WO2004020377A1 - ビスフェノールaの製造方法 - Google Patents

ビスフェノールaの製造方法 Download PDF

Info

Publication number
WO2004020377A1
WO2004020377A1 PCT/JP2003/009604 JP0309604W WO2004020377A1 WO 2004020377 A1 WO2004020377 A1 WO 2004020377A1 JP 0309604 W JP0309604 W JP 0309604W WO 2004020377 A1 WO2004020377 A1 WO 2004020377A1
Authority
WO
WIPO (PCT)
Prior art keywords
bisphenol
phenol
adduct
filter
reaction
Prior art date
Application number
PCT/JP2003/009604
Other languages
English (en)
French (fr)
Inventor
Kazuyuki Hirano
Norio Ogata
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to AU2003252295A priority Critical patent/AU2003252295A1/en
Priority to JP2004532684A priority patent/JP4388893B2/ja
Priority to EP03791186A priority patent/EP1541542A4/en
Priority to US10/525,528 priority patent/US7045664B2/en
Publication of WO2004020377A1 publication Critical patent/WO2004020377A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/84Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/74Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/82Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by solid-liquid treatment; by chemisorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • C07C39/16Bis-(hydroxyphenyl) alkanes; Tris-(hydroxyphenyl)alkanes

Definitions

  • the present invention relates to a method for producing bisphenol A [2,2-bis (4-hydroxyphenyl) propane], and more particularly to a method for efficiently separating an adduct of bisphenol A and phenol in the production method.
  • bisphenol A 2,2-bis (4-hydroxyphenyl) propane
  • Bisphenol A is known to be an important compound as a raw material for engineering plastics such as polycarbonate resins and polyarylate resins, and epoxy resins, and the demand for bisphenol A has been increasing in recent years.
  • This bisphenol A is produced by condensing excess phenol and acetone in the presence of an acidic catalyst and optionally a cocatalyst such as a sulfur compound.
  • Bisphenol A can be extracted from the reaction mixture by directly separating it from the reaction mixture in the form of crude crystals, or by concentrating and cooling the liquid mixture after removing acetone, water, etc. from the reaction mixture.
  • a method of precipitating and separating an adduct of bisphenol A and phenol JP-A-51-191240, JP-A-57-777637, etc.). ing.
  • a suction belt filter or a drum filter can be used for separation by filtration (Japanese Patent Laid-Open Publication No. Hei 6-36002). Even if suction is performed under high vacuum to remove the mother liquor and reduce the liquid content between crystals, the liquid content cannot be significantly reduced, but depending on the size of the aperture of the selected filter and the material of the filter medium. The clogging of the filtration filter due to the adduct of bisphenol A and phenol causes damage to the filter media and impairs operation. On the other hand, under extremely reduced pressure, it takes a considerable time to separate the mother liquor from the adduct of bisphenol A and phenol.
  • the temperature is lower than 30 ° C. because precipitation of phenol or an adduct of bisphenol A and phenol / adhesion to a filter medium occurs.
  • the method using a centrifugal separator reduces the liquid content between crystals, and makes the adduct more dried.
  • centrifugal load is applied, which causes crushing of the crystals and the like, and the efficiency of replacement of the mother liquor and the washing solution becomes lower than that of the filtration method. Therefore, when processing a large number of products, it is generally necessary to repeat washing using multiple devices in order to increase the purity, resulting in an increase in the number of devices and an increase in operating time, and are economical. Not preferred.
  • the present invention has been made in view of the above situation, and in the method for producing bisphenol A, when removing bisphenol A from the reaction mixture, the adduct of bisphenol A and phenol is efficiently purified with high purity.
  • the purpose is to recover well from the reaction mother liquor.
  • the present inventors have conducted intensive studies on a method for producing bisphenol A having the above-mentioned problems, and as a result, poured a phenol slurry solution of bisphenol A onto a filter and, under specific conditions, combined with bisphenol A in a crystalline state.
  • poured a phenol slurry solution of bisphenol A onto a filter and, under specific conditions, combined with bisphenol A in a crystalline state By forming an adduct layer with phenol, it has been found that an adduct of high-purity bisphenol A and phenol can be efficiently obtained, and the present invention has been completed.
  • the gist of the present invention is as follows.
  • adduct of bisphenol A and phenol is crystallized from a phenol solution of bisphenol A obtained by reacting phenol and acetone in the presence of an acid catalyst.
  • a phenol slurry solution of bisphenol A containing an adduct of bisphenol A and phenol having an average particle size of 0.05 to 1 mm in a crystalline state is filtered. Poured over the mixture and filtered under reduced pressure in an inert gas stream with an oxygen content of 50,000 ppm by volume or less under an atmosphere of 30 to 80 ° C to obtain crystalline bisphenol A.
  • a method for producing bisphenol A comprising forming an adduct layer with phenol.
  • an acidic catalyst an acid-type ion exchange resin
  • the acid-type ion exchange resin is not particularly limited, and those conventionally used as a catalyst for bisphenol A can be used. However, from the viewpoint of catalytic activity and the like, sulfonate-type cation exchange resin is particularly preferable. It is suitable.
  • the sulfonic acid type cation exchange resin is not particularly limited as long as it is a strongly acidic cation exchange resin having a sulfonic acid group.
  • examples thereof include a sulfonated styrene-divinylbenzene copolymer, a sulfonated crosslinked styrene polymer, and phenol formaldehyde.
  • Sulfonic acid resin and benzene honolemu aldehyde monosulfonic acid resin may be used alone or in combination of two or more.
  • mercaptans are usually used together with the acid-type ion exchange resin as a co-catalyst.
  • This mercaptan refers to a compound having an SH group in a free form in the molecule.
  • Captan and alkyl mercaptans having one or more substituents such as a carboxyl group, an amino group, and a hydroxyl group, such as mercaptocarboxylic acid, aminoaminothiol, and mercapto alcohol can be used.
  • Examples of such mercaptans include alkyl mercaptans such as methyl mercaptan, ethyl mercaptan, n-butynolemercaptan, n-octinolemercaptan, thiocarboxylic acids such as thioglycolic acid and / 3-mercaptopropionic acid. Examples thereof include acids, aminoaminothiols such as 2-aminoethanethiol, and mercaptanolecones such as mercaptoethanol, among which alkylmercaptans are particularly preferable in terms of the effect as a cocatalyst. These mercaptans may be used alone or in combination of two or more.
  • mercaptans can be immobilized on the acid-type ion-exchange resin to function as a promoter.
