EP0645049B1 - Werkstoff für elektrische kontakte auf der basis von silber-zinnoxid oder silber-zinkoxid - Google Patents

Werkstoff für elektrische kontakte auf der basis von silber-zinnoxid oder silber-zinkoxid Download PDF

Info

Publication number
EP0645049B1
EP0645049B1 EP93912924A EP93912924A EP0645049B1 EP 0645049 B1 EP0645049 B1 EP 0645049B1 EP 93912924 A EP93912924 A EP 93912924A EP 93912924 A EP93912924 A EP 93912924A EP 0645049 B1 EP0645049 B1 EP 0645049B1
Authority
EP
European Patent Office
Prior art keywords
tin
oxide
oxides
carbides
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93912924A
Other languages
English (en)
French (fr)
Other versions
EP0645049A1 (de
Inventor
Volker Behrens
Thomas Honig
Andreas Kraus
Karl E. Saeger
Rainer Schmidberger
Theodor Staneff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doduco Solutions GmbH
Original Assignee
Doduco GmbH and Co KG Dr Eugen Duerrwaechter
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doduco GmbH and Co KG Dr Eugen Duerrwaechter filed Critical Doduco GmbH and Co KG Dr Eugen Duerrwaechter
Publication of EP0645049A1 publication Critical patent/EP0645049A1/de
Application granted granted Critical
Publication of EP0645049B1 publication Critical patent/EP0645049B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides
    • H01H1/02372Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te
    • H01H1/02376Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te containing as major component SnO2
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/059Making alloys comprising less than 5% by weight of dispersed reinforcing phases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof

Definitions

  • contact materials based on silver-tin oxide Due to their better environmental compatibility and their at least partially more favorable lifespan, contact materials based on silver-tin oxide have started to replace the previously preferred silver-cadmium oxide materials. Since the tin oxide tends to be poorly conductive when exposed to arcing because of its higher thermal resistance To form slag layers on the contact surface, however, the heating behavior under continuous current is unsatisfactory for contacts made of silver-tin oxide. In order to eliminate this disadvantage, additives in powder form are added to the material, which is generally produced by powder metallurgy, which leads to a lower temperature at the contact point.
  • Tungsten and molybdenum compounds have become known in the patent literature as suitable additives in this sense (DE-A-29 33 338, DE-A-31 02 067, DE-A-32 32 627, EP-A-0024349).
  • Bismuth and germanium compounds have also been mentioned as additives (DE-A-31 02 067 and DE-A-32 32 627).
  • These additives help to wet the tin oxide particles so that when the contact piece surface melts locally under the action of a switching arc, the tin oxide remains in fine suspension. In addition to this positive effect with regard to the heating behavior under continuous current, these additives also have undesirable side effects.
  • the plastic deformability of the silver-tin oxide contact materials which is not entirely satisfactory anyway, for the improvement of which, for example, a pretreatment of the tin oxide powder is carried out by annealing (DE-A-29 52 128) is made worse by the additives because they have an embrittling effect.
  • Another disadvantage, in particular of the tungsten and molybdenum compounds, is that they - especially in switching operation under AC1 load (DIN 57660 part 102) - favor a material transfer that leads to accelerated combustion and thus to a reduction in the service life.
  • a contact material with a low tendency to weld and a contact temperature that is as low as possible under constant current load should be achieved by specifically producing a structure in which areas in which little or no metal oxide is contained alternate with areas, in which all or the vast majority of the metal oxide component is contained in a fine distribution.
  • a composite powder is produced which contains the predominant part of the tin oxide and the further oxides and / or carbides as well as part of the silver. This composite powder is mixed with the remaining silver powder and possibly with the smaller rest of the metal oxides, compacted, sintered and shaped. In this way, a material that can be used well is obtained, but by a relatively complex process.
  • the present invention is based on the object of creating a material of the type mentioned at the outset which, by means of oxidic or carbide additives, exhibits heating behavior which is just as favorable as that of the known contact materials, but is less brittle.
  • Another advantage of the invention is that the lower proportion of the chosen additive increases the service life of contact pieces made of the material, because the additives, which, like the molybdenum oxide, tend to evaporate under the influence of an arc, lead to a lower proportion thanks to their lower proportion Blistering on the contact surface and thus less burning.
  • Such a material can be obtained by mixing tin oxide powder and the powdery additive with one another and annealing them together so that the tin oxide powder particles are wetted by the additive and / or part of the additive diffuses into the surface area of the tin oxide particles, a single-phase mixed oxide ( a new chemical compound) or a two-phase or multi-phase oxide mixture can be formed.
  • the reaction spraying process can also advantageously be used to obtain a tin oxide powder which is superficially coated with the other oxides by, in a modification of the procedure described above, suspending a finely divided tin oxide powder in the salt solution instead of a tin salt and this suspension in a hot oxidizing atmosphere sprays.
  • the material expediently contains 5 to 20% by weight, preferably 8 to 15% by weight, tin oxide, and thus the tin oxide as desired can be kept in suspension by the additives in the molten phase occurring under the action of arcing, the tin oxide powder should contain 0.01 to 10% by weight of the further oxidic or carbidic additive, but expediently not more than 5% by weight.
  • the addition of the other oxides and carbides should be chosen as low as possible in order not to exceed a contact point temperature specified under the specified conditions of use, for which much smaller quantities are sufficient than in the prior art.
  • a tin oxide powder which contains only 0.1 to 1.5% by weight of the further oxide or carbide is preferably used.
  • the tin oxide areas in the material are expediently less than 100 ⁇ m, preferably less than 10 ⁇ m in diameter, but should not be less than 0.5 ⁇ m in order not to cause the material to become solidified in dispersion.
  • Molybdenum oxide is particularly preferred as an additive because of its particularly favorable effect on the heating behavior.
  • the teaching according to the invention can be applied to contact materials based on silver with zinc oxide. In such materials, practically no additives are used today, but efforts have so far been made to reduce the contact point temperature by constructive measures. By using a zinc oxide enriched with further oxides and / or carbides according to the invention, a lowering of the contact point temperature can also be achieved with this type of material.
  • a tin oxide-molybdenum oxide composite powder with 1% by weight of molybdenum oxide is produced by spraying an aqueous solution of tin-II-chloride and molybdenum-IV-chloride in a reactor heated to approx. 950 ° C. oxidizing atmosphere, whereby a tin oxide-molybdenum oxide composite powder precipitates, in the powder particles of which the tin oxide and the molybdenum oxide are present in a very fine distribution.
  • 12% by weight of the molybdenum oxide-doped tin oxide powder thus produced are mixed intensively with 88 parts by weight of a silver powder with a particle size of less than 40 ⁇ m, a cylindrical block of 50 kg weight is pressed cold isostatically therefrom, sintered in air and in the process Maintained at 820 ° C for 1.5 hours.
  • the sintered block is coated with silver, placed hot in a reverse extrusion press and pressed through an extrusion die with a branching extrusion opening, resulting in two flat strands that have a silver-tin oxide surface on one side and a well-soldered one on the other side. and have weldable silver surface.
  • the strands are then rolled flat and then have a width of 8 cm and a thickness of 2 mm.
  • the first example is modified such that instead of a solution of tin-II-chloride and molybdenum-IV-chloride, a solution of molybdenum-IV-chloride is sprayed in which a tin oxide powder with a particle size smaller than 5 ⁇ m is suspended.
  • This wire is tapered to a diameter of 1.4 mm and then processed into contact rivets with a head diameter of 3.2 mm and a shaft diameter of 1.47 mm.
  • the new material proves to be clearly superior to the state-of-the-art contact materials both in the AC service life test and when switching DC lamp loads.
  • a mixed oxide powder is produced from an aqueous solution of zinc chloride and meta-tungstic acid by spraying the solution into a reactor heated to 1100 ° C.
  • the zinc-tungsten-oxide mixture obtained in this way has a tungsten oxide content of 1% by weight and an average particle diameter of 2.4 ⁇ m.
  • the oxide powder is mixed with silver powder and further processed into contact wafers.
  • An aqueous solution of tin acetate and ammonium heptamolybdate is sprayed into a reactor at a temperature of 800 ° C., thus obtaining an oxide powder with a molybdenum oxide content of 350 ppm and an average particle diameter of 1.9 ⁇ m.
  • This powder is used to produce a contact material, as in Example 1, which is subjected to a service life test in accordance with test category AC1 in a switching device with an output of 37 kW. This lifetime test is interrupted in order to carry out a warming test with continuous current.
  • FIG. 1 The result of this heating test is shown in FIG. 1 and compared with an analog test for a state-of-the-art material made of 88% by weight Ag, 11.6% by weight SnO2 and 0.4% by weight MoO3 (FIG. 2 ).
  • the heating behavior of the novel material is just as good as that of the conventional material, although the novel material, based on the entire contact material, only has a molybdenum oxide content of 42 ppm, while the state-of-the-art material for the same advantageous result requires an amount of molybdenum oxide of 0.4% by weight, that is around a hundred times as much.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Contacts (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Description

