WO2013144112A1 - Kontaktwerkstoff - Google Patents

Kontaktwerkstoff Download PDF

Info

Publication number
WO2013144112A1
WO2013144112A1 PCT/EP2013/056345 EP2013056345W WO2013144112A1 WO 2013144112 A1 WO2013144112 A1 WO 2013144112A1 EP 2013056345 W EP2013056345 W EP 2013056345W WO 2013144112 A1 WO2013144112 A1 WO 2013144112A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact material
oxide
contact
material according
magnesium stannate
Prior art date
Application number
PCT/EP2013/056345
Other languages
English (en)
French (fr)
Inventor
Michael Bender
Original Assignee
Umicore Ag & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore Ag & Co. Kg filed Critical Umicore Ag & Co. Kg
Priority to US14/388,171 priority Critical patent/US9928931B2/en
Priority to CN201380015121.7A priority patent/CN104245976B/zh
Priority to EP13715919.0A priority patent/EP2831298B1/de
Publication of WO2013144112A1 publication Critical patent/WO2013144112A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/12Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides
    • H01H1/02372Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te
    • H01H1/02376Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te containing as major component SnO2

Definitions

  • silver / metal and silver / metal oxide composites have proven themselves.
  • the most commonly used silver / metal composite is silver / nickel, the main application of which is at lower currents.
  • the AgSn02W03 Mo03 material is produced by powder metallurgy using the extrusion technique.
  • the powder metallurgical production has the advantage that additives of any kind and quantity can be used.
  • the material can be targeted to certain properties, e.g. Versch dipkraft or heating, to be optimized.
  • the combination of powder metallurgy with the extrusion technology allows a particularly high efficiency in the production of the contact pieces.
  • An internally oxidized AgSnO 2 In 2 O 3 material is also used. This
  • DE-OS 27 54 335 a contact material is described, which contains in addition to silver 1, 6 to 6.5 B12O3 and 0.1 to 7.5 SnO 2. This material can be produced both by internal oxidation and powder metallurgy. Such high B12O3
  • Tin contents of more than 4.5% may contain additions of 0.1-5 indium and 0.01-5 bismuth.
  • the metal alloy powder is compacted and then internally oxidized. These additives inhibit the inhomogeneous oxide precipitations customary in internal oxidation. Optimal contact properties shows this Material not.
  • No. 4,695,330 describes a special process for producing an internally oxidized material with 0.5-12 tin, 0.5-15 indium and 0.01-1.5 bismuth.
  • the powder metallurgical production of contact materials based on silver-tin oxide by mixing the powder, cold isostatic pressing, sintering and extrusion to semi-finished products is known for example from DE 43 19 137 and DE 43 31 526.
  • Electric, cadmium-free contact material containing at least one metal and magnesium stannate Mg 2 SnO 4.
  • Contact material according to one or more of the items 1 to 8, wherein the magnesium stannate present in the contact material wholly or partially has a particle size of 100 nm to 900 nm.
  • Contact material according to one or more of the items 1 to 10, wherein additionally borrowed oxides from the group consisting of magnesium oxide, copper oxide, bismuth oxide, tellurium oxide, tin oxide, indium oxide, tungsten oxide, molybdenum oxide, their mixed oxides or combinations thereof are included.
  • Contact material according to one or more of the items 1 to 1 1, wherein the further oxides, individually or in combination, may be contained in amounts of 0.5 wt .-% to 30 wt .-%.
  • Magnesium oxide MgO and tin oxide SnÜ2 in the corresponding molar ratio are intensively mixed (for example by wet or dry grinding), optionally dried and then for about 15 to about 25 hours at temperatures of about 1200 ° C calcined to about 1600 ° C.
  • a mixture of magnesium stannate and magnesium oxide can be obtained as shown in Figure 1, with about 4.4% magnesium oxide present with about 95.6% magnesium stannate.
  • By using an excess of about 10% magnesium oxide up to 98% Mg2SnO4 magnesium stannate can be achieved.
  • the present patent application also relates to the use of a contact material containing at least one metal and magnesium stannate for the production of electrical contact pieces, as well as electrical contacts containing such a contact material as further described.
  • a contact material containing at least one metal and magnesium stannate for the production of electrical contact pieces, as well as electrical contacts containing such a contact material as further described.
  • silver or silver alloys can be used as the metal.
  • Silver alone also has excellent properties for many applications.
  • Cadmium on the other hand, is not included and may be present in the maximum range of unavoidable impurities.
  • magnesium stannate Mg2SnÜ4 as an additive 0.5 wt .-% to 5
  • the magnesium stannate Mg2SnÜ4 is present in the contact material as a disperse phase, while the metal forms the continuous phase.
  • the magnesium stannate Mg 2 Sn 4 can have particle sizes of at least 1 ⁇ m. In particular, at least 60% of the magnesium stannate have particle sizes of 1 ⁇ m or more, which is advantageous in particular in the case of reshaping further processing, for example by extrusion. If contact pieces are individually sintered, instead of or in combination with magnesium stannate, Mg 2 Sn 4 with a particle size of 1 ⁇ m or more may also be used
  • the contact material may have further oxides.
  • the contact material may additionally contain oxides from the group consisting of magnesium oxide, copper oxide, bismuth oxide, tellurium oxide, tin oxide, indium oxide, tungsten oxide, molybdenum oxide or combinations thereof, their mixed oxides or combinations thereof.
  • Bi 6 WO 2 may be present as mixed oxide.
  • the above oxides may be present individually or in total in amounts of from 0.5% to 30% by weight, or in amounts from 2% to 20% by weight, up to 7% by weight, in particular be contained up to 2 wt .-%, or in amounts of 0.5 wt .-% up to 7 wt .-% or in amounts of 0.5 wt .-% up to 2 wt .-%.
  • tin oxide is optionally used with indium oxide, tellurium oxide or both as further oxides.
  • the total oxide content, ie the combined content of magnesium stannate is Mg 2 SnO 4 up to 60% by weight.
  • at least 60% of the further oxide, that is, for example, of the tin oxide has particle sizes of 1 ⁇ m or more, which is advantageous, in particular, in the case of reshaping further processing, for example by extrusion.
  • the further oxide can also be used particle sizes of 20 nm to 2 ⁇ or 50 nm to less than 2000 nm, in particular 100 nm to 1800 nm or 200 nm to 900 nm. In this case, advantageously 60% of the further oxide particle sizes of 100 nm to 900 nm.
  • the contact material can be obtained by a manufacturing method selected from powder metallurgy production, internal oxidation or combinations thereof.
  • powder metallurgical production of the material is by mixing a powder of the metal or an alloy with magnesium stannate Mg2Sn04 or a
  • Magnesium stannate precursor compound and optionally other oxides cold sostatisches static compression of the powder mixture, and sintering at temperatures of about 500 ° C to about 940 ° C and optionally forming the sintered material, such as by extrusion to wires or profiles, the contact material.
  • Magnesium stannate precursor compound can be used compounds different from magnesium stannate, which decompose under the process conditions in magnesium stannate and optionally other decomposition products.
  • the further decomposition products must either be volatile in the process conditions or be substances whose presence does not disturb the properties of the product obtained, ideally substances whose presence is desired, such as the metal used or another oxide selected from the group consisting of magnesium oxide, copper oxide, Bismuth oxide, tellurium oxide, tin oxide, indium oxide, tungsten oxide, molybdenum oxide or their combinations, their mixed oxides or combinations thereof.
  • Suitable compounds are, for example, alkoxides of tin and magnesium, such as, for example, hexakis (2-methyl-2-propanolato)] bis [(2-methyl-2-propanolato) tin] di-magnesium, CAS no. 139731-82-1.
  • too fine magnesium stannate or else other oxides can be coarsened by a heat treatment in which, for example, annealed at temperatures of about 700 ° C to about 1400 ° C until more than 60 wt.% Of magnesium stannate or other oxides have a particle size of more have 1 ⁇ .
  • magnesium stannate (Mg 2 SnO 4) powders with smaller particle sizes may be used, in which case additives such as sintering activators are advantageous, for example copper oxide CuO, nanoscale silver powder or other nanomaterials.
  • magnesium stannate can be used in which 60 wt.% Even before mixing with the metal powder have a particle size of at least 1 ⁇ , but also magnesium stannate (Mg2Sn04), in which
  • 60% of the magnesium stannate has particle sizes of 50 nm to less than 1000 nm, in particular 60% of the magnesium stannate particle sizes of 100 nm to 900 nm.
  • an alloy of silver with base metals is made pyrometallurgically and often heat-treated in pure oxygen under overpressure to form a contact material.
  • Such processes are known from the literature and are described, for example, in EP 1505164 and EP 0508055.
  • a metal powder may be used which is e.g. contains further oxides which have been produced by internal oxidation, such as, for example, silver containing tin oxide. Further processing then proceeds by powder metallurgy, that is to say by addition of magnesium stannate and / or further oxides and / or metal powder, subsequent pressing, sintering and, if appropriate, forming, such as, for example, Extrusion.
  • the contact material contains in particular silver and magnesium stannate and moreover only conventional impurities.
  • the contact material magnesium stannate in an amount of 0.2 to 20 wt .-% and ad 100 wt .-% silver and conventional impurities.
  • the contact material contains magnesium stannate, which has at least 60% of a particle size of 1 ⁇ m or more, in an amount of 0.2 to 20% by weight and ad 100% by weight of silver and conventional impurities.
  • the crushed powder mixture is calcined at 1400 ° C for 20 hours in air and then ground to a particle size (d50) of 2 ⁇ (Fritsch Pulverisette 5, 2 mm Zr0 2 balls, dry isopropanol).
  • d50 particle size
  • the resulting product was found to consist of 95.6% dimagnesium stannate (Mg 2 Sn0 4 ) and 4.4% cassiterite (SnO 2 ).
  • FIG. 2 shows the burnup in mg per switching operation for both contact materials which have an oxide content of 17.07% by volume.
  • the lower column shows the change at the fixed contact, the upper column at the moving contact. It can be seen that the magnesium stannate (Mg 2 SnO 4) and silver based
  • FIG. 3 shows the contact resistances in mOhms for both contact materials, which are given as mean values (respectively right-hand column) and as 99% values. It can be seen that the averages are comparable, but the 99% values are significantly lower for the magnesium stannate (Mg 2 SnO 4) and silver-based contact material, and thus significantly improved over the silver-tin oxide material.
  • Mg 2 SnO 4 magnesium stannate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Contacts (AREA)
  • Powder Metallurgy (AREA)

