CN112851322A - Pd单原子BiFeO3压电多孔陶瓷、其制法及高效制氢 - Google Patents

Pd单原子BiFeO3压电多孔陶瓷、其制法及高效制氢 Download PDF

Info

Publication number
CN112851322A
CN112851322A CN202011592863.4A CN202011592863A CN112851322A CN 112851322 A CN112851322 A CN 112851322A CN 202011592863 A CN202011592863 A CN 202011592863A CN 112851322 A CN112851322 A CN 112851322A
Authority
CN
China
Prior art keywords
bifeo
porous ceramic
piezoelectric
monatomic
piezoelectric porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011592863.4A
Other languages
English (en)
Inventor
金向华
孙猛
吴丽丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Jinhong Gas Co Ltd
Original Assignee
Suzhou Jinhong Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Jinhong Gas Co Ltd filed Critical Suzhou Jinhong Gas Co Ltd
Priority to CN202011592863.4A priority Critical patent/CN112851322A/zh
Publication of CN112851322A publication Critical patent/CN112851322A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8973Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5122Pd or Pt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种Pd单原子BiFeO3压电多孔陶瓷、其制法与自供能高效制氢中的应用。该压电多孔陶瓷包括BiFeO3压电多孔陶瓷基体以及均匀分散于压电多孔陶瓷基体表面及孔道内的Pd单原子,所述Pd单原子的质量分数为0.01wt%‑0.1wt%。本发明提供的一种Pd单原子BiFeO3压电多孔陶瓷材料中Pd的含量低,同时具有较高的催化活性,降低了贵金属的使用,从而大大降低了生产成本。该Pd单原子BiFeO3压电多孔陶瓷材料可用为氢燃料电池提供氢源,制氢效率高、纯度高,不含一氧化碳、硫化氢、磷化氢、氯离子等使燃料电池中毒的气体,且制备方法简单易行、绿色环保,不排放对环境有害物质。

