WO2013141385A1 - 熱化学燃料製造用触媒及び熱化学燃料製造方法 - Google Patents

熱化学燃料製造用触媒及び熱化学燃料製造方法 Download PDF

Info

Publication number
WO2013141385A1
WO2013141385A1 PCT/JP2013/058431 JP2013058431W WO2013141385A1 WO 2013141385 A1 WO2013141385 A1 WO 2013141385A1 JP 2013058431 W JP2013058431 W JP 2013058431W WO 2013141385 A1 WO2013141385 A1 WO 2013141385A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermochemical
temperature
catalyst
fuel
production
Prior art date
Application number
PCT/JP2013/058431
Other languages
English (en)
French (fr)
Inventor
仁丈 山崎
ソシナ ハイレ
チカイ ヤン
Original Assignee
独立行政法人科学技術振興機構
カリフォルニア・インスティテュート・オブ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人科学技術振興機構, カリフォルニア・インスティテュート・オブ・テクノロジー filed Critical 独立行政法人科学技術振興機構
Priority to KR1020147029479A priority Critical patent/KR101790093B1/ko
Priority to JP2013549447A priority patent/JP5594800B2/ja
Priority to EP13764774.9A priority patent/EP2829321A4/en
Priority to CN201380015007.4A priority patent/CN104203403B/zh
Publication of WO2013141385A1 publication Critical patent/WO2013141385A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/70Catalysts, in general, characterised by their form or physical properties characterised by their crystalline properties, e.g. semi-crystalline
    • B01J35/733Perovskite-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0233Chemical processing only
    • C01B13/024Chemical processing only by reduction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • C01B3/045Decomposition of water in gaseous phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/061Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of metal oxides with water
    • C01B3/063Cyclic methods
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/159Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with reducing agents other than hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/04Methanol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/02Aliphatic saturated hydrocarbons with one to four carbon atoms
    • C07C9/04Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/15X-ray diffraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/30Scanning electron microscopy; Transmission electron microscopy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1088Non-supported catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/889Manganese, technetium or rhenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a thermochemical fuel production catalyst and a thermochemical fuel production method.
  • This application is filed in US Provisional Application No. 61 / 615,122 filed in the United States on March 23, 2012 and US Patent Application No. 13 / 600,948 filed in the United States on August 31, 2012. Claims priority and incorporates the contents here.
  • thermochemical fuel generation method is a technology for producing chemical fuel from thermal energy obtained from sunlight or the like and storing the thermal energy as chemical fuel.
  • Fuel is produced by a two-stage thermal cycle (thermochemical cycle) of high temperature (first temperature) -low temperature (second temperature).
  • thermochemical cycle high temperature
  • second temperature low temperature
  • the catalyst oxide absorbs oxygen in the raw material, and the mixed gas, methane, hydrocarbon, alcohol Can produce hydrogen and other fuels.
  • oxide-based catalysts Mainly reported as oxide-based catalysts are ZnO—Zn, Fe 2 O 3 —FeO, CeO 2 —Ce 2 O 3 , non-stoichiometric CeO 2 , mixtures thereof, and partially substituted oxides.
  • steam reforming of methane using LaSrMnO 3 -based perovskite oxide (CH 4 + H 2 O ⁇ 6H 2 + CO) has been reported, this is the production of thermochemical fuel using water or carbon dioxide (H 2 Unlike the case of O ⁇ H 2 + 1 / 2O 2 or CO 2 ⁇ CO + 1 / 2O 2 ), thermochemical fuel production using perovskite oxide AXO 3 has not been reported so far.
  • hydrogen is expected to be a renewable energy because it is a clean energy source that generates only water after combustion.
  • H 2 O ⁇ H 2 + 1 / 2O 2 In order to produce hydrogen by directly decomposing water (H 2 O ⁇ H 2 + 1 / 2O 2 ), a high temperature of several thousand degrees Celsius is required. It becomes possible to produce hydrogen by decomposing water by a thermal cycle of temperature (for example, Patent Document 1).
  • Patent Document 2 Of the two-stage temperature (high temperature-low temperature) thermal cycles, a technique using solar energy is known for high-temperature heating (for example, Patent Document 2).
  • Solar energy is the most abundant source of renewable energy. In order to make full use of this enormous solar energy, it must be stored efficiently in a stable manner on a large scale.
  • solar thermal chemical fuel production using non-stoichiometric oxides. It is a two-stage thermochemical cycle that drives the redox reaction between the oxide and the gas species. The oxide is reduced at high temperature and oxygen is released from the oxide. Further, at a low temperature at which carbon dioxide and / or water vapor is introduced, the oxide strips oxygen atoms from the introduced gas. As a result, mixed gas, methane and hydrogen fuel are produced.
  • Thermodynamic efficiency is based on oxide-based catalysts including ZnO—Zn, Fe 2 O 3 —FeO, CeO 2 —Ce 2 O 3 , non-stoichiometric CeO 2 systems, and some combinations thereof Is calculated to be 15-75%. Other systems of catalysts are not well explored.
  • the highest conversion efficiency in fuel production using solar energy is 0.8% in a low temperature 800 ° C. to high temperature 1630 ° C. solar thermal chemical cycle using undoped ceria, and carbon monoxide and hydrogen are 1. 3 to 1.5 liters can be produced.
  • Cerium oxide (ceria) is known as a catalyst oxide used in the thermochemical fuel production method (Non-patent Document 1).
  • the solar reactor solar furnace
  • a mechanical engineering approach and a material science approach are possible.
  • a heat recovery system may be integrated. The challenge is how to select the appropriate oxide structure and material chemistry from a large number of candidate oxides that exhibit the desired properties.Combinatorial synthesis may be powerful in creating candidate oxides.
  • An object of the present invention is to provide a catalyst for producing a thermochemical fuel comprising a perovskite oxide and a method for producing a thermochemical fuel that can produce the fuel thermochemically.
  • the present invention proposes a catalyst for producing a thermochemical fuel, in particular a bio-inspired catalyst perovskite for solar thermal chemical water splitting.
  • Natural photosynthesis more specifically, the oxidation of water occurs with Mn 4 CaO 5 clusters composed of a cubic skeleton having protrusions as a catalyst. It was predicted that artificial water decomposition would occur in similar cubic structures containing elemental manganese. From this assumption, a thermochemical water splitting experiment using a manganese-based perovskite (cubic structure, the structure shown on the right side of the graph of FIG. 3) was started.
  • Perovskite has been found to decompose water and produce more hydrogen than cerium oxide uses.
  • thermochemical water splitting using a non-stoichiometric composition of perovskite oxide.
  • Sr-doped LaMnO 3 perovskite has been used for steam reforming of methane, but thermochemical water splitting has not been demonstrated with perovskite oxide.
  • the black color of perovskite is effective for efficient solar absorption, and as a result, efficient solar fuel conversion is possible.
  • thermochemical cycle reaction in which perovskite oxide is used as a hydrogen production catalyst as an example of a thermochemical fuel production catalyst is composed of the following two stages: an oxygen release reaction and a hydrogen production reaction; [Oxygen release reaction (high temperature reduction reaction)] AXO 3 ⁇ ⁇ ⁇ AXO 3 ⁇ ⁇ + ( ⁇ / 2) O 2 [Hydrogen generation reaction (low-temperature oxidation reaction)] AXO 3 ⁇ ⁇ + ⁇ H 2 O ⁇ AXO 3 ⁇ ⁇ + ⁇ H 2
  • thermochemical cycle reaction using perovskite oxide as a catalyst for producing thermochemical methane is composed of the following two stages: oxygen release reaction and methane production reaction. Done; [Oxygen release reaction (high temperature reduction reaction)] AXO 3 ⁇ ⁇ ⁇ AXO 3 ⁇ ⁇ + ( ⁇ / 2) O 2 [Methane formation reaction (low-temperature oxidation reaction)] AXO 3 ⁇ ⁇ + ( ⁇ / 4) CO 2 + ( ⁇ / 2) H 2 O ⁇ AXO 3 ⁇ ⁇ + ( ⁇ / 4) CH 4
  • thermochemical cycle reaction using perovskite oxide as a catalyst for producing thermochemical methanol is composed of two stages of oxygen releasing reaction and methanol generating reaction as shown below.
  • a two-stage thermochemical cycle reaction using perovskite oxide as a catalyst for producing carbon monoxide as an example of a catalyst for producing a thermochemical fuel has two steps: an oxygen release reaction and a carbon monoxide production reaction as shown below. Composed of; [Oxygen release reaction (high temperature reduction reaction)] AXO 3 ⁇ ⁇ ⁇ AXO 3 ⁇ ⁇ + ( ⁇ / 2) O 2 [Carbon monoxide production reaction (low-temperature oxidation reaction)] AXO 3 ⁇ ⁇ + ⁇ CO 2 ⁇ AXO 3 ⁇ ⁇ + ⁇ CO
  • a two-stage thermochemical cycle reaction using perovskite oxide as an example of a catalyst for producing a thermochemical fuel as a catalyst for producing a mixed gas of hydrogen and carbon monoxide includes an oxygen release reaction, hydrogen, and one It consists of two stages of carbon oxide mixed gas generation reaction; [Oxygen release reaction (high temperature reduction reaction)] AXO 3 ⁇ ⁇ ⁇ AXO 3 ⁇ ⁇ + ( ⁇ / 2) O 2 [Hydrogen and carbon monoxide mixed gas generation reaction (low-temperature oxidation reaction)] 2AXO 3 ⁇ ⁇ - ⁇ + ⁇ H 2 O + ⁇ CO 2 ⁇ 2AXO 3 ⁇ ⁇ + ⁇ H 2 + ⁇ CO
  • thermochemical fuel production catalyst used for producing fuel from thermal energy using a two-stage thermochemical cycle of a first temperature and a second temperature lower than the first temperature, the composition formula AXO Catalyst for producing thermochemical fuel characterized by comprising a perovskite oxide having 3 ⁇ ⁇ (where 0 ⁇ ⁇ ⁇ 1); where A is a rare earth element, an alkaline earth metal element, or an alkali metal element X is one or more of a transition metal element or a metalloid element, and O is oxygen.
  • the element A is at least one selected from the group consisting of La, Mg, Ca, Sr, and Ba, and the element X is Mn, Fe, Ti, Zr, Nb, Ta, Mo, W, It is any one or more selected from the group consisting of Hf, V, Cr, Co, Ni, Cu, Zn, Mg, Al, Ga, In, C, Si, Ge, and Sn (1)
  • the catalyst for thermochemical fuel production described in 1.
  • the concentration of the substituted Sr (x; x is an amount when the amount of La before substitution is 1) is 0.1 or more and less than 1.0.
  • the concentration of the substituted Fe (x; x is an amount when the amount of Mn before substitution is 1) is 0.35 or more and 0.85 or less.
  • the catalyst for thermochemical fuel production as described. (10) The catalyst for producing a thermochemical fuel according to (1), wherein the A element is Ba, the X element is Ti, and the Ti is partially substituted with Mn. (11) The concentration of the substituted Mn (x; x is an amount when the amount of Ti before substitution is 1) is more than 0 and 0.5 or less. Catalyst for thermochemical fuel production. (12) A method for producing a thermochemical fuel, characterized by using the catalyst for producing a thermochemical fuel according to any one of (1) to (11).
  • thermochemical fuel production catalyst Using the thermochemical fuel production catalyst according to any one of (1) to (11), a two-stage thermochemical cycle of a first temperature and a second temperature that is equal to or lower than the first temperature is performed.
  • a method for producing a thermochemical fuel wherein the first temperature is 600 ° C. or higher and 1600 ° C. or lower, and the second temperature is 400 ° C. or higher and 1600 ° C. or lower.
  • Thermochemical fuel production method (14)
  • the thermochemical fuel production according to (13), wherein the first temperature is obtained by heating by irradiating condensed solar energy or by using waste heat. Method.
  • thermochemical fuel production method for producing fuel from thermal energy using a two-stage thermochemical cycle of a first temperature and a second temperature that is equal to or lower than the first temperature, the composition formula AXO 3 ⁇ ⁇ ( However, the step of heating and reducing the perovskite oxide having 0 ⁇ ⁇ ⁇ 1) to the first temperature, bringing the source gas into contact with the reduced perovskite oxide, oxidizing the perovskite oxide, and And a process for producing the thermochemical fuel.