  • Die Erfindung geht aus von einem Werkstoff für elektrische Kontakte auf der Basis von Silber-Zinnoxid, bestehend aus Silber oder einer hauptsächlich Silber enthaltenden Legierung, Zinnoxid und weiteren Oxiden oder Karbiden von Wolfram, Molybdän, Vanadium, Wismut, Titan und/oder Kupfer. Ein solcher Werkstoff ist aus der WO 89/09478 bekannt.
  • Aufgrund ihrer besseren Umweltverträglichkeit und ihrer zumindest teilweise günstigeren Lebensdauer haben Kontaktwerkstoffe auf der Basis von Silber-Zinnoxid begonnen, die bis dahin bevorzugten Silber-Cadmiumoxidwerkstoffe zu ersetzen. Da das Zinnoxid wegen seiner höheren thermischen Beständigkeit dazu neigt, unter Lichtbogeneinwirkung schlecht leitende Schlackenschichten an der Kontaktoberfläche zu bilden, ist jedoch das Erwärmungsverhalten unter Dauerstrom bei Kontakten aus Silber-Zinnoxid unbefriedigend. Um diesen Nachteil zu beseitigen, werden dem in der Regel pulvermetallurgisch hergestellten Werkstoff Zusätze in Pulverform beigegeben, die zu einer niedrigeren Temperatur an der Kontaktstelle führen. Als geeignete Zusätze in diesem Sinn sind in der Patentliteratur vor allem Wolfram- und Molybdänverbindungen bekanntgeworden (DE-A-29 33 338, DE-A-31 02 067, DE-A-32 32 627, EP-A-0024349). Als Zusätze sind ferner Wismut- und Germaniumverbindungen genannt worden (DE-A-31 02 067 und DE-A-32 32 627). Diese Zusätze helfen, Zinnoxidpartikel zu benetzen, so dass dann, wenn die Kontaktstückoberfläche unter der Wirkung eines Schaltlichtbogens lokal aufschmilzt, das Zinnoxid feinteilig in Suspension bleibt. Neben dieser positiven Wirkung hinsichtlich des Erwärmungsverhaltens unter Dauerstrom haben diese Zusätze jedoch auch unerwünschte Nebenwirkungen. Die ohnehin nicht ganz befriedigende plastische Verformbarkeit der Silber-Zinnoxid-Kontaktwerkstoffe, zu deren Verbesserung beispielsweise eine Vorbehandlung des Zinnoxidpulvers durch Glühen durchgeführt wird (DE-A-29 52 128), wird durch die Zusätze noch verschlechtert, weil diese versprödend wirken. Das gilt insbesondere für Wismut- und Molybdänoxid. Ein weiterer Nachteil insbesondere der Wolfram- und Molybdänverbindungen besteht darin, dass sie - insbesondere im Schaltbetrieb unter AC1-Belastung (DIN 57660 Teil 102) - eine Materialübertragung begünstigen, die zu beschleunigtem Abbrand und damit zu einer Verringerung der Lebensdauer führt.
  • Nach der Lehre der WO 89/09478 soll ein Kontaktwerkstoff mit geringer Verschweißneigung und möglichst niedriger Kontakttemperatur unter Dauerstrombelastung dadurch erreicht werden, dass man gezielt ein Gefüge herstellt, in welchem Bereiche, in denen kein oder nur sehr wenig Metalloxid enthalten ist, abwechseln mit Bereichen, in denen die gesamte oder der weit überwiegende Teil der Metalloxidkomponente in feiner Verteilung enthalten ist. Zu diesem Zweck wird unter anderem ein Verbundpulver hergestellt, welches den überwiegenden Teil des Zinnoxids und der weiteren Oxide und/oder Karbide sowie einen Teil des Silbers enthält. Dieses Verbundpulver wird mit dem restlichen Silberpulver und ggfs. mit dem kleineren Rest der Metalloxide vermischt, verdichtet, gesintert und umgeformt. Auf diese Weise erhält man zwar einen gut brauchbaren Werkstoff, jedoch nach einem verhältnismässig aufwendigen Verfahren.
  • Die EP-A 0 369 283 offenbart einen Sinterkontaktwerkstoff für Niederspannungsschaltgeräte der Energietechnik, insbesondere für Motorschütze, der Zusammensetzung AgSnO₂Bi₂O₃CuO. Er wird hergestellt durch innere Oxidation eines AgSnBiCu-Legierungspulvers, welches mit einer kleineren Menge Wismut-Zirkonat und/oder Wismut-Titanatpulver gemischt, gepreßt und gesintert wird. Dabei verarmen die AgSnO₂Bi₂O₃CuO-Partikel am Rand an Oxiden, so dass zwischen den Partikeln ein Silbernetzwerk entsteht, welches hohe Preßdichten ermöglicht. Sowohl die Herstellung des Legierungspulvers als auch dessen innere Oxidation sind jedoch aufwendig und machen das Verfahren teuer.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen Werkstoff der eingangs genannten Art zu schaffen, der durch oxidische oder karbidische Zusätze ein ebenso günstiges Erwärmungsverhalten zeigt wie die bekannten Kontaktwerkstoffe, jedoch weniger spröde ist.
  • Diese Aufgabe wird gelöst durch einen Werkstoff mit den in den Ansprüchen 1 oder 2 angegebenen Merkmalen. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
