスフェノールAを含む溶液を抜き出し、更にスチームストリッピングにより当該溶液から残存フェノールを完全に除去して、63kg/hのビスフェノールAを得た(工程(4))。
 フェノール排水23kg/hr(フェノール30質量%)を先ずメチルイソブチルケトンと混合後、静置して水相及びMIBK相に分離した。分離された水相を多孔板抽出塔にてメチルイソブチルケトン(MIBK)と向流接触させ得られたMIBK相を蒸留塔にて蒸留処理し、塔頂よりMIBK、塔底より粗フェノールを得た(工程(R1))。得られた粗フェノール中の硫黄濃度は0.9ppm、窒素濃度は0.2ppmであった。
 この粗フェノールを更に蒸留塔にて蒸留処理し、塔頂より精製フェノールを得た(工程(R2))。得られた精製フェノール中の硫黄濃度は0.1ppm以下、窒素濃度も0.1ppm以下であった。また、得られた精製フェノールの含水率は、100質量ppmであった。
 得られた精製フェノールをアダクト結晶の洗浄液として再利用しながら引き続き上記のとおりビスフェノールAの製造を行った。製造されたビスフェノールAの色相(APHA)は10であった。
実施例2
 実施例1で使用した前記の変性された陽イオン交換樹脂触媒を、4倍量の純水で洗浄後、4倍量のフェノールで洗浄した(工程(F))。その結果、洗浄廃液としてフェノール溶液500kgが生じた。
 触媒洗浄後は、実施例1と同様に工程(1)~(4)を経てビスフェノールAを製造した。
 前記フェノール溶液を4kg/hr(フェノール75質量%)で実施例1におけるフェノール排水に混合し、実施例1と同様にして粗フェノールを得、更に精製フェノールを得た。得られた粗フェノール中の硫黄濃度は1.7ppm、窒素濃度は0.4ppmであった。また、得られた精製フェノール中の硫黄濃度は0.1ppm以下、窒素濃度も0.1ppm以下であり、得られた精製フェノールの含水率は、300質量ppmであった。
 次いで、実施例1と同様に、得られた精製フェノールをアダクト結晶の洗浄液として再利用しながら引き続き上記のとおりビスフェノールAの製造を行った。製造されたビスフェノールAの色相(APHA)は10であった。
比較例1
 実施例1において、フェノール排水から得られた粗フェノールを蒸留処理せず、そのままアダクト結晶の洗浄液として再利用しながら、実施例1と同様にしてビスフェノールAの製造を行った。製造されたビスフェノールAの色相(APHA)は15であった。
比較例2
 実施例2において、フェノール排水から得られた粗フェノールを蒸留処理せず、そのままアダクト結晶の洗浄液として再利用しながら、実施例2と同様にしてビスフェノールAの製造を行った。製造されたビスフェノールAの色相(APHA)は25であった。
 本発明によれば、含硫黄アミン化合物で部分的に変性された強酸性陽イオン交換樹脂触媒を用いてビスフェノールAを製造する際に生じたフェノールを含有する排水から高純度のフェノールを効率よく回収することができ、回収したフェノールを再利用することで、高品質のビスフェノールAを効率的に製造することができる。得られたビスフェノールAは、ポリカーボネート樹脂やポリアリレート樹脂等のエンジニアリングプラスチックの原料として使用し得る。

Claims (10)

