WO2007046434A1 - 色相の良好なビスフェノールaの製造方法 - Google Patents

色相の良好なビスフェノールaの製造方法 Download PDF

Info

Publication number
WO2007046434A1
WO2007046434A1 PCT/JP2006/320767 JP2006320767W WO2007046434A1 WO 2007046434 A1 WO2007046434 A1 WO 2007046434A1 JP 2006320767 W JP2006320767 W JP 2006320767W WO 2007046434 A1 WO2007046434 A1 WO 2007046434A1
Authority
WO
WIPO (PCT)
Prior art keywords
bisphenol
phenol
adduct
temperature
stainless steel
Prior art date
Application number
PCT/JP2006/320767
Other languages
English (en)
French (fr)
Inventor
Kazuyuki Yoshitomi
Masahiro Kodama
Shuichi Masuda
Jun Kohiruimaki
Hokuto Yamasaki
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to EP06811962A priority Critical patent/EP1947077A4/en
Publication of WO2007046434A1 publication Critical patent/WO2007046434A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/84Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/86Purification; separation; Use of additives, e.g. for stabilisation by treatment giving rise to a chemical modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • C07C39/16Bis-(hydroxyphenyl) alkanes; Tris-(hydroxyphenyl)alkanes

Definitions

  • the present invention relates to a material selection method and a bisphenol A production method in a bisphenol A production apparatus, and more particularly, to produce a high quality bisphenol A, particularly a good hue, with phenol and acetone power.
  • the present invention relates to selection of a metal material in an apparatus and a method for producing bisphenol A having a good hue using the apparatus.
  • Bisphenol A is an important compound as a raw material for epoxy resin or polycarbonate resin, and its use and demand are increasing in recent years. In order to obtain high-quality rosin, colorless and high-purity bisphenol A is required!
  • Bisphenol A is usually produced by reacting phenol and acetone in the presence of an acidic catalyst.
  • an acidic catalyst a strong acidic cation exchange resin is representative.
  • the reaction product contains reaction by-products such as unreacted phenol, unreacted acetone, reaction product water, and coloring substances.
  • Patent Document 1 and Patent Document 2 residual phenol is removed from the adduct of bisphenol A with phenol by water vapor stripping, but a small amount of coloring causative substance is obtained with respect to the product bisphenol A obtained. This causes a problem that the hue of the product bisphenol A deteriorates. This problem of coloration (coloring) was considered inevitable because the coloring-causing substance was caused by the melting of the adduct crystal and the heating during the evaporation process of the melt.
  • As a method for separating high purity bisphenol A having excellent hue from such adduct crystals oxygen adhering to the inner wall of the apparatus system including the melting apparatus and the evaporation apparatus is removed by washing with an organic solvent. Methods of melting and evaporating are known (see, for example, Patent Document 3).
  • the production process of bisphenol A includes (1) a condensation reaction step in which phenol and acetone are subjected to a condensation reaction in the presence of an acidic catalyst, and (2) unreacted acetone, reaction from the reaction product liquid. Concentration step to remove water and some unreacted phenol by distillation under reduced pressure, etc. (3) By cooling the concentrated mixture, bisphenol A is crystallized as an adduct with phenol. A crystallization / solid-liquid separation process that separates this crystal (external crystal) from the mother liquor containing reaction by-products, and (4) heating and melting the adduct crystal to evaporate and remove phenol to remove bisphenol A.
  • SUS304 is used as the metal material of the melting device and the evaporation device.
  • the inner wall force of the melting device and the evaporation device is ejected into the device to remove oxygen. The operation is extremely complicated and impractical.
  • Patent Document 1 JP-A-2-28126
  • Patent Document 2 JP-A 63-132850
  • Patent Document 3 Japanese Patent Laid-Open No. 5-39238
  • the object of the present invention is to provide bisphenol A from phenol and acetone.
  • An object of the present invention is to provide a method for economically and advantageously producing bisphenol A having a good hue without requiring a complicated operation as described in Patent Document 3 in an apparatus to be produced.
  • Sulfenol A can be separated, and bisphenol A production equipment by the condensation reaction of phenol and acetone allows the reaction mixture force to crystallize and separate the adduct of bisphenol A and phenol.
  • the coloring cause substances can be recovered and separated in the mother liquor until the solid-liquid separation process, use stainless steel (SUS304 or SUS304L) that does not contain molybdenum, which is a general material, and molybdenum, which is a high-grade material after adduct decomposition.
  • the present invention provides the following method for producing bisphenol A.
  • a condensation reaction step in which an excess amount of phenol and acetone is subjected to a condensation reaction in the presence of an acidic catalyst, (2) a concentration step in which the reaction mixture obtained in the condensation reaction step is concentrated, and (3) a concentration step.
  • the concentrated liquid obtained in the process was cooled to crystallize the adduct of bisphenol A and phenol, and separated into the adduct and mother liquor.
  • the temperature of the raw material system and the liquid phase part of the reaction product in the steps (1) to (3) should be 180 ° C or lower and heated
  • the raw materials phenol and acetone are reacted in a stoichiometric excess of phenol.
  • the molar ratio of phenol to acetone is preferably in the range of 5 to 20, more preferably phenol Z acetone: 3 to 30.
  • the reaction temperature is usually from 50 to: LOO ° C, and the reaction pressure is usually from normal pressure to 1.5 MPa, preferably from normal pressure to 0.6 MPa.
  • a strong acid cation exchange resin such as a sulfonic acid type is usually used.
  • a catalyst obtained by neutralizing a part of the strongly acidic cation exchange resin catalyst with a promoter such as mercaptoalkylamine may be used.
  • a promoter such as mercaptoalkylamine
  • Examples include those in which 5 to 30 mol% of the groups have been neutralized.
  • the condensation reaction between phenol and acetone is carried out by a fixed bed flow method, which is a continuous method or a forced flow method, or a suspension bed batch method.
  • a fixed bed flow system the liquid space velocity of the raw material liquid supplied to the reactor is about 0.2 to 50 hr- 1 .
  • the suspension bed batch method is generally a resin catalyst amount in the range of 20 to L00% by mass with respect to the raw material liquid, and the treatment time is , About 0.5-5 hours
  • the reaction mixture of the condensation reaction step is usually concentrated in two steps.
  • the first concentration step unreacted acetone, reaction product water, and the like are removed by a method such as vacuum distillation.
  • the vacuum distillation is usually carried out at a temperature of 30 to 180 ° C and a pressure of 13 to 67 kPa.
  • the second concentration step phenol is distilled off and the concentration of bisphenol A is adjusted.
  • the concentration of bisphenol A during this is preferably 20 to 60 mass 0/0.
  • the concentration of bisphenol A is less than 20% by mass, the yield tends to be low, and when it exceeds 60% by mass, the solidification temperature becomes high and transport becomes impossible. Therefore, the concentration is usually adjusted by pre-concentrating the reaction mixture in the first concentration step.
  • This second concentration step is usually performed under conditions of pressure 4-40kPa and temperature 70-140 ° C. Preferred to carry out below.
  • the concentrated liquid from the concentration step is usually cooled from 70 to 140 ° C to 35 to 60 ° C, and an adduct of bisphenol A and phenol is crystallized to form a slurry. Cooling is performed by external heat exchange or heat removal by evaporation of water added to the crystallizer.