  • the amount of the mercaptans used is generally selected in the range of 0.1 to 20 mol%, preferably 1 to 10 mol%, based on acetone as a raw material.
  • the amount of unreacted acetone is desirably as small as possible from the viewpoint of the ease of purification and economical efficiency of the resulting bisphenol A. It is advantageous to use phenol in excess of the stoichiometric amount. Usually, 3 to 30 monoles, preferably 5 to 15 moles of phenone are used per monoton of acetone.
  • the reaction solvent is generally not required, except that the reaction solution is reacted at a low temperature at which the viscosity of the reaction solution is too high or the operation is difficult due to solidification.
  • the condensation reaction of phenol and acetone may be either a batch type or a continuous type. Immobilized on resin It is advantageous to use a fixed bed continuous reaction system in which the reaction is carried out continuously when the reaction is not carried out. At this time, one or more reaction towers may be arranged in series, but industrially, two or more reaction towers filled with an acid-type ion exchange resin are connected in series and fixed. It is particularly advantageous to employ a multi-bed continuous reaction system.
  • the molar ratio of acetone / phenol is usually selected in the range of lZ30 to l / 3, preferably 1/15 to 1/5. If the molar ratio is smaller than 1 Z30, the reaction rate may be too slow. If the molar ratio is larger than 13, the generation of impurities increases, and the selectivity of bisphenol A tends to decrease.
  • the molar ratio of the mercaptans noacetone is usually selected from the range of 0.1Z100 to 20Z100, preferably the range of 100 to 100Z10.
  • the effect of improving the reaction rate and the selectivity of bisphenol ⁇ ⁇ ⁇ may not be sufficiently exhibited. If the molar ratio is more than 20 1100, the effect cannot be improved in proportion to the amount. Not much.
  • the reaction temperature is selected in the range of usually 40 to 150 ° C, preferably 60 to 110 ° C. If the temperature is lower than 40 ° C, the reaction rate is low, the viscosity of the reaction solution is extremely high, and in some cases, there is a possibility of solidification. If the temperature exceeds 150 ° C, the reaction control becomes difficult, and bisphenol A ( ⁇ , ⁇ '-isomer), and the acid type ion exchange resin of the catalyst may decompose or deteriorate. Further, the LHSV (liquid hourly space velocity) of the raw material mixture is generally selected in the range of 0.2 to 30 hr 1 , preferably 0.5 to: I 0 hr — 1 .
  • the reaction mixture containing bisphenol A obtained in the reaction step (A) is substantially contained in the acid-type ion exchange resin.
  • the catalyst is removed by filtration or the like, and in the case of a fixed bed continuous reaction system, the low boiling substance removal treatment is performed as it is.
  • This vacuum distillation is generally carried out under the conditions of a pressure of 6.5 to 80 kPa and a temperature of 70 to 180 ° C. At this time, the unreacted phenol azeotropes, and part of the phenol is removed from the distillation column to the outside of the system together with the low-boiling substances.
  • the temperature of the heating source used is desirably 190 ° C or less in order to prevent the thermal decomposition of bisphenol A.
  • SUS304, SUS316 and SUS316L are generally used as the material of the device.
  • the bottoms of the reaction mixture from which low-boiling substances have been removed contain bisphenol A and phenol.
  • the phenol is distilled off under reduced pressure, and bisphenol A is concentrated.
  • the concentration conditions are not particularly limited, but the concentration is usually performed at a temperature of about 100 to 170 ° C. and a pressure of 5 to 70 kPa. If this temperature is lower than 100 ° C, high vacuum is required, and if it is higher than 170 ° C, extra heat removal is required in the next crystallization step, which is not preferable.
  • the concentration of bisphenol A in the concentrated residue is preferably 20 to 50 mass / 0 . And more preferably 20-40 mass. /. Range. If the concentration is less than 20% by mass, the recovery of bisphenol A is low, and if it exceeds 50% by mass, it may be difficult to transfer the slurry after crystallization.
  • the solid-liquid separation step consists of the concentrated residual liquid obtained in the concentration step of step (C) above. This is the step of crystallizing and separating phenol adduct from phenol.
  • the above concentrated residual liquid is cooled to about 40 to 70 ° C., and phenol adduct is crystallized to form a slurry.
  • the cooling at this time may be performed using an external heat exchanger, or may be performed by a vacuum cooling crystallization method in which water is added to the concentrated residual liquid and cooling is performed using the latent heat of evaporation of water under reduced pressure. Is also good.
  • this vacuum cooling crystallization method about 3 to 20% by mass of water is added to the concentrated residue, and crystallization is performed under the conditions of a normal temperature of 40 to 70 ° C and a pressure of 4 to 16 kPa.
  • the amount of water is less than 3% by mass, the heat removal ability is not sufficient, and if it exceeds 20% by mass, the dissolution loss of bisphenol A increases, which is not preferable.
  • the crystallization temperature is lower than 40 ° C, the viscosity of the crystallization liquid may increase or solidify. If the crystallization temperature exceeds 70 ° C, the dissolution loss of bisphenol A increases, which is preferable. Absent.
  • the slurry containing the crystallized phenol product contains a phenol product having an average particle size of 0.05 to 1 mm (preferably 0.1 to 0.9 mm) in a crystalline state. It is separated into phenol adduct and a mother liquor containing crystallization by-products. If the average particle size is less than 0.05 mm, the surface area of the crystal becomes large, leading to deterioration of the cleaning effect. If the average particle size exceeds 1 mm, the sedimentation speed increases, and it tends to stay at the lower part of the transport pipe. Not good.
  • the filtration method can achieve a higher solvent replacement ratio than the centrifugal separation method during washing, so that impurities contained on the surface of the crystal and between the crystals can be effectively removed.
  • a part of the crystallization mother liquor containing microcrystals that have escaped from the filter medium may be recycled as it is to the reactor, or at least a part thereof may be subjected to alkali decomposition treatment and recovered as phenol and isopropyl phenol. Further, a part or all of the compound can be isomerized and recycled as a crystallization raw material (see Japanese Patent Application Laid-Open No. Hei 6-32184).
  • filtration is performed as described above.
  • a dry method, a tray filter, and a suction type belt filter can be used, and a suction type endless belt is particularly preferable.
  • a preferred degree of reduced pressure is 30 to 95 kPa, more preferably 40 to 90 kPa.