Description

Pd单原子BiFeO3压电多孔陶瓷、其制法及高效制氢
技术领域
本发明涉及一种Pd单原子BiFeO3压电多孔陶瓷,特别涉及一种Pd单原子BiFeO3压电多孔陶瓷的制备方法以及其于自供能高效制氢中的应用,属于能源材料领域。
背景技术
随着我国经济社会的发展,我国能源消耗越来越大,目前我国的石油进口量占总原油消耗量的70%左右。这一方面消耗了石油资源,另一方面使用原油排放的温室气体也污染了环境。为此,我国政府出台政策,鼓励发展新能源汽车。尤其是,以氢燃料电池为驱动力的新能源汽车是优先鼓励的发展方向。
但是,氢燃料电池的电极材料容易被混合在氢气中的一氧化碳、硫化氢、磷化氢、氯离子等杂质中毒,从而影响氢燃料电池的使用寿命。因此,制备高纯氢对发展氢燃料电池和新能源汽车产业,具有重要的应用价值。另外,尽管贵金属作为催化剂可以制氢,但是贵金属价格高,资源有限,从而限制了贵金属的广泛应用。因此,如何使用质量较少的贵金属同时具有较高的催化活性的材料制备高纯氢是一个亟待解决的问题。
发明内容
现有的氢源大多来源于化工制氢,其中含有容易使燃料电池电极材料中毒的一氧化碳、硫化氢、磷化氢、氯离子等气态物质。本发明的目的在于提供一种Pd单原子BiFeO3压电多孔陶瓷、其制备方法以及于车载自供能高效制氢中的应用,以克服现有制氢技术中的不足,还克服了现有技术中的贵金属Pd利用率低、催化活性低导致的成本较高的不足。
为实现前述发明目的,本发明采用的技术方案包括:所述一种Pd单原子BiFeO3压电多孔陶瓷,包括BiFeO3压电多孔陶瓷基体以及均匀分散于压电多孔陶瓷表面的Pd单原子;
其中,所述Pd单原子的质量分数为0.01wt%-0.1wt%;
所述BiFeO3压电多孔陶瓷基体的孔径为0.1mm~1.0mm。
优选地,所述Pd单原子的质量分数上限选自0.02wt%、0.03wt%、0.04wt%、0.05wt%、0.06wt%、0.07wt%、0.08wt%、0.09wt%、0.10wt%;所述Pd单原子的质量分数下限选自0.01wt%、0.02wt%、0.03wt%、0.04wt%、0.05wt%、0.06wt%、0.07wt%、0.08wt%、0.09wt%。
优选地,所述BiFeO3压电多孔陶瓷的孔径上限选自0.2mm、0.3mm、0.4mm、0.5mm、0.6mm、0.7mm、0.8mm、0.9mm、1.0mm;所述BiFeO3压电多孔陶瓷的孔径下限选自0.01mm、0.02mm、0.03mm、0.04mm、0.05mm、0.06mm、0.07mm、0.08mm、0.09mm。
可选地,所述Pd单原子还分散于所述BiFeO3压电多孔陶瓷孔道表面。
所述一种Pd单原子BiFeO3压电多孔陶瓷的制备方法,包括以下步骤:
(1)制备BiFeO3颗粒:将铋盐、铁盐与碱反应,生成BiFeO3颗粒;
(2)造粒:向步骤(1)制得的BiFeO3颗粒中分别加入0.1-5.0wt%的淀粉和5-8wt%的聚乙烯醇溶液球磨造粒;
(3)制备陶坯:将步骤(2)制得的BiFeO3颗粒加入到20mm×20mm尺寸的模具中,用压膜机在10MPa压力下压制成陶坯;
(4)造孔与脱胶:将陶坯加热至350-450℃,恒温1-2h;继续升温进行脱胶处理;
(5)成型:脱胶后在温度为850℃条件下处理2h,冷却后制得BiFeO3多孔陶瓷;
(6)极化处理:将BiFeO3多孔陶瓷片在3KV/mm电压下极化25min,放置24h后制得BiFeO3压电多孔陶瓷;
(7)Pd单原子BiFeO3压电多孔陶瓷的制备:将BiFeO3压电多孔陶瓷置于PdCl2溶液中进行超声处理,即制得所述Pd单原BiFeO3压电多孔陶瓷。
可选地,所述造孔温度为450℃。
可选地,所述脱胶处理的温度为550℃。
可选地,所述铋盐选自氯化铋、硝酸铋中的至少一种。
可选地,所述铁盐选自硝酸铁、氯化铁中的至少一种。
可选地,所述碱选自氢氧化钠、氢氧化钾和氨水中的至少一种。
可选地,所述BiFeO3颗粒由氯化铋、硝酸铁和氢氧化钾反应制得。