  • the slurry liquid is solid-liquid separated. Since the mother liquor obtained in the crystallization / solid-liquid separation step contains reaction product water, it is usually introduced into a dehydration tower. However, a part of the hydrated mother liquor may be circulated to the crystallizer.
  • the composition of the mother liquor after dehydration is usually: phenol: 65 to 85% by mass, bisphenol A: 10 to 20% by mass, 2,4 'by-products such as isomers: 5 to 15% by mass, 2, 4' Contains many impurities such as isomers!
  • This mother liquor can be circulated to a concentration step or the like by subjecting reaction by-products in the mother liquor to isomerization.
  • a sulfonic acid type cation exchange resin is usually used, the reaction temperature is about 50 to 100 ° C, and the liquid space velocity is 0 in the case of a fixed bed flow method that is a continuous type and a forced flow type. . is carried out at about 2 ⁇ 50hr _1.
  • the solid component mainly composed of an adduct that has been subjected to solid-liquid separation is preferably washed with a washing liquid.
  • a washing liquid the same one as the saturated phenol solution of bisphenol A can be used in addition to the phenol recovered by evaporation, the raw material phenol, water, the water-phenol mixture, and the like.
  • the crystal may be redissolved, and crystallization and solid-liquid separation may be repeated again.
  • the impurities taken into the adduct crystal are gradually reduced.
  • a solid solution mainly composed of a redissolved solution and an adduct obtained by solid-liquid separation is used.
  • the body component cleaning solution the same solution as the saturated phenol solution of bisphenol A can be used in each stage, in addition to the recovered phenol by evaporation, raw material phenol, water, water-phenol mixture.
  • the solid-liquid separation device used for solid-liquid separation is not particularly limited as long as it is usually used, but a belt filter, a drum filter, a tray filter, a centrifugal separator and the like are used.
  • the adduct recovered by the solid-liquid separation is then sent to the adduct decomposition process to remove the phenol to obtain high purity bisphenol A.
  • the adduct of bisphenol A and phenol recovered by the above solid-liquid separation is converted to high-purity bisphenol A by removing the phenol during the adduct decomposition step. That is, the adduct is heated and melted at about 100 to 160 ° C. to decompose into bisphenol A and phenol, and most of the phenol is removed by this molten liquid evaporator.
  • High quality bisphenol A can be obtained by removing residual phenol by steam stripping.
  • the decomposition temperature of the adduct requires a distillation temperature of 180 ° C or lower, preferably 170 ° C or lower. Further, the heating medium temperature for heating is required to be 200 ° C. or less, and preferably 190 ° C. or less.
  • Bisphenol A obtained in the adduct decomposition process becomes granulated product bisphenol A by granulation and is stored in silos.
  • the molten liquid is dropped from the nozzle plate installed in the upper part of the granulation tower, and the granulating tower lower part force cooling gas flows upward to obtain a granular (prill) product (spraying grain).
  • adduct decomposition process and later refers to a metal material that comes into contact with molten bisphenol A and a mixed liquid of bisphenol A and bisphenol, such as heat exchange in the adduct decomposition process and a granulation tower nozzle.
  • Bisphenol A is well known to deteriorate with heat, and its quality, especially hue, deteriorates when exposed to high temperature heat. Therefore, after the adduct decomposition process, it is necessary to set the temperature of the liquid phase portion of the reaction product to 180 ° C or lower and the heat medium temperature to 200 ° C or lower, and the temperature of the liquid phase portion to 170 ° C or lower and heat.
  • the medium temperature is preferably 190 ° C or lower.
  • the temperature of the raw material system and the liquid phase of the reaction product be 180 ° C or lower, which is preferable to minimize the generation of coloring substances, and 170 ° C or lower. More preferably. In addition, it is preferable that the temperature of the heat medium for heating them is 200 ° C or less. More preferably,
  • phenol, bisphenol A, and the like were quantified by high performance liquid chromatography (HPLC) analysis.
  • the obtained reaction mixture was distilled under reduced pressure using a distillation column (material: SUS304, heating medium temperature 190 ° C, liquid temperature 170 ° C) to distill off acetone, water, and phenol, and a bisphenol A concentration of 40 was obtained.
  • the solution was concentrated to a mass% to obtain a phenol / bisphenol A solution.
  • the obtained slurry solution was subjected to solid-liquid separation and phenol washing with a solid-liquid separator (material: SUS304) to obtain a bisphenol A ⁇ phenol adduct.
  • This Phenol was added to the tato and heated to 170 ° C (heating medium temperature 190 ° C) in a dissolution tank (material: SUS304) to prepare a solution containing 60% by mass of phenol and 40% by mass of bisphenol A.
  • This solution was again subjected to vacuum cooling crystallization, solid-liquid separation and phenol washing with the same equipment to obtain a bisphenol A ⁇ phenol adduct.
  • This adduct crystal is supplied to a melting tank (material: SUS316L) and melted (liquid temperature: 170 ° C, heat medium temperature: 190 ° C), then in a distillation column (material: SUS316L), liquid temperature: 170 ° C, heat medium A bisphenol A melt was obtained by dephenoling at 190 ° C. under reduced pressure.
  • the resulting melt is granulated in an inert gas atmosphere in a granulation tower having a nozzle plate (material SUS316L) heated with a 190 ° C heating medium to produce granular bisphenol A. Manufactured.
  • the obtained bisphenol A was heated at 220 ° C. for 40 minutes in an air atmosphere, and the hue was visually evaluated using the APHA standard color. As a result, it was APHA10.
  • Granular bisphenol A was produced in the same manner as in Example 1 except that the temperature of the heat medium in the distillation operation of the reaction mixture and the dissolution operation after crystallization was 210 ° C and the liquid temperature was 190 ° C. did.
  • the APHA of the obtained bisphenol A was 15.
  • Granular bisphenol A was produced in the same manner as in Example 1 except that the material of the equipment after the adduct decomposition process was changed to SUS316.
  • the A PHA of the obtained bisphenol A was 10.
  • Example 2 The same material as in Example 1 except that the material of the equipment after the adduct decomposition process was changed to SUS304L, the liquid phase temperature during melting, adduct decomposition, and granulation operation was changed to 190 ° C and the heat medium temperature was changed to 210 ° C. Thus, granular bisphenol A was produced.
  • the APHA of the obtained bisphenol A was 30.
  • Comparative Example 2 Granular bisphenol A was produced in the same manner as in Example 1 except that the material of the equipment after the adduct decomposition process was changed to SUS304. The A PHA of the obtained bisphenol A was 50.
  • Table 1 summarizes the materials of the equipment in each step, the liquid phase temperature, the heat medium temperature, and the hue evaluation result (APHA) of the product bisphenol A in each of the above Examples and Comparative Examples. From this, it can be seen that bisphenol A with good hue can be obtained by using SUS316, which is a stainless steel containing molybdenum as the material for the equipment after the decomposition process, and by defining the heat medium temperature and liquid phase temperature. Power.
  • bisphenol A having a good hue can be easily produced without requiring a complicated operation such as washing of the apparatus with high-temperature phenol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 (1)過剰量のフェノールとアセトンとを縮合反応させる縮合反応工程、(2)濃縮工程、(3)晶析・固液分離工程、(4)アダクト分解工程および(5)造粒工程を有するビスフェノールAの製造装置において、(4)アダクト分解工程以降の反応混合物と接する部分の金属材質としてモリブデンを含むステンレススチールを使用し、原料系および反応生成物の液相部分の温度を180°C以下とし、かつそれらを加熱するための熱媒体温度を200°C以下とする。これにより、フェノールとアセトンからビスフェノールAを製造する装置において色相の良好なビスフェノールAを経済的に有利に製造することができる。