  • thermochemical fuel production refers to the concept of “thermochemical hydrogen production” in which water is decomposed into oxygen and hydrogen under a relatively mild thermal condition by combining a plurality of chemical reactions. It is a concept that has been widely expanded to include fuel. Further, the case of “partially substituted by...” Means that the concentration (x) of the substituted element is more than 0 and less than 1 when the amount of the element to be replaced is 1. This is the case in any of these ranges.
  • “second temperature” enables thermochemical fuel production even at the same temperature as the “first temperature”, but when the atmosphere is the same, the temperature is lower than the “first temperature”.
  • “ ⁇ ” in “Composition Formula AXO 3 ⁇ ⁇ (where 0 ⁇ ⁇ ⁇ 1)” is preferably 0 ⁇ ⁇ ⁇ 0.5, more preferably 0 ⁇ ⁇ ⁇ 0.3, and still more preferably 0. ⁇ ⁇ ⁇ 0.2.
  • the catalyst for thermochemical fuel manufacture which consists of the perovskite oxide which can manufacture a fuel thermochemically, and a thermochemical fuel manufacturing method can be provided.
  • the present invention provides the first catalyst for thermochemical fuel production using the perovskite oxide AXO 3 . According to the present invention, it is possible to use abundant crust-existing elements such as iron, manganese, calcium, barium, and titanium, and to reduce the amount of rare earth elements used.
  • a chemical fuel production method can be provided, whereby solar energy can be converted and stored as chemical fuel with high efficiency.
  • Is a graph showing the X-ray diffraction pattern of La 0.8 Sr 0.2 Mn 1-x Fe x O 3 ⁇ ⁇ (x 0 or more and 1 or less). It is a secondary electron micrograph of La 0.8 Sr 0.2 Mn 1-x Fe x O 3 ⁇ ⁇ .
  • the La 0.8 Sr 0.2 Mn 1-x Fe x O 3 ⁇ ⁇ is a graph showing the production amount of hydrogen in the case of using as a thermochemical fuel (hydrogen) production catalyst.
  • the La 0.8 Sr 0.2 Mn 1-x Fe x O 3 ⁇ ⁇ is a graph showing the dependency of the iron concentration of the hydrogen production (product) amount (x) when used as thermochemical fuel (hydrogen) production catalyst.
  • La is a graph showing a 0.8 Sr 0.2 Mn 1-x Fe x O 3 amount of hydrogen produced cycle characteristic using ⁇ [delta]. It is a graph showing the cycle characteristics of the La 0.8 Sr 0.2 Mn 1-x Fe x O 3 weight hydrogen production using a ⁇ [delta] and oxygen production amount.
  • 6B is a graph showing the cycle characteristics of the ratio of the hydrogen production amount to the oxygen production amount for the hydrogen production amount and the oxygen production amount shown in FIG. 6A.
  • FIG. 5 is a graph showing the amount of hydrogen produced and the amount of oxygen produced when (La 0.8 Sr 0.2 ) CrO 3 ⁇ ⁇ is used as a thermochemical hydrogen production catalyst and the first temperature is 1300 ° C. and the second temperature is 800 ° C. .
  • FIG. 5 is a graph showing the amount of hydrogen produced and the amount of oxygen produced when (La 0.8 Sr 0.2 ) MnO 3 ⁇ ⁇ is used as a catalyst for thermochemical hydrogen production, the first temperature is 1400 ° C., and the second temperature is 800 ° C. .
  • Ba a (Ti 0.6 Mn 0.4) O 3 ⁇ ⁇ is a graph showing the hydrogen production amount when used as thermochemical hydrogen production catalyst.
  • (La 0.8 Sr 0.2) MnO 3 ⁇ ⁇ is a graph showing the hydrogen production amount when used as (La 0.8 Ba 0.2) MnO 3 ⁇ thermochemical hydrogen production catalyst of [delta]. It is a graph showing the hydrogen production amount in the case of using the (La 0.8 Ba 0.2) (Mn 0.25 Fe 0.75) O 3 ⁇ ⁇ as thermochemical hydrogen production catalyst.
  • the catalyst for producing a thermochemical fuel of the present invention is used for producing a thermochemical fuel that is used to produce a fuel from thermal energy using a two-stage thermochemical cycle of a first temperature and a second temperature that is lower than the first temperature.
  • the catalyst is a perovskite oxide having a composition formula AXO 3 ⁇ ⁇ (where 0 ⁇ ⁇ ⁇ 1).
  • A is one or more of a rare earth element, an alkaline earth metal element, or an alkali metal element
  • X is one or more of a transition metal element or a metalloid (semimetal) element
  • O oxygen It is.
  • the value of ⁇ can be determined within a range that does not impair the effects of the present invention.
  • rare earth elements include Sc (scandium), Y (yttrium), La (lanthanum), Pr (praseodymium), Nd (neodymium), Pm (promethium), Sm (samarium), Eu (europium), and Gd (gadolinium). ), Tb (terbium), Dy (disbrosium), Ho (holmium), Er (erbium), Tm (thulium), Yb (ytterbium), Lu (lutetium), and Ce (cerium).
  • alkaline earth metal element include Be (beryllium), Mg (magnesium), Ca (calcium), Sr (strontium), Ba (barium), and Ra (radium).
  • alkali metal element examples include Li (lithium), Na (sodium), K (potassium), Rb (rubidium), Cs (cesium), and Fr (francium).
  • transition metal element examples include Sc (scandium), Ti (titanium), V (vanadium), Cr (chromium), Mn (manganese), Fe (iron), Co (cobalt), Ni (nickel), Cu ( First transition element (3d transition element) such as copper), Zn (zinc), Y (yttrium), Zr (zirconium), Nb (niobium), Mo (molybdenum), Tc (technetium), Ru (ruthenium), Rh (Rhodium), Pd (palladium), Ag (silver), Cd (cadmium) and other second transition elements (4d transition elements), La (lanthanum), Pr (praseodymium), Nd (neodymium), Pm (promethium), Sm (samarium), Eu (europium), Gd (gad
  • the metalloid element examples include B (boron), Si (silicon), Ge (germanium), As (arsenic), Sb (antimony), Te (tellurium), Se (selenium), Po (polonium) At (astatin). Is mentioned. Examples of these combinations are those in which the A element is La and the X element is Mn; the A element is La, the X element is Mn, and a part of La is composed of Sr, Ca, and Ba.
  • element A is La, element X is Mn, and part of La is partially substituted with one or more of Sr, Ca and Ba, and Mn is partially substituted with any one or more of Fe, Ni, V, Cr, Sc, Ti, Co, Cu, Zn;
  • a element is Ba, X element is Ti, Ti Is partially substituted with Mn;
  • element A is Ba or Ca or Sr, and a part of Ba, Ca or Sr is substituted within a range of 0.01 or more and 0.5 or less;
  • a element is Ca or Sr, X element is Ti or Zr, etc. It is preferably exemplified.
  • thermochemical fuel production method uses a thermochemical fuel production catalyst of the present invention to perform a two-stage thermochemical cycle of a first temperature and a second temperature that is lower than the first temperature. It is a thermochemical fuel production method for producing fuel from thermal energy using a first temperature of 600 ° C. to 1600 ° C. and a second temperature of 400 ° C. to 1600 ° C.
  • the first temperature and / or the second temperature may be obtained by, for example, heating by irradiating concentrated sunlight energy, or by heating using waste heat.
  • Waste heat can use, for example, waste heat from a power generator or a blast furnace.
  • the “two stages” means a stage including two different conditions. Therefore, the “two-stage” means that the first stage (first step) and the second stage (second step) have different temperatures, or the first stage and the second stage have the same temperature.
  • the first stage is a dry gas flow containing no water
  • the second stage is a wet gas flow containing water vapor.
  • the first temperature can be 600 ° C. or more and 1600 ° C. or less (for example, 1400 ° C.), and the second temperature can be 400 ° C. or more and 1600 ° C. or less (for example, 800 ° C.).
  • the first temperature can be 600 ° C.
  • the second temperature can be 300 ° C. or higher and 1600 ° C. or lower (eg, 1400 ° C.), and the second temperature can be 300 ° C. or higher and 1600 ° C. or lower (eg, 450 ° C.).
  • the first temperature is set to 600 ° C. to 1600 ° C. (for example, 1400 ° C.)
  • the second temperature is set to 300 ° C. to 1600 ° C. (for example, 800 ° C.). be able to.
  • the first temperature can be 600 ° C. or more and 1600 ° C. or less (eg, 1400 ° C.)
  • the second temperature can be 300 ° C. or more and 1600 ° C.
  • the first temperature can be 600 ° C. or more and 1600 ° C. or less (eg, 1400 ° C.), and the second temperature can be 200 ° C. or more and 1600 ° C. or less (eg, 350 ° C.).
  • the method for producing a thermochemical fuel according to another embodiment of the present invention includes a thermochemical fuel for producing fuel from thermal energy using a two-stage thermochemical cycle of a first temperature and a second temperature lower than the first temperature.
  • a method for producing a perovskite oxide having a composition formula AXO 3 ⁇ ⁇ (where 0 ⁇ ⁇ ⁇ 1) is reduced by heating to a first temperature, and the raw material gas is converted into a reduced perovskite oxide. And a step of oxidizing the perovskite oxide to produce a fuel.
  • the value of ⁇ can be determined within a range that does not impair the effects of the present invention.
  • thermochemical fuel manufacturing method of this invention hydrogen, carbon monoxide, the mixed gas of hydrogen and carbon monoxide, methane, and methanol are mentioned.
  • source gas Water vapor
  • Hydrogen can be produced using steam.
  • Other examples include carbon dioxide and water vapor.
  • Methane and methanol can be produced using carbon dioxide and water vapor.
  • thermochemical hydrogen production catalyst an outline of a method for producing a thermochemical hydrogen production catalyst will be described as an example of the thermochemical fuel production catalyst of the present invention.
  • the preparation of the thermochemical hydrogen production catalyst can be performed by a known perovskite oxide preparation method. For example, powders of raw materials (oxides, hydroxides, oxide hydroxides, etc.) containing a desired perovskite oxide element are weighed to a desired composition ratio, mixed and pulverized, and then calcined. After that, the catalyst for thermochemical hydrogen production can be produced by performing main firing. More specifically, an embodiment of a method of making the La 0.8 Sr 0.2 Mn 1-x Fe x O 3 ⁇ ⁇ .
  • porous (porosity) of La 0.8 Sr 0.2 Mn 1-x Fe x O 3 ⁇ ⁇ to produce pellets.
  • raw material oxides La 2 O 3 , SrCO 2 , MnCO 3 , Fe 2 O 3
  • the obtained powder is placed in a die together with isopropanol and baked at 1500 ° C. for 6 hours to obtain porous pellets.
  • La 0.8 Sr 0.2 Mn 1-x Fe x O 3 ⁇ ⁇ pellet was confirmed by X-ray diffraction to be a perovskite structure (see Figure 1).
  • the porosity of the obtained pellet was about 60%.
  • the obtained pellet has a hole of various sizes from several micrometers to more than 100 micrometers from a secondary electron microscope image (refer FIG. 2).
  • hydrogen production can be performed as follows using the catalyst for thermochemical hydrogen production.
  • the porous pellets were placed in an infrared furnace and the pellets were heated to 1400 ° C. (corresponding to the “first temperature” of the two-stage thermochemical cycle) under dry nitrogen containing 10 ppm oxygen. At this time, it was observed that oxygen was released from the pellets using mass spectroscopy.
  • the pellet was cooled down to 800 ° C. (corresponding to the “second temperature” of the two-stage thermochemical cycle), and then 10% steam containing argon gas was allowed to flow.
  • the catalytic center of water oxidation in photosynthesis appears to be oxygen sites that bind to metals with longer bond lengths.
  • Longer metal in the perovskite an attempt to obtain an oxygen bond lengths, some manganese is substituted by iron, the La 0.8 Sr 0.2 Mn 1-x Fe x O 3 ⁇ ⁇ , coupled to the iron, the longer metal - May indicate oxygen bond length.
  • Figure 1 is a graph showing the X-ray diffraction pattern of the La 0.8 Sr 0.2 Mn 1-x Fe x O 3 ⁇ ⁇ .
  • the horizontal axis represents the diffraction angle (degrees), and the vertical axis represents the diffraction intensity (arbitrary unit).
  • x is the concentration of iron (Fe) (amount when the amount of Mn before substitution is 1), 0 (corresponding to the case of not containing Fe), 0.3 (30 at%), 0.5 (50 at %), 0.75 (75 at%), and 1 (100 at%; when all Mn atoms are substituted with Fe atoms), X-ray diffraction results are shown.
