WO2017145903A1 - 光吸収部材および水素製造用部材ならびに水素製造装置 - Google Patents

光吸収部材および水素製造用部材ならびに水素製造装置 Download PDF

Info

Publication number
WO2017145903A1
WO2017145903A1 PCT/JP2017/005626 JP2017005626W WO2017145903A1 WO 2017145903 A1 WO2017145903 A1 WO 2017145903A1 JP 2017005626 W JP2017005626 W JP 2017005626W WO 2017145903 A1 WO2017145903 A1 WO 2017145903A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
hydrogen production
hydrogen
porous composite
absorbing member
Prior art date
Application number
PCT/JP2017/005626
Other languages
English (en)
French (fr)
Inventor
秋山 雅英
丈司 大隈
晃平 小野
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US16/079,566 priority Critical patent/US11198607B2/en
Priority to CN201780013036.5A priority patent/CN108698938B/zh
Priority to EP17756342.6A priority patent/EP3421443B1/en
Priority to JP2017533508A priority patent/JP6276480B2/ja
Publication of WO2017145903A1 publication Critical patent/WO2017145903A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/061Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of metal oxides with water
    • C01B3/063Cyclic methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/061Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of metal oxides with water
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/016Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on manganites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/001Joining burned ceramic articles with other burned ceramic articles or other articles by heating directly with other burned ceramic articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3268Manganates, manganites, rhenates or rhenites, e.g. lithium manganite, barium manganate, rhenium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present disclosure relates to a light absorbing member, a member for hydrogen production, and a hydrogen production apparatus.
  • the ceramic member which is a reaction system carrier, is heated to 1400-1800 ° C. using solar energy to reduce the ceramic member to generate oxygen, and then in the second step.
  • the reduced ceramic member is reacted with water at 300 to 1200 ° C. to oxidize the reduced ceramic member to generate hydrogen.
  • the light absorbing member of the present disclosure is constituted by a ceramic composite having a plurality of first ceramic particles exhibiting positive resistance temperature characteristics in a first ceramic having an open porosity of 5% or less.
  • the hydrogen production member includes a hydrogen generation unit configured by a ceramic porous composite including the second ceramic particles in a porous second ceramic, and a hydrogen configured by a light absorption unit. It is a manufacturing member, Comprising: The said light absorption part is comprised by said light absorption member.
  • the hydrogen production apparatus of the present disclosure includes a reaction unit that receives solar energy to cause an oxidation / reduction reaction, a steam supply unit that supplies water to the reaction unit, and a recovery unit that recovers hydrogen gas generated from the reaction unit In which the above-described hydrogen production member is installed in the reaction section.
  • (A) is a perspective view schematically showing a third embodiment of the member for hydrogen production of the present disclosure, and (b) is a sectional view taken along line XX of (a). It is a perspective view showing typically a 4th embodiment of a member for hydrogen production of this indication.
  • (A) is a perspective view schematically showing a fifth embodiment of the hydrogen production member of the present disclosure, and (b) is a sectional view taken along line XX of (a).
  • (A) is a perspective view schematically showing a sixth embodiment of the member for hydrogen production of the present disclosure
  • (b) is a sectional view taken along line XX of (a).
  • (A) is a perspective view which shows typically 7th Embodiment of the member for hydrogen manufacture of this indication
  • (b) is a perspective view which shows typically 8th Embodiment of the member for hydrogen manufacture of this indication. It is. It is sectional drawing which shows typically a state when operating the hydrogen production apparatus of 1st Embodiment of this indication, (a) is the state which has produced
  • FIG. 4 shows the case of FIG. 4 in which the cross section of the hydrogen production member is circular and cylindrical
  • FIG. 5 is the case of the cross section of the hydrogen production member is rectangular and cylindrical
  • FIG. 6 shows the case of FIG. 6 in which the cross section of the hydrogen production member is circular and columnar
  • FIG. 7D shows the case of FIG. 7 in which the cross section of the hydrogen production member is rectangular and columnar.
  • the hydrogen production apparatus of 2nd Embodiment is shown and it is a schematic diagram which shows the structure which installed the hydrogen separation module between the reaction part and the collection
  • the object is to provide a light-absorbing member, a hydrogen-producing member, and a hydrogen-producing apparatus that can efficiently absorb heat from sunlight and increase the efficiency of hydrogen generation.
  • FIG. 1 is a cross-sectional view schematically showing an embodiment of a light absorbing member of the present disclosure.
  • the light absorbing member A of the present embodiment includes ceramic particles 3 (hereinafter referred to as first ceramic particles 3) exhibiting positive resistance temperature characteristics in ceramics 1 (hereinafter referred to as first ceramics 1) serving as a parent phase. It is comprised by the ceramic composite body 5 containing.
  • the first ceramic 1 and the first ceramic particles 3 have different components.
  • the first ceramic 1 is a dense ceramic having an open porosity of 5% or less and a high insulating property.
  • the first ceramic particles 3 have conductive carriers (electrons).
  • This carrier (electron) is a group showing a positive resistance temperature characteristic.
  • the ceramic composite 5 when sunlight is absorbed, electrons existing in the first ceramic particles 3 develop a surface plasmon effect. As a result, the entire ceramic composite 5 generates heat and is heated to a high temperature.
  • the ceramic composite 5 that generates heat by absorbing sunlight is combined with, for example, a member for hydrogen production described below, solar energy can be directly used for heating the member for hydrogen production.
  • the light absorbing member A of this embodiment is composed of a ceramic composite 5 made of all ceramics. For this reason, deterioration of the material due to oxidation is extremely small as compared with the case where the material that exhibits the surface plasmon effect is a metal. Thereby, the highly durable light-absorbing member A can be obtained.
  • the first ceramic particles 3 are preferably present in a single isolated state in the first ceramic 1 from the viewpoint that the surface plasmon effect can be enhanced. In other words, it is preferable that the individual particles exist in a dispersed state.
  • the ratio of being in an isolated state is preferably 90% or more in terms of the number ratio.
  • the open porosity of the first ceramic 1 is larger than 5%, the first ceramic 1 is not dense and the thermal conductivity is lowered. For this reason, it becomes difficult to heat the member to be combined (hydrogen production member) to a high temperature.
  • a perovskite type complex oxide expressed as ABO 3 is suitable.
  • the A site of ABO 3 contains a rare earth element
  • the B site contains a transition metal element
  • the first ceramic particles 3 include elements of the A site and the B site. And those containing trace amounts of elements having different valences are preferred.
  • a suitable example is a material in which the A site of ABO 3 is lanthanum (La) and the B site is manganese (Mn), which contains a small amount of Sr.
  • the size (average particle diameter) of the first ceramic particles 3 is preferably 5 to 100 nm from the viewpoint of being fine and enhancing the surface plasmon effect.
  • the first ceramic 1 is preferably one having high light transmittance.
  • the brightness value of the first ceramic 1 may be 5 or more in brightness display distinguished by the Munsell color system.
  • the first ceramic 1 a low-thermal-expansion glassy material containing silicon oxide as a main component is preferable in that cracks and the like are unlikely to occur and heat resistance is excellent.
  • the thermal expansion coefficient of the ceramic composite 5 is preferably 9 ⁇ 10 ⁇ 6 / ° C. or less.
  • the ratio of the first ceramic particles 3 contained in the ceramic composite 5 is preferably 10 to 80% by volume.
  • the ratio of the first ceramic particles 3 present in the ceramic composite 5 is obtained by using a cross section of the ceramic composite 5 using an electron microscope and an analyzer (EPMA) attached thereto. For example, the ceramic composite 5 is polished to expose the first ceramic particles 3, and a predetermined region in which 30 to 100 first ceramic particles 3 existing in the cross section are specified is designated. Next, the area of this region and the total area of the first ceramic particles 3 existing in this region are determined, and the total area of the first ceramic particles 3 relative to the area of the region is determined. The area ratio thus obtained is considered as the volume ratio. Whether or not the first ceramic particles 3 are present as single particles in the first ceramic 1 is also determined by counting the number from the above observation.
