WO2013177728A1 - 重油高效转化催化裂化催化剂及其制备方法 - Google Patents

重油高效转化催化裂化催化剂及其制备方法 Download PDF

Info

Publication number
WO2013177728A1
WO2013177728A1 PCT/CN2012/001008 CN2012001008W WO2013177728A1 WO 2013177728 A1 WO2013177728 A1 WO 2013177728A1 CN 2012001008 W CN2012001008 W CN 2012001008W WO 2013177728 A1 WO2013177728 A1 WO 2013177728A1
Authority
WO
WIPO (PCT)
Prior art keywords
exchange
rare earth
molecular sieve
phosphorus
preparation
Prior art date
Application number
PCT/CN2012/001008
Other languages
English (en)
French (fr)
Inventor
高雄厚
张海涛
李荻
谭争国
段宏昌
李雪礼
刘超伟
郑云锋
黄校亮
蔡进军
潘志爽
孙雪芹
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Priority to JP2015514313A priority Critical patent/JP5921771B2/ja
Priority to EP12877707.5A priority patent/EP2857096A4/en
Priority to US14/404,776 priority patent/US9968918B2/en
Publication of WO2013177728A1 publication Critical patent/WO2013177728A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates (SAPO compounds)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/088Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • B01J29/605Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7003A-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • B01J35/30
    • B01J35/60
    • B01J35/69
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/24Type Y
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/37Acid treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/40Special temperature treatment, i.e. other than just for template removal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics

Definitions

  • the invention relates to an oil catalytic cracking catalyst for oil conversion ability and a method for preparing a cracked catalyst for blending residual oil and a method for preparing the same.
  • the catalytic cracking unit is an important secondary processing method for crude oil, and its comprehensive product distribution determines the economic benefits of the refinery.
  • FCC catalysts are required to have stronger heavy oil conversion capacity and high value product selectivity.
  • ⁇ type molecular sieve As the main provider of cracking activity of heavy oil cracking catalyst, ⁇ type molecular sieve, its activity stability and high cracking activity are the key factors determining the conversion ability of FCC catalyst heavy oil.
  • Patent ZL200410058089.3 introduces a preparation method of rare earth modified cerium type molecular sieve, which is to adjust the ⁇ value of the system to 8 ⁇ 11 by using lye after the end of the rare earth exchange reaction, and then carry out a conventional subsequent treatment process according to the method.
  • the prepared molecular sieve rare earth ions are all located in the small cage (sodal stone cage);
  • Chinese patent ZL97122039.5 describes a preparation method of ultra-stable cerium zeolite, which comprises contacting a cerium type zeolite with an acid solution and an ammonium ion-containing solution, and performing high-temperature steam treatment.
  • the acid is used in an amount of 1.5 to 6 moles of hydrogen ion per mole of the framework aluminum, the acid solution concentration is 0.1 to 5 equivalents per liter, and the temperature at which the cerium type zeolite is contacted with the acid solution is 5 to 100 ° C, and the contact time is 0.5 to 72 hours.
  • the weight ratio of the Y-type zeolite to the ammonium ion is 2 to 20.
  • the modification method involved in the patent needs to add an ammonium ion-containing solution, the purpose of which is to reduce the content of sodium oxide in the molecular sieve or to reduce the damage of the acid gas to the molecular sieve structure during the roasting process.
  • the FCC catalyst prepared by using the molecular sieve has the heavy oil conversion ability. The characteristics of strong and light oil yield are high; however, the molecular sieve modification technology has the following technical defects: 1) A large amount of ammonium ions are added during the preparation process, and the ammonium ions finally enter the atmosphere or sewage, thereby increasing the ammonia nitrogen pollution and the pollution control cost. ;
  • a method for preparing a rare earth-containing ultra-stable cerium molecular sieve is described in the patent ZL02103909.7.
  • the method is prepared by subjecting the NaY molecular sieve to one-time roasting once, and the NaY molecular sieve is placed in an ammonium ion solution.
  • the molecular sieve prepared by the method has certain anti-vanadium pollution ability, its activity stability and cracking activity are low, and the development trend of heavy oil quality and inferior quality of the raw material oil cannot be satisfied.
  • This is mainly related to the positional distribution of rare earth ions in the molecular sieve super cage and sodalite cage during molecular sieve modification.
  • the method clarifies that the rare earth ions exist in the molecular sieve system in two forms, that is, some rare earth ions enter the sodalite cage in the form of ions, and the other rare earth ions are rare earth oxides (the precursor is rare earth oxalate, which is converted into oxidation by subsequent calcination).
  • the rare earth is dispersed on the surface of the molecular sieve, which reduces the stable supporting effect of the rare earth ions on the molecular sieve structure. At the same time, there is a large amount of ammonia nitrogen pollution in the method, and the added oxalic acid and or oxalate are more harmful to the environment and human body. Big.
  • CN200410029875.0 discloses a preparation method of rare earth ultra-stable Y-type zeolite, which is characterized in that the method comprises treating zeolite with a mixed solution of rare earth salt and citric acid or a mixed solution of inorganic ammonium salt, rare earth salt and citric acid.
  • a step of. The method can simplify the process, and the prepared zeolite as an active component of the cracking catalyst has the advantages of reducing the olefin content of the catalytic cracking gasoline product and significantly increasing the yield of the catalytic cracking light oil product, but the method does not locate the rare earth ions of the molecular sieve. Be explained. Summary of the invention
  • the object of the present invention is to provide a novel heavy oil high-efficiency conversion catalytic cracking catalyst and a preparation method thereof, which are characterized in that the heavy oil has strong conversion ability, the coke selectivity is moderate, and the target product has high yield.
  • the invention provides a novel heavy oil high-efficiency conversion catalytic cracking catalyst, which is characterized in that the catalyst composition contains 2 ⁇ 50% by weight of phosphorus-containing ultra-stable rare earth cerium type molecular sieve, 0.5 ⁇ 30% by weight of one or several other molecular sieves, 0.5 ⁇ 70% by weight of clay, 1.0 ⁇ 65% by weight of high temperature resistant inorganic oxide and 0.01 ⁇ 12.5% by weight of oxidized rare earth, wherein phosphorus containing ultra-stable rare earth cerium type molecular sieve contains 1 ⁇ 20% by weight of rare earth oxide, sodium oxide is not More than 1.2% by weight, phosphorus (in terms of P) 0.1 ⁇ 5 weight%, crystallinity 51 ⁇ 69%, unit cell parameter 2.449nm ⁇ 2.469nm; the phosphorus-containing ultra-stable rare earth Y type molecular sieve preparation process includes rare earth exchange and dispersion Pre-exchange, wherein the order of rare earth exchange and dispersion pre-exchange is not limited, the rare
  • the method and conditions for the exchange of the rare earth are not particularly limited, and general methods and conditions can be employed.
  • the invention also provides a preparation method of the heavy oil catalytic cracking catalyst, which mainly comprises the following steps:
  • (1) Preparation of phosphorus-containing ultra-stable rare earth Y-type molecular sieve Using NaY molecular sieve (preferably silicon-aluminum ratio greater than 4.0, crystallinity greater than 70%) as raw material, after rare earth exchange and dispersion pre-exchange, the molecular sieve slurry is filtered and washed. And the first roasting, the "one-and-one-baked" rare earth sodium Y molecular sieve is obtained, wherein the order of rare earth exchange and dispersion pre-exchange is not limited; then the "one-to-one-baked" rare earth sodium Y molecular sieve is subjected to ammonium salt exchange and phosphorus reform.
  • NaY molecular sieve preferably silicon-aluminum ratio greater than 4.0, crystallinity greater than 70%
  • the second calcination thereby obtaining a phosphorus-containing ultra-stable rare earth Y-type molecular sieve, wherein the order of hinge salt exchange and phosphorus modification is not limited, and the strontium salt exchange and phosphorus modification processes are continuously or discontinuously performed,
  • the secondary calcination is carried out after the ammonium salt is exchanged for sodium reduction, and the phosphorus modification can be carried out either before the second calcination or after the second calcination.
  • the molecular sieve slurry can be washed and filtered without being filtered. It can also be washed and filtered.
  • the RE 2 O 3 /Y zeolite (mass) is preferably 0.005 to 0.25, preferably 0.01 to 0.20; the exchange temperature is 0 to 100 ° C, preferably 60 to 95 ° C; The ratio is 2.5 to 6.0, preferably 3.5 to 5.5, the exchange time is 0.1 to 2 hours, and the optimum is 0.3 to 1.5 hours.
  • the dispersion is pre-exchanged, and the dispersant is added in an amount of 0.2% by weight to 7% by weight, preferably 0.2. Weight% to 5% by weight; exchange temperature is 0 to 10 CTC, preferably 60 to 95 ° C; exchange time is 0.1 to 1.5 hours.
  • the modified molecular sieve slurry is filtered and washed with water to obtain a filter cake, and the obtained filter cake is flash-dried to have a moisture content of 30% to 50%, and finally calcined, and the first calcination condition can be used, for example, at 350 ° C. ⁇ 70CTC, 0 ⁇ 100% water vapour roasting for 0.3 ⁇ 3.5 hours, preferably at 450 °C ⁇ 650 °C, 15 ⁇ 100% water vapour roasting for 0.5 ⁇ 2.5 hours, that is, ''one cross one baking' super stable rare earth sodium Y molecular sieve.
  • the preparation process of the molecular sieve of the invention further comprises hinge salt exchange and phosphorus modification, wherein the order of ammonium salt exchange and phosphorus modification is not limited, and the ammonium salt exchange and phosphorus modification processes are continuously or discontinuously carried out, With or without roasting process.