  • Perovskite structure as shown in FIG. 1, is maintained at all iron concentration of La 0.8 Sr 0.2 Mn 1-x Fe x O 3 ⁇ ⁇ (x). Measurement with a differential scanning calorimeter also showed no evidence of phase transformation up to 1400 ° C. The thick line is before the heat cycle and the thin line is after the heat cycle, and it was found that both showed a perovskite structure.
  • Figure 2 is a secondary electron micrograph of La 0.8 Sr 0.2 Mn 1-x Fe x O 3 ⁇ ⁇ .
  • a), c), e), g) and i) are before the heat cycle
  • b), d), f), h) and j) are after the heat cycle of 800 ° C. to 1400 ° C. belongs to.
  • the size of the scale bar is 40 ⁇ m. It can be seen that any sample maintains a porous structure even after thermal cycling.
  • FIG. 3 is a graph showing the amount of hydrogen produced when La 0.8 Sr 0.2 Mn 1-x Fe x O 3 ⁇ ⁇ is used as a catalyst for producing thermochemical hydrogen.
  • the horizontal axis represents time (minutes), and the vertical axis represents the amount of hydrogen produced per unit gram (ml / g / min).
  • the first temperature of the thermal (thermochemical) cycle was 1400 ° C. and the second temperature was 800 ° C.
  • the concentration (x) of iron (Fe) is 0 (corresponding to the case where no Fe is contained), 0.3 (30 at%), 0.5 (50 at%), 0.75 (75 at%)
  • the amount of hydrogen production increased.
  • Figure 4 is a graph showing the dependency of the La 0.8 Sr 0.2 Mn 1-x Fe x O 3 hydrogen production when the ⁇ [delta] was used as a thermochemical hydrogen production catalyst (generation) of iron concentration (x) .
  • the horizontal axis represents iron concentration, and the vertical axis represents the amount of hydrogen produced per unit gram (ml / g).
  • the first temperature of the thermal cycle was 1400 ° C and the second temperature was 800 ° C.
  • the white circle indicates the result of the first cycle, and the black circle indicates the result of the ninth cycle. As shown in FIG.
  • Figure 5 is a graph showing the cycle characteristics of the hydrogen production amount in the case of using the La 0.8 Sr 0.2 Mn 1-x Fe x O 3 ⁇ ⁇ as thermochemical hydrogen production catalyst.
  • the horizontal axis represents the number of cycles (times), and the vertical axis represents the amount of hydrogen produced per unit gram (ml / g).
  • the first temperature of the thermal cycle was 1400 ° C and the second temperature was 800 ° C.
  • the hydrogen production increased little by little with the cycle.
  • Figure 6A is a graph showing the cycle characteristics of the La 0.8 Sr 0.2 Mn 1-x Fe x O 3 hydrogen with ⁇ [delta] production volume and oxygen production amount.
  • the horizontal axis represents the number of cycles (times), and the vertical axis represents the hydrogen production amount and oxygen production amount (ml / g) per unit gram.
  • FIG. 6B is a graph showing the cycle characteristics of the ratio of the hydrogen production to the oxygen production.
  • the horizontal axis represents the number of cycles (times), and the vertical axis represents the ratio of hydrogen production to oxygen production.
  • the first temperature of the thermal cycle was 1400 ° C and the second temperature was 800 ° C.
  • the ratio of the hydrogen production amount to the oxygen production amount is approximately 2, indicating that water splitting has been performed.
  • FIG. 7 shows (La 0.8 Sr 0.2 ) MnO 3 ⁇ ⁇ , (La 0.8 Sr 0.2 ) (Mn 0.85 Ti 0.15 ) O 3 ⁇ ⁇ , (La 0.8 Sr 0.2 ) (Mn 0.85 Fe 0.15 ) O 3 ⁇ ⁇ , ( La 0.8 Sr 0.2) (Mn 0.85 Ni 0.15) O 3 ⁇ ⁇ , (La 0.8 Sr 0.2) (Mn 0.85 Mg 0.15) O 3 ⁇ ⁇ , La (Mn 0.5 Mg 0.5) O 3 for the ⁇ [delta] thermochemical hydrogen production It is a graph which shows the hydrogen production amount at the time of using as a catalyst.
  • the amount of hydrogen produced was shown as a flow rate per unit gram (ml / min / g).
  • the horizontal axis represents time (minutes), and the vertical axis represents the flow rate per unit gram (ml / min / g).
  • the first temperature of the thermal (thermochemical) cycle was 1400 ° C. and the second temperature was 800 ° C.
  • a perovskite oxide in which A site is La or La and Sr and X site is Mn or Mn and any of Ti, Fe, Ni, and Mg is used as a catalyst for thermochemical hydrogen production. In the case where it was, hydrogen could be produced thermochemically.
  • FIG. 8 shows (La 0.8 Sr 0.2 ) MnO 3 ⁇ ⁇ , (La 0.8 Sr 0.2 ) (Mn 0.85 Ti 0.15 ) O 3 ⁇ ⁇ , (La 0.8 Sr 0.2 ) (Mn 0.85 Fe 0.15 ) O 3 ⁇ ⁇ , ( Cyclic characteristics of hydrogen production when La 0.8 Sr 0.2 ) (Mn 0.85 Ni 0.15 ) O 3 ⁇ ⁇ and (La 0.8 Sr 0.2 ) (Mn 0.85 Mg 0.15 ) O 3 ⁇ ⁇ are used as catalysts for thermochemical hydrogen production It is a graph which shows.
  • the horizontal axis represents the number of cycles (times), and the vertical axis represents the amount of hydrogen produced per unit gram (ml / g).
  • the first temperature of the thermal cycle was 1400 ° C and the second temperature was 800 ° C.
  • (La 0.8 Sr 0.2 ) MnO 3 ⁇ ⁇ was used as a catalyst for thermochemical hydrogen production, the hydrogen production increased little by little with the cycle and became almost constant over about 4 cycles.
  • (La 0.8 Sr 0.2 ) (Mn 0.85 Ti 0.15 ) O 3 ⁇ ⁇ was used as a thermochemical hydrogen production catalyst, the hydrogen production decreased little by little with the cycle.
  • FIG. 9 is a graph showing the amount of hydrogen produced and the amount of oxygen produced when (La 0.8 Sr 0.2 ) CrO 3 ⁇ ⁇ is used as a catalyst for thermochemical hydrogen production.
  • the production amount was shown as a flow rate per unit gram (ml / min / g).
  • the horizontal axis represents time (minutes), and the vertical axis represents the flow rate per unit gram (ml / min / g).
  • the solid line represents the amount of oxygen produced, and the two-dot chain line represents the amount of hydrogen produced.
  • the first temperature of the thermal (thermochemical) cycle was 1300 ° C. and the second temperature was 800 ° C.
  • FIG. 9 even when (La 0.8 Sr 0.2 ) CrO 3 ⁇ ⁇ was used as a catalyst for thermochemical hydrogen production, hydrogen could be produced thermochemically.
  • FIG. 10 is a graph showing the amount of hydrogen produced and the amount of oxygen produced when (La 0.8 Sr 0.2 ) MnO 3 ⁇ ⁇ is used as a catalyst for thermochemical hydrogen production.
  • the first temperature of the thermal (thermochemical) cycle was 1400 ° C. and the second temperature was 800 ° C.
  • the horizontal axis represents time (minutes), and the left vertical axis represents the flow rate of hydrogen or oxygen per unit gram (ml / min / g).
  • the solid line indicates the oxygen production flow rate, and the dotted line indicates the hydrogen production flow rate.
  • the right vertical axis is the temperature (° C.), and as shown in the graph, after the start of the cycle, the first step (the oxygen release reaction (high temperature reduction reaction)) is maintained at 1400 ° C. for 40 minutes, and then the second step ( It shows that the temperature was set to 800 ° C. in the hydrogen generation reaction (low-temperature oxidation reaction).
  • the first step the oxygen release reaction (high temperature reduction reaction)
  • the second step It shows that the temperature was set to 800 ° C. in the hydrogen generation reaction (low-temperature oxidation reaction).
  • the ratio of hydrogen production to oxygen production H 2 / O 2
  • Hydrogen could be produced chemically.
  • FIG. 11 is a graph showing the amount of hydrogen produced when Ba (Ti 0.6 Mn 0.4 ) O 3 ⁇ ⁇ is used as a catalyst for thermochemical hydrogen production.
  • the horizontal axis represents time (minutes), and the vertical axis represents the amount of hydrogen produced per unit gram (ml / g).
  • the first temperature of the thermal (thermochemical) cycle was 1400 ° C. and the second temperature was 800 ° C.
  • a perovskite oxide in which the A site was Ba and the X site was Mn and Ti was used as a catalyst for thermochemical hydrogen production, hydrogen could be produced thermochemically.
  • the production amount was shown as a flow rate per unit gram (sccm / g).
  • the horizontal axis represents time (minutes), and the vertical axis represents the flow rate per unit gram (sccm / g).
  • the first temperature of the thermal (thermochemical) cycle was 1500 ° C and the second temperature was 800 ° C.
  • the first temperature of the thermal (thermochemical) cycle was 1400 ° C. and the second temperature was 800 ° C.
  • the amount of hydrogen produced increases as the Sr concentration increases.
  • the circles shown in the vicinity of each graph indicate the production amount per cycle (ml / cycle / g) in each case.
  • the first temperature of the thermal (thermochemical) cycle was 1400 ° C. and the second temperature was 800 ° C.
  • the amount of hydrogen produced gradually increased from when the Al concentration was zero to the same concentration as the Mn concentration, and decreased when the Al concentration was further increased (x 0.75).
  • FIG. 15 is a graph showing the amount of hydrogen produced when (La 0.8 Sr 0.2 ) MnO 3 ⁇ ⁇ and (La 0.8 Ba 0.2 ) MnO 3 ⁇ ⁇ are used as catalysts for thermochemical hydrogen production.
  • the production amount was shown as a flow rate per unit gram (ml / min / g).
  • the horizontal axis represents time (minutes), and the vertical axis represents the flow rate per unit gram (ml / min / g).
  • the solid line (LSM82) is (La 0.8 Sr 0.2) MnO 3 ⁇ ⁇
  • dotted (LBM82) shows the flow rate of (La 0.8 Ba 0.2) MnO 3 ⁇ ⁇ .
  • the first temperature of the thermal (thermochemical) cycle was 1400 ° C. and the second temperature was 800 ° C. Even when a perovskite oxide in which Sr of (La 0.8 Sr 0.2 ) MnO 3 ⁇ ⁇ was replaced with Ba was used as a catalyst for thermochemical hydrogen production, the amount of hydrogen production did not change much.
  • FIG. 16 is a graph showing the amount of hydrogen produced when (La 0.8 Ba 0.2 ) (Mn 0.25 Fe 0.75 ) O 3 ⁇ ⁇ is used as a catalyst for thermochemical hydrogen production.
  • the production amount was shown as a flow rate per unit gram (ml / min / g).
  • the horizontal axis represents time (minutes), and the vertical axis represents the flow rate per unit gram (ml / min / g).
  • the first temperature of the thermal (thermochemical) cycle was 1400 ° C., but the second temperatures were 700 ° C. (solid line), 800 ° C. (dotted line), and 1000 ° C. (one-dot chain line), respectively. In the case where the second temperature is 700 ° C.
  • the hydrogen production amount did not change greatly, but in contrast, in the case where the second temperature is 1000 ° C., compared to the case where the second temperature is 700 ° C. and 800 ° C. About 10%, the amount of hydrogen production was small.
  • perovskite oxide In solar thermochemical hydrogen production, concentrated solar energy needs to be absorbed by the perovskite oxide.
  • the solar spectrum ranges from the ultraviolet to the visible and infrared (250 nm to 2500 nm).
  • the absorbed photons excite electrons from a low state to an excited state, and are finally converted into heat via phonons.
  • La 0.8 Sr 0.2 Mn 0.25 Fe 0.75 O 3 ⁇ ⁇ perovskite absorbs light very efficiently and absorbs about 4 times that of cerium oxide.
  • perovskite The elements that make up perovskite are abundant on the earth.
  • the earth abundances of iron and manganese are 35 and 0.6 times the earth abundance of carbon, respectively.
  • Strontium (Sr) is 5 times as much as copper (Cu) in the crust, and lanthanum (La) is half that of copper.
  • thermochemical hydrogen production catalyst La 0.8 Sr 0.2 Mn 1-x Fe x O 3 ⁇ ⁇ perovskite.
  • La 0.8 Sr 0.2 Mn 0.25 Fe 0.75 O 3 ⁇ ⁇ produces 5.3 ml / g of hydrogen in a thermochemical cycle between 800 ° C. and 1400 ° C.
  • the advantage of using non-stoichiometric composition perovskite over additive-free cerium oxide is that it uses up to 4 times more efficient light absorption, the use of abundant elements on earth for the production of scalable solar fuel 1400 ° C. low temperature operation.
  • the strontium which is abundant on the earth in this system, can be completely dissolved in lanthanum, and can imitate the utilization of rare earths in catalytic perovskites.
  • the present invention can convert and store solar energy as a chemical fuel with high efficiency, the obtained chemical fuel can be used as clean energy in various industrial fields and clean industrial raw materials in the chemical industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 熱化学的に燃料を製造可能とするペロブスカイト酸化物からなる熱化学燃料製造用触媒及び熱化学燃料製造方法が提供される。そのような熱化学燃料製造用触媒は、第1温度と該第1温度以下である第2温度の2段階の熱化学サイクルを用いて熱エネルギーから燃料を製造するのに用いる熱化学燃料製造用触媒であって、組成式AXO3±δ(但し、0≦δ<1)を有するペロブスカイト酸化物からなることを特徴とする熱化学燃料製造用触媒;ここで、Aは希土類元素、アルカリ土類金属元素、又は、アルカリ金属元素のいずれか1以上であり、Xは遷移金属元素又はメタロイド元素のいずれか1以上であり、Oは酸素である。