Abstract

Die vorliegende Patentanmeldung betrifft einen neuartigen Kontaktwerkstoff, Verfahren zu seiner Herstellung sowie dessen Verwendung.

Description

Kontaktwerkstoff
Für die Herstellung von elektrischen Kontakten in Niederspannungsschaltgeräten haben sich Silber/Metall- und Silber/Metalloxid-Verbundwerkstoffe bewährt. Als Sil- ber/Metall-Verbundwerkstoff wird am häufigsten Silber/Nickel eingesetzt, dessen Hauptanwendungsgebiet bei niedrigeren Strömen liegt.
Bestimmte Zusätze, wie WO3 oder M0O3, haben sich bei Schaltgeräten, die hohen thermischen Belastungen standhalten müssen, bewährt. Besonders gut bewährte sich
AgSnÜ2 mit diesen Zusätzen in Schaltgeräten mit Nennströmen von mehr als 100 A und unter sogenannter AC4-Belastung. Bei geringeren Schaltströmen ist allerdings die Lebensdauer dieser Werkstoffe relativ kurz.
Der AgSn02W03 Mo03-Werkstoff wird pulvermetallurgisch über die Strangpresstechnik hergestellt. Die pulvermetallurgische Herstellung hat den Vorteil, dass Zusätze beliebiger Art und Menge verwendet werden können. Damit kann der Werkstoff gezielt auf bestimmte Eigenschaften hin, wie z.B. Verschweisskraft oder Erwärmung, optimiert werden. Zudem erlaubt die Kombination von Pulvermetallurgie mit der Strangpresstechnik eine besonders hohe Wirtschaftlichkeit bei der Herstellung der Kontaktstücke. Ein innerlich oxidierter AgSn02 ln203-Werkstoff findet ebenfalls Verwendung. Dieser
Werkstoff, beschrieben in DE-OS 24 28 147, enthält neben 5-10 % Sn02 noch 1 -6 % ln2Ü3. Eine gezielte Änderung der Konzentrationen der Oxidzusätze, um bestimmte
Schalteigenschaften zu beeinflussen, ist häufig aufgrund der Oxidationskinetik nicht immer möglich.
In der DE-OS 27 54 335 wird ein Kontaktwerkstoff beschrieben, der neben Silber 1 ,6 bis 6,5 B12O3 und 0,1 bis 7,5 Sn02 enthält. Dieser Werkstoff kann sowohl über die innere Oxidation als auch pulvermetallurgisch hergestellt werden. Derart hohe B12O3-
Gehalte führen aber zu einer Versprödung, so dass der Werkstoff nur über Einzelsintern, nicht aber über die wirtschaftlichere Strangpresstechnik hergestellt werden kann. Aus der US 4,680,162 ist ein innerlich oxidierter AgSn02-Werkstoff bekannt, der bei
Zinngehalten von mehr als 4,5 % Zusätze an 0,1 -5 Indium und 0,01 -5 Wismut enthal- ten kann. Das Metallegierungspulver wird kompaktiert und anschliessend innerlich oxidiert. Durch diese Zusätze werden die bei innerlicher Oxidation üblichen inhomogenen Oxidausscheidungen unterbunden. Optimale Kontakteigenschaften zeigt dieser Werkstoff jedoch nicht.
In der Veröffentlichung "Investigation into the Switching behaviour of new Silber-Tin- Oxide Contact materials in Proc. of the 14th Int. Conf. on El. Contacts, Paris, 1988 June 20-24, S. 405-409" wird über das Schaltverhalten pulvermetallurgisch hergestell- ter elektrischer Kontakte aus Silber-Zinnoxid berichtet, die weitere zwei Oxide aus der Reihe Wismutoxid, Indiumoxid, Kupferoxid, Molybdänoxid oder Wolframoxid enthalten können, wobei über die genaue Zusammensetzung dieser Werkstoffe nichts ausgesagt wird.
In der US 4,695,330 wird ein spezielles Verfahren zur Herstellung eines innerlich oxi- dierten Werkstoffes mit 0,5-12 Zinn, 0,5-15 Indium und 0,01 -1 ,5 Wismut beschrieben. Die pulvermetallurgische Herstellung von Kontaktwerkstoffen auf Silber-Zinnoxid-Basis durch Mischen der Pulver, kaltisostatischem Pressen, Sintern und Strangpressen zu Halbzeug ist beispielsweise aus der DE 43 19 137 und DE 43 31 526 bekannt.
Aus der US 4,141 ,727 sind Kontaktwerkstoffe aus Silber bekannt, die Wismut-Zinnoxid als Mischoxidpulver enthalten. Weiterhin wird in der DE 29 52 128 das Zinnoxidpulver vor dem Vermischen mit Silberpulver bei 900°C bis 1600° C geglüht.
Durch ansteigende Anforderungen an die Kontaktwerkstoffe genügen die bekannten Materialien den Anforderungen nicht immer oder für alle Anwendungen.
Beschreibung 1 . Elektrischer, cadmiumfreier Kontaktwerkstoff enthaltend mindestens ein Metall und Magnesiumstannat Mg2Sn04.
2. Kontaktwerkstoff nach Punkt 1 , wobei das Metall Silber oder eine Silberlegierung ist.
3. Kontaktwerkstoff nach Punkt 1 oder 2, wobei 0,2 bis 60 Volumenprozent Magne- siumstannat enthalten sind.
4. Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 3, wobei 5 Gew.-% bis 60 Gew.-% Magnesiumstannat enthalten sind.
5. Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 3, wobei 0,5 Gew.- % bis 13 Gew.-% Magnesiumstannat enthalten sind. Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 3, wobei 0,5 Gew.- % bis 5 Gew.-% Magnesiumstannat enthalten sind. Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 6, wobei mindestens 60 Gew.-% des im Kontaktwerkstoff vorhandenen Magnesiumstannats eine Teilchengröße von 1 μηι oder mehr aufweist. Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 7, wobei das im Kontaktwerkstoff vorhandene Magnesiumstannat ganz oder teilweise eine Teilchengröße von 20 nm bis 1 μηι aufweist. Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 8, wobei das im Kontaktwerkstoff vorhandene Magnesiumstannat ganz oder teilweise eine Teilchengröße von 100 nm bis 900 nm aufweist. Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 9, enthaltend weitere Oxide. Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 10, wobei zusätz- lieh Oxide aus der Gruppe bestehend aus Magnesiumoxid, Kupferoxid, Wismutoxid, Telluroxid, Zinnoxid, Indiumoxid, Wolframoxid, Molybdänoxid, deren Mischoxide oder deren Kombinationen enthalten sind. Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 1 1 , wobei die weiteren Oxide, einzeln oder in Kombination, in Mengen von 0,5 Gew.-% bis 30 Gew.-% enthalten sein können. Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 12, wobei die weiteren Oxide, einzeln oder in Kombination, in Mengen von 2 Gew.-% bis 20 Gew.-% oder von 0,5 Gew.-% bis 7 Gew.-% enthalten sein können. Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 13, wobei als weitere Oxide Zinnoxid, optional mit Indiumoxid und/oder Telluroxid, eingesetzt werden.
Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 14, wobei mindestens 60 Gew.-% der im Kontaktwerkstoff vorhandenen weiteren Oxide eine Teilchengröße von 1 μηι oder mehr aufweisen. 16. Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 14, wobei die weiteren Oxide Teilchengrößen von 20 nm bis 2 μηι oder 50 nm bis kleiner 2000 nm, oder 100 nm bis 1800 nm oder 200 nm bis 900 nm aufweisen.
17. Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 14, wobei 60 % der weiteren Oxids Teilchengrößen von 100 nm bis 900 nm aufweisen.
18. Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 17, wobei der Gesamtoxidgehalt bis zu 60 Gew.-% beträgt.
19. Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 18, erhältlich durch pulvermetallurgischer Herstellung. 20. Verwendung eines Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 19 zur Herstellung von elektrischen Kontaktstücken.
21 . Elektrischer Kontakt enthaltend einen Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 19.
22. Bewegliches Schaltstück eines Schaltgerätes oder elektrisches Schaltgerät, enthaltend einen elektrischen Kontakt nach Punkt 21.
23. Verfahren zur Herstellung eines Kontaktwerkstoffes aus Metall und Magnesi- umstannat Mg2Sn04 durch Vermischen von pulverförmigem Magnesiumstannat
Mg2Sn04 oder einer Magnesiumstannat-Vorläuferverbindung mit mindestens einem Metallpulver und gegebenenfalls weiteren Oxiden, Pressen der Mischung um einen Preßling zu erhalten und Sintern des Preßlings um einen Sinterling zu erhalten.
24. Verfahren nach Punkt 23, wobei der erhaltene Sinterling in einem weiteren Verfahrensschritt umgeformt, insbesondere stranggepreßt, wird,
25. Verfahren nach Punkt 23, wobei der Sinterling ein Kontaktstück ist. 26. Verfahren nach Punkt 25, wobei der Sinterling zusätzlich Kupferoxid enthält.
27. Kontaktwerkstoff, erhältlich nach einem Verfahren der Punkte 23 oder 24. Detaillierte Beschreibung
Es war die Aufgabe, einen neuen Metall-Verbundwerkstoff bereit zu stellen, der beim Einsatz als Kontaktmaterial in elektrischen Schaltgeräten gegenüber verbreiteten silberbasierten Silber-Zinnoxid Verbundwerkstoffen ein verbessertes Abbrandverhalten und einen niedrigeren Kontaktwiderstand zeigt. Diese Aufgabe wird gelöst durch einen Metall-Verbundwerkstoff, welcher mindestens ein Metall und Magnesiumstannat enthält. Magnesiumstannat, Mg2SnC>4, ist eine literaturbekannte Verbindung, deren Herstellung beispielsweise beschrieben ist in Materials in Electronics, 16 (2005), Seiten 193 bis 196, Journal of Power Sources 97-98 (2001 ), Seiten 223-225 oder Ceramics International 27 (2001 ), Seiten 325 bis 334. Zur Herstellung dieser Verbindung können
Magnesiumoxid MgO und Zinnoxid SnÜ2 im entsprechenden molaren Verhältnis (also MgO:SnC>2 = 2:1 ) intensiv vermischt werden (beispielsweise durch Nass- oder Trockenmahlung), optional getrocknet und dann für etwa 15 bis etwa 25 Stunden bei Temperaturen von etwa 1200°C bis etwa 1600°C kalziniert werden. An die Atmosphäre sind im Allgemeinen keine besonderen Anforderungen zu stellen, so daß an der Luft kalziniert werden kann. Auf diese Weise kann ein Gemisch aus Magnesiumstannat und Magnesiumoxid erhalten wie in Figur 1 dargestellt werden, wobei etwa 4,4% Magnesiumoxid mit etwa 95,6 % Magnesiumstannat vorliegen. Durch Einsetzen eines Überschusses von etwa 10% Magnesiumoxid können bis zu 98 % Magnesiumstannat Mg2SnÜ4 erreicht werden.
Die vorliegende Patentanmeldung betrifft auch die Verwendung eines Kontaktwerkstoffs enthaltend mindestens ein Metall und Magnesiumstannat zur Herstellung von elektrischen Kontaktstücken, sowie elektrische Kontakte enthaltend einen solchen Kontaktwerkstoff wie weiter beschrieben. Als Metall können insbesondere Silber oder Silberlegierungen eingesetzt werden. Gut geeignet sind beispielsweise Silber-Nickel-Legierungen. Silber alleine weist für viele Anwendungszwecke ebenfalls ausgezeichnete Eigenschaften auf. Cadmium ist hingegen nicht enthalten und darf maximal im Bereich unvermeidbarer Verunreinigungen vorhanden sein. Magnesiumstannat kann im Allgemeinen in Mengen von 0,02 bis 60 Vol.%, oder 0,02 Vol.%, insbesondere 0,2 Vol.%, bis 25 Vol.%, (= bis 13 Gew.%), insbesondere 2 Vol.%, bis 25 Vol.%, oder 0,02 Vol.%, insbesondere 0,2 Vol.%, bis 60 Vol.%. (= bis Gew.%), insbesondere 2 Vol.%, bis 60 Vol.%. oder 0,02 Vol.%, insbe- sondere 0,2 Vol.%, bis 5 Vol.% (= bis 2,34 Gew.%), eingesetzt werden. Die zuzugebenden Mengen an Magnesiumstannat Mg2SnÜ4 können entsprechend der Anwendung in vorteilhaften Mengen ausgewählt werden, wobei für stranggepresste Werkstoffe der Zusatz von etwa 0,02 Vol.% bis 25 Vol.% (= 0 - 13 Gew.%) oder 0,5 Gew.-% bis 13 Gew., bei einzelgepressten Werkstoffen (ähnlich bekannten Ag/W und Ag/WC - Werkstoffen) 0,02 Vol% bis 60 Vol.%. (= 0 - 40 Gew.%) oder 0,5 Gew.-% bis 40 Gew.- %. Bei Einsatz von Magnesiumstannat Mg2SnÜ4 als Additiv sind 0,5 Gew.-% bis 5