  • EPMA electron microscope and an analyzer
  • FIG. 2 is a cross-sectional view schematically showing the first embodiment of the hydrogen production member of the present disclosure.
  • the member for hydrogen production B1 of the first embodiment includes a light absorption unit 10A and a hydrogen generation unit 10B.
  • the light absorption unit 10A and the hydrogen generation unit 10B are in contact with each other on at least one main surface.
  • the light absorbing portion 10A is formed by the light absorbing member A described above. For this reason, even if the light absorbing portion 10A is in a high temperature state, the light absorbing portion 10A itself hardly deteriorates due to oxidation. In this way, a highly durable light absorbing portion 10A can be formed.
  • the hydrogen generator 10B includes a porous ceramic material in which fine ceramic particles 11 (hereinafter referred to as second ceramic particles 11) are dispersed in a porous insulator (hereinafter referred to as second ceramics 13). It is formed by the composite 15. In this case, the second ceramic 13 and the second ceramic particles 11 have different main components.
  • the second ceramic 13 silicon oxide, aluminum oxide, zinc oxide, oxides of alkaline earth elements, oxides of rare earth elements, and composite oxides thereof are suitable materials.
  • the second ceramic 13 has a large number of open pores 16, and the open pores 16 extend from the outer surface 15 a of the ceramic porous composite 15 so as to reach the internal second ceramic particles 11.
  • the open porosity is preferably 10% or more.
  • the value measured for the ceramic porous composite 15 including the second ceramic particles 11 is used as the open porosity. This is because the ceramic particles 11 are dense, and the porosity of the second ceramic 13 is equivalent to the porosity of the ceramic porous composite 15 as it is.
  • the second ceramic particles 11 are AXO 3 ⁇ ⁇ (where 0 ⁇ ⁇ ⁇ 1, A: at least one of rare earth elements, alkaline earth elements, and alkali metal elements, X: of transition metal elements and metalloid elements) At least one of O, oxygen), cerium oxide, and zirconium oxide.
  • the average particle diameter of the second ceramic particles 11 (denoted as D in FIG. 1) is preferably 5 to 200 nm. .
  • the lanthanide element of the sixth periodic table as the rare earth element, Ti, V, Cr, Mn, Zr, Nb and Ta as the transition metal element, B, Si, Ge, As, Se, Sb, Te, as the metalloid element Po and At can be exemplified as suitable elements.
  • the hydrogen generator 10B is formed of the ceramic porous composite 15 described above. For this reason, even if the hydrogen production
  • the second ceramic particles 11 constituting the ceramic porous composite 15 are fine, the electrons generated in the second ceramic particles 11 by the defect reaction described above are the second ceramic particles 11. It becomes easy to stop on the surface, and also in this case, the surface plasmon effect occurs, and the ceramic porous composite 15 itself can be changed to a high temperature state. Thereby, the second ceramic particles 11 themselves have a function of absorbing light.
  • the second ceramic particles 11 that cause such a reaction When the second ceramic particles 11 that cause such a reaction are present in the second ceramic 3 that is a porous body, the second ceramic particles 11 release oxygen as shown in the equation (2) at a high temperature. On the other hand, at a temperature lower than the temperature at which this oxygen releasing reaction occurs, a reaction for generating hydrogen as shown in the formula (3) (hereinafter referred to as hydrogen) It may be called a production reaction.)
  • the second ceramic particles 11 the smaller the average particle size, the more the surface plasmon effect can be expected.
  • the second ceramic particles 11 having an average particle size smaller than 5 nm can be prepared at this time. Have difficulty.
  • the average particle size of the second ceramic particles 11 is larger than 200 nm, the surface plasmon effect is hardly exhibited. For this reason, the ceramic porous composite 15 cannot be brought into a high temperature state by itself, and hydrogen generation is difficult to occur.
  • the ratio of the second ceramic particles 11 contained in the ceramic porous composite 15 is also 20 to 80% by volume in this case. Is good. Further, it is preferable that 90% or more of the second ceramic particles 11 are dispersed in the second ceramic 13 in a state of being isolated as single particles. That is, in the first embodiment, it is preferable that the second ceramic particles 11 exist individually through the material constituting the second ceramic 13 that is the base material.
  • the ratio of the second ceramic particles 11 present inside the ceramic porous composite 15 and the determination as to whether or not the second ceramic particles 11 are present as single particles in the second ceramic 13 are as described above. The same method as that of the light absorbing member A is performed.
  • FIG. 3 is a cross-sectional view schematically showing a second embodiment of the hydrogen production member of the present disclosure.
  • a hydrogen production member B2 shown in FIG. 3 is a modification of the hydrogen production member B1 shown in FIG.
  • the hydrogen production member B ⁇ b> 2 is obtained by interposing a metal film 19 between the light absorbing member A and the ceramic porous composite 15.
  • a metal film 19 is preferably interposed between the light absorbing member A and the ceramic porous composite body 15. As shown in FIG. 3, when the metal film 19 is provided between the light absorbing member A and the ceramic porous composite 15, the light that has entered the light absorbing member A is reflected by the surface of the metal film 19. Therefore, it becomes difficult to penetrate to the ceramic porous composite 15 side. As a result, the light is concentrated in the light absorbing member A, so that the amount of heat generated by the light absorbing member A can be increased.
  • the material of the metal film 19 may be any metal having high light reflectivity, and tungsten, molybdenum, nickel, copper, silver, gold, platinum, palladium, and the like are suitable.
  • FIG. 4A is a perspective view schematically showing a third embodiment of the hydrogen production member of the present disclosure
  • FIG. 4B is a sectional view taken along line XX in FIG.
  • the light absorbing member A constituting the light absorbing portion 10A and the ceramic porous composite 15 constituting the hydrogen generating portion 10B are both tubular. Is the body.
  • the light absorbing member A is disposed on the outer side so as to surround the periphery of the ceramic porous composite 15 having the cavity 17 on the inner side.
  • the hydrogen production member B3 of the third embodiment when the light absorbing member A receives sunlight, the light absorbing member A and the ceramic porous composite 15 are heated to a high temperature state. In this state, when water vapor is introduced into the cavity 17 provided inside the ceramic porous composite 15, hydrogen is generated in the ceramic porous composite 15. For example, as shown in FIG. 4B, the generated hydrogen is recovered from the end opposite to the end where the water vapor is introduced.
  • FIG. 5 is a perspective view schematically showing a fourth embodiment of the hydrogen production member of the present disclosure.
  • the hydrogen production member is not limited to the structure of the hydrogen production member B3, and the end surfaces of the light absorption unit 10A and the hydrogen generation unit 10B are both rectangular as in the hydrogen production member B4 of the fourth embodiment shown in FIG. The same applies to structures that are shaped. In this case, the end surfaces of the light absorption unit 10A and the hydrogen generation unit 10B may be polygonal.
  • FIG. 6A is a perspective view schematically showing a fifth embodiment of the hydrogen production member of the present disclosure
  • FIG. 6B is a sectional view taken along line XX in FIG.
  • FIG. 7A is a perspective view schematically showing a sixth embodiment of the hydrogen production member of the present disclosure
  • FIG. 7B is a sectional view taken along line XX in FIG.
  • the present invention can be similarly applied to a case where the body 15 is not provided with the cavity 17 and has a solid structure.
  • the water vapor passes through the porous interior.
  • examples of the hydrogen production member of the present embodiment include hydrogen production members B7 and B8 having a stacked structure shown in FIGS. 8 (a) and 8 (b).
  • the light absorbing member A and the ceramic porous composite 15 are both flat plate types. And it has the structure where the light absorption member A and the ceramic porous composite 15 were laminated
  • the light absorbing member A may have a structure in which the ceramic porous composite 15 is sandwiched from above and below.
  • the light absorbing member A has a structure in which the ceramic porous composite 15 is sandwiched from above and below, sunlight can be received from both sides of the hydrogen production member B8, so that the thermal efficiency of the ceramic porous composite 15 At the same time, the hydrogen recovery efficiency can be increased.
  • FIG. 9A is a cross-sectional view schematically illustrating a state when the hydrogen production apparatus according to the first embodiment of the present disclosure is operated.