Description

熱化学燃料製造用触媒及び熱化学燃料製造方法
 本発明は、熱化学燃料製造用触媒及び熱化学燃料製造方法に関する。
 本願は、2012年3月23日に米国に出願された米国特許仮出願第61/615,122号及び2012年8月31日に米国に出願された米国特許出願第13/600,948号に基づき優先権を主張し、その内容をここに援用する。
 熱化学燃料生成法とは、太陽光などから得られた熱エネルギーから化学燃料を製造し、熱エネルギーを化学燃料として貯蔵する技術である。高温(第1温度)-低温(第2温度)の2段の熱サイクル(熱化学サイクル)によって燃料を製造する。実際には、触媒酸化物を高温にて還元し、そこに原料ガスである二酸化炭素や水蒸気などを導入すると、原料中の酸素を触媒酸化物が吸収して混合ガス、メタン、炭化水素、アルコール、水素などの燃料を製造できる。
 酸化物系触媒としては主に、ZnO-Zn、Fe-FeO、CeO-Ce、非化学量論的組成のCeOおよびこれらの混合物や一部置換酸化物などが報告されている。LaSrMnO系ペロブスカイト酸化物を用いたメタンの水蒸気改質(CH+HO→6H+CO)は報告されているが、これは水や二酸化炭素を用いた熱化学燃料生成(HO→H+1/2O、または、CO→CO+1/2O)とは全く異なり、ペロブスカイト酸化物AXOを用いた熱化学燃料製造はこれまで報告されていない。
 熱化学燃料生成法によって生成可能な燃料のうち例えば、水素は、燃焼後に水しか生成しないクリーンなエネルギー源であるため、再生可能エネルギーとして期待されている。
水を直接分解して水素を製造する(HO→H+1/2O)には数千℃の高温を必要とするが、熱化学燃料生成法を用いれば、より低温の2段階の温度の熱サイクルによって水を分解して水素を製造することが可能となる(例えば、特許文献1)。
 2段階の温度(高温-低温)の熱サイクルのうち、高温の加熱については太陽エネルギーを利用する技術が知られている(例えば、特許文献2)。
 太陽エネルギーは最も豊富な再生可能エネルギー源である。この莫大な太陽エネルギーを十分に活用するためには、これを大規模に安定な形で効率的に保存しなければならない。太陽光を化学的な状態で保存するために、我々は非化学量論的組成の酸化物を用いた太陽熱化学燃料製造の研究を行っている。酸化物とガス種との間の酸化還元反応を駆動するのは2段階の熱化学サイクルである。酸化物は高温で還元され、酸化物から酸素が放出される。また、二酸化炭素及び/又は水蒸気が導入される低温では、酸化物は導入されたガスから酸素原子を剥ぎ取る。その結果、混合ガス、メタン及び水素燃料が生成される。熱力学的効率は、ZnO-Zn、Fe-FeO、CeO-Ce、非化学量論的組成のCeO系、及び、それらのいくつかの組み合わせを含む酸化物系触媒に依存して、15-75%であると計算されている。他の系の触媒はあまり探索されていない。太陽エネルギーを用いた燃料製造における最高変換効率は、無添加(アンドープ)のセリアを用い、低温800℃-高温1630℃の太陽熱化学サイクルで0.8%であり、一酸化炭素および水素を1.3~1.5リットル製造することができる。
 熱化学燃料生成法で用いる触媒酸化物として酸化セリウム(セリア)が知られている(非特許文献1)。無添加セリアを用いた太陽熱化学効率実験においては、ソーラーリアクター(太陽炉)は、特に1250℃を越えると、50%以下のエネルギーを熱として失い、40%以下のエネルギーをアパーチャーからの太陽再反射として失う。このため、太陽エネルギーの変換効率の大きな進展が期待されている。この問題に取り組むために、機械工学的アプローチと材料科学的アプローチが可能である。熱回収システムを集積してもよい。課題は、所望の特性を示す多数の候補の酸化物から、適切な酸化物構造と材料化学をどのように選択するかである、コンビナトリアル合成法は候補とする酸化物を作成するのに強力かもしれないが、高温での燃料生産性を調べるための迅速な方法が必要となる。
特開2004-269296号公報 特開2009-263165号公報 米国特許出願公開第2009/0107044号明細書
 本発明は、熱化学的に燃料を製造可能とするペロブスカイト酸化物からなる熱化学燃料製造用触媒及び熱化学燃料製造方法を提供することを目的とする。
 本発明は、熱化学燃料製造用触媒、特に太陽熱化学水分解用のバイオインスパイアード触媒ペロブスカイトを提案するものである。自然の光合成、より具体的には水の酸化は、突起を有する立方状の骨格からなるMnCaOクラスターを触媒として生じている。マンガン元素を含有する同様な立方状構造においては人工的な水の分解が起こるだろうと予測した。かかる仮定から、マンガンベースのペロブスカイト(立方状構造、図3のグラフの右側に図示した構造)を用いた熱化学水分解実験を開始した。ペロブスカイトは水を分解させ、酸化セリウムを用いた場合の水素の量を超える量の水素を製造することがわかった。発明者らの知る限り、これは、非化学量論的組成のペロブスカイト酸化物を用いた熱化学水分解の最初の実証結果に基づくものである。SrドープLaMnOペロブスカイトはメタンの水蒸気改質に利用されたが、ペロブスカイト酸化物で熱化学的水分解は実証されていなかった。酸化セリウムの白色と比べて、ペロブスカイトの黒色は効率的な太陽吸収率に有効であり、その結果、効率的な太陽燃料変換が可能となる。
ペロブスカイト酸化物を、熱化学燃料製造用触媒の一例として水素製造用触媒として用いる2段階熱化学サイクル反応は、以下に示すような、酸素放出反応と水素生成反応の2段階で構成される;
〔酸素放出反応(高温還元反応)〕
  AXO3±δ→ AXO3±δ-α+(α/2)O
〔水素生成反応(低温酸化反応)〕
  AXO3±δ-α+αHO→ AXO3±δ+αH
  また、全反応は以下のように表される;
〔全反応〕
  αHO→ αH+(α/2)O2 
また、ペロブスカイト酸化物を、熱化学燃料製造用触媒の一例として熱化学メタン製造用触媒として用いる2段階熱化学サイクル反応は、以下に示すような、酸素放出反応とメタン生成反応の2段階で構成される;
〔酸素放出反応(高温還元反応)〕
  AXO3±δ→ AXO3±δ-α+(α/2)O
〔メタン生成反応(低温酸化反応)〕
  AXO3±δ-α+(α/4)CO+(α/2)HO→ AXO3±δ+(α/4)CH
  また、全反応は以下のように表される;
〔全反応〕
  (α/4)CO+(α/2)HO→(α/4)CH+(α/2)O2 
また、ペロブスカイト酸化物を、熱化学燃料製造用触媒の一例として熱化学メタノール製造用触媒として用いる2段階熱化学サイクル反応は、以下に示すような、酸素放出反応とメタノール生成反応の2段階で構成される;
〔酸素放出反応(高温還元反応)〕
  AXO3±δ→ AXO3±δ-α+(α/2)O
〔メタノール生成反応(低温酸化反応)〕
  AXO3±δ-α+(δ/3)CO+(2α/3)HO→ AXO3±δ+(α/3)CHOH
  また、全反応は以下のように表される;
〔全反応〕
  (α/3)CO+(2α/3)HO→(α/3)CHOH+(α/2)O
また、ペロブスカイト酸化物を、熱化学燃料製造用触媒の一例として一酸化炭素製造用触媒として用いる2段階熱化学サイクル反応は、以下に示すような、酸素放出反応と一酸化炭素生成反応の2段階で構成される;
〔酸素放出反応(高温還元反応)〕
  AXO3±δ→ AXO3±δ-α+(α/2)O
〔一酸化炭素生成反応(低温酸化反応)〕
  AXO3±δ-α+αCO→ AXO3±δ+αCO
  また、全反応は以下のように表される;
〔全反応〕
  αCO→αCO+(α/2)O
また、ペロブスカイト酸化物を、熱化学燃料製造用触媒の一例として水素及び一酸化炭素の混合ガス製造用触媒として用いる2段階熱化学サイクル反応は、以下に示すような、酸素放出反応と水素及び一酸化炭素の混合ガス生成反応の2段階で構成される;
〔酸素放出反応(高温還元反応)〕
  AXO3±δ→ AXO3±δ-α+(α/2)O
〔水素及び一酸化炭素の混合ガス生成反応(低温酸化反応)〕
  2AXO3±δ-α+αHO+αCO→ 2AXO3±δ+αH+αCO
  また、全反応は以下のように表される;
〔全反応〕
  αHO+αCO→αH+αCO+(α/2)O
 上記の目的を達成するために、本発明は以下の手段を提供する。
(1)第1温度と該第1温度以下である第2温度の2段階の熱化学サイクルを用いて熱エネルギーから燃料を製造するのに用いる熱化学燃料製造用触媒であって、組成式AXO3±δ(但し、0≦δ<1)を有するペロブスカイト酸化物からなることを特徴とする熱化学燃料製造用触媒;ここで、Aは希土類元素、アルカリ土類金属元素、又は、アルカリ金属元素のいずれか1以上であり、Xは遷移金属元素又はメタロイド元素のいずれか1以上であり、Oは酸素である。
(2)前記A元素はLa、Mg、Ca、Sr、Baからなる群から選択されたいずれか1以上であり、前記X元素はMn、Fe、Ti、Zr、Nb、Ta、Mo、W、Hf、V、Cr、Co、Ni、Cu、Zn、Mg、Al、Ga、In、C、Si、Ge、Snからなる群から選択されたいずれか1以上であることを特徴とする(1)に記載の熱化学燃料製造用触媒。
(3)前記A元素はLaであり、前記X元素はMnであることを特徴とする(2)に記載の熱化学燃料製造用触媒。
(4)前記A元素が一部、Sr、Ca、Baのいずれか1以上で置換されていることを特徴とする(3)に記載の熱化学燃料製造用触媒。
(5)前記X元素が一部、Fe、Ni、V、Cr、Sc、Ti、Co、Cu、Znのいずれか1以上で置換されていることを特徴とする(3)に記載の熱化学燃料製造用触媒。
(6)前記A元素はLaであり、前記X元素はMnであり、前記Laが一部、Srで置換されていることを特徴とする(1)に記載の熱化学燃料製造用触媒。
(7)前記置換されているSrの濃度(x;xは置換前のLaの量を1としたときの量)が0.1以上1.0未満であることを特徴とする(6)に記載の熱化学燃料製造用触媒。
(8)前記Mnが一部、Feで置換されていることを特徴とする(7)に記載の熱化学燃料製造用触媒。
(9)前記置換されているFeの濃度(x;xは置換前のMnの量を1としたときの量)が0.35以上0.85以下であることを特徴とする(8)に記載の熱化学燃料製造用触媒。
(10)前記A元素はBaであり、前記X元素はTiであり、前記Tiが一部、Mnで置換されていることを特徴とする(1)に記載の熱化学燃料製造用触媒。
(11)前記置換されているMnの濃度(x;xは置換前のTiの量を1としたときの量)が0超0.5以下であることを特徴とする(10)に記載の熱化学燃料製造用触媒。
(12)(1)~(11)のいずれか一項に記載の熱化学燃料製造用触媒を用いることを特徴とする熱化学燃料の製造方法。
(13)(1)~(11)のいずれか一項に記載の熱化学燃料製造用触媒を用いて、第1温度と該第1温度以下である第2温度の2段階の熱化学サイクルを用いて熱エネルギーから燃料を製造する熱化学燃料製造方法であって、前記第1温度が600℃以上1600℃以下であり、前記第2温度が400℃以上1600℃以下であることを特徴とする熱化学燃料製造方法。
(14)前記第1温度を、集光太陽光エネルギーを照射して加熱することにより、又は、廃熱を用いて加熱することにより得ることを特徴とする(13)に記載の熱化学燃料製造方法。
(15)第1温度と該第1温度以下である第2温度の2段階の熱化学サイクルを用いて熱エネルギーから燃料を製造する熱化学燃料製造方法であって、組成式AXO3±δ(但し、0≦δ<1)を有するペロブスカイト酸化物を第1温度まで加熱して還元する工程と、原料ガスを、還元されたペロブスカイト酸化物に接触させ、そのペロブスカイト酸化物を酸化させて燃料を製造する工程と、を有することを特徴とする熱化学燃料製造方法。
(16)前記燃料が水素、一酸化炭素、水素及び一酸化炭素の混合ガス、メタン、メタノールのいずれかであることを特徴とする(15)に記載の熱化学燃料製造方法。
(17)前記原料ガスが水蒸気であることを特徴とする(15)に記載の熱化学燃料製造方法。
(18)前記原料ガスが二酸化炭素と水蒸気であることを特徴とする(15)に記載の熱化学燃料製造方法。
 なお、本明細書において「熱化学燃料製造」とは、複数の化学反応を組み合わせることにより水を比較的穏やかな熱条件で酸素と水素に分解する「熱化学水素製造」の概念を、水素を含めて広く燃料にまで拡げた概念である。
 また、「一部、・・・で置換されている」場合とは、置換されている元素の濃度(x)が置換前の被置換元素の量を1としたときに、0超1未満のうちのいずれかの範囲である場合をいう。
 また、「第2温度」は雰囲気を変えることにより、「第1温度」と同じ温度でも熱化学燃料製造が可能となるが、雰囲気が同じ場合には「第1温度」よりも低い温度である。
 また、「組成式AXO3±δ(但し、0≦δ<1)」における“δ”は、好ましくは0≦δ≦0.5、より好ましくは0≦δ≦0.3、さらに好ましくは0≦δ≦0.2、である。
 本発明によれば、熱化学的に燃料を製造可能とするペロブスカイト酸化物からなる熱化学燃料製造用触媒及び熱化学燃料製造方法を提供できる。
 本発明は、ペロブスカイト酸化物AXOを用いた初めての熱化学燃料製造用触媒を提供するものである。
 本発明によれば、鉄、マンガン、カルシウム、バリウム、チタンなどの豊富な地殻存在元素を使用しかつ希土類元素の使用量を削減できるため、大幅なコスト削減が見込める熱化学燃料製造用触媒及び熱化学燃料製造方法を提供でき、これにより太陽エネルギーを高効率で化学燃料として変換貯蔵することが可能となる。