Description

明 細 書
色相の良好なビスフヱノール Aの製造方法
技術分野
[0001] 本発明は、ビスフエノール A製造装置における材質選定方法およびビスフエノール Aの製造方法に関し、詳しくは、フエノールとアセトン力 高品質のビスフエノール A、 殊に色相が良好な製造を造るための装置における金属材料の材質の選定および該 製造装置を用いた色相の良好なビスフエノール Aの製造方法に関するものである。 背景技術
[0002] ビスフエノール Aはエポキシ榭脂或いはポリカーボネート榭脂の原料として重要な 化合物であり、近年その用途及び需要が増大している。高品質の榭脂を得るために は、無色で高純度のビスフエノール Aが要求されて!、る。
ビスフエノール Aは、通常、フエノールとアセトンとを酸性触媒の存在下に反応させ ること〖こより製造される。酸性触媒としては、強酸性陽イオン交換樹脂が代表的であ る。反応生成物は、ビスフエノール Aの他に、未反応フエノール、未反応アセトン、反 応生成水及び着色物質等の反応副生物を含んで 、る
[0003] 反応混合液力 高純度のビスフエノール Aを回収する方法の一つとして、該反応生 成液から、未反応アセトン、反応生成水及び一部の未反応フエノールを蒸留 等で除去した後、残った濃縮混合液を冷却することによってビスフエノール Aをフエノ ールとの付加物 (ァダクト)として晶析させ、反応副生物を含む母液から
この結晶 (ァダクト結晶)を分離した後、フエノールを除去してビスフエノール Aを回収 する方法がある (例えば特許文献 1および特許文献 2参照)。
[0004] この特許文献 1および特許文献 2はビスフエノール Aをフエノールとの付加物から水 蒸気ストリツビングにより残留フエノールを除去するものであるが、得られる製品ビスフ ヱノール Aに対して少量の着色原因物質が混入するため、製品ビスフエノール Aの色 相が悪ィ匕するという問題がある。この色相悪ィ匕 (着色)の問題は、その着色原因物質 がァダクト結晶の溶融及びその溶融液の蒸発処理に際する加熱に起因することから 、不可避的なものと考えられていた。 このようなァダクト結晶から色相の優れた高純度ビスフエノール Aを分離する方法と しては、ァダクト結晶を溶融装置及び蒸発装置を含む装置系の内壁に付着する酸素 を有機溶剤洗浄により除去した後、溶融及び蒸発する方法が知られている (例えば特 許文献 3参照)。
[0005] 上記のようにビスフエノール Aの製造工程は、(1)フエノールとアセトンとを酸性触媒 の存在下に縮合反応させる縮合反応工程、(2)該反応生成液から、未反応アセトン、 反応生成水及び一部の未反応フ ノールを減圧蒸留等で除去する濃縮工程、(3)濃 縮混合液を冷却することによってビスフエノール Aをフエノールとの付加物 (ァダクト)と して晶析させ、この結晶 (ァダ外結晶)を反応副生物を含む母液力も分離する晶析 · 固液分離工程、(4)ァダクト結晶を加熱溶融してフエノールを蒸発除去してビスフエノ ール Aを製造するァダクト分解工程および (5)回収したビスフエノール Aを造粒し、製 品ビスフエノール Aを得る造粒工程に分けることができる力 これらの反応装置や濃 縮装置、溶融装置、蒸発装置における金属材質としてはステンレススチール、例えば 、 SUS304, SUS304, SUS304L,SUS316, SUS316L力一般に使用されること は公知である。しかし、高品質のビスフエノール Aを製造するために、上記工程のい ずれの装置にどの材質のものを用いるべきかについては明確に区別されておらず、 また、用いられる装置の材質において、運転温度や熱媒体温度をどのようにすべき かにつ 、て明確に記載されて 、る文献は見当たらな!/、。
特許文献 3の実施例では溶融装置及び蒸発装置の金属材質として SUS304を用 V、て 、るが、溶融装置及び蒸発装置の内壁面力 酸素を除去するために高温フエノ ールを装置内に噴出させて洗浄する必要があり、操作が極めて煩雑で実用的なもの ではない。
[0006] 特許文献 1 :特開平 2-28126号公報
特許文献 2 :特開昭 63-132850号公報
特許文献 3:特開平 5-39238号公報
発明の開示
発明が解決しょうとする課題
[0007] このような状況下で、本発明の目的は、フエノールとアセトンからビスフエノール Aを 製造する装置において、特許文献 3に記載のような煩雑な操作を必要とせずに、色 相の良好なビスフエノール Aを経済的に有利に製造するための方法を提供すること にある。
課題を解決するための手段
[0008] 本発明者等は、上記課題を解決するために鋭意研究を行った結果、上記の結晶ァ ダクトを処理する溶融装置及び蒸発装置の材質としてモリブデンを含むステン レススチーノレ (SUS316又は SUS3164L)を使用することにより着色原因物質の発 生を抑制することができ、結晶ァダクトから色相の優れた高純度ビ
スフエノール Aを分離することができること、また、フエノールとアセトンとの縮合反応に よるビスフエノール A製造装置にぉ 、て、反応混合物力 ビスフエノール Aとフエノー ノレとの付加物を晶析分離する晶析'固液分離工程までは、着色原因物質が母液で 回収されて分離できることから r般材質であるモリブデンを含まないステンレススチー ル (SUS304又は SUS304L)を用い、ァダクト分解以降については高級材質である モリブデンを含むステンレススチール (SUS316又は SUS316L)を用いることにより、 ビスフエノール A製造装置の設備コストが低減され、色相の良好なビスフエノール Aを 経済的に有利に製造できることを見出し、本発明を完成した。
[0009] 即ち本発明は、以下のビスフエノール Aの製造方法を提供するものである。