  • FIG. 9A is a diagram in which oxygen is generated from the hydrogen production member.
  • (B) is a state where hydrogen is produced from the hydrogen production member.
  • the hydrogen production apparatus C1 of the first embodiment includes a reaction unit 21 that receives solar energy (white arrow shown in FIG. 9) to cause an oxidation / reduction reaction, and a water vapor supply unit 23 that supplies water vapor to the reaction unit 21. And a recovery unit 25 that recovers hydrogen gas or oxygen gas generated from the reaction unit 21. A steam recovery unit 27 that recovers unreacted steam is provided between the recovery unit 25 and the reaction unit 21. Further, the hydrogen producing apparatus C1 is provided with a shielding plate 29 for the reaction unit 21 to receive or block sunlight.
  • the shielding plate 29 may be an opaque plate-like material, and any material such as plastic, metal and wood can be used as the material.
  • the ceramic porous composite 15 which is a member for producing hydrogen is heated by the light absorbing part A.
  • the ceramic porous composite 15, which is a member for producing hydrogen installed in the reaction unit 21 becomes a high temperature state, and the ceramic porous composite 15 undergoes a reduction reaction represented by the above formula (2) to generate oxygen. Will occur.
  • FIG. 10 is a cross-sectional view showing a structure of a member for hydrogen production in which a shielding layer is provided between the light absorbing member and the ceramic porous composite.
  • A is the case of FIG. 4 in which the cross section of the hydrogen production member is circular and cylindrical
  • FIG. 5 is the case of FIG. 5 in which the cross section of the hydrogen production member is rectangular and cylindrical
  • FIG. 6 shows the case of FIG. 6 in which the cross section of the hydrogen production member is circular and columnar
  • FIG. 7D shows the case of FIG. 7 in which the cross section of the hydrogen production member is rectangular and columnar.
  • the shielding layer 31 is provided between the light absorbing member A and the ceramic porous composite 15, there is a range in which oxygen (O 2 ), water vapor (H 2 O), and hydrogen (H 2 ) move. Since it is limited to the inside of the ceramic porous composite 15 inside the shielding layer 31, hydrogen can be recovered efficiently.
  • the ratio of the amount of hydrogen generation to the supplied water vapor amount can be increased.
  • the material of the shielding layer 31 is preferably one selected from the group of metal materials, ceramic materials, and glass materials. Of these, metal materials are particularly preferable.
  • a metal material is used for the shielding layer 31, a dense film can be formed even if the thickness is small, so that permeation of gas such as hydrogen can be further suppressed.
  • the metallic material exhibits a metallic luster, the light shielding effect is enhanced and the amount of heat generated by the light absorbing member A can be increased as in the case of FIGS. 3 and 4.
  • FIG. 11 shows a hydrogen production apparatus according to the second embodiment, and is a schematic diagram showing a configuration in which a hydrogen separation module is installed between a reaction unit and a recovery unit.
  • the hydrogen separation module 33 is installed between the reaction unit 21 and the recovery unit 25 as in the hydrogen production apparatus C2 illustrated in FIG. 11, the hydrogen moving from the reaction unit 21 toward the recovery unit 25 is reduced. It is possible to recover with higher purity.
  • the hydrogen separation module 33 As an example of the hydrogen separation module 33, a configuration in which a porous ceramic tube 33a is installed in a glass tube 33b can be given as an example. Next, based on FIG. 11, the principle that hydrogen can be recovered at a high concentration using the hydrogen separation module 33 will be described.
  • the mixed gas containing hydrogen and water vapor that has moved from the reaction section 21 first enters the glass tube 33b outside the porous ceramic tube 33a.
  • the pressure inside the porous ceramic tube 33a is reduced using the pump 35a, a pressure difference is generated between the inside of the porous ceramic tube 33a and the outside thereof.
  • the pressure inside the ceramic tube 33a is lower than that of the outer glass tube 33b.
  • the mixed gas moves from the outside of the ceramic tube 33a in the glass tube 33b to the inside of the ceramic tube 33a. Since the ceramic tube 33a is made of a material that transmits hydrogen but does not transmit water vapor, only hydrogen moves into the ceramic tube 33a. In this way, high purity hydrogen can be recovered from the mixed gas containing hydrogen and water vapor that has moved from the reaction section 21.
  • the reaction section 21 and the hydrogen separation module 33 may be accommodated in a container 37 in a state where the pressure is reduced by a pump 35b. Thereby, it is possible to prevent the heat generated by the light absorbing member A from moving to the outside world other than the reaction unit 21 and the hydrogen separation module 33. That is, heat can be prevented from escaping from the hydrogen generation unit 10B of the reaction unit 21 to the outside.
  • a transparent container may be used as the container 37. Sunlight can be applied to the reaction part 21 from all directions.
  • a light collector 39 is preferably installed in the container 37. Thereby, sunlight can be irradiated also to the back side of the reaction part 21 on the opposite side to the incident side of sunlight. In this way, the area of the reaction portion 21 where the oxidation / reduction reaction efficiency is low can be reduced. As a result, the production efficiency of hydrogen can be increased.
  • a light absorbing member and a member for producing hydrogen were prepared so as to have the configuration shown in Table 1, and whether or not hydrogen was generated was evaluated.
  • the first ceramic particles of the light-absorbing member and the second ceramic particles of the hydrogen production member are mainly composed of La 0.8 Sr 0.2 MnO 3 and 0.5 mol of Fe is substituted at the Mn site.
  • Perovskite material was used. Each perovskite material was synthesized by preparing a metal alkoxide and having the above composition, followed by spray pyrolysis. Subsequently, the synthesized powder was put into water, and the sedimentation state was confirmed every time, and classification operation was performed. Thus, powders of perovskite materials (composite oxide particles and ceramic particles) having an average particle diameter shown in Table 1 were obtained.
  • glass powder borosilicate glass
  • the composition of the mixed powder in producing the ceramic porous composite was such that the powder of the perovskite material was 70% by volume and the glass powder was 30% by volume.
  • the composition of the light absorbing member was such that the perovskite material powder was 50% by volume and the glass powder was 50% by volume.
  • the produced sintered body is polished to a ceramic porous composite having a length of 10 mm, a thickness of 1 mm, and an inner diameter of 3 mm, and a light absorption of 10 mm, a thickness of 1 mm, and an inner diameter of 5.2 mm.
  • a tubular ceramic porous composite was inserted inside the tubular light absorbing member to produce a hydrogen production member as shown in FIG.
  • a metal film (Au) was formed on the outer surface of the ceramic porous composite.
  • the inner surface of the light absorbing member was bonded to the outer surface of the porous porous composite.
  • a hydrogen production apparatus as shown in FIG. 9 was assembled to produce an evaluation apparatus.
  • the section of the produced light absorbing member and the ceramic porous composite was analyzed using an electron microscope and an analyzer (EPMA) attached thereto.
  • EPMA electron microscope and an analyzer
  • the first ceramic particles constituting the light absorbing member and the second ceramic particles constituting the ceramic porous composite have almost no grain growth, and the average particle diameter is equivalent to the value shown in Table 1. there were.
  • the lightness of the produced light-absorbing member was 6 in terms of lightness as distinguished by the Munsell color system.
  • a ceramic porous composite having a two-layer ceramic porous composite was prepared using a ceramic porous composite having an open porosity of 10% instead of a light absorbing member having an open porosity of 1% (sample No. .1).
  • the amount of hydrogen gas produced was measured by installing a gas chromatograph device in the recovery section of the hydrogen production device.
  • Table 1 shows the production amount obtained through 10 cycles so as to receive sunlight in a state of 1 SUN.
  • sample No. 1 applied with a perovskite material having an average particle diameter of 6 to 180 nm as the first ceramic particles of the light absorbing member and the second ceramic particles of the ceramic porous composite.
  • a hydrogen production amount of 0.4 to 1.1 ml / g was confirmed, but in the sample (sample No. 5) in which the average particle size of the perovskite material was 280 nm, the hydrogen production amount was 0.1. It was 01 ml / g.
  • the sample (sample No. 1) produced by applying a ceramic porous composite having an open porosity of 10.3% as the light absorbing member generation of hydrogen could not be confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

