WO2013161834A1 - 積層体の剥離検査方法及び剥離検査装置 - Google Patents

積層体の剥離検査方法及び剥離検査装置 Download PDF

Info

Publication number
WO2013161834A1
WO2013161834A1 PCT/JP2013/061955 JP2013061955W WO2013161834A1 WO 2013161834 A1 WO2013161834 A1 WO 2013161834A1 JP 2013061955 W JP2013061955 W JP 2013061955W WO 2013161834 A1 WO2013161834 A1 WO 2013161834A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflected wave
peeling
laminate
received
thin layer
Prior art date
Application number
PCT/JP2013/061955
Other languages
English (en)
French (fr)
Inventor
永井 辰之
純一 北阪
賢 遠藤
Original Assignee
非破壊検査株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 非破壊検査株式会社 filed Critical 非破壊検査株式会社
Priority to KR1020147028492A priority Critical patent/KR101672916B1/ko
Priority to JP2014512623A priority patent/JP5735706B2/ja
Publication of WO2013161834A1 publication Critical patent/WO2013161834A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/48Processing the detected response signal, e.g. electronic circuits specially adapted therefor by amplitude comparison
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0231Composite or layered materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2695Bottles, containers

Definitions

  • the present invention relates to a laminate peel inspection method and a peel inspection apparatus.
  • the present invention relates to an inspection method and a peeling inspection apparatus.
  • Patent Document 1 as an example of a laminated body, a method for inspecting the peeling of the lining without stopping the operation has been proposed.
  • an ultrasonic pulse is incident from the outside of the pipe, the attenuation rate of each reflection echo between the inner circumferential surface of the lining inside the pipe and the pipe body is calculated, and the presence or absence of peeling is investigated.
  • the conventional method does not refer to a lining having a multilayer structure composed of a lining material and an adhesive layer, but when the adhesive layer and the lining material are both peeled from the plate material, the above method is used to estimate the peeling. May be possible.
  • the lining material may peel off, and the adhesive layer may remain on the plate body.
  • the difference between the portion where only the adhesive layer remains and the healthy portion is not clear, and it is difficult to detect the separation of only the lining material.
  • an object of the present invention is to provide a laminate peel inspection method and a peel inspection apparatus that can easily detect delamination of a laminate while being simple.
  • the laminate peel inspection method according to the present invention is characterized in that an ultrasonic wave is incident from one side of a laminate in which a plurality of members are laminated, a multiple reflected wave is received, and a received multiple reflection is received.
  • the plurality of members are laminated via a thin layer that is thinner than the wavelength of the ultrasonic wave, and the plurality of members and the thin layer are preliminarily stacked.
  • the multiple reflection waves are received at the sound part close to each other, the propagation time of the reflection wave that has been reflected multiple times in the multiple reflection wave is obtained, the multiple reflection wave is received at the inspection part of the laminate, By determining the propagation time of the reflected wave that has been reflected a plurality of times in the reflected wave, and comparing these propagation times, the presence of peeling at the first interface of the thin layer located on the side away from the one side is obtained. It is to inspect the.
  • the propagation time of the reflected wave which repeated the reflection in multiple times in the healthy part is compared with the propagation time of the reflected wave which repeated the same number of reflections in a test
  • a peak value of the reflected wave obtained by repeating the plurality of reflections in the multiple reflected wave received in the healthy part is obtained in advance, and the reflected wave obtained by repeating the multiple reflections in the multiple reflected wave received in the inspection unit. It is preferable to check for the presence or absence of peeling at the second interface of the thin layer located on the side close to the one side by comparing the peak values.
  • the peak value of the reflected wave that has been reflected a plurality of times at the healthy part is compared with the peak value of the reflected wave that has been reflected the same number of times at the inspection part.
  • FIG. 2 (c) when there is peeling at the second interface of the thin layer located on the side close to one side of the laminate, for example, as shown in FIG.
  • the peak values of reflected waves are greatly different. That is, by paying attention to the peak value of the multiple reflected wave, it is possible to detect peeling at the second interface of the thin layer located on the side close to one side of the multilayer body. Thereby, each interface peeling can be detected.
  • the thin layer may be made of a material that approximates the acoustic impedance of a member located on a side adjacent to the thin layer and separated from the one side rather than the member located on the one side.
  • the side separated from one side of the laminate for example, as shown in FIG.
  • the ultrasonic wave that has reached the first interface of the thin layer located at is substantially transmitted to the member separated from one side of the laminate, and the reflected wave from the interface is hardly detected.
  • the ultrasonic wave that reaches the interface is substantially reflected by the peeling portion and does not pass through a member separated from one side of the laminate. Therefore, the reception signal at the healthy part does not include the reflected wave from the boundary surface, but the reception signal at the separation part includes the reflected wave from the boundary surface. Therefore, when the reflected waves that have been reflected a plurality of times are compared based on the presence or absence of this reflected wave, the above-described shift in the propagation time occurs, and the presence or absence of peeling can be detected more clearly.
  • the thin layer is made of a material that is smaller than the acoustic impedance of a member located adjacent to the thin layer and spaced apart from the one side, and the plurality of the multiple reflected waves received in the healthy part in advance
  • the phase of the reflected wave that has been repeatedly reflected is obtained, the phase of the reflected wave that has been repeatedly reflected a plurality of times in the multiple reflected wave received by the inspection unit is obtained, and the phase is separated from the one side by comparing these phases.
  • the thin layer is made of a material that is smaller than the acoustic impedance of a member located on the side adjacent to the thin layer and separated from one side of the laminate.
  • a part of the ultrasonic wave reaching the first interface between the thin layer and the member positioned on the side separated from one side of the laminate is caused by the difference in acoustic impedance. Reflect on.
  • FIG. 5B when a peeling portion exists, the ultrasonic wave that reaches the interface is substantially reflected by the peeling portion and does not pass through a member located on the side separated from one side of the laminate. .
  • the acoustic impedance of the thin layer is smaller than the acoustic impedance of a member located on the side adjacent to the thin layer and separated from one side of the laminate, and the acoustic impedance of the air constituting the peeling portion is even smaller. Therefore, phase inversion occurs due to the presence of the peeling portion.
  • the phase of the reflected wave that has been reflected a plurality of times at the sound part and the phase of the reflected wave that has been repeated the same number of times at the inspection part are compared.
  • the phase at the peeling portion is reversed with respect to the phase at the healthy portion. That is, it is possible to detect the separation at the first interface by paying attention to the phase inversion of the multiple reflected waves.
  • the thin layer may be formed of a brazing agent or an adhesive. Further, the thin layer may be an altered portion in which at least a part of the surface layer portion of one adjacent member is altered.
  • the plurality of members include at least a plate material positioned on the one side and a lining material provided on the other side of the plate material, and the thin layer is formed on the plate material.
  • It may be an adhesive layer for adhering.
  • the plate material is a steel material
  • the lining material is a fluororesin lining material
  • the adhesive layer is made of a material that approximates the acoustic impedance of the fluororesin lining material rather than the steel material.
  • the said adhesive layer may be comprised from the adhesive agent and the glass cloth which adhere the said fluororesin lining material to the said steel material.
  • the laminate is, for example, a liquid container tank.
  • another feature of the laminate peel inspection method is that an ultrasonic wave is incident from one side of a laminate in which a plurality of members are laminated, and multiple reflected waves are received.
  • the plurality of members include a first member located on the one side and a first member provided on the other side of the first member.
  • the second member is formed to be thinner than the wavelength of the ultrasonic wave, and multiple reflections are performed in advance in the healthy portion where the first member and the second member are in close contact with each other.
  • Receiving the wave, obtaining the propagation time of the reflected wave that has been reflected multiple times in the multiple reflected wave, receiving the multiple reflected wave in the inspection section of the laminate, and performing the multiple reflection in the multiple reflected wave Of repeated reflected waves Seeking among ⁇ is to inspect the presence or absence of peeling at the interface between the second member and the first member by comparing the propagation times.
  • the propagation time of the reflected wave which repeated the reflection in multiple times in the healthy part is compared with the propagation time of the reflected wave which repeated the same number of reflections in a test
  • a peak value of the reflected wave obtained by repeating the plurality of reflections in the multiple reflected wave received in the healthy part is obtained in advance, and the reflected wave obtained by repeating the multiple reflections in the multiple reflected wave received in the inspection unit. It is preferable to check the presence or absence of peeling at the interface between the first member and the second member by comparing the peak values.
  • the peak value of the reflected wave that has been reflected a plurality of times at the healthy part is compared with the peak value of the reflected wave that has been reflected the same number of times at the inspection part. For example, as shown in FIG. 13B, when there is separation at the interface between the first member and the second member, the peak value of the reflected wave that has been reflected a plurality of times as shown in FIG. It is very different. That is, it is possible to detect peeling at the interface by paying attention to the peak value of the multiple reflected waves.
  • the first member is made of a material that is smaller than the acoustic impedance of the second member, and the phase of the reflected wave obtained by repeating the plurality of reflections in the multiple reflected wave received in the healthy part in advance is set. Obtaining and obtaining the phase of the reflected wave that has been repeatedly reflected a plurality of times in the multiple reflected wave received at the inspection unit, and comparing these phases, peeling at the interface between the first member and the second member You may make it test
  • the first member is made of a material that is smaller than the acoustic impedance of the second member.
  • a part of the ultrasonic wave that reaches the interface between the first member and the second member is reflected at the interface due to the difference in acoustic impedance.
  • FIG. 5B when a peeling portion exists, the ultrasonic wave that reaches the interface is substantially reflected by the peeling portion and does not pass through the first member.
  • the acoustic impedance of the first member is smaller than the acoustic impedance of the second member, and the acoustic impedance of the air constituting the peeling portion is even smaller. Therefore, phase inversion occurs due to the presence of the peeling portion.
  • the phase of the reflected wave that has been reflected a plurality of times at the sound part and the phase of the reflected wave that has been repeated the same number of times at the inspection part are compared.
  • the phase at the peeling portion is reversed with respect to the phase at the healthy portion. That is, by focusing on the phase inversion of the multiple reflected waves, it is possible to detect the separation at the interface.
  • the laminate peel inspection apparatus is characterized by a probe that receives ultrasonic waves from one side of a laminate in which a plurality of members are laminated and receives multiple reflected waves;
  • the plurality of members are thin layers thinner than the wavelength of the ultrasonic wave
  • the signal processing device previously received multiple reflected waves at a healthy part where the plurality of members and the thin layer are in close contact with each other, and repeated multiple reflections on the multiple reflected waves.
  • another feature of the laminate peeling inspection apparatus is that a probe for receiving ultrasonic waves and receiving multiple reflected waves from one side of a laminate in which a plurality of members are laminated.
  • the plurality of members are located on the one side
  • the signal processing device includes at least a first member and a second member provided on the other side of the first member, and the second member is formed thinner than the wavelength of the ultrasonic wave.
  • the first member and the second member receive multiple reflected waves in a sound part in close contact with each other, and determine the propagation time of the reflected wave that has been reflected multiple times in the multiple reflected wave,
  • An interface between the first member and the second member is obtained by receiving a multiple reflected wave, obtaining a propagation time of the reflected wave obtained by repeating the multiple reflections in the multiple reflected wave, and comparing the propagation times.
  • the purpose is to inspect the presence or absence of peeling.
  • the signal processing device may further include a warning unit that warns when a difference in the obtained propagation times is a predetermined value or more.
  • the signal processing device may further include a warning unit that warns when the phase at the inspection unit is reversed with respect to the phase at the healthy unit.
  • the signal processing device may generate a scanned image by multiple reflected waves received by scanning the probe.
  • Examples of the scanned image include a B-scan image and a C-scan image.
  • the probe may be a single-element probe or a two-element probe.