可选地,所述氢氧化钾的浓度为0.1mol/L-1.0mol/L。
可选地,所述BiFeO3颗粒由硝酸铋、氯化铁和氨水反应制得。
可选地,所述氨水的浓度为0.1mol/L-1.0mol/L。
可选地,所述淀粉的质量为0.5-8wt%。
可选地,所述淀粉的质量为0.5wt%。
可选地,所述淀粉的质量为1.0wt%。
可选地,所述淀粉的质量为2.0wt%。
可选地,所述淀粉的质量为3.0wt%。
可选地,所述淀粉的质量为4.0wt%。
可选地,所述淀粉的质量为5.0wt%。
可选地,所述淀粉的质量为6.0wt%。
可选地,所述淀粉的质量为7.0wt%。
可选地,所述淀粉的质量为8.0wt%。
可选地,所述聚乙烯醇(PVA)溶液的质量浓度为5.0~8.0wt%。
可选地,所述聚乙烯醇(PVA)溶液的质量浓度为6.0wt%。
可选地,所述聚乙烯醇(PVA)溶液的质量浓度为7.0wt%。
可选地,所述造孔处理的温度为350℃、380℃、400℃、450℃;
可选地,所述脱胶处理的温度为450℃、500℃、550℃、600℃;
可选地,所述超声处理时间为30~80min,所述超声处理频率为20-60KHz。
可选地,所述超声处理时间上限为40min、50min、60min、70min、80min;所述超声处理时间下限为30min、40min、50min、60min、70min。
所述的Pd单原子BiFeO3压电多孔陶瓷于自供能高效制氢中的应用。
优选地,所述超声波的频率为10-60KHz。
优选地,所述超声波的频率上限为20KHz、30KHz、40KHz、50KHz、60KHz;所述超声波的频率下限为10KHz、20KHz、30KHz、40KHz、50KHz。
优选地,所述Pd单原子BiFeO3压电多孔陶瓷于车载自供能制氢中的应用。
优选地,在温度为1-95℃的条件下,对Pd单原子BiFeO3压电多孔陶瓷材料和氨硼烷水溶液形成的制氢反应体系施加机械振动或超声波振动实现氢气的制备。
优选地,一种自供能压电催化制氢方法,其包括以下步骤:
(1)将氨硼烷水溶液置于催化制氢反应器中,再向该氨硼烷水溶液中加入Pd单原子BiFeO3压电多孔陶瓷材料,形成制氢反应体系,之后密封所述反应器;
(2)将所述反应器的温度调节至1-95℃后将系统抽至真空,待所述反应器内达到真空状态后再将所述反应器内的温度调至20-30℃;
(3)对所述反应器内的制氢反应体系施加超声波,使所述制氢反应体系内发生反应,并产生氢气。
本发明中压电材料能将机械能转化为电能,其作用原理是利用材料在结构上的不对称性,在外力作用下原来电中性的材料产生了正负电荷中心不重合,从而导致材料的二端或二面带有不同的电荷。机械振动或超生振动实现机械能与电能的转变。
本发明提供的压电催化制氢的反应机理为:在合适的催化剂存在下,NH3BH3可以通过溶剂分解或热分解释放氢,如下式(I)所示:
NH3BH3(aq)+2H2O(l)=NH4 +(aq)+BO2 -(aq)+3H2(g)式(I)
在本发明中,Pd单原子BiFeO3压电多孔陶瓷材料是一种具有压电效应的催化剂。该催化剂在超声波振荡中产生压电效应,材料内部形成自建电场,使电子定向移动,产生的电子与水中质子H+发生反应产生氢气,产生的空穴与氢负离子H-结合产生氢气。
本发明制得的氢气为高纯氢气,不含一氧化碳、硫化氢等使燃料电池电极材料中毒的污染物。
在一具体实施例中,将本发明制得的Pd单原子BiFeO3压电多孔陶瓷材料制氢体系应用于行驶的汽车中,将汽车行驶过程中的振动能转化为电能,再经压电催化反应制得氢气,作为汽车燃料,实现自供能制氢。
在一具体实施例中,将本发明制得的Pd单原子BiFeO3压电多孔陶瓷材料制氢体系应用于噪声较大的生产车间,将车间生产时产生的声波转化为电能,实现自供能制氢。
与现有技术相比,本发明的优点包括:
(1)本发明提供的一种Pd单原子BiFeO3压电多孔陶瓷材料中Pd的含量较低同时具有较高的催化活性,降低了贵金属的使用,从而大大降低了生产成本。
(2)本发明提供的一种Pd单原子BiFeO3压电多孔陶瓷材料的制备方法简单易行、绿色环保,不排放对环境有害物质。