  • the atmosphere including the filter must be 30 to 80 ° C. Preferably it is 35 to 50 ° C. If not heated properly, the main component of the mother liquor and cleaning solution is phenol, which causes solidification of the mother liquor and cleaning solution and dissolution of the crystallized phenol adduct.
  • gas-liquid mixing occurs in the filtration operation, it is preferable to remove as much as possible substances such as oxygen that affect bisfunol A or fuynol in the subsequent process from the atmosphere. It is important to carry out the process in an inert gas stream of less than 3 ppm, preferably less than 300000 ppm by volume.
  • the inert gas is not particularly limited, but nitrogen is preferred from an economic viewpoint.
  • Crystallization ⁇ Solid-liquid separation can be repeated multiple times to obtain high-purity products It is valid. That is, in the present invention, after the (D) crystallization / solid-liquid separation step and the following (E) dissolution and crystallization of phenol adduct / solid-liquid separation step are repeated at least once, the (F) step is repeated. After that, it moves to (G) dephenol process.
  • the fu ⁇ ol adduct that is crystallized and separated in step (D) is dissolved using a phenol-containing solution.
  • the phenol-containing solution used in this step is not particularly limited.
  • the recovered phenol obtained in the concentration step (C), the phenol adduct formed in the crystallization / solid-liquid separation step (D), and the like washing liquid, a mother liquor in the solid-liquid separation of the crystallized phenol adduct formed in the steps after the step (E), and a washing liquid of the phenol adduct.
  • the above-mentioned phenol-containing solution is added to the phenol adduct obtained in the step (D), and the mixture is heated to about 80 to 110 ° C., and the phenol adduct is heated and dissolved to obtain a bismuth preferable for the crystallization operation.
  • a phenol slurry solution of bisphenol A (2) containing the adduct of bisphenol A and phenol in a crystalline state is obtained.
  • the phenol slurry solution of bisphenol A (2) thus prepared has a low viscosity even at a relatively low temperature and is relatively easy to handle, and is suitable for filtration through a filter. In this way, the dissolution, crystallization, and solid-liquid separation of the phenol adduct are repeated several times.
  • the heating and melting step is a step of heating and melting the phenol adduct crystallized and separated in the above step (E). In this step, the phenol adduct is heated and melted to about 100 to 160 ° C. to form a liquid mixture.
  • G Desolvation process
  • the dephenol removal step is a step in which phenol is distilled off by distillation under reduced pressure to recover bisphenol A in a molten state.
  • the above-mentioned vacuum distillation is generally carried out under the conditions of a pressure of 1.3 to 13.3 kPa and a temperature of 15 ° to 90 ° C. Residual phenol can be further removed by steam stripping.
  • the bisphenol A in a dissolved state obtained in the above step (G) is formed into droplets by a granulation device such as a spray drier, and then cooled and solidified into a product.
  • the droplets are formed by spraying, spraying, etc., and cooled by nitrogen, air, or the like.
  • a reactor filled with 600 g of cation exchange resin was heated at a temperature of 75 ° C at a rate of 4.6 g / hr of phenol, 280 gZhr of acetone, and 16 g / hr of ethyl mercaptan. , And continuously supplied.
  • the reaction mixture was sent to a low-boiling substance component removal step for removing low-boiling substances mainly containing unreacted acetone, and the low-boiling point loss mainly containing unreacted acetone was removed.
  • a reaction product consisting mainly of bisphenol A and unreacted phenol produced from the low-boiling-point decontamination process was obtained at 4,640 gZhr.
  • This reaction product was partially concentrated under a condition of 165 ° C. and 53.3 kPa to adjust the concentration so that the concentration of bisphenol A became 30% by mass. Add 5% by mass of water to this bisphenol A concentrate and cool under stirring at 45 ° C After crystallization, phenol and adduct were crystallized. The average particle size of the phenol adduct in the crystalline state was 0.1 mm.
  • a slurry of bisphenol A and phenol obtained in Production Example 1 (liquid temperature 45 ° C) (3, OOO g) was placed in a nitrogen atmosphere at 50 ° C containing 1,200 vol. The mixture was poured into a filter heated to about 46 ° C. covered with a stainless steel wire net of m, and suction-filtered at 80 kPa for 60 seconds. It was separated into phenol adduct and mother liquor, and a wet cake with a thickness of about 84 mm and a liquid content of 25% by mass was obtained on a stainless steel wire mesh. After drying the wet cake in a nitrogen stream at room temperature under reduced pressure for 24 hours, the average particle size of the obtained adduct was measured to be 0.3 mm. Further, the adduct was melted and the Hagen color number was measured. As a result, it was APHA5.
  • Example 1 instead of suctioning at 80 kPa, one slurry was poured into the filter at normal pressure. After standing for 10 minutes, it was separated into a precipitate and a supernatant layer and could not be separated by filtration, and could not be separated and collected as a cake.
  • Example 1 when the slurry was poured into the filter at room temperature (about 20 ° C) instead of the filter heated to about 46 ° C, precipitation of phenol was observed around the filter. .
  • the ratio of bisphenol A to phenol was 12.3. This indicates that it is a mixed cake containing partially free phenol in the phenol adduct crystals.
  • Example 1 instead of the filter heated to about 46 ° C under a nitrogen atmosphere of 50 ° C, the filter was heated to about 105 ° C under a nitrogen atmosphere of 95 ° C. When the Lee's solution was poured, almost no phenol adduct remained at the top of the filter, and no wet cake was obtained.
  • Example 1 instead of filtration in a nitrogen atmosphere at 50 ° C containing 1,200 vol ppm of oxygen, filtration was performed in an air atmosphere, and then phenol adak was treated in the same manner as in Example 1.
  • the sample (APHA 5.5) was melted at 165 ° C under a nitrogen atmosphere, and phenol was distilled off under reduced pressure to obtain bisphenol A.
  • the Hagen color number of the bisphenol A was APHA18.
  • a phenol slurry solution of bisphenol A is poured onto a filter to form an adduct layer of crystalline bisphenol A and phenol under specific conditions.
  • an adduct of bisphenol A and phenol of high purity can be rapidly and efficiently recovered from the reaction mother liquor with high purity.
  • the crystallization / solid-liquid separation step which is an essential part of the present invention, by limiting the average particle size of the phenol adduct to be filtered to 0.05 to 1 mm, the filtration efficiency and the washing efficiency are improved, and the coloring is improved.
  • Bisphenol A without phenol is obtained.