  • the rare earth exchange, the ammonium salt exchange, the phosphorus modification, the calcination (the first calcination, the second calcination) can adopt the conditions used in the exchange modification and ultra-stabilization processes which are familiar in the industry, and the present invention is not particularly limit.
  • the T phosphorus compound is selected from any one or more of the group consisting of tl phosphoric acid, phosphorous acid, folic anhydride, tribasic acid, ammonium diammonium, ammonium phosphate, strontium phosphate, ammonium dihydrogen phosphate, and aluminum phosphate.
  • the C ⁇ 700 ° C, 0 to 100% water vapor is calcined for 0.3 to 3.5 hours, preferably 0.5 to 2.5 hours, to finally obtain the highly active phosphorus-containing ultrastable rare earth Y type molecular sieve provided by the present invention.
  • the exchange process of rare earth exchange and dispersion pre-exchange can be carried out by tank exchange, belt exchange and/or filter cake exchange; In this case, it is possible to divide the rare earth compound solution into several parts under the premise that the total amount of the rare earth is constant, and perform tank exchange, belt exchange and/or cake exchange, that is, multiple exchanges.
  • the dispersant in the process of dispersing the pre-exchange process, can be divided into several parts under the premise of the total amount of dispersant, for tank exchange, belt exchange and/or filter cake exchange; rare earth exchange and dispersion pre-pretreatment When switching to multiple exchanges, the two types of exchanges can be crossed.
  • the rare earth compound of the present invention is a rare earth chloride or a rare earth nitrate or a rare earth sulfate, preferably a rare earth chloride or a rare earth nitrate.
  • the rare earth of the present invention may be a cerium-rich or cerium-rich rare earth, or may be pure cerium or pure cerium.
  • the dispersing agent in the dispersion pre-exchange process of the present invention is selected from the group consisting of phthalocyanine powder, boric acid, urea, ethanol, polyacrylamide, acetic acid, oxalic acid, adipic acid, formic acid, hydrochloric acid, nitric acid, citric acid, salicylic acid.
  • phthalocyanine powder boric acid, urea, ethanol, polyacrylamide, acetic acid, oxalic acid, adipic acid, formic acid, hydrochloric acid, nitric acid, citric acid, salicylic acid.
  • tartaric acid, benzoic acid, and starch preferably two or more.
  • the other molecular sieves in the catalyst composition of the present invention are one or more selected from the group consisting of Y zeolite, L zeolite, ZSM 5 zeolite, ⁇ zeolite, aluminum phosphate zeolite, ⁇ zeolite, preferably cerium type zeolite, ZSM-5 zeolite. , zeolite beta, or the above-mentioned zeolite modified by conventional physical or chemical means, including HY, USY, REY, REHY, REUSY, H-ZSM-5, ⁇ .
  • the clay according to the present invention is one or more selected from the group consisting of kaolin, halloysite, montmorillonite, sepiolite, perlite, etc.; said high temperature resistant inorganic oxide is one or more selected from the group consisting of al 2 0 3, Si0 2, Si0 2 -Al 2 0 3, A1P0 4, ⁇ :; , ⁇ :; :: ⁇ ;. ⁇ , : ; i ni i, ⁇ ;; m : ⁇ u'j ⁇ ⁇ n ii m 3 ⁇ 4it3 ⁇ 4 ⁇ .Vr 3 ⁇ 4 ; !
  • Crystallinity (C/Co) X-ray diffraction method.
  • RE 2 0 3 content colorimetric method.
  • Micro-reaction activity The sample was pretreated at 80 (TC, 100% water vapor for 4 hours).
  • the reaction material was Dagang light diesel oil, the reaction temperature was 46 CTC, the reaction time was 70 seconds, the catalyst loading was 5.0 g, and the weight ratio of the agent oil was 3.2. , the total conversion rate was used as the micro-reaction activity.
  • ACE heavy oil microreactor The reaction temperature is 530 ° C, the ratio of agent to oil is 5, and the raw material oil is 30% vacuum residue of Xinjiang oil blending.
  • NaY molecular sieve NaY-1 (silica-aluminum ratio 4.8, crystallinity 92%), NaY-2 (silica-aluminum ratio 4.1, crystallinity 83%), produced by Lanzhou Petrochemical Company Catalyst Plant.
  • Ultra-stable one-to-one baked molecular sieve sample crystallinity 60%, sodium oxide 4.3m°/. , Lanzhou Petrochemical Company Catalyst Factory production.
  • Rare earth solution rare earth chloride (rare earth oxide 277.5 g / liter), rare earth nitrate (rare earth oxide 252 g / liter), all industrial products, from the catalyst plant of Lanzhou Petrochemical Company.
  • the obtained filter cake was flash-dried to have a moisture content of 30% to 50%, and finally calcined at 70% water vapor and 670 Torr for 1.0 hour to prepare "one-and-one-baked" rare earth sodium strontium.
  • a reaction kettle with a heating jacket add 500 grams (dry basis) of ultra-stable rare earth sodium lanthanum molecular sieve and a certain amount of deionized water to prepare a slurry with a solid content of 120g/L, and add 120g.
  • the active component of the phosphorus-containing rare earth ultrastable Y molecular sieve of the present invention is prepared, and is referred to as modified molecular sieve A-1.
  • reaction vessel equipped with a heating jacket, 3000 g of NaY-1 molecular sieve (dry basis) and deionized water were successively added to prepare a slurry having a solid content of 150 g/L, and 43 g of hydrochloric acid was added thereto, and the reaction was carried out at 85 ° C for 1 hour.
  • the active component of the phosphorus-containing rare earth ultrastable Y molecular sieve according to the present invention is prepared, and is referred to as modified molecular sieve D-1.
  • the rare earth nitrate solution is heated to 88 ⁇ , the exchange pH is 4.7, the rare earth nitrate addition amount is RE 2 0 3 /Y zeolite (mass) is 0.04, and the belt filter vacuum is 0.03; Steaming and drying to make the moisture content of 30% ⁇ 50%, and finally calcining for 1.5 hours under 80% water vapor and 53CTC, to obtain "one-to-one baking" ultra-stable rare earth sodium Y"-cross one baking" ultra-stable rare earth sodium Y.
  • the method for preparing the REUSY molecular sieve is similar to that of the third embodiment of the present invention. It is the same as that of the third embodiment, and the obtained ultra-stable rare earth lanthanum is classified into the sieve number F-1, and the obtained catalyst number is obtained. Is F.
  • This comparative example uses the molecular sieve preparation method described in CN200510114495.1 to examine the reaction performance of the molecular sieve, and the catalyst preparation process is the same as in the fifth embodiment.
  • the method for preparing the REUSY molecular sieve was similar to the method shown in Example 5 except that no citric acid and phthalocyanine powder were added, and the same as in Example 5, the obtained ultra-stable rare earth Y-type molecular sieve number was G-1, and the obtained catalyst number was G.
  • the physicochemical properties of the ultra-stable rare earth cerium type molecular sieve obtained in the examples and comparative examples of the present invention are shown in Table 1. The analysis results show that: Compared with the comparative example, the new molecular sieve has the characteristics of good structural stability and small particle size.
  • the catalyst prepared by the method of the present invention has excellent heavy oil conversion ability and coke selectivity, and the total liquid yield and light oil yield are significantly higher than that of the comparative catalyst.
  • Table 4 shows the evaluation results of the catalyst B riser. Compared with the comparative catalyst G, the total liquid recovery of the catalyst of the present invention is increased by 0.97 percentage points, and the light oil yield is increased by 0.77 percentage points, and the gasoline property is equivalent.
  • Liquid liquefied gas (C3-C4) 17.95 18.16
  • One of the main active components of the novel heavy oil catalyst of the present invention is a high-cracking activity-stabilized cerium-containing rare earth ultra-stable cerium type molecular sieve, which uses a dispersing agent to pre-disperse NaY molecular sieve in a rare earth modified preparation process, thereby reducing
  • the degree of agglomeration between the molecular sieve particles makes the surface of the molecular sieve more contact with the rare earth ions, which reduces the resistance of the rare earth ions during the exchange process, causes the rare earth ions to exchange more into the molecular sieve cage, and migrates to the subsequent steam roasting process.
  • the sodalite cage improves the structural stability and activity stability of the molecular sieve.
  • Rare earth ions are localized in sodalite cages. There are no rare earth ions on the surface of supercage and molecular sieves, which reduces the acid strength and density at this position, reduces the biofocus rate of the active sites, and better solves the heavy oil conversion capacity and coke of the catalyst. Selective contradiction.