(3)本发明提供的一种Pd单原子BiFeO3压电多孔陶瓷材料可为氢燃料电池提供高纯氢,其中不含有一氧化碳、硫化氢、磷化氢、氯离子等使燃料电池中毒的气体。
具体实施方式
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本发明的技术方案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
以下结合若干实施例对本发明的技术方案作进一步的解释说明。
本申请实施例中所用药品均为市售。
实施例1
所述一种Pd单原子BiFeO3压电多孔陶瓷的制备方法,包括以下步骤:
(1)制备BiFeO3颗粒:将氯化铋、氯化铁与氨水反应,生成BiFeO3颗粒;
(2)造粒:向步骤(1)制得的BiFeO3颗粒中分别加入0.5wt%的淀粉和一定量的聚乙烯醇溶液球磨造粒;
(3)制备陶坯:将步骤(2)制得的BiFeO3颗粒加入到20mm×20mm尺寸的模具中,用压膜机在10MPa压力下压制成陶坯;
(4)造孔与脱胶:将陶坯加热至400℃,恒温2h;继续升温至500℃条件下进行脱胶处理;
(5)成型:脱胶后在温度为860℃条件下处理0.5h,冷却后制得BiFeO3多孔陶瓷;
(6)极化处理:将BiFeO3多孔陶瓷片在3KV/mm电压下极化20min,放置24h后制得BiFeO3压电多孔陶瓷;
(7)Pd单原子BiFeO3压电多孔陶瓷的制备:将BiFeO3压电多孔陶瓷置于0.1mol/LPdCl2溶液中进行超声处理,即制得所述Pd单原BiFeO3压电多孔陶瓷。
制氢反应如下:
步骤一:提供浓度为0.05mol/L的100mL的NH3BH3溶液中,并置于反应器中,再向溶液中加入上述自供能压电多孔陶瓷,盖上石英玻璃板并密封反应器;
步骤二:将步骤一中的制氢系统和低温恒温槽连接好后密封处理,控制低温恒温槽温度为1℃后将系统内抽至真空,待系统内到达真空状态后再通过低温恒温槽将控制系统温度为25℃;
步骤三:将反应器置于28KHz超声波清洗器中,打开超声,将制氢系统调整至系统循环状态后进行实验,每隔一个小时通过气相色谱仪检测每个小时的氢气产量。
实施例2
所述一种Pd单原子BiFeO3压电多孔陶瓷的制备方法,包括以下步骤:
(1)制备BiFeO3颗粒:将氯化铋、硝酸铁与氢氧化钾反应,生成BiFeO3颗粒;
(2)造粒:向步骤(1)制得的BiFeO3颗粒中分别加入1.0wt%的淀粉和一定量的聚乙烯醇溶液球磨造粒;
(3)制备陶坯:将步骤(2)制得的BiFeO3颗粒加入到20mm×20mm尺寸的模具中,用压膜机在15MPa压力下压制成陶坯;
(4)造孔与脱胶:将陶坯加热至350℃,恒温1h;继续升温在温度为550℃下进行脱胶处理;
(5)成型:脱胶后在温度为880℃条件下处理0.1h,冷却后制得BiFeO3多孔陶瓷;
(6)极化处理:将BiFeO3多孔陶瓷片在4KV/mm电压下极化30min,放置24h后制得BiFeO3压电多孔陶瓷;
(7)Pd单原子BiFeO3压电多孔陶瓷的制备:将BiFeO3压电多孔陶瓷置于0.5mol/LPdCl2溶液中进行超声处理,即制得所述Pd单原BiFeO3压电多孔陶瓷。
制氢反应如下:
步骤一:提供浓度为0.05mol/L的100mL的NH3BH3溶液中,并置于反应器中,再向溶液中加入上述自供能压电多孔陶瓷,盖上石英玻璃板并密封反应器;
步骤二:将步骤一中的制氢系统和低温恒温槽连接好后密封处理,控制低温恒温槽温度为1℃后将系统内抽至真空,待系统内到达真空状态后再通过低温恒温槽将控制系统温度为25℃;
步骤三:将反应器置于28KHz超声波清洗器中,打开超声,将制氢系统调整至系统循环状态后进行实验,每隔一个小时通过气相色谱仪检测每个小时的氢气产量。
实施例3
所述一种Pd单原子BiFeO3压电多孔陶瓷的制备方法,包括以下步骤:
(1)制备BiFeO3颗粒:将硝酸铁、硝酸铋与氢氧化钠反应,生成BiFeO3颗粒;
(2)造粒:向步骤(1)制得的BiFeO3颗粒中分别加入2.0wt%的淀粉和一定量的聚乙烯醇溶液球磨造粒;