  • Die Erfindung macht nicht den naheliegenden Versuch, neue Zusätze aufzufinden, die die Kontaktstellentemperatur senken, aber nicht oder weniger versprödend wirken, vielmehr werden erfindungsgemäss Zusätze verwendet, die zu diesem Zweck bereits bekannt sind und von denen man weiß, dass sie versprödend wirken. Erfindungsgemäss wird jedoch der gewählte Zusatz nicht als gesondertes Pulver neben Silberpulver und Zinnoxidpulver (DE-A-29 33 338, DE-A-31 02 067, DE-A-32 32 627) und auch nicht als Bestandteil eines Silber-Zinnoxid-Verbundpulvers eingesetzt, welches mit weiterem Silberpulver und ggfs. Metalloxidpulvern gemischt wird (WO 89/09478), vielmehr wird ein Werkstoff gebildet, welcher in einer aus Silber oder aus einer hauptsächlich Silber enthaltenden Legierung bestehenden Matrix Zinnoxidbereiche eingelagert, enthält, in welchen die weiteren Oxide und/oder Karbide an das Zinnoxid gebunden konzentriert sind und die Silbermatrix - abgesehen von etwaigen löslichen Anteilen - frei ist von den weiteren Oxiden und Karbiden. In diesen Zinnoxidbereichen können die Oxide als einphasiges Mischoxid oder als zweiphasiges oder mehrphasiges Oxidgemisch (z.B. in einem Teilchenverbund oder in einem Schichtverbund) vorliegen. Einen solchen Werkstoff stellt man bevorzugt rein pulvermetallurgisch her, indem man ein Silberpulver oder ein Silberlegierungspulver mit einem Verbundpulver mischt, in welchem die weiteren Oxide und/oder Karbide an das Zinnoxid gebunden sind, Formkörper daraus preßt und diese sintert und erforderlichenfalls nachverdichtet oder umformt. Es ist aber auch möglich, das Verbundpulver in eine Schmelze des Matrixmetalls einzurühren und diese dann erstarren zu lassen.
  • Überraschenderweise erreicht man erfindungsgemäss eine bestimmte Senkung der Kontaktstellentemperatur unter vorgegebenen Betriebsbedingungen bereits mit einem geringeren Anteil des gewählten oxidischen und/oder karbidischen Zusatzes zum Zinnoxid als bisher, so dass der Kontaktwerkstoff weniger spröde ist. Als weiterer Vorteil kommt hinzu, dass infolge des geringeren Anteils des elektrisch nicht leitenden Zusatzes der elektrische Widerstand des Kontaktwerkstoffes zusätzlich herabgesetzt wird, was einen weiteren Beitrag zur Senkung der Kontaktstellentemperatur leistet.
  • Ein weiterer Vorteil der Erfindung liegt darin, dass durch den geringeren Anteil des gewählten Zusatzes die Lebensdauer von Kontaktstücken aus dem Werkstoff erhöht wird, denn die Zusätze, die wie das Molybdänoxid dazu neigen, unter Lichtbogeneinwirkung zu verdampfen, führen dank ihres geringeren Anteils zu einer geringeren Bläschenbildung an der Kontaktfläche und damit zu einem geringeren Abbrand.
  • Erste Erfahrungen mit dem erfindungsgemässen Kontaktwerkstoff zeigen, dass eine bestimmte Senkung der Kontaktstellentemperatur erfindungsgemäss sogar mit nur einem Viertel bis einem Fünftel der Zusatzmenge erreicht werden kann, die im Stand der Technik für eine gleich große Senkung der Kontaktstellentemperatur benötigt würde!
  • Mit besonders wenig zusätzlichem Oxid bzw. Karbid kommt man aus, wenn man dafür sorgt, dass diese Zusätze im Grenzbereich von den Zinnoxidbereichen zur Silbermatrix konzentriert sind. Einen solchen Werkstoff kann man dadurch erhalten, dass man Zinnoxidpulver und den pulverförmigen Zusatz miteinander vermischt und gemeinsam glüht, so dass die Zinnoxid-Pulverteilchen vom Zusatz benetzt werden und/oder ein Teil des Zusatzes in den Oberflächenbereich der Zinnoxidpartikel diffundiert, wobei ein einphasiges Mischoxid (also eine neue chemische Verbindung) oder ein zweiphasiges oder mehrphasiges Oxidgemisch gebildet werden kann. Für eine längere Lebensdauer von erfindungsgemässen Kontaktstücken ist es günstig, wenn die zusätzlichen Oxide und/oder Karbide sich nicht nur im Grenzbereich von den Zinnoxidbereichen zur Silbermatrix befinden, sondern wenn sich die zusätzlichen Oxide und/oder Karbide durchgehend in den Zinnoxidbereichen befinden. Vorzugsweise wird deshalb das Zinnoxidverbundpulver durch Anwendung eines Reaktionssprühverfahrens erhalten, indem man eine Lösung eines Salzes von Zinn und eines Salzes des Metalls oder der Metalle, aus deren Oxiden oder Karbiden der Zusatz bestehen soll, in eine heiße, oxidierende Atmosphäre sprüht, in welcher die Salze thermisch zersetzt werden, so dass ein feinteiliges Verbundpulver ausfällt, in welchem Zinnoxid und die Oxide oder Mischoxide der Zusatzmetalle in einem innigen Verbund vorliegen. Das Reaktionssprühverfahren ist beispielsweise in der DE-C-29 29 630, der US-A-3 510 291 und in der EP-A-0 012 202 offenbart. Ein karbidhaltiges Zinnoxidverbundpulver kann man erhalten, wenn man das Karbid als feines Pulver in der zu versprühenden Lösung suspendiert. Beim Versprühen der Suspension in einer heißen oxidierenden Atmosphäre lagern sich an den Karbidteilchen das Zinnoxid und die weiteren Oxide an, wobei die Verweilzeit in der heißen oxidierenden Atmosphäre so kurz gehalten wird, dass die reduzierende Wirkung der Karbide nicht zum Tragen kommt.