  • the laminate peel inspection method and peel inspection apparatus According to the characteristics of the laminate peel inspection method and peel inspection apparatus according to the present invention, it is possible to detect the delamination of the laminate clearly while being simple.
  • FIG. 9 is a view corresponding to FIG. 3 in each test body of the laminate shown in FIG. 8.
  • FIG. 9 is a view corresponding to FIG. 4 in each test body of the laminate shown in FIG. 8.
  • FIG. 9 is a view corresponding to FIG. 5 in each test body of the laminate shown in FIG. 8.
  • FIG. 9 is a view corresponding to FIG. 7 in each test body of the laminate shown in FIG. 8.
  • FIG. 3 is a view corresponding to FIG. 2 according to a second embodiment of the present invention.
  • FIG. 4 is a view corresponding to FIG. 3 according to a second embodiment of the present invention.
  • FIG. 5 is a view corresponding to FIG. 4 according to a second embodiment of the present invention.
  • FIG. 5A is a diagram corresponding to FIG. 5A according to a second embodiment of the present invention.
  • FIG. 7 is a view corresponding to FIG. 6 according to a second embodiment of the present invention.
  • FIG. 9 is a view corresponding to FIG. 2 according
  • a first member 20 and a second member 30 as a plurality of members are roughly stacked via a thin layer 40.
  • a probe 2 that receives ultrasonic waves from one side 11 (surface 21) of the laminate 10 and receives multiple reflected waves, and a signal processing device 3 that processes and evaluates the received multiple reflected waves are provided.
  • the signal processing device 3 is constituted by a personal computer, for example.
  • a position detector 2 a such as an encoder for detecting a scanning position is attached to the probe 2 and is connected to the signal processing device 3.
  • the signal processing device 3 controls the pulsar 4a to generate an ultrasonic pulse from the probe 2.
  • the transmitted ultrasonic pulse passes through (or is transmitted through) the first and second members 20 and 30 and the thin layer 40, is reflected by the interfaces F 1 and F 2, and is received by the probe 2.
  • the received multiple reflected waves are amplified by the receiver 4b and the preamplifier 5, and converted into a digital signal by the A / D converter 7 with the noise removed by the filter 6.
  • signal processing is performed by the signal processing device 3 and displayed on the monitor 8. For example, as shown in FIGS. 3, 4, and 6, the monitor 8 displays a graph in which the horizontal axis is a time axis representing the propagation distance and the vertical axis is the intensity of the reflected wave.
  • the signal processing device 3 processes the received signal together with the scanning position data of the probe 2 detected by the position detector 2 a, generates a scanning image such as a B-scan image or a C-scan image, and displays it on the monitor 8.
  • the signal processing device 3 further includes warning means 3a that warns of the presence of peeling.
  • the warning unit 3a is configured such that when the propagation time in the inspection unit is a predetermined time or more with respect to the propagation time (reference propagation time) in the healthy portion, or the peak value in the inspection portion is the peak value in the healthy portion (reference peak). Warning is given when the value is equal to or greater than a predetermined value. This warning is performed by, for example, a warning sound or a display on the monitor 8.
  • the laminate 10 to be inspected in the present embodiment is, for example, a wall portion of a liquid container tank that stores liquid.
  • This tank is, for example, a container tank according to the ISO standard.
  • the laminate 10 includes a plate material as the first member 20 and a fluororesin lining material as the second member 30 for preventing the plate material 20 from being eroded from the contents. And this fluororesin lining material 30 is adhere
  • the plate 20 is made of, for example, a stainless steel plate (SUS plate) having a thickness of 5 mm.
  • SUS plate stainless steel plate
  • fluororesin lining material 30 for example, a fluororesin lining (PTFE) having a thickness of 3.5 mm is used.
  • the adhesive layer 40 in the present embodiment is constituted by an adhesive that adheres a fluororesin lining material 30 (hereinafter simply referred to as “lining material 30”) such as an epoxy resin adhesive to the plate material 20, for example. .
  • the thickness is, for example, 0.1 mm or less, and is sufficiently thin with respect to the plate material 20 and the lining material 30.
  • the sound velocity of the adhesive layer 40 is 1800 m / s and the frequency of the ultrasonic wave is 5 MHz, the wavelength is 0.36 mm, which is larger than the thickness of the adhesive layer 40.
  • the reflected wave from the upper surface 41 of the adhesive layer 40 and the reflected wave from the lower surface 42 cannot be separated, and the signals of the surfaces 41 and 42 cannot be identified by the conventional vertical method.
  • the present invention is advantageous for detection of peeling on the upper and lower surfaces 41 and 42 of the adhesive layer 40 having a thickness shorter (thin) than the wavelength of the ultrasonic wave.
  • the plate material 20 is a member that is close to the one side 11 of the laminate 10
  • the lining material 30 is a member that is separated from the one side 11 of the laminate 10.
  • the lower surface 42 of the adhesive layer 40 becomes the first interface F1 of the thin layer located on the side separated from one side of the stacked body 10.
  • FIG. 2A shows the behavior of reflection at a healthy portion where the plate material 20, the lining material 30, and the adhesive layer 40 are in close contact with each other and no separation exists.
  • a part of the ultrasonic wave incident from the upper surface (front surface) 21 (the container outer surface 11) into the plate material 20 from the probe 2 is an interface between the lower surface (back surface 22) of the plate material 20 and the upper surface 41 of the adhesive layer 40. Reflected at the second interface F2 as shown by reference numeral P2.
  • the ultrasonic wave transmitted through the second interface F2 propagates through the adhesive layer 40 and reaches the first interface F1 that is an interface between the lower surface 42 of the adhesive layer 40 and the upper surface 31 of the lining material 30.
  • the reflection at the first interface F1 hardly occurs. Therefore, the reflected wave indicated by reference sign P1 is hardly received. Therefore, the reception waveform due to the multiple reflection at the healthy part is mainly formed by the reflected wave P2 from the second interface F2.
  • FIG. 2B shows the reflection behavior when peeling occurs at the first interface F1. Since the peeling portion D1 is irrelevant to the reflection of the second interface F2, the peeling portion D1 is reflected at the second interface F2 as indicated by reference numeral P2, similarly to the healthy portion. On the other hand, at the peeling portion D1, an interface between the adhesive layer 40 and the air A is formed. Therefore, unlike the sound part, most of the ultrasonic wave transmitted through the second interface F2 is reflected at the interface between the adhesive layer 40 and the air A as indicated by reference numeral P1 '. Therefore, the reception waveform due to multiple reflection when the peeling portion D1 is present is a waveform obtained by adding the reflected wave P1 'from the peeling portion D1 and the reflected wave P2 from the second interface F2.
  • FIG. 2 (c) shows the behavior of reflection when peeling occurs at the second interface F2.
  • plate material 20 and the air A is formed. Therefore, most of the ultrasonic waves reaching the second interface F2 are reflected at the interface between the plate member 20 and the air A as indicated by reference numeral P2 ', and no reflected wave is generated at the first interface F1. Therefore, the reception waveform due to multiple reflection in the presence of the peeling portion D2 is formed substantially by the reflected wave P2 'from the peeling portion D2.
  • FIG. 3 shows an example of an RF waveform generated by applying a band-pass filter (center frequency 5 MHz) to a signal received by the sound specimen TP0, the first and second peel specimens TP1, TP2.
  • FIG. 4 shows a detection waveform corresponding to FIG.
  • the sound test body TP0 imitated a sound portion in which the plate material 20, the lining material 30, and the adhesive layer 40 were in close contact with each other.
  • the first peel test body TP1 was formed by adhering the plate material 20 and the adhesive layer 40 to simulate the peel portion D1 of the first interface F1.
  • the second peel test body TP2 is composed only of the plate material 20 and simulates the peel portion D2 of the second interface F2.
  • the vertical axis represents echo height (%)
  • the horizontal axis represents propagation time ( ⁇ sec).
  • the inventors measured the tendency of attenuation in each of the test specimens. As shown in FIGS. 5A and 5C, it was found that the tendency of attenuation (attenuation coefficient) was larger in the order of the second peel test specimen TP2, the first peel test specimen TP1, and the healthy test specimen TP0. Further, as shown in FIG. 5B, when the attenuation tendency of the healthy specimen TP0 is used as a reference, the sensitivity difference is larger in the second peeling specimen TP2 than in the first peeling specimen TP1, and the damping tendency is larger. I understood that. In FIG. 5A, the vertical axis represents the echo height (dB), and the horizontal axis represents the propagation time ( ⁇ seconds). In FIG. 5B, the vertical axis represents the sensitivity difference (dB), and the horizontal axis represents the number of reflections. The vertical axis
  • shaft of FIG.5 (c) shows an attenuation coefficient (dB / mm).
  • the mechanism of the above phenomenon is assumed as follows.
  • the reflected wave P2 of the sound specimen TP0 is attenuated by reflection at the second interface F2 and transmission to the adhesive layer 40.
  • the reflected wave P2 ′ of the second peel test specimen TP2 is less attenuated by reflection than the sound test specimen TP0 because it is reflected by the air A of the peel portion D2.
  • the second peel test body TP2 does not transmit to the adhesive layer 40, it is not affected by the attenuation by the adhesive layer 40. Therefore, the attenuation of the second peel test specimen TP2 (peeling part D2) is smaller than that of the healthy test specimen TP0. Therefore, the peeling portion D2 can be detected by comparing the peak values (echo heights) of the reflected waves reflected a plurality of times.
  • both the reflected wave P1 'from the peeling portion D1 and the reflected wave P2 from the second interface F2 are added together. Since the reflected wave P1 ′ of the first peel test specimen TP1 is reflected by the air A of the peel part D1, there is little influence of attenuation due to reflection. As shown in FIG. 5, the attenuation of the first peel test specimen TP1 is a healthy test specimen. Less than TP0. Therefore, when the reflection is repeated a plurality of times, the reflected wave P2 is further attenuated and the reflected wave P1 'becomes relatively large.
  • the reflected wave P1 ' affects the waveform formation, resulting in a waveform that is shifted in time from the waveform of the healthy specimen TP0.
  • This time lag is the thickness of the adhesive layer 40.
  • the waveform of the healthy specimen TP0 is formed by the reflected wave P2 from the second interface F2, and does not include the reflected wave P1 from the first interface F1 corresponding to the reflected wave P1 '. Therefore, the peeling part D1 can be detected by comparing the propagation times of the reflected waves reflected a plurality of times.
  • the peak time T1 of the reflected wave that has been reflected a predetermined number of times in the signal waveform S1 is the peak time of the reflected wave that has been repeated the same number of times in the signal waveform S0 of the healthy portion. Appearing later than T0, a time difference ⁇ T occurs. This is because the attenuation of the healthy part is larger than that of the peeling part D1, and when the reflection is repeated a plurality of times, the reflected wave from the peeling part D1 becomes relatively large, and the waveform is shifted in time with respect to the waveform of the healthy part. It is to become.
  • the peak time T2 in the signal waveform S2 is substantially the same as the peak time T0 of the healthy portion. This is because any reflected wave is reflected at the second interface F2.
  • the echo height H1 as the peak value of the reflected wave obtained by repeating a predetermined number of reflections in the signal waveform S1 is the same number of reflections in the signal waveform S0 of the healthy portion. Although it is slightly larger than the echo height H0 of the repeated reflected wave, there is no great difference.
  • the echo height H2 in the signal waveform S2 is clearly protruding and large compared to the echo height H0 of the signal waveform S0 of the healthy portion. This is because in the case of the peeled portion D2 of the second interface F2, the attenuation is less because it is hardly reflected and transmitted by the air A having a higher reflectance than the healthy portion.
  • the probe 2 is scanned at an appropriate interval along the surface 21 of the plate member 20, and an ultrasonic wave is incident to receive a multiple reflected wave.
  • a peak time T and an echo height H as a propagation time of a reflected wave in which the same number of reflections are repeated in the wave as the previous predetermined number of times are obtained.
  • the presence or absence of delamination at the first interface F1 between the lining material 30 and the adhesive layer 40 and delamination at the second interface F2 between the plate material 20 and the adhesive layer 40 are respectively determined. evaluate.
  • a healthy part is a part selected as a location corresponded to a healthy part in the laminated body 10, for example.
  • the sound test body TP0 as described above can be used, or other devices and other members corresponding to the sound test body TP0 can be used.
  • the “sound part” is “part”, it corresponds to “any part of the laminated body 10 to be inspected” and “a test body (piece) separate from the laminated body 10 and this. Both “other devices and members” are included.
  • a predetermined threshold time
  • a predetermined threshold value amplitude
  • the warning means 3a may warn when the peak value exceeds a predetermined value.
  • the multiple reflected waves are processed together with the scanning position data of the probe 2 of the position detector 2a, and for example, a scanning image such as a B-scan image or a C-scan image is generated together with a graph as shown in FIG. May be. The presence or absence of peeling may be displayed on these images.
  • the above-mentioned predetermined number of times is the number of times that the peak time T and the echo height H can be compared with respect to the waveform in the healthy part in consideration of the attenuation coefficient.
  • the attenuation tendency in the healthy part is different from the attenuation tendency in the case where the peeling part D exists.
  • the echo height of the reflected wave in the sound part such as a test piece is displayed so as to be displayed with an intensity of about 20% of 100% amplitude display.
  • inspection part E becomes distinguishable with respect to a healthy part.
  • FIGS. 3A and 4A when the number of reflections is small, a clear difference does not appear in the received signal, and it is difficult to identify the signal (identification of sound or peeling).