1. (1)過剰量のフエノールとアセトンとを酸性触媒の存在下、縮合反応させる縮合反 応工程、(2)縮合反応工程で得られた反応混合物を濃縮する濃縮工程、(3)濃縮ェ 程で得られた濃縮液を冷却することによりビスフエノール Aとフエノールとの付加物を 晶析させ、該付加物と母液に分離する晶析 ·固液分離工程、(4)ビスフ ノール Aとフ ェノールとの付カ卩物からフエノールを除去し、ビスフエノール Aを回収するァダクト分 解工程および (5)回収したビスフエノール Aを造粒し、製品ビスフエノール Aを得る造 粒工程を有するビスフエノール Aの製造方法にぉ 、て、(4)ァダクト分解工程以降の 反応混合物と接する機器の金属材質としてモリブデンを含むステンレススチールを使 用することを特徴とするビスフエノール Aの製造方法。
[0010] 2. モリブデンを含むステンレススチールが SUS316又は SUS316Lである上記 1の ビスフエノール Aの製造方法。 [0011] 3. (1)〜(3)工程の原料系および反応生成物と接する部分の金属材質として、モリブ デンを含まないステンレススチールを使用する上記 1又は 2のビスフエノール Aの製造 方法。
4. モリブデンを含まな!/、ステンレススチールが SUS304又は SUS304Lである上記 3のビスフエノール Aの製造定方法。
[0012] 5. 上記 1又は 2のビスフエノール A製造装置において、(4)ァダクト分解工程以降に おいて反応生成物の液相部分の温度を 180°C以下とし、かつ熱媒体温度を 200°C 以下とすることを特徴とするビスフエノール Aの製造方法。
6.上記 3又は 4のビスフエノール A製造装置において、(1)〜(3)の工程における原料 系および反応生成物の液相部分の温度を 180°C以下とし、かつそれらを加熱するた めの熱媒体温度を 200°C以下とする上記 5のビスフエノー Aの製造方法。
発明の効果
[0013] 本発明のビスフエノール Aの製造方法においては、(4)ァダクト分解工程以降の反 応生成物と接する機器の金属材質としてモリブデンを含むステンレススチール (SUS 316又は SUS316L)を使用することにより、結晶ァダク力も色相の優れた高純度ビス フエノール Aを分離することができ、高温フエノールによる装置の洗浄などの煩雑な 操作を必要とせずに色相の良好なビスフエノール Aを容易に製造することができる。
[0014] また、(1)〜(3)工程にっ 、ては安価な一般材質であるモリブデンを含まな 、ステン レススチール (SUS304又は SUS304L)を用いることにより装置コストが低減し、(4) ァダクト分解工程以降については高級材質であり腐食し難いモリブデンを含むステン レススチール (SUS316又は SUS316L)を用いることにより製品の色相悪化などが回 避されることから、色相の良好なビスフエノール Aを経済的に有利に製造することがで きる。
発明を実施するための最良の形態
[0015] 本発明のビスフエノール Aの製造方法においては、(1)縮合反応工程、(2)濃縮工程 、(3)晶析 '固液分離工程、(4)ァダクト分解工程および (5)回収したビスフエノール Aを 造粒し、製品ビスフエノール Aを得る造粒工程を有し、色相の良好なビスフエノール A が製造される。 以下、各工程について詳細に説明する。
[0016] (1)縮合反応工程
原料のフエノールとアセトンは、化学量論的にフエノール過剰で反応させる。フエノ ールとアセトンとのモル比は、フエノール Zアセトン: 3〜30が好ましぐより好ましくは 、 5〜20の範囲である。反応温度は、通常、 50〜: LOO°C、反応圧力は、通常、常圧 〜1. 5MPa、好ましくは常圧〜 0. 6MPaで行われる。触媒としては、通常、スルホン 酸型等の強酸性陽イオン交換樹脂が用いられる。
更に'強酸性陽イオン交換榭脂触媒の一部をメルカプトアルキルアミン等の助触媒 により中和された触媒を用いることもある。例えば、 2—メルカプトェチルァミン · 3—メ ルカプトプロピルァミン、 Ν,Ν ジメチル 3—メルカプトプロピルアミン · Ν · Ν ジー η ブチル 4 メルカプトブチルァミン、 2, 2 ジメチルチアゾリジン等でスルホン酸 基の 5〜30モル%が中和されたものが挙げられる。
フエノールとアセトンとの縮合反応は、連続方式でし力も押し流れ方式である固定 床流通方式、或いは懸濁床回分方式で行われる。固定床流通方式の場合、反応器 に供給する原料液の液空間速度は、 0. 2〜50hr— 1程度である。また、懸濁床回分方 式で行う場合、反応温度、反応圧力によって異なるが、一般的に、該原料液に対して 20〜: L00質量%の範囲の榭脂触媒量であり、処理時間は、 0. 5〜5時間程度である
[0017] (2)濃縮工程
縮合反応工程力ゝらの反応混合物は通常二段の工程で濃縮が行なわれる。第一濃 縮工程において、減圧蒸留等の方法により未反応アセトン、反応生成水等が除かれ る。減圧蒸留は、通常、温度 30〜180°C、圧力 13〜67kPaで実施される。続いて、 第二濃縮工程において、フエノールを留去し、ビスフエノール Aの濃度を調整する。こ の際のビスフエノール Aの濃度は 20〜60質量0 /0とすることが好ましい。ビスフエノー ル Aの濃度が 20質量%よりも小さい場合には収率が低くなる傾向があり、また、 60質 量%より大きくなると固化温度が高くなり、輸送不可能になるという問題が起きる。従 つて、通常は第一濃縮工程において反応混合液を予め濃縮することにより前記濃度 に調整する。この第二濃縮工程は、通常、圧力 4〜40kPa、温度 70〜140°Cの条件 下で実施することが好ま 、。
[0018] (3)晶析 ·固液分離工程
濃縮工程からの濃縮液は、通常、 70〜140°Cから 35〜60°Cまで冷却され、ビスフ ェノール Aとフエノールとの付加物 (ァダクト)を晶析し、スラリー状になる。冷却は、外 部熱交 や、晶析器に加えられる水の蒸発による除熱によって行われる。
