WO2023119956A1 - 水素および一酸化炭素の少なくとも一方の製造方法、合成ガスの製造方法ならびに反応媒体 - Google Patents

水素および一酸化炭素の少なくとも一方の製造方法、合成ガスの製造方法ならびに反応媒体 Download PDF

Info

Publication number
WO2023119956A1
WO2023119956A1 PCT/JP2022/042454 JP2022042454W WO2023119956A1 WO 2023119956 A1 WO2023119956 A1 WO 2023119956A1 JP 2022042454 W JP2022042454 W JP 2022042454W WO 2023119956 A1 WO2023119956 A1 WO 2023119956A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon monoxide
hydrogen
oxygen
producing
compound
Prior art date
Application number
PCT/JP2022/042454
Other languages
English (en)
French (fr)
Inventor
直樹 伊藤
展之 郷右近
Original Assignee
Eneos株式会社
国立大学法人新潟大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos株式会社, 国立大学法人新潟大学 filed Critical Eneos株式会社
Publication of WO2023119956A1 publication Critical patent/WO2023119956A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel

Definitions

  • the present invention relates to a method for producing at least one of hydrogen and carbon monoxide, a method for producing synthesis gas, and a reaction medium.
  • Patent Document 1 A technology is known for producing a liquid fuel with a high energy density through a Fischer-Tropsch reaction using synthesis gas containing hydrogen and carbon monoxide as a raw material (see Patent Document 1).
  • the present invention has been made in view of this situation, and one of its purposes is to provide a technique for improving the production efficiency of at least one of hydrogen and carbon monoxide.
  • One aspect of the present invention is a method for producing at least one of hydrogen and carbon monoxide.
  • This production method includes a first step of thermally reducing an oxidant of a compound having a perovskite structure to release oxygen, and oxidizing the reductant of the compound obtained in the first step to return it to the oxidant. and a second step of reacting at least one of the substance containing and the substance containing carbon and oxygen with a reductant to produce at least one of hydrogen and carbon monoxide.
  • the oxidized form of the compound has the general formula A (1-x) Q x B (1-y) R y O 3 (A is at least one element selected from the group consisting of rare earth elements, Q is an alkaline earth At least one element selected from the group consisting of metal elements, B is at least one element selected from the group consisting of the first transition element and Mg, R is Co, Ni or Mg, and B , x is in the range that satisfies 0.1 ⁇ x ⁇ 0.4, y is in the range that satisfies 0 ⁇ y ⁇ 0.5 when R is Co, and y is in the range when R is Ni 0.15 ⁇ y ⁇ 0.3, and 0 ⁇ y ⁇ 0.15 when R is Mg).
  • Another aspect of the present invention is a method for producing synthesis gas.
  • This production method includes producing synthesis gas by producing both hydrogen and carbon monoxide by the production method of the above aspect.
  • the reaction medium contains compounds having a perovskite structure.
  • the oxidant of the compound is heated and reduced to become the reductant while releasing oxygen, and the reductant, in being oxidized back to the oxidant, reacts with at least one of a substance containing hydrogen and a substance containing carbon and oxygen. to produce at least one of hydrogen and carbon monoxide.
  • the oxidized form of the compound has the general formula A (1-x) Q x B (1-y) R y O 3 (A is at least one element selected from the group consisting of rare earth elements, Q is an alkaline earth At least one element selected from the group consisting of metal elements, B is at least one element selected from the group consisting of the first transition element and Mg, R is Co, Ni or Mg, and B , x is in the range that satisfies 0.1 ⁇ x ⁇ 0.4, y is in the range that satisfies 0 ⁇ y ⁇ 0.5 when R is Co, and y is in the range when R is Ni 0.15 ⁇ y ⁇ 0.3, and 0 ⁇ y ⁇ 0.15 when R is Mg).
  • FIG. 1 is a schematic diagram of an apparatus for measuring the amount of hydrogen produced
  • FIG. 1 is a schematic diagram of an apparatus for measuring the amount of carbon monoxide produced
  • FIG. 3 is a diagram showing the amount of oxygen produced, the amount of carbon monoxide produced, and the ratio of carbon monoxide/oxygen in each sample compound.
  • FIG. 3 is a diagram showing the amount of oxygen produced, the amount of carbon monoxide produced, and the ratio of carbon monoxide/oxygen in each sample compound.
  • a method of producing hydrogen by a two-stage pyrolysis cycle is one of the promising techniques for producing hydrogen at low cost.
  • This production method produces hydrogen and oxygen in a two-step reaction.
  • a reaction model of each stage in the case of decomposing water is shown below.
  • Hydrogen can be continuously produced by repeating the following reduction reaction and oxidation reaction.
  • Reduction reaction MO X ⁇ MO (X- ⁇ ) + 0.5 ⁇ O 2 (endothermic reaction)
  • Oxidation reaction MO (X- ⁇ ) + ⁇ H 2 O ⁇ MO X + ⁇ H 2 (exothermic reaction)
  • a method for producing carbon monoxide by a two-stage pyrolysis cycle is one of the promising technologies as a method for producing carbon monoxide at low cost.
  • This production method produces carbon monoxide and oxygen in a two-step reaction.
  • a reaction model of each stage in decomposing carbon dioxide is shown below.
  • Carbon monoxide can be continuously produced by repeating the following reduction reaction and oxidation reaction.
  • a key component of these technologies is the compound MOX , called the reaction medium.
  • the present inventors have extensively studied various compounds that can serve as this reaction medium, and have focused on compounds having a perovskite structure (perovskite-type composite oxides) as one of them. Then, the inventors have conceived that hydrogen and carbon monoxide can be produced efficiently by using a reaction medium containing the compound with the adjusted composition in a two-step pyrolysis cycle.
  • the reaction medium may contain, as impurities, simple oxides of constituent elements (La 2 O 3 , SrO, MnO, etc.), complex oxides (pyrochlore, La 2 Mn 2 O 7 etc.), impurities resulting from the manufacturing process (Al 2 O 3 , SiO 2 etc.) and the like. Also, impurities are not limited to those described above.
  • This embodiment includes a method for producing carbon monoxide and a method for producing hydrogen.
  • the method for producing hydrogen according to the present embodiment comprises a first step of thermally reducing an oxidant of a compound having a perovskite structure to release oxygen, and and a second step of reacting the hydrogen-containing substance with the reductant to produce hydrogen when returning to.