(3)制备陶坯:将步骤(2)制得的BiFeO3颗粒加入到20mm×20mm尺寸的模具中,用压膜机在20MPa压力下压制成陶坯;
(4)造孔与脱胶:将陶坯加热至450℃,恒温2h;继续升温至600℃下进行脱胶处理;
(5)成型:脱胶后在温度为900℃条件下处理0.5h,冷却后制得BiFeO3多孔陶瓷;
(6)极化处理:将BiFeO3多孔陶瓷片在4KV/mm电压下极化40min,放置24h后制得BiFeO3压电多孔陶瓷;
(7)Pd单原子BiFeO3压电多孔陶瓷的制备:将BiFeO3压电多孔陶瓷置于0.8mol/LPdCl2溶液中进行超声处理,即制得所述Pd单原BiFeO3压电多孔陶瓷。
制氢反应如下:
步骤一:提供浓度为0.05mol/L的100mL的NH3BH3溶液中,并置于反应器中,再向溶液中加入上述自供能压电多孔陶瓷,盖上石英玻璃板并密封反应器;
步骤二:将步骤一中的制氢系统和低温恒温槽连接好后密封处理,控制低温恒温槽温度为1℃后将系统内抽至真空,待系统内到达真空状态后再通过低温恒温槽将控制系统温度为25℃;
步骤三:将反应器置于28KHz超声波清洗器中,打开超声,将制氢系统调整至系统循环状态后进行实验,每隔一个小时通过气相色谱仪检测每个小时的氢气产量。
实施例4
所述一种Pd单原子BiFeO3压电多孔陶瓷的制备方法,包括以下步骤:
(1)制备BiFeO3颗粒:将硝酸铁、氯化铋与氨水反应,生成BiFeO3颗粒;
(2)造粒:向步骤(1)制得的BiFeO3颗粒中分别加入3.0wt%的淀粉和一定量的聚乙烯醇溶液球磨造粒;
(3)制备陶坯:将步骤(2)制得的BiFeO3颗粒加入到20mm×20mm尺寸的模具中,用压膜机在10MPa压力下压制成陶坯;
(4)造孔与脱胶:将陶坯加热至450℃,恒温1h;继续升温至600℃进行脱胶处理;
(5)成型:脱胶后在温度为950℃条件下处理0.5h,冷却后制得BiFeO3多孔陶瓷;
(6)极化处理:将BiFeO3多孔陶瓷片在3KV/mm电压下极化40min,放置24h后制得BiFeO3压电多孔陶瓷;
(7)Pd单原子BiFeO3压电多孔陶瓷的制备:将BiFeO3压电多孔陶瓷置于0.6mol/LPdCl2溶液中进行超声处理,即制得所述Pd单原BiFeO3压电多孔陶瓷。
制氢反应如下:
步骤一:提供浓度为0.05mol/L的100mL的NH3BH3溶液中,并置于反应器中,再向溶液中加入上述自供能压电多孔陶瓷,盖上石英玻璃板并密封反应器;
步骤二:将步骤一中的制氢系统和低温恒温槽连接好后密封处理,控制低温恒温槽温度为1℃后将系统内抽至真空,待系统内到达真空状态后再通过低温恒温槽将控制系统温度为25℃;
步骤三:将反应器置于28KHz超声波清洗器中,打开超声,将制氢系统调整至系统循环状态后进行实验,每隔一个小时通过气相色谱仪检测每个小时的氢气产量。
实施例5
所述一种Pd单原子BiFeO3压电多孔陶瓷的制备方法,包括以下步骤:
(1)制备BiFeO3颗粒:将硝酸铁、氯化铋与氨水反应,生成BiFeO3颗粒;
(2)造粒:向步骤(1)制得的BiFeO3颗粒中分别加入6.0wt%的淀粉和一定量的聚乙烯醇溶液球磨造粒;
(3)制备陶坯:将步骤(2)制得的BiFeO3颗粒加入到20mm×20mm尺寸的模具中,用压膜机在30MPa压力下压制成陶坯;
(4)造孔与脱胶:将陶坯加热至350℃,恒温1h;继续升温至600℃条件下进行脱胶处理;
(5)成型:脱胶后在温度为860℃条件下处理0.5h,冷却后制得BiFeO3多孔陶瓷;
(6)极化处理:将BiFeO3多孔陶瓷片在4KV/mm电压下极化40min,放置24h后制得BiFeO3压电多孔陶瓷;
(7)Pd单原子BiFeO3压电多孔陶瓷的制备:将BiFeO3压电多孔陶瓷置于1.0mol/LPdCl2溶液中进行超声处理,即制得所述Pd单原BiFeO3压电多孔陶瓷。
制氢反应如下:
步骤一:提供浓度为0.05mol/L的100mL的NH3BH3溶液中,并置于反应器中,再向溶液中加入上述自供能压电多孔陶瓷,盖上石英玻璃板并密封反应器;