Gew.-%, oder 0,5 Gew.-% bis 1 Gew.-% oder 1 Gew.-% bis 2,5 Gew.-% oder 0,02 Vol.% bis 5 Vol.% (= 0 - 2,34 Gew.%) besonders geeignet. Das Magnesiumstannat Mg2SnÜ4 liegt im Kontaktwerkstoff als disperse Phase vor, während das Metall die kontinuierliche Phase bildet. Das Magnesiumstannat Mg2SnÜ4 kann Teilchengrößen von mindestens 1 μηη aufweisen. Insbesondere weisen mindestens 60% des Magnesi- umstannats Teilchengrößen von 1 μηη oder mehr auf, was insbesondere bei umformender Weiterverarbeitung wie beispielsweise durch Strangpressen vorteilhaft ist. Werden Kontaktstücke einzeln gesintert, so können stattdessen oder in Kombination mit Magnesiumstannat Mg2SnÜ4 mit einer Teilchengröße von 1 μηη oder mehr auch
Teilchengrößen von 20 nm bis 1 μηη oder 50 nm bis kleiner 1000 nm, insbesondere 100 nm bis 900 nm verwendet werden. In diesem Fall weisen vorteilhaft 60 % des Magnesiumstannats Teilchengrößen von 100 nm bis 900 nm auf. Zusätzlich kann der Kontaktwerkstoff noch weitere Oxide aufweisen. Insbesondere kann der Kontaktwerkstoff zusätzlich Oxide aus der Gruppe bestehend aus Magnesiumoxid, Kupferoxid, Wismutoxid, Telluroxid, Zinnoxid, Indiumoxid, Wolframoxid, Molybdänoxid oder deren Kombinationen, deren Mischoxide oder Kombinationen daraus enthalten. Als Mischoxid kann beispielsweise Bi6WOi2 enthalten sein. Die obigen Oxide können einzeln oder insgesamt in Mengen von 0,5 Gew.-% bis 30 Gew.-%, oder in Mengen von 2 Gew.-% bis 20 Gew.-%, zu bis zu 7 Gew.-%, insbesondere bis zu 2 Gew.-% enthalten sein, oder in Mengen von 0,5 Gew.-% bis zu 7 Gew.-% oder in Mengen von 0,5 Gew.-% bis zu 2 Gew.-%. In einer Ausführungsform wird Zinnoxid, optional mit Indiumoxid, Telluroxid oder beiden als weitere Oxide ver- wendet. In einer weiteren Ausführungsform beträgt der Gesamtoxidgehalt, also der kombinierte Gehalt von Magnesiumstannat Mg2Sn04 bis zu 60 Gew.-%. In einer Ausführungsform weisen mindestens 60% des weiteren Oxids, also z.B. des Zinnoxids, Teilchengrößen von 1 μηη oder mehr auf, was insbesondere bei umformender Weiterverarbeitung wie beispielsweise durch Strangpressen vorteilhaft ist.
In einer Ausführungsform kann das weitere Oxid auch Teilchengrößen von 20 nm bis 2 μηη oder 50 nm bis kleiner 2000 nm, insbesondere 100 nm bis 1800 nm oder 200 nm bis 900 nm verwendet werden. In diesem Fall weisen vorteilhaft 60 % des weiteren Oxids Teilchengrößen von 100 nm bis 900 nm auf.
Der Kontaktwerkstoff kann durch eine Herstellungsweise ausgewählt aus pulvermetallurgischer Herstellung, innerer Oxidation oder deren Kombinationen erhalten werden. Bei pulvermetallurgischer Herstellung des Werkstoffs wird durch Mischen eines Pulvers aus dem Metall oder einer Legierung mit Magnesiumstannat Mg2Sn04 oder einer
Magnesiumstannat-Vorläuferverbindung und gegebenenfalls weiteren Oxiden, kalti- sostatischem Pressen des Pulvergemischs, und Sintern bei Temperaturen von etwa 500°C bis etwa 940°C und gegebenenfalls Umformen des gesinterten Materials, etwa durch Strangpressen zu Drähten oder Profilen, der Kontaktwerkstoff erhalten. Als
Magnesiumstannat-Vorläuferverbindung können von Magnesiumstannat verschiedene Verbnindungen eingesetzt werden, welche unter den Verfahrensbedingungen in Magnesiumstannat und gegebenenfalls weiteren Zersetzungsprodukten zerfallen. Die weiteren Zersetzungsprodukte müssen entweder bei den Verfahrensbedingungen flüchtig sein oder Stoffe sein, deren Anwesenheit die Eigenschaften des erhaltenen Produktes nicht stören, idealerweise Stoffe, deren Anwesenheit erwünscht ist, wie das verwendete Metall oder ein weiteres Oxid, aus der Gruppe bestehend aus Magnesiumoxid, Kupferoxid, Wismutoxid, Telluroxid, Zinnoxid, Indiumoxid, Wolframoxid, Molybdänoxid oder deren Kombinationen, deren Mischoxide oder Kombinationen daraus. Geeignete Vernindungen sind beispielsweise Alkoholate des Zinns und Magnesiums, wie beispielsweise Hexakis^-(2-methyl-2-propanolato)]bis[(2-methyl-2- propanolato)Zinn]di-Magnesium, CAS-Nr. 139731-82-1 .
Es ist sinnvoll, wenn das verwendete Magnesiumstannat bzw. die Magnesiumstannat- Vorläuferverbindung und/oder weitere Oxide bereits vor dem Vermischen mit dem Pulver aus dem Metall oder einer Legierung, wie z.B. Silberpulver, die gewünschte Teilchengröße bzw. Teilchengrößenverteilung aufweist, oder zu mehr als 60 Gew.% bereits vor dem Vermischen mit dem Pulver aus dem Metall oder einer Legierung, wie z.B. Silberpulver, eine Teilchengrösse von mehr als 1 μηη aufweisen. Hierbei kann zu feines Magnesiumstannat oder auch andere Oxide durch eine Wärmebehandlung vergröbert werden in dem z.B. bei Temperaturen von etwa 700°C bis etwa 1400°C geglüht wird, bis mehr als 60 Gew.% des Magnesiumstannats bzw. der weiteren Oxide eine Teilchengrösse von mehr als 1 μηη aufweisen. Die Verwendung dieser vergröberten Oxidpulver liefert nach dem Sintern der Presslinge einen Werkstoff, der duktiler ist als Werkstoffe mit geringeren Oxidteilchengrössen und kann daher leichter verformt werden, was bei weiterer umformender Behandlung vorteilhaft sein kann, wie zum Beispiel Strangpressen. Beim Einzelsintern von Kontakten können wie oben beschrie- ben auch Magnesiumstannat (Mg2Sn04) Pulver mit kleineren Teilchengrößen verwendet werden, wobei in diesem Fall Additive, wie Sinteraktivatoren vorteilhaft sind, zum Beispiel Kupferoxid CuO, nanoskaliges Silberpulver oder andere Nanomaterialien. In diesem Fall kann natürlich auch Magnesiumstannat verwendet werden, bei welchem 60 Gew.% bereits vor dem Vermischen mit dem Metallpulver eine Teilchengrösse von mindestens 1 μηη aufweisen, aber auch Magnesiumstannat (Mg2Sn04), bei welchem