  • the method for producing carbon monoxide according to the present embodiment includes a first step of heating and reducing an oxidant of a compound having a perovskite structure to release oxygen, and oxidizing the reductant of the compound obtained in the first step. and a second step of reacting the carbon- and oxygen-containing material with the reductant to form carbon monoxide when the carbon monoxide is converted back to the oxidant.
  • the compound contained in the reaction medium according to this embodiment has a structure represented by the general formula A (1-x) Q x B (1-y) R y O 3 in the oxidized state. That is, the compound has a perovskite structure in which part of the A site ions are replaced with Q ions and part of the B site ions are replaced with R ions.
  • A is at least one element selected from the group consisting of rare earth elements.
  • rare earth elements suitable for A include Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. More preferably A is La.
  • Q is at least one element selected from the group consisting of alkaline earth metal elements. Examples of alkaline earth metal elements suitable for Q include Ca, Sr, Ba and Ra. More preferably Q is Sr.
  • B is at least one element selected from the group consisting of first transition elements and Mg.
  • first transition elements suitable for B include Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. More preferably B is Mn. R is Co, Ni or Mg. Also, R is an element different from B.
  • x is a range that satisfies 0.1 ⁇ x ⁇ 0.4. More preferably x is 0.3. y varies depending on the type of R. When R is Co, y is in a range satisfying 0 ⁇ y ⁇ 0.5. When R is Ni, y is in a range satisfying 0.15 ⁇ y ⁇ 0.3. When R is Mg, y is in a range that satisfies 0 ⁇ y ⁇ 0.15. More preferably, when R is Co, y satisfies 0.05 ⁇ y ⁇ 0.4, and more preferably satisfies 0.05 ⁇ y ⁇ 0.3. When R is Ni, y is in a range satisfying 0.175 ⁇ y ⁇ 0.3. When R is Mg, y is in a range satisfying 0.05 ⁇ y ⁇ 0.125.
  • Reaction Formula 1 A (1-x) Q x B (1-y) R y O 3 ⁇ A (1-x) Q x B (1-y) R y O (3- ⁇ ) +0.5 ⁇ O 2
  • the reductant of the compound is oxidized to take in oxygen and return to the oxidant represented by the general formula A (1-x) Q x B (1-y) R y O 3 .
  • the reductant returns to the oxidant, hydrogen can be generated from the substance by reacting the substance containing hydrogen with the reductant.
  • This reaction is represented by Reaction Formula 2 below. [Reaction Formula 2] A (1-x) Q x B (1-y) R y O (3- ⁇ ) + ⁇ H 2 O ⁇ A (1-x) Q x B (1-y) R y O 3 + ⁇ H 2
  • Reaction Formula 3 A (1-x) Q x B (1-y) R y O (3- ⁇ ) + ⁇ CO 2 ⁇ A (1-x) Q x B (1-y) R y O 3 + ⁇ CO
  • the reduced form of the compound reacts with a substance containing hydrogen and is oxidized to generate an oxidized form and hydrogen.
  • the reduced form of the compound reacts with a substance containing carbon and oxygen and is oxidized to produce an oxidized form and carbon monoxide.
  • Water is an example of the substance containing hydrogen used in the oxidation reaction of the reductant.
  • Carbon dioxide is exemplified as the substance containing carbon and oxygen used in the oxidation reaction of the reductant.
  • which indicates the amount of oxygen released in the oxidized form of the compound, is determined according to the composition, temperature, oxygen partial pressure, etc. of the compound.
  • the oxidant has the property of releasing oxygen more easily at higher temperatures and lower oxygen partial pressures. Oxygen release and uptake in the oxidant includes primary and secondary modes.
  • the first mode is based on the oxygen non-stoichiometry of the oxidant, where oxygen is released and taken in while the perovskite structure (crystal structure) is maintained.
  • Reaction formulas 1 to 3 described above correspond to reactions of the first mode.
  • the second mode is based on the phase transition of the oxidant, in which oxygen is released and taken up with a change in the perovskite structure.
  • the reaction of the second mode is represented by the following Reaction Formula 4 as an example.
  • Reaction Formula 4 A (1-x) Q x B (1-y) R y O 3 ⁇ 0.5A 2(1-x) 0.5Q 2x B (1-y) R y O 4 +0.5B (1-y) RyO + 0.25O2
  • a two-stage pyrolysis cycle is realized by releasing and taking in oxygen in the first mode.
  • the temperature T1 at which the first step, ie, the reduction reaction represented by Reaction Formula 1 is carried out, is preferably in the range of 1000°C to 1500°C, more preferably in the range of 1100°C to 1400°C.
  • the temperature T2 at which the second step, that is, the oxidation reaction represented by the reaction formulas 2 and 3 is performed is preferably in the range of 700 to 1300 ° C. (where T2 ⁇ T1), more preferably in the range of 900 to 1100 ° C. ( However, T2 ⁇ T1).
  • hydrogen and carbon monoxide may be produced by the release and uptake of oxygen in the second mode.
  • the reaction proceeds faster in the first mode without phase transition than in the second mode with phase transition. Therefore, by performing the two-stage pyrolysis cycle in the first mode as in the present embodiment, the production efficiency of hydrogen and carbon monoxide can be further improved.
  • FIG. 1 is a schematic diagram of an apparatus 100 for measuring the amount of hydrogen produced.
  • the apparatus 100 as an example introduces nitrogen gas flowing from the inlet 10 into a test tube 12 filled with pure water PW. This purges the pathways in device 100 .
  • the test tube 12 is kept at a constant temperature in an oil bath 14 at 95°C.
  • the heat medium in the oil bath 14 is constantly stirred by the stirrer 16 .
  • the reaction medium 18 of the present embodiment is placed inside the infrared image furnace 20 .
  • Reaction medium 18 includes the reductants of the compounds described above.
  • the temperature of the reaction medium 18 is adjusted to 1200° C., for example, by a thermocouple 22 provided in the infrared image furnace 20 .
  • Water (steam) flowing out from the test tube 12 is introduced into the infrared image furnace 20 .
  • the reaction medium 18 is oxidized and hydrogen is produced.