  • Das Reaktionssprühverfahren kann mit Vorteil auch eingesetzt werden, um ein Zinnoxidpulver zu erhalten, welches oberflächlich mit den weiteren Oxiden überzogen ist, indem man in Abwandlung der vorstehend beschriebenen Verfahrensweise anstelle eines Zinnsalzes in der Salzlösung ein feinteiliges Zinnoxidpulver suspendiert und diese Suspension in eine heiße oxidierende Atmosphäre sprüht.
  • Schließlich ist es auch möglich, einen Teil der Oxide, zu denen auch Zinnoxid gehören kann, ggfs. auch Karbide, die im Werkstoff als Zusatz enthalten sein sollen, in einer Lösung zu suspendieren, welche die Metalle für den restlichen Oxidbestandteil des Werkstoffs gelöst enthält, und die so gebildete Suspension nach dem Reaktionssprühverfahren zu versprühen. Auf diese Weise lassen sich Verbundpulver mit vielfältig abgewandeltem Aufbau herstellen, maßgeschneidert für den jeweiligen Verwendungszweck des Kontaktwerkstoffs.
  • Um die nötige Sicherheit gegen ein Verschweißen der Kontaktstücke zu bieten, die von Silber-Metalloxid-Werkstoffen verlangt wird, enthält der Werkstoff zweckmässigerweise 5 bis 20 Gew.-%, vorzugsweise 8 bis 15 Gew.-% Zinnoxid, und damit das Zinnoxid wie gewünscht durch die Zusätze in der unter Lichtbogeneinwirkung auftretenden schmelzflüssigen Phase in Suspension gehalten werden kann, sollte das Zinnoxidpulver 0,01 bis 10 Gew.-% des weiteren oxidischen oder karbidischen Zusatzes enthalten, zweckmässigerweise aber nicht mehr als 5 Gew.-%. Im Hinblick darauf, dass der Werkstoff möglichst wenig spröde sein soll, wählt man den Zusatz der weiteren Oxide und Karbide so niedrig wie möglich, um eine unter den vorgegebenen Einsatzbedingungen vorgegebene Kontaktstellentemperatur nicht zu überschreiten, wozu wesentlich geringere Mengen genügen als beim Stand der Technik. Vorzugsweise verwendet man ein Zinnoxidpulver, welches nur 0,1 bis 1,5 Gew.-% des weiteren Oxids oder Karbids enthält.
  • Die Zinnoxidbereiche im Werkstoff sind zweckmäßigerweise kleiner als 100 µm, vorzugsweise kleiner als 10 µm im Durchmesser, sollten aber nicht kleiner sein als 0,5 µm, um keine Dispersionsverfestigung des Werkstoffs zu bewirken.
  • Als Zusatz besonders bevorzugt ist Molybdänoxid wegen seiner besonders günstigen Wirkung auf das Erwärmungsverhalten.
  • Die erfindungsgemässe Lehre kann übertragen werden auf Kontaktwerkstoffe auf der Basis von Silber mit Zinkoxid. In solchen Werkstoffen werden heute praktisch noch keine Zusätze verwendet, sondern man bemüht sich bisher, durch konstruktive Maßnahmen eine Senkung der Kontaktstellentemperatur zu erreichen. Durch Verwenden eines erfindungsgemäss mit weiteren Oxiden und/oder Karbiden angereicherten Zinkoxids läßt sich auch bei diesem Werkstofftyp eine Senkung der Kontaktstellentemperatur erreichen.
  • Beispiele:
  • 1.
    Ein Zinnoxid-Molybdänoxid-Verbundpulver mit 1 Gew.-% Molybdänoxid wird hergestellt durch Versprühen einer wässrigen Lösung von Zinn-II-Chlorid und Molybdän-IV-Chlorid in einem auf ca. 950°C aufgeheizten Reaktor mit oxidierender Atmosphäre, wobei ein Zinnoxid-Molybdänoxid-Verbundpulver ausfällt, in dessen Pulverteilchen das Zinnoxid und das Molybdänoxid in sehr feiner Verteilung vorliegen.
  • 12 Gew.-% Teile des so hergestellten, mit Molybdänoxid dotierten Zinnoxidpulvers werden mit 88 Gew.-Teilen eines Silberpulvers mit einer Teilchengröße kleiner als 40 µm intensiv gemischt, daraus kalt isostatisch ein zylindrischer Block von 50 kg Gewicht gepreßt, in Luft gesintert und dabei 1,5 Stunden bei einer Temperatur von 820°C gehalten. Der gesinterte Block wird mit Silber ummantelt, heiß in eine Rückwärtsstrangpresse eingelegt und durch eine Strangpreßmatrize mit einer sich verzweigenden Auspreßöffnung hindurchgepreßt, wodurch zwei flache Stränge entstehen, die auf der einen Seite eine Silber-Zinnoxid-Oberfläche und auf der anderen Seite eine gut löt- und schweißbare Silberoberfläche haben. Die Stränge werden anschließend platt gewalzt und haben dann eine Breite von 8 cm und eine Dicke von 2 mm.
  • 2.
    Das erste Beispiel wird dahingehend abgewandelt, dass anstelle einer Lösung von Zinn-II-Chlorid und Molybdän-IV-Chlorid eine Lösung von Molybdän-IV-Chlorid versprüht wird, in welcher ein Zinnoxidpulver mit einer Teilchengröße kleiner als 5 µm suspendiert ist.