60 % des Magnesiumstannats Teilchengrößen von 50 nm bis weniger als 1000 nm, insbesondere 60 % des Magnesiumstannats Teilchengrößen von 100 nm bis 900 nm aufweist.
Bei der Herstellung durch innere Oxidation wird beispielsweise eine Legierung aus Silber mit unedlen Metallen pyrometallurgisch hergestellt und oft in reinem Sauerstoff unter Überdruck wärmebehandelt, so daß ein Kontaktwerkstoff entsteht. Derartige Verfahren sind literaturbekannt und beispielsweise beschrieben in EP 1505164 und EP 0508055.
Bei der Herstellung durch innere Oxidation in Kombination mit pulvermetallurgischer Herstellung kann beispielsweise als Pulvers aus dem Metall oder einer Legierung ein Metallpulver eingesetzt werden, welches z.B. weitere Oxide enthält, welche durch innere Oxidation erzeugt wurden, wie zum Beispiel Silber mit einem Gehalt an Zinnoxid. Die weitere Verarbeitung verläuft dann pulvermetallurgisch, also durch Zufügen von Magnesiumstannat und/oder weiteren Oxiden und/oder Metallpulver, anschließen- dem Pressen, Sintern und gegebenenfalls Umformwn, wie z.B. Strangpressen.
In einer Ausführungsform enthält der Kontaktwerkstoff insbesondere Silber und Magnesiumstannat und darüber hinaus lediglich übliche Verunreinigungen. In einer Ausführungsform enthält der Kontaktwerkstoff Magnesiumstannat in einer Menge von 0,2 bis 20 Gew.-% und ad 100 Gew.-% Silber sowie übliche Verunreinigungen.
In einer weiteren Ausführungsform der Erfindung enthält der Kontaktwerkstoff Magnesiumstannat, welches zu mindestens 60% eine Teilchengröße von 1 μηη oder mehr aufweist, in einer Menge von 0,2 bis 20 Gew.-% und ad 100 Gew.-% Silber sowie übliche Verunreinigungen.
Beispiele
Beispiel 1
Herstellung von Magnesiumstannat 13,03 g Sn02 und 6,97 g MgO wurden eingewogen und 2 x 5 Minuten bei 250 U/min nass vermählen (Fritsch Pulverisette 5, 2 mm Zr02-Kugeln, trockenes Isopropanol). Das Pulvergemisch wird im Trockenschrank (Temperatur) getrocknet und anschließend mit einem Mörser zerkleinert.
Die zerkleinerte Pulvermischung wird bei 1400°C 20 Stunden an Luft kalziniert und anschließend bis zu einer Partikelgröße (d50) von 2 μηη gemahlen (Fritsch Pulverisette 5, 2 mm Zr02-Kugeln, trockenes Isopropanol). Durch Röntgenbeugung am Reaktionsprodukt und Rietveld-Verfeinerung wurde festgestellt, daß das entstandene Produkt zu 95,6 % aus Dimagnesiumstannat (Mg2Sn04) und zu 4,4 % aus Cassiterite (Sn02) besteht. Herstellung des Kontaktwerkstoffs enthaltend Mg2Sn04
914,4 g Silberpulver (Umicore, verdüstes Silberpulver, auf <42 μηη abgesiebt ) werden mit 17,07 Volumenprozent Mg2Sn04-Pulver (85,6 g) in einem Mischaggregat (MTI- Mischer 8 Min., 1000 U/min) gemischt. Die Pulvermischung wird in eine plastische zylinderförmige Form gefüllt und bei einem Druck von 800 bar kaltisostatisch zu einem Bolzen gepresst. Dieser Bolzen wird 2 h bei 820 °C gesintert und anschließend strang- gepresst.
Vergleichsbeispiel 2: Herstellung des Kontaktwerkstoffs enthaltend Sn02 880 g Silberpulver (gleiches Silberpulver wie in Beispiel 1 ) werden mit 120 g entsprechend 17,07 Vol.% Sn02-Pulver in einem Mischaggregat (MTI-Mischer , 8 Min., 1000 U/min) gemischt. Die Pulvermischung wird in eine plastische zylinderförmige Form gefüllt und bei einem Druck von 800 bar kaltisostatisch zu einem Bolzen gepresst. Dieser Bolzen wird 2 h bei 820 °C gesintert und anschließend stranggepresst.
Es wurden mit Proben beider Kontaktwerkstoffe Zugversuche gemäß EN ISO 6892-1 durchgeführt und die Bruchdehnung bei beiden Kontaktwerkstoffen zu 27% bestimmt. Aus den hergestellten Kontaktwerkstoffen werden nach dem Strangpressen Kontaktstücke gefertigt (5 mm Draht, Halbzeug, wird aufgelötet und abgedreht, dann geschaltet) und mit diesen Kontaktstücken Schaltversuche in einem Ausschalter mit 500 Schaltungen, einer Stromstärke von 350 A und Blasfeld: 30 mT/kA durchgeführt. Die Ergebnisse sind in Figuren 2 und 3 dargestellt.
Figur 2 zeigt für beide Kontaktwerkstoffe, die einen Oxidgehalt von je 17,07 Volumenprozent aufweisen, den Abbrand in mg pro Schaltvorgang. Die jeweils untere Säule zeigt die Veränderung am festen Kontakt, die obere Säule am beweglichen Kontakt. Es ist erkennbar, daß der auf Magnesiumstannat (Mg2Sn04) und Silber basierende
Kontaktwerkstoff verbesserte Abbrandeigenschaften zeigt.
Figur 3 zeigt für beide Kontaktwerkstoffe die Kontaktwiderstände in mOhm, die als Mittelwerte (jeweils rechte Säule) und als 99%-Werte angegeben sind. Es ist ersichtlich, daß die Mittelwerte vergleichbar, die 99%-Werte jedoch bei dem auf Magnesiumstannat (Mg2Sn04) und Silber basierenden Kontaktwerkstoff deutlich niedriger und damit gegenüber dem Silber-Zinnoxid -Werkstoff erheblich verbessert sind.