開気孔率が5%以下の第1セラミックス1中に、正の抵抗温度特性を示す第1セラミック粒子3を複数有するセラミック複合体5によって構成されている。第1セラミック粒子3はABOとして表されるペロブスカイト型の複合酸化物であり、その第1セラミック粒子3は、ABOのAサイトの元素としてLaを含み、Bサイトの元素としてMnを含み、さらに、前記Laおよび前記Mnとは異なる価数の元素を含む。

Description

光吸収部材および水素製造用部材ならびに水素製造装置
 本開示は、光吸収部材および水素製造用部材ならびに水素製造装置に関する。
 近年、化石燃料の消費に伴う二酸化炭素の増加による地球温暖化などの問題の解決策として、化石燃料に代わって二酸化炭素を排出しないクリーンな再生可能エネルギーの開発が重要度を増している。
 再生エネルギーの一つである太陽光エネルギーは枯渇の心配が無く、また、温室効果ガスの削減に貢献できる。また、近年、燃料電池が普及し始め、水素エネルギー社会の牽引役として期待されている。現在製造されている水素の大半は原料として化石燃料を用いており、根本的な化石燃料削減の面では課題がある。
 このような状況の中、一次エネルギーを太陽光に求め、二次エネルギーを水素で支える形は、理想的なクリーンエネルギーシステムの一つであり、その確立が急務である。
 例えば、太陽光エネルギーを化学エネルギーに変換する方法の一つとして、セリア(CeO)などのセラミック部材を反応系担体として用いたときに発生する2段階水分解反応を利用することが提案されている(例えば、特許文献1を参照)。
 これは、第1のステップでは、太陽光エネルギーを用いて反応系担体であるセラミック部材を1400~1800℃に加熱し、当該セラミック部材を還元して酸素を生成し、次いで、第2のステップでは、還元されたセラミック部材を300~1200℃で水と反応させて還元されたセラミック部材を酸化して水素を生成するというものである。
特開2009-263165号公報
 本開示の光吸収部材は、開気孔率が5%以下の第1セラミックス中に、正の抵抗温度特性を示す第1セラミック粒子を複数有するセラミック複合体によって構成されているものである。
 本開示の水素製造用部材は、多孔質の第2セラミックス中に、該第2セラミック粒子を含むセラミック多孔質複合体によって構成されている水素生成部と、光吸収部とで構成されている水素製造用部材であって、前記光吸収部が上記の光吸収部材によって構成されているものである。
 本開示の水素製造装置は、太陽光エネルギーを受けて酸化・還元反応を起こす反応部と、該反応部に水を供給する水蒸気供給部と、前記反応部から発生する水素ガスを回収する回収部とを備えている水素製造装置であって、前記反応部に上記の水素製造用部材が設置されているものである。
本開示の光吸収部材の一実施形態を模式的に示す断面図である。 本開示の水素製造用部材の第1実施形態を模式的に示す断面図である。 本開示の水素製造用部材の第2実施形態を模式的に示す断面図である。 (a)は、本開示の水素製造用部材の第3実施形態を模式的に示す斜視図であり、(b)は、(a)のX-X線断面図である。 本開示の水素製造用部材の第4実施形態を模式的に示す斜視図である。 (a)は、本開示の水素製造用部材の第5実施形態を模式的に示す斜視図であり、(b)は(a)のX-X線断面図である。 (a)は、本開示の水素製造用部材の第6実施形態を模式的に示す斜視図であり、(b)は(a)のX-X線断面図である。 (a)は、本開示の水素製造用部材の第7実施形態を模式的に示す斜視図であり(b)は、本開示の水素製造用部材の第8実施形態を模式的に示す斜視図である。 本開示の第1実施形態の水素製造装置を稼働させたときの状態を模式的に示す断面図であり、(a)は、水素製造用部材から酸素が生成している状態、(b)は同水素製造用部材から水素が生成している状態である。 光吸収部材とセラミック多孔質複合体との間に遮蔽層が設けられた水素製造用部材の構造を示す断面図である。(a)は、水素製造用部材の断面が円形で筒状を成す図4の場合、(b)は、水素製造用部材の断面が矩形状で筒状を成す図5の場合、(c)は、水素製造用部材の断面が円形で柱状を成す図6の場合、(d)は、水素製造用部材の断面が矩形状で柱状を成す図7の場合である。 第2実施形態の水素製造装置を示すものであり、反応部と回収部との間に水素分離モジュールを設置した構成を示す模式図である。
 上記したように、従来より、太陽光エネルギーを化学エネルギーに変換する方法として、セリア(CeO)などのセラミック部材を反応系担体として用いることが提案されている。
 ところが、現段階では、太陽光エネルギーからの熱を利用して、セラミック部材からなる反応系単体を直接加熱するようにして実証試験された例は無く、赤外線イメージ炉を太陽光の代わりに用いて試験しているというのが実際のところである。
 つまり、太陽光からの熱を反応系単体に伝える、決め手となる技術が見あたらないという状況になっている。
 本開示は上記課題に鑑みてなされたものである。その目的は、太陽光からの熱を効率良く吸収して水素の生成効率を高めることのできる光吸収部材および水素製造用部材ならびに水素製造装置を提供することにある。
 図1は、本開示の光吸収部材の一実施形態を模式的に示す断面図である。本実施形態の光吸収部材Aは、母相となるセラミックス1(以下、第1セラミックス1と表記する。)中に、正の抵抗温度特性を示すセラミック粒子3(以下、第1セラミック粒子3と表記する。)を含むセラミック複合体5によって構成されている。
 この場合、第1セラミックス1と第1セラミック粒子3とは成分が異なる。また、第1セラミックス1は開気孔率が5%以下の緻密質であり、絶縁性の高いセラミックスである。
 一方、第1セラミック粒子3は導電性のキャリア(電子)を有するものである。このキャリア(電子)が正の抵抗温度特性を示す基になっている。
 セラミック複合体5では、太陽光を吸収したときに、第1セラミック粒子3の中に存在している電子が表面プラズモン効果を発現する。これによってセラミック複合体5は全体が発熱し高温に加熱された状態となる。
 太陽光を吸収することによって発熱するセラミック複合体5を、例えば、後述する水素製造用部材と組み合わせると、水素製造用部材の加熱に太陽光エネルギーを直接利用することができる。
 本実施形態の光吸収部材Aはオールセラミックスのセラミック複合体5によって構成されている。このことから表面プラズモン効果を発現する材料が金属である場合に比較して酸化による材料の劣化が極めて小さい。これにより耐久性の高い光吸収部材Aを得ることができる。
 第1セラミック粒子3は、表面プラズモン効果を高められるという点から、第1セラミックス1中において単一の粒子として孤立した状態で存在しているのが良い。言い換えると、個々の粒子が分散した状態で存在しているのが良い。孤立した状態で存在している割合としては、個数比で90%以上であるのが良い。
 第1セラミックス1の開気孔率が5%より大きい場合には、第1セラミックス1が緻密質では無くなり熱伝導率が低下する。このため組み合わせる部材(水素製造用部材)を高い温度に加熱することが困難になる。
 第1セラミック粒子3の材料としては、ABOとして表されるペロブスカイト型の複合酸化物が好適なものとなる。この場合、第1セラミック粒子3としては、ABOのAサイトに希土類元素を含み、一方、Bサイトに遷移金属元素を含み、さらに、第1セラミック粒子3中に、AサイトおよびBサイトの元素とは価数の異なる元素を微量含むものが良い。例えば、ABOのAサイトがランタン(La)であり、Bサイトがマンガン(Mn)であり、これに微量のSrを含む材料を好適な例として挙げることができる。組成式としては、例えば、La1-xSrMnO3+δ(x=0.01~0.9、δは任意。)と表される複合酸化物が良い。
 第1セラミック粒子3のサイズ(平均粒径)としては、微細であるのが良く、表面プラズモン効果を高められるという点から5~100nmが良い。
 また、第1セラミックス1としては、光の透過性が高いものが良い。例えば、第1セラミックス1の色の明度としてマンセルカラーシステムで区別される明度表示で5以上であるのが良い。
 第1セラミックス1としては、クラックなどが生じにくく、耐熱性に優れるという点で酸化ケイ素を主成分とする低熱膨張性のガラス質の材料が好適なものとなる。この場合、セラミック複合体5の熱膨張係数としては9×10-6/℃以下が良い。
 さらに、第1セラミック粒子3の表面プラズモン効果を高められるという点から、セラミック複合体5中に含まれる第1セラミック粒子3の割合は体積比で10~80%であるのが良い。
 セラミック複合体5の内部に存在する第1セラミック粒子3の割合は、セラミック複合体5の断面を電子顕微鏡およびこれに付設の分析器(EPMA)を用いて求める。例えば、セラミック複合体5を研磨して第1セラミック粒子3を露出させ、その断面に存在する第1セラミック粒子3が30~100個入る所定の領域を指定する。次に、この領域の面積およびこの領域内に存在する第1セラミック粒子3の合計面積を求め、領域の面積に対する第1セラミック粒子3の合計面積を求める。こうして求めた面積割合を体積割合と考える。第1セラミック粒子3が第1セラミックス1中において単一の粒子として孤立した状態で存在しているか否かの判定も上記の観察から個数をカウントして行う。
 図2は、本開示の水素製造用部材の第1実施形態を模式的に示す断面図である。第1実施形態の水素製造用部材B1は光吸収部10Aと水素生成部10Bとを有する。ここで、光吸収部10Aと水素生成部10Bとは少なくとも一つの主面同士で接触している。
 水素製造用部材B1では、光吸収部10Aが上記した光吸収部材Aによって形成されている。このため光吸収部10Aが高温の状態になっても、それ自体に酸化による劣化がほとんど無い。こうして耐久性の高い光吸収部10Aを形成することができる。