La0.8Sr0.2Mn1-xFex3±δ(x=0以上1以下)のX線回折結果を示すグラフである。 La0.8Sr0.2Mn1-xFex3±δの二次電子顕微鏡像である。 La0.8Sr0.2Mn1-xFex3±δを熱化学燃料(水素)製造用触媒として用いた場合の水素の製造量を示すグラフである。 La0.8Sr0.2Mn1-xFex3±δを熱化学燃料(水素)製造用触媒として用いた場合の水素製造(生成)量の鉄濃度(x)の依存性を示すグラフである。 La0.8Sr0.2Mn1-xFex3±δを用いた水素製造量のサイクル特性を示すグラフである。 La0.8Sr0.2Mn1-xFex3±δを用いた水素製造量及び酸素製造量のサイクル特性を示すグラフである。 図6Aに示した水素製造量及び酸素製造量について、その酸素製造量に対する水素製造量の比のサイクル特性を示すグラフである。 (La0.8Sr0.2)MnO3±δ、(La0.8Sr0.2)(Mn0.85Ti0.15)O3±δ、(La0.8Sr0.2)(Mn0.85Fe0.15)O3±δ、(La0.8Sr0.2)(Mn0.85Ni0.15)O3±δ、(La0.8Sr0.2)(Mn0.85Mg0.15)O3±δ、La(Mn0.5Mg0.5)O3±δを熱化学水素製造用触媒として用いた場合の水素製造量を示すグラフである。 (La0.8Sr0.2)MnO3±δ、(La0.8Sr0.2)(Mn0.85Ti0.15)O3±δ、(La0.8Sr0.2)(Mn0.85Fe0.15)O3±δ、(La0.8Sr0.2)(Mn0.85Ni0.15)O3±δ、(La0.8Sr0.2)(Mn0.85Mg0.15)O3±δを熱化学水素製造用触媒として用いた場合の水素製造量のサイクル特性を示すグラフである。 (La0.8Sr0.2)CrO3±δを熱化学水素製造用触媒として用い、第1温度は1300℃、第2温度は800℃の場合の水素製造量、及び、酸素製造量を示すグラフである。 (La0.8Sr0.2)MnO3±δを熱化学水素製造用触媒として用い、第1温度は1400℃、第2温度は800℃の場合の水素製造量、及び、酸素製造量を示すグラフである。 Ba(Ti0.6Mn0.4)O3±δを熱化学水素製造用触媒として用いた場合の水素製造量を示すグラフである。 La1-xSrxMnO3±δ(x=0、0.1、0.2)を熱化学水素製造用触媒として用いた場合の水素製造量のサイクル特性を示すグラフである。 La1-xSrxMnO3±δ(x=0.1、0.2、0.3、0.4、0.5)を熱化学水素製造用触媒として用いた場合の水素製造量を示すグラフである。 La0.8Sr0.2Mn1-xAlx3±δ(x=0、0.25、0.5、0.75)を熱化学水素製造用触媒として用いた場合の水素製造量を示すグラフである。 (La0.8Sr0.2)MnO3±δ、及び、(La0.8Ba0.2)MnO3±δを熱化学水素製造用触媒として用いた場合の水素製造量を示すグラフである。 (La0.8Ba0.2)(Mn0.25Fe0.75)O3±δを熱化学水素製造用触媒として用いた場合の水素製造量を示すグラフである。
 以下、本発明を適用した熱化学燃料製造用触媒及び熱化学燃料製造方法について、図面を用いてその構成を説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際と同じであるとは限らない。また、以下の説明において例示される実施例は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
 本発明の熱化学燃料製造用触媒は、第1温度と該第1温度以下である第2温度の2段階の熱化学サイクルを用いて熱エネルギーから燃料を製造するのに用いる熱化学燃料製造用触媒であって、組成式AXO3±δ(但し、0≦δ<1)を有するペロブスカイト酸化物からなるものである。ここで、Aは希土類元素、アルカリ土類金属元素、又は、アルカリ金属元素のいずれか1以上であり、Xは遷移金属元素又はメタロイド(半金属)元素のいずれか1以上であり、Oは酸素である。
 δの値は、本発明の効果を損なわない範囲で決定することができる。
希土類元素とは、例えば、Sc(スカンジウム)、Y(イットリウム)、La(ランタン)、Pr(プラセオジム)、Nd(ネオジム)、Pm(プロメチウム)、Sm(サマリウム)、Eu(ユウロピウム)、Gd(ガドリニウム)、Tb(テルビウム)、Dy(ジスブロシウム)、Ho(ホルミウム)、Er(エルビウム)、Tm(ツリウム)、Yb(イッテルビウム)、Lu(ルテチウム)、Ce(セリウム)が挙げられる。
アルカリ土類金属元素とは、例えば、Be(ベリリウム)、Mg(マグネシウム)、Ca(カルシウム)、Sr(ストロンチウム)、Ba(バリウム)、Ra(ラジウム)が挙げられる。
アルカリ金属元素とは、例えば、Li(リチウム)、Na(ナトリウム)、K(カリウム)、Rb(ルビジウム)、Cs(セシウム)、Fr(フランシウム)が挙げられる。
遷移金属元素とは、例えば、Sc(スカンジウム)、Ti(チタン)、V(バナジウム)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)等の第一遷移元素(3d遷移元素)、Y(イットリウム)、Zr(ジルコニウム)、Nb(ニオブ)、Mo(モリブデン)、Tc(テクネチウム)、Ru(ルテニウム)、Rh(ロジウム)、Pd(パラジウム)、Ag(銀)、Cd(カドミウム)等の第二遷移元素(4d遷移元素)、La(ランタン)、Pr(プラセオジウム)、Nd(ネオジム)、Pm(プロメチウム)、Sm(サマリウム)、Eu(ユウロピウム)、Gd(ガドリニウム)、Tb(テルビウム)、Dy(ジスプロシウム)、Ho(ホルミウム)、Er(エルビウム)、Tm(ツリウム)、Yb(イッテルビウム)、Lu(ルテチウム)、Hf(ハフニウム)、Ta(タンタル)、W(タングステン)、Re(レニウム)、Os(オスミウム)、Ir(イリジウム)、Pt(白金)、Au(金)等の第三遷移元素(4f遷移元素)が挙げられる。
メタロイド元素とは、例えば、B(ホウ素)、Si(ケイ素)、Ge(ゲルマニウム)、As(ヒ素)、Sb(アンチモン)、Te(テルル)、Se(セレン)、Po(ポロニウム)At(アスタチン)が挙げられる。
これらの組合せ例としては、A元素がLaであり、X元素がMnであるもの;A元素がLaであり、X元素がMnであり、かつ、そのLaが一部、Sr、Ca、Baのいずれか1以上で置換されているもの;A元素がLaであり、X元素がMnであり、かつ、そのLaが一部、Sr、Ca、Baのいずれか1以上で置換され、かつ、そのMnが一部、Fe、Ni、V、Cr、Sc、Ti、Co、Cu、Znのいずれか1以上で置換されているもの;A元素はBaであり、X元素はTiであり、そのTiが一部、Mnで置換されている;A元素がBaまたはCaまたはSrであり、かつ、そのBa、CaまたはSrの一部が0.01以上0.5以下の範囲で置換されたもの;A元素がCaまたはSrであり、X元素がTiまたはZrであるものなどが好ましく例示される。
 本発明の一実施形態である熱化学燃料製造方法は、本発明の熱化学燃料製造用触媒を用いて、第1温度と該第1温度以下である第2温度の2段階の熱化学サイクルを用いて熱エネルギーから燃料を製造する熱化学燃料製造方法であって、第1温度が600℃以上1600℃以下であり、第2温度が400℃以上1600℃以下であるものである。
 第1温度及び/又は第2温度は例えば、集光太陽光エネルギーを照射して加熱することにより、又は、廃熱を用いて加熱することにより得てもよい。
 「廃熱」は例えば、発電装置や高炉などの廃熱を利用することができる。
 本発明において、「2段階」というのは二つの異なる条件を含む段階のことを意味する。従って、「2段階」とは、第1段階(第1ステップ)と第2段階(第2ステップ)とが温度が異なる場合や、第1段階と第2段階とで温度は同じであるが、第1段階は水分を含まないドライなガスフローであり、第2段階は水蒸気を含んだウェットガスフローである場合などを例示することができる。
 燃料として水素を製造する場合、第1温度として600℃以上1600℃以下(例えば、1400℃)、第2温度として400℃以上1600℃以下(例えば、800℃)とすることができる。
 燃料として一酸化炭素を製造する場合、第1温度として600℃以上1600℃以下(例えば、1400℃)、第2温度として300℃以上1600℃以下(例えば、450℃)とすることができる。
 燃料として水素及び一酸化炭素の混合ガスを製造する場合、第1温度として600℃以上1600℃以下(例えば、1400℃)、第2温度として300℃以上1600℃以下(例えば、800℃)とすることができる。
燃料としてメタンを製造する場合、第1温度として600℃以上1600℃以下(例えば、1400℃)、第2温度として300℃以上1600℃以下(例えば、450℃)とすることができる。
 燃料としてメタノールを製造する場合、第1温度として600℃以上1600℃以下(例えば、1400℃)、第2温度として200℃以上1600℃以下(例えば、350℃)とすることができる。
 本発明の他の実施形態である熱化学燃料製造方法は、第1温度と該第1温度よりも低い第2温度の2段階の熱化学サイクルを用いて熱エネルギーから燃料を製造する熱化学燃料製造方法であって、組成式AXO3±δ(但し、0≦δ<1)を有するペロブスカイト酸化物を第1温度まで加熱して還元する工程と、原料ガスを、還元されたペロブスカイト酸化物に接触させ、そのペロブスカイト酸化物を酸化させて燃料を製造する工程と、を有するものである。
 δの値は、本発明の効果を損なわない範囲で決定することができる。
 本発明の熱化学燃料製造方法により製造できる燃料としては限定するものではないが、例えば、水素、一酸化炭素、水素及び一酸化炭素の混合ガス、メタン、メタノールが挙げられる。
 原料ガスとしては限定するものではないが、一例として、水蒸気が挙げられる。水蒸気を用いて水素を製造することができる。また、他の例として、二酸化炭素及び水蒸気が挙げられる。二酸化炭素及び水蒸気を用いて、メタンやメタノールを製造することができる。
 まず、本発明の熱化学燃料製造用触媒の一例として、熱化学水素製造用触媒を作製する方法についてその概略を説明する。
 熱化学水素製造用触媒の作製は、公知のペロブスカイト酸化物の作製方法を用いることができる。例えば、所望のペロブスカイト酸化物の元素を含む原料(酸化物、水酸化物、酸化水酸化物等)の粉末を目的の組成比となるように秤量して混合粉砕処理を行い、次いで、仮焼を行い、その後、本焼を行うことにより熱化学水素製造用触媒を作製することができる。
 より具体的には、La0.8Sr0.2Mn1-xFex3±δを作製する方法の一例を説明する。
固相反応によって、La0.8Sr0.2Mn1-xFex3±δのポーラスな(多孔性)ペレットを製造する。まず、原料酸化物(La、SrCO、MnCO、Fe)を磨砕機で粉砕し、1000℃で空気中で3時間、仮焼した。次いで、得られたパウダーをイソプロパノールと共にダイに入れ、1500℃で6時間焼成して、ポーラスなペレットを得る。
La0.8Sr0.2Mn1-xFex3±δペレットがペロブスカイト構造であることをX線回折によって確認した(図1参照)。得られたペレットの空隙率は約60%であった。また、得られたペレットが二次電子顕微鏡像から、数μmから100μm超までの様々なサイズの孔を有することをわかった(図2参照)。
 次に、得られた熱化学水素製造用触媒を用いた水素製造についてその概略を説明する。
例えば、その熱化学水素製造用触媒を用いて、以下のように水素製造を行うことができる。
ポーラスなペレットを赤外炉内に入れ、10ppmの酸素を含有する乾燥窒素の下で1400℃(2段階の熱化学サイクルの「第1温度」に相当)までペレットを加熱した。このとき、マススペクロトスコピーを用いてペレットから酸素が抜けるのを観測した。次いで、ペレットを800℃(2段階の熱化学サイクルの「第2温度」に相当)までクールダウンした後、アルゴンガスを含有する10%水蒸気を流した。x=0の場合、800℃で3ml/g(無添加酸化セリウムを用いた場合の水素発生量の~60%の量に相当)の水素発生量が観察された。水素発生反応は図3に示す通り、10分以内に終了した。
水素発生量は図4に示す通り、わずかに増加しながら、9サイクル再現された。
 光合成における水の酸化の触媒中心は、より長い結合長で金属と結合する酸素サイトであると思われる。ペロブスカイトにおいてより長い金属-酸素結合長を得る試みとして、マンガンの一部が鉄によって置換された、La0.8Sr0.2Mn1-xFex3±δは、鉄に結合され、より長い金属-酸素結合長を示す可能性がある。このLa0.8Sr0.2Mn1-xFex3±δの分析結果を以下に示す。
 図1は、このLa0.8Sr0.2Mn1-xFex3±δのX線回折結果を示すグラフである。横軸は回折角度(度)、縦軸は回折強度(任意単位)である。xは鉄(Fe)の濃度(置換前のMnの量を1としたときの量)であり、0(Feを含有しない場合に相当)、0.3(30at%)、0.5(50at%)、0.75(75at%)、1(100at%;Mn原子が全てFe原子に置換された場合)についてX線回折結果を示した。ペロブスカイト構造は、図1に示す通り、La0.8Sr0.2Mn1-xFex3±δの全ての鉄濃度(x)で維持されている。示差走査熱量計による測定でも1400℃まで相変態の証拠を示さなかった。
なお、太線は熱サイクル前、細線は熱サイクル後のものであり、いずれもペロブスカイト構造を示していることがわかった。
 図2は、La0.8Sr0.2Mn1-xFex3±δの二次電子顕微鏡像である。図中のa)、c)、e)、g)及びi)は熱サイクル前のものであり、b)、d)、f)、h)及びj)は800℃-1400℃の熱サイクル後のものである。a)及びb)は鉄濃度x=0、c)及びd)は鉄濃度x=0.3、e)及びf)は鉄濃度x=0.5、g)及びh)は鉄濃度x=0.75、i)及びj)は鉄濃度x=1、である。図の右下に示す通り、スケールバーのサイズが40μmである。
 いずれの試料についても、熱サイクル後もポーラスな構造を維持していることがわかる。