Claims

Patentansprüche
1 . Elektrischer, cadmiumfreier Kontaktwerkstoff enthaltend mindestens ein Metall und Magnesiumstannat Mg2SnÜ4.
2. Kontaktwerkstoff nach Anspruch 1 , wobei das Metall Silber oder eine Silberlegie- rung ist.
3. Kontaktwerkstoff nach Anspruch 1 oder 2, wobei 0,2 bis 60 Volumenprozent Magnesiumstannat enthalten sind.
4. Kontaktwerkstoff nach einem oder mehreren der Ansprüche 1 bis 3, wobei 5 Gew.-% bis 60 Gew.-% Magnesiumstannat enthalten sind.
5. Kontaktwerkstoff nach einem oder mehreren der Ansprüche 1 bis 4, wobei mindestens 60 Gew.-% des im Kontaktwerkstoff vorhandenen Magnesiumstannats eine Teilchengröße von 1 μηη oder mehr aufweist.
6. Kontaktwerkstoff nach einem oder mehreren der Ansprüche 1 bis 4, wobei das im Kontaktwerkstoff vorhandene Magnesiumstannat ganz oder teilweise eine Teilchengröße von 20 nm bis 1 μηη aufweist.
7. Kontaktwerkstoff nach einem oder mehreren der Ansprüche 1 bis 6, wobei zusätzlich weitere Oxide aus der Gruppe bestehend aus Magnesiumoxid, Kupferoxid, Wismutoxid, Telluroxid, Zinnoxid, Indiumoxid, Wolframoxid, Molybdänoxid, deren Mischoxide oder deren Kombinationen enthalten sind.
8. Kontaktwerkstoff nach einem oder mehreren der Ansprüche 1 bis 7, erhältlich durch pulvermetallurgischer Herstellung.
9. Verwendung eines Kontaktwerkstoff nach einem oder mehreren der Ansprüche 1 bis 8 zur Herstellung von elektrischen Kontaktstücken.
10. Elektrischer Kontakt enthaltend einen Kontaktwerkstoff nach einem oder mehre- ren der Ansprüche 1 bis 8.
1 1 . Bewegliches Schaltstück eines Schaltgerätes oder elektrisches Schaltgerät, enthaltend einen elektrischen Kontakt nach Anspruch 10.
12. Verfahren zur Herstellung eines Kontaktwerkstoffes aus Metall und Magnesiumstannat Mg2SnÜ4 durch Vermischen von pulverförmigem Magnesiumstannat
Mg2SnÜ4 oder einer Magnesiumstannat-Vorläuferverbindung mit mindestens einem Metallpulver und gegebenenfalls weiteren Oxiden, Pressen der Mischung um einen Preßling zu erhalten und Sintern des Preßlings um einen Sinterling zu erhalten.
13. Verfahren nach Anspruch 12, wobei der erhaltene Sinterling in einem weiteren Verfahrensschritt umgeformt, insbesondere stranggepreßt, wird,
14. Verfahren nach Anspruch 12, wobei der Sinterling ein Kontaktstück ist.
15. Verfahren nach Anspruch 14, wobei der Sinterling zusätzlich Kupferoxid enthält.
16. Kontaktwerkstoff, erhältlich nach einem Verfahren der Ansprüche 12 oder 13.
PCT/EP2013/056345 2012-03-26 2013-03-26 Kontaktwerkstoff WO2013144112A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/388,171 US9928931B2 (en) 2012-03-26 2013-03-26 Contact material
CN201380015121.7A CN104245976B (zh) 2012-03-26 2013-03-26 触点材料
EP13715919.0A EP2831298B1 (de) 2012-03-26 2013-03-26 Kontaktwerkstoff