 水素生成部10Bは、微細なセラミック粒子11(以下、第2セラミック粒子11と表記する。)が多孔質の絶縁体(以下、第2セラミックス13と表記する。)中に分散されたセラミック多孔質複合体15によって形成されている。この場合、第2セラミックス13と第2セラミック粒子11とは主成分が異なる。
 第2セラミックス13の材料としては、酸化ケイ素、酸化アルミニウム、酸化亜鉛、アルカリ土類元素の酸化物、希土類元素の酸化物およびこれらの複合酸化物が好適な材料となる。この場合、第2セラミックス13は多数の開気孔16を有しており、その開気孔16は、セラミック多孔質複合体15の外表面15aから内部の第2セラミック粒子11に達するように延びている。この場合、開気孔率は10%以上であるのが良い。
 このセラミック多孔質複合体15において、開気孔率は第2セラミック粒子11を含めたセラミック多孔質複合体15について測定した値を用いる。これはセラミック粒子11が緻密体であり、第2セラミックス13の気孔率がそのままセラミック多孔質複合体15の気孔率に相当するものとなるためである。
 第2セラミック粒子11は、AXO3±δ(但し、0≦δ≦1、A:希土類元素、アルカリ土類元素、およびアルカリ金属元素のうちの少なくとも一種、X:遷移金属元素およびメタロイド元素のうちの少なくとも一種、O:酸素)、酸化セリウムおよび酸化ジルコニウムのうちのいずれかであり、この場合、第2セラミック粒子11の平均粒径(図1では符号Dとして表す。)は5~200nmが良い。
 希土類元素としては周期表第6周期のランタニド元素、遷移金属元素としてはTi、V、Cr、Mn、Zr、NbおよびTa、メタロイド元素としてはB、Si、Ge、As、Se、Sb、Te、PoおよびAtを好適な元素として例示できる。
 水素製造用部材B1では、水素生成部10Bが上記したセラミック多孔質複合体15によって形成されている。このため水素生成部10Bが高温の状態になっても、それ自体に酸化による劣化がほとんど無い。こうして耐久性の高い水素生成部10Bを形成することができる。
 上記の成分を有する第2セラミック粒子11は、高温の環境下に置かれると、下記(1)式に示す欠陥反応を起こす。
Figure JPOXMLDOC01-appb-C000001
 この場合、セラミック多孔質複合体15を構成している第2セラミック粒子11が微細であることから、上記の欠陥反応によって第2セラミック粒子11内に生成した電子が、その第2セラミック粒子11の表面に止まりやすくなり、この場合にも表面プラズモン効果が起こり、セラミック多孔質複合体15自体を高温状態に変化させることができる。これにより第2セラミック粒子11自体が光を吸収する機能を有するようになる。
 このような反応を起こす第2セラミック粒子11を多孔質体である第2セラミックス3中に存在させると、第2セラミック粒子11は、高温の状態では、(2)式のように、酸素が放出する反応(以下、酸素放出反応という場合がある。)を起こし、一方、この酸素放出反応が起きる温度よりも低い温度においては、(3)式に示すような水素が生成する反応(以下、水素生成反応という場合がある。)を起こすようになる。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 これはセラミック多孔質複合体15を構成する第2セラミックス13の内部において、第2セラミック粒子11に上記した欠陥反応によって表面プラズモン効果が現れることに加えて、上記した酸化・還元反応が起こるためである。
 この場合、第2セラミック粒子11としては、平均粒径が小さいほど表面プラズモン効果の発現を期待できるが、第2セラミック粒子11の平均粒径が5nmよりも小さいものは、現時点で調製することが困難である。一方、第2セラミック粒子11の平均粒径が200nmよりも大きい場合には、表面プラズモン効果が発現し難くなる。このため、セラミック多孔質複合体15をそれ自体で高温の状態にすることができなくなり、水素の生成が起き難くなる。
 また、第2セラミック粒子11において、表面プラズモン効果を高められるという点から、セラミック多孔質複合体15中に含まれる第2セラミック粒子11の割合は、この場合も体積比で20~80%であるのが良い。また、第2セラミック粒子11は個数比で90%以上が第2セラミックス13中に単一の粒子として孤立した状態で分散して存在しているのが良い。すなわち、この第1実施形態では、第2セラミック粒子11が母材である第2セラミックス13を構成する材料を介して個々に存在しているのが良い。
 セラミック多孔質複合体15の内部に存在する第2セラミック粒子11の割合および第2セラミック粒子11が第2セラミックス13中において単一の粒子として孤立した状態で存在しているか否かの判定は上記した光吸収部材Aと同様の方法によって行う。
 図3は、本開示の水素製造用部材の第2実施形態を模式的に示す断面図である。図3に示した水素製造用部材B2は、図2に示した水素製造用部材B1の変形例を示すものである。水素製造用部材B2は光吸収部材Aとセラミック多孔質複合体15との間に金属膜19を介在させたものである。
 水素製造用部材B2では、光吸収部材Aとセラミック多孔質複合体15との間に金属膜19を介在させておくのが良い。図3に示すように、光吸収部材Aとセラミック多孔質複合体15との間に金属膜19が設けられる場合には、光吸収部材Aに入ってきた光が金属膜19の表面で反射するため、セラミック多孔質複合体15側にまで透過し難くなる。これにより光吸収部材A内に光が集中するようになるため光吸収部材Aの発熱量を高めることができる。金属膜19の材料としては、光の反射性の高い金属であれば良く、タングステン、モリブデン、ニッケル、銅、銀、金、白金およびパラジウムなどが好適なものとなる。
 図4(a)は、本開示の水素製造用部材の第3実施形態を模式的に示す斜視図であり、(b)は、(a)のX-X線断面図である。図4(a)(b)に示す第3実施形態の水素製造用部材B3は、光吸収部10Aを構成する光吸収部材Aおよび水素生成部10Bを構成するセラミック多孔質複合体15がともに管状体である。この場合、内側に空洞17を有するセラミック多孔質複合体15の周囲を取り巻くように、その外側に光吸収部材Aが配置されている。
 第3実施形態の水素製造用部材B3では、光吸収部材Aが太陽光を受けると、光吸収部材Aおよびセラミック多孔質複合体15が加熱されて高温状態となる。この状態において、セラミック多孔質複合体15の内側に設けられた空洞17内に水蒸気を導入すると、セラミック多孔質複合体15内に水素が発生する。発生した水素は、例えば、図4(b)に示すように、水蒸気を導入した端部とは反対側の端部から回収するようにする。
 図5は、本開示の水素製造用部材の第4実施形態を模式的に示す斜視図である。水素製造用部材としては、水素製造用部材B3の構造に限らず、図5に示す第4実施形態の水素製造用部材B4のように、光吸収部10Aおよび水素生成部10Bの端面がともに矩形状となっている構造にも同様に適用される。この場合、光吸収部10Aおよび水素生成部10Bの端面は多角形でも良い。
 図6(a)は、本開示の水素製造用部材の第5実施形態を模式的に示す斜視図であり、(b)は(a)のX-X線断面図である。図7(a)は、本開示の水素製造用部材の第6実施形態を模式的に示す斜視図であり、(b)は(a)のX-X線断面図である。
 図6(a)(b)に示す第5実施形態の水素製造用部材B5および図7に示す第6実施形態の水素製造用部材B6のように、水素生成部10Bを構成するセラミック多孔質複合体15に空洞17を設けず、中実体の構造とした場合にも同様に適用できる。なお、図6(a)(b)および図7(a)(b)に示した水素製造用部材B5、B6の場合には、水蒸気は多孔質の内部を通過することになる。
 さらに、本実施形態の水素製造用部材として、図8(a)(b)に示す積層型の構造の水素製造用部材B7、B8を挙げることができる。積層型の水素製造用部材B7、B8は、光吸収部材Aおよびセラミック多孔質複合体15がともに平板型である。そして、光吸収部材Aとセラミック多孔質複合体15とが積層された構造となっている。この場合、図8(b)に示すように、光吸収部材Aがセラミック多孔質複合体15を上下から挟んだ構造であっても良い。光吸収部材Aがセラミック多孔質複合体15を上下から挟んだ構造である場合には、水素製造用部材B8の両面側から太陽光を受光することができるため、セラミック多孔質複合体15の熱効率とともに水素の回収効率を高めることができる。
 図9(a)は、本開示の第1実施形態の水素製造装置を稼働させたときの状態を模式的に示す断面図であり、(a)は、水素製造用部材から酸素が生成している状態、(b)は同水素製造用部材から水素が生成している状態である。
 第1実施形態の水素製造装置C1は、太陽光エネルギー(図9に示した白地の矢印)を受けて酸化・還元反応を起こす反応部21と、反応部21に水蒸気を供給する水蒸気供給部23と、反応部21から発生する水素ガスまたは酸素ガスを回収する回収部25とを備えている。回収部25と反応部21との間には未反応の水蒸気を回収する水蒸気回収部27が設けられる。さらに、この水素製造装置C1には、反応部21が太陽光を受けたり、遮ったりするための遮蔽板29が設けられる。遮蔽板29は不透明の板状のものであれば良く、材料としては、プラスチック、金属および木材などあらゆるものを使用できる。
 図9(a)に示すように、反応部21の上面から遮蔽板29を移動させると、光吸収部材Aが太陽光を吸収し、高温の状態となる。水素製造用部材であるセラミック多孔質複合体15が光吸収部Aによって加熱される。これにより反応部21内に設置した水素製造用部材であるセラミック多孔質複合体15が高温の状態となり、セラミック多孔質複合体15は、上記(2)式で表される還元反応を起こして酸素が発生する。