  • the difference in propagation time (distance) of multiple reflected waves increases, the time lag increases, and the signal from the peeled portion of the second interface F2 becomes clear.
  • the difference in attenuation is increased and the difference in echo height is also increased, so that the signal from the peeled portion of the first interface F1 becomes clear.
  • it is set to about 20 times.
  • the sensitivity may be adjusted as appropriate.
  • the inventors conducted an experiment to verify the usefulness of the peel inspection method and the peel inspection apparatus according to the present invention. Using each of the test specimens described above, multiple reflected waves were received a plurality of times by the single transducer probe 2 having a center frequency of 5 MHz. FIG. 7 shows a graph comparing the results.
  • FIG. 7 (a) is a graph showing the peak time difference of each test specimen based on the earliest peak time in the healthy part.
  • the vertical axis represents the peak time difference ( ⁇ seconds).
  • ⁇ seconds the peak time difference
  • FIG. 7 (b) is a graph comparing the echo height (%) of each specimen.
  • the vertical axis represents the echo height (%).
  • the second peel test specimen TP2 a clear difference appeared in the peak value.
  • the presence or absence of peeling at the second interface F2 can be detected by comparing the peak value of the healthy part and the peak value of the inspection part.
  • the inventors also conducted the above test on a test body in which a fluororesin lining (PFA) was used as the lining material 30 ′ and the adhesive layer 40 ′ was composed of an adhesive 33 and a glass cloth 34.
  • the experiment was conducted in the same manner as in Example 1.
  • FIGS. 12 (a) and 12 (b) the same results as in Example 1 were obtained, and it was found that detection was possible.
  • FIGS. 9 to 11 show examples of the RF waveform and the detection waveform and the attenuation coefficient in this specimen. The same results as described above were obtained with this lining material 30 '.
  • the laminated body 10 in which the fluororesin lining material 30 (second member) is bonded to the plate material 20 (first member) via the adhesive layer 40 (thin layer) has been described as an example.
  • the laminated body 10 as an inspection target is not limited to the one in which the plurality of members 20 and 30 are laminated via the thin layer 40 as the adhesive layer.
  • delamination can also be detected in a laminated body 10 ′ in which the first member 20 ′ is directly provided with the second member 30 ′.
  • the first and second members 20 ′ and 30 ′ are not limited to the materials of the first embodiment.
  • the laminated body 10 ′ in the second embodiment includes a first member 20 ′ that constitutes one side 11 ′ of the laminated body 10 ′ serving as an ultrasonic wave incident position, and the first member. It has a two-layer structure consisting of a second member 30 'provided directly on the other side 22' of 20 '.
  • FIG. 13 (a) shows the behavior of reflection at a healthy part where the first member 20 'and the second member 30' are in close contact with each other and no separation exists.
  • the light is reflected as indicated by reference numeral P3 at the interface F3 which is the interface with the “upper surface 31”.
  • the ultrasonic wave transmitted through the interface F3 propagates through the second member 30 ', reaches the lower surface 32' of the second member 30 ', and is reflected as indicated by reference numeral P4. Therefore, the reception waveform due to the multiple reflection at the healthy part is a waveform obtained by adding the reflected wave P3 from the interface F3 and the reflected wave P4 from the lower surface 32 'of the second member 30'.
  • FIG. 13B shows the behavior of reflection when peeling occurs at the interface F3.
  • the peeling portion D3 an interface between the first member 20 'and the air A is formed. Therefore, most of the ultrasonic waves that reach the interface F3 are reflected at the interface between the first member 20 ′ and the air A as indicated by reference numeral P3 ′, and are reflected on the lower surface 32 ′ of the second member 30 ′. Does not occur. Therefore, the reception waveform due to multiple reflection in the presence of the peeling portion D3 is substantially formed by the reflected wave P3 'from the peeling portion D3.
  • FIG. 14 shows an example of an RF waveform generated by applying a band-pass filter (center frequency 5 MHz) to signals received by the healthy test specimen TP0 and the third peel test specimen TP3.
  • FIG. 15 shows a detection waveform corresponding to FIG.
  • the healthy test body TP0 imitated a healthy part in which the first member 20 ′ and the second member 30 ′ were in close contact with each other.
  • the third peel test body TP3 is composed of only the first member 20 ′ and simulates the peel portion D3 of the interface F3.
  • the tendency of attenuation is measured in each of the test specimens, as shown in FIG. 16, the tendency of attenuation (attenuation coefficient) is the third peel test for the healthy specimen TP0. It was found to be larger than the body TP3.
  • the reflected wave P3 of the sound specimen TP0 is attenuated by reflection at the interface F3 and transmission to the second member 30 '.
  • the reflected wave P3 'of the third peel test specimen TP3 is less attenuated by reflection than the sound test specimen TP0 due to reflection by the air A of the peel portion D3.
  • the third peel test body TP3 does not transmit the second member 30 ', it is not affected by the attenuation by the second member 30'. Therefore, the attenuation of the third peel test specimen TP3 (peeling part D3) is smaller than that of the healthy test specimen TP0. Therefore, it is possible to detect the peeling portion D3 by comparing the peak values of the reflected waves reflected a plurality of times.
  • the waveform of the healthy specimen TP0 is obtained by adding both the reflected wave P3 from the interface F3 and the reflected wave P4 from the lower surface 32 'of the second member 30'.
  • the waveform of the third peel test body TP3 is formed by the reflected wave P3 'from the interface F3, and does not include the reflected wave P4 from the lower surface 32' of the second member 30 '.
  • the reflected wave P3 ′ of the third peel test specimen TP3 is reflected by the air A of the peel part D3, so that the influence of attenuation due to the reflection is small. As shown in FIG. 16, the attenuation of the third peel test specimen TP3 is healthy. Less than TP0.
  • the reflected wave P3 is further attenuated and the reflected wave P4 becomes relatively large.
  • the reflected wave P4 affects the waveform formation, and the waveform of the third peel test specimen TP3 becomes a waveform that is shifted (fastened) with respect to the waveform of the healthy test specimen TP0.
  • This time lag is the thickness of the second member 30 '. Therefore, the peeling part D3 can be detected by comparing the propagation times of the reflected waves reflected a plurality of times.
  • the peak time T3 of the reflected wave that has been reflected a predetermined number of times in the signal waveform S3 is the peak time T0 of the reflected wave that has been repeated the same number of times in the signal waveform S0 ′ of the healthy portion.
  • the echo height H3 as the peak value of the reflected wave that has been reflected a predetermined number of times in the signal waveform S3 is the echo height H0 ′ of the reflected wave that has been repeated the same number of times in the signal waveform S0 ′ of the healthy part. Compared to large. This is because in the case of the peeled portion D3, since the light is reflected and hardly transmitted by the air A having a higher reflectance than the healthy portion, the attenuation is small.
  • the peak time T is used as a comparison target.
  • the phase of the reflected wave is used together with the peak time T or instead of the peak time T. Specifically, the phase of the reflected wave that has been reflected a predetermined number of times in the healthy portion is obtained in advance as a reference phase. And the phase of the reflected wave which repeated the same number of reflections in an inspection part is calculated
  • the thin layer 40 is made of a material that is smaller than the acoustic impedance of the second member 30.
  • a part of the ultrasonic wave incident from the surface 2 (one side 11 of the laminate 10) of the first member 20 from the probe 2 is the same as in the previous embodiment. Reflected at the second interface F2 as indicated by reference numeral P2. Further, the ultrasonic wave transmitted through the second interface F2 is also reflected at the first interface F1 as indicated by reference numeral P1 ′′ due to the difference in acoustic impedance between the thin layer 40 and the second member 30.
  • the acoustic impedance of air is extremely small and smaller than the acoustic impedance of the thin layer 40. Therefore, when the acoustic impedance of the thin layer 40 is smaller than the acoustic impedance of the second member 30, the phase is inverted with respect to the signal of the healthy part. That is, since the phase is inverted depending on the presence or absence of the peeling portion D1, it is possible to detect the peeling of the first interface F1 by detecting the presence or absence of the phase inversion. Thus, this embodiment is advantageous when a reflected echo is detected regardless of the presence or absence of peeling at the first interface F1.
  • the first member 20 ′ is made of a material that is smaller than the acoustic impedance of the second member 30 ′
  • the first member 20 ′ and the second member are reversed by phase inversion. It is possible to detect the separation of the interface F3 from 30 ′.
  • the separation at each interface can be detected.
  • the peak time T and the echo height H can be compared independently.
  • the phase comparison shown in the third embodiment can be performed alone or in combination with the peak time T and / or the echo height H.
  • the peak time of the reflected wave is used as the propagation time.
  • the propagation time is not limited to the peak time, and for example, a rising (falling) time of the reflected wave or a time exceeding (falling) a predetermined amplitude may be used. That is, the propagation time only needs to be a time at which a time lag can be compared (identified) in each waveform of the healthy part and the inspection part.
  • the single-element type probe that is also used for transmission and reception is used as the probe 2.
  • a dual element probe in which transmission / reception is a separate unit may be used.
  • a 5 MHz probe is used as the probe 2.
  • the present invention is not limited to this frequency. However, if the frequency is large, the attenuation is large and the signal is small, and if the frequency is small, the waveform cannot be separated. Therefore, the material and thickness of the adhesive layer 40 may be set in consideration.
  • the probe 2 is directly pressed against the surface 21 of the first member 20 to transmit / receive ultrasonic waves.
  • the present invention can also be applied to a water immersion method.
  • a steel material is used as the first member 20 constituting a part of the laminate 10 to be inspected.
  • the first member is not limited to a steel material, and may be an ultrasonic transmission material such as another metal, glass, or resin.
  • the laminated body 10 to be inspected is not limited to the container tank as in the first embodiment, and may be a constituent part of a pipe in addition to containers such as other tanks and containers.
  • the second member 30 is not particularly limited to a fluororesin as long as it is an ultrasonic transmission material.
  • the second member 30 can be various lining materials such as hard rubber and epoxy resin. Applicable. Of course, it is not limited to lining materials. The same applies to the first and second members 20 (20 ') and 30 (30') in the second and third embodiments. That is, the plurality of members may be any combination of different materials and the same materials.
  • the thin layer 40 is composed of an adhesive that bonds the first and second members 20 and 30 together.
  • the thin layer 40 is not limited to the adhesive layer, and may be constituted by, for example, a brazing agent for brazing.
  • a material that approximates the acoustic impedance of a member that is adjacent to the thin layer 40 and that is located on the side separated from the incident position of the ultrasonic wave can be selected.
  • the reflected wave P1 from the interface F1 between the member and the thin layer 40 is approximated to be difficult to detect, it is possible to detect the presence or absence of peeling by comparing the propagation time with the healthy part. Because it becomes.
  • the former it is possible to select a material that does not approximate the acoustic impedance as the material of the thin layer 40. In such a case, a difference is easily generated in the attenuation of the reflected wave at the interface of the thin layer 40, and the presence or absence of peeling can be detected by comparing the echo height with the healthy part.
  • the laminate 10 is laminated with the first and second members 20 and 30 through the adhesive layer 40.
  • the number of members to be laminated is not particularly limited, and may be three or more.
  • the thin layer 40 should just intervene in at least one part between the some members which comprise the laminated body 10, and the detection of peeling in the upper and lower surfaces 41 and 42 of the thin layer 40 is possible.
  • the case where air is present in the peeling portion has been described as an example, but it is also possible to detect the case where liquid is present in the peeling portion (corrosion portion).
  • the difference in sound pressure reflectivity results in a difference in the echo height of the reflected wave as the number of reflections increases. It is possible to distinguish between a healthy part and a peeled part.
  • the presence or absence of liquid can also be determined by comparing with the echo height of the simulated peeling portion having air inside.
  • the member constituting the target interface for detecting peeling (corrosion) and the material of the liquid it can be detected by the difference in the propagation time of the reflected wave.
  • a substantially flat flaw detection surface has been described as an example, but the present invention is also applicable to a laminate having a curved surface.
  • the attenuation increases as the number of reflections increases.
  • the sound part and the inspection part are both curved surfaces having the same curvature, the influence of the curvature is offset. Therefore, it is possible to detect the presence or absence of peeling even in a member having a curved surface such as a pipe.
  • the present invention is used, for example, as a peeling inspection method and a peeling inspection apparatus for a laminate that inspects peeling at each interface of a thin layer interposed between members in a storage container or piping as a laminate in which a plurality of members are laminated can do.
  • the present invention can be applied to detection of delamination in a dissimilar material laminate such as adhesion between a CFRP material and aluminum and adhesion between aluminum and copper.
  • it can be applied to brazing of aluminum and steel, brazing of turbine blades and stellite (heat-resistant alloy), soldering of aluminum.