  • a mixed gas of hydrogen and unreacted water generated in the infrared image furnace 20 is discharged from the infrared image furnace 20 . Unreacted water is cooled in water cooled trap 24 . Hydrogen is sent to a known thermal conductivity detector 26 . Then, the amount of hydrogen produced is measured by gas chromatographic analysis using the thermal conductivity detector 26 .
  • the structure of the device 100, the method for measuring the amount of hydrogen generated, and the like are not limited to those described above.
  • FIG. 2 is a schematic diagram of an apparatus 200 for measuring the amount of carbon monoxide produced.
  • An exemplary apparatus 200 directs carbon dioxide entering from inlet 10 to infrared imaging furnace 20 .
  • a reaction medium 18 is also placed in an infrared imaging oven 20 .
  • Reaction medium 18 includes the reductants of the compounds described above.
  • the temperature of the reaction medium 18 is adjusted to 1200° C., for example, by a thermocouple 22 provided in the infrared image furnace 20 .
  • the reaction medium 18 is oxidized and carbon monoxide is produced.
  • a mixed gas of carbon monoxide and unreacted carbon dioxide generated in the infrared image furnace 20 is discharged from the infrared image furnace 20 .
  • a portion of the mixed gas is sent from capillary 28 to a known mass spectrometer 30 .
  • the amount of carbon monoxide produced is measured by the mass spectrometer 30 .
  • the structure of the device 200, the method for measuring the amount of carbon monoxide produced, and the like are not limited to those described above.
  • a known thermogravimetric analyzer (TGA) may be used to measure the amount of carbon monoxide produced, as in the examples described later.
  • This embodiment also includes a method for producing synthesis gas.
  • This synthesis gas production method includes producing synthesis gas by producing both hydrogen and carbon monoxide by the above-described carbon monoxide production method and hydrogen production method.
  • the resulting synthesis gas can be utilized in a hydrocarbon production process by Fischer-Tropsch synthesis (2nH 2 +nCO ⁇ -(CH 2 ) n- +nH 2 O).
  • the embodiment is not limited to producing both hydrogen and carbon monoxide, and includes producing only one of hydrogen and carbon monoxide.
  • Embodiments may be specified by items described below.
  • the reductant of the compound obtained in the first step is oxidized and returned to the oxidant, the reductant is reacted with at least one of a substance containing hydrogen and a substance containing carbon and oxygen to obtain hydrogen and carbon monoxide.
  • a second step of producing at least one of The oxidant has the general formula A (1-x) Q x B (1-y) R y O 3
  • A is at least one element selected from the group consisting of rare earth elements
  • Q is an alkaline earth metal element is at least one element selected from the group consisting of
  • B is at least one element selected from the group consisting of the first transition element and Mg
  • R is Co, Ni or Mg
  • B is Differently, x satisfies 0.1 ⁇ x ⁇ 0.4, y satisfies 0 ⁇ y ⁇ 0.5 when R is Co, and y is 0.5 when R is Ni.
  • a method for producing at least one of hydrogen and carbon monoxide [Item 2] When R is Co, y is in the range satisfying 0.05 ⁇ y ⁇ 0.3, when R is Ni, y is in the range satisfying 0.175 ⁇ y ⁇ 0.3, and R is Mg. When y is a range that satisfies 0.05 ⁇ y ⁇ 0.125, The manufacturing method according to item 1. [Third item] A is La, Q is Sr and B is Mn; The manufacturing method according to item 1 or item 2.
  • [Item 4] Producing synthesis gas by producing both hydrogen and carbon monoxide by the production method according to any one of items 1 to 3, A method for producing synthesis gas.
  • [Item 5] A reaction medium containing a compound having a perovskite structure, The oxidant of the compound is heated and reduced to become the reductant while releasing oxygen, and the reductant, in being oxidized back to the oxidant, reacts with at least one of a substance containing hydrogen and a substance containing carbon and oxygen.
  • the oxidant has the general formula A (1-x) Q x B (1-y) R y O 3 (A is at least one element selected from the group consisting of rare earth elements, Q is an alkaline earth metal element is at least one element selected from the group consisting of, B is at least one element selected from the group consisting of the first transition element and Mg, R is Co, Ni or Mg, and B is Differently, x satisfies 0.1 ⁇ x ⁇ 0.4, y satisfies 0 ⁇ y ⁇ 0.5 when R is Co, and y is 0.5 when R is Ni. 15 ⁇ y ⁇ 0.3, and y is a range that satisfies 0 ⁇ y ⁇ 0.15 when R is Mg).
  • Reaction medium (18).
  • sample compound A modified Pechini method was used to synthesize sample compounds with a perovskite structure.
  • the sample compound has the general formula A (1-x) Q x B (1-y) R y O 3 in which A is La, Q is Sr, B is Mn, and the substitution ratio of the A site is 30% (that is, x is 0 .3) compound (La 0.7 Sr 0.3 Mn (1-y) R y O 3 ).
  • R was Cr, Fe, Co, Ni, Cu, Mg, Al, and Ga.
  • each sample compound was synthesized according to the following procedure. That is, each metal nitrate of La, Sr, Mn, and B-site substituted metal ions was put into a flask and dissolved in deionized water. The input amount of each metal nitrate was adjusted so as to achieve the substitution ratio of the A site and the B site described above. Ethylene glycol and citric acid were added to the obtained metal nitrate solution, and the mixture was heated and stirred at 80° C. for 1 hour. After that, the mixture was heated and stirred at 170° C. for about 1 hour until a gel was formed. After the gel was produced, it was dried at 300° C. for 5 hours under an air atmosphere.
  • the dried gel thus obtained was calcined at 1200° C. for 8 hours in an air atmosphere.
  • a sample compound was obtained through the above steps.
  • a sample compound (La 0.7 Sr 0.3 MnO 3 ) having a B-site substitution ratio of 0% was also synthesized.
  • Carbon dioxide pyrolysis cycle test For each sample compound, a carbon dioxide pyrolysis cycle test was performed using a thermogravimetric measuring device STA2500 Regulus (Netzch). First, about 50 mg of the sample compound was weighed into a platinum pan and set in the apparatus together with an empty platinum pan as a reference. Next, high-purity N 2 was passed through the reaction system of the apparatus at a flow rate of 100 Ncm 3 /min for 1.25 hours. This purged the air in the reaction system. After that, the inside of the reaction system was heated to 300° C. at a heating rate of 50 K/min and maintained for 30 minutes. As a result, foreign matter adsorbed to the sample compound was removed. After removing the adsorbate, the temperature in the reaction system was raised to 1400° C. at a temperature elevation rate of 20 K/min. Then, the sample compound was thermally reduced at 1400° C. for 90 minutes.