Abstract

提供了重油催化裂化催化剂及其制备方法,所述催化剂含有2-50重量%的含磷超稳稀土Y型分子筛,0.5-30重量%的一种或多种其它分子筛、0.5-70重量%的粘土、1.0-65重量%的耐高温无机氧化物和0.01-12.5重量%的氧化稀土。所述含磷超稳稀土Y型分子筛是以NaY分子筛为原料,经过稀土交换、分散预交换后,分子筛浆液再经过滤、水洗和第一次焙烧,获得"一交一焙"稀土钠Y分子筛,其中稀土交换、分散预交换的先后次序不限,然后进行"二交二焙"处理,该处理过程包括铵盐交换和磷改性,其中铵盐交换、磷改性的先后次序不限,铵盐交换、磷改性可以是连续或不连续的,第二次焙烧是在铵盐交换降钠后进行的,磷改性既可以在第二次焙烧前进行,也可以在第二次焙烧后进行。该催化剂具有较强的重油转化能力、总液收率和轻质油收率高。

Description

¾汕 ^效转化能化裂化 ^化剂及 制^ -法
技术领域
发明涉及 -种 油转化能力的 油催化裂化催化剂及^制^ '法, 体地, Ιέ 一种适用于掺炼渣油催化裂化催化剂及其制^方法。
背景技术
催化裂化装置作为原油重要的二次加工手段, 其综合产品分布决定着炼厂的经济效 益。 近年随着原料油重质化、 劣质化趋势的加剧, 要求 FCC催化剂具有更强的重油转化 能力和高价值产品选择性。 Υ型分子筛作为重油裂化催化剂裂化活性的主要提供者, 其活 性稳定性优劣和裂化活性高低是决定 FCC催化剂重油转化能力的关键因素。
因此围绕如何提高 Υ型分子筛的裂化活性和活性稳定性, 国内外相关研究机构进行 了大量的研究工作。 目前较为一致的观点是在分子筛稀土改性过程中使稀土离子尽可能更 多的定位方钠石笼, 从而抑制水汽老化过程中分子筛骨架脱铝, 提高分子筛骨架结构稳定 性和活性稳定性。专利 ZL200410058089.3介绍了一种稀土改性 Υ型分子筛制备方法, 该 方法是在稀土交换反应结束后采用碱液将体系 ρΗ值调至 8〜11 , 之后再进行常规后续处 理过程, 按照该方法制备的分子筛稀土离子全部定位于小笼 (方钠石笼); 在
ZL200410058090.6中介绍了专利 ZL200410058089.3中分子筛的反应性能, 该专利中催 化剂反应结果表明, 稀土离子定位于方钠石笼提高了分子筛结构稳定性和活性稳定性, 表 现在催化剂重油转化能力得到明显改善, 但是该催化剂焦炭选择性较差。
中国专利 ZL97122039.5中介绍了一种超稳 Υ沸石的制备方法, 该方法包括将一种 Υ 型沸石, 与一种酸溶液和一种含铵离子的溶液接触, 并进行高温水蒸汽处理, 所述酸的用 量为每摩尔骨架铝 1.5〜6摩尔氢离子、 酸溶液浓度 0.1〜5当量 /升, Υ型沸石与酸溶液接 触的温度为 5〜100°C, 接触时间 0.5〜72小时, Y型沸石与铵离子的重量比为 2〜20。 该 专利涉及的改性方法中需加入含铵离子溶液, 其目的是降低分子筛中的氧化钠含量或是减 少焙烧过程中酸性气体对分子筛结构的破坏, 采用该分子筛制备的 FCC催化剂具有重油 转化能力强、 轻质油收率高的特点; 但是该分子筛改性技术存在以下技术缺陷: 1 ) 制备 过程加入大量的铵离子, 含铵离子最终进入大气或是污水中, 增加氨氮污染和治污成本;
2 ) 该专利方法不能有效解决分子筛颗粒团聚问题, 颗粒团聚降低了分子筛的比表面和孔 体积, 增加了分子筛交换过程的孔道阻力, 使改性元素难以准确定位、定量于分子筛笼内;
3 ) 同时该专利还提及丫型沸石与含铵离子溶液接触的同时或是之后, 还可以采用离子交 换的 j ' 1入½ Ι '.ι'^ j'- . iV: i¾ i:换过 ι':屮. 'ΪΧ Ά ]'· ' -j ffii j'- i i^L 應 J:离 rn 增加了稀 ! -. ,'-¾ 换 i i;入分 f筛 内的附力, M吋降低了稀 1:离 ί 的利 ffl率。
屮国专利 ZL02103909.7中介绍了一种含稀土超稳丫分子筛制备 A法, ¾方法是将 NaY分子筛经一次交换一次焙烧后制得, 其特征在于将 NaY分子筛置于铵离子溶液中, 于 25〜100°C进行化学脱铝处理, 化学脱铝络合剂中含有草酸和 /或草酸盐, 处理时间 0.5〜5小时, 然后加入稀土溶液, 搅拌, 使生成包含草酸稀土的稀土沉淀物, 经过滤、 水 洗成为滤饼, 再进行水热处理, 制得分子筛产品。 该方法制备的分子筛虽具有一定的抗钒 污染能力, 但是其活性稳定性和裂化活性较低, 不能满足原料油重质化、 劣质化的发展趋 势。 这主要是与分子筛改性过程中的稀土离子在分子筛超笼和方钠石笼的位置分布有关。 该方法明确了稀土离子是以两种形态存在于分子筛体系中, 即部分稀土以离子形态进入方 钠石笼, 另一部分稀土离子是以氧化稀土 (其前身物为草酸稀土, 后续焙烧转化为氧化稀 土) 独立相分散于分子筛表面, 这降低了稀土离子对分子筛结构的稳定支撑作用; 同时该 方法中也存在大量的氨氮污染问题, 所加的草酸和或草酸盐的对环境和人体毒害较大。
CN200410029875.0中公幵了一种稀土超稳 Y型沸石的制备方法,其特征在于该方法 包括用稀土盐和柠檬酸组成的混合溶液或者无机铵盐、 稀土盐和柠檬酸组成的混合溶液处 理沸石的步骤。 该方法可简化工艺, 所制备的沸石作为裂化催化剂的活性组元, 具有降低 催化裂化汽油产物烯烃含量和明显增加催化裂化轻质油产物收率的优点, 但是该方法并未 对分子筛稀土离子定位进行说明。 发明内容
本发明的目的在于提供一种新型重油高效转化催化裂化催化剂及其制备方法, 该催化 剂特点是重油转化能力强, 焦炭选择性适中, 目的产品收率高。
本发明提供一种新型重油高效转化催化裂化催化剂, 其特征在于催化剂组成中含有 2〜50重量%的含磷超稳稀土丫型分子筛、 0.5〜30重量%的一种或几种其它分子筛、 0.5〜 70重量%的粘土、 1.0〜65重量%的耐高温无机氧化物和0.01〜12.5%重量的氧化稀土, 其 中含磷超稳稀土丫型分子筛中含氧化稀土 1〜20重%, 氧化钠不大于 1.2重%, 磷 (以 P 计) 0.1〜5重%, 结晶度 51〜69%, 晶胞参数 2.449nm〜2.469nm; 该含磷超稳稀土 Y 型分子筛制备过程包含了稀土交换、 分散预交换, 其中稀土交换、 分散预交换的先后次序 不限, 稀土交换与分散预交换是连续进行, 之间没有焙烧过程; 分散预交换是指将分子筛 浆液浓度调为固含量为 80〜400g/L, 加入 0.2重%〜7重%的分散剂进行分散预交换, 交 i¾ o - i oo t . 换吋 i!ij 0.1 - 1 .5 'J、时: ^ί ^ϋ换. ii 所述 ¾ 选 ii m ;' ;/、
■ 、 尿^、 乙 ι '; 聚内'烯酰胺、 乙酸、 、 :酸、 1隱、 、 麵、 ' ¾、 水 杨酸、 酒石酸、 苯甲酸、 淀粉屮的任总 -种成多种: 稀上交换、 分散预交换中没有使用铵 上卜 本发明中, 对稀土交换的方法、 条件不加以特别限制, 可采用通用方法及条件。
本发明还提供了一种该重油催化裂化催化剂的制备方法, 主要包含以下歩骤:
(1)制备含磷超稳稀土 Y型分子筛: 以 NaY分子筛(最好硅铝比大于 4.0, 结晶度大于 70%) 为原料, 经过稀土交换、 分散预交换后, 分子筛浆液再经过滤、 水洗和第一 次焙烧, 获得"一交一焙"稀土钠 Y分子筛, 其中稀土交换、 分散预交换的先后次序 不限; 再将"一交一焙"稀土钠 Y分子筛经过铵盐交换、 磷改性和第二次焙烧, 从而 获得含磷超稳稀土 Y型分子筛,其中铰盐交换、磷改性的先后次序不限,钹盐交换、 磷改性过程是连续进行或不连续进行的, 第二次焙烧是在铵盐交换降钠后进行的, 磷改性既可以在第二次焙烧前进行, 也可在第二次焙烧后进行。
(2) 重油催化裂化催化剂制备: 将含磷超稳稀土 Y型上述分子筛组分、粘土和耐高温无 机氧化物的前驱物及其它原料进行混合均质, 进行喷雾成型、 焙烧和水洗, 获得催 化剂成品。
该发明中所述的重油催化裂化催化剂制备过程的歩骤 U )中, 即获得含磷超稳稀土 Y 型分子筛时, NaY分子筛稀土交换和分散预交换之间, 分子筛浆液可以不经洗涤、 过滤, 也可以进行洗涤、 过滤。 稀土交换时, 其 RE2O3/Y沸石 (质量) 最好为 0.005〜0.25, 最 佳是 0.01〜0.20; 交换温度为 0〜100°C, 最佳为 60〜95°C ; 交换 pH值为 2.5〜6.0, 最 佳是 3.5〜5.5, 交换时间为 0.1〜2小时, 最佳为 0.3〜1.5小时; 分散预交换吋, 分散剂 加入量为 0.2重量%〜7重量%, 最佳为 0.2重量%〜5重量%; 交换温度为 0〜10CTC, 最 佳为 60〜95°C ; 交换时间为 0.1〜1.5小时。 改性后的分子筛浆液经过滤、 水洗获得滤饼, 将所得滤饼闪蒸干燥使其水分含量在 30%〜50%, 最后焙烧, 第一次焙烧条件可使用通用 条件, 如在 350°C〜70CTC、 0〜100%水汽焙烧 0.3〜3.5小时, 最好是在 450°C〜650°C、 15〜100%水汽焙烧 0.5〜2.5小时, 即得' '一交一焙"超稳稀土钠 Y分子筛。
本发明的分子筛的制备过程还包含了铰盐交换、 磷改性, 其中铵盐交换、 磷改性的先 后次序不限, 铵盐交换、磷改性过程是连续进行或不连续进行的, 之间有或没有焙烧过程。 本发明中稀土交换、 铵盐交换、 磷改性、 焙烧 (第一次焙烧、 第二次焙烧) 均可采用行业 内所熟悉的交换改性、 超稳化过程所用的条件, 本发明不特别限制。 d'W'i-:的 ί'Ι:1ύ 、 f ^ ¾ ; β¾)'Χ ιΙ,'^ ! η| Γϊ- ί Η: ¾ 80 ^400g/L, )j| | \ 0. 1 'Τ %、 5 ¾% (以'丫' -质 P i「) 的 ^化 物进 ir i换, 换^ ¾:为 0〜100 , 0:换 ll'tl'iij 0.1〜 1.5 小吋: 换过稃所述 T磷化合物选 tl磷酸、 亚磷酸、 麵酐、 fi 酸 ¾ 铵、 麵二 铵、 磷酸铵、 磷酸钕、 亚磷酸二氢铵、 磷酸铝中的任意一种或多种。