  • Nach Beispiel 1 hergestellte Kontaktstücke zeigen erst nach einer sehr viel größeren Zahl von Schaltspielen einen Anstieg der Kontaktstellentemperatur. Vermutlich hängt das mit der anderen Struktur des Zinnoxid/Molybdänoxidverbundpulvers zusammen, möglicherweise auch mit einer Mischoxidbildung.
  • 3.
    Eine Zinn-Legierung mit 2 Gew.-% Kupfer sowie 1 Gew.-% Wismut wird auf 580°C erhitzt und mittels einer Zweistoffdüse in einen Reaktor mit sauerstoffhaltiger Atmosphäre gesprüht, die sich auf Zimmertemperatur befindet. Es entsteht ein Mischoxidpulver mit einem Teilchendurchmesser von 4,5 µm nach Fisher.
    10 Gew.-% dieses Mischoxidpulvers werden mit einem Silberpulver, Teilchendurchmesser kleiner als 40 µm, gemischt, aus der Mischung ein zylinderförmiger Block isostatisch mit einem Druck von 7,85.10 N/m kalt gepreßt, bei 790°C an Luft für zwei Stunden gesintert und anschließend mit einer Strangpresse vorwärts zu einem Draht mit einem Durchmesser von 5 mm stranggepreßt. Dieser Draht wird durch Ziehen auf einen Durchmesser von 1,4 mm verjüngt und anschließend zu Kontaktnieten mit einem Kopfdurchmesser von 3,2 mm bei einem Schaftdurchmesser von 1,47 mm verarbeitet. In ein Relais eingebaut, erweist sich der neue Werkstoff sowohl bei der Wechselstrom-Lebensdauerprüfung als auch beim Schalten von Gleichstrom-Lampenlast als den dem Stand der Technik entsprechenden Kontaktwerkstoffen deutlich überlegen.
  • 4.
    Aus einer wässrigen Lösung von Zinkchlorid und Meta-Wolframsäure wird ein Mischoxidpulver hergestellt, indem die Lösung in einen auf 1100°C aufgeheizten Reaktor gesprüht wird. Das auf diese Weise gewonnene Zink-Wolfram-Oxidgemisch hat einen Wolframoxidanteil von 1 Gew.-% und einen mittleren Teilchendurchmesser von 2,4 µm.
    Das Oxidpulver wird wie in Beispiel 1 mit Silberpulver vermischt und zu Kontaktplättchen weiterverarbeitet.
  • 5.
    Eine wässrige Lösung von Zinnacetat und Ammoniumheptamolybdat wird in einen Reaktor bei einer Temperatur von 800°C versprüht und so ein Oxidpulver mit einem Molybdänoxidgehalt von 350 ppm und einem mittleren Teilchendurchmesser von 1,9 µm erhalten.
    Mit diesem Pulver wird wie in Beispiel 1 ein Kontaktwerkstoff hergestellt, der in einem Schaltgerät mit einer Leistung von 37 kW einer Lebensdauerprüfung nach Prüfkategorie AC1 unterzogen wird. Diese Lebendauerprüfung wird zur Durchführung einer Erwärmungsprüfung bei Dauerstromführung unterbrochen.
  • Das Ergebnis dieser Erwärmungsprüfung ist in Figur 1 dargestellt und mit einer analogen Prüfung für einen dem Stand der Technik entsprechenden Werkstoff aus 88 Gew.-% Ag, 11,6 Gew.-% SnO₂ und 0,4 Gew-% MoO₃ verglichen (Figur 2).
  • Wie zu erkennen ist, ist das Erwärmungsverhalten des neuartigen Werkstoffes genau so gut wie das des herkömmlichen Werkstoffes, obwohl der neuartige Werkstoff, bezogen auf den gesamten Kontaktwerkstoff, lediglich einen Molybdänoxidanteil von 42 ppm aufweist, während der dem Stand der Technik entsprechende Werkstoff für das gleiche vorteilhafte Ergebnis eine Molybdänoxidmenge von 0,4 Gew.-% benötigt, also rund einhundertmal so viel.
  • 6.
    Eine wässrige Lösung von Zinnchlorid, Wismutoxid und Kupferchlorid wird in einen Reaktor mit einer Temperatur von 1200°C versprüht und so ein Mischoxidpulver mit einem Wismutoxidgehalt von 0,8 Gew.-% und einem Kupferoxidgehalt von 1,5 Gew.-% sowie einer mittleren Teilchengröße von 3 µm erhalten. Hieraus werden analog zu Beispiel 1 Kontaktplättchen hergestellt. Hierbei zeigt sich, dass der neuartige Kontaktwerkstoff im Gegensatz zu solchen, die auf dem herkömmlichen pulvermetallurgischem Weg hergestellt werden und Wismutoxid enthalten, gut verformbar ist. Die erhaltenen Kontaktplättchen werden in einem Motorschütz nach Prüfkategorie AC3 einer elektrischen Lebensdauerprüfung unterzogen. Figur 3 zeigt den Gesamtabbrand der Kontaktstücke als Funktion der Schaltspielzahl für den neuartigen Werkstoff als auch für einen dem Stand der Technik entsprechenden. Wie zu erkennen, liegt der Masseverlust bei dem neuartigen Werkstoff wesentlich unterhalb dem des herkömmlichen Werkstoffes, was zu einer Verlängerung der elektrischen Lebensdauer um etwa 50 % führt. Kontaktplättchen aus Silber-Zinnoxid-Kupferoxid-Wismutoxid lassen sich nach konventionellen pulvermetallurgischen Verfahren nur schwer herstellen, weil das versprödend wirkende Wismutoxid beim Verformen des Kontaktwerkstoffs zu Rissen führt.