  • STA2500 Regulus Netzch
  • the amount of oxygen and carbon monoxide produced in each cycle was calculated from the weight change of each sample compound in the carbon dioxide pyrolysis cycle. Also, the ratio of the amount of carbon monoxide produced to the amount of oxygen produced (CO/O 2 ratio) was calculated. Due to the oxygen non-stoichiometry of the sample compound, the amount of oxygen produced in the first cycle was significantly different from that in the second and subsequent cycles. However, the amount of oxygen produced from the second cycle onward was stable. From this, it was confirmed that the sample compound exhibits high cycle stability.
  • FIGS. 3 and 4 are diagrams showing the amount of oxygen produced, the amount of carbon monoxide produced, and the ratio of carbon monoxide/oxygen in each sample compound. Note that "no substitution" in FIG. 3 indicates a sample compound in which the B site was not substituted.
  • the sample compounds in which the B site was substituted with Co, Ni, or Mg tended to produce more oxygen and carbon monoxide than the sample compounds in which the B site was not substituted. Met. That is, the sample compounds in which the B site was replaced with Co, Ni, or Mg exhibited high reaction activity in both the thermal reduction treatment and the carbon dioxide decomposition treatment.
  • the substitution ion is Co
  • the substitution ratio is more than 0% and 50% or less (0 ⁇ y ⁇ 0.5)
  • the amount of carbon monoxide generated is greater than when the B site is not substituted.
  • the substitution ratio is 5% or more and 50% or less (0.05 ⁇ y ⁇ 0.5)
  • the substitution ratio is 15% or more and 50% or less (0.15 ⁇ y ⁇ 0.5)
  • the amount of carbon monoxide produced is about 1.5 times or more as compared to the case where the B site is not substituted. was common in
  • the substitution ratio was 30% or more and 50% or less (0.3 ⁇ y ⁇ 0.5)
  • the amount of carbon monoxide produced increased further.
  • the substitution ion is Ni
  • the substitution ratio is more than 15% and 30% or less (0.15 ⁇ y ⁇ 0.3)
  • the amount of carbon monoxide produced is about 1.0% less than when the B site is not substituted. It was significantly higher than 5 times.
  • the substitution ratio was 17.5% or more and 30% or less (0.175 ⁇ y ⁇ 0.3)
  • the amount of carbon monoxide produced increased further.
  • the amount of carbon monoxide produced was greater than in the case of non-substitution at the B site when the substitution ratio was more than 0% and less than 15% (0 ⁇ y ⁇ 0.15). Further, when the substitution ratio is 5% or more and 12.5% or less (0.05 ⁇ y ⁇ 0.125), not only when the B site is unsubstituted but also when the substituted ions are Cr, Fe, Cu, Al, Ga The amount of carbon monoxide produced was relatively high. Furthermore, when the substitution ratio is 10% or more and 12.5% or less (0.1 ⁇ y ⁇ 0.125), the amount of carbon monoxide produced is about 1.5 times or more compared to the case where the B site is not substituted. was remarkably high.
  • the sample compound which is shown to have a high ability to generate carbon monoxide by the above cycle test, also has a high ability to generate hydrogen.