次にスラリー状の液は固液分離される。この晶析'固液分離工程で得られる母液は 反応生成水を含むので通常は脱水塔に導入される。但し、この含水母液の一部を晶 析器に循環しても良い。脱水後の母液組成は、通常、フエノール: 65〜85質量%、ビ スフヱノール A: 10〜20質量%、 2,4' 異性体等の副生物: 5〜15質量%であり、 2, 4' 異性体等の不純物を多く含んで!/、る。
この母液は、母液中の反応副生物を異性化処理することによって、濃縮工程などに 循環することができる。
異性化処理は、通常、スルホン酸型陽イオン交換樹脂が用いられ、反応温度 50〜 100°C程度で、連続式でし力も押し流れ方式である固定床流通方式の場合、液空間 速度は 0. 2〜50hr_1程度で行われる。
なお、不純物の蓄積を防ぐために、異性ィ匕反応液の一部をブローし、その濃縮液 を冷却してァダクトを晶析させて分離することが好ましい。
[0019] 固液分離されたァダクトを主成分とする固体成分は洗浄液による洗浄を行うことが 好ましい。洗浄液としては、蒸発して回収したフエノール、原料フエノール、水、水— フエノール混合液の他、ビスフエノール Aの飽和フエノール溶液と同じものも使用され る。
使用される洗浄液の量は多い方が、洗浄効率の点で良いことは当然であるが、結 晶の再溶解ロス、洗浄液の循環、回収、再使用の観点から自ずと上限があり、通常は 、質量基準で結晶量の 0. 1〜10倍程度が最も効率的である。
なお、晶析,固液分離の後に結晶を再溶解し、再度晶析と固液分離を繰り返しても 良い。この晶析と固液分離を多段で繰り返すことによりァダクト結晶内に取り込まれた 不純物が順次減少して行く。
この場合、再溶解の溶解液ならびに固液分離で得られるァダクトを主成分とする固 体成分の洗浄液としては、蒸発して回収したフエノール、原料フエノール、水、水ーフ ェノール混合液の他、ビスフエノール Aの飽和フエノール溶液と同じものを各段で使 用できる。
固液分離にぉ 、て使用される固液分離機器としては通常使用されるものであれば 特に制限されないが、ベルトフィルター、ドラムフィルター、トレイフィルター、遠心分 離器等が使用される。
[0020] (4)ァダクト分解工程
固液分離により回収されたァダクトは、次にァダクト分解工程に送られてフエノール を除去することによって高純度のビスフエノール Aが得られる。
上記の固液分離により回収されたビスフエノール Aとフエノールとの付加物 (ァダクト) は、ァダクト分解工程にぉ 、てフエノールが除去されて高純度ビスフエノール Aとなる 。すなわち、該付加物(ァダクト)を 100〜160°C程度で加熱溶融することによりビスフ ェノール Aとフエノールとに分解し、この溶融液力 蒸発缶などによって大部分のフエ ノールを除去し、更に、スチームストリツビングにより残存するフエノールを除去するこ とによって、高品質のビスフエノール Aを得ることができる。このァダクト分解温度は、 高品質のビスフエノール Aを得るため、蒸留温度を 180°C以下とすることを要し、好ま しくは 170°C以下である。また、この加熱するための熱媒体温度を 200°C以下とする ことを要し、好ましくは 190°C以下である。
[0021] (5)造粒工程
ァダクト分解工程で得られたビスフエノール Aは、造粒することにより製品ビスフエノ ール Aとなりサイロ等に貯蔵される。ビスフエノール Aの造粒は溶融液を造粒塔上部 に設置されたノズルプレートより落下させ、造粒塔下部力 冷却用気体を上部に向け て流して粒状 (プリル)の製品を得る (噴霧造粒)。
[0022] 本発明のビスフエノール A製造装置における材質選定方法においては、(4)ァダクト 分解工程以降についての反応生成物と接する部分の金属材質として高級材質であ るモリブデンを含むステンレススチール (SUS316又は SUS316L)を使用する。以下 の実施例に示すように、(4)ァダクト分解工程において、一般材質であるモリブデンを 含まないステンレススチール (SUS304又は SUS304L)を使用した場合には得られ るビスフエノール Aが着色するのに対して、モリブデンを含むステンレススチールを用 V、た場合には着色しな 、。このようにァダクト分解工程以降にぉ 、てモリブデンを含 むステンレススチールを用いることにより良好な色相が維持されるようになることは知 られて ヽなかったものである。
なお、ァダクト分解工程以降とは、ァダクト分解工程における熱交 や造粒塔ノ ズルといった溶融ビスフエノール A及びビスフエノール Aとビスフエノール混合液に接 する金属材料を云う。
ビスフエノーノレ Aは熱により劣化することは良く知られており、高温の熱にさらされ ると品質、特に色相が悪化する。従ってァダクト分解工程以降においては、反応生成 物の液相部分の温度を 180°C以下、熱媒体温度を 200°C以下とすることを要し、液 相部分の温度を 170°C以下、熱媒体温度を 190°C以下とすることが好ましい。
[0023] し力しながら、原料系および反応生成物と接する部分の金属材質として、全ての系 に高級材質 (例えば SUS316又は SUS316L)を使用することは経済的でなぐ上記 の(3)晶析'固液分離工程までにつ 、ては一般材質であるモリブデンを含まな 、ステ ンレススチール (SUS304又は SUS304L)を使用することができる。すなわち、(2)濃 縮工程の減圧蒸留や (3)晶析 '固液分離工程で回収される含水母液を脱水する際に は加熱操作が行われ、一般材質であるモリブデンを含まな ヽステンレススチールを用 いると着色性物質が生成する可能性がある。しかし、このような着色性物質は (3)晶析 •固液分離工程で母液側に移行するので、その不純物を除去することができ、(3)晶 析'固液分離工程までの工程で着色性物質が生成してもビスフエノール Aへの影響 を避けることができる。従って、(3)晶析 ·固液分離工程までにおいては、一般材質で あるモリブデンを含まないステンレススチール (SUS304又は SUS304L)を使用する ことができて、経済的で優れた色相の良好なビスフエノール Aを得ることができる。