 次に、図9(b)に示すように、反応部21を遮蔽板29で覆うようにすると、光吸収部Aおよびセラミック多孔質複合体15は太陽光が遮られる。このとき反応部21に水蒸気を供給して、水蒸気をセラミック多孔質複合体15に接触させると、セラミック多孔質複合体15は、還元反応が起こっていた図9(a)に示す状態から冷やされ、これにより還元反応が納まり、次に、上記(3)式で表される酸化反応が起こり、セラミック多孔質複合体15の内部において水素ガスが発生する。こうして水素製造装置C1によれば、太陽光からの熱を吸収して水素を効率良く発生させることができる。図9(a)(b)では、反応部21に水素製造用部材B3を設置した構成を示したが、水素製造用部材B4、B5およびB6も同様に適用できる。
 図10は、光吸収部材とセラミック多孔質複合体との間に遮蔽層が設けられた水素製造用部材の構造を示す断面図である。(a)は、水素製造用部材の断面が円形で筒状を成す図4の場合、(b)は、水素製造用部材の断面が矩形状で筒状を成す図5の場合、(c)は、水素製造用部材の断面が円形で柱状を成す図6の場合、(d)は、水素製造用部材の断面が矩形状で柱状を成す図7の場合である。
 水素製造装置C1において、上記した化1、化2および化3の反応を発生させた場合、酸素(O)、水蒸気(HO)および水素(H)が反応部21中を拡散することになる。酸素(O)、水蒸気(HO)および水素(H)の一部は、反応部21の中のセラミック多孔質複合体15内に止まらず、光吸収部材Aに接触し、光吸収部材Aを劣化させるおそれがある。こうした課題に対して、光吸収部材Aとセラミック多孔質複合体15との間に遮蔽層31を設けると、光吸収部材Aが酸化・還元されることによる性能の低下を抑えることができる。
 また、光吸収部材Aとセラミック多孔質複合体15との間に遮蔽層31を設けた場合には、酸素(O)、水蒸気(HO)および水素(H)の移動する範囲が遮蔽層31の内側のセラミック多孔質複合体15内に限定されることになるため、水素の回収を効率良く行うことができる。
 さらには、供給する水蒸気が遮蔽層31の内側のセラミック多孔質複合体15内に止まることで、供給する水蒸気量に対する水素の生成量の比率を高めることができる。
 ここで、遮蔽層31の材料としては、金属材料、セラミック材料およびガラス材料の群から選ばれる一つが好適なものとなる。この中で、特に金属材料が良い。遮蔽層31に金属材料を用いると、厚みが薄くても緻密な膜を形成できることから水素などの気体の透過をより抑えることができる。また、金属材料の場合、金属光沢を呈するため、図3および図4の場合と同様に、光の遮蔽効果が高まり、光吸収部材Aの発熱量を高めることができる。
 図11は、第2実施形態の水素製造装置を示すものであり、反応部と回収部との間に水素分離モジュールを設置した構成を示す模式図である。図11に示す水素製造装置C2のように、反応部21と回収部25との間に水素分離モジュール33を設置した構成にすると、反応部21から回収部25へ向けて移動してくる水素をより高い純度で回収することが可能になる。
 水素分離モジュール33としては、例えば、多孔質のセラミック管33aをガラス管33b内に設置した構成を例として挙げることができる。次に、図11を基にして、水素分離モジュール33を用いて水素を高い濃度で回収することができる原理を説明する。
 まず、反応部21から移動してきた水素と水蒸気とを含む混合気体は、最初に多孔質のセラミック管33aの外側のガラス管33b内に入る。多孔質のセラミック管33aの内部をポンプ35aを用いて減圧の状態にすると、多孔質のセラミック管33aの内部とその外側との間に圧力差が生じる。セラミック管33aの内部はその外側のガラス管33bの部分よりも圧力が低くなる。
 混合気体はガラス管33b内のセラミック管33aの外側からセラミック管33aの内部に移動するようになる。セラミック管33aは水素を透過するが水蒸気を透過させない材質であるため、セラミック管33aの内部へは水素のみが移動する。こうして反応部21から移動してきた水素と水蒸気とを含む混合気体から高純度の水素を回収することができる。
 また、反応部21と水素分離モジュール33は、図11に示すように、容器37の中にポンプ35bによって減圧された状態で収容されているのが良い。これにより光吸収部材Aによって生成した熱が反応部21および水素分離モジュール33以外の外界へ移動するのを防ぐことができる。つまり、熱が反応部21の水素生成部10Bから外部へ逃げるのを防ぐことができる。
 また、反応部21を減圧した状態にすると、反応部21の水素生成部10Bを構成するセラミック多孔質複合体15側で酸素欠陥が形成されやすくなる。これによりセラミック多孔質複合体15の還元反応が進み、セラミック多孔質複合体15から生成する酸素量および水素量を増加させることができる。この場合、容器37としては透明なものを用いるが良い。太陽光を全方位から反応部21に当てることができる。また、容器37の中には集光板39を設置しておくのが良い。これにより太陽光の入射側と反対側の反応部21の裏側にも太陽光を当てることができる。こうして反応部21において、酸化・還元反応の効率の低い部分の面積を小さくすることができる。その結果、水素の生成効率を高めることができる。
 以下、光吸収部材および水素製造用部材を表1に示す構成となるように作製し、水素が生成するか否かを評価した。
 この場合、光吸収部材の第1セラミック粒子および水素製造用部材の第2セラミック粒子には、La0.8Sr0.2MnOを主成分とし、MnサイトにFeを0.5モル置換したペロブスカイト材料を用いた。このペロブスカイト材料は、それぞれ金属アルコキシドを準備し、上記組成となるように調製した後、噴霧熱分解を行って合成した。次いで、合成した粉末を水中に投入し、時間毎の沈降状態を確認して分級操作を行い、表1に示す平均粒径のペロブスカイト材料(複合酸化物粒子およびセラミック粒子)の粉末を得た。
 次に、得られたペロブスカイト材料の粉末にガラス粉末(ホウ珪酸ガラス)を混合して複合粉末を調製した。この場合、セラミック多孔質複合体を作製する際の混合粉末の組成は、ペロブスカイト材料の粉末が70体積%、ガラス粉末が30体積%となるようにした。
光吸収部材の方の組成は、ペロブスカイト材料の粉末が50体積%、ガラス粉末が50体積%の割合となるようにした。
 次に、得られた複合粉末に有機バインダとしてPVA(ポリビニルアルコール)を10質量%添加して、成形体を各々作製し、脱脂後、大気中、赤外線イメージ炉を用いて最高温度1400℃、保持時間約1秒の条件にて加熱を行い、光吸収部材およびセラミック多孔質複合体となる焼結体を作製した。作製したセラミック多孔質複合体の開気孔率は10%であったが、光吸収部材の開気孔率は表1に示す値であった。作製した光吸収部材内に含まれている複合酸化物粒子およびセラミック多孔質複合体内に含まれている複合酸化物粒子は、それぞれ90%、92%が孤立して存在している状態であることを走査型電子顕微鏡を用いた断面観察によって確認した。
 作製した焼結体を研磨加工して、長さが10mm、肉厚が1mm、内径が3mmのセラミック多孔質複合体と、長さが10mm、肉厚が1mm、内径が5.2mmの光吸収部材とを作製し、管状の光吸収部材の内側に管状のセラミック多孔質複合体を挿入して、図4に示すような水素製造用部材を作製した。このときセラミック多孔質複合体の外側の表面に金属膜(Au)を形成した。光吸収部材の内表面とラミック多孔質複合体の外側の表面とを接着させた。こうして作製した水素製造用部材を用いて、図9に示すような水素製造装置として組み立てて、評価用の装置を作製した。
 作製した光吸収部材およびセラミック多孔質複合体の断面を電子顕微鏡およびこれに付設の分析器(EPMA)を用いて分析した。この場合、光吸収部材を構成している第1セラミック粒子およびセラミック多孔質複合体を構成している第2セラミック粒子は粒成長がほとんど無く、その平均粒径は表1に示す値と同等であった。作製した光吸収部材の色の明度はマンセルカラーシステムで区別される明度表示で6であった。
 比較例として、開気孔率が1%の光吸収部材の代わりに、開気孔率が10%のセラミック多孔質複合体を用いて、セラミック多孔質複合体が2層の試料を作製した(試料No.1)。
 水素ガスの生成量は水素製造装置の回収部にガスクロマトグラフ装置を設置して測定した。この場合、太陽光を1SUNの状態で受けるように、10サイクルを経て得られた生成量を表1に示した。
Figure JPOXMLDOC01-appb-T000004
 表1の結果から明らかなように、光吸収部材の第1セラミック粒子およびセラミック多孔質複合体の第2セラミック粒子として、平均粒径が6~180nmのペロブスカイト材料を適用した試料No.2~4では、0.4~1.1ml/gの水素生成量が確認されたが、ペロブスカイト材料の平均粒径を280nmにした試料(試料No.5)では、水素の生成量が0.01ml/gであった。また、光吸収部材として開気孔率が10.3%のセラミック多孔質複合体を適用して作製した試料(試料No.1)では、水素の生成を確認できなかった。
A・・・・・・・・・・・・・光吸収部材
1・・・・・・・・・・・・・第1セラミックス
3・・・・・・・・・・・・・第1セラミック粒子
5・・・・・・・・・・・・・セラミック複合体
B1~B8・・・・・・・・・水素製造用部材
10A・・・・・・・・・・・光吸収部
10B・・・・・・・・・・・水素生成部
11・・・・・・・・・・・・第2セラミック粒子
13・・・・・・・・・・・・第2セラミックス
15・・・・・・・・・・・・セラミック多孔質複合体
16・・・・・・・・・・・・開気孔
19・・・・・・・・・・・・金属膜
C1、C2・・・・・・・・・水素製造装置
21・・・・・・・・・・・・反応部
23・・・・・・・・・・・・水蒸気供給部
25・・・・・・・・・・・・回収部
27・・・・・・・・・・・・水蒸気回収部
29・・・・・・・・・・・・遮蔽板
31・・・・・・・・・・・・遮蔽層
33・・・・・・・・・・・・水素分離モジュール
35a、35b・・・・・・・ポンプ
37・・・・・・・・・・・・容器
39・・・・・・・・・・・・集光板
 