步骤二:将步骤一中的制氢系统和低温恒温槽连接好后密封处理,控制低温恒温槽温度为1℃后将系统内抽至真空,待系统内到达真空状态后再通过低温恒温槽将控制系统温度为25℃;
步骤三:将反应器置于28KHz超声波清洗器中,打开超声,将制氢系统调整至系统循环状态后进行实验,每隔一个小时通过气相色谱仪检测每个小时的氢气产量。
实施例6
将实施例1~实施例5制得的Pd单原子BiFeO3压电多孔陶瓷制得的氢气经干燥后置于氢气纯度分析仪中检测不含有一氧化碳、硫化氢、磷化氢、氯离子等使燃料电池中毒的气体,且制得氢气均为高纯氢气。
应当理解,上述实施例仅为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种Pd单原子BiFeO3压电多孔陶瓷,其特征在于,包括BiFeO3压电多孔陶瓷基体以及均匀分散于压电多孔陶瓷表面的Pd单原子;
其中,所述Pd单原子的质量分数为0.01wt%-0.1wt%;
所述BiFeO3压电多孔陶瓷基体的孔径为0.01mm~0.1mm。
2.根据权利要求1所述的Pd单原子BiFeO3压电多孔陶瓷,其特征在于,所述Pd单原子还分散于所述BiFeO3压电多孔陶瓷基体的孔道壁面。
3.一种制备权利要求1-2中任一项所述的Pd单原子BiFeO3压电多孔陶瓷的方法,其特征在于,包括以下步骤:
(1)制备BiFeO3陶坯颗粒:将铋盐、铁盐与碱反应,生成BiFeO3陶坯颗粒;
(2)造粒:向步骤(1)制得的BiFeO3陶坯颗粒中分别加入0.5wt%-8wt%的淀粉和一定量的聚乙烯醇溶液球磨造粒;
(3)制备陶坯:将步骤(2)制得的BiFeO3陶坯颗粒加入到一定尺寸的模具中,用压膜机在10-30MPa压力下压制成陶坯;
(4)造孔与脱胶:将陶坯加热至350-450℃,恒温1-2h;继续升温进行脱胶处理;
(5)成型:脱胶后在温度为860℃~950℃条件下处理0.5h-2h,冷却后制得BiFeO3多孔陶瓷;
(6)极化处理:将BiFeO3多孔陶瓷片在3~5KV/mm电压下极化20-60min,放置24h后制得BiFeO3压电多孔陶瓷;
(7)Pd单原子BiFeO3压电多孔陶瓷的制备:将BiFeO3压电多孔陶瓷置于PdCl2溶液中进行超声处理,即制得所述Pd单原BiFeO3压电多孔陶瓷。
4.根据权利要求3所述的Pd单原子BiFeO3压电多孔陶瓷的制备方法,其特征在于,所述铋盐选自氯化铋、硝酸铋中的至少一种;
优选地,所述铁盐选自硝酸铁、氯化铁中的至少一种;
优选地,所述碱选自氢氧化钠、氢氧化钾和氨水中的至少一种。
5.根据权利要求3所述的Pd单原子BiFeO3压电多孔陶瓷的制备方法,其特征在于,所述聚乙烯醇(PVA)溶液的质量浓度为5.0wt%~8.0wt%。
6.根据权利要求3所述的Pd单原子BiFeO3压电多孔陶瓷的制备方法,其特征在于,所述脱胶处理的温度为500~600℃。
7.根据权利要求3所述的Pd单原子BiFeO3压电多孔陶瓷的制备方法,其特征在于,所述超声处理时间为30~80min,所述超声处理频率为20-60KHz。
8.由权利要求1-2中任一项中所述的Pd单原子BiFeO3压电多孔陶瓷或权利要求3-7任一项中所述制备的Pd单原子BiFeO3压电多孔陶瓷于自供能制氢中的应用。
9.如权利要求8所述的用途,其特征在于,所述超声波的频率为10-60KHz。
10.如权利要求8所述的用途,其特征在于,所述Pd单原子BiFeO3压电多孔陶瓷于车载自供能制氢中的应用。
CN202011592863.4A 2020-12-29 2020-12-29 Pd单原子BiFeO3压电多孔陶瓷、其制法及高效制氢 Pending CN112851322A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011592863.4A CN112851322A (zh) 2020-12-29 2020-12-29 Pd单原子BiFeO3压电多孔陶瓷、其制法及高效制氢