  1.  (1)含硫黄アミン化合物で部分的に変性された強酸性陽イオン交換樹脂触媒を充填した反応器を用いて、フェノールとアセトンとを縮合反応させてビスフェノールAを生成し、ビスフェノールAを含む反応混合液を得る工程、
     (2)前記工程(1)で得られた反応混合液から低沸点成分を分離して、濃縮されたビスフェノールAを含む晶析原料を調製する工程、
     (3)前記工程(2)で調製された晶析原料を冷却することによりビスフェノールAとフェノールとの付加物を晶析させてビスフェノールAとフェノールとの付加物の晶析物を生成し、該晶析物を反応混合液から分離する工程、及び
     (4)前記工程(3)で得られたビスフェノールAとフェノールとの付加物の晶析物からフェノールを除去し、ビスフェノールAを回収する工程
    を有するビスフェノールAの製造方法であって、
     (R1)ビスフェノールAの製造工程において生じるフェノールを含む排水からメチルイソブチルケトンを用いて水とフェノールとを分離し、粗フェノールを抽出する工程、及び
     (R2)前記工程(R1)で抽出された粗フェノールを蒸留精製して、硫黄濃度が0.5質量ppm以下、窒素濃度が0.1質量ppm以下のフェノールを得る工程
    を含み、前記工程(R2)で得られたフェノールを、前記工程(1)~(4)の少なくとも1つの工程にて再利用する、ビスフェノールAの製造方法。
  2.  前記工程(1)の前に、前記強酸性陽イオン交換樹脂触媒をフェノールで洗浄する工程(F)を更に有し、前記工程(R1)におけるフェノールを含む排水が、工程(F)における洗浄後のフェノール溶液を含有し、かつ、前記工程(R2)で得られたフェノールを、前記工程(F)、(1)、(2)、(3)及び(4)からなる群から選ばれる少なくとも1つの工程にて再利用する、請求項1に記載のビスフェノールAの製造方法。
  3.  前記工程(2)が、以下の工程(2a)及び(2b)を有し、かつ、工程(2a)で分離された塔底液(ii)を用いて前記晶析原料を調製する工程であり、
     前記のフェノールを含む排水が、工程(2a)で分離された塔頂成分(i)及び/又は工程(2b)で分離された塔底液(iv)を含む、請求項1又は2に記載のビスフェノールAの製造方法。
     (2a)蒸留塔を使用して前記工程(1)で得られた反応混合液を蒸留し、低沸点成分を含有する塔頂成分(i)とビスフェノールA及びフェノールを含有する塔底液(ii)とに分離する工程
     (2b)前記工程(2a)で分離された塔頂成分(i)を、更に蒸留塔を使用して蒸留し、未反応のアセトンを含有する塔頂成分(iii)と反応生成水を含有する塔底液(iv)とに分離する工程
  4.  前記含硫黄アミン化合物が、2-アミノエタンチオール、2,2-ジメチルチアゾリジン及び4-ピリジンエタンチオールからなる群から選ばれる少なくとも一種である、請求項1~3のいずれかに記載のビスフェノールAの製造方法。
  5.  遊離酸除去設備によって、系内のフェノール含有液から遊離酸を除去する工程(C)を有する、請求項1~4のいずれかに記載のビスフェノールAの製造方法。
  6.  前記遊離酸除去設備が陰イオン交換樹脂である、請求項5に記載のビスフェノールAの製造方法。
  7.  下記(a)~(c)のいずれか少なくとも一つを満足する、請求項5又は6に記載のビスフェノールAの製造方法。
     (a)前記工程(1)で用いられる反応器が、その出口に、遊離酸除去設備として陰イオン交換樹脂を有する。
     (b)前記工程(3)にてアダクトが分離された反応混合液を異性化する異性化反応器を有し、該異性化反応器が、その入口に、遊離酸除去設備として陰イオン交換樹脂を有する。
     (c)前記工程(3)にてアダクトが分離された反応混合液を異性化する異性化反応器を有し、該異性化反応器が、その出口に、遊離酸除去設備として陰イオン交換樹脂を有する。
  8.  前記遊離酸除去設備をフェノールで洗浄する工程(G)を有し、前記工程(R1)におけるフェノールを含む排水が、工程(G)における洗浄後のフェノール溶液を含有し、かつ、前記工程(R2)で得られたフェノールを、前記工程(F)、(G)、(1)、(2)、(3)及び(4)からなる群から選ばれる少なくとも1つの工程にて再利用する、請求項5~7のいずれかに記載のビスフェノールAの製造方法。
  9.  前記フェノール含有液が、
     (i)工程(F)における洗浄後のフェノール溶液、
     (ii)工程(1)で得られる反応混合液、並びに
     (iii)工程(F)、(G)、(1)、(2)、(3)及び(4)からなる群から選ばれる少なくとも1つの工程にて再利用されるフェノール
    の中から選ばれる少なくとも1種のフェノール含有液である、請求項5~8のいずれかに記載のビスフェノールAの製造方法。
  10.  前記工程(4)の前に、前記工程(R2)で得られたフェノールを用いて、前記工程(3)で分離されたビスフェノールAとフェノールとの付加物の晶析物を洗浄する、請求項1~9のいずれかに記載のビスフェノールAの製造方法。
PCT/JP2013/068397 2012-07-13 2013-07-04 ビスフェノールaの製造方法 WO2014010510A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380036299.XA CN104411670B (zh) 2012-07-13 2013-07-04 双酚a的制造方法
RU2015100504A RU2637311C2 (ru) 2012-07-13 2013-07-04 Способ получения бисфенола а
KR1020157000451A KR102045735B1 (ko) 2012-07-13 2013-07-04 비스페놀 a의 제조 방법
JP2014524772A JP6163487B2 (ja) 2012-07-13 2013-07-04 ビスフェノールaの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-157830 2012-07-13
JP2012157830 2012-07-13