本发明中制备含磷超稳稀 Y型分子筛的过程中, 在"一交一焙" 超稳稀土钠 Y分子 筛得到后, 还要进行铵盐交换、 磷改性, 铵盐交换, 其条件可以采取通用的常规做法, 推 荐的方法是: 将"一交一焙" 超稳稀土钠 Y 分子筛加入去离子水, 固含量调配为 100〜 400g/L, NH4+/Y沸石 (质量) 为 0.02〜0.40, 最好为 0.02〜0.30, pH值为 2.5〜5.0, 最 好为 3.0〜4.5, 在 60°C〜95°C下反应 0.3〜1 .5小时; 磷改性中含磷化合物的加入量为 0. 1〜5重% (以单质 P计), 最佳为 0. 2重%〜4重。 /。 (以单质 P计), 交换温度为 0〜 100 V, 最佳为 20〜8(TC, 交换时间为 0.1〜1.5小时。 反应完成后, 将分子筛浆液过滤、 水 洗, 将所得滤饼在 450°C〜700°C、 0〜100%水汽焙烧 0.3〜3.5小时, 最好是 0.5〜2.5小 时, 最终获得本发明提供的高活性含磷超稳稀土 Y型分子筛。
本发明中所述的超稳稀土 Y型分子筛 "一交一焙"过程中, 稀土交换和分散预交换的 交换过程可以采用罐式交换、 带式交换和 /或滤饼交换; 在进行稀土交换时, 可以按以下方 式进行, 即在稀土总量不变的前提下, 可以将稀土化合物溶液分为若干份, 进行罐式交换、 带式交换和 /或滤饼交换, 即多次交换。 同样, 在分散预交换过程时, 可以在分散剂总量不 变的前提下, 可以将分散剂分为若干份, 进行罐式交换、 带式交换和 /或滤饼交换; 稀土交 换和分散预交换为多次交换时, 两类交换可交叉进行。
本发明所述的稀土化合物为氯化稀土或硝酸稀土或硫酸稀土, 最好是氯化稀土或硝酸 稀土。
本发明所述的稀土可以是富镧或富铈稀土, 也可以是纯镧或纯铈。
本发明所述的分散预交换过程中所述分散剂选自田菁粉、 硼酸、 尿素、 乙醇、 聚丙烯 酰胺、 乙酸、 草酸、 已二酸、 甲酸、 盐酸、 硝酸、 柠檬酸、 水杨酸、 酒石酸、 苯甲酸、 淀 粉中的一种或一种以上, 最好是两种或两种以上。
本发明所述的催化剂组成中的其它分子筛为一种或一种以上选自 Y型沸石、 L沸石、 ZSM 5沸石、 β沸石、 磷酸铝沸石、 Ω沸石, 优选 Υ型沸石、 ZSM- 5沸石、 β沸石, 或经过常 规物理或化学改性的上述沸石, 包括 HY、 USY、 REY、 REHY、 REUSY、 H-ZSM-5, Ηβ。
本发明所述的粘土为一种或一种以上选自高岭土、 埃洛石、 蒙脱土、 海泡石、 珍珠岩 等; 所说的耐高温无机氧化物为一种或一种以上选自 Al203、 Si02、 Si02-Al203、 A1P04, ί选 ίΙ :; , ^ :; :: π;.ί,:; i ni i, 拟;; m :中 u'j ~η·Λ ^ n ii m ¾it¾常 .Vr ¾ ; ! \ m m I: , ^ j ι u :· f: m )「ί处 过 i¾4现 ίϊ技^招卜 ii r龍化剂 烧、 ,R;';t、 r燥 中 烧 好足喷富微球 样品 |: 20(rC、70()r下焙烧, 优选 3()(rC〜60(rC, 时 I'nj 0. 小时, 优选 0.卜 3.5 'j、时: 水洗条件最好为: 水 /催化剂重量为().5〜35, 水洗温度为 20r〜U)()'C, 时间为().〖〜().3 小时。
具体实施方式
下面的实施例对本发明的特点做进 ·歩说明, 但这些实施例并不能限定本发明。
(一) 实例中所用的分析及评价方法。
1. 晶胞常数 (ao): X-光衍射法。
2. 结晶度 (C/Co): X-光衍射法。
3. 硅铝比: X-光衍射法。
4. Na20含量: 火焰光度法。
5. RE203含量: 比色法。
6. P含量: 分光光度法。
7. 微反活性: 样品预先在 80(TC、 100%水蒸气条件下处理 4小时。 反应原料为大港 轻柴油, 反应温度 46CTC, 反应时间 70秒, 催化剂装量 5.0克, 剂油重量比 3.2, 以总转化率作为微反活性。
8. ACE重油微型反应器: 反应温度 530°C, 剂油比为 5, 原料油为新疆油掺炼 30% 的减压渣油。
(二) 实例中所用原料规格
1. NaY分子筛: NaY-1 (硅铝比 4.8, 结晶度 92%), NaY-2 (硅铝比 4.1, 结晶度 83%), 兰州石化公司催化剂厂生产。
2. 超稳一交一焙分子筛样品: 结晶度 60%, 氧化钠 4.3m°/。, 兰州石化公司催化剂厂 生产。
3. 稀土溶液: 氯化稀土(氧化稀土 277.5克 /升), 硝酸稀土(氧化稀土 252克 /升), 均为工业品, 采自兰州石化公司催化剂厂。
4. 田菁粉、 硼酸、 尿素、 乙醇、 聚丙烯酰胺、 草酸、 已二酸、 乙酸、 甲酸、 盐酸、 硝酸、 柠檬酸、 水杨酸、 酒石酸、 淀粉均为化学纯; 氯化铵、 硝酸铵、 硫酸铵、 -ί¾ί¾. ι ' 、 m -^ ^m'A ¾、 續 ·. ¾、 ' m n 磷酸 均 _i:、ik
5. 拟 ^水^石 (灼减 36.2% )、 ^岭 1 : (灼减 16.4% )、 埃洛石 (灼减 21.4% )、 蒙脱 土 (灼减 15.8% )、 珍珠岩 (灼减 17.6% ), 固休: 铝溶胶, 含氧化铝 23.0重%: 硅溶胶, 含氧化硅 24.5重。 /。, 均为工业合格品。
6. RE丫、 REH丫、 US丫、 REUSY分子筛, 均为合格丁业品, 兰州石化公司催化剂厂 生产; β沸石, 工业合格品, 抚顺石化公司生产: H-ZSM-5 , 工业合格品, 上海复 旦大学生产。
实施例 1
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛 (干基) 和一定量的去离子 水, 调配成固含量为 220g/L的浆液, 加入 82g硼酸和 105克田菁粉, 然后升温至 85°C, 在搅拌下交换反应 0.5小时,之后过滤、洗涤,将所得滤饼放置反应釜中,之后再加入 1.67 升的氯化稀土, 调节体系 pH=4.0, 升温至 80Ό, 交换反应 0.3小时, 将所得滤饼闪蒸干 燥使其水分含量在 30%〜50%, 最后在 70%水汽和 670Ό下焙烧 1.0小时, 制得"一交一 焙"稀土钠丫。 在带有加热套的反应釜中, 加入"一交一焙"超稳稀土钠丫分子筛 500克(干 基) 和一定量的去离子水, 制成固含量为 120g/L的浆液, 加入 120g硫酸铵, 调节体系 pH=4.2, 升温到 90'C, 交换 0.8小时, 然后过滤、 洗涤, 将滤饼打浆后加入磷酸氢二铵 115g, 混合均匀后在 80%水汽和 560Ό下焙烧 2.5小时, 制得本发明所述的含磷稀土超稳 Y分子筛活性组分, 记做改性分子筛 A-1。
在带有水浴加热的反应釜中, 加入 4.381 升水、 1062克高岭土、 986克氧化铝以及 63.5毫升盐酸混合均匀,搅拌 1小时,然后依次加入 448克改性分子筛 A-1、63克 H-ZSM-5、 755克 REUSY, 混合均匀后缓慢加入 1500克铝溶胶进行成胶, 经过喷雾成型, 将所得微 球在 40CTC焙烧 0.5小时。取焙烧微球 2千克,加入 15千克去离子水在 60Ό洗涤 15分钟, 过滤干燥即得本发明制备的裂化催化剂, 记做 A。
实施例 2
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛 (干基) 和一定量的去离子 水, 调配成固含量为 360g/L的浆液, 加入 0.82升的硝酸稀土, 调节体系 pH=3.3, 升温 至 80°C, 交换反应 1.5小时, 之后过滤、 洗涤, 将所得滤饼放置反应釜中, 再加入 202g 聚丙烯酰胺和 30g的水杨酸,然后升温至 78°C进行分散交换,在搅拌下交换反应 0.5小时, 将所得滤饼闪蒸干燥使其水分含量在 30%〜50%,最后在 30%水汽和 63CTC下焙烧 1.8小 时, m -')Τ「"'½Ί..衲 γ ή; Ί : ιϊ ϋπ热 :的 屮. 'ji i入" ' -iii"k :m ι · ¾ γ ^ 子筛 500 ^ (十½ ) 和 - 离 水, 制成卜 'il 为 370g/L的浆液, 加入 200g i^梭铵, ¾ 体系 pH=3.6, 升温到 90Γ, 换 1.2小吋, 后加入磷酸¾二铵 64g, 调节体系 pH=3.6, 升温到 90°C, 交换 1 .2小时, 然后过滤、冼涤, 滤饼在 20%水汽和 600Γ下焙烧 0.5小时, 然后过滤、 洗涤, 滤饼在 20%水汽和 600Γ下焙烧 0.5小时, 制得本发明所述的含磷稀土 超稳丫分子筛活性组分, 记做改性分子筛 B-1。
在带有水浴加热的反应釜中, 加入 4.620升水、 1024克高岭土、 971克拟薄水铝石以 及 90.8毫升盐酸混合均匀, 搅拌 1小时, 然后依次加入 338克改性分子筛 B-1、 129克 β 沸石、 806克 REHY, 混合均勾后缓慢加入 1304克铝溶胶进行成胶, 经过喷雾成型, 将 所得微球在 40CTC焙烧 1.0小时。 取焙烧微球 2千克, 加入 20千克去离子水搅拌均匀, 在 35°C洗涤 40分钟, 过滤干燥即得本发明制备的裂化催化剂, 记做 B。
实施例 3