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011592863.4A CN112851322A (zh) 2020-12-29 2020-12-29 Pd单原子BiFeO3压电多孔陶瓷、其制法及高效制氢

Publications (1)

Publication Number Publication Date
CN112851322A true CN112851322A (zh) 2021-05-28

Family

ID=75998154

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011592863.4A Pending CN112851322A (zh) 2020-12-29 2020-12-29 Pd单原子BiFeO3压电多孔陶瓷、其制法及高效制氢

Country Status (1)

Country Link
CN (1) CN112851322A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090221421A1 (en) * 2005-10-19 2009-09-03 Kyocera Corporation Catalyst for Producing Hydrogen, Manufacturing Method Thereof, Fuel Reformer and Fuel Cell
US20110233472A1 (en) * 2008-07-08 2011-09-29 Eidgenossische Technische Hochschule Zurich Porous ceramic catalysts and methods for their production and use
CN103586048A (zh) * 2013-11-27 2014-02-19 北京化工大学 一种纳米Pd磁性催化剂、制备及用于液相催化反应
US20190202691A1 (en) * 2016-02-25 2019-07-04 Kyocera Corporation Light absorbing member, member for hydrogen production, and hydrogen production apparatus
CN111348620A (zh) * 2020-03-20 2020-06-30 苏州科技大学 锰掺杂硫化钼材料于自供能压电增强制氢中的应用
CN111377481A (zh) * 2020-03-20 2020-07-07 苏州科技大学 钴掺杂硫化钼材料于自供能压电增强制氢中的应用
CN111377483A (zh) * 2020-03-20 2020-07-07 苏州科技大学 锶掺杂硫化钼材料于自供能压电增强制氢中的应用
CN111589447A (zh) * 2020-04-27 2020-08-28 南方科技大学 一种异质结纳米颗粒及其制备方法和应用
CN111672521A (zh) * 2020-05-14 2020-09-18 中国科学院福建物质结构研究所 一种过渡金属单原子材料及其制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090221421A1 (en) * 2005-10-19 2009-09-03 Kyocera Corporation Catalyst for Producing Hydrogen, Manufacturing Method Thereof, Fuel Reformer and Fuel Cell
US20110233472A1 (en) * 2008-07-08 2011-09-29 Eidgenossische Technische Hochschule Zurich Porous ceramic catalysts and methods for their production and use
CN103586048A (zh) * 2013-11-27 2014-02-19 北京化工大学 一种纳米Pd磁性催化剂、制备及用于液相催化反应
US20190202691A1 (en) * 2016-02-25 2019-07-04 Kyocera Corporation Light absorbing member, member for hydrogen production, and hydrogen production apparatus
CN111348620A (zh) * 2020-03-20 2020-06-30 苏州科技大学 锰掺杂硫化钼材料于自供能压电增强制氢中的应用
CN111377481A (zh) * 2020-03-20 2020-07-07 苏州科技大学 钴掺杂硫化钼材料于自供能压电增强制氢中的应用
CN111377483A (zh) * 2020-03-20 2020-07-07 苏州科技大学 锶掺杂硫化钼材料于自供能压电增强制氢中的应用
CN111589447A (zh) * 2020-04-27 2020-08-28 南方科技大学 一种异质结纳米颗粒及其制备方法和应用
CN111672521A (zh) * 2020-05-14 2020-09-18 中国科学院福建物质结构研究所 一种过渡金属单原子材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘芳等: "单原子催化剂光催化研究进展", 《石油学报(石油加工)》 *
黄学辉等: "多孔PZT的制备与性能研究", 《压电与声光》 *