 図3は、La0.8Sr0.2Mn1-xFex3±δを熱化学水素製造用触媒として用いた場合の水素の製造量を示すグラフである。横軸は時間(分)、縦軸は単位グラム当たりの水素製造量(ml/g/min)である。熱(熱化学)サイクルの第1温度は1400℃、第2温度は800℃であった。
 図3に示す通り、鉄(Fe)の濃度(x)が0(Feを含有しない場合に相当)、0.3(30at%)、0.5(50at%)、0.75(75at%)とFeの含有量が増加するほど、水素製造量が多くなり、x=0.75の場合はFeを含有しない場合(x=0)の約1.6倍であった。x=0.85(85at%)の場合は、x=0.75の場合よりも15%程度低下した。Mn原子が全てFe原子に置換された場合(x=1)、は、x=0.75の場合の10%程度であった。
 なお、La0.6Sr0.4MnO3±δを熱化学水素製造用触媒として用い、第1温度は1400℃、第2温度は800℃の熱(熱化学)サイクルの場合に、7.5ml/gの水素製造量が得られた。
 図4は、La0.8Sr0.2Mn1-xFex3±δを熱化学水素製造用触媒として用いた場合の水素製造(生成)量の鉄濃度(x)の依存性を示すグラフである。横軸は鉄の濃度、縦軸は単位グラム当たりの水素製造量(ml/g)である。熱サイクルの第1温度は1400℃、第2温度は800℃であった。
 白丸で示すのは1サイクル目の結果であり、黒丸で示すのは9サイクル目の結果である。
 図4に示す通り、xが0.35~0.85ではセリアの水素製造量(4.0ml/g)よりも多く、x=0.75の場合の水素製造量は5.3ml/gとセリアの水素製造量より30%以上多かった。
図5は、La0.8Sr0.2Mn1-xFex3±δを熱化学水素製造用触媒として用いた場合の水素製造量のサイクル特性を示すグラフである。横軸はサイクル数(回)、縦軸は単位グラム当たりの水素製造量(ml/g)である。熱サイクルの第1温度は1400℃、第2温度は800℃であった。
鉄濃度x=0、0.3、0.5、0.75、及び、1の場合はサイクルと共に少しずつ、水素製造量が増加した。鉄濃度x=0.85の場合はサイクルと共に少しずつ、水素製造量が減少した。なお、図5に示していないが、15サイクルで一定となった。
鉄濃度によらず、いずれの場合も安定なサイクル特性が得られた。
図6Aは、La0.8Sr0.2Mn1-xFex3±δを用いた水素製造量及び酸素製造量のサイクル特性を示すグラフである。横軸はサイクル数(回)、縦軸は単位グラム当たりの水素製造量及び酸素製造量(ml/g)である。図6Bは、その酸素製造量に対する水素製造量の比のサイクル特性を示すグラフである。横軸はサイクル数(回)、縦軸は酸素製造量に対する水素製造量の比である。熱サイクルの第1温度は1400℃、第2温度は800℃であった。
図6Bに示す通り、水素製造量と酸素製造量の比(H量/O量)はほぼ2であり、水分解が行われたことを示している。
 図7は、(La0.8Sr0.2)MnO3±δ、(La0.8Sr0.2)(Mn0.85Ti0.15)O3±δ、(La0.8Sr0.2)(Mn0.85Fe0.15)O3±δ、(La0.8Sr0.2)(Mn0.85Ni0.15)O3±δ、(La0.8Sr0.2)(Mn0.85Mg0.15)O3±δ、La(Mn0.5Mg0.5)O3±δを熱化学水素製造用触媒として用いた場合の水素製造量を示すグラフである。水素製造量は単位グラム当たりの流量(ml/min/g)で示した。横軸は時間(分)、縦軸は単位グラム当たりの流量(ml/min/g)である。熱(熱化学)サイクルの第1温度は1400℃、第2温度は800℃であった。
 図7に示す通り、AサイトをLa、又は、La及びSrとし、XサイトをMn、又は、MnとTi、Fe、Ni、Mgのいずれかとしたペロブスカイト酸化物を熱化学水素製造用触媒に用いた場合にも、熱化学的に水素を製造することができた。
図8は、(La0.8Sr0.2)MnO3±δ、(La0.8Sr0.2)(Mn0.85Ti0.15)O3±δ、(La0.8Sr0.2)(Mn0.85Fe0.15)O3±δ、(La0.8Sr0.2)(Mn0.85Ni0.15)O3±δ、(La0.8Sr0.2)(Mn0.85Mg0.15)O3±δを熱化学水素製造用触媒として用いた場合の水素製造量のサイクル特性を示すグラフである。横軸はサイクル数(回)、縦軸は単位グラム当たりの水素製造量(ml/g)である。熱サイクルの第1温度は1400℃、第2温度は800℃であった。
(La0.8Sr0.2)MnO3±δを熱化学水素製造用触媒として用いた場合、サイクルと共に少しずつ、水素製造量が増加し、4サイクル程度でほぼ一定になった。
(La0.8Sr0.2)(Mn0.85Ti0.15)O3±δを熱化学水素製造用触媒として用いた場合、サイクルと共に少しずつ、水素製造量が減少した。
(La0.8Sr0.2)(Mn0.85Fe0.15)O3±δを熱化学水素製造用触媒として用いた場合、サイクルと共に少しずつ、水素製造量が減少した。
(La0.8Sr0.2)(Mn0.85Ni0.15)O3±δを熱化学水素製造用触媒として用いた場合、サイクルと共に少しずつ、水素製造量が減少し。9サイクル目では(La0.8Sr0.2)MnO3±δを用いた場合とほぼ同程度となった。
(La0.8Sr0.2)(Mn0.85Mg0.15)O3±δを熱化学水素製造用触媒として用いた場合、サイクルと共に少しずつ、水素製造量が減少した。
(La0.8Sr0.2)(Mn0.85Ti0.15)O3±δ及び(La0.8Sr0.2)(Mn0.85Mg0.15)O3±δを用いた場合は、水素製造量は3ml/g程度であった。
(La0.8Sr0.2)MnO3±δ、(La0.8Sr0.2)(Mn0.85Fe0.15)O3±δ、及び(La0.8Sr0.2)(Mn0.85Ni0.15)O3±δを用いた場合は、1サイクル目はそれぞれ、水素製造量は5ml/g、6ml/g、7ml/g程度であったが、10サイクルに近づくにつれていずれも6ml/g程度となった。
 図9は、(La0.8Sr0.2)CrO3±δを熱化学水素製造用触媒として用いた場合の水素製造量、及び、酸素製造量を示すグラフである。製造量は単位グラム当たりの流量(ml/min/g)で示した。横軸は時間(分)、縦軸は単位グラム当たりの流量(ml/min/g)である。実線は酸素の製造量、二点鎖線は水素の製造量を示す。熱(熱化学)サイクルの第1温度は1300℃、第2温度は800℃であった。
 図9に示す通り、(La0.8Sr0.2)CrO3±δを熱化学水素製造用触媒として用いた場合にも、熱化学的に水素を製造することができた。 
 図10は、(La0.8Sr0.2)MnO3±δを熱化学水素製造用触媒として用いた場合の水素製造量、及び、酸素製造量を示すグラフである。熱(熱化学)サイクルの第1温度は1400℃、第2温度は800℃であった。横軸は時間(分)、左側縦軸は単位グラム当たりの水素又は酸素の流量(ml/min/g)である。実線は酸素の製造流量、点線は水素の製造流量を示す。また、右側縦軸は温度(℃)であり、グラフの通り、サイクル開始後、第1ステップ(上記酸素放出反応(高温還元反応))において1400℃で40分間維持し、その後、第2ステップ(上記水素生成反応(低温酸化反応))において800℃にしたことを示している。
 図10に示す通り、(La0.8Sr0.2)CrO3±δを熱化学水素製造用触媒として用いた場合、高い水素製造量と酸素製造量の比(H量/O量)で、熱化学的に水素を製造することができた。 
 図11は、Ba(Ti0.6Mn0.4)O3±δを熱化学水素製造用触媒として用いた場合の水素製造量を示すグラフである。横軸は時間(分)、縦軸は単位グラム当たりの水素製造量(ml/g)である。熱(熱化学)サイクルの第1温度は1400℃、第2温度は800℃であった。
 図11に示す通り、AサイトをBaとし、XサイトをMnとTiとしたペロブスカイト酸化物を熱化学水素製造用触媒に用いた場合にも、熱化学的に水素を製造することができた。
図12は、La1-xSrxMnO3±δ(x=0、0.1、0.2)を熱化学水素製造用触媒として用いた場合の水素製造量のサイクル特性を示すグラフである。製造量は単位グラム当たりの流量(sccm/g)で示した。横軸は時間(分)、縦軸は単位グラム当たりの流量(sccm/g)である。実線(LaMnO3)、点線(LSM91)、一点鎖線(LSM82)はそれぞれ、x=0、0.1、0.2のそれぞれの場合の流量を示す。熱(熱化学)サイクルの第1温度は1500℃、第2温度は800℃であった。
水素製造量は、Sr濃度が高いほど多く、x=0.2の場合はx=0の場合の3倍以上であった。
図13は、La1-xSrxMnO3±δ(x=0.1、0.2、0.3、0.4、0.5)を熱化学水素製造用触媒として用いた場合の水素製造量のサイクル特性を示すグラフである。製造量はそれぞれの場合について、左側縦軸は単位グラム当たりの流量(ml/min/g)であり、右側縦軸に単位グラム当たり、一サイクル当たりの製造量(ml/cycle/g)である。図中の凡例に示すLSM91、LSM82、LSM73、LSM64、LSM55はそれぞれ、x=0.1、0.2、0.3、0.4、0.5のそれぞれの場合に対応し、そのグラフは単位グラム当たりの流量(ml/min/g)を示すものである。また、それぞれのグラフの近傍に示す丸印はそれぞれの場合の一サイクル当たりの製造量(ml/cycle/g)を示すものである。熱(熱化学)サイクルの第1温度は1400℃、第2温度は800℃であった。
水素製造量は、Sr濃度が高いほど多くなり、x=0.4及びx=0.5の場合に、x=0.1の場合の6倍程度であった。
図14は、La0.8Sr0.2Mn1-xAlx3±δ(x=0、0.25、0.5、0.75)を熱化学水素製造用触媒として用いた場合の水素製造量のサイクル特性を示すグラフである。製造量はそれぞれの場合について、左側縦軸に単位グラム当たりの流量(ml/min/g)であり、右側縦軸に単位グラム当たり、一サイクル当たりの製造量(ml/cycle/g)である。図中の凡例に示すLSM82、LSMA827525、LSMA825050、LSMA822575はそれぞれ、x=0、0.25、0.5、0.75のそれぞれの場合に対応し、そのグラフは単位グラム当たりの流量(ml/min/g)を示すものである。また、それぞれのグラフの近傍に示す丸印はそれぞれの場合の一サイクル当たりの製造量(ml/cycle/g)を示すものである。熱(熱化学)サイクルの第1温度は1400℃、第2温度は800℃であった。
水素製造量は、Al濃度がゼロのときからMn濃度と同じ濃度となるまで次第に多くなり、Al濃度がさらに高くなると(x=0.75)、少なくなった。
図15は、(La0.8Sr0.2)MnO3±δ、及び、(La0.8Ba0.2)MnO3±δを熱化学水素製造用触媒として用いた場合の水素製造量を示すグラフである。製造量は単位グラム当たりの流量(ml/min/g)で示した。横軸は時間(分)、縦軸は単位グラム当たりの流量(ml/min/g)である。実線(LSM82)は(La0.8Sr0.2)MnO3±δ、点線(LBM82)は(La0.8Ba0.2)MnO3±δの流量を示す。熱(熱化学)サイクルの第1温度は1400℃、第2温度は800℃であった。
(La0.8Sr0.2)MnO3±δのSrをBaに置換したペロブスカイト酸化物を熱化学水素製造用触媒に用いた場合にも、水素製造量はあまり変わらなかった。
図16は、(La0.8Ba0.2)(Mn0.25Fe0.75)O3±δを熱化学水素製造用触媒として用いた場合の水素製造量を示すグラフである。製造量は単位グラム当たりの流量(ml/min/g)で示した。横軸は時間(分)、縦軸は単位グラム当たりの流量(ml/min/g)である。熱(熱化学)サイクルの第1温度は1400℃であったが、第2温度はそれぞれ、700℃(実線)、800℃(点線)、1000℃(1点鎖線)であった。
第2温度が700℃及び800℃の場合では水素製造量は大きく変わりなかったが、それらに対して、第2温度が1000℃の場合は、第2温度が700℃及び800℃の場合に比べて10%程度、水素製造量が少なかった。
 太陽熱化学水素製造においては、集中太陽エネルギーはペロブスカイト酸化物に吸収される必要がある。太陽スペクトルは、紫外から可視までと赤外の範囲(250nm~2500nm)にわたっている。吸収されたフォトンは電子を低い状態から励起状態まで励起し、最終的にはフォノンを介して熱に変換される。光吸収測定では、La0.8Sr0.2Mn0.25Fe0.753±δペロブスカイトは光を極めて効率的に吸収し、酸化セリウムの約4倍吸収する。
 ペロブスカイトを構成する元素は地球上に豊富に存在する。鉄及びマンガンの地球存在度はそれぞれ、炭素の地球存在度の35倍、及び、0.6倍である。ストロンチウム(Sr)は地殻において銅(Cu)の5倍、ランタン(La)は銅の半分である。
発明者らは、光化学系IIにおいて、MnCaOクラスターの触媒中心を模倣することによって、熱化学水素製造用触媒La0.8Sr0.2Mn1-xFex3±δペロブスカイトを開発した。特に、La0.8Sr0.2Mn0.25Fe0.753±δは、800℃~1400℃の間の熱化学サイクルにおいて、5.3ml/gの水素を製造する。無添加酸化セリウム以上に非化学量論的組成ペロブスカイトを利用する利点は、~4倍効率的な光吸収率、拡大縮小可能な太陽燃料製造用の地球上に豊富にある元素の利用であること、1400℃の低温作動であること、である。この系の、地球上に豊富にあるストロンチウムはランタンに完全に溶解可能であり、触媒ペロブスカイトにおけるレアアース利用を模倣することが可能となる。
本発明は、太陽エネルギーを高効率で化学燃料として変換貯蔵することができるので、得られた化学燃料を各産業分野のクリーンエネルギー、化学産業のクリーン工業原料として使用することができる。