Abstract

ビスフェノールAの製造方法において、反応混合物からビスフェノールAを取出す際に、ビスフェノールAとフェノールとの付加物を高純度で迅速に効率良く反応母液から回収する。 酸触媒の存在下にフェノールとアセトンを反応させて得られるビスフェノールAのフェノール溶液からビスフェノールAとフェノールとの付加物を晶析させ、生成したスラリーを固液分離後、固体成分からフェノールを除去するビスフェノールAの製造方法において、平均粒径が0.05~1mmのビスフェノールAとフェノールとの付加物を結晶状態で含有するビスフェノールAのフェノールスラリー溶液をフィルター上に注ぎ、酸素含量が5,000容量ppm以下の不活性ガス気流中30~80℃の雰囲気下で、減圧下で濾過することにより、結晶状態のビスフェノールAとフェノールとの付加物層を形成させる。

Description

明 細 書 ビスフヱノール Aの製造方法 技術分野
本発明は、 ビスフエノール A 〔 2, 2 —ビス (4 —ヒ ドロキシフエ二 ル) プロパン〕 の製造方法に関し、 より詳しくは該製造方法におけるビス フエノール Aとフエノールとの付加物の効率的な分離方法に関する。 背景技術
ビスフエノール Aはポリカーボネート樹脂やポリアリ レート樹脂などの エンジニアリングプラスチック、 あるいはエポキシ樹脂などの原料として 重要な化合物であることが知られており、 近年その需要はますます増大す る傾向にある。
このビスフエノール Aは、 酸性触媒及び場合により用いられる硫黄化合 物などの助触媒の存在下に、 過剰のフエノールとァセトンとを縮合させる ことにより製造される。
反応混合物からビスフエノール Aを取出す方法としては、 反応混合物か ら直接に粗結晶状で分離する方法や、 反応混合物からアセ トン、 水等を除 去した後の液状混合物を濃縮 ·冷却することでビスフエノール Aとフエノ ールとの付加物を析出させ分離する方法 (特開昭 5 1— 9 1 2 4 0号公報, 特開昭 5 7— 7 7 6 3 7号公報等) が知られている。
前者の反応混合物から直接に粗結晶状で分離する方法ではビスフユノー ル Aが微結晶質で何回も洗浄する必要があり、 ロスが多い等の欠点がある c このため現状では、 後者のビスフエノール Aとフエノールとの付加物を 析出させ分離する方法が主流となっている。 この場合、 ビスフエノール A とフエノールとの付加物を晶析させ、 濾過や遠心分離機を用いる公知の固 液分離法により、 母液からの結晶の分離が行なわれている (特開昭 5 7— 7 7 6 3 7号公報、 特開平 5 - 3 3 1 0 8 8号公報、 特開昭 6 3— 2 7 5 5 3 9号公報、 特開平 6 - 1 0 7 5 7 8号公報、 特開平 6— 3 0 6 0 0 2 号公報等) 。
上記の固液分離法において、 濾過法による分離では吸引式ベルトフィル ターやドラムフィルターが使用できるが (特開平 6 - 3 0 6 0 0 2号公 報) 、 その際に短時間で結晶表面の母液の除去や結晶間の含液量を減らす ために、 高減圧下で吸引しても、 含液量の大きな低減は図れない反面、 選 択されたフィルターの目開きの大きさや濾材の材質によっては、 ビスフエ ノール Aとフエノールとの付加物による濾過フィルターの目詰まりゃ濾材 が損傷し運転の障害を招く。 一方、 極端な低減圧下では、 ビスフエノール Aとフエノールの付加物から母液を分離するのに著しく時間を要する。 ま た、 母液中の不純物が次の工程に同伴され、 運転負荷の増大や製品の品質 低下の原因ともなる。 さらに、 スラリーや洗浄液はフエノールを主成分と するため、 3 0 °C未満ではフエノールの析出や、 ビスフエノール Aとフエ ノールとの付加物ゃ濾材への付着がおこるので好ましくない。
遠心分離機を使用する方法 (特開平 6— 1 0 7 5 7 8号公報、 特開平 6 - 3 0 6 0 0 2号公報) は結晶間にある含液量を下げ、 より乾燥した付加 体を得る上では好ましいが、 遠心負荷がかかるため、 結晶の破砕などが起 こり母液や洗浄液等の置換効率が濾過法に比べて悪くなる。 したがって、 大量の製品を処理する際に、 純度を上げるために一般的には複数個の機器 を用いて洗浄を繰り返すことが必須で、 機器数の増加や運転時間の延長を もたらし、 経済的に好ましくない。 発明の開示 本発明は、 以上の如き状況に鑑みなされたもので、 ビスフエノール Aの 製造方法において、 反応混合物からビスフ ノール Aを取出す際に、 ビス フエノール Aとフユノールとの付加物を高純度で迅速に効率良く反応母液 から回収することを目的とするものである。
発明者らは、 上記課題を有するビスフエノール Aの製造方法について鋭 意検討した結果、 ビスフエノール Aのフエノールスラ リ一溶液をフィルタ 一上に注ぎ、 特定の条件で、 結晶状態のビスフエノール Aとフエノールと の付加物層を形成させることにより、 高純度のビスフエノール Aとフエノ ールとの付加物を効率的に得ることができることを見出し、 本発明を完成 したものである。
すなわち、 本発明の要旨は下記のとおりである。
1 - 酸触媒の存在下にフエノールとァセトンを反応させて得られるビスフ ェノール Aのフエノール溶液からビスフエノ一ノレ Aとフエノールとの付加 物を晶析させ、 生成したスラリーを固液分離後、 固体成分からフエノール を除去するビスフエノール Aの製造方法において、 平均粒径が 0 . 0 5〜 1 m mのビスフエノール Aとフエノールとの付加物を結晶状態で含有する ビスフエノール Aのフエノールスラリ一溶液をフィルター上に注ぎ、 酸素 含量が 5, 0 0 0容量 p p m以下の不活性ガス気流中 3 0〜8 0 °Cの雰囲 気下で、 減圧下で濾過することにより、 結晶状態のビスフエノール Aとフ ェノールとの付加物層を形成させることを特徴とするビスフエノール Aの 製造方法。
2 . 減圧状態が 3 0〜9 5 k P aである前記 1記載のビスフエノール Aの 製造方法。
3 . 不活性ガスが窒素である前記 1記載のビスフヱノール Aの製造方法。 4 . フィルターが吸引式無端ベルトフィルターである前記 1〜 3のいずれ かに記載のビスフエノール Aの製造方法。 発明を実施するための最良の形態