Similar Documents

Publication Publication Date Title
CN112876246A (zh) Pd单原子铌酸钾压电多孔陶瓷、其制法及高效制氢
CN111346642B (zh) 高分散金属纳米颗粒/生物质碳复合电极材料及其制备方法与应用
CN112768709A (zh) 燃料电池的纳米蓝钻颗粒催化剂及制备方法和燃料电池
WO2019223051A1 (zh) 光催化电极耦合微生物燃料电池促进焦化废水处理方法
CN105664682A (zh) 一种熔盐深度脱硫及烟气资源化利用的方法
CN112723878B (zh) 能量收集多孔陶瓷Pt-BaTiO3其制法及高效制氢
CN113603498B (zh) 钴掺杂BaTiO3压电陶瓷、其制法及高纯制氢
CN112851322A (zh) Pd单原子BiFeO3压电多孔陶瓷、其制法及高效制氢
CN112624269A (zh) 一种废水处理装置及废水处理方法
CN114262034A (zh) 一种利用聚乙烯醇/壳聚糖/石墨烯/亚铁氰化镍铜复合物分离盐湖卤水中铷的方法
CN111574219B (zh) 一种光催化铁酸锂-氧化钛复合块体的制备方法及复合块体
CN112876279A (zh) Pt单原子锆酸锶压电多孔陶瓷、其制法及高效制氢
CN113582715A (zh) 镍掺杂KNbO3压电陶瓷、其制法及高纯制氢
CN111804323B (zh) 一种光催化剂及其在动力电池光催化环保处理中的应用
CN112876234A (zh) Pt单原子ZnO压电多孔陶瓷、其制法及高效制氢
CN113582716A (zh) 钴掺杂ZnO压电陶瓷、其制法及高纯制氢
WO2008113257A1 (fr) Procédé de préparation d'hydrogène par décomposition de borohydrure de de sodium
CN112898019B (zh) p-n-KNbO3/Cu2S异质结压电陶瓷、其制法与自供能高效制氢中的应用
CN114797496B (zh) 一种钯钽复合膜及其制备方法
CN112876241A (zh) p-n-SrZrO3/NiO异质结压电陶瓷、其制法与自供能高效制氢中的应用
CN112811900A (zh) p-n-BaTiO3/NiO异质结压电陶瓷、其制法与自供能高效制氢中的应用
CN112811894B (zh) p-n-ZnO/Cu2S异质结压电陶瓷、其制法与自供能高效制氢中的应用
CN112876235B (zh) ZnO/NiO异质结压电陶瓷、其制法与自供能高效制氢中的应用
TWI570059B (zh) Hydrogen production composition and hydrogen production method
CN103120922B (zh) 装载盐催化剂的气体等离子放电反应器及使用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210528

RJ01 Rejection of invention patent application after publication