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛 (干基) 和去离子水, 调配 成固含量为 150g/L的桨液, 加入 43g盐酸, 在 85°C下反应 1小时, 之后再加入 1.68升 的氯化稀土, 调节体系 pH=3.7, 升温至 9(TC, 交换反应 1小时, 之后再将分子筛浆液过 滤, 进行分散剂带式交换, 带式交换条件为: 将 35g草酸配置为 pH值 =3.4的溶液, 并升 温至 85°C,带式滤机真空度为 0.04;之后将所得滤饼闪蒸千燥使其水分含量在 30%〜50%, 最后在 10%水汽和 51CTC下焙烧 2.0小时, 制得"一交一焙"超稳稀土钠 Y。 在带有加热套 的反应釜中, 加入"一交一焙"超稳稀土钠丫分子筛 500克 (干基) 和去离子水, 制成固含 量为 145g/L的浆液, 加入 80g硫酸铵, 调节体系 pH=3.5, 升温到 90°C, 交换 1.2小时, 然后过滤、 洗涤, 滤饼在 50%水汽和 650Ό下焙烧 2小时, 然后重新打浆加入磷酸二氢铵 110g混合均匀, 交换 1小时后过滤、 洗涤、 烘干, 制得本发明所述的含磷稀土超稳丫分 子筛活性组分, 记做改性分子筛 C-1。
在带有水浴加热的反应釜中, 加入 4.854升水、 1125克埃洛石、 825克拟薄水铝石 以及 51.4毫升盐酸混合均匀, 搅拌 1小时, 然后依次加入 406克改性分子筛 C-1和 903 克 USY,混合均匀后缓慢加入 1224克硅溶胶进行成胶,经过喷雾成型,将所得微球在 600 'C焙烧 0.3小时。 取焙烧微球 2千克, 加入 15千克去离子水, 在 80°C洗涤 30分钟, 过 滤干燥即得本发明制备的裂化催化剂, 记做 C。
实施例 4
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛 (干基) 和一定量的去离子 水, l 成 W 为 320g/L的¾;& .
Figure imgf000010_0001
b 0.8 之 Cl入 0.95升的 ίιΠι Η:, ϋ,Γι'ι体系 ρΗ=3.3, Jh 80,C ' 0:换 ¾l、":
1 .8小时, ¾后加入 62g淀粉在 80Γ 卜反 0.5小吋, 反 之后过滤、 , 将所 谑饼 闪蒸 Τ·燥使其水分含量在 30%〜50%, 最后在 60%水汽和 56CTC下焙烧 2小时, 制得"一 交一焙"稀土钠 Υ。 在带有加热套的反应釜中, 加入"一交一焙"超稳稀土钠 Υ分子筛 500克 (干基)和去离子水,制成固含量为 280g/L的浆液,加入 130g硫酸按,调节体系 pH=4.0, 升温到 90°C, 交换 0.5小时, 然后过滤、 洗涤, 后加入磷酸氢二铵 55g, 反应 2小时, 然 后过滤、 洗涤, 滤饼在 50%水汽和 65CTC下焙烧 2小时, 制得本发明所述的含磷稀土超稳 Y分子筛活性组分, 记做改性分子筛 D-1。
在带有水浴加热的反应釜中,加入 4.577升水、 1055克高岭土、 983克氧化 ffi以及 63.5 毫升盐酸混合均匀,搅拌 1小时,然后依次加入 892克改性分子筛 D-l、 63克 ZSM-5沸石、 118克 USY以及 188克 REY, 混合均匀后缓慢加入 1500克铝溶胶进行成胶, 经过喷雾成 型, 将所得微球在 40(TC焙烧 0.5小时。 取焙烧微球 2千克, 加入 10千克去离子水, 在 40 'C洗涤 20分钟, 过滤干燥即得本发明制备的裂化催化剂, 记做 D。
实施例 5
在带有加热套的反应釜中, 依次加入 3000gNaY-1分子筛 (干基) 和一定量的去离子 水, 调配成固含量为 350g/L的浆液, 加入 42g柠檬酸和 28g田菁粉, 然后升温至 82°C, 在搅拌下交换反应 1 .3小时, 反应结束后加入 0.56升硝酸稀土, 在 85°C下交换反应 0.8 小时, 之后将分子筛浆液过滤, 进行带式交换, 带式交换条件为: 将硝酸稀土溶液升温至 88 Ό , 交换 pH值为 4.7, 硝酸稀土加入量为 RE203/Y沸石 (质量) 为 0.04, 带式滤机真 空度为 0.03; 之后将所得滤饼闪蒸干燥使其水分含量在 30%〜50%, 最后在 80%水汽和 53CTC下焙烧 1 .5小时, 制得"一交一焙"超稳稀土钠 Y"—交一焙"超稳稀土钠 Y。 在带有加 热套的反应釜中, 加入"一交一焙"超稳稀土钠 Υ分子筛 500克 (干基) 和去离子水, 制成 固含量为 150g/L的浆液, 加入 100g硫酸铵, 调节体系 pH=4.0, 升温到 90°C, 交换 1小 时, 然后过滤、 洗涤, 滤饼在 60%水汽和 62CTC下焙烧 2小时, 之后将滤饼重新打浆, 加 磷酸氢二铵 55g, 混合均匀, 在温度为 90°C反应 1.5小时后, 在 100%水汽和 620Ό下焙 烧 2小时, 制得本发明所述的含磷稀土超稳 Y分子筛活性组分, 记做改性分子筛 E-1。
在带有水浴加热的反应釜中, 加入 6.5升水、 995克高岭土、 676克氧化铝以及 130 毫升盐酸混合均匀, 搅拌 1小时, 然后依次加入 558克改性分子筛 E- 1、 19克 H-ZSM-5、 830克 REUSY, 混合均匀后缓慢加入 1359克铝溶胶进行成胶, 经过喷雾成型, 将所得微 職 500 C d 0.6 ' ΐί : il. '烧 (; ¾球 2 Π IM K 19 '.'ά 2 j' J , (\ 80 'C ;D 10 分钟, 过滤 I- ··燥 U η ^λ "J J制 的 ¾化 ίί 化剂 , ill inl Ε,
对比例 1
制备 REUSY分子筛的方法 'J实施 ί列 3所小 ϋ相似, ί乂是不加入盐酸和草酸, 他 与实施例 3相同, 所得超稳稀土 Υ型分于筛编号为 F-1, 所得催化剂编号为 F。
对比例 2
本对比例使用 CN200510114495.1所述的分子筛制备方法, 考察该分子筛反应性能, 催化剂制备工艺同实施例 5。
取 3000g (干基) 由兰州石化公司催化剂厂水热法生产的超稳一交一焙分子筛样品 ( Na20含量 1.4重量%、 RE2O3含量 8.6重量%、 晶胞 2.468nm, 相对结晶度 62% ) , 加 入到 3升 2N草酸水溶液中搅拌使其混合均勾, 升温至 90〜100°C反应 1小时后, 过滤水 洗, 将所得滤饼至于 6升去离子水中, 并加入 1.46升的硝酸稀土溶液, 升温至 90〜95Ό 下反应 1小时,然后过滤水洗,滤饼于 12CTC下烘干,即得该对比例分子筛样品,记为 Η-1。
在带有水浴加热的反应釜中, 加入 6.5升水、 995克高岭土、 676克氧化铝以及 130 毫升盐酸混合均匀, 搅拌 1小时, 然后依次加入 558克改性分子筛 Η-1、 19克 H-ZSM-5、 830克 REUSY, 混合均匀后缓慢加入 1359克铝溶胶进行成胶, 经过喷雾成型, 将所得微 球在 50CTC焙烧 0.6小时。 取焙烧微球 2千克, 加入 19千克去离子水, 在 80°C洗涤 10 分钟, 过滤干燥即得对比例的裂化催化剂, 记做 H。
对比例 3
制备 REUSY分子筛的方法与实施例 5所示方法相似, 仅是不加入柠檬酸和田菁粉, 其他与实施例 5相同, 所得超稳稀土 Y型分子筛编号为 G-1, 所得催化剂编号为 G。 将本发明实施例及对比例所得超稳稀土丫型分子筛理化性质列于表 1。分析结果表明: 与对比例相比, 新型分子筛具有结构稳定性好、 颗粒粒度小的特点。
表 1 分子筛理化性质分析
项 分子筛 氧化稀十一 磷 ¾化钠 晶胞常 ¾ 对结晶度 相对结品度 ¾塌温度
m% m% m% nm % 保留率% 'C
实 A-1 15.45 0.96 1.1 2.470 50 68.4 1019 施 B-1 6.89 0.58 0.94 2.472 54 71.1 1022 例 C-1 15.54 1.1 0.92 2.479 56 73.2 1018
D-1 7.98 0.54 1.05 2.473 51 72.3 1025 E-1 8.70 0.58 0.86 2.473 53 67.8 1017
(■J F-1 6.78 1.05 1 .1 2.464 52 51.2 998 比 H-1 8.27 0.52 1 .60 2.467 54 54.5 1002 f列 G-1 8.70 0.58 0.82 2.468 52 56.3 1000 实施例 1〜5和对比例制备的催化剂反应性能评价结 ¾列于表 2
ACE重油微反评价结果
Figure imgf000012_0001
从 ACE 重油微反评价结果可知, 与对比催化剂相比, 采用本发明方法制备的催化剂 具有优异的重油转化能力和焦炭选择性, 总液收和轻质油收率明显高于对比催化剂。 表 4 是催化剂 B提升管评价结果, 与对比催化剂 G相比, 本发明催化剂总液收提高 0.97个百 分点, 轻质油收率增加 0.77个百分点, 汽油性质相当。
表 4 催化剂提升管评价结果
催化剂 对比催化剂 G 本发明催化剂
物料 干气 (H2-C2 ) 1.05 1.17
平 液化气 (C3-C4) 17.95 18.16
衡, 汽油 (C5- 204°C ) 50.20 50.44
ω% 柴油 (204°C-350°C ) 16.58 17.12
重油 ( > 350 °C ) 6.54 5.55 7.36 7.30
ίί'; ') 0.30 0.27
转化 76.87 77.33
n: 轻汕收 66.79 67.56
总液收 84.74 85.71
汽 正构烷 ¾ 4.48 4.34
油 异构烷妤 23.75 24.50
组 汽油烯烃 45.05 44.00
成 环烷烃 9.97 10.01
芳烃 16.75 17.15
汽油 ΜΟΝ 83.40 83.42
汽油 RON 93.69 93.82 工业实用性
本发明所述的新型重油催化剂的主活性组分之一是高裂化活性稳定含瞵性稀土超稳 Υ 型分子筛, 该分子筛在稀土改性制备过程中采用分散剂将 NaY分子筛进行预分散, 降低了 分子筛颗粒间的团聚度, 使分子筛表面更多的与稀土离子接触, 降低了稀土离子在交换过 程的阻力, 使稀土离子更多的交换进入分子筛笼内, 并在后续水汽焙烧过程中迁移至方钠 石笼, 提高了分子筛的结构稳定性和活性稳定性。 稀土离子定位于方钠石笼, 超笼和分子 筛表面没有稀土离子, 降低了该位置的酸性强度和密度, 减少了该活性位的生焦机率, 较 好地解决了催化剂的重油转化能力和焦炭选择性的矛盾。