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12161247.7A EP2644723B1 (de) 2012-03-26 2012-03-26 Verbundwerkstoff
EP12161247.7 2012-03-26

Publications (1)

Publication Number Publication Date
WO2013144112A1 true WO2013144112A1 (de) 2013-10-03

Family

ID=48092916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/056345 WO2013144112A1 (de) 2012-03-26 2013-03-26 Kontaktwerkstoff

Country Status (4)

Country Link
US (1) US9928931B2 (de)
EP (2) EP2644723B1 (de)
CN (1) CN104245976B (de)
WO (1) WO2013144112A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103613118B (zh) * 2013-11-15 2015-08-19 广东光华科技股份有限公司 一种高纯度锡酸镁粉体的制备方法
CN103681015B (zh) * 2013-11-28 2015-12-02 昆明理工大学 一种复相金属氧化物增强银基电触头材料的制备方法
CN103710556B (zh) * 2013-12-27 2015-08-05 桂林电器科学研究院有限公司 一种粉末轧制法制备银氧化锡触头材料的工艺
US10699851B2 (en) * 2016-06-22 2020-06-30 Teledyne Scientific & Imaging, Llc Sintered electrical contact materials
US10290434B2 (en) 2016-09-23 2019-05-14 Honeywell International Inc. Silver metal oxide alloy and method of making
CN115537594B (zh) * 2022-10-28 2023-04-25 台州慧模科技有限公司 一种银基电触头材料及其制备方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2428147A1 (de) 1973-07-20 1975-02-06 Chugai Electric Ind Co Ltd Elektrisches kontaktmaterial
JPS5019352B1 (de) * 1970-12-28 1975-07-05
US4072515A (en) * 1973-07-05 1978-02-07 Sumitomo Electric Industries, Ltd. Electrical contact material
DE2754335A1 (de) 1976-12-03 1978-06-08 Matsushita Electric Ind Co Ltd Elektrischer kontaktwerkstoff und verfahren zu dessen herstellung
DE2952128A1 (de) 1979-12-22 1981-06-25 Degussa Ag, 6000 Frankfurt Verfahren zur herstellung von halbzeugen aus silber-zinnoxid fuer elektrische kontakte
US4680162A (en) 1984-12-11 1987-07-14 Chugai Denki Kogyo K.K. Method for preparing Ag-SnO system alloy electrical contact material
US4695330A (en) 1985-08-30 1987-09-22 Chugai Denki Kogyo K.K. Method of manufacturing internal oxidized Ag-SnO system alloy contact materials
JPH01312046A (ja) * 1988-06-13 1989-12-15 Chugai Electric Ind Co Ltd 銀一酸化物電気接点材料
EP0508055A1 (de) 1991-04-12 1992-10-14 Mitsubishi Materials Corporation Auf Silberoxid basierendes elektrisches Kontaktmaterial
DE4319137A1 (de) 1992-06-10 1993-12-16 Duerrwaechter E Dr Doduco Werkstoff für elektrische Kontakte auf der Basis von Silber-Zinnoxid oder Siler-Zinkoxid
WO1993026021A1 (de) * 1992-06-10 1993-12-23 Doduco Gmbh + Co. Werkstoff für elektrische kontakte auf der basis von silber-zinnoxid oder silber-zinkoxid
DE4331526A1 (de) 1992-09-16 1994-03-17 Duerrwaechter E Dr Doduco Werkstoff für elektrische Kontakte auf der Basis von Silber-Zinnoxid oder Silber-Zinkoxid und Verfahren zu seiner Herstellung
DE19607183C1 (de) * 1996-02-27 1997-04-10 Degussa Gesinterter Silber-Eisen-Werkstoff für elektrische Kontakte und Verfahren zu seiner Herstellung
EP1505164A2 (de) 2003-08-08 2005-02-09 Mitsubishi Materials C.M.I. Corporation Elektrischer Kontakt mit hoher elektrischer Leitfähigkeit, hergestellt aus intern oxidiertem Silber-Oxid Material für elektromagnetisches Relais
DE102009059690A1 (de) * 2009-12-19 2011-06-22 Umicore AG & Co. KG, 63457 Oxidationsverfahren
WO2011086167A1 (de) * 2010-01-15 2011-07-21 Umicore Ag & Co. Kg Elektrisches kontaktelement und verfahren zur herstellung eines elektrischen kontaktelements

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3811910A (en) * 1972-05-17 1974-05-21 Ford Motor Co Two-step method of making a color picture tube
US4647477A (en) * 1984-12-07 1987-03-03 Kollmorgen Technologies Corporation Surface preparation of ceramic substrates for metallization
JPH04311543A (ja) * 1991-04-09 1992-11-04 Chugai Electric Ind Co Ltd Ag−SnO−InO電気接点材料とその製法
CN1082235C (zh) * 1999-05-10 2002-04-03 昆明理工大学 合成法制备银-二氧化锡电接触材料