Claims (17)

  1.  開気孔率が5%以下の第1セラミックス中に、正の抵抗温度特性を示す第1セラミック粒子を複数有するセラミック複合体によって構成されている、光吸収部材。
  2.  前記第1セラミック粒子がABOとして表されるペロブスカイト型の複合酸化物である、請求項1に記載の光吸収部材。
  3.  前記第1セラミック粒子は、前記ABOのAサイトの元素としてLaを含み、Bサイトの元素としてMnを含むものである、請求項2に記載の光吸収部材。
  4.  前記第1セラミックスの色の明度が、マンセルカラーシステムで区別される明度表示で5以上である、請求項1乃至3のうちいずれかに記載の光吸収部材。
  5.  多孔質の第2セラミックス中に、第2セラミック粒子を含むセラミック多孔質複合体によって構成されている水素生成部と、光吸収部とで構成されている水素製造用部材であって、前記光吸収部が請求項1乃至4のうちいずれかに記載の光吸収部材によって構成されている、水素製造用部材。
  6.  前記第1セラミック粒子および前記第2セラミック粒子は、平均粒径が5~200nmである、請求項5に記載の水素製造用部材。
  7.  前記第2セラミック粒子が、AXO3±δ(但し、0≦δ≦1、A:希土類元素、アルカリ土類元素、およびアルカリ金属元素のうちの少なくとも一種、X:遷移金属元素およびメタロイド元素のうちの少なくとも一種、O:酸素)、酸化セリウムおよび酸化ジルコニウムのうちのいずれかである、請求項5または6に記載の水素製造用部材。
  8.  前記セラミック多孔質複合体中における前記第2セラミック粒子の割合が20~80体積%である、請求項5乃至7のうちいずれかに記載の水素製造用部材。
  9.  前記第2セラミック粒子のうち、個数比で90%以上が孤立して存在している、請求項5乃至8のうちいずれかに記載の水素製造用部材。
  10.  前記光吸収部材および前記セラミック多孔質複合体がともに筒状を成しており、前記光吸収部材の内側に前記セラミック多孔質複合体が配置されている、請求項5乃至9のうちいずれかに記載の水素製造用部材。
  11.  前記セラミック多孔質複合体が円柱体または角柱体であり、前記光吸収部材が前記セラミック多孔質複合体の側面を取り巻くように設けられていることを特徴とする請求項5乃至9のうちいずれかに記載の水素製造用部材。
  12.  前記光吸収部材および前記セラミック多孔質複合体がともに平板型であり、前記光吸収部材が前記セラミック多孔質複合体を上下から挟んだ積層構造体である、請求項5乃至9のうちいずれかに記載の水素製造用部材。
  13.  前記光吸収部材と前記セラミック多孔質複合体との間に遮蔽層が設けられている、請求項10または11に記載の水素製造用部材。
  14.  前記遮蔽層は、金属材料、セラミック材料およびガラス材料の群のうちのいずれかである、請求項13に記載の水素製造用部材。
  15.  太陽光エネルギーを受けて酸化・還元反応を起こす反応部と、該反応部に水を供給する水蒸気供給部と、前記反応部から発生する水素ガスを回収する回収部とを備えている水素製造装置であって、前記反応部に請求項5乃至14のうちいずれかに記載の水素製造用部材が設置されている、水素製造装置。
  16.  前記反応部と前記回収部との間に水素分離モジュールが設置されている、請求項15に記載の水素製造装置。
  17.  前記反応部が減圧可能な容器内に収容されている、請求項15または16に記載の水素製造装置。
     
PCT/JP2017/005626 2016-02-25 2017-02-16 光吸収部材および水素製造用部材ならびに水素製造装置 WO2017145903A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/079,566 US11198607B2 (en) 2016-02-25 2017-02-16 Light absorbing member, member for hydrogen production, and hydrogen production apparatus
CN201780013036.5A CN108698938B (zh) 2016-02-25 2017-02-16 光吸收构件、制氢用构件以及制氢装置
EP17756342.6A EP3421443B1 (en) 2016-02-25 2017-02-16 Light-absorbing member, hydrogen production member, and hydrogen production device
JP2017533508A JP6276480B2 (ja) 2016-02-25 2017-02-16 水素製造用部材および水素製造装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-034517 2016-02-25
JP2016034517 2016-02-25
JP2016101595 2016-05-20
JP2016-101595 2016-05-20

Publications (1)

Publication Number Publication Date
WO2017145903A1 true WO2017145903A1 (ja) 2017-08-31

Family

ID=59686156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005626 WO2017145903A1 (ja) 2016-02-25 2017-02-16 光吸収部材および水素製造用部材ならびに水素製造装置

Country Status (5)

Country Link
US (1) US11198607B2 (ja)
EP (1) EP3421443B1 (ja)
JP (1) JP6276480B2 (ja)
CN (1) CN108698938B (ja)
WO (1) WO2017145903A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3392195A4 (en) * 2015-12-14 2019-05-08 Kyocera Corporation HYDROGEN PRODUCTION ELEMENT AND DEVICE FOR PRODUCING HYDROGEN
US11198607B2 (en) 2016-02-25 2021-12-14 Kyocera Corporation Light absorbing member, member for hydrogen production, and hydrogen production apparatus
WO2022181801A1 (ja) * 2021-02-26 2022-09-01 京セラ株式会社 水素製造装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112851322A (zh) * 2020-12-29 2021-05-28 苏州金宏气体股份有限公司 Pd单原子BiFeO3压电多孔陶瓷、其制法及高效制氢