Claims (18)

  1. Werkstoff für elektrische Kontakte auf der Basis von Silber-Zinnzoxid, welcher in einer Matrix aus Silber oder aus einer hauptsächlich Silber enthaltenden Legierung Zinnoxidbereiche und weitere Oxide und/oder Karbide enthält, dadurch gekennzeichnet, dass die weiteren Oxide und Karbide in den Zinnoxidbereichen und/oder in einem Grenzbereich zwischen den Zinnoxidbereichen und der Silbermatrix enthalten sind,
    dass der Anteil der weiteren Oxide und Karbide zusammengenommen bis zu 40 Gew.-% bezogen auf die Menge des Zinnoxids beträgt,
    dass es sich bei den weiteren Oxiden und Karbiden um die von Molybdän, Wolfram, Wismut, Antimon, Germanium, Vanadium, Kupfer oder Indium handelt,
    und dass die Silbermatrix - abgesehen von einem darin evtl. löslichen Anteil - frei ist von den weiteren Oxiden und Karbiden.
  2. Werkstoff nach Anspruch 1, dadurch gekennzeichnet, dass der Anteil des Zinnoxids und der weiteren Oxide und Karbide zusammengenommen 5 bis 20 Gew.-% (bezogen auf das Gesamtgewicht des Werkstoffs) beträgt.
  3. Werkstoff nach Anspruch 2, dadurch gekennzeichnet, dass der Anteil des Zinnoxids und der weiteren Oxide und Karbide zusammengenommen 8 bis 15 Gew.-% (bezogen auf das Gesamtgewicht des Werkstoffs) beträgt.
  4. Werkstoff nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Zinnoxidbereiche mindestens 0,01 Gew.-% (bezogen auf die Menge des Zinnoxids) der weiteren Oxide und/oder Karbide enthalten.
  5. Werkstoff nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Zinnoxidbereiche bis zu 10 Gew.-% (bezogen auf die Menge des Zinnoxids) der weiteren Oxide und/oder Karbide enthalten.
  6. Werkstoff nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Zinnoxidbereiche bis zu 5 Gew.-% (bezogen auf die Menge des Zinnoxids) der weiteren Oxide und/oder Karbide enthalten.
  7. Werkstoff nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Zinnoxidbereiche bis zu 2,5 Gew.-% (bezogen auf die Menge des Zinnoxids) der weiteren Oxide und/oder Karbide enthalten.
  8. Werkstoff nach Anspruch 4, dadurch gekennzeichnet, dass die Zinnoxidbereiche 0,1 bis 1,5 Gew.-% der weiteren Oxide und/oder Karbide enthalten.
  9. Werkstoff nach einem der Ansprüche 1 bis 8, der erhalten wird durch Mischen von Zinnoxidpulver mit den weiteren Oxiden und/oder Karbiden in Pulverform, Glühen der Mischung, so dass durch Diffundieren der weiteren Oxide und/oder Karbide in die Zinnoxidpulverteilchen ein Verbundpulver entsteht, Abtrennen des Uberschusses der weiteren Oxide und Karbide vom Verbundpulver und Einlagern des Verbundpulvers in eine Matrix aus Silber oder aus einer hauptsächlich Silber enthaltenden Legierung.
  10. Werkstoff nach einem der Ansprüche 1 bis 8, der erhalten wird durch Sprühen einer Lösung eines Salzes von Zinn und eines Salzes des Metalles oder der Metalle, deren Oxide der Werkstoff zusätzlich zum Zinnoxid enthalten soll, in eine heiße, oxidierende Atmosphäre, in welcher die Salze unter der Einwirkung von Wärme in Oxide umgewandelt werden, so dass ein feinteiliges Verbundpulver ausfällt, welches das Zinnoxid und die weiteren Oxide enthält, und Einlagern dieses Verbundpulvers in eine Matrix aus Silber oder aus einer hauptsächlich Silber enthaltenden Legierung.
  11. Werkstoff nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass er mit den weiteren Oxiden und/oder Karbiden überzogene Zinnoxidteilchen enthält.
  12. Werkstoff nach Anspruch 11, dadurch gekennzeichnet, dass die mit den weiteren Oxiden und/oder Karbiden überzogenen Zinnoxidteilchen erhalten werden, indem man eine Suspension von Zinnoxid in einer Lösung eines Salzes bzw. von Salzen des Metalles bzw. der Metalle, deren Oxide zusätzlich zum Zinnoxid im Werkstoff enthalten sein sollen, in eine heiße, oxidierende Atmosphäre sprüht, in welcher die Salze thermisch in Oxide umgewandelt werden und sich an den aus der Suspension stammenden Zinnoxidteilchen anlagern.
  13. Werkstoff nach einem der Ansprüche 1 bis 8, der erhalten wird durch Sprühen einer Suspension von Zinnoxid und/oder einem oder mehreren Oxiden und/oder Karbiden, welche zusätzlich zum Zinnoxid im Werkstoff enthalten sein sollen, in einer Lösung eines Salzes bzw. von Salzen des Metalles bzw. der Metalle, deren Oxide der Werkstoff als restlichen oxidischen Bestandteil enthalten soll, in eine heiße oxidierende Atmosphäre, in welcher die Salze thermisch in Oxide umgewandelt werden und sich an die aus der Suspension stammenden Oxidteilchen und/oder Karbidteilchen anlagern.
  14. Werkstoff nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass seine Zinnoxidbereiche im Durchmesser kleiner als 100 µm sind.
  15. Werkstoff nach Anspruch 14, dadurch gekennzeichnet, dass seine Zinnoxidbereiche im Durchmesser nicht größer als 10 µm sind.
  16. Werkstoff nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass seine Zinnoxidbereiche im Durchmesser mindestens 0,5 µm groß sind.
  17. Werkstoff nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Zinn ganz oder teilweise durch Zink ersetzt ist.
  18. Verfahren zum Herstellen eines Werkstoffs für elektrische Kontakte auf der Basis von Silber-Zinnoxid nach Anspruch 1 durch
    - Mischen eines Pulvers aus Silber oder aus einer hauptsächlich Silber enthaltenden Legierung mit einem Zinnoxidpulver, dessen Pulverteilchen bis zu 40 Gew.-% (bezogen auf die Menge des Zinnoxids) eines Oxids und/oder Karbids von Molybdän, Wolfram, Wismut, Antimon, Germanium, Vanadium, Kupfer oder Indium enthalten,
    - Verdichten und
    - Sintern.
EP93912924A 1992-06-10 1993-06-09 Werkstoff für elektrische kontakte auf der basis von silber-zinnoxid oder silber-zinkoxid Expired - Lifetime EP0645049B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE4219333 1992-06-10
DE4219333 1992-06-10
DE4311399 1993-04-07
DE4311399 1993-04-07
PCT/EP1993/001453 WO1993026021A1 (de) 1992-06-10 1993-06-09 Werkstoff für elektrische kontakte auf der basis von silber-zinnoxid oder silber-zinkoxid