Abstract

 簡便でありながら積層体の層間剥離を明瞭に検出することの可能な積層体の剥離検査方法及び剥離検査装置を提供すること。 複数の部材20,30は、超音波の波長よりも薄い薄層40を介して積層されている。予め、複数の部材20,30及び薄層40が互いに密接した健全部において多重反射波を受信し、その多重反射波における複数回の反射を繰り返した反射波の伝搬時間を求める。積層体10の検査部Eにおいて多重反射波を受信し、その多重反射波における複数回の反射を繰り返した反射波の伝搬時間を求める。これら伝搬時間を比較することにより一側11から離隔する側に位置する薄層40の第一界面F1における剥離の有無を検査する。

Description

積層体の剥離検査方法及び剥離検査装置
 本発明は、積層体の剥離検査方法及び剥離検査装置に関する。さらに詳しくは、複数の部材が積層した積層体の一側から超音波を入射すると共に多重反射波を受信し、受信した多重反射波を評価することにより層間剥離の有無を検査する積層体の剥離検査方法及び剥離検査装置に関する。
 従来、上述の如き積層体の剥離検査対象は、管、容器等が多く、検査時には管、容器等の内部に人間が入り、内部からの目視検査、打音検査、ピンホール検査等行うのが通常であった。そのため、検査時には、操業を停止しなければならず、検査に多大な時間を要していた。
 一方、例えば積層体の一例として特許文献1に記載の如く、操業を停止せずにライニングの剥離を検査する方法が提唱されている。上記文献記載の発明は、配管外部から超音波パルスを入射させ、配管内部のライニング内周面と管本体との各反射エコーの減衰率を算出し、剥離の有無を調査している。同従来方法では、ライニング材と、接着層とからなる多層構造のライニングには言及していないが、接着層とライニング材とが共に板材から剥離する場合には、上記手法で剥離を推定することができるかもしれない。
 ところが、ライニング材のみが剥離して、接着層が板材本体に残余することもある。しかし、上記従来方法では、接着層のみが残余する部分と健全部との差異は明らかでなく、ライニング材のみの剥離をも検出することが困難であった。
特開2000-329751号公報
 かかる従来の実情に鑑みて、本発明は、簡便でありながら積層体の層間剥離を明瞭に検出することの可能な積層体の剥離検査方法及び剥離検査装置を提供することを目的とする。
 上記目的を達成するため、本発明に係る積層体の剥離検査方法の特徴は、複数の部材が積層した積層体の一側から超音波を入射すると共に多重反射波を受信し、受信した多重反射波を評価することにより層間剥離の有無を検査する方法において、前記複数の部材は、前記超音波の波長よりも薄い薄層を介して積層されており、予め、前記複数の部材及び前記薄層が互いに密接した健全部において多重反射波を受信し、その多重反射波における複数回の反射を繰り返した反射波の伝搬時間を求め、前記積層体の検査部において多重反射波を受信し、その多重反射波における前記複数回の反射を繰り返した反射波の伝搬時間を求め、これら伝搬時間を比較することにより前記一側から離隔する側に位置する前記薄層の第一界面における剥離の有無を検査することにある。
 ところで、複数の部材が超音波の波長よりも薄い薄層を含む積層体では、この薄層の上下界面からの信号を区別(分離)することができず、剥離の検出が困難となる。上記構成によれば、健全部での複数回の反射を繰り返した反射波の伝搬時間と、検査部での同回数の反射を繰り返した反射波の伝搬時間とを比較する。例えば図2(b)に示す如く超音波の入射位置となる積層体の一側から離隔する側に位置する薄層の第一界面における剥離が存在する場合、例えば図6に示すように、複数回の反射を繰り返した反射波の伝搬時間にずれが生じる。すなわち、信号の区別が困難となる上述の如き積層体であっても、多重反射波の伝搬時間のずれに着目することで、積層体の一側から離隔する側に位置する薄層の第一界面における剥離の検出が可能となる。なお、この伝搬時間のずれは、超音波の周波数に依存するものではなく、原理的に周波数は特に限定されるものではない。
 また、予め、前記健全部において受信した多重反射波における前記複数回の反射を繰り返した反射波のピーク値を求め、前記検査部において受信した多重反射波における前記複数回の反射を繰り返した反射波のピーク値を求め、これらピーク値を比較することにより前記一側に近接する側に位置する前記薄層の第二界面における剥離の有無を検査するとよい。
 上記構成によれば、健全部での複数回の反射を繰り返した反射波のピーク値と、検査部での同回数の反射を繰り返した反射波のピーク値とを比較する。例えば図2(c)に示すように、積層体の一側に近接する側に位置する薄層の第二界面に剥離が存在する場合、例えば図6に示すように、複数回の反射を繰り返した反射波のピーク値が大きく相違する。すなわち、多重反射波のピーク値に着目することで、積層体の一側に近接する側に位置する薄層の第二界面における剥離の検出が可能となる。これにより、各界面の剥離をそれぞれ検出することができる。
 ここで、前記薄層は、前記一側に位置する部材よりも前記薄層に隣接し且つ前記一側から離隔する側に位置する部材の音響インピーダンスに近似する材料より構成してもよい。上記構成によれば、薄層と積層体の一側から離隔する側に位置する部材との音響インピーダンスの差が小さい場合、例えば図2(a)に如く、積層体の一側から離隔する側に位置する薄層の第一界面に到達した超音波は積層体の一側から離隔する側の部材へほぼ透過し、当該界面からの反射波はほぼ検出されない。他方、例えば同図(b)に示す如く、剥離部が存在すると、当該界面に到達した超音波はその剥離部でほぼ反射し、積層体の一側から離隔する側の部材へ透過しない。よって、健全部での受信信号には当該境界面からの反射波は含まれないが、剥離部での受信信号には境界面からの反射波が含まれる。従って、この反射波の有無により、複数回の反射を繰り返した反射波を比較すると上述の伝搬時間のずれが生じ、剥離の有無をより明瞭に検出することができる。
 また、前記薄層は、この薄層に隣接し且つ前記一側から離隔する側に位置する部材の音響インピーダンスより小となる材料よりなり、予め、前記健全部において受信した多重反射波における前記複数回の反射を繰り返した反射波の位相を求め、前記検査部において受信した多重反射波における前記複数回の反射を繰り返した反射波の位相を求め、これら位相を比較することにより前記一側から離隔する側に位置する前記薄層の第一界面における剥離の有無を検査するようにしても構わない。
 上記構成によれば、薄層は、この薄層に隣接し且つ積層体の一側から離隔する側に位置する部材の音響インピーダンスより小となる材料より構成されている。係る場合、例えば図18(a)に如く、薄層と積層体の一側から離隔する側に位置する部材との第一界面に到達した超音波の一部は、音響インピーダンスの差により当該界面で反射する。他方、例えば同図(b)に示す如く、剥離部が存在すると、当該界面に到達した超音波はこの剥離部でほぼ反射し、積層体の一側から離隔する側に位置する部材へ透過しない。ここで、薄層の音響インピーダンスは、この薄層に隣接し且つ積層体の一側から離隔する側に位置する部材の音響インピーダンスより小さく、且つ剥離部を構成する空気の音響インピーダンスはさらに小さい。従って、剥離部の存在により位相反転が生じる。
 そして、健全部での複数回の反射を繰り返した反射波の位相と、検査部での同回数の反射を繰り返した反射波の位相とを比較する。積層体の一側から離隔する側に位置する薄層の第一界面における剥離が存在する場合、健全部での位相に対し剥離部での位相が反転する。すなわち、多重反射波の位相反転に着目することで、当該第一界面における剥離の検出が可能となる。
 上記いずれかに記載の構成において、前記薄層はろう付け剤より構成してもよく、接着剤により構成してもよい。また、前記薄層は、隣接する一方の部材の表層部の少なくとも一部が変質した変質部であってもよい。
 上記いずれかに記載の構成において、前記複数の部材は、前記一側に位置する板材と、その板材の他側に設けられるライニング材とを少なくとも含み、前記薄層は、前記板材に前記ライニング材を接着させる接着層であってもよい。係る場合、例えば、前記板材は鋼材であり、前記ライニング材はフッ素樹脂ライニング材であり、前記接着層は前記鋼材よりも前記フッ素樹脂ライニング材の音響インピーダンスに近似する材料より構成される。また、前記接着層が前記鋼材に前記フッ素樹脂ライニング材を接着させる接着剤とガラスクロスとより構成されていても構わない。前記積層体は、例えば、液体用コンテナタンクである。
 また、上記目的を達成するため、本発明に係る積層体の剥離検査方法の他の特徴は、複数の部材が積層した積層体の一側から超音波を入射すると共に多重反射波を受信し、受信した多重反射波を評価することにより層間剥離の有無を検査する方法において、前記複数の部材は、前記一側に位置する第一の部材と、この第一の部材の他側に設けられる第二の部材とを少なくとも含み、前記第二の部材は、前記超音波の波長よりも薄く形成されており、予め、前記第一の部材及び前記第二の部材が互いに密接した健全部において多重反射波を受信し、その多重反射波における複数回の反射を繰り返した反射波の伝搬時間を求め、前記積層体の検査部において多重反射波を受信し、その多重反射波における前記複数回の反射を繰り返した反射波の伝搬時間を求め、これら伝搬時間を比較することにより前記第一の部材と前記第二の部材との界面における剥離の有無を検査することにある。
 ところで、超音波の波長よりも薄い第二の部材を含む積層体では、第二の部材の上下界面からの信号を区別(分離)することができず、剥離の検出が困難となる。上記構成によれば、健全部での複数回の反射を繰り返した反射波の伝搬時間と、検査部での同回数の反射を繰り返した反射波の伝搬時間とを比較する。例えば図13(b)に示す如く、第一、第二の部材からなる積層体において第一の部材と第二の部材との界面に剥離が存在する場合、例えば図17に示すように、複数回の反射を繰り返した反射波の伝搬時間にずれが生じる。すなわち、信号の識別が困難であった上述の如き積層体であっても、多重反射波の伝搬時間のずれに着目することで、当該界面における剥離の検出が可能となる。なお、この伝搬時間のずれは、超音波の周波数に依存するものではなく、原理的に周波数は特に限定されるものではない。
 また、予め、前記健全部において受信した多重反射波における前記複数回の反射を繰り返した反射波のピーク値を求め、前記検査部において受信した多重反射波における前記複数回の反射を繰り返した反射波のピーク値を求め、これらピーク値を比較することにより前記第一の部材と前記第二の部材との界面における剥離の有無を検査するようにするとよい。
 上記構成によれば、健全部での複数回の反射を繰り返した反射波のピーク値と、検査部での同回数の反射を繰り返した反射波のピーク値とを比較する。例えば図13(b)に示す如く、第一の部材と第二の部材との界面に剥離が存在する場合、例えば図17に示すように、複数回の反射を繰り返した反射波のピーク値が大きく相違する。すなわち、多重反射波のピーク値に着目することでも、当該界面における剥離の検出が可能となる。
 また、前記第一の部材は、前記第二の部材の音響インピーダンスより小となる材料よりなり、予め、前記健全部において受信した多重反射波における前記複数回の反射を繰り返した反射波の位相を求め、前記検査部において受信した多重反射波における前記複数回の反射を繰り返した反射波の位相を求め、これら位相を比較することにより前記第一の部材と前記第二の部材との界面における剥離の有無を検査するようにしても構わない。
 上記構成によれば、第一の部材は、第二の部材の音響インピーダンスより小となる材料より構成されている。係る場合、例えば図13(a)に如く、第一の部材と第二の部材との界面に到達した超音波の一部は、音響インピーダンスの差により当該界面で反射する。他方、例えば同図(b)に示す如く、剥離部が存在すると、当該界面に到達した超音波はこの剥離部でほぼ反射し、第一の部材へ透過しない。ここで、第一の部材の音響インピーダンスは、第二の部材の音響インピーダンスより小さく、且つ剥離部を構成する空気の音響インピーダンスはさらに小さい。従って、剥離部の存在により位相反転が生じる。
 そして、健全部での複数回の反射を繰り返した反射波の位相と、検査部での同回数の反射を繰り返した反射波の位相とを比較する。第一の部材と第二の部材との界面における剥離が存在する場合、健全部での位相に対し剥離部での位相が反転する。すなわち、多重反射波の位相反転に着目することで、当該界面における剥離の検出が可能となる。
 上記目的を達成するため、本発明に係る積層体の剥離検査装置の特徴は、複数の部材が積層した積層体の一側から超音波を入射すると共に多重反射波を受信する探触子と、受信した多重反射波を評価する信号処理装置を備え、受信した多重反射波を評価することにより層間剥離の有無を検査する構成において、前記複数の部材は、前記超音波の波長よりも薄い薄層を介して積層されており、前記信号処理装置は、予め、前記複数の部材及び前記薄層が互いに密接した健全部において多重反射波を受信し、その多重反射波における複数回の反射を繰り返した反射波の伝搬時間を求め、前記積層体の検査部において多重反射波を受信し、その多重反射波における前記複数回の反射を繰り返した反射波の伝搬時間を求め、これら伝搬時間を比較することにより前記一側から離隔する側に位置する前記薄層の第一界面における剥離の有無を検査することにある。
 また、上記目的を達成するため、本発明に係る積層体の剥離検査装置の他の特徴は、複数の部材が積層した積層体の一側から超音波を入射すると共に多重反射波を受信する探触子と、受信した多重反射波を評価する信号処理装置を備え、受信した多重反射波を評価することにより層間剥離の有無を検査する構成において、前記複数の部材は、前記一側に位置する第一の部材と、この第一の部材の他側に設けられる第二の部材とを少なくとも含み、前記第二の部材は、前記超音波の波長よりも薄く形成されており、前記信号処理装置は、予め、前記第一の部材及び前記第二の部材が互いに密接した健全部において多重反射波を受信し、その多重反射波における複数回の反射を繰り返した反射波の伝搬時間を求め、前記積層体の検査部において多重反射波を受信し、その多重反射波における前記複数回の反射を繰り返した反射波の伝搬時間を求め、これら伝搬時間を比較することにより前記第一の部材と前記第二の部材との界面における剥離の有無を検査することにある。
 上記記載の伝搬時間を比較する場合、前記信号処理装置は、求めた伝搬時間の差分が所定値以上の場合に警告する警告手段をさらに備えるとよい。他方、位相を比較する場合、前記信号処理装置は、検査部での位相が健全部での位相に対し反転している場合に警告する警告手段をさらに備えるとよい。
 前記信号処理装置は、前記探触子を走査して受信した多重反射波により走査画像を生成するようにしても構わない。走査画像としては、例えば、Bスキャン画像やCスキャン画像が挙げられる。また、前記探触子には、一振動子型探触子を用いてもよく、二振動子型探触子を用いることも可能である。
 上記本発明に係る積層体の剥離検査方法及び剥離検査装置の特徴によれば、簡便でありながら積層体の層間剥離を明瞭に検出することが可能となった。
 本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。