  • the release and incorporation of oxygen in perovskite-type composite oxides are caused mainly by changes in the valences of constituent ions.
  • the valence of the B-site ions changes, but the valence of the A-site ions does not substantially change. Therefore, it can be said that perovskite-type composite oxides in which the B site is substituted with Co, Ni, or Mg have high carbon monoxide and hydrogen generation capabilities regardless of the type and substitution ratio of the A site ions.
  • perovskite-type composite oxides in which the B-site ions are replaced with Co, Ni, and Mg at a predetermined ratio are excellent in the amount and rate of carbon monoxide and hydrogen production, and are physically resistant to high-temperature cyclic reactions. It was confirmed that it has high stability both physically and chemically. Therefore, according to the reaction medium containing these perovskite-type composite oxides, it is possible to improve the production efficiency of hydrogen and carbon monoxide.
  • the present invention can be used for a method for producing at least one of hydrogen and carbon monoxide, a method for producing synthesis gas, and a reaction medium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

水素および一酸化炭素の少なくとも一方の製造方法は、ペロブスカイト構造を有する化合物の酸化体を加熱還元して酸素を放出させる第1工程と、化合物の還元体を酸化させて酸化体に戻す際に、水素を含む物質、ならびに炭素および酸素を含む物質の少なくとも一方と還元体とを反応させて、水素および一酸化炭素の少なくとも一方を生成する第2工程とを含む。酸化体は、一般式A(1-x)(1-y)(Aは希土類元素、Qはアルカリ土類金属元素、Bは第一遷移元素またはMg、RはCo、NiまたはMgであって且つBとは異なり、RがCoであるときyは0<y≦0.5、RがNiであるときyは0.15<y≦0.3、RがMgであるときyは0<y<0.15)で表される。

Description

水素および一酸化炭素の少なくとも一方の製造方法、合成ガスの製造方法ならびに反応媒体
 本発明は、水素および一酸化炭素の少なくとも一方の製造方法、合成ガスの製造方法ならびに反応媒体に関する。
 水素と一酸化炭素とを含む合成ガスを原料として、フィッシャー・トロプシュ反応によりエネルギー密度の高い液体燃料を製造する技術が知られている(特許文献1参照)。
特開2008-248179号公報
 水素の製造に関して、太陽光の熱を利用した二段階水熱分解サイクルにより水素を製造する技術が知られている。また、一酸化炭素の製造に関して、排ガス等に含まれる二酸化炭素から逆シフト反応等により一酸化炭素を製造する技術が知られている。これらの技術で製造した水素や一酸化炭素を合成ガスの製造に利用することで、カーボンニュートラルの実現に貢献することができる。このような状況から、水素や一酸化炭素の製造効率の向上が望まれている。
 本発明はこうした状況に鑑みてなされたものであり、その目的の1つは、水素および一酸化炭素の少なくとも一方の製造効率の向上を図る技術を提供することにある。
 本発明のある態様は、水素および一酸化炭素の少なくとも一方の製造方法である。この製造方法は、ペロブスカイト構造を有する化合物の酸化体を加熱還元して酸素を放出させる第1工程と、第1工程で得られる化合物の還元体を酸化させて酸化体に戻す際に、水素を含む物質、ならびに炭素および酸素を含む物質の少なくとも一方と還元体とを反応させて、水素および一酸化炭素の少なくとも一方を生成する第2工程と、を含む。化合物の酸化体は、一般式A(1-x)(1-y)(Aは希土類元素からなる群より選択される少なくとも一種の元素であり、Qはアルカリ土類金属元素からなる群より選択される少なくとも一種の元素であり、Bは第一遷移元素およびMgからなる群より選択される少なくとも一種の元素であり、RはCo、NiまたはMgであって且つBとは異なり、xは0.1≦x≦0.4を満たす範囲であり、RがCoであるときyは0<y≦0.5を満たす範囲であり、RがNiであるときyは0.15<y≦0.3を満たす範囲であり、RがMgであるときyは0<y<0.15を満たす範囲である)で表される。
 本発明の他の態様は、合成ガスの製造方法である。この製造方法は、上記態様の製造方法により、水素および一酸化炭素の両方を生成して合成ガスを製造することを含む。
 本発明の他の態様は、反応媒体である。この反応媒体は、ペロブスカイト構造を有する化合物を含む。化合物の酸化体は加熱還元されて還元体になるとともに酸素を放出し、還元体は酸化されて酸化体に戻る際に、水素を含む物質、ならびに炭素および酸素を含む物質の少なくとも一方と反応して、水素および一酸化炭素の少なくとも一方を生成する。化合物の酸化体は、一般式A(1-x)(1-y)(Aは希土類元素からなる群より選択される少なくとも一種の元素であり、Qはアルカリ土類金属元素からなる群より選択される少なくとも一種の元素であり、Bは第一遷移元素およびMgからなる群より選択される少なくとも一種の元素であり、RはCo、NiまたはMgであって且つBとは異なり、xは0.1≦x≦0.4を満たす範囲であり、RがCoであるときyは0<y≦0.5を満たす範囲であり、RがNiであるときyは0.15<y≦0.3を満たす範囲であり、RがMgであるときyは0<y<0.15を満たす範囲である)で表される。
 以上の構成要素の任意の組合せ、本開示の表現を方法、装置、システムなどの間で変換したものもまた、本開示の態様として有効である。
 本発明によれば、水素および一酸化炭素の少なくとも一方の製造効率の向上を図ることができる。