Claims

K 利 要 求
1. -种' II:汕催化裂化催化剂, im u-' ih-y- : 催化剂 .成屮 f i7 2〜5() ;t;:%的「' 稳稀上 Y型分子筛、 0.5〜30重—¾%的 种或儿种 ½它分子筛、 0.5〜70重 %的粘 土、 1.0〜65重量%的耐髙温无机氧化物和 0.01〜12.5%重量的氧化稀土, 其屮含磷 超稳稀土 Y型分子筛中含氧化稀土 1〜20重%, 氧化钠不大于 1 .2重%, 以 P计, 含磷 0.1〜5重%, 结晶度 51〜69%, 晶胞参数 2.449nm〜2.469nm, 该含磷超稳 稀土丫型分子筛制备过程包含了稀土交换、 分散预交换, 其中稀土交换、 分散预交 换的先后次序不限, 稀土交换与分散预交换是连续进行, 之间没有焙烧过程; 分散 预交换是指将分子筛浆液浓度调为固含量为 80〜400g/L, 加入 0.2重%〜7重%的 分散剂进行分散预交换, 交换温度为 0〜100Ό, 交换时间为 0.1〜1.5小时; 分散 预交换过程所述分散剂选自田菁粉、硼酸、尿素、 乙醇、 聚丙烯酰胺、 乙酸、 草酸、 已二酸、 甲酸、 盐酸、 硝酸、 柠檬酸、 水杨酸、 酒石酸、 苯甲酸、 淀粉中的任意一 种或多种; 稀土交换、 分散预交换中没有使用铵盐。
2. 根据权利要求 1所述的重油催化裂化催化剂, 其特征在于: 分散预交换时, 分散剂 加入量为 0.2重量%〜5重量%; 交换温度为 60〜95°C ; 交换时间为 0.1〜1.5小 时。
3. 根据权利要求 1所述的重油催化裂化催化剂, 其特征在于: 其它分子筛选自 Y型沸 石、 L沸石、 ZSM-5沸石、 β沸石、 磷酸铝沸石、 Ω沸石, 或经过改性的上述沸石中 的一种或多种。
4. 根据权利要求 1所述的重油催化裂化催化剂, 其特征在于: 其它分子筛选自 ΗΥ、 USY、 REY、 REHY、 REUSY、 H-ZSM-5中的一种或多种。
5. 根据权利要求 1所述的重油催化裂化催化剂, 其特征在于: 粘土选自高岭土、 埃洛 石、 蒙脱土、 海泡石、 珍珠岩中的一种或多种。
6. 根据权利要求 1所述的重油催化裂化催化剂, 其特征在于: 耐高温无机氧化物选自 A1203、 Si02、 Si02-Al203、 A1P04中的一种或多种。
7. 一种权利要求 1所述的重油催化裂化催化剂的制备方法, 其特征在于: 该方法主要 包含以下步骤:
( 1 ) 制备含磷超稳稀土 Y型分子筛: 以 NaY分子筛为原料, 经过稀土交换、 分 散预交换后, 分子筛浆液再经过滤、 水洗和第一次焙烧, 获得"一交一焙"稀 土钠 Y分子筛, 其中稀土交换、 分散预交换的先后次序不限; 再将"一交一 i r¼
Figure imgf000015_0001
Ϊ 十. γ 'ί' ϋ, ii 1铵盐: 换、 i †'k的 次 小 ι . ' ¾ 换、 . 过程足连续进 ί_Γ或不迮续进行的, 第 次焙烧是 铵盐交换降钠后进 ί丁的, 磷改性既可以在第二次焙烧前进行, tii可在第二次焙烧后进行; ( 2 ) 重油催化裂化催化剂制备: 将含磷超稳稀土丫型上述分子筛 ai分、粘七和耐 高温无机氧化物的前驱物及艽它原料进行混合均质, 进行喷雾成型、 焙烧和 水洗, 获得催化剂成品。
8. 根据权利要求 7所述的制备方法, 其特征在于: 稀土交换时, 其 RE203/Y沸石质 量比为 0.005〜0.25; 交换温度为 0〜100°C ; 交换 pH值为 2.5〜6.0, 交换时间为 0.1〜2小时。
9. 根据权利要求 8所述的制备方法, 其特征在于: 稀土交换时, 其 RE203/Y沸石质 量比为 0.01〜0.20; 交换温度为 60〜95°C ; 交换 pH值为 3.5〜5.5, 交换时间为 0.3〜1.5小时。
10. 根据权利要求 7所述的制备方法,其特征在于磷改性是指将分子筛浆液浓度调为固 含量为 80〜400g/L; 以单质 P计, 加入 0. 1重%〜5重%的含磷化合物进行交换, 交换温度为 0〜100°C, 交换时间为 0.1〜1.5小时。
11. 根据权利要求 9所述的制备方法, 其特征在于: 含磷化合物选自磷酸、 亚磷酸、 磷 酸酐、 磷酸氢二铰、 磷酸二氢铵、 磷酸铵、 亚磷酸钹、 亚磷酸二氢铵、 磷酸铝中的 任意一种或多种。
12. 根据权利要求 7所述的制备方法, 其特征在于: 稀土交换和分散预交换之间, 分子 筛浆液可以不经洗涤、 过滤, 也可以进行洗涤、 过滤。
13. 根据权利要求 7所述的制备方法, 其特征在于: 稀土交换和分散预交换的交换过程 采用罐式交换、 带式交换和 /或滤饼交换。
14. 根据权利要求 7所述的制备方法, 其特征在于: 在进行稀土交换时, 将稀土化合物 溶液分为若干份, 进行罐式交换、 带式交换和 /或滤饼交换, 即多次交换。
15. 根据权利要求 7所述的制备方法, 其特征在于: 在分散预交换过程时, 将分散剂分 为若干份, 进行罐式交换、 带式交换和 /或滤饼交换, 即多次交换。
16. 根据权利要求 7所述的制备方法, 其特征在于: 稀土交换和分散预交换为多次交换 时, 两类交换交叉进行。
17. 根据权利要求 7所述的制备方法, 其特征在于: 第一次焙烧的焙烧条件为 35CTC〜 700 "C\ 0〜1 00%/Κ; ί'ί烧 0.3、3.5 'J、li
18. H ';权利要求 7所述的制 / , ( 1 ) Ψ . iWr ' - r¼
1 \ Y > Ί Ί ιηη , 将" ΓΙ¾ L:纳 \'分 f 浆液^ T先经过磷改性交换, 反应 结束后过滤、 洗涤获得滤饼: 将滤饼与铵盐溶液混合均勾进行滤饼交换, 反应结束 后将滤饼闪蒸干燥后进行焙烧。
19. 根据权利要求 7所述的制备方法, 其特征在于: 骤 (1 ) 中, 获得 ·· ·交- ·焙''稀 上钠 Y分子筛后, 将 -焙"稀上钠 Y分子筛浆液首先经过磷改性交换, 后与 铵盐溶液混合均匀进行交换, 反应结束后过滤、 洗涤获得滤饼; 将滤饼闪蒸干燥后 进行焙烧。
20. 根据权利要求 7所述的制备方法, 其特征在于: 步骤 (1 ) 中, 获得 ·一交一焙' '稀 土钠 Y分子筛后, 将"一交 ·焙''稀土钠 Y分子筛浆液首先经过钕盐交换, 反应结 束后过滤、 洗涤获得滤饼; 将滤饼与磷改性溶液充分混合均匀进行滤饼交换, 反应 结束后将滤饼闪蒸干燥后进行焙烧。
21. 根据权利要求 7所述的制备方法, 其特征在于: 步骤 (1 ) 中, 获得"一交一焙"稀 土钠 γ分子筛后, 将"一交一焙"稀土钠 Y分子筛浆液首先经过铵盐交换, 反应结 束后将滤饼与磷改性溶液充分混合均匀进行交换, 后过滤、 洗涤获得滤饼, 最后将 滤饼闪蒸干燥后进行焙烧。
22. 根据权利要求 7所述的制备方法, 其特征在于: 步骤 (1 ) 中, 获得' '一交一焙' '稀 土钠 γ分子筛后, 将" -交一焙"稀土钠 Y分子筛浆液首先经过铵盐交换, 反应结 束后将滤饼闪蒸干燥后进行焙烧。之后再将滤饼重新打浆与磷改性溶液充分混合均 匀进行交换, 后过滤、 洗涤获得滤饼, 最后将滤饼闪蒸干燥后进行焙烧。
23. 根据权利要求 2所述的催化剂的制备方法, 其特征在于: 步骤 (2 ) 中焙烧条件是 将喷雾微球在 200°C~700°C下焙烧, 时间为 0. 05-4小时。
24. 根据权利要求 2所述的催化剂的制备方法, 其特征在于: 步骤 (2 ) 中耐高温无机 氧化物的前驱物选自硅铝凝胶、 硅溶胶、 铝溶胶、 硅铝复合溶胶、 拟薄水铝石中的 一种或多种。
25. 根据权利要求 2所述的催化剂的制备方法, 其特征在于: 歩骤(2 ) 中水洗条件为: 水 /催化剂重量为 0. 5〜35, 水洗温度为 20X〜 100°C, 时间为 0. 1〜0. 3小时。
PCT/CN2012/001008 2012-06-01 2012-07-27 重油高效转化催化裂化催化剂及其制备方法 WO2013177728A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015514313A JP5921771B2 (ja) 2012-06-01 2012-07-27 重油高効率転化接触分解触媒およびその製造方法
EP12877707.5A EP2857096A4 (en) 2012-06-01 2012-07-27 CATALYTIC CRACKING CATALYST FOR HIGH HEAVY OIL YIELD CONVERSION AND PREPARATION METHOD THEREOF
US14/404,776 US9968918B2 (en) 2012-06-01 2012-07-27 Catalytic cracking catalyst for high-efficiency conversion of heavy oil and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210179961.4A CN103447063B (zh) 2012-06-01 2012-06-01 重油高效转化催化裂化催化剂及其制备方法
CN201210179961.4 2012-06-01

Publications (1)

Publication Number Publication Date
WO2013177728A1 true WO2013177728A1 (zh) 2013-12-05

Family

ID=49672265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001008 WO2013177728A1 (zh) 2012-06-01 2012-07-27 重油高效转化催化裂化催化剂及其制备方法

Country Status (5)

Country Link
US (1) US9968918B2 (zh)
EP (1) EP2857096A4 (zh)
JP (1) JP5921771B2 (zh)
CN (1) CN103447063B (zh)
WO (1) WO2013177728A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106927478A (zh) * 2015-12-30 2017-07-07 中国石油化工股份有限公司 一种y型分子筛的改性方法
CN111686787A (zh) * 2020-06-10 2020-09-22 中国石油天然气集团有限公司 加氢裂化催化剂载体及其制备方法与应用
CN111905705A (zh) * 2020-07-27 2020-11-10 安徽旭晶粉体新材料科技有限公司 一种二氧化钛与金材料复合催化剂及其制备方法
CN112108174A (zh) * 2019-06-21 2020-12-22 中国石油天然气股份有限公司 一种高选择性的催化裂化催化剂的制备方法
CN112108173A (zh) * 2019-06-21 2020-12-22 中国石油天然气股份有限公司 一种降低柴油收率的催化剂制备方法
CN112892582A (zh) * 2019-12-03 2021-06-04 中国石油化工股份有限公司 含有全硅三孔球形介孔复合材料的轻汽油裂解催化剂及其制备方法和应用

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105983430B (zh) * 2015-02-09 2019-01-18 中国石油天然气股份有限公司 硅基催化裂化催化剂的制备方法
CN106607071B (zh) * 2015-10-26 2019-03-22 中国石油化工股份有限公司 一种高裂化活性y型分子筛的制备方法
CN105772109B (zh) * 2016-05-03 2018-11-23 中国石油天然气股份有限公司 加氢脱硫催化剂的载体及制备方法与由其制备的催化剂
CN108404897B (zh) * 2017-02-10 2021-03-09 中国石油天然气股份有限公司 一种重油加氢催化剂载体、其制备方法、应用其的催化剂及催化剂的制备方法
CN109694720B (zh) * 2017-10-20 2021-01-08 中国石油化工股份有限公司 一种高氮原料的催化裂化方法
SG11202013050QA (en) * 2018-08-20 2021-01-28 China Petroleum & Chem Corp Modified y-type molecular sieve, catalytic cracking catalyst comprising the same, their preparation and application thereof
CN110871103B (zh) * 2018-08-29 2022-09-27 中国石油化工股份有限公司 一种含γ-氧化铝结构的复合材料及其制备方法
RU2677870C1 (ru) * 2018-11-19 2019-01-22 Эльвир Маратович Рахматуллин Гранулированный катализатор крекинга и способ его приготовления
CN111744535A (zh) * 2019-03-27 2020-10-09 中国石油化工股份有限公司 一种稀土和磷共同修饰的催化材料及其制备方法
CN112108172B (zh) * 2019-06-21 2023-05-26 中国石油天然气股份有限公司 一种高抗磨损的催化裂化催化剂的制备方法
CN114425432B (zh) * 2020-10-29 2023-07-11 中国石油化工股份有限公司 一种裂解催化剂、制备方法和应用
CN113582193B (zh) * 2020-04-30 2022-10-21 中国石油化工股份有限公司 一种改性β沸石、催化裂化催化剂及其制备方法和应用
CN113952978B (zh) * 2020-07-20 2023-07-14 中国石油化工股份有限公司 一种催化裂化催化剂及其制备方法和应用
CN114425398B (zh) * 2020-09-21 2023-07-14 中国石油化工股份有限公司 一种催化裂化催化剂及其制备方法和应用
CN114749208B (zh) * 2021-01-11 2023-07-14 中国石油化工股份有限公司 一种催化裂解催化剂
CN115121280A (zh) * 2022-06-24 2022-09-30 中油(长汀)催化剂有限公司 一种催化裂化催化剂及其制备方法
CN117776204A (zh) * 2022-09-20 2024-03-29 中国石油天然气股份有限公司 改性分子筛及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1223906A (zh) * 1998-01-19 1999-07-28 兰炼石化院高新石化开发公司 新型一交一焙含磷y沸石裂化催化剂及其制备方法
CN1224044A (zh) * 1998-01-19 1999-07-28 兰炼石化院高新石化开发公司 一交一焙制备裂化催化剂活性组分的新方法
CN1436728A (zh) * 2002-02-07 2003-08-20 中国石油天然气股份有限公司 一种稀土超稳y分子筛的制备方法
CN1506161A (zh) * 2002-12-13 2004-06-23 中国石油天然气股份有限公司 一种超稳稀土y分子筛活性组分及其制备方法
US20100298118A1 (en) * 2009-05-21 2010-11-25 Zhiping Tan Fluid catalytic cracking catalyst with low coke yield and method for making the same