本発明に係る剥離検査装置の概略図である。 積層体の各層に対する超音波の挙動を説明するための図であり、(a)は健全部、(b)は第一界面での剥離、(c)は第二界面での剥離を示す図である。 各試験体におけるバンドパスフィルターを介して得られたRF波形の一例を示すグラフであり、(a)はB1付近、(b)はB10付近、(c)はB20付近の結果を示す。 (a)~(c)は、図3(a)~(c)にそれぞれ対応する検波波形を示すグラフである。 減衰の差異を説明するグラフであり、(a)は各試験体における減衰の傾向を示すグラフ、(b)は健全試験体に対する第一、第二剥離試験体の感度差を示すグラフ、(c)は各試験体の減衰係数を示すグラフである。 反射波のピーク時間及びピーク値の比較を説明するグラフである。 健全試験体、第一剥離試験体及び第二剥離試験体をそれぞれ比較したグラフであり、(a)はピーク時間差、(b)はエコー高さを比較したグラフである。 他の積層体の一例を示す図である。 図8に示す積層体の各試験体における図3相当図である。 図8に示す積層体の各試験体における図4相当図である。 図8に示す積層体の各試験体における図5相当図である。 図8に示す積層体の各試験体における図7相当図である。 本発明の第二実施形態に係る図2相当図である。 本発明の第二実施形態に係る図3相当図である。 本発明の第二実施形態に係る図4相当図である。 本発明の第二実施形態に係る図5(a)相当図である。 本発明の第二実施形態に係る図6相当図である。 本発明の第三実施形態に係る図2相当図である。
 次に、適宜添付図面を参照しながら、本発明の第一実施形態についてさらに詳しく説明する。
 [検査装置構成]
  図1に示すように、本発明の第一実施形態に係る剥離検査装置1は、大略、複数の部材としての第一の部材20、第二の部材30が薄層40を介して積層された積層体10の一側11(表面21)から超音波を入射すると共に多重反射波を受信する探触子2と、受信した多重反射波を処理し評価する信号処理装置3とを備える。この信号処理装置3は、例えば、パーソナルコンピューターにより構成される。また、探触子2には、走査位置を検出するエンコーダ等の位置検出器2aが取り付けると共に、信号処理装置3に接続されている。
 信号処理装置3は、パルサー4aを制御して探触子2から超音波パルスを発生させる。送信された超音波パルスは、第一、第二部材20,30内及び薄層40内を通過(若しくは透過)及び各界面F1,F2で反射し、探触子2にて受信される。受信した多重反射波は、レシーバー4b及びプリアンプ5により増幅され、フィルター6によりノイズが除去された状態でA/Dコンバーター7によりデジタル信号に変換される。そして、信号処理装置3にて信号処理がなされ、モニター8に表示される。モニター8には、例えば、図3,4,6に示す如く、横軸を伝播距離を代表する時間軸とし、縦軸に同反射波の強度とするグラフが表示される。
 また、信号処理装置3は、位置検出器2aが検出した探触子2の走査位置データと共に受信信号を処理し、Bスキャン画像やCスキャン画像等の走査画像を生成して、モニタ8に表示させる。さらに、信号処理装置3は、剥離の存在を警告する警告手段3aをさらに備える。本実施形態において、警告手段3aは、検査部における伝搬時間が健全部における伝搬時間(基準伝搬時間)に対し所定時間以上の場合、又は、検査部におけるピーク値が健全部におけるピーク値(基準ピーク値)に対し所定値以上の場合に警告を行う。この警告は、例えば、警告音やモニター8への表示等により行われる。
 [積層体構成]
 ここで、本実施形態における検査対象となる積層体10は、例えば液体を保存する液体用コンテナタンクの壁部である。このタンクは、例えばISO規格に準ずるコンテナタンクである。図2に示すように、積層体10は、第一の部材20としての板材と、この板材20を内容物からの侵食を防ぐための第二の部材30としてのフッ素樹脂ライニング材とを有する。そして、このフッ素樹脂ライニング材30が薄層40としての接着剤よりなる接着層により板材20に接着されている。
 本実施形態において、板材20は、例えば厚さ5mmのステンレス鋼板(SUS板)等より構成されている。また、フッ素樹脂ライニング材30としては、例えば厚さ3.5mmのフッ素樹脂ライニング(PTFE)が用いられる。
 また、本実施形態における接着層40は、例えば、エポキシ樹脂系接着剤等のフッ素樹脂ライニング材30(以下、単に「ライニング材30」と称する。)を板材20に接着させる接着剤により構成される。その厚みは、例えば0.1mm以下であり、板材20やライニング材30に対し十分に薄い。ここで、仮に、接着層40の音速を1800m/s、超音波の周波数を5MHzとすると、波長は0.36mmとなり、接着層40の厚みよりも大きい。そのため、接着層40の上面41からの反射波と下面42からの反射波とは分離できず、従来の垂直法では各面41,42の信号を識別することはできない。本発明は、このような超音波の波長より短い(薄い)肉厚の接着層40の上下面41,42における剥離検出に有利である。なお、本実施形態において、板材20が積層体10の一側11に近接する部材であり、ライニング材30が積層体10の一側11から離隔した部材である。また、接着層40の下面42が、積層体10の一側から離隔する側に位置する薄層の第一界面F1となる。
 [多重反射波の挙動]
 ここで、超音波の挙動と反射波形との関係について説明する。
 図2(a)は、板材20、ライニング材30及び接着層40が互いに密着し剥離が存在しない健全部での反射の挙動を示す。探触子2から板材20内部へその上面(表面)21(容器外面11)から入射した超音波は、その一部が板材20の下面(裏面22)と接着層40の上面41との界面となる第二界面F2で符号P2に示す如く反射する。
 一方、第二界面F2を透過した超音波は、接着層40内を伝播し、接着層40の下面42とライニング材30の上面31との界面となる第一界面F1に達する。ここで、ライニング材30と接着層40との音響インピーダンスが近似している(ライニング材30と接着層40との音響インピーダンスの差が小さい)場合、第一界面F1での反射はほとんど生じない。そのため、符号P1で示す反射波は殆ど受信されない。よって、健全部での多重反射による受信波形は、主に第二界面F2からの反射波P2によって形成される。
 図2(b)は、第一界面F1にて剥離が生じている場合の反射の挙動を示す。剥離部D1は第二界面F2の反射に無関係であるので、健全部と同様に、第二界面F2で符号P2で示す如く反射する。一方、剥離部D1においては、接着層40と空気Aとの界面が形成される。そのため、健全部とは異なり、第二界面F2を透過した超音波は、その殆どが接着層40と空気Aとの界面で符号P1’に示す如く反射する。よって、剥離部D1が存在する場合の多重反射による受信波形は、剥離部D1からの反射波P1’及び第二界面F2からの反射波P2が足し合わされた波形となる。
 図2(c)は、第二界面F2にて剥離が生じている場合の反射の挙動を示す。剥離部D2においては、板材20と空気Aとの界面が形成される。そのため、第二界面F2に到達した超音波は、その殆どが板材20と空気Aとの界面で符号P2’に示す如く反射し、第一界面F1での反射波は生じない。よって、剥離部D2が存在する場合の多重反射による受信波形は、ほぼ剥離部D2からの反射波P2’によって形成される。
 [受信波形の相違]
 ここで、健全部、剥離部D1及び剥離部D2における受信波形の相違について、図3~5を参照しながら説明する。
 図3に健全試験体TP0、第一、第二剥離試験体TP1,TP2にて受信した信号にバンドパスフィルター(中心周波数5MHz)を施して生成したRF波形の一例を示す。また、図4は、図3に対応する検波波形を示す。ここで、健全試験体TP0は、板材20、ライニング材30及び接着層40が互いに密着した健全部を模した。第一剥離試験体TP1は、板材20及び接着層40を接着させ第一界面F1の剥離部D1を模した。第二剥離試験体TP2は、板材20のみで構成し第二界面F2の剥離部D2を模した。図3,4の縦軸はエコー高さ(%)、横軸は伝搬時間(μ秒)を示す。
 図3(a)及び図4(a)に示すように、反射が1回の場合、各受信波形がほぼ重なり合うため、波形の識別は困難である。一方、図3(b)(c)及び図4(b)(c)に示すように、反射回数が増加するに従い、各波形のエコー高さにずれが生じると共に波形の重なりも解消され、波形の識別が可能である。このことから、観測当初においては剥離検出が困難であるが、多重反射波を利用することで、剥離検出が可能となることが伺える。
 さらに、発明者らは、上記各試験体において減衰の傾向を測定した。図5(a)(c)に示すように、減衰の傾向(減衰係数)は、第二剥離試験体TP2、第一剥離試験体TP1、健全試験体TP0の順に大きいことが分かった。また、同図(b)に示すように、健全試験体TP0の減衰傾向を基準とすると、第一剥離試験体TP1より第二剥離試験体TP2の方がより感度差が大きく、減衰傾向が大きいことが分かった。図5(a)の縦軸はエコー高さ(dB)、横軸は伝搬時間(μ秒)を示す。図5(b)の縦軸は感度差(dB)、横軸は反射回数を示す。図5(c)の縦軸は減衰係数(dB/mm)を示す。
 上記現象のメカニズムは、以下のように推測される。
 健全試験体TP0の反射波P2は、第二界面F2での反射及び接着層40への透過によって減衰する。一方、第二剥離試験体TP2の反射波P2’は、剥離部D2の空気Aでの反射のため、健全試験体TP0に比べ反射による減衰は小さい。また、第二剥離試験体TP2では接着層40への透過が生じないため、接着層40による減衰の影響を受けない。よって、第二剥離試験体TP2(剥離部D2)の減衰は、健全試験体TP0に比べ小さくなる。従って、複数回反射した反射波のピーク値(エコー高さ)を比較することで剥離部D2の検出が可能となる。
 他方、第一剥離試験体TP1の波形は、剥離部D1からの反射波P1’及び第二界面F2からの反射波P2の双方が足し合わされる。第一剥離試験体TP1の反射波P1’は、剥離部D1の空気Aによる反射のため、反射による減衰の影響は少なく、図5に示す如く、第一剥離試験体TP1の減衰は健全試験体TP0より小さい。そのため、複数回の反射を繰り返すと、反射波P2がより大きく減衰し、反射波P1’が相対的に大きくなる。これにより、反射波P1’が波形の形成に影響を与え、健全試験体TP0の波形に対し、時間がずれたような波形となる。この時間のずれは、接着層40の厚みである。他方、健全試験体TP0の波形は、第二界面F2からの反射波P2で形成され、反射波P1’に対応する第一界面F1からの反射波P1は含まれない。従って、複数回反射した反射波の伝搬時間を比較することで剥離部D1の検出が可能となる。
 このように、発明者らの鋭意研究の結果、各界面F1,F2からの反射波の減衰傾向(減衰係数)の相違を考慮して、所定回数(複数回)の反射を繰り返した多重反射波に着目することで、健全部に対する波形の識別性(視認性)を向上させ、各界面F1,F2における剥離を検出できることが判明した。
 [ピーク時間及びエコー高さ]
 次に、第一、第二界面F1,F2における剥離の検出について、図6を参照しながら説明する。なお、本実施形態において、伝搬時間として、反射波のピーク時間を例に以下説明する。
 第一界面F1の剥離部D1の場合、その信号波形S1における所定回数の反射を繰り返した反射波のピーク時間T1は、健全部の信号波形S0における同回数の反射を繰り返した反射波のピーク時間T0よりも遅れて出現し、時間ずれΔTが生じる。これは、健全部の減衰が剥離部D1よりも大きいため、複数回の反射を繰り返すと、剥離部D1からの反射波が相対的に大きくなり、健全部の波形に対し時間がずれた波形となるためである。他方、第二界面F2の剥離部D2の場合、その信号波形S2におけるピーク時間T2は健全部のピーク時間T0とほぼ同時間となる。これは、いずれの反射波も第二界面F2での反射であるためである。
 また、第一界面F1の剥離部D1の場合、その信号波形S1における所定回数の反射を繰り返した反射波のピーク値としてのエコー高さH1は、健全部の信号波形S0における同回数の反射を繰り返した反射波のエコー高さH0と比べ若干大きいものの、それほど大きい差はない。他方、第二界面F2の剥離部D2の場合、その信号波形S2におけるエコー高さH2は、健全部の信号波形S0のエコー高さH0と比較し、明らかに突出して大きい。これは、第二界面F2の剥離部D2の場合、健全部と比較してより反射率の大きい空気Aで殆ど反射し透過しないため、減衰が少ないためである。
 [評価方法]
 このように、以下の積層体の剥離検査方法により、第一、第二界面F1,F2における剥離の有無を検査することが可能となる。
 予め、板材20、ライニング材30及び接着層40が密着した健全部において板材20の表面21から超音波を入射すると共に多重反射波を受信し、その多重反射波における所定回数の反射を繰り返した反射波のピーク時間及びエコー高さを基準伝搬時間としての基準ピーク時間T0及び基準エコー高さとしての基準ピーク値H0として求めておく。次に、板材20の所定の検査部Eにおいて、板材20の表面21に沿って適宜間隔をおいて探触子2を走査すると共に超音波を入射させて多重反射波を受信し、その多重反射波において先の所定回数と同回数の反射を繰り返した反射波の伝搬時間としてのピーク時間T及びエコー高さHを求める。そして、これらのピーク時間及びエコー高さを比較することにより、ライニング材30と接着層40との第一界面F1における剥離及び板材20と接着層40との第二界面F2における剥離の有無をそれぞれ評価する。なお、健全部とは、例えば積層体10において健全部に相当する箇所として選定した部分である。また、上述の如き健全試験体TP0を用いたり、健全試験体TP0に相当する他の装置や他の部材を用いることもできる。このように、「健全部」とは「部」であるから、「検査対象となる積層体10の任意の箇所」及び「積層体10とは別体の試験体(片)及びこれに相当する他の装置や部材」の双方が含まれる。
 また、予め、信号処理装置3に基準ピーク時間に対し所定の閾値(時間)を設定しておき、ピーク時間が所定のゲートを超えた場合に警告手段3aにより警告するようにしてもよい。同様に、基準ピーク値に対し所定の閾値(振幅)を設定しておき、ピーク値が所定値を超えた場合に警告手段3aにより警告するようにしてもよい。さらに、位置検出器2aの探触子2の走査位置データと共に多重反射波を処理し、例えば図6に示す如きグラフと共に、又は、独立にBスキャン画像やCスキャン画像等の走査画像を生成してもよい。これら画像に剥離の有無を表示させてもよい。
 ここで、ピーク時間T及びエコー高さHの比較に際し、上述の所定回数は、減衰係数を考慮し、健全部での波形に対しピーク時間T及びエコー高さHの比較が可能となる回数に設定する。図5に示すように、健全部における減衰の傾向と、剥離部Dが存在する場合における減衰の傾向は異なる。
 よって、例えば、信号処理装置3において、図6に示す如くテストピース等の健全部における反射波のエコー高さが100%振幅表示の20%程度の強度で表示されるように回数とするとよい。これにより、検査部Eにおける第一、第二界面F1,F2の剥離部からの各反射エコーが健全部に対し識別可能となる。図3(a)及び図4(a)に示すように、反射回数が少ない場合、受信信号に明瞭な差異が表れず、信号の識別(健全か剥離かの識別)が困難である。一方、図3(b)(c)及び図4(b)(c)に示すように、反射回数が増加するに従い、健全か剥離かの識別が容易となる。反射回数が増加すると、多重反射波の伝搬時間(距離)の差が拡大して、時間のずれが大きくなり、第二界面F2の剥離部からの信号が明瞭となる。また、図5(a)に示す如く減衰の差が拡大してエコー高さの差も大きくなるので、第一界面F1の剥離部からの信号も明瞭となる。なお、本実施形態では、20回程度に設定している。もちろん、適宜感度調整してもよい。