本発明のビスフエノール Aの製造方法においては、 (A ) フエノーノレと アセ トンの反応工程、 (B ) 副生水および未反応原料の低沸点物質除去ェ 程、 (C ) ビスフ ノール Aの濃縮工程、 (D ) 晶析 · 固液分離工程、
(E ) ビスフエノール Aとフエノールとの 1 : 1付加物 (以下、 フエノー ルァダク トと称することがある。 ) の溶解、 晶析 · 固液分離工程、 (F ) 加熱溶融工程、 (G ) ビスフユノール Aの脱フヱノール工程および (H ) 造粒工程を経てビスフヱノール Aが製造される。
次に、 ビスフエノール Aの製造方法における各工程について説明する。
( A ) 反応工程
この反応工程においては、 酸性触媒の存在下、 過剰のフエノールとァセ トンを縮合させて、 ビスフエノール Aを生成させる。 上記酸性触媒として は、 酸型イオン交換樹脂を用いることができる。 この酸型イオン交換樹脂 としては、 特に制限はなく、 従来ビスフエノール Aの触媒として慣用され ているものを用いることができるが、 特に触媒活性などの点から、 スルホ ン酸型陽イオン交換樹脂が好適である。
該スルホン酸型陽イオン交換樹脂については、 スルホン酸基を有する強 酸性陽イオン交換樹脂であればよく特に制限されず、 例えばスルホン化ス チレン一ジビエルベンゼンコポリマー、 スルホン化架橋スチレンポリマー, フエノールホルムアルデヒ ド一スルホン酸樹脂、 ベンゼンホノレムアルデヒ ド一スルホン酸榭脂などが挙げられる。 これらはそれぞれ単独で用いても よく、 二種以上を組み合わせて用いてもよい。
本工程においては、 上記酸型イオン交換樹脂と共に、 通常助触媒として、 メルカブタン類が併用される。 このメルカブタン類は、 分子内に S H基を 遊離の形で有する化合物を指し、 このようなものとしては、 アルキルメル カプタンや、 カルボキシル基、 アミノ基、 ヒ ドロキシル基などの置換基一 種以上を有するアルキルメルカプタン類、 例えばメルカプトカルボン酸、 ァミノアル力ンチオール、 メルカプトアルコールなどを用いることができ る。 このようなメルカプタン類の例としては、 メチルメルカプタン、 ェチ ルメルカプタン、 n—ブチノレメルカプタン、 n—ォクチノレメルカプタンな どのアルキルメルカプタン、 チォグリコール酸、 /3—メルカプトプロピオ ン酸などのチォカルボン酸、 2—アミノエタンチオールなどのァミノアル 力ンチオール、 メルカプトェタノールなどのメルカプトァノレコーノレなどが 挙げられるが、 これらの中で、 アルキルメルカプタンが助触媒としての効 果の点で、 特に好ましい。 また、 これらのメルカブタン類は、 単独で用い てもよく、 二種以上を組み合わせて用いてもよい。
これらのメルカブタン類は、 前記酸型ィオン交換樹脂上に固定化させ、 助触媒と して機能させることもできる。
前記メルカブタン類の使用量は、 一般に原料のアセトンに対して、 0 . 1〜2 0モル%、 好ましくは、 1〜 1 0モル%の範囲で選定される。 また、 フエノールとァセ トンとの使用割合については特に制限はないが, 生成するビスフエノール Aの精製の容易さや経済性などの点から、 未反応 のアセトンの量はできるだけ少ないことが望ましく、 したがって、 フエノ ールを化学量論的量よりも過剰に用いるのが有利である。 通常、 アセ トン 1モノレ当たり、 3〜3 0モノレ、 好ましくは 5 〜 : 1 5モルのフエノ一ノレが用 いられる。 また、 このビスフエノール Aの製造においては、 反応溶媒は、 反応液の粘度が高すぎたり、 凝固して運転が困難になるような低温で反応 させる以外は、 一般に必要ではない。
フエノールとァセトンとの縮合反応は、 回分式及び連続式のいずれであ つてもよいが、 酸型イオン交換樹脂を充填した反応塔に、 フユノールとァ セトンとメルカブタン類 (メルカブタン類が酸型イオン交換樹脂に固定化 されない場合) を連続的に供給して反応させる固定床連続反応方式を用い るのが有利である。 この際、 反応塔は 1基でもよく、 また 2基以上を直列 に配置してもよいが、 工業的には、 酸型イオン交換樹脂を充填した反応塔 を 2基以上直列に連結し、 固定床多段連続反応方式を採用するのが、 特に 有利である。
この固定床連続反応方式における反応条件について詳細に説明する。 まず、 アセ トン/フエノールのモル比は、 通常 lZ30〜l/3、 好ま しくは 1/ 1 5〜 1/5の範囲で選ばれる。 このモル比が 1 Z 30より小 さい場合、 反応速度が遅くなりすぎるおそれがあり、 1 3より大きいと 不純物の生成が多くなり、 ビスフエノール Aの選択率が低下する傾向があ る。 一方、 メルカブタン類が酸型イオン交換樹脂に固定化されない場合、 メルカプタン類ノアセ トンのモル比は、 通常 0. 1Z100〜20Z10 0、 好ましくは 1ノ 1 00〜 1 0Zl O 0の範囲で選ばれる。 このモル比 が 0. 1 Ζ 100より小さい場合、 反応速度やビスフエノール Αの選択率 の向上効果が十分に発揮されないおそれがあり、 20 1 00より大きい とその量の割りには効果の向上はあまり認められない。
また、 反応温度は、 通常 40〜 1 5 0°C、 好ましくは 60〜 1 1 0°Cの 範囲で選ばれる。 該温度が 40°C未満では反応速度が遅い上、 反応液の粘 度が極めて高く、 場合により、 固化するおそれがあり、 1 50°Cを超える と反応制御が困難となり、 かつビスフエノール A (ρ, ν' —体) の選択 率が低下する上、 触媒の酸型イオン交換樹脂が分解又は劣化することがあ る。 さらに、 原料混合物の LHSV (液空間速度) は、 通常 0. 2〜 30 h r 1、 好ましくは 0. 5〜 : I 0 h r _ 1の範囲で選ばれる。
(B) 低沸点物質除去工程
低沸点物質除去工程においては、 前記の (A) 工程の反応工程で得られ たビスフ ノール Aを含む反応混合液を、 実質上酸型イオン交換樹脂が含 まれない状態、 すなわち回分反応方式の場合は該触媒を濾過などにより除 去し、 固定床連続反応方式の場合は、 そのままの状態で低沸点物質除去処 理が施される。
この工程においては、 通常、 まず、 蒸留塔を用いた減圧蒸留により、 未 反応ァセトン、 副生水及びアルキルメルカブタンなどの低沸点物質を除去 することが行われる。