水素の生成量を測定する装置の模式図である。 一酸化炭素の生成量を測定する装置の模式図である。 各試料化合物における酸素生成量、一酸化炭素生成量および一酸化炭素/酸素比を示す図である。 各試料化合物における酸素生成量、一酸化炭素生成量および一酸化炭素/酸素比を示す図である。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、本発明の技術的範囲を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。したがって、実施の形態の内容は、請求の範囲に規定された発明の思想を逸脱しない範囲において、構成要素の変更、追加、削除等の多くの設計変更が可能である。設計変更が加えられた新たな実施の形態は、組み合わされる実施の形態および変形それぞれの効果をあわせもつ。実施の形態では、このような設計変更が可能な内容に関して、「本実施の形態の」、「本実施の形態では」等の表記を付して強調しているが、そのような表記のない内容でも設計変更が許容される。実施の形態に記述される構成要素の任意の組み合わせも、本発明の態様として有効である。各図面に示される同一又は同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書または請求項中に「第1」、「第2」等の用語が用いられる場合には、この用語はいかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。
 二段階熱分解サイクルによる水素の製造方法は、低コストで水素を製造できる方法として有望な技術の一つである。この製造方法は、二段階の反応で水素と酸素を生成する。一例として、水を分解する場合の各段階の反応モデルを以下に示す。下記の還元反応と酸化反応とを繰り返すことで、水素を連続的に生成することができる。
 [還元反応]MO → MO(X-δ)+0.5δO(吸熱反応)
 [酸化反応]MO(X-δ)+δHO → MO+δH(発熱反応)
 また、二段階熱分解サイクルによる一酸化炭素の製造方法は、低コストで一酸化炭素を製造できる方法として有望な技術の一つである。この製造方法は、二段階の反応で一酸化炭素と酸素を生成する。一例として、二酸化炭素を分解する場合の各段階の反応モデルを以下に示す。下記の還元反応と酸化反応とを繰り返すことで、一酸化炭素を連続的に生成することができる。
[還元反応]MO → MO(X-δ)+0.5δO(吸熱反応)
[酸化反応]MO(X-δ)+δCO → MO+δCO(発熱反応)
 これらの技術の重要な要素は、反応媒体と呼ばれる化合物MOである。本発明者らは、この反応媒体になり得る様々な化合物を鋭意検討し、その中の一つとしてペロブスカイト構造を有する化合物(ペロブスカイト型複合酸化物)に着目した。そして、組成を調整した当該化合物を含む反応媒体を二段階熱分解サイクルに用いることで、水素や一酸化炭素を効率的に製造できることに想到した。なお、反応媒体には、不純物として構成元素の単純酸化物(La、SrO、MnO等)、構成元素の一部もしくは全部からなる、ペロブスカイト以外の構造を有する複合酸化物(パイロクロア、LaMn等)、製造過程に起因する不純物(Al、SiO等)等が含まれ得る。また、不純物は上述のものに限定されない。
 本実施の形態は、一酸化炭素の製造方法および水素の製造方法を含む。本実施の形態に係る水素の製造方法は、ペロブスカイト構造を有する化合物の酸化体を加熱還元して酸素を放出させる第1工程と、第1工程で得られる化合物の還元体を酸化させて酸化体に戻す際に、水素を含む物質と還元体とを反応させて水素を生成する第2工程と、を含む。
 また、本実施の形態に係る一酸化炭素の製造方法は、ペロブスカイト構造を有する化合物の酸化体を加熱還元して酸素を放出させる第1工程と、第1工程で得られる化合物の還元体を酸化させて酸化体に戻す際に、炭素および酸素を含む物質と還元体とを反応させて一酸化炭素を生成する第2工程と、を含む。
 本実施の形態に係る反応媒体が含有する化合物は、酸化体の状態で一般式A(1-x)(1-y)で表される構造を有する。つまり、当該化合物は、Aサイトイオンの一部がQイオンで置換され、Bサイトイオンの一部がRイオンで置換されたペロブスカイト構造を有する。
 Aは、希土類元素からなる群より選択される少なくとも一種の元素である。Aに好適な希土類元素としては、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luが例示される。より好ましくは、AはLaである。Qは、アルカリ土類金属元素からなる群より選択される少なくとも一種の元素である。Qに好適なアルカリ土類金属元素としては、Ca、Sr、Ba、Raが例示される。より好ましくは、QはSrである。
 Bは、第一遷移元素およびMgからなる群より選択される少なくとも一種の元素である。Bに好適な第1遷移元素としては、Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cuが例示される。より好ましくは、BはMnである。Rは、Co、NiまたはMgである。また、RはBとは異なる元素である。
 xは、0.1≦x≦0.4を満たす範囲である。より好ましくは、xは0.3である。yは、Rの種類によって異なる。RがCoであるとき、yは0<y≦0.5を満たす範囲である。RがNiであるとき、yは0.15<y≦0.3を満たす範囲である。RがMgであるとき、yは0<y<0.15を満たす範囲である。より好ましくは、RがCoであるとき、yは0.05≦y≦0.4を満たす範囲であり、さらに好ましくは0.05≦y≦0.3を満たす範囲である。RがNiであるとき、yは0.175≦y≦0.3を満たす範囲である。RがMgであるとき、yは0.05≦y≦0.125を満たす範囲である。
 当該化合物の酸化体は、加熱還元されて酸素を放出し、一般式A(1-x)(1-y)(3ーδ)で表される還元体となる。この反応は、以下の反応式1で表される。
[反応式1]
 A(1-x)(1-y) → A(1-x)(1-y)(3-δ)+0.5δO
 当該化合物の還元体は、酸化されて酸素を取り込み、一般式A(1-x)(1-y)で表される酸化体に戻る。還元体が酸化体に戻る際に、水素を含む物質と還元体とを反応させることで、当該物質から水素を生成することができる。この反応は、以下の反応式2で表される。
[反応式2]
 A(1-x)(1-y)(3-δ)+δHO → A(1-x)(1-y)+δH
 また、還元体が酸化体に戻る際に、炭素および酸素を含む物質と還元体とを反応させることで、当該物質から一酸化炭素を生成することができる。この反応は、以下の反応式3で表される。
[反応式3]
 A(1-x)(1-y)(3-δ)+δCO → A(1-x)(1-y)+δCO
 つまり、化合物の還元体が水素を含む物質と反応して酸化することで、酸化体と水素とが生成される。また、化合物の還元体が炭素および酸素を含む物質と反応して酸化することで、酸化体と一酸化炭素とが生成される。還元体の酸化反応に用いられる、水素を含む物質としては、水が例示される。還元体の酸化反応に用いられる、炭素および酸素を含む物質としては、二酸化炭素が例示される。
 当該化合物の酸化体における酸素の放出量を示すδは、化合物の組成、温度、酸素分圧等に応じて定まる。酸化体は、高温、低酸素分圧であるほど、酸素を放出しやすい性質を有する。酸化体における酸素の放出および取り込みには、第1モードと第2モードとが含まれる。
 第1モードは、酸化体の酸素不定比性に基づくものであり、ペロブスカイト構造(結晶構造)が保たれたまま酸素の放出および取り込みが起こる。上述した反応式1~3は、第1モードの反応に相当する。一方、第2モードは、酸化体の相転移に基づくものであり、ペロブスカイト構造の変化を伴いながら酸素の放出および取り込みが起こる。第2モードの反応は、一例として以下の反応式4で表される。