[0024] 上記のように (3)晶析'固液分離工程までの工程で着色性物質が生成してもビスフ ェノール Aへの影響を避けることができる力 この (1)〜(3)工程にぉ 、ても着色性物 質の生成をできるだけ少なくすることが好ましぐ原料系および反応生成物の液相部 分の温度を 180°C以下とすることが好ましぐ 170°C以下とすることが更に好ましい。 また、それらを加熱するための熱媒体温度を 200°C以下とすることが好ましぐ 190°C 以下とすることが更に好ま 、。
(4)ァダクト分解工程以降における温度は前記の通りである。ァダクト分解工程以降 においては、ァダクト分解により分離されるビスフエノール Aの品質が悪ィ匕すると、こ れを精製することが困難であることから、高級材質であるモリブデンを含むステンレス スチール (SUS316又は SUS316L)を使用する。(4)ァダクト分解工程以降は (3)晶 析'固液分離工程までと比べて機器が少ないので高級材質を用いても経済的影響 が小さい。
実施例
[0025] 以下、本発明の方法を実施例により具体的に説明するが、本発明はこれらの実施 例により限定されるものではない。
なお、以下の実施例において、フエノール及びビスフエノール A等は、高速液体クロ マトグラフィー (HPLC)分析によって定量した。
[0026] 実施例 1
(縮合反応工程)
陽イオン交換榭脂〔三菱ィ匕学 (株)製、「ダイヤイオン SK104H」〕を 2—メルカプトェ チルァミンにてスルフォン酸基の 20モル%を部分中和したものを充填した固定床反 応塔(材質: SUS304)に、モル比 10 : 1のフエノールとアセトンを連続的に LHSVを 3hr— 1で通液し、 75°Cで反応を行った。
(濃縮工程)
得られた反応混合液を減圧下のもと蒸留塔 (材質: SUS304,熱媒温度 190°C、液 温度 170°C)にてアセトン、水、フエノールを留去させ、ビスフエノール A濃度が 40質 量%になるまで濃縮し、フエノール ·ビスフエノール A溶液を得た。
[0027] (晶析 ·固液分離工程)
次に、このビスフエノール A濃度力 0質量0 /0のフエノール'ビスフエノール A溶液に 水を加え、晶析缶 (材質: SUS 304)にて減圧下で 50°Cに冷却保持することにより、ビ スフエノール A ·フエノールァダクトを晶析させてスラリー溶液を得た。
次いで、得られたスラリー溶液を固液分離機 (材質: SUS304)にて固液分離及び フエノール洗浄することにより、ビスフエノール A ·フエノールァダクトを得た。このァダ タトにフエノールを加え、溶解槽 (材質: SUS304)にて 170°Cに加熱 (熱媒温度 190 °C)してフエノール 60質量%及びビスフエノール A40質量%を含む溶液を調製した。 この溶液を再度、同様の機器にて真空冷却晶析及び固液分離及びフエノール洗浄 を行 、、ビスフエノール A ·フエノールァダクトを得た。
[0028] (ァダクト分解工程)
このァダクト結晶を溶融槽 (材質: SUS316L)に供給し、溶融 (液温度 170°C、熱媒 温度 190°C)したのち、蒸留塔 (材質: SUS316L)にて液温度 170°C、熱媒温度 19 0°C、減圧下で脱フエノールしてビスフエノール A溶融液を得た。
(造粒工程)
得られた溶融液は、 190°Cの熱媒で加温されたノズルプレート (材質 SUS316L)を 持つ造粒塔にて、不活性ガス雰囲気下、造粒操作を行い、粒状のビスフエノール A を製造した。
得られたビスフエノール Aを空気雰囲気下で 220°C、 40分間加熱し、 APHA標準 色を用い、目視にて色相評価した結果、 APHA10であった。
[0029] 実施例 2
反応混合液の蒸留操作及び晶析後の溶解操作における熱媒温度を 210°Cとし液 温度を 190°Cとした以外は、実施例 1と同様の操作を行い、粒状のビスフエノール A を製造した。得られたビスフエノール Aの APHAは 15であった。
[0030] 実施例 3
ァダクト分解工程以降の機器の材質を SUS316に変更した以外は、実施例 1と同 様の操作を行い、粒状のビスフ ノール Aを製造した。得られたビスフ ノール Aの A PHAは 10であった。
[0031] 比較例 1
ァダクト分解工程以降の機器の材質を SUS304Lに変更し、溶融、ァダクト分解、 造粒操作時の液相温度を 190°C、熱媒温度を 210°Cに変更した以外は、実施例 1と 同様の操作を行い、粒状のビスフエノール Aを製造した。得られたビスフエノール Aの APHAは 30であった。
[0032] 比較例 2 ァダクト分解工程以降の機器の材質を SUS304に変更した以外は、実施例 1と同 様の操作を行い、粒状のビスフ ノール Aを製造した。得られたビスフ ノール Aの A PHAは 50であった。
[0033] 以上の各実施例および比較例における各工程の機器の材質と、液相部温度、熱 媒体温度および製品ビスフ ノール Aの色相評価結果 (APHA)を第 1表に纏めた。 これよりァダクト分解工程以降の機器の材質をモリブデンを含むステンレススチール である SUS316系を用い、かつ熱媒体温度と液相部温度を規定することにより色相 の良好なビスフエノール Aが得られることが分力る。
[0034] [表 1]
Figure imgf000012_0001
産業上の利用可能性
[0035] 本発明のビスフエノール Aの製造方法においては、高温フエノールによる装置の洗 浄などの煩雑な操作を必要とせずに色相の良好なビスフエノール Aを容易に製造す ることがでさる。
また、(1)〜(3)工程については安価な一般材質を用いることにより装置コストが低減 し、(4)ァダクト分解工程以降については腐食し難い高級材質を用いることにより製品 の色相悪ィ匕などが回避されることから、色相の良好なビスフエノール Aを経済的に有 禾 IJ〖こ製造することができる。