この減圧蒸留は、 一般に圧力 6. 5〜80 k P a、 温度 70〜 1 80 °C の条件で実施される。 この際、 未反応フエノールが共沸し、 その一部が上 記低沸点物質と共に、 蒸留塔の塔頂より系外へ除かれる。 この蒸留におい ては、 ビスフエノール Aの熱分解を防止するために、 使用する加熱源の温 度は 1 90°C以下とすることが望ましい。 また、 機器の材料としては、 一 般に SU S 3 0 4、 SU S 3 1 6及び S U S 3 1 6 Lが用いられる。
(C) 濃縮工程
反応混合物から低沸点物質を除いた塔底液には、 ビスフ ノール A及 びフエノールなどが含まれており、 減圧蒸留によりフエノールを留去させ、 ビスフエノール Aを濃縮する。 この濃縮条件については特に制限はないが、 通常温度 1 00〜 1 70°C程度及び圧力 5〜 70 k P aの条件で行なわれ る。 この温度が 1 00°Cより低いと高真空が必要となり、 1 7 0°Cより高 いと次の晶析工程で余分の除熱が必要となり、 好ましくない。 また、 濃縮 残液中のビスフエノール Aの濃度は、 好ましくは 20〜 50質量0 /。、 より 好ましくは 20〜40質量。 /。の範囲である。 この濃度が 20質量%未満で はビスフエノール Aの回収率が低く、 5 0質量%を超えると晶析後のスラ リ一移送が困難となるおそれがある。
(D) 晶析 · 固液分離工程
この晶析 · 固液分離工程で、 固液分離工程の条件が本発明の特徴である。 晶析 ·固液分離工程は、 上記 (C) 工程の濃縮工程で得られた濃縮残液 から、 フエノールァダク トを晶析 · 分離する工程である。
この工程においては、 まず、 上記濃縮残液を 40〜 70°C程度に冷却し、 フエノールァダク トを晶析させ、 スラ リ一とする。 この際の冷却は、 外部 熱交換器を用いて行ってもよく、 また、 濃縮残液に水を加え、 減圧下での 水の蒸発潜熱を利用して冷却する真空冷却晶析法によって行ってもよい。 この真空冷却晶析法においては、 該濃縮残液に、 水を 3〜20質量%程度 添加し、 通常温度 40〜70°C、 圧力 4~ 1 6 k P aの条件で晶析処理が 行われる。 上記水の添加量が 3質量%未満では除熱能力が十分ではなく、 20質量%を超えるとビスフエノール Aの溶解ロスが大きくなり、 好まし くない。 このような晶析操作において、 晶析温度が 40°C未満では晶析液 の粘度の増大や固化をもたらすおそれがあり、 7 0°Cを超えるとビスフエ ノール Aの溶解ロスが大きくなり、 好ましくない。
晶析されたフエノールァダク トを含むスラリーは、 平均粒径が 0. 05 〜 l mm (好ましくは 0. 1〜0. 9 mm) のフエノールァダク トを結晶 状態で含有し、 本発明では濾過法により、 フエノールァダク トと、 反応副 生物を含む晶析母液とに分離する。 平均粒径が 0. 0 5mm未満であると、 結晶の表面積が大きくなるので、 洗浄効果の悪化につながり、 1mmを超 えると、 沈降速度が速くなり、 輸送配管の下部に滞留しやすくなるので好 ましくない。 濾過法は洗浄の際に遠心分離法よりも溶媒置換率が高くでき るので、 結晶の表面や結晶間に含まれている不純物を効果的に除去するこ とができる。 濾材から抜け出た微結晶を含む晶析母液は、 そのまま一部を 反応器へリサイクルしたり、 少なくとも一部をアルカリ分解処理して、 フ ェノールとイソプロぺニルフエノールとして回収してもよい。 また、 一部 又は全部を異性化して、 晶析原料にリサイクルすることもできる (特開平 6 - 3 2 1 8 3 4号参照) 。
本発明においては、 その最初の晶析 · 固液分離の際に、 上記のように濾 過法が採用され、 通常使用されるドライフィルター、 トレイフィルター、 吸引式ベルトフィルターが使用でき、 特に吸引式無端ベルトが好ましい。 このようにビスフエノール Aとフエノールとの付加物が結晶状態で含有 するビスフエノール Aのフエノールスラ リー溶液 ( 1 ) をフィルターで濾 過することにより該フィルター上に結晶状態のビスフエノール Aとフエノ ールとの付加物層を形成させ、 次いで該付加物層を洗浄液にて洗浄する。 この洗浄液には、 前記 (C ) 工程の濃縮工程で得られた回収フニノールや、 次の (E ) のフ-ノールァダク トの溶解、 晶析 · 固液分離工程で用いた後 の洗浄水を用いることができる。
この際、 速やかに、 かつ、 溶媒置換率を高めるため、 上記の濾過及び洗 浄操作を減圧下で実施する必要がある。 減圧度が低すぎると、 フエノール ァダク トと母液とが分離しなかったり、 多大の時間を要する。 一方、 強く 減圧にし過ぎると、 フィルターへの負荷が大きくなり、 故障の原因となる。 好ましい減圧度は 3 0〜9 5 k P a、 より好ましくは 4 0〜9 0 k P aで ある。
また、 濾過器を含む雰囲気を 3 0〜 8 0 °Cにする必要がある。 好ましく は 3 5〜5 0 °Cである。 適切な加温状態でなければ、 母液や洗浄液の主成 分はフエノールなので、 母液や洗浄液の凝固や、 逆に晶析したフエノール ァダク トの溶解が起こる。
さらに、 濾過操作においては気液の混合が起こるので、 酸素のようにビ スフュノール Aやフユノールに後の工程で影響する物質を雰囲気から極力 除いておく ことが好ましく、 酸素が 5, 0 0 0容量 p p m以下、 好ましく は 3, 0 0 0容量 p p m以下の不活性ガスの気流中で実施することが重要 である。 なお、 不活性ガスは特に限定されないが、 経済的には窒素が好ま しい。
晶析 ·固液分離は、 高純度の製品を得るために、 複数回繰り返すことが 有効である。 すなわち、 本発明では、 (D) 晶析 ·固液分離工程と、 次の (E) フエノールァダク トの溶解、 晶析 '固液分離工程とを 1回以上繰り 返したのち、 (F) 工程を経て (G) の脱フエノール工程に移る。
(E) フエノールァダク トの溶解、 晶析 · 固液分離工程
(D) 工程で晶析 .分離されたフユノールァダク トを、 フエノール含有 溶液を用いて溶解する。 この工程において用いられるフエノール含有溶液 としては特に制限はなく、 例えば前記 (C) 工程の濃縮工程で得られた回 収フ ノール、 (D) 工程の晶析 · 固液分離工程で生成するフエノールァ ダク トの洗浄液、 本 (E) 工程以降の工程で生成する、 晶析したフエノー ルァダク トの固液分離における母液ゃ該フエノールァダク トの洗浄液など を挙げることができる。