[反応式4]
 A(1-x)(1-y) → 0.5A2(1-x)0.5Q2x(1-y)+0.5B(1-y)O+0.25O
 本実施の形態では、第1モードでの酸素の放出および取り込みによって二段階熱分解サイクルを実現している。第1工程、つまり反応式1で表される還元反応が実施される温度T1は、好ましくは1000℃~1500℃の範囲であり、より好ましくは1100℃~1400℃の範囲である。第2工程、つまり反応式2,3で表される酸化反応が実施される温度T2は、好ましくは700~1300℃の範囲(ただし、T2≦T1)、より好ましくは900~1100℃の範囲(ただし、T2≦T1)である。
 なお、水素および一酸化炭素は、第2モードでの酸素の放出および取り込みによって製造されてもよい。ただし、相転移を伴わない第1モードの方が相転移を伴う第2モードよりも反応がより早く進む。このため、本実施の形態のように第1モードで二段階熱分解サイクルを行うことで、水素および一酸化炭素の製造効率をより向上させることができる。
 続いて、実施の形態に係る水素の製造方法で生成した水素の生成量を測定する方法の一例を説明する。図1は、水素の生成量を測定する装置100の模式図である。一例としての装置100は、流入口10から流入した窒素ガスを、純水PWを満たした試験管12に導入する。これにより、装置100内の経路がパージされる。試験管12は、95℃のオイルバス14で一定の温度に保たれる。オイルバス14内の熱媒体は、スターラー16で常に撹拌されている。
 本実施の形態の反応媒体18は、赤外線イメージ炉20内に載置される。反応媒体18は、上述した化合物の還元体を含む。反応媒体18の温度は、赤外線イメージ炉20が備える熱電対22によって、例えば1200℃に調整される。そして、試験管12から流出した水(水蒸気)が赤外線イメージ炉20に導入される。赤外線イメージ炉20に水が到達すると、反応媒体18が酸化されるとともに水素が生成される。
 赤外線イメージ炉20で生成した水素と未反応の水との混合ガスは、赤外線イメージ炉20から排出される。未反応の水は、水冷トラップ24で冷却される。水素は、公知の熱伝導度検出器26に送られる。そして、熱伝導度検出器26を用いたガスクロマトグラフ分析により、水素の生成量が測定される。なお、装置100の構造や水素生成量の測定方法等は、上述のものに限定されない。
 続いて、実施の形態に係る一酸化炭素の製造方法で生成した一酸化炭素の生成量を測定する方法の一例を説明する。図2は、一酸化炭素の生成量を測定する装置200の模式図である。一例としての装置200は、流入口10から流入した二酸化炭素を赤外線イメージ炉20に送る。また、反応媒体18が赤外線イメージ炉20内に載置される。反応媒体18は、上述した化合物の還元体を含む。反応媒体18の温度は、赤外線イメージ炉20が備える熱電対22によって、例えば1200℃に調整される。流入口10から流入した二酸化炭素が赤外線イメージ炉20に到達すると、反応媒体18が酸化されるとともに一酸化炭素が生成される。
 赤外線イメージ炉20で生成した一酸化炭素と未反応の二酸化炭素との混合ガスは、赤外線イメージ炉20から排出される。混合ガスの一部は、キャピラリー28から公知の質量分析器30に送られる。そして、質量分析器30により、一酸化炭素の生成量が測定される。なお、装置200の構造や一酸化炭素生成量の測定方法等は、上述のものに限定されない。例えば、質量分析器30に代えて、後述する実施例のように公知の熱重量測定装置(TGA)を用いて一酸化炭素の生成量を測定してもよい。
 本実施の形態には、合成ガスの製造方法も含まれる。この合成ガスの製造方法は、上述した一酸化炭素の製造方法および水素の製造方法により、水素および一酸化炭素の両方を生成して合成ガスを製造することを含む。得られた合成ガスは、フィッシャー・トロプシュ合成(2nH+nCO → -(CH)-+nHO)による炭化水素製造プロセスに利用することができる。
 フィッシャー・トロプシュ合成で製造された炭化水素を燃焼することで、エネルギーを得ることができる。また、この燃焼の際に発生する二酸化炭素や、フィッシャー・トロプシュ合成で得られる水は、反応媒体18を用いて再び一酸化炭素や水素に分解して、フィッシャー・トロプシュ合成に再利用することができる。また、反応媒体18を用いた二段階熱分解サイクルに必要な熱は、太陽熱等のクリーンエネルギーから得ることができる。よって、本実施の形態によれば、カーボンニュートラルサイクルの実現に貢献することができる。なお、実施の形態は、水素および一酸化炭素の両方を製造する場合に限定されず、水素および一酸化炭素の一方のみを製造する場合も含まれる。
 実施の形態は、以下に記載する項目によって特定されてもよい。
[第1項目]
 ペロブスカイト構造を有する化合物の酸化体を加熱還元して酸素を放出させる第1工程と、
 第1工程で得られる化合物の還元体を酸化させて酸化体に戻す際に、水素を含む物質、ならびに炭素および酸素を含む物質の少なくとも一方と還元体とを反応させて、水素および一酸化炭素の少なくとも一方を生成する第2工程と、を含み、
 酸化体は、一般式A(1-x)(1-y)(Aは希土類元素からなる群より選択される少なくとも一種の元素であり、Qはアルカリ土類金属元素からなる群より選択される少なくとも一種の元素であり、Bは第一遷移元素およびMgからなる群より選択される少なくとも一種の元素であり、RはCo、NiまたはMgであって且つBとは異なり、xは0.1≦x≦0.4を満たす範囲であり、RがCoであるときyは0<y≦0.5を満たす範囲であり、RがNiであるときyは0.15<y≦0.3を満たす範囲であり、RがMgであるときyは0<y<0.15を満たす範囲である)で表される、
水素および一酸化炭素の少なくとも一方の製造方法。
[第2項目]
 RがCoであるときyは0.05≦y≦0.3を満たす範囲であり、RがNiであるときyは0.175≦y≦0.3を満たす範囲であり、RがMgであるときyは0.05≦y≦0.125を満たす範囲である、
第1項目に記載の製造方法。
[第3項目]
 AはLaであり、QはSrであり、BはMnである、
第1項目または第2項目に記載の製造方法。
[第4項目]
 第1項目乃至第3項目のいずれかに記載の製造方法により、水素および一酸化炭素の両方を生成して合成ガスを製造することを含む、
合成ガスの製造方法。
[第5項目]
 ペロブスカイト構造を有する化合物を含む反応媒体であって、
 化合物の酸化体は加熱還元されて還元体になるとともに酸素を放出し、還元体は酸化されて酸化体に戻る際に、水素を含む物質、ならびに炭素および酸素を含む物質の少なくとも一方と反応して、水素および一酸化炭素の少なくとも一方を生成し、
 酸化体は、一般式A(1-x)(1-y)(Aは希土類元素からなる群より選択される少なくとも一種の元素であり、Qはアルカリ土類金属元素からなる群より選択される少なくとも一種の元素であり、Bは第一遷移元素およびMgからなる群より選択される少なくとも一種の元素であり、RはCo、NiまたはMgであって且つBとは異なり、xは0.1≦x≦0.4を満たす範囲であり、RがCoであるときyは0<y≦0.5を満たす範囲であり、RがNiであるときyは0.15<y≦0.3を満たす範囲であり、RがMgであるときyは0<y<0.15を満たす範囲である)で表される、