Claims

請求の範囲
[1] (1)過剰量のフエノールとアセトンとを酸性触媒の存在下、縮合反応させる縮合反応 工程、(2)縮合反応工程で得られた反応混合物を濃縮する濃縮工程、(3)濃縮工程 で得られた濃縮液を冷却することによりビスフエノール Aとフエノールとの付加物を晶 析させ、該付加物と母液に分離する晶析 ·固液分離工程、(4)ビスフ ノール Aとフエ ノールとの付カ卩物からフエノールを除去し、ビスフエノール Aを回収するァダクト分解 工程および (5)回収したビスフエノール Aを造粒し、製品ビスフエノール Aを得る造粒 工程を有するビスフエノール Aの製造装置にぉ 、て、(4)ァダクト分解工程以降の反 応混合物と接する部分の金属材質としてモリブデンを含むステンレススチールを使用 することを特徴とするビスフエノール Aの製造方法。
[2] モリブデンを含むステンレススチール力 SUS316又は SUS316Lである請求項 1に 記載のビスフヱノール Aの製造方法。
[3] (1)〜(3)工程の原料系および反応生成物と接する部分の金属材質としてモリブデ ンを含まないステンレススチールを使用する請求項 1又は 2に記載のビスフエノール A の製造方法。
[4] モリブデンを含まな!/、ステンレススチール力 SSUS 316又は SUS316Lである請求項 3に記載のビスフエノール Aの製造方法。
[5] 請求項 1又は 2に記載のビスフエノール Aの製造装置において、(4)ァダクト分解ェ 程以降において反応生成物の液相部分の温度を 180°C以下とし、かつ熱媒体温度 を 200°C以下とすることを特徴とするビスフエノール Aの製造方法。
[6] 請求項 3又は 4に記載のビスフエノール A製造装置において、(1)〜(3)の工程にお ける原料系および反応生成物の液相部分の温度を 180°C以下とし、かつそれらを加 熱するための熱媒体温度を 200°C以下とする請求項 5に記載のビスフエノール Aの 製造方法。
PCT/JP2006/320767 2005-10-21 2006-10-18 色相の良好なビスフェノールaの製造方法 WO2007046434A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06811962A EP1947077A4 (en) 2005-10-21 2006-10-18 PROCESS FOR PREPARING BISPHENOL A WITH SATISFACTORY COLORING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-307650 2005-10-21
JP2005307650A JP2007112763A (ja) 2005-10-21 2005-10-21 色相の良好なビスフェノールaの製造方法