Claims (18)

  1.  第1温度と該第1温度以下である第2温度の2段階の熱化学サイクルを用いて熱エネルギーから燃料を製造するのに用いる熱化学燃料製造用触媒であって、組成式AXO3±δ(但し、0≦δ<1)を有するペロブスカイト酸化物からなることを特徴とする熱化学燃料製造用触媒;ここで、Aは希土類元素、アルカリ土類金属元素、又は、アルカリ金属元素のいずれか1以上であり、Xは遷移金属元素又はメタロイド元素のいずれか1以上であり、Oは酸素である。
  2.  前記A元素はLa、Mg、Ca、Sr、Baからなる群から選択されたいずれか1以上であり、前記X元素はMn、Fe、Ti、Zr、Nb、Ta、Mo、W、Hf、V、Cr、Co、Ni、Cu、Zn、Mg、Al、Ga、In、C、Si、Ge、Snからなる群から選択されたいずれか1以上であることを特徴とする請求項1に記載の熱化学燃料製造用触媒。
  3. 前記A元素はLaであり、前記X元素はMnであることを特徴とする請求項2に記載の熱化学燃料製造用触媒。
  4.  前記A元素が一部、Sr、Ca、Baのいずれか1以上で置換されていることを特徴とする請求項3に記載の熱化学燃料製造用触媒。
  5.  前記X元素が一部、Fe、Ni、V、Cr、Sc、Ti、Co、Cu、Znのいずれか1以上で置換されていることを特徴とする請求項3に記載の熱化学燃料製造用触媒。
  6. 前記A元素はLaであり、前記X元素はMnであり、前記Laが一部、Srで置換されていることを特徴とする請求項1に記載の熱化学燃料製造用触媒。
  7.  前記置換されているSrの濃度(x;xは置換前のLaの量を1としたときの量)が0.1以上1.0未満であることを特徴とする請求項6に記載の熱化学燃料製造用触媒。
  8.  前記Mnが一部、Feで置換されていることを特徴とする請求項7に記載の熱化学燃料製造用触媒。
  9.  前記置換されているFeの濃度(x;xは置換前のMnの量を1としたときの量)が0.35以上0.85以下であることを特徴とする請求項8に記載の熱化学燃料製造用触媒。
  10. 前記A元素はBaであり、前記X元素はTiであり、前記Tiが一部、Mnで置換されていることを特徴とする請求項1に記載の熱化学燃料製造用触媒。
  11.  前記置換されているMnの濃度(x;xは置換前のTiの量を1としたときの量)が0超0.5以下であることを特徴とする請求項10に記載の熱化学燃料製造用触媒。
  12. 請求項1~11のいずれか一項に記載の熱化学燃料製造用触媒を用いることを特徴とする熱化学燃料の製造方法、
  13.  請求項1~11のいずれか一項に記載の熱化学燃料製造用触媒を用いて、第1温度と該第1温度以下である第2温度の2段階の熱化学サイクルを用いて熱エネルギーから燃料を製造する熱化学燃料製造方法であって、前記第1温度が600℃以上1600℃以下であり、前記第2温度が400℃以上1600℃以下であることを特徴とする熱化学燃料製造方法。
  14.  前記第1温度を、集光太陽光エネルギーを照射して加熱することにより、又は、廃熱を用いて加熱することにより得ることを特徴とする請求項13に記載の熱化学燃料製造方法。
  15.  第1温度と該第1温度以下である第2温度の2段階の熱化学サイクルを用いて熱エネルギーから燃料を製造する熱化学燃料製造方法であって、
     組成式AXO3±δ(但し、0≦δ<1)を有するペロブスカイト酸化物を第1温度まで加熱して還元する工程と、
     原料ガスを、還元されたペロブスカイト酸化物に接触させ、そのペロブスカイト酸化物を酸化させて燃料を製造する工程と、
     を有することを特徴とする熱化学燃料製造方法。
  16.  前記燃料が水素、一酸化炭素、水素及び一酸化炭素の混合ガス、メタン、メタノールのいずれかであることを特徴とする請求項15に記載の熱化学燃料製造方法。
  17.  前記原料ガスが水蒸気であることを特徴とする請求項15に記載の熱化学燃料製造方法。
  18.  前記原料ガスが二酸化炭素と水蒸気であることを特徴とする請求項15に記載の熱化学燃料製造方法。
PCT/JP2013/058431 2012-03-23 2013-03-22 熱化学燃料製造用触媒及び熱化学燃料製造方法 WO2013141385A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147029479A KR101790093B1 (ko) 2012-03-23 2013-03-22 열화학 연료 제조용 촉매 및 열화학 연료 제조 방법
JP2013549447A JP5594800B2 (ja) 2012-03-23 2013-03-22 熱化学燃料製造用触媒及び熱化学燃料製造方法
EP13764774.9A EP2829321A4 (en) 2012-03-23 2013-03-22 CATALYST FOR PRODUCING A THERMOCHEMICAL FUEL AND METHOD FOR PRODUCING A THERMOCHEMICAL FUEL
CN201380015007.4A CN104203403B (zh) 2012-03-23 2013-03-22 热化学燃料制造用催化剂及热化学燃料制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261615122P 2012-03-23 2012-03-23
US61/615,122 2012-03-23
US13/600,948 2012-08-31
US13/600,948 US20130252808A1 (en) 2012-03-23 2012-08-31 Catalysts for thermochemical fuel production and method of producing fuel using thermochemical fuel production

Publications (1)

Publication Number Publication Date
WO2013141385A1 true WO2013141385A1 (ja) 2013-09-26

Family

ID=49212343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058431 WO2013141385A1 (ja) 2012-03-23 2013-03-22 熱化学燃料製造用触媒及び熱化学燃料製造方法

Country Status (7)

Country Link
US (2) US20130252808A1 (ja)
EP (1) EP2829321A4 (ja)
JP (1) JP5594800B2 (ja)
KR (1) KR101790093B1 (ja)
CN (1) CN104203403B (ja)
TW (1) TWI603779B (ja)
WO (1) WO2013141385A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104331A1 (ja) * 2015-12-14 2017-06-22 京セラ株式会社 水素製造用部材および水素製造装置
JP2018529504A (ja) * 2015-07-07 2018-10-11 ユニバーシティー オブ ニューキャッスル アポン タインUniversity Of Newcastle Upon Tyne ケミカルルーピング
JP2018165228A (ja) * 2017-03-28 2018-10-25 京セラ株式会社 水素生成用セル、集光型水素生成用セルおよび水素製造装置
JP2021121573A (ja) * 2020-01-31 2021-08-26 Eneos株式会社 水素の製造方法、一酸化炭素の製造方法および反応媒体
WO2022163819A1 (ja) * 2021-01-28 2022-08-04 積水化学工業株式会社 酸素キャリアおよびガスの製造方法
WO2022181619A1 (ja) * 2021-02-26 2022-09-01 京セラ株式会社 水素製造装置及び水素製造方法
WO2022181801A1 (ja) 2021-02-26 2022-09-01 京セラ株式会社 水素製造装置
WO2022196729A1 (ja) * 2021-03-17 2022-09-22 積水化学工業株式会社 還元剤およびガスの製造方法
WO2023119956A1 (ja) * 2021-12-24 2023-06-29 Eneos株式会社 水素および一酸化炭素の少なくとも一方の製造方法、合成ガスの製造方法ならびに反応媒体