Publications (2)

Publication Number Publication Date
EP0645049A1 EP0645049A1 (de) 1995-03-29
EP0645049B1 true EP0645049B1 (de) 1996-04-03

Family

ID=25915641

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93912924A Expired - Lifetime EP0645049B1 (de) 1992-06-10 1993-06-09 Werkstoff für elektrische kontakte auf der basis von silber-zinnoxid oder silber-zinkoxid

Country Status (8)

Country Link
US (1) US5610347A (de)
EP (1) EP0645049B1 (de)
JP (1) JP2896428B2 (de)
CN (1) CN1036099C (de)
AT (1) ATE136394T1 (de)
DE (1) DE59302122D1 (de)
ES (1) ES2086945T3 (de)
WO (1) WO1993026021A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59405126D1 (de) * 1993-08-23 1998-02-26 Siemens Ag Kontaktwerkstoff auf silber-basis, verwendung eines solchen kontaktwerkstoffes in einem schaltgerät der energietechnik und verfahren zur herstellung des kontaktwerkstoffes
US5846288A (en) * 1995-11-27 1998-12-08 Chemet Corporation Electrically conductive material and method for making
EP1308974B1 (de) * 2001-07-18 2004-12-01 Nec Schott Components Corporation Thermische sicherung
DE112004000163T5 (de) * 2003-01-21 2006-03-02 Osram Sylvania Inc., Danvers Elektrochemisches Verdrängungsablagerungsverfahren zur Herstellung von Metallverbundpulvern
CN100341082C (zh) * 2005-01-10 2007-10-03 宁波凌日表面工程有限公司 控制银-氧化锡电触头材料添加剂分布均匀性的方法
EP1934995B1 (de) * 2005-07-15 2014-04-02 Impact Coatings AB (Publ.) Kontaktelement und kontaktanordnung
CN100402195C (zh) * 2006-04-07 2008-07-16 桂林金格电工电子材料科技有限公司 银复合氧化锡触头材料制备工艺
CN102350502B (zh) * 2011-10-27 2013-01-09 福达合金材料股份有限公司 物理冶金包覆法银氧化锡的制备方法
WO2013142765A1 (en) * 2012-03-23 2013-09-26 Technic, Inc. Silver antimony coatings and connectors
EP2644723B1 (de) * 2012-03-26 2017-01-18 Umicore AG & Co. KG Verbundwerkstoff
CN102936668A (zh) * 2012-11-08 2013-02-20 哈尔滨工业大学 一种TCO/Cu电接触材料
CN102912177A (zh) * 2012-11-08 2013-02-06 哈尔滨工业大学 一种TCO/Ag电接触材料
CN103589898B (zh) * 2013-11-22 2015-06-24 福达合金材料股份有限公司 银金属氧化物碳化钨复合电触头材料的制备方法及其产品
CN103700532B (zh) * 2013-12-30 2015-10-14 桂林电器科学研究院有限公司 一种喷雾干燥制备银氧化锡电触头材料的方法
CN105728714B (zh) * 2014-12-12 2018-12-04 施耐德电气工业公司 银-金属氧化物电触头材料的制备方法、装置以及应用

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933485A (en) * 1973-07-20 1976-01-20 Chugai Denki Kogyo Kabushiki-Kaisha Electrical contact material
GB1461176A (en) * 1974-04-11 1977-01-13 Plessey Inc Method of producing powdered materials
JPS5351128A (en) * 1976-10-21 1978-05-10 Nat Res Inst Metals Electric contact materials
US4141727A (en) * 1976-12-03 1979-02-27 Matsushita Electric Industrial Co., Ltd. Electrical contact material and method of making the same
US4150982A (en) * 1978-03-13 1979-04-24 Chugai Denki Kogyo Kabushiki-Kaisha AG-Metal oxides electrical contact materials containing internally oxidized indium oxides and/or tin oxides
DE2929630C2 (de) * 1979-07-21 1983-12-15 Dornier System Gmbh, 7990 Friedrichshafen Verfahren zur Herstellung von Silberpulver
DE2933338C3 (de) * 1979-08-17 1983-04-28 Degussa Ag, 6000 Frankfurt Werkstoff für elektrische Kontakte und Verfahren zu seiner Herstellung
DE2952128C2 (de) * 1979-12-22 1984-10-11 Degussa Ag, 6000 Frankfurt Verfahren zur Vorbehandlung des Pulvers für gesintertes und stranggepreßtes Halbzeug aus Silber-Zinnoxid für elektrische Kontakte
DE3017424A1 (de) * 1980-05-07 1981-11-12 Degussa Ag, 6000 Frankfurt Werkstoff fuer elektrische kontakte
DE3102067A1 (de) * 1981-01-23 1982-08-19 Degussa Ag, 6000 Frankfurt Werkstoff fuer elektrische kontakte
DE3304637A1 (de) * 1983-02-10 1984-08-16 Siemens AG, 1000 Berlin und 8000 München Sinterkontaktwerkstoff fuer niederspannungsschaltgeraete
DE3438547C2 (de) * 1984-10-20 1986-10-02 Dornier System Gmbh, 7990 Friedrichshafen Wärmebehandlungsverfahren für vorlegierte, zweiphasige Wolframpulver
JPH03504615A (ja) * 1988-03-26 1991-10-09 ドドウコ・ゲーエムベーハー+コンパニー・ドクトル・オイゲン・デュルベヒテル 銀‐錫酸化物系複合材料から成る電気接点用半製品および粉末冶金によるその製法
DE58908359D1 (de) * 1988-11-17 1994-10-20 Siemens Ag Sinterkontaktwerkstoff für Niederspannungsschaltgeräte der Energietechnik, insbesondere für Motorschütze.
DE69032065T2 (de) * 1989-12-26 1998-10-29 Akira Shibata Verbundwerkstoff von Silber und Metalloxyd und Verfahren zur Herstellung desselben
US5286441A (en) * 1989-12-26 1994-02-15 Akira Shibata Silver-metal oxide composite material and process for producing the same
DE4117311A1 (de) * 1991-05-27 1992-12-03 Siemens Ag Kontaktwerkstoff auf silberbasis zur verwendung in schaltgeraeten der energietechnik