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019352B1 (de) * 1970-12-28 1975-07-05
US4072515A (en) * 1973-07-05 1978-02-07 Sumitomo Electric Industries, Ltd. Electrical contact material
DE2428147A1 (de) 1973-07-20 1975-02-06 Chugai Electric Ind Co Ltd Elektrisches kontaktmaterial
DE2754335A1 (de) 1976-12-03 1978-06-08 Matsushita Electric Ind Co Ltd Elektrischer kontaktwerkstoff und verfahren zu dessen herstellung
US4141727A (en) 1976-12-03 1979-02-27 Matsushita Electric Industrial Co., Ltd. Electrical contact material and method of making the same
DE2952128A1 (de) 1979-12-22 1981-06-25 Degussa Ag, 6000 Frankfurt Verfahren zur herstellung von halbzeugen aus silber-zinnoxid fuer elektrische kontakte
US4680162A (en) 1984-12-11 1987-07-14 Chugai Denki Kogyo K.K. Method for preparing Ag-SnO system alloy electrical contact material
US4695330A (en) 1985-08-30 1987-09-22 Chugai Denki Kogyo K.K. Method of manufacturing internal oxidized Ag-SnO system alloy contact materials
JPH01312046A (ja) * 1988-06-13 1989-12-15 Chugai Electric Ind Co Ltd 銀一酸化物電気接点材料
EP0508055A1 (de) 1991-04-12 1992-10-14 Mitsubishi Materials Corporation Auf Silberoxid basierendes elektrisches Kontaktmaterial
DE4319137A1 (de) 1992-06-10 1993-12-16 Duerrwaechter E Dr Doduco Werkstoff für elektrische Kontakte auf der Basis von Silber-Zinnoxid oder Siler-Zinkoxid
WO1993026021A1 (de) * 1992-06-10 1993-12-23 Doduco Gmbh + Co. Werkstoff für elektrische kontakte auf der basis von silber-zinnoxid oder silber-zinkoxid
DE4331526A1 (de) 1992-09-16 1994-03-17 Duerrwaechter E Dr Doduco Werkstoff für elektrische Kontakte auf der Basis von Silber-Zinnoxid oder Silber-Zinkoxid und Verfahren zu seiner Herstellung
DE19607183C1 (de) * 1996-02-27 1997-04-10 Degussa Gesinterter Silber-Eisen-Werkstoff für elektrische Kontakte und Verfahren zu seiner Herstellung
EP1505164A2 (de) 2003-08-08 2005-02-09 Mitsubishi Materials C.M.I. Corporation Elektrischer Kontakt mit hoher elektrischer Leitfähigkeit, hergestellt aus intern oxidiertem Silber-Oxid Material für elektromagnetisches Relais
DE102009059690A1 (de) * 2009-12-19 2011-06-22 Umicore AG & Co. KG, 63457 Oxidationsverfahren
WO2011086167A1 (de) * 2010-01-15 2011-07-21 Umicore Ag & Co. Kg Elektrisches kontaktelement und verfahren zur herstellung eines elektrischen kontaktelements

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CERAMICS INTERNATIONAL, vol. 27, 2001, pages 325 - 334
DATABASE WPI Section Ch Week 197531, Derwent World Patents Index; Class L03, AN 1975-51740W, XP002703252 *
JOURNAL OF POWER SOURCES, vol. 97-98, 2001, pages 223 - 225
KITAURA MAMORU ET AL: "Characterization of zinc magnesium stannate phosphor fine particles synthesized by electromagnetic wave heating", JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY: PART B, AVS / AIP, vol. 28, no. 2, 30 March 2010 (2010-03-30), MELVILLE, NEW YORK, NY, US, pages C2C20 - C2C25, XP012144039, ISSN: 1071-1023, DOI: 10.1116/1.3273328 *
MATERIALS IN ELECTRONICS, vol. 16, 2005, pages 193 - 196
PROC. OF THE 14TH INT. CONF. ON EI. CONTACTS, vol. 24, 20 June 1988 (1988-06-20), pages 405 - 409

Also Published As

Publication number Publication date
CN104245976A (zh) 2014-12-24
CN104245976B (zh) 2017-06-09
EP2831298A1 (de) 2015-02-04
EP2644723A1 (de) 2013-10-02
EP2831298B1 (de) 2019-05-08
US9928931B2 (en) 2018-03-27
EP2644723B1 (de) 2017-01-18
US20150060741A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
EP2831298B1 (de) Kontaktwerkstoff
EP0170812B1 (de) Verfahren zur Herstellung von Sinterkontaktwerkstoffen
EP0440620B1 (de) Halbzeug für elektrische kontakte aus einem verbundwerkstoff auf silber-zinnoxid-basis und pulvermetallurgisches verfahren zu seiner herstellung
DE2932275A1 (de) Material fuer elektrische kontakte aus innen oxidierter ag-sn-bi-legierung
EP0586410B1 (de) Kontaktwerkstoff auf silberbasis zur verwendung in schaltgeräten der energietechnik sowie verfahren zur herstellung von kontaktstücken aus diesem werkstoff
EP0645049B1 (de) Werkstoff für elektrische kontakte auf der basis von silber-zinnoxid oder silber-zinkoxid
EP0725154B1 (de) Sinterwerkstoff auf der Basis Silberzinnoxid für elektrische Kontakte und Verfahren zu dessen Herstellung
EP0774529B1 (de) Silber-Eisen-Werkstoff für elektrische Schaltkontakte (I)
EP0586411B1 (de) Kontaktwerkstoff auf silberbasis zur verwendung in schaltgeräten der energietechnik sowie verfahren zur herstellung von kontaktstücken aus diesem werkstoff
DE19607183C1 (de) Gesinterter Silber-Eisen-Werkstoff für elektrische Kontakte und Verfahren zu seiner Herstellung
EP0152606A2 (de) Kontaktwerkstoff und Herstellung von Kontaktstücken
EP0369283B1 (de) Sinterkontaktwerkstoff für Niederspannungsschaltgeräte der Energietechnik, insbesondere für Motorschütze
DE3911904A1 (de) Pulvermetallurgisches verfahren zum herstellen eines halbzeugs fuer elektrische kontakte aus einem verbundwerkstoff auf silberbasis mit eisen
WO2007020006A1 (de) Verwendung von indium-zinn-mischoxid für werkstoffe auf silberbasis
DE19543208C1 (de) Silber-Eisen-Werkstoff für elektrische Schaltkontakte (II)
EP0338401B1 (de) Pulvermetallurgisches Verfahren zum Herstellen eines Halbzeugs für elektrische Kontakte aus einem Verbundwerkstoff auf Silberbasis mit Eisen
DE3421759A1 (de) Sinterkontaktwerkstoff fuer niederspannungsschaltgeraete der energietechnik
DE3405218C2 (de)
EP0916146B1 (de) Verfahren zur herstellung eines erzeugnisses aus einem kontaktwerkstoff auf silberbasis, kontaktwerkstoff sowie erzeugnis aus dem kontaktwerkstoff
DE10012250B4 (de) Kontaktwerkstoffe auf Basis Silber-Eisen-Kupfer
EP0311134A1 (de) Pulvermetallurgisch hergestellter Werkstoff für elektrische Kontakte aus Silber mit Graphit und Verfahren zu seiner Herstellung
EP0876670A2 (de) Verfahren zur herstellung eines formstücks aus einem kontaktwerkstoff auf silberbasis
DE2458476A1 (de) Elektrisches kontaktmaterial
DE2642690A1 (de) Sinterkontaktwerkstoff fuer elektrische kontakte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13715919

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14388171

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013715919

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014021939

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014021939

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140904