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820232A (ja) * 1981-07-29 1983-02-05 Res Assoc Residual Oil Process<Rarop> 水素化分解用触媒組成物
JPH0717524B2 (ja) * 1986-12-12 1995-03-01 ライオン株式会社 アルキル化芳香族化合物の製法
JP3737155B2 (ja) 1995-02-27 2006-01-18 触媒化成工業株式会社 炭化水素接触分解用触媒組成物
CN1072030C (zh) 1997-11-11 2001-10-03 中国石油化工总公司 含磷八面沸石烃类裂化催化剂及其制备方法
CN1075466C (zh) 1997-12-16 2001-11-28 中国石油化工总公司 一种超稳y沸石的制备方法
US7208446B2 (en) * 1999-08-11 2007-04-24 Albemarle Netherlands B. V. Quasi-crystalline boehmites containing additives
CN1201864C (zh) 2000-04-07 2005-05-18 中国石油天然气股份有限公司兰州炼化分公司 一种降低汽油烯烃含量的fcc催化剂及其制备方法
CN1142019C (zh) 2000-05-31 2004-03-17 中国石油化工集团公司 一种含磷的烃类裂化催化剂及制备
CN1142023C (zh) 2000-07-05 2004-03-17 中国石油化工股份有限公司 含磷y型沸石及其制备方法
CN1111136C (zh) 2000-11-13 2003-06-11 中国石油化工股份有限公司 一种y型分子筛的制备
CN1216687C (zh) 2002-09-28 2005-08-31 中国石油化工股份有限公司 一种分子筛的稀土离子交换方法
CN1307098C (zh) 2004-03-31 2007-03-28 中国石油化工股份有限公司 一种稀土超稳y型沸石的制备方法
TWI277648B (en) * 2004-07-29 2007-04-01 China Petrochemical Technology A cracking catalyst for hydrocarbons and its preparation
CN100344374C (zh) 2004-08-13 2007-10-24 中国石油化工股份有限公司 一种稀土y分子筛及其制备方法
CN1322928C (zh) 2004-08-13 2007-06-27 中国石油化工股份有限公司 一种降低催化裂化汽油烯烃含量的裂化催化剂
CN101190416B (zh) * 2006-12-01 2011-06-15 石大卓越科技股份有限公司 一种催化裂化催化剂及其制备方法
CN101285001B (zh) * 2007-04-12 2011-11-30 中国石油化工股份有限公司 一种催化裂化催化剂
CN101284243B (zh) * 2007-04-12 2011-04-20 中国石油化工股份有限公司 一种催化裂化催化剂
BRPI0803617A2 (pt) 2008-09-19 2010-06-15 Petroleo Brasileiro Sa Aditivo com sistema múltiplo de zeólitas e método de preparo
CN101391780A (zh) 2008-10-19 2009-03-25 姚华 一种用海泡石合成Mg-NaY沸石的方法
CN101823726B (zh) * 2009-03-04 2012-03-07 中国石油天然气股份有限公司 一种改性y分子筛
CN102133542A (zh) * 2010-01-27 2011-07-27 华东理工大学 一种复合型催化裂化催化剂及其制备方法
CN102806096B (zh) * 2011-05-30 2014-12-31 中国石油化工股份有限公司 一种含稀土的y型分子筛裂化催化剂及其制备方法
CN103449471B (zh) 2012-06-01 2017-07-14 中国石油天然气股份有限公司 一种含磷的超稳稀土y型分子筛及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1223906A (zh) * 1998-01-19 1999-07-28 兰炼石化院高新石化开发公司 新型一交一焙含磷y沸石裂化催化剂及其制备方法
CN1224044A (zh) * 1998-01-19 1999-07-28 兰炼石化院高新石化开发公司 一交一焙制备裂化催化剂活性组分的新方法
CN1436728A (zh) * 2002-02-07 2003-08-20 中国石油天然气股份有限公司 一种稀土超稳y分子筛的制备方法
CN1506161A (zh) * 2002-12-13 2004-06-23 中国石油天然气股份有限公司 一种超稳稀土y分子筛活性组分及其制备方法
US20100298118A1 (en) * 2009-05-21 2010-11-25 Zhiping Tan Fluid catalytic cracking catalyst with low coke yield and method for making the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2857096A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106927478A (zh) * 2015-12-30 2017-07-07 中国石油化工股份有限公司 一种y型分子筛的改性方法
CN106927478B (zh) * 2015-12-30 2019-03-08 中国石油化工股份有限公司 一种y型分子筛的改性方法
CN112108174A (zh) * 2019-06-21 2020-12-22 中国石油天然气股份有限公司 一种高选择性的催化裂化催化剂的制备方法
CN112108173A (zh) * 2019-06-21 2020-12-22 中国石油天然气股份有限公司 一种降低柴油收率的催化剂制备方法
CN112108173B (zh) * 2019-06-21 2023-06-30 中国石油天然气股份有限公司 一种降低柴油收率的催化剂制备方法
CN112892582A (zh) * 2019-12-03 2021-06-04 中国石油化工股份有限公司 含有全硅三孔球形介孔复合材料的轻汽油裂解催化剂及其制备方法和应用
CN112892582B (zh) * 2019-12-03 2023-07-21 中国石油化工股份有限公司 含有全硅三孔球形介孔复合材料的轻汽油裂解催化剂及其制备方法和应用
CN111686787A (zh) * 2020-06-10 2020-09-22 中国石油天然气集团有限公司 加氢裂化催化剂载体及其制备方法与应用
CN111686787B (zh) * 2020-06-10 2023-10-03 中国石油天然气集团有限公司 加氢裂化催化剂载体及其制备方法与应用
CN111905705A (zh) * 2020-07-27 2020-11-10 安徽旭晶粉体新材料科技有限公司 一种二氧化钛与金材料复合催化剂及其制备方法

Also Published As

Publication number Publication date
US20150165428A1 (en) 2015-06-18
EP2857096A1 (en) 2015-04-08
JP5921771B2 (ja) 2016-05-24
JP2015523907A (ja) 2015-08-20
CN103447063B (zh) 2016-02-10
US9968918B2 (en) 2018-05-15
CN103447063A (zh) 2013-12-18
EP2857096A4 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
WO2013177728A1 (zh) 重油高效转化催化裂化催化剂及其制备方法
JP5996667B2 (ja) 高軽質収率の重質油接触分解触媒およびその製造方法
JP5941994B2 (ja) 重質油接触分解触媒およびその製造方法
JP6054520B2 (ja) リン含有超安定化希土類y型分子篩及び製造方法
US9840422B2 (en) Magnesium modified ultra-stable rare earth Y-type molecular sieve and preparation method therefor
JP6232058B2 (ja) 修飾されたy型ゼオライトを含有する接触分解の触媒およびその調製方法
TW201833028A (zh) 改性y型分子篩、其製備方法及包含它的催化劑
JP7083360B2 (ja) 接触分解触媒およびその生成方法
KR20210066927A (ko) 메조포어가 풍부한 인-함유 희토류-함유 mfi 구조 분자체, 이의 제조 방법, 및 이를 함유하는 촉매 및 이의 용도
WO2018026313A1 (ru) Способ приготовления катализатора крекинга с щелочноземельными элементами
CN109304223B (zh) 一种低结焦型催化裂化催化剂及其制备方法
WO2020035014A1 (zh) 改性y型分子筛、包含它的催化裂化催化剂、及其制备和应用
CN110833850B (zh) 催化裂化催化剂及其制备方法和应用
CN110833851B (zh) 催化裂化催化剂及其制备方法和应用
TWI812773B (zh) 改性y型分子篩、包含它的催化裂解催化劑、及其製備和用途
CN110833852B (zh) 催化裂化催化剂及其制备方法和应用
CN116764671A (zh) 一种抗金属污染的催化裂化催化剂及其制备方法
KR20210066930A (ko) 메조포어가 풍부한 mfi 구조 분자체, 이의 제조 방법, 및 이를 함유하는 촉매 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877707

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015514313

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012877707

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14404776

Country of ref document: US