この工程においては、 (D) 工程で得られたフエノールァダク トに上記 フエノール含有溶液を加え、 80〜 1 1 0°C程度に加熱し、 該フエノール ァダク トを加熱溶解させ、 晶析操作に好ましいビスフエノール A濃度を有 するビスフユノール A含有溶液を調製する。 このように洗浄後の付加物層 をフエノールに溶解後、 晶析させることにより、 ビスフエノール Aとフエ ノールとの付加物を結晶状態で含有するビスフエノール Aのフエノールス ラリ一溶液 ( 2 ) が得られる。
こ う して調製されたビスフエノール Aのフエノールスラリ一溶液 (2) は、 比較的低い温度でも粘度が低くて取扱いが比較的容易であり、 フィル ターでの濾過に適している。 このようにして、 フエノールァダク トの溶解、 晶析 · 固液分離を複数回繰り返す。
(F) 加熱溶融工程
加熱溶融工程は、 上記 (E) 工程で晶析 ·分離されたフエノールァダク トを加熱溶融する工程である。 この工程では、 フエノールァダク トを 1 0 0〜 1 6 0°C程度に加熱 ·溶融して液状混合物となる。 (G) 脱フ ノール工程
脱フエノール工程は減圧蒸留によってフエノールを留去し、 溶融状態の ビスフエノール Aを回収する工程である。 上記減圧蒸留は、 一般に圧力 1 · 3〜 1 3. 3 k P a、 温度 1 5 ◦〜: I 90 °Cの範囲の条件で実施される。 残存フエノールは、 さらにスチームストリ ツビングにより除去することカ できる。
(H) 造粒工程
造粒工程においては、 上記 (G) 工程で得られた溶解状態のビスフヱノ ール Aを、 スプレードライヤーなどの造粒装置により、 液滴にし、 冷却固 化して製品とする工程である。 該液滴は噴霧、 散布などにより形成され、 窒素や空気などによって冷却される。 実施例
次に、 本発明を実施例により さらに詳細に説明するが、 本発明は、 これ らの例によってなんら限定されるものではない。
〔製造例 1〕
陽イオン交換樹脂が 6 00 g充填された反応器に、 フエノールを 4, 6 O O g/h r、 アセ トンを 280 gZh r及びェチルメルカプタンを 1 6 g/h rの速度で温度を 7 5°Cに維持しながら、 連続的に供給した。 反応 混合物は、 未反応ァセ トンを主とした低沸点物質を除去するための低沸点 物質成分除去工程に送り、 未反応ァセトンを主とした低沸点減分が除去さ れた。 低沸点減分除去工程から生成したビスフユノール A及び未反応フエ ノールを主とした反応生成物が 4, 640 gZh rで得られた。 この反応 生成物は、 1 6 5°C、 5 3. 3 k P aの条件でフエノールを一部除去して、 ビスフエノール Aの濃度が 30質量%となるように濃縮調整した。 このビ スフエノール A濃縮液に 5質量%の水を加え、 攪拌下 4 5 °Cの条件で冷却 晶析し、 フエノールとァダク トを晶析した。 このフエノールァダク トの結 晶状態の平均粒径は 0. 1 mmであった。
〔実施例 1〕
製造例 1で得られたビスフエノール Aとフエノールとのスラリー液 (液 温 45°C) 3, O O O gを、 酸素 1, 200容量 p pmを含む 50°Cの窒 素雰囲気下、 6 3 μ mのステンレス金網を敷いた約 46°Cに加温した濾過 器に注いで、 80 k P aで 60秒吸引濾過した。 フエノールァダク トと母 液とに分離され、 ステンレス金網上に厚み約 84 mm、 含液率 25質量% の湿潤ケーキが得られた。 この湿潤ケーキを窒素気流中、 室温で減圧下に 24時間乾燥させた後、 得られたァダク トの平均粒径を測定したところ 0 · 3mmであった。 また、 ァダク トを溶融しハーゲン色数を測定した結果、 A P H A 5であった。
〔比較例 1〕
実施例 1において、 80 k P aで吸引する代わりに、 常圧のままでスラ リ一液を濾過器に注いだ。 1 0分間放置したが、 沈殿物と上澄み層に分か れたままで濾別できず、 ケーキと して分離回収できなかった。
〔比較例 2〕
実施例 1において、 約 4 6 °Cに加温した濾過器の代わりに室温 (約 2 0°C) で濾過器にスラリー液を注いだところ、 濾過器の周辺にフエノール の析出が見られた。 得られた湿潤ケーキを薄層クロマトグラフィ一で分析 した結果、 ビスフエノール A,フエノールの比は 1 2. 3であった。 こ れはフエノールァダク ト結晶に一部フリ一のフエノールを含む混合ケーキ であることを示す。
〔比較例 3〕
実施例 1において、 50°Cの窒素雰囲気下で約 46 °Cに加温した濾過器 の代わりに、 9 5 °Cの窒素雰囲気下で約 1 05 °Cに加温した濾過器にスラ リー液を注いだところ、 フィルター上部にはフエノールァダク トは殆ど残 らず、 湿潤ケーキは得られなかった。
〔比較例 4〕
実施例 1において、 酸素 1, 2 0 0容量 p p mを含む 5 0 °Cの窒素雰囲 気下で濾過する代わりに空気雰囲気下で濾過し、 その後、 実施例 1 と同様 の方法で処理したフエノールァダク ト試料 (A P H A 5 . 5 ) を窒素雰囲 気下 1 6 5 °Cで溶融し、 減圧下でフエノールを留去してビスフエノール A を得た。 そのビスフエノール Aのハーゲン色数は、 A P H A 1 8であった。 〔実施例 2〕
実施例 1で得られたフエノールァダク ト試料を窒素雰囲気下 1 6 5 °Cで溶融し、 減圧下でフエノ一ルを留去してビスフエノール Aを得た。 そのビスフエノーノレ Aのハーゲン色数は、 A P H A 1 0であった。 比較 例 4に比べて、 窒素雰囲気で濾過処理した試料の方が着色が少なく、 良 好な結果が得られることがわかる。 産業上の利用可能性
本発明のビスフエノール Aの製造方法によれば、 ビスフエノ一ル Aのフ ヱノールスラリー溶液をフィルター上に注ぎ、 特定の条件で、 結晶状態の ビスフエノール Aとフエノールとの付加物層を形成させることにより、 高 純度のビスフヱノール Aとフヱノールとの付加物を高純度で迅速に効率良 く反応母液から回収することができる。 また、 本発明の本質部分である晶 析 · 固液分離工程で、 ろ過するフエノールァダク トの平均粒径を 0 . 0 5 〜 1 m mに限定することで、 ろ過効率、 洗浄効率が向上し、 着色のないビ スフエノール Aが得られる。