Also Published As

Publication number Publication date
JP2896428B2 (ja) 1999-05-31
CN1036099C (zh) 1997-10-08
ES2086945T3 (es) 1996-07-01
DE59302122D1 (de) 1996-05-09
US5610347A (en) 1997-03-11
WO1993026021A1 (de) 1993-12-23
JPH08503998A (ja) 1996-04-30
EP0645049A1 (de) 1995-03-29
CN1085687A (zh) 1994-04-20
ATE136394T1 (de) 1996-04-15

Similar Documents

Publication Publication Date Title
DE69032065T2 (de) Verbundwerkstoff von Silber und Metalloxyd und Verfahren zur Herstellung desselben
EP0645049B1 (de) Werkstoff für elektrische kontakte auf der basis von silber-zinnoxid oder silber-zinkoxid
DE69123183T2 (de) Verbundmaterial aus Silber- oder Silber-Kupferlegierung mit Metalloxyden und Verfahren zu seiner Herstellung
EP0440620B1 (de) Halbzeug für elektrische kontakte aus einem verbundwerkstoff auf silber-zinnoxid-basis und pulvermetallurgisches verfahren zu seiner herstellung
DE2822956C2 (de) Verfahren zur Herstellung von Schaltkontakten für einen Vakuumschalter
EP0118717B1 (de) Sinterverbundwerkstoff für elektrische Kontakte und Verfahren zu seiner Herstellung
DE3421758A1 (de) Sinterkontaktwerkstoff fuer niederspannungsschaltgeraete der energietechnik und verfahren zu dessen herstellung
DE69116935T2 (de) Elektrisches Kontaktmaterial auf Silberbasis und Verfahren zur Herstellung
EP0725154B1 (de) Sinterwerkstoff auf der Basis Silberzinnoxid für elektrische Kontakte und Verfahren zu dessen Herstellung
EP2644723A1 (de) Verbundwerkstoff
EP0660964B2 (de) Werkstoff für elektrische kontakte auf der basis von silber-zinnoxid oder silber-zinkoxid und verfahren zu seiner herstellung
DE69220865T2 (de) Werkstoff für Vakuumschalterkontakte und Verfahren zu ihrer Herstellung
DE3911904A1 (de) Pulvermetallurgisches verfahren zum herstellen eines halbzeugs fuer elektrische kontakte aus einem verbundwerkstoff auf silberbasis mit eisen
DE69219397T2 (de) Metalloxidmaterial auf Silberbasis für elektrische Kontakte
DE4319137A1 (de) Werkstoff für elektrische Kontakte auf der Basis von Silber-Zinnoxid oder Siler-Zinkoxid
DE7418086U (de) Kontakt für elektrische Schalter
EP3433866B1 (de) Verfahren zur herstellung eines kontaktwerkstoffes auf basis von silber-zinnoxid oder silber-zinkoxid sowie kontaktwerkstoff
EP0338401B1 (de) Pulvermetallurgisches Verfahren zum Herstellen eines Halbzeugs für elektrische Kontakte aus einem Verbundwerkstoff auf Silberbasis mit Eisen
WO2007020006A1 (de) Verwendung von indium-zinn-mischoxid für werkstoffe auf silberbasis
EP0876670B1 (de) Verfahren zur herstellung eines formstücks aus einem kontaktwerkstoff auf silberbasis
DE4126219C2 (de)
DE3405218C2 (de)
DE3232627A1 (de) Werkstoff fuer elektrische kontakte
DE2463019C2 (de) Durch innere Oxidation hergestellter Silber-Metalloxid-Werkstoff für elektrische Kontakte
DD209317A1 (de) Kontaktwerkstoff fuer vakuumschalter und verfahren zur herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19950829

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 136394

Country of ref document: AT

Date of ref document: 19960415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59302122

Country of ref document: DE

Date of ref document: 19960509

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WILLIAM BLANC & CIE CONSEILS EN PROPRIETE INDUSTRI

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2086945

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960729

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970630

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980518

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980617

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

BERE Be: lapsed

Owner name: DODUCO G.M.B.H. + CO. EUGEN DURRWACHTER

Effective date: 19990630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000101

EUG Se: european patent has lapsed

Ref document number: 93912924.3

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: DODUCO GMBH + CO DR. EUGEN DUERRWAECHTER TRANSFER-

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060421

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070609

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080625

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080627

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080421

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090609

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: AMI DODUCO GMBH

Free format text: AMI DODUCO GMBH#IM ALTGEFAELL 12#75181 PFORZHEIM (DE) -TRANSFER TO- AMI DODUCO GMBH#IM ALTGEFAELL 12#75181 PFORZHEIM (DE)

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090609

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NOVAGRAAF SWITZERLAND SA;CHEMIN DE L'ECHO 3;1213 ONEX (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20120622

Year of fee payment: 20

Ref country code: DE

Payment date: 20120521

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120705

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59302122

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130611