 発明者らは、本発明に係る剥離検査方法及び剥離検査装置の有用性を検証するために実験を行った。上述の各試験体を用い、中心周波数5MHzの一振動子探触子2により多重反射波を複数回受信した。図7にその結果を比較したグラフを示す。
 図7(a)は、健全部におけるピーク時間が最も早いものを基準とした各試験体のピーク時間差を示すグラフである。縦軸が、ピーク時間差(μ秒)である。同図から明らかなように、健全試験体TP0と第二剥離試験体TP2とは、ピーク時間差にほとんど差異はない。他方、第一剥離試験体TP1では、ピーク時間差に明瞭な差異が表れた。このように、健全部のピーク時間と検査部のピーク時間とを比較することで、第一界面F1における剥離の有無を検出可能であることが分かった。
 図7(b)は、各試験体のエコー高さ(%)を比較したグラフである。縦軸が、エコー高さ(%)である。同図から明らかなように、健全試験体TP0と第一剥離試験体TP1とは、エコー高さにあまり差はない。他方、第二剥離試験体TP2では、ピーク値に明瞭な差異が表れた。このように、健全部のピーク値と検査部のピーク値とを比較することで、第二界面F2における剥離の有無を検出可能であることが分かった。
 さらに、発明者らは、図8に示す如く、ライニング材30’としてフッ素樹脂ライニング(PFA)を用い、接着層40’を接着剤33とガラスクロス34とにより構成した試験体についても、上記実施例1と同様に実験を行った。図12(a)(b)に示すように、上記実施例1と同様の結果となり、検出可能であることが判明した。なお、図9~11にこの試験体におけるRF波形、検波波形の一例及び減衰係数を示す。このライニング材30’においても、上記と同様の結果が得られた。
 次に、図13~17を参照しながら、本発明の第二実施形態について説明する。なお、以下の実施形態において、同様の部材には同一の符号を付してある。
 上記第一実施形態において、接着層40(薄層)を介して板材20(第一の部材)にフッ素樹脂ライニング材30(第二の部材)を接着させた積層体10を例に説明した。しかし、検査対象としての積層体10は、接着層としての薄層40を介して複数の部材20,30が積層されたものに限られるものではない。例えば、図13に示す第二実施形態の如く、第一の部材20’に第二の部材30’が直接設けられた積層体10’においても、層間剥離の検出も可能である。なお、この第一、第二の部材20’,30’は、上記第一実施形態の材料に限られるものではない。
 図13に示すように、第二実施形態における積層体10’は、超音波の入射位置となる積層体10’の一側11’を構成する第一の部材20’と、この第一の部材20’の他側22’に直接設けられた第二の部材30’とからなる二層構造を呈する。
 図13(a)は、第一の部材20’及び第二の部材30’が互いに密着し剥離が存在しない健全部での反射の挙動を示す。探触子2から第一の部材20’内部へその上面(表面)21’から入射した超音波は、その一部が第一の部材20’の下面(裏面22’)と第二の部材30’の上面31’との界面となる界面F3で符号P3に示す如く反射する。また、界面F3を透過した超音波は、第二の部材30’内を伝播し、第二の部材30’の下面32’に達し、符号P4に示す如く反射する。よって、健全部での多重反射による受信波形は、界面F3からの反射波P3及び第二の部材30’の下面32’からの反射波P4が足し合わされた波形となる。
 他方、図13(b)は、界面F3にて剥離が生じている場合の反射の挙動を示す。剥離部D3においては、第一の部材20’と空気Aとの界面が形成される。そのため、界面F3に到達した超音波は、その殆どが第一の部材20’と空気Aとの界面で符号P3’に示す如く反射し、第二の部材30’の下面32’での反射波は生じない。よって、剥離部D3が存在する場合の多重反射による受信波形は、ほぼ剥離部D3からの反射波P3’によって形成される。
 ここで、健全部及び剥離部D3における受信波形の相違について、図14~17を参照しながら説明する。
 図14に健全試験体TP0、第三剥離試験体TP3にて受信した信号にバンドパスフィルター(中心周波数5MHz)を施して生成したRF波形の一例を示す。また、図15は、図14に対応する検波波形を示す。ここで、健全試験体TP0は、第一の部材20’及び第二の部材30’が互いに密着した健全部を模した。第三剥離試験体TP3は、第一の部材20’のみで構成し界面F3の剥離部D3を模した。
 図14,15に示すように、本実施形態においても、反射回数が増加するに従い、各波形のエコー高さにずれが生じると共に波形の重なりも解消され、波形の識別が可能である。このことから、観測当初においては剥離検出が困難であるが、多重反射波を利用することで、剥離検出が可能となることが伺える。さらに、上記第一実施形態と同様に、上記各試験体において減衰の傾向を測定すると、図16に示すように、減衰の傾向(減衰係数)は、健全試験体TP0の方が第三剥離試験体TP3より大きいことが分かった。
 健全試験体TP0の反射波P3は、界面F3での反射及び第二の部材30’への透過によって減衰する。一方、第三剥離試験体TP3の反射波P3’は、剥離部D3の空気Aでの反射のため、健全試験体TP0に比べ反射による減衰は小さい。また、第三剥離試験体TP3では第二の部材30’への透過が生じないため、第二の部材30’による減衰の影響を受けない。よって、第三剥離試験体TP3(剥離部D3)の減衰は、健全試験体TP0に比べ小さくなる。従って、複数回反射した反射波のピーク値を比較することで剥離部D3の検出が可能となる。
 また、健全試験体TP0の波形は、界面F3からの反射波P3及び第二の部材30’の下面32’からの反射波P4の双方が足し合わされる。一方、第三剥離試験体TP3の波形は、界面F3からの反射波P3’で形成され、第二の部材30’の下面32’からの反射波P4は含まれない。第三剥離試験体TP3の反射波P3’は、剥離部D3の空気Aによる反射のため、反射による減衰の影響は少なく、図16に示す如く、第三剥離試験体TP3の減衰は健全試験体TP0より小さい。そのため、複数回の反射を繰り返すと、反射波P3がより大きく減衰し、反射波P4が相対的に大きくなる。これにより、反射波P4が波形の形成に影響を与え、健全試験体TP0の波形に対し、第三剥離試験体TP3の波形は時間がずれた(早まる)ような波形となる。この時間のずれは、第二の部材30’の厚みである。従って、複数回反射した反射波の伝搬時間を比較することで剥離部D3の検出が可能となる。
 次に、界面F3における剥離の検出について、図17を参照しながら説明する。
 界面F3の剥離部D3の場合、その信号波形S3における所定回数の反射を繰り返した反射波のピーク時間T3は、健全部の信号波形S0’における同回数の反射を繰り返した反射波のピーク時間T0’よりも早く出現し、時間ずれΔT’が生じる。これは、健全部の減衰が剥離部D3よりも大きいため、複数回の反射を繰り返すと、剥離部D3からの反射波が相対的に大きくなり、健全部の波形に対し時間がずれた波形となるためである。
 また、信号波形S3における所定回数の反射を繰り返した反射波のピーク値としてのエコー高さH3は、健全部の信号波形S0’における同回数の反射を繰り返した反射波のエコー高さH0’と比べ大きく表れる。これは、剥離部D3の場合、健全部と比較してより反射率の大きい空気Aで殆ど反射し透過しないため、減衰が少ないからである。
 このように、2つの部材20’,30’よりなる積層体10’においても、上記第一実施形態と同様に、健全部及び剥離部の受信信号波形(反射波)に違いが生じる。よって、複数回反射した反射波のピーク時間T及び/又はエコー高さHを比較することで、第一の部材20’と第二の部材30’との界面における剥離部D3の検出が可能となる。
 最後に、本発明のさらに他の実施形態の可能性について説明する。
 上記第一、第二実施形態において、比較対象としてピーク時間Tを用いた。しかし、第三実施形態では、ピーク時間Tと共に、又は、ピーク時間Tに代えて反射波の位相を用いる。具体的には、予め、健全部において所定回数の反射を繰り返した反射波の位相を基準位相として求めておく。そして、検査部において同回数の反射を繰り返した反射波の位相を求め、これら位相を比較する。ここで、薄層40は、第二の部材30の音響インピーダンスより小となる材料よりなる。
 図18(a)に示す健全部の場合、探触子2から第一の部材20の表面21(積層体10の一側11)から入射した超音波の一部は、先の実施形態と同様に第二界面F2で符号P2に示す如く反射する。また、第二界面F2を透過した超音波は、薄層40と第二の部材30との音響インピーダンスの差により、符号P1’’で示す如く第一界面F1でも反射する。
 図18(b)に示す第一界面F1の剥離部D1においては、接着層40と空気Aとの界面が形成される。そのため、健全部とは異なり、第二境界面F2を透過した超音波は、その殆どが薄層40と空気Aとの界面で符号P1’に示す如く反射する。
 ここで、空気の音響インピーダンスは極めて小さく、薄層40の音響インピーダンスよりも小さい。よって、薄層40の音響インピーダンスが第二の部材30の音響インピーダンスよりも小さい場合、健全部の信号に対し位相が反転することとなる。すなわち、剥離部D1の有無により位相が反転することから、位相反転の有無を検出することにより、第一界面F1の剥離検出が可能となる。このように、本実施形態は、第一界面F1において剥離の有無に関わらず反射エコーが検出される場合に有利である。なお、上記第二実施形態においても、第一の部材20’が、第二の部材30’の音響インピーダンスより小となる材料よりなる場合、位相反転により第一の部材20’と第二の部材30’との界面F3の剥離を検出することは可能である。
 上記第一、第二実施形態において、所定回数の反射を繰り返した反射波のピーク時間T及びエコー高さHの双方を比較することで、各界面における剥離をそれぞれ検出可能とした。しかし、ピーク時間T及びエコー高さHの比較は、それぞれ単独で比較することも可能である。さらに、上記第三実施形態に示す位相の比較についても、単独で又は、ピーク時間T及び/又はエコー高さHと組み合わせて実施することも可能である。
 また、上記第一、第二実施形態において、伝搬時間として反射波のピーク時間を用いた。しかし、伝搬時間はピーク時間に限らず、例えば、反射波の立ち上がり(下がり)時間や、所定の振幅を超える(下がる)時間を用いても構わない。すなわち、伝搬時間は、健全部及び検査部の各波形において時間のずれが比較(識別)可能となる時間であればよい。
 上記各実施形態において、探触子2としては送受信を兼務する一振動子型探触子を用いた。しかし、送受信が別ユニットとなっている二振動子型探触子を用いても構わない。また、上記実施形態において探触子2として5MHzの探触子を用いたが、この周波数に限られるものではない。但し、周波数は大きいと減衰が大きく信号が小さくなり、周波数が小さいと波形が分離できないため、接着層40の材質や厚み等を考慮し設定するとよい。
 また、上記各実施形態において、探触子2を直接第一の部材20の表面21に押し当てて超音波を送受信したが、水浸法にも適用可能である。
 上記第一実施形態において、検査対象の積層体10の一部を構成する第一の部材20として鋼材を用いた。しかし、第一の部材は鋼材に限らず、他の金属、ガラス、樹脂等、超音波の伝達物質であればよい。また、検査対象となる積層体10は、上記第一実施形態の如きコンテナタンクに限られず、他のタンク、コンテナ等の容器の他、管の構成部分であっても構わない。さらに、第二の部材30も第一部材と同様に、超音波の伝達物質であれば、その材質はフッ素樹脂に特に限定されるものではなく、例えば硬質ゴムやエポキシ樹脂等の各種ライニング材に適用可能である。もちろん、ライニング材に限定されるものでもない。また、第二、第三実施形態における第一、第二の部材20(20’),30(30’)についても、同様である。すなわち、複数の部材は、異種材料及び同種材料のいずれの組み合わせであってもよい。
 また、上記第一、第三実施形態において、薄層40として、第一、第二部材20,30を接着させる接着剤により構成した。しかし、薄層40は接着層に限られるものではなく、例えば、蝋付け用の蝋付け剤により構成しても構わない。また、隣接する一方の部材の表層部の一部を変質させた変質部により薄層40を構成しても構わない。薄層40の材料には、この薄層40に隣接し超音波の入射位置から離隔した側に位置する部材の音響インピーダンスに近似する材料を選択することができる。健全部において、当該部材と薄層40との界面F1からの反射波P1が検出困難な程度に近似していれば、健全部との伝搬時間の比較により剥離の有無を検出することが可能となるからである。他方、薄層40の材料に、前者と異なり音響インピーダンスが近似しない材料を選択することも可能である。係る場合、薄層40の界面における反射波の減衰に差が生じやすく、健全部とのエコー高さの比較により剥離の有無を検出できる。
 上記第一、第三実施形態において、積層体10を第一、第二部材20,30を接着層40を介して積層した。しかし、積層させる部材の数は特に限定されるものではなく、3層以上であっても構わない。また、薄層40は、積層体10を構成する複数の部材間の少なくとも一部に介在していればよく、その薄層40の上下面41,42における剥離の検出が可能である。
 上記各実施形態において、剥離部に空気が存在している場合を例に説明したが、剥離部(腐食部)に液体が存在している場合も検出可能である。すなわち、健全部と内部に液体を有する剥離部との音圧反射率に違いがあれば、反射回数が大きくなるに従い音圧反射率の差によって、反射波のエコー高さにも差が生じるので、健全部と剥離部との区別が可能となる。さらに、内部に空気を有する模擬剥離部のエコー高さと比較することで、液体の有無の判定も可能である。なお、剥離(腐食)を検出する対象界面を構成する部材及び液体の材質によっては、反射波の伝搬時間の差によっても検出可能である。
 また、上記各実施形態においては、略平坦な探傷面を例に説明したが、曲面を有する積層体にも適用可能である。曲面の場合、積層体表面及び界面において超音波は散乱反射するため、反射回数が増加するに従い減衰が大きくなる。しかし、健全部及び検査部もいずれも同じ曲率を有する曲面であれば、曲率による影響は相殺されることとなる。従って、配管等の曲面を有する部材においても、剥離の有無を検出することが可能である。
 本発明は、例えば、複数の部材を積層させた積層体としての貯蔵容器や配管等における部材間に介在する薄層の各界面における剥離を検査する積層体の剥離検査方法及び剥離検査装置として利用することができる。例えば、CFRP材とアルミニウムとの接着、アルミニウムと銅との接着等の異材積層体における層間剥離の検出に適用可能である。さらに、アルミニウムと鋼の蝋付け、タービン翼とステライト(耐熱合金)の蝋付けやアルミニウム同士の半田付け等にも適用可能である。
1:剥離検査装置、2:探触子、2a:位置検出器、3:信号処理装置、3a:警告手段、4a:パルサー、4b:レシーバー、5:プリアンプ、6:フィルター、7:A/Dコンバーター、8:モニター、10:積層体、11:一側、20:第一部材(板材)、21:上面、22:下面、30:第二部材(ライニング材)、31:上面、32:下面、40:薄層(接着層)、41:上面、42:下面、D1~3:剥離部、E:検査部、F1:第一界面、F2:第二界面、F3:界面、H,H0~3:エコー高さ(ピーク値)、P1~P4,P1’~P3’:超音波、S0~2,S0’:信号波形、T,T0~2,T0’:ピーク時間