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724329A (ja) * 1993-07-07 1995-01-27 Nikon Corp 光触媒
JP2001038222A (ja) * 1999-07-29 2001-02-13 Daido Steel Co Ltd 光触媒材料、光触媒付き部材及びその製造方法
JP2001219073A (ja) * 2000-02-10 2001-08-14 Sharp Corp 光酸化触媒
JP2009263165A (ja) 2008-04-25 2009-11-12 Tokyo Institute Of Technology 反応性セラミックスおよびその製造方法、ならびに水素製造方法および水素製造装置
JP2012110800A (ja) * 2010-11-22 2012-06-14 Denso Corp ペロブスカイト型触媒及びその製造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209084A (ja) * 1982-05-28 1983-12-05 株式会社日立製作所 直熱形ヒ−タ材
JPH02296771A (ja) 1989-05-11 1990-12-07 Isuzu Ceramics Kenkyusho:Kk 複合セラミックスとその製造方法
JPH06503797A (ja) * 1990-08-23 1994-04-28 コモンウェルス サイエンティフィク アンド インダストリアル リサーチ オーガナイゼイション セラミック複合材料とその製造
US6464955B2 (en) * 1999-05-13 2002-10-15 The Boc Group, Inc. Production of hydrogen and carbon monoxide
JP2002083517A (ja) * 2000-09-08 2002-03-22 Nippon Steel Corp 酸素イオン輸送用複合構造体及び酸素イオン輸送応用装置
JP4736267B2 (ja) * 2001-08-08 2011-07-27 住友金属鉱山株式会社 可視光域でも触媒活性を有する光触媒
US20040005483A1 (en) * 2002-03-08 2004-01-08 Chhiu-Tsu Lin Perovskite manganites for use in coatings
US7625835B2 (en) * 2005-06-10 2009-12-01 Gm Global Technology Operations, Inc. Photocatalyst and use thereof
US8169136B2 (en) * 2008-02-21 2012-05-01 Nitto Denko Corporation Light emitting device with translucent ceramic plate
US8932534B2 (en) * 2009-11-20 2015-01-13 Exxonmobil Chemical Patents Inc. Porous pyrolysis reactor materials and methods
AT510156B1 (de) * 2010-10-04 2012-02-15 Brunauer Georg Photoelektrochemische zelle
WO2013021506A1 (ja) * 2011-08-05 2013-02-14 トヨタ自動車株式会社 熱化学水分解用レドックス材料及び水素製造方法
FR2981368B1 (fr) * 2011-10-12 2013-11-15 Areva Procede de generation d'hydrogene et d'oxygene par electrolyse de vapeur d'eau
BRPI1105355B1 (pt) * 2011-12-20 2018-12-04 Univ Federal De Santa Catarina Ufsc processo de fabricação de um corpo poroso, por metalurgia do pó e composição metalúrgica de materiais particulados
JP2013180245A (ja) * 2012-03-01 2013-09-12 Toyota Motor Corp 水分解用光触媒及び水素生成方法
US20130252808A1 (en) * 2012-03-23 2013-09-26 Yoshihiro Yamazaki Catalysts for thermochemical fuel production and method of producing fuel using thermochemical fuel production
JP5817782B2 (ja) * 2012-06-13 2015-11-18 株式会社豊田中央研究所 水素製造触媒、それを用いた水素製造方法及び水素製造装置
US20140336295A1 (en) * 2013-05-09 2014-11-13 E I Du Pont De Nemours And Company Porous body useful as a filter element
PL2997585T3 (pl) * 2013-05-17 2020-01-31 Exeger Operations Ab Ogniwo słoneczne uczulane barwnikiem i sposób wytwarzania ogniwa słonecznego
CN103274361B (zh) * 2013-05-28 2015-02-25 东北大学 一种基于化学链反应的氧气-氢气联产装置及方法
CN104418299B (zh) * 2013-09-02 2017-02-15 中国科学院大连化学物理研究所 不同载体分散的钙钛矿进行太阳能热分解h2o和/或co2的方法
US10343904B2 (en) 2015-12-14 2019-07-09 Kyocera Corporation Member for hydrogen production and hydrogen production apparatus
CN108698938B (zh) 2016-02-25 2021-08-27 京瓷株式会社 光吸收构件、制氢用构件以及制氢装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724329A (ja) * 1993-07-07 1995-01-27 Nikon Corp 光触媒
JP2001038222A (ja) * 1999-07-29 2001-02-13 Daido Steel Co Ltd 光触媒材料、光触媒付き部材及びその製造方法
JP2001219073A (ja) * 2000-02-10 2001-08-14 Sharp Corp 光酸化触媒
JP2009263165A (ja) 2008-04-25 2009-11-12 Tokyo Institute Of Technology 反応性セラミックスおよびその製造方法、ならびに水素製造方法および水素製造装置
JP2012110800A (ja) * 2010-11-22 2012-06-14 Denso Corp ペロブスカイト型触媒及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3392195A4 (en) * 2015-12-14 2019-05-08 Kyocera Corporation HYDROGEN PRODUCTION ELEMENT AND DEVICE FOR PRODUCING HYDROGEN
US10343904B2 (en) 2015-12-14 2019-07-09 Kyocera Corporation Member for hydrogen production and hydrogen production apparatus
US11198607B2 (en) 2016-02-25 2021-12-14 Kyocera Corporation Light absorbing member, member for hydrogen production, and hydrogen production apparatus
WO2022181801A1 (ja) * 2021-02-26 2022-09-01 京セラ株式会社 水素製造装置

Also Published As

Publication number Publication date
CN108698938B (zh) 2021-08-27
JP6276480B2 (ja) 2018-02-07
JPWO2017145903A1 (ja) 2018-03-01
EP3421443A1 (en) 2019-01-02
EP3421443B1 (en) 2020-11-04
EP3421443A4 (en) 2019-11-06
CN108698938A (zh) 2018-10-23
US11198607B2 (en) 2021-12-14
US20190202691A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
JP6276480B2 (ja) 水素製造用部材および水素製造装置
JP5676038B2 (ja) 固体酸化物形燃料電池セル、その製造方法、燃料電池セルスタック、及び固体酸化物形燃料電池。
Liu et al. High-performance Ni–BaZr0. 1Ce0. 7Y0. 1Yb0. 1O3− δ (BZCYYb) membranes for hydrogen separation
JP2009506507A (ja) 可逆式固体酸化物型燃料電池スタックおよびそれを調製する方法
JP5799270B2 (ja) 光励起半導体及びそれを用いたデバイス
JP2014510014A (ja) 低pO2雰囲気中で得られるセラミックデバイスのための焼結添加剤
JP4931361B2 (ja) 燃料電池セル及び燃料電池
JP6748955B2 (ja) 電気化学セル
JP2019071289A (ja) セルおよびセルスタック装置並びに電気化学モジュール、電気化学装置
KR101842319B1 (ko) 고체 산화물 연료 전지 및 이의 제조방법
Shimada et al. Effect of yttrium-doped barium zirconate on reactions in electrochemically active zone of nickel/yttria-stabilized zirconia anodes
CN110731025A (zh) 固体电解质部件、固体氧化物型燃料电池、水电解装置、氢泵及固体电解质部件的制造方法
JP5240700B2 (ja) 燃料電池スタック及びその製造方法
JP6224871B1 (ja) 水素製造用部材および水素製造装置
JP6787826B2 (ja) 水素生成用セル、集光型水素生成用セルおよび水素製造装置
JP4933757B2 (ja) 非電子伝導性組成傾斜型固体電解質膜
JP4855013B2 (ja) 酸素分離膜および炭化水素の酸化用反応装置
JP2017210400A (ja) 水素製造装置
KR101940712B1 (ko) 고체 산화물 연료 전지 및 이의 제조방법
Almar Liante Ordered mesoporous metal oxides for solid oxide fuel cells and gas sensors
WO2020261935A1 (ja) 燃料極-固体電解質層複合体、燃料極-固体電解質層複合部材、燃料電池、および、燃料電池の製造方法
Bouwmeester T05: Ceramics for novel energy conversion, storage and use
JP2018169465A (ja) 光吸収装置
Yamaguchi Wet preparation and characterization of ScSZ thin film electrolyte on micro-cathode supports
Mogensen et al. Ionic and Mixed Conducting Ceramics 10

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017533508

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017756342

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017756342

Country of ref document: EP

Effective date: 20180925

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756342

Country of ref document: EP

Kind code of ref document: A1