Publications (1)

Publication Number Publication Date
WO2007046434A1 true WO2007046434A1 (ja) 2007-04-26

Family

ID=37962527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320767 WO2007046434A1 (ja) 2005-10-21 2006-10-18 色相の良好なビスフェノールaの製造方法

Country Status (7)

Country Link
EP (1) EP1947077A4 (ja)
JP (1) JP2007112763A (ja)
KR (1) KR20080057307A (ja)
CN (1) CN101296891A (ja)
RU (1) RU2008120030A (ja)
TW (1) TW200728263A (ja)
WO (1) WO2007046434A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010053073A1 (ja) * 2008-11-05 2010-05-14 三菱化学株式会社 ポリエステルの製造方法、並びに1,4-ブタンジオールの加熱装置及び蒸気発生装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112640A (ja) * 1984-06-29 1986-01-21 Mitsui Petrochem Ind Ltd ビスフエノ−ル類の製法
JPS63132850A (ja) 1986-11-25 1988-06-04 Mitsui Toatsu Chem Inc 水蒸気ストリッピング方法
JPH0228126A (ja) 1988-04-05 1990-01-30 Mitsui Toatsu Chem Inc 高純度ビスフェノールaの製造方法
JPH0539238A (ja) 1991-08-05 1993-02-19 Chiyoda Corp 高純度ビスフエノールaの分離方法
JPH05345737A (ja) * 1991-10-30 1993-12-27 Chiyoda Corp ビスフェノールaの製造方法
JPH0761947A (ja) * 1993-08-25 1995-03-07 Nippon Steel Chem Co Ltd ビスフェノールaの製造方法
JP2001335521A (ja) * 2000-05-23 2001-12-04 Nippon Steel Chem Co Ltd ビスフェノ−ルaの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112640A (ja) * 1984-06-29 1986-01-21 Mitsui Petrochem Ind Ltd ビスフエノ−ル類の製法
JPS63132850A (ja) 1986-11-25 1988-06-04 Mitsui Toatsu Chem Inc 水蒸気ストリッピング方法
JPH0228126A (ja) 1988-04-05 1990-01-30 Mitsui Toatsu Chem Inc 高純度ビスフェノールaの製造方法
JPH0539238A (ja) 1991-08-05 1993-02-19 Chiyoda Corp 高純度ビスフエノールaの分離方法
JPH05345737A (ja) * 1991-10-30 1993-12-27 Chiyoda Corp ビスフェノールaの製造方法
JPH0761947A (ja) * 1993-08-25 1995-03-07 Nippon Steel Chem Co Ltd ビスフェノールaの製造方法
JP2001335521A (ja) * 2000-05-23 2001-12-04 Nippon Steel Chem Co Ltd ビスフェノ−ルaの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1947077A4 *

Also Published As

Publication number Publication date
CN101296891A (zh) 2008-10-29
EP1947077A1 (en) 2008-07-23
RU2008120030A (ru) 2009-11-27
TW200728263A (en) 2007-08-01
JP2007112763A (ja) 2007-05-10
KR20080057307A (ko) 2008-06-24
EP1947077A4 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
RU2422429C2 (ru) Способ получения бисфенола а высокой чистоты и производственная установка
JP6055472B2 (ja) ビスフェノールaの製造方法
WO2001053238A1 (fr) Procede de preparation de bisphenol a
JPH01146839A (ja) 高純度の2,2−ビス(4−ヒドロキシフェニル)プロパンを製造する方法
JP2009242316A (ja) ビスフェノールaの製造方法
JP6163487B2 (ja) ビスフェノールaの製造方法
KR20160127002A (ko) 비스페놀 a 의 제조 방법
JPH08333290A (ja) ビスフェノールaの製造方法
JP4904064B2 (ja) ビスフェノールaの製造方法
JP4398674B2 (ja) ビスフェノールaの製造方法
JP4658355B2 (ja) ビスフェノールaの製造方法
WO2007046434A1 (ja) 色相の良好なビスフェノールaの製造方法
JP5150086B2 (ja) ビスフェノールaの回収方法
JP4615831B2 (ja) ビスフェノールaの製造におけるフェノールの回収方法
JP2014037368A (ja) ビスフェノールaの製造方法
JPH03284641A (ja) ビスフェノールaの製造方法
JPH0558611B2 (ja)
WO2004020377A1 (ja) ビスフェノールaの製造方法
JP2005220094A (ja) ビスフェノールaの製造方法
PL199344B1 (pl) Sposób otrzymywania bisfenolu A
JP2003160523A (ja) ビスフェノールaの製造方法及びその装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680039039.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1981/CHENP/2008

Country of ref document: IN

Ref document number: 1020087009494

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008120030

Country of ref document: RU

Ref document number: 2006811962

Country of ref document: EP