Claims (20)

  1. 複数の部材が積層した積層体の一側から超音波を入射すると共に多重反射波を受信し、受信した多重反射波を評価することにより層間剥離の有無を検査する積層体の剥離検査方法であって、
    前記複数の部材は、前記超音波の波長よりも薄い薄層を介して積層されており、予め、前記複数の部材及び前記薄層が互いに密接した健全部において多重反射波を受信し、その多重反射波における複数回の反射を繰り返した反射波の伝搬時間を求め、前記積層体の検査部において多重反射波を受信し、その多重反射波における前記複数回の反射を繰り返した反射波の伝搬時間を求め、これら伝搬時間を比較することにより前記一側から離隔する側に位置する前記薄層の第一界面における剥離の有無を検査する積層体の剥離検査方法。
  2. 複数の部材が積層した積層体の一側から超音波を入射すると共に多重反射波を受信し、受信した多重反射波を評価することにより層間剥離の有無を検査する積層体の剥離検査方法であって、
    前記複数の部材は、前記一側に位置する第一の部材と、この第一の部材の他側に設けられる第二の部材とを少なくとも含み、前記第二の部材は、前記超音波の波長よりも薄く形成されており、予め、前記第一の部材及び前記第二の部材が互いに密接した健全部において多重反射波を受信し、その多重反射波における複数回の反射を繰り返した反射波の伝搬時間を求め、前記積層体の検査部において多重反射波を受信し、その多重反射波における前記複数回の反射を繰り返した反射波の伝搬時間を求め、これら伝搬時間を比較することにより前記第一の部材と前記第二の部材との界面における剥離の有無を検査する積層体の剥離検査方法。
  3. 予め、前記健全部において受信した多重反射波における前記複数回の反射を繰り返した反射波のピーク値を求め、前記検査部において受信した多重反射波における前記複数回の反射を繰り返した反射波のピーク値を求め、これらピーク値を比較することにより前記一側に近接する側に位置する前記薄層の第二界面における剥離の有無を検査する請求項1記載の積層体の剥離検査方法。
  4. 前記薄層は、前記一側に位置する部材よりも前記薄層に隣接し且つ前記一側から離隔する側に位置する部材の音響インピーダンスに近似する材料よりなる請求項1又は3記載の積層体の剥離検査方法。
  5. 前記薄層は、この薄層に隣接し且つ前記一側から離隔する側に位置する部材の音響インピーダンスより小となる材料よりなり、予め、前記健全部において受信した多重反射波における前記複数回の反射を繰り返した反射波の位相を求め、前記検査部において受信した多重反射波における前記複数回の反射を繰り返した反射波の位相を求め、これら位相を比較することにより前記一側から離隔する側に位置する前記薄層の第一界面における剥離の有無を検査する請求項1又は3記載の積層体の剥離検査方法。
  6. 前記薄層は、ろう付け剤よりなる請求項1,3~5のいずれかに記載の積層体の剥離検査方法。
  7. 前記薄層は、接着剤よりなる請求項1,3~5のいずれかに記載の積層体の剥離検査方法。
  8. 前記薄層は、隣接する一方の部材の表層部の少なくとも一部が変質した変質部である請求項1,3~5のいずれかに記載の積層体の剥離検査方法。
  9. 前記複数の部材は、前記一側に位置する板材と、その板材の他側に設けられるライニング材とを少なくとも含み、前記薄層は、前記板材に前記ライニング材を接着させる接着層である請求項1,3~5のいずれかに記載の積層体の剥離検査方法。
  10. 前記板材は鋼材であり、前記ライニング材はフッ素樹脂ライニング材であり、前記接着層は前記鋼材よりも前記フッ素樹脂ライニング材の音響インピーダンスに近似する材料よりなる請求項9記載の積層体の剥離検査方法。
  11. 前記接着層が前記鋼材に前記フッ素樹脂ライニング材を接着させる接着剤とガラスクロスとよりなる請求項10記載の積層体の剥離検査方法。
  12. 前記積層体は、液体用コンテナタンクである請求項10記載の積層体の剥離検査方法。
  13. 予め、前記健全部において受信した多重反射波における前記複数回の反射を繰り返した反射波のピーク値を求め、前記検査部において受信した多重反射波における前記複数回の反射を繰り返した反射波のピーク値を求め、これらピーク値を比較することにより前記第一の部材と前記第二の部材との界面における剥離の有無を検査する請求項2記載の積層体の剥離検査方法。
  14. 前記第一の部材は、前記第二の部材の音響インピーダンスより小となる材料よりなり、予め、前記健全部において受信した多重反射波における前記複数回の反射を繰り返した反射波の位相を求め、前記検査部において受信した多重反射波における前記複数回の反射を繰り返した反射波の位相を求め、これら位相を比較することにより前記第一の部材と前記第二の部材との界面における剥離の有無を検査する請求項2又は13記載の積層体の剥離検査方法。
  15. 複数の部材が積層した積層体の一側から超音波を入射すると共に多重反射波を受信する探触子と、受信した多重反射波を評価する信号処理装置を備え、受信した多重反射波を評価することにより層間剥離の有無を検査する積層体の剥離検査装置であって、
    前記複数の部材は、前記超音波の波長よりも薄い薄層を介して積層されており、前記信号処理装置は、予め、前記複数の部材及び前記薄層が互いに密接した健全部において多重反射波を受信し、その多重反射波における複数回の反射を繰り返した反射波の伝搬時間を求め、前記積層体の検査部において多重反射波を受信し、その多重反射波における前記複数回の反射を繰り返した反射波の伝搬時間を求め、これら伝搬時間を比較することにより前記一側から離隔する側に位置する前記薄層の第一界面における剥離の有無を検査する積層体の剥離検査装置。
  16. 複数の部材が積層した積層体の一側から超音波を入射すると共に多重反射波を受信する探触子と、受信した多重反射波を評価する信号処理装置を備え、受信した多重反射波を評価することにより層間剥離の有無を検査する積層体の剥離検査装置であって、
    前記複数の部材は、前記一側に位置する第一の部材と、この第一の部材の他側に設けられる第二の部材とを少なくとも含み、前記第二の部材は、前記超音波の波長よりも薄く形成されており、前記信号処理装置は、予め、前記第一の部材及び前記第二の部材が互いに密接した健全部において多重反射波を受信し、その多重反射波における複数回の反射を繰り返した反射波の伝搬時間を求め、前記積層体の検査部において多重反射波を受信し、その多重反射波における前記複数回の反射を繰り返した反射波の伝搬時間を求め、これら伝搬時間を比較することにより前記第一の部材と前記第二の部材との界面における剥離の有無を検査する積層体の剥離検査装置。
  17. 前記信号処理装置は、求めた伝搬時間の差分が所定値以上の場合に警告する警告手段をさらに備える請求項15又は16記載の積層体の剥離検査装置。
  18. 前記信号処理装置は、前記探触子を走査して受信した多重反射波により走査画像を生成する請求項15~17のいずれかに記載の積層体の剥離検査装置。
  19. 前記探触子は、一振動子型探触子である請求項15~18のいずれかに記載の積層体の剥離検査装置。
  20. 前記探触子は、二振動子型探触子である請求項15~18のいずれかに記載の積層体の剥離検査装置。
PCT/JP2013/061955 2012-04-24 2013-04-23 積層体の剥離検査方法及び剥離検査装置 WO2013161834A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147028492A KR101672916B1 (ko) 2012-04-24 2013-04-23 적층체의 박리검사방법 및 박리검사장치
JP2014512623A JP5735706B2 (ja) 2012-04-24 2013-04-23 積層体の剥離検査方法及び剥離検査装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-099036 2012-04-24
JP2012099036 2012-04-24
JP2012099035 2012-04-24
JP2012-099035 2012-04-24