Publications (1)

Publication Number Publication Date
WO2014010510A1 true WO2014010510A1 (ja) 2014-01-16

Family

ID=49915967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068397 WO2014010510A1 (ja) 2012-07-13 2013-07-04 ビスフェノールaの製造方法

Country Status (6)

Country Link
JP (1) JP6163487B2 (ja)
KR (1) KR102045735B1 (ja)
CN (1) CN104411670B (ja)
RU (1) RU2637311C2 (ja)
TW (1) TWI593665B (ja)
WO (1) WO2014010510A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178475A (ja) * 2014-03-19 2015-10-08 三菱化学株式会社 高純度フェノール
JP2016147826A (ja) * 2015-02-12 2016-08-18 三井化学株式会社 p−クミルフェノールの精製方法および製造方法
US20210188750A1 (en) * 2018-09-05 2021-06-24 Badger Licensing Llc Process for producing bisphenol-a

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102349519B1 (ko) * 2017-11-24 2022-01-07 주식회사 엘지화학 비스페놀a의 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735533A (en) * 1980-08-12 1982-02-26 Mitsubishi Chem Ind Ltd Preparation of bisphenol
JPS5815932A (ja) * 1981-06-25 1983-01-29 ゼネラル・エレクトリツク・カンパニイ ビスフエノ−ルa及びフエノ−ルを含む水性溢流の浄化法
JPH01211543A (ja) * 1988-02-17 1989-08-24 Mitsui Toatsu Chem Inc ビスフェノールaの製造方法
JPH11246458A (ja) * 1998-02-26 1999-09-14 Mitsubishi Chemical Corp ビスフェノールの製造方法
JP2001316313A (ja) * 2000-05-02 2001-11-13 Mitsubishi Chemicals Corp 高品位ビスフェノールa製造のためのビスフェノールaとフェノールとの結晶アダクトの製造方法
JP2004315387A (ja) * 2003-04-14 2004-11-11 Idemitsu Petrochem Co Ltd ビスフェノールaの製造におけるフェノールの回収方法
WO2010084929A1 (ja) * 2009-01-22 2010-07-29 三菱化学株式会社 ビスフェノール化合物の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4423252A (en) * 1980-08-07 1983-12-27 Mitsubishi Chemical Industries Limited Process for preparing bisphenols
JPS6421543A (en) * 1987-07-16 1989-01-24 Nec Corp Microcomputer for evaluation
US4766254A (en) * 1987-10-05 1988-08-23 General Electric Company Method for maximizing yield and purity of bisphenol A
JP2000107748A (ja) 1998-10-02 2000-04-18 Nippon Refine Kk 排水処理法
DE102004020113A1 (de) 2004-04-24 2005-11-17 Bayer Materialscience Ag Extraktion phenolhaltiger Abwasserströme
JP4918264B2 (ja) * 2006-02-02 2012-04-18 出光興産株式会社 ビスフェノールaの回収方法および回収設備
JP5030472B2 (ja) * 2006-05-17 2012-09-19 出光興産株式会社 高純度ビスフェノールaの製造方法及び製造設備
PL2142491T5 (pl) * 2007-05-09 2017-01-31 Badger Licensing Llc Ulepszenie procesu wytwarzania BPA