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2012013521A (es) 2010-05-24 2013-04-08 Siluria Technologies Inc Catalizadores de nanoalambre, su preparacion y uso de los mismos.
CN103764276B (zh) 2011-05-24 2017-11-07 希路瑞亚技术公司 用于甲烷氧化偶合的催化剂
CN104039451B (zh) 2011-11-29 2018-11-30 希路瑞亚技术公司 纳米线催化剂及其应用和制备方法
WO2013151973A1 (en) 2012-04-06 2013-10-10 California Institute Of Technology New methods and materials for the thermochemical production of hydrogen from water
WO2013177461A2 (en) 2012-05-24 2013-11-28 Siluria Technologies, Inc. Catalytic forms and formulations
US9868636B1 (en) * 2012-12-06 2018-01-16 National Technology & Engineering Solutions Of Sandia, Llc Thermochemically active iron titanium oxide materials
US20140274671A1 (en) 2013-03-15 2014-09-18 Siluria Technologies, Inc. Catalysts for petrochemical catalysis
WO2015168601A2 (en) 2014-05-02 2015-11-05 Siluria Technologies, Inc. Heterogeneous catalysts
CA2955205A1 (en) 2014-07-17 2016-01-21 The Board Of Trustees Of The Leland Stanford Junior University Heterostructures for ultra-active hydrogen evolution electrocatalysis
PL3194070T3 (pl) 2014-09-17 2021-06-14 Lummus Technology Llc Katalizatory do utleniającego sprzęgania metanu i utleniającego odwodornienia etanu
KR101856726B1 (ko) * 2014-12-08 2018-05-10 주식회사 엘지화학 유무기 하이브리드 페로브스카이트 화합물, 이의 제조방법 및 이를 포함하는 태양전지
WO2017145903A1 (ja) * 2016-02-25 2017-08-31 京セラ株式会社 光吸収部材および水素製造用部材ならびに水素製造装置
US10189708B2 (en) * 2016-08-18 2019-01-29 The United States Of America As Represented By The U.S. Environmental Protection Agency Ruthenium on chitosan (ChRu): concerted catalysis for water splitting and reduction
US10946362B1 (en) * 2017-02-24 2021-03-16 University Of South Florida Perovskite oxides for thermochemical conversion of carbon dioxide
WO2019198384A1 (ja) * 2018-04-12 2019-10-17 国立研究開発法人物質・材料研究機構 六方晶系6h型バリウムゲルマニウム酸化物、その製造方法、焼結体、および、ターゲット
CN109745991A (zh) * 2018-12-13 2019-05-14 大连海事大学 用于煤气化的复合金属氧化物催化剂的制备方法及应用
CA3131163A1 (en) 2019-04-03 2020-10-08 Mark E. Davis Integration of thermochemical water splitting with co2 direct air capture
CN110152678B (zh) * 2019-06-05 2021-12-14 内蒙古元瓷新材料科技有限公司 一种电催化还原CO2为能源的纳米Cu-Yb合金催化剂
FR3102764B1 (fr) * 2019-11-06 2022-05-13 Psa Automobiles Sa Dispositif de production d’hydrogene par boucle chimique avec un materiau porteur d’oxygene de type perovskite
CN111285327B (zh) * 2020-02-18 2021-10-19 西北大学 一种甲烷化学链部分氧化制合成气的方法
CN112076755B (zh) * 2020-10-19 2023-02-28 宁夏大学 一种co2加氢催化剂的制备方法及应用
CN113582240B (zh) * 2020-12-11 2022-09-23 浙江大学 热化学储热材料、热化学储热模块及制备方法
CN114904511A (zh) * 2022-03-24 2022-08-16 南京航空航天大学 一种基于SmMnO3钙钛矿的CO2热化学转化材料制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269296A (ja) 2003-03-06 2004-09-30 Kurosaki Harima Corp 水の分解による水素製造法とそれに使用する反応媒体
US20090107044A1 (en) 2007-10-26 2009-04-30 California Institute Of Technology Thermochemical synthesis of fuels for storing thermal energy
JP2009263165A (ja) 2008-04-25 2009-11-12 Tokyo Institute Of Technology 反応性セラミックスおよびその製造方法、ならびに水素製造方法および水素製造装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380692A (en) * 1991-09-12 1995-01-10 Sakai Chemical Industry Co., Ltd. Catalyst for catalytic reduction of nitrogen oxide
US6033632A (en) * 1993-12-08 2000-03-07 Eltron Research, Inc. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them
CN1095455C (zh) * 2000-01-03 2002-12-04 中国科学院物理研究所 掺锰钛酸钡薄膜材料及其制备方法
JP2004041868A (ja) * 2002-07-09 2004-02-12 Daihatsu Motor Co Ltd 排ガス浄化用触媒
JP5391408B2 (ja) * 2004-12-24 2014-01-15 Dowaエレクトロニクス株式会社 Pm燃焼触媒の製造方法およびpmの燃焼方法
NO327667B1 (no) * 2007-10-24 2009-09-07 Yara Int Asa Anvendelse av en katalysator for fremstilling av nitrogenoksid, og fremgangsmate for fremstilling av gass som omfatter nitrogenoksid.
DE102008032509A1 (de) * 2008-07-10 2010-01-14 Epcos Ag Heizungsvorrichtung und Verfahren zur Herstellung der Heizungsvorrichtung
CN102159496B (zh) * 2008-07-29 2013-10-02 曳达研究和发展有限公司 化学势能产生系统及方法
CN102030311A (zh) * 2009-09-28 2011-04-27 琳德股份公司 氢气和合成气的生产方法
US8343888B2 (en) * 2009-10-01 2013-01-01 GM Global Technology Operations LLC Washcoating technique for perovskite catalysts
US8435486B2 (en) * 2010-05-24 2013-05-07 Toyota Jidosha Kabushiki Kaisha Redox material for thermochemical water splitting, and method for producing hydrogen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269296A (ja) 2003-03-06 2004-09-30 Kurosaki Harima Corp 水の分解による水素製造法とそれに使用する反応媒体
US20090107044A1 (en) 2007-10-26 2009-04-30 California Institute Of Technology Thermochemical synthesis of fuels for storing thermal energy
JP2009263165A (ja) 2008-04-25 2009-11-12 Tokyo Institute Of Technology 反応性セラミックスおよびその製造方法、ならびに水素製造方法および水素製造装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EVDOU, A. ET AL.: "La(1-x)SrxMnO3-delta perovskites as redox materials for the production of high purity hydrogen", INT. J. HYDROGEN ENERGY, vol. 33, 2008, pages 5554 - 5562, XP055169034 *
See also references of EP2829321A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018529504A (ja) * 2015-07-07 2018-10-11 ユニバーシティー オブ ニューキャッスル アポン タインUniversity Of Newcastle Upon Tyne ケミカルルーピング
WO2017104331A1 (ja) * 2015-12-14 2017-06-22 京セラ株式会社 水素製造用部材および水素製造装置
JP6224871B1 (ja) * 2015-12-14 2017-11-01 京セラ株式会社 水素製造用部材および水素製造装置
JP2018165228A (ja) * 2017-03-28 2018-10-25 京セラ株式会社 水素生成用セル、集光型水素生成用セルおよび水素製造装置
JP2021121573A (ja) * 2020-01-31 2021-08-26 Eneos株式会社 水素の製造方法、一酸化炭素の製造方法および反応媒体
JP7417224B2 (ja) 2020-01-31 2024-01-18 Eneos株式会社 水素の製造方法、一酸化炭素の製造方法および反応媒体
WO2022163819A1 (ja) * 2021-01-28 2022-08-04 積水化学工業株式会社 酸素キャリアおよびガスの製造方法
WO2022181619A1 (ja) * 2021-02-26 2022-09-01 京セラ株式会社 水素製造装置及び水素製造方法
WO2022181801A1 (ja) 2021-02-26 2022-09-01 京セラ株式会社 水素製造装置
WO2022196729A1 (ja) * 2021-03-17 2022-09-22 積水化学工業株式会社 還元剤およびガスの製造方法
WO2023119956A1 (ja) * 2021-12-24 2023-06-29 Eneos株式会社 水素および一酸化炭素の少なくとも一方の製造方法、合成ガスの製造方法ならびに反応媒体

Also Published As

Publication number Publication date
CN104203403B (zh) 2019-07-09
KR20150008861A (ko) 2015-01-23
EP2829321A4 (en) 2016-05-11
TWI603779B (zh) 2017-11-01
JP5594800B2 (ja) 2014-09-24
US20130252808A1 (en) 2013-09-26
TW201410321A (zh) 2014-03-16
KR101790093B1 (ko) 2017-10-25
US20150125383A1 (en) 2015-05-07
CN104203403A (zh) 2014-12-10
US9873109B2 (en) 2018-01-23
EP2829321A1 (en) 2015-01-28
JPWO2013141385A1 (ja) 2015-08-03

Similar Documents

Publication Publication Date Title
JP5594800B2 (ja) 熱化学燃料製造用触媒及び熱化学燃料製造方法
Bhosale et al. A decade of ceria based solar thermochemical H2O/CO2 splitting cycle
Zhao et al. Synergistic improvements in stability and performance of the double perovskite-type oxides La2− xSrxFeCoO6 for chemical looping steam methane reforming
Orfila et al. Perovskite materials for hydrogen production by thermochemical water splitting
US11738332B2 (en) Metal alloy/oxide composite catalyst for ammonia decomposition
Gokon et al. Thermochemical two-step water splitting cycle using perovskite oxides based on LaSrMnO3 redox system for solar H2 production
Perez et al. Hydrogen production by thermochemical water splitting with La0. 8Al0. 2MeO3-δ (Me= Fe, Co, Ni and Cu) perovskites prepared under controlled pH
JP2009263165A (ja) 反応性セラミックスおよびその製造方法、ならびに水素製造方法および水素製造装置
Hussein et al. Production of CO from CO2 over mixed-metal oxides derived from layered-double-hydroxides
US20240067527A1 (en) Facile co2 sequestration and fuel production from a hydrocarbon
JP2022094211A (ja) Co2メタネーション触媒及びその製造方法とメタンの製造方法
Sawaguri et al. Two-Step Thermochemical CO2 Splitting Using Partially-Substituted Perovskite Oxides of La0. 7Sr0. 3Mn0. 9X0. 1O3 for Solar Fuel Production
US20220041913A1 (en) High-temperature thermochemical energy storage materials using doped magnesium-transition metal spinel oxides
ES2926393B2 (es) Metodo de obtencion de h2, co y/o gas de sintesis empleando materiales de tipo perovskita y uso de estos materiales
JP4657645B2 (ja) 水性ガスシフト反応触媒および該触媒の製造方法。
Monguen et al. Low-temperature deep oxidation of N, N-dimethylformamide (DMF) over CeCu binary oxides
Zhao et al. A La, Sm co-doped CeO 2 support for Fe 2 O 3 to promote chemical looping splitting of CO 2 at moderate temperature
Nurherdiana et al. PEROVSKITES BOOSTED BY METAL OXIDES AS A CATALYST FOR THE PARTIAL OXIDATION OF METHANE
US11584658B2 (en) Compositions, methods of making compositions, and hydrogen production via thermo-chemical splitting
JP7545362B2 (ja) 水素生成触媒
da Silva Albuquerque et al. Evaluating the reactivity of CuO-TiO2 oxygen carrier for energy production technology with CO2 capture
WO2024013181A1 (en) METAL OXIDE SUPPORTED ATOMIC QUANTUM CLUSTERS (AQCs) CATALYSTS AS OXYGEN CARRIERS FOR CHEMICAL LOOPING PROCESSES
Tada et al. O2 releasing reactivity of ceria-based reactive ceramics on irradiation of concentrated solar beam for solar hydrogen production
Takalkar et al. Co-precipitation synthesized nanostructured Ce. sub. 0.9 Ln. sub. 0.05 Ag. sub. 0.05 O. sub. 2-[delta] materials for solar thermochemical conversion of CO. sub. 2 into fuels.
Pomiro et al. Conversion of CO2 (g) to CO (g) via reverse water–gas shift cycle on mixed cerium/praseodymium oxides at 500° C

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013549447

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147029479

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013764774

Country of ref document: EP