Claims

請 求 の 範 囲
1 . 酸触媒の存在下にフエノールとァセトンを反応させて得られるビスフ ェノール Aのフエノール溶液からビスフエノール Aとフエノールとの付加 物を晶析させ、 生成したスラリーを固液分離後、 固体成分からフエノール を除去するビスフエノール Aの製造方法において、 平均粒径が 0 . 0 5〜 1 m mのビスフエノール Aとフエノールとの付加物を結晶状態で含有する ビスフエノール Aのフエノールスラリー溶液をフィルター上に注ぎ、 酸素 含量が 5, 0 0 0容量 p p m以下の不活性ガス気流中 3 0〜 8 0 °Cの雰囲 気下で、 減圧下で濾過することにより、 結晶状態のビスフユノール Aとフ ェノールとの付加物層を形成させることを特徴とするビスフエノール Aの 製造方法。
2 . 減圧状態が 3 0〜9 5 k P aである請求項 1記載のビスフエノール A の製造方法。
3 . 不活性ガスが窒素である請求項 1記載のビスフエノール Aの製造方法。
4 . フィルターが吸引式無端ベルトフィルターである請求項 1〜3のいず れかに記載のビスフヱノール Aの製造方法。
PCT/JP2003/009604 2002-08-28 2003-07-29 ビスフェノールaの製造方法 WO2004020377A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2003252295A AU2003252295A1 (en) 2002-08-28 2003-07-29 Process for producing bisphenol a
JP2004532684A JP4388893B2 (ja) 2002-08-28 2003-07-29 ビスフェノールaの製造方法
EP03791186A EP1541542A4 (en) 2002-08-28 2003-07-29 PROCESS FOR PREPARING BISPHENOL A
US10/525,528 US7045664B2 (en) 2002-08-28 2003-07-29 Process for producing bisphenol A

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002248141 2002-08-28
JP2002-248141 2002-08-28

Publications (1)

Publication Number Publication Date
WO2004020377A1 true WO2004020377A1 (ja) 2004-03-11

Family

ID=31972504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009604 WO2004020377A1 (ja) 2002-08-28 2003-07-29 ビスフェノールaの製造方法

Country Status (9)

Country Link
US (1) US7045664B2 (ja)
EP (1) EP1541542A4 (ja)
JP (1) JP4388893B2 (ja)
KR (1) KR100948724B1 (ja)
CN (1) CN100389102C (ja)
AU (1) AU2003252295A1 (ja)
MY (1) MY135883A (ja)
TW (1) TW200403217A (ja)
WO (1) WO2004020377A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246452A (ja) * 2006-03-16 2007-09-27 Idemitsu Kosan Co Ltd ビスフェノールaの製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4152655B2 (ja) * 2002-03-29 2008-09-17 出光興産株式会社 ビスフェノールaの製造方法
ATE481267T1 (de) 2008-08-07 2010-10-15 Fiat Ricerche Ergonomische stützvorrichtung für den insassenkörper, für sessel oder sitze, insbesondere für kraftfahrzeugsitze
US8735634B2 (en) * 2011-05-02 2014-05-27 Sabic Innovative Plastics Ip B.V. Promoter catalyst system with solvent purification

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0522700A2 (en) * 1991-07-10 1993-01-13 Chiyoda Corporation Process for the production of crystalline adduct of bisphenol A and phenol and apparatus therefor
JPH05331088A (ja) * 1991-10-30 1993-12-14 Chiyoda Corp ビスフェノールaの製造方法及びビスフェノールaを含むフェノール溶液の晶析生成物から分離された母液の処理方法
JPH06306002A (ja) * 1993-04-21 1994-11-01 Tsukishima Kikai Co Ltd ビスフェノールaのフェノール付加物の遠心濾過分離方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190118A (ja) 1997-09-20 1999-04-06 Catalysts & Chem Ind Co Ltd 水平ベルトフィルタ
JPH11137924A (ja) * 1997-11-10 1999-05-25 Tsukishima Kikai Co Ltd 真空濾過装置
US6130359A (en) * 1998-09-16 2000-10-10 General Electric Company Liquid vacuum pump seal to reduce contamination in bisphenol-A
DE19961521A1 (de) * 1999-12-20 2001-06-21 Bayer Ag Bisphenol-Phenol-Addukte
JP4658355B2 (ja) * 2001-03-05 2011-03-23 出光興産株式会社 ビスフェノールaの製造方法
JP2004137197A (ja) * 2002-10-17 2004-05-13 Idemitsu Petrochem Co Ltd ビスフェノールaの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0522700A2 (en) * 1991-07-10 1993-01-13 Chiyoda Corporation Process for the production of crystalline adduct of bisphenol A and phenol and apparatus therefor
JPH05331088A (ja) * 1991-10-30 1993-12-14 Chiyoda Corp ビスフェノールaの製造方法及びビスフェノールaを含むフェノール溶液の晶析生成物から分離された母液の処理方法
JPH06306002A (ja) * 1993-04-21 1994-11-01 Tsukishima Kikai Co Ltd ビスフェノールaのフェノール付加物の遠心濾過分離方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1541542A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246452A (ja) * 2006-03-16 2007-09-27 Idemitsu Kosan Co Ltd ビスフェノールaの製造方法
WO2007108259A1 (ja) * 2006-03-16 2007-09-27 Idemitsu Kosan Co., Ltd. ビスフェノールaの製造方法

Also Published As

Publication number Publication date
US20060011541A1 (en) 2006-01-19
JP4388893B2 (ja) 2009-12-24
KR100948724B1 (ko) 2010-03-22
EP1541542A4 (en) 2006-08-09
US7045664B2 (en) 2006-05-16
TW200403217A (en) 2004-03-01
MY135883A (en) 2008-07-31
AU2003252295A1 (en) 2004-03-19
TWI308565B (ja) 2009-04-11
JPWO2004020377A1 (ja) 2005-12-15
KR20050074440A (ko) 2005-07-18
CN1678554A (zh) 2005-10-05
CN100389102C (zh) 2008-05-21
EP1541542A1 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
US7112703B2 (en) Production of bisphenol-A with reduced sulfur content
WO2000023408A1 (fr) Procede de production de bisphenol a
WO2001053238A1 (fr) Procede de preparation de bisphenol a
JP4152655B2 (ja) ビスフェノールaの製造方法
KR101361957B1 (ko) 비스페놀 a의 제조 방법
JP4658355B2 (ja) ビスフェノールaの製造方法
JPWO2014010510A1 (ja) ビスフェノールaの製造方法
WO2004020377A1 (ja) ビスフェノールaの製造方法
KR101011878B1 (ko) 비스페놀 a의 제조 방법
WO2004108643A1 (ja) ビスフェノールaの製造方法
JP4615831B2 (ja) ビスフェノールaの製造におけるフェノールの回収方法
JP2004149510A (ja) ビスフェノールaの製造方法
JP2003160524A (ja) ビスフェノールaの製造方法及びその装置
WO2007046434A1 (ja) 色相の良好なビスフェノールaの製造方法
WO2003043964A1 (fr) Procede de production de bisphenol a et appareil correspondant
JP2003160523A (ja) ビスフェノールaの製造方法及びその装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003791186

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004532684

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038202468

Country of ref document: CN

Ref document number: 1020057003266

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 284/CHENP/2005

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2003791186

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057003266

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006011541

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10525528

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10525528

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2003791186

Country of ref document: EP