Publications (1)

Publication Number Publication Date
WO2013161834A1 true WO2013161834A1 (ja) 2013-10-31

Family

ID=49483143

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/061956 WO2013161835A1 (ja) 2012-04-24 2013-04-23 積層体の剥離検査方法及び剥離検査装置
PCT/JP2013/061955 WO2013161834A1 (ja) 2012-04-24 2013-04-23 積層体の剥離検査方法及び剥離検査装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061956 WO2013161835A1 (ja) 2012-04-24 2013-04-23 積層体の剥離検査方法及び剥離検査装置

Country Status (3)

Country Link
JP (2) JP5735706B2 (ja)
KR (2) KR101672916B1 (ja)
WO (2) WO2013161835A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2521888A (en) * 2013-08-13 2015-07-08 Dolphitech As Ultrasound testing
US9470662B2 (en) 2013-08-23 2016-10-18 Dolphitech As Sensor module with adaptive backing layer
JP2017044497A (ja) * 2015-08-24 2017-03-02 株式会社荏原製作所 測定方法、傾向管理方法及び診断方法。
CN107735680A (zh) * 2016-04-25 2018-02-23 非破坏检查株式会社 层叠体的剥离检查方法和剥离检查装置
US10073174B2 (en) 2013-09-19 2018-09-11 Dolphitech As Sensing apparatus using multiple ultrasound pulse shapes
US10503157B2 (en) 2014-09-17 2019-12-10 Dolphitech As Remote non-destructive testing
JP2021103100A (ja) * 2019-12-25 2021-07-15 非破壊検査株式会社 積層体の剥離検査方法及び剥離検査装置
WO2022049857A1 (ja) * 2020-09-03 2022-03-10 コニカミノルタ株式会社 超音波式検査装置、支持体の検査方法、及び、支持体の検査プログラム
WO2022259710A1 (ja) * 2021-06-10 2022-12-15 コニカミノルタ株式会社 波動解析装置、探傷装置、波動解析システム、波動解析方法および、プログラム
WO2023032597A1 (ja) * 2021-08-30 2023-03-09 三菱重工業株式会社 超音波検査方法、超音波検査装置およびプログラム
JP7427532B2 (ja) 2020-06-08 2024-02-05 非破壊検査株式会社 積層体の腐食検査方法及び腐食検査装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101639186B1 (ko) * 2014-03-27 2016-07-13 김종석 저장 탱크 라이닝의 초음파 검사 방법
CN108760876B (zh) * 2018-06-15 2022-03-22 爱德森(厦门)电子有限公司 一种导电复合材料粘接缺陷检测的装置及方法
CN112649515A (zh) * 2019-10-11 2021-04-13 新东工业株式会社 超声波检查装置以及超声波检查方法
WO2021163808A1 (en) * 2020-02-21 2021-08-26 UT Comp Inc. System and method for evaluation of a material system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147856A (ja) * 1988-11-29 1990-06-06 Kobe Steel Ltd 超音波探傷装置
JPH08327610A (ja) * 1995-05-31 1996-12-13 Mitsubishi Heavy Ind Ltd 剥離状欠陥検出方法
JP2000329751A (ja) * 1999-05-18 2000-11-30 Toshiba Corp 配管検査方法および装置
JP2003130854A (ja) * 2001-10-22 2003-05-08 Chubu Electric Power Co Inc 配管検査方法及び配管検査装置
JP2004361132A (ja) * 2003-06-02 2004-12-24 Mitsubishi Gas Chem Co Inc ライニングの剥離検査方法
JP2005147770A (ja) * 2003-11-12 2005-06-09 Hitachi Eng Co Ltd 超音波探傷装置
JP2006337030A (ja) * 2005-05-31 2006-12-14 Gnes Corp 超音波探傷方法及び探傷装置
JP2008203043A (ja) * 2007-02-19 2008-09-04 Global Nuclear Fuel-Japan Co Ltd 超音波による燃料棒破損同定方法と検査プローブ
JP2010223608A (ja) * 2009-03-19 2010-10-07 Jfe Engineering Corp 防食被覆の検査方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170850A (ja) * 1987-12-26 1989-07-05 Nkk Corp 部材の材質境界面検査方法
JPH01253651A (ja) * 1988-03-31 1989-10-09 Kawasaki Heavy Ind Ltd 超音波探傷方法及び超音波探傷装置
GB8908507D0 (en) 1989-04-14 1989-06-01 Fokker Aircraft Bv Method of and apparatus for non-destructive composite laminatecharacterisation
JPH0587781A (ja) * 1991-09-30 1993-04-06 Kobe Steel Ltd 積層材の超音波探傷方法
JPH09113489A (ja) * 1995-10-19 1997-05-02 Hitachi Ltd 材料の腐食検出装置
US6161435A (en) * 1998-07-21 2000-12-19 University Technology Corporation Method and apparatus for determining the state of fouling/cleaning of membrane modules
TW490559B (en) * 1999-07-30 2002-06-11 Hitachi Construction Machinery Ultrasonic inspection apparatus and ultrasonic detector
JP3955513B2 (ja) 2002-09-04 2007-08-08 株式会社日立製作所 欠陥検査装置及び欠陥検査方法
JP5022640B2 (ja) * 2006-06-28 2012-09-12 川崎重工業株式会社 超音波探傷方法及び超音波探傷装置
JP5154422B2 (ja) * 2007-03-29 2013-02-27 パナソニック株式会社 超音波測定方法及び装置
JP2009097890A (ja) 2007-10-12 2009-05-07 Seven Kogyo Kk 構造用集成材の非破壊検査方法及び装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147856A (ja) * 1988-11-29 1990-06-06 Kobe Steel Ltd 超音波探傷装置
JPH08327610A (ja) * 1995-05-31 1996-12-13 Mitsubishi Heavy Ind Ltd 剥離状欠陥検出方法
JP2000329751A (ja) * 1999-05-18 2000-11-30 Toshiba Corp 配管検査方法および装置
JP2003130854A (ja) * 2001-10-22 2003-05-08 Chubu Electric Power Co Inc 配管検査方法及び配管検査装置
JP2004361132A (ja) * 2003-06-02 2004-12-24 Mitsubishi Gas Chem Co Inc ライニングの剥離検査方法
JP2005147770A (ja) * 2003-11-12 2005-06-09 Hitachi Eng Co Ltd 超音波探傷装置
JP2006337030A (ja) * 2005-05-31 2006-12-14 Gnes Corp 超音波探傷方法及び探傷装置
JP2008203043A (ja) * 2007-02-19 2008-09-04 Global Nuclear Fuel-Japan Co Ltd 超音波による燃料棒破損同定方法と検査プローブ
JP2010223608A (ja) * 2009-03-19 2010-10-07 Jfe Engineering Corp 防食被覆の検査方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2521888B (en) * 2013-08-13 2018-01-03 Dolphitech As Ultrasound testing
GB2521888A (en) * 2013-08-13 2015-07-08 Dolphitech As Ultrasound testing
US10866314B2 (en) 2013-08-13 2020-12-15 Dolphitech As Ultrasound testing
US9470662B2 (en) 2013-08-23 2016-10-18 Dolphitech As Sensor module with adaptive backing layer
US10073174B2 (en) 2013-09-19 2018-09-11 Dolphitech As Sensing apparatus using multiple ultrasound pulse shapes
US10503157B2 (en) 2014-09-17 2019-12-10 Dolphitech As Remote non-destructive testing
US11762378B2 (en) 2014-09-17 2023-09-19 Dolphitech As Remote non-destructive testing
US11397426B2 (en) 2014-09-17 2022-07-26 Dolphitech As Remote non-destructive testing
JP2017044497A (ja) * 2015-08-24 2017-03-02 株式会社荏原製作所 測定方法、傾向管理方法及び診断方法。
KR20180025985A (ko) * 2016-04-25 2018-03-09 히하카이켄사 가부시키가이샤 적층체의 박리 검사 방법 및 박리 검사 장치
US10429358B2 (en) 2016-04-25 2019-10-01 Non-Destructive Inspection Company Limited. Method and apparatus for inspecting delamination of laminated body
CN107735680B (zh) * 2016-04-25 2018-11-23 非破坏检查株式会社 层叠体的剥离检查方法和剥离检查装置
KR101882838B1 (ko) 2016-04-25 2018-07-27 히하카이켄사 가부시키가이샤 적층체의 박리 검사 방법 및 박리 검사 장치
CN107735680A (zh) * 2016-04-25 2018-02-23 非破坏检查株式会社 层叠体的剥离检查方法和剥离检查装置
JP2021103100A (ja) * 2019-12-25 2021-07-15 非破壊検査株式会社 積層体の剥離検査方法及び剥離検査装置
JP7300383B2 (ja) 2019-12-25 2023-06-29 非破壊検査株式会社 積層体の剥離検査方法及び剥離検査装置
JP7427532B2 (ja) 2020-06-08 2024-02-05 非破壊検査株式会社 積層体の腐食検査方法及び腐食検査装置
WO2022049857A1 (ja) * 2020-09-03 2022-03-10 コニカミノルタ株式会社 超音波式検査装置、支持体の検査方法、及び、支持体の検査プログラム
TWI809492B (zh) * 2020-09-03 2023-07-21 日商柯尼卡美能達股份有限公司 超音波式檢查裝置、支撐體的檢查方法、以及支撐體的檢查程式
WO2022259710A1 (ja) * 2021-06-10 2022-12-15 コニカミノルタ株式会社 波動解析装置、探傷装置、波動解析システム、波動解析方法および、プログラム
WO2023032597A1 (ja) * 2021-08-30 2023-03-09 三菱重工業株式会社 超音波検査方法、超音波検査装置およびプログラム

Also Published As

Publication number Publication date
KR101513142B1 (ko) 2015-04-17
KR101672916B1 (ko) 2016-11-04
WO2013161835A1 (ja) 2013-10-31
JP5735706B2 (ja) 2015-06-17
KR20140148414A (ko) 2014-12-31
KR20140148415A (ko) 2014-12-31
JPWO2013161834A1 (ja) 2015-12-24
JPWO2013161835A1 (ja) 2015-12-24
JP5624250B2 (ja) 2014-11-12

Similar Documents

Publication Publication Date Title
JP5735706B2 (ja) 積層体の剥離検査方法及び剥離検査装置
Blomme et al. Air-coupled ultrasonic NDE: experiments in the frequency range 750 kHz–2 MHz
JP6182236B1 (ja) 積層体の剥離検査方法及び剥離検査装置
Leckey et al. Multiple-mode Lamb wave scattering simulations using 3D elastodynamic finite integration technique
JP5105384B2 (ja) 非破壊検査方法及び装置
JP2010276465A (ja) 超音波探傷装置及び方法
JP7300383B2 (ja) 積層体の剥離検査方法及び剥離検査装置
Zhao et al. Detection of metal, glass and plastic pieces in bottled beverages using ultrasound
JP3940580B2 (ja) 配管検査方法及び配管検査装置
JP2001021541A (ja) 多層部材の検査方法
JP2009145229A (ja) 境界面検査方法及び境界面検査装置
CA3128495A1 (en) A method and device for non-destructive testing of a plate material
CN106770670B (zh) 一种基于脉冲超声全息的复合材料缺陷判别方法
Park et al. Application of the ultrasonic propagation imaging system to an immersed metallic structure with a crack under a randomly oscillating water surface
Zhao et al. Foreign body detection in foods using the ultrasound pulse/echo method
Edwards et al. Detection of corrosion in offshore risers using guided ultrasonic waves
JP7427532B2 (ja) 積層体の腐食検査方法及び腐食検査装置
JP2971174B2 (ja) 多層樹脂成形品の非破壊検査方法
KR20130119834A (ko) 라이닝의 박리검사방법 및 박리검사장치
JPH095305A (ja) 欠陥検査方法及び装置
JPH0587781A (ja) 積層材の超音波探傷方法
JP4396140B2 (ja) ライニングの剥離検査方法
JP2013108824A (ja) 超音波剥離検出方法
Philtron et al. Guided wave phased array sensor tuning for improved defect detection and characterization
JP2000074888A (ja) 構造物表面の溶射被膜剥離検出方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781486

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014512623

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147028492

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201406717

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 13781486

Country of ref document: EP

Kind code of ref document: A1