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735533A (en) * 1980-08-12 1982-02-26 Mitsubishi Chem Ind Ltd Preparation of bisphenol
JPS5815932A (ja) * 1981-06-25 1983-01-29 ゼネラル・エレクトリツク・カンパニイ ビスフエノ−ルa及びフエノ−ルを含む水性溢流の浄化法
JPH01211543A (ja) * 1988-02-17 1989-08-24 Mitsui Toatsu Chem Inc ビスフェノールaの製造方法
JPH11246458A (ja) * 1998-02-26 1999-09-14 Mitsubishi Chemical Corp ビスフェノールの製造方法
JP2001316313A (ja) * 2000-05-02 2001-11-13 Mitsubishi Chemicals Corp 高品位ビスフェノールa製造のためのビスフェノールaとフェノールとの結晶アダクトの製造方法
JP2004315387A (ja) * 2003-04-14 2004-11-11 Idemitsu Petrochem Co Ltd ビスフェノールaの製造におけるフェノールの回収方法
WO2010084929A1 (ja) * 2009-01-22 2010-07-29 三菱化学株式会社 ビスフェノール化合物の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178475A (ja) * 2014-03-19 2015-10-08 三菱化学株式会社 高純度フェノール
JP2016147826A (ja) * 2015-02-12 2016-08-18 三井化学株式会社 p−クミルフェノールの精製方法および製造方法
US20210188750A1 (en) * 2018-09-05 2021-06-24 Badger Licensing Llc Process for producing bisphenol-a
JP2021536465A (ja) * 2018-09-05 2021-12-27 バジャー・ライセンシング・エルエルシー ビスフェノールを製造するプロセス

Also Published As

Publication number Publication date
JP6163487B2 (ja) 2017-07-12
CN104411670A (zh) 2015-03-11
TW201418203A (zh) 2014-05-16
RU2015100504A (ru) 2016-08-27
RU2637311C2 (ru) 2017-12-04
TWI593665B (zh) 2017-08-01
KR102045735B1 (ko) 2019-11-18
CN104411670B (zh) 2017-06-20
KR20150036023A (ko) 2015-04-07
JPWO2014010510A1 (ja) 2016-06-23

Similar Documents

Publication Publication Date Title
JP3945855B2 (ja) ビスフェノール類の製造方法
JP5265094B2 (ja) 高純度ビスフェノールaの製造方法
RU2422429C2 (ru) Способ получения бисфенола а высокой чистоты и производственная установка
JP2001199919A (ja) ビスフェノールaの製造方法
JP6163487B2 (ja) ビスフェノールaの製造方法
JP6055472B2 (ja) ビスフェノールaの製造方法
JPS59231033A (ja) ビスフエノ−ルaの精製方法
JP2009242316A (ja) ビスフェノールaの製造方法
JPH029832A (ja) 固形物の洗浄回収方法
JP4904064B2 (ja) ビスフェノールaの製造方法
JPH08333290A (ja) ビスフェノールaの製造方法
JP4658355B2 (ja) ビスフェノールaの製造方法
JP4398674B2 (ja) ビスフェノールaの製造方法
WO2006008230A1 (en) A method to obtain visually pure bisphenol a
JP4577820B2 (ja) ビスフェノールaの製造方法及び装置
CN114230442A (zh) 一种降低制备双酚a反应系统中异丙基苯酚的方法
JP2014037368A (ja) ビスフェノールaの製造方法
JP5150086B2 (ja) ビスフェノールaの回収方法
JP4615831B2 (ja) ビスフェノールaの製造におけるフェノールの回収方法
KR102349519B1 (ko) 비스페놀a의 제조방법
JP2003160524A (ja) ビスフェノールaの製造方法及びその装置
JP2005330188A (ja) ビスフェノールaの製造方法及び製造装置
WO2007046434A1 (ja) 色相の良好なビスフェノールaの製造方法
JP2004149510A (ja) ビスフェノールaの製造方法
JP2003160523A (ja) ビスフェノールaの製造方法及びその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817084

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014524772

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157000451

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015100504

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13817084

Country of ref document: EP

Kind code of ref document: A1