反応媒体(18)。
 以下、本発明の実施例を説明するが、実施例は本発明を好適に説明するための例示に過ぎず、なんら本発明を限定するものではない。
(試料化合物の合成)
 改良Pechini法を用い、ペロブスカイト構造を有する試料化合物を合成した。試料化合物は、一般式A(1-x)(1-y)におけるAがLa、QがSr、BがMn、Aサイトの置換割合が30%(つまりxが0.3)の化合物(La0.7Sr0.3Mn(1-y))である。また、Rは、Cr、Fe、Co、Ni、Cu、Mg、Al、Gaとした。
 また、RがCr、Fe、Cu、Al、Gaの試料化合物については、それぞれBサイトの置換割合が10%(つまりyが0.1)である1種類を合成した。RがCoの試料化合物については、Bサイトの置換割合が5%、10%、15%、17.5%、20%、25%、30%、35%、40%、50%(つまりyが0.05、0.1、0.15、0.175、0.2、0.25、0.3、0.35、0.4、0.5)である複数種を合成した。RがNiの試料化合物については、Bサイトの置換割合が5%、10%、15%、17.5%、20%、25%、30%である複数種を合成した。また、RがMgの試料化合物については、Bサイトの置換割合が5%、10%、12.5%、15%である複数種を合成した。
 具体的には、以下の手順に沿って各試料化合物を合成した。すなわち、La、Sr、Mn、およびBサイト置換金属イオンの各金属硝酸塩をフラスコに投入し、脱イオン水に溶解した。各金属硝酸塩の投入量は、上述したAサイトおよびBサイトの置換割合となるように調整した。得られた金属硝酸塩溶液にエチレングリコールとクエン酸を加え、80℃で1時間加熱撹拌した。その後、170℃で約1時間、ゲルが生成するまで加熱撹拌した。ゲルが生成された後、空気雰囲気下300℃で5時間乾燥した。これにより得られた乾燥ゲルを空気雰囲気下1200℃で8時間焼成した。以上の工程により、試料化合物を得た。なお、比較用にBサイトの置換割合が0%である試料化合物(La0.7Sr0.3MnO)も合成した。
(試料化合物のキャラクタリゼーション)
 試料化合物の合成の成否を確認すべく、X線回析装置D2PHASER(BRUKER社)を用いて試料化合物のXRD測定を実施した。そして、XRD測定の結果に対して解析ソフトウェアMatch!3(Light Stone社)を用いて相同定を行った。また、XRD測定の結果に対してRietveld解析を行った。これらの結果、いずれの試料化合物も目的のペロブスカイト構造を有することが確認された。
(二酸化炭素熱分解サイクル試験)
 各試料化合物について、熱重量測定装置STA2500 Regulus(Netzch社)を用いて二酸化炭素の熱分解サイクル試験を実施した。まず、白金パンに試料化合物を約50mg計り取り、リファレンスとしての空の白金パンとともに装置にセットした。次に、100Ncm/minの流速で高純度Nを装置の反応系内に1.25時間流通させた。これにより、反応系内の空気をパージした。その後、50K/minの昇温速度で300℃まで反応系内を加熱し、30分間維持した。これにより、試料化合物に吸着した異物を除去した。吸着物を除去した後、反応系内の温度を20K/minの昇温速度で1400℃まで昇温した。そして、90分間1400℃で試料化合物を熱還元した。
 熱還元処理の後、20K/minの降温速度で1200℃まで冷却した。その後、反応系内に100Ncm/minの流速で高純度Nを流し、50Ncm/minの流速でG1級COを流した。これにより、反応系内をCO濃度50%の雰囲気に変更した。この雰囲気下、1200℃で30分間の二酸化炭素分解処理を実施した。以上説明した熱還元処理と二酸化炭素分解処理のサイクルを安定したデータが得られるまで繰り返した。
 二酸化炭素熱分解サイクルにおける各試料化合物の重量の増減から、各サイクルにおける酸素および一酸化炭素の生成量を算出した。また、酸素の生成量に対する一酸化炭素の生成量の比率(CO/O比)を算出した。試料化合物の酸素不定比性の特性から、1サイクル目の酸素の生成量は2サイクル目以降に対し大きく異なっていた。しかしながら、2サイクル目以降の酸素の生成量は安定していた。このことから、試料化合物は、高いサイクル安定性を示すことが確認された。
 各試料化合物の反応活性を比較すべく、各サイクルの酸素生成量の平均値、一酸化炭素生成量の平均値および一酸化炭素/酸素比の平均値をそれぞれ算出した。結果を図3および図4に示す。図3および図4は、各試料化合物における酸素生成量、一酸化炭素生成量および一酸化炭素/酸素比を示す図である。なお、図3における「置換なし」は、Bサイトの置換を行わなかった試料化合物を示す。
 図3および図4に示すように、BサイトをCo、Ni、Mgで置換した試料化合物では、Bサイト非置換の試料化合物に比べて、酸素および一酸化炭素の生成量が増加する傾向が顕著であった。つまり、BサイトをCo、Ni、Mgで置換した試料化合物は、熱還元処理と二酸化炭素分解処理の両方で高い反応活性を示した。
 置換イオンがCoの場合、置換割合が0%超50%以下(0<y≦0.5)であるとき、Bサイト非置換の場合に比べて一酸化炭素の生成量が多かった。また、置換割合が5%以上50%以下(0.05≦y≦0.5)であるとき、Bサイト非置換だけでなく置換イオンがCr、Fe、Cu、Al、Gaの場合に比べても一酸化炭素の生成量が多かった。さらに、置換割合が15%以上50%以下(0.15≦y≦0.5)であるとき、Bサイト非置換の場合に比べて一酸化炭素の生成量が約1.5倍以上と顕著に多かった。また、置換割合が30%以上50%以下(0.3≦y≦0.5)であるとき、一酸化炭素の生成量がより一層増加した。
 置換イオンがNiの場合、置換割合が15%超30%以下(0.15<y≦0.3)であるとき、Bサイト非置換の場合に比べて一酸化炭素の生成量が約1.5倍以上と顕著に多かった。また、置換割合が17.5%以上30%以下(0.175≦y≦0.3)であるとき、一酸化炭素の生成量がより一層増加した。
 置換イオンがMgの場合、置換割合が0%超15%未満(0<y<0.15)であるとき、Bサイト非置換の場合に比べて一酸化炭素の生成量が多かった。また、置換割合が5%以上12.5%以下(0.05≦y≦0.125)であるとき、Bサイト非置換だけでなく置換イオンがCr、Fe、Cu、Al、Gaの場合に比べても一酸化炭素の生成量が多かった。さらに、置換割合が10%以上12.5%以下(0.1≦y≦0.125)であるとき、Bサイト非置換の場合に比べて一酸化炭素の生成量が約1.5倍以上と顕著に多かった。
 また、試料化合物のサイクル試験前後のXRDパターンを比較したところ、BサイトをCo、Ni、Mgで置換した試料化合物では副生成物はほとんど確認されなかった。よって、これらの試料化合物は、二段階熱分解サイクルにおいて結晶構造を安定的に維持することが示された。また、サイクル試験における試料化合物の重量変化の時間積分から、酸素および一酸化炭素の生成速度を算出した。この結果、BサイトをCo、Ni、Mgで置換した試料化合物では、Bサイト非置換の場合に比べて酸素および一酸化炭素の生成速度が向上していた。また、Co50%、Cu10%、Mg5%、Mg15%の試料化合物では、サイクル試験中に相変化が観察された。
 なお、ペロブスカイト型複合酸化物における一酸化炭素の生成能と水素の生成能とは相関がある。したがって、上述のサイクル試験により一酸化炭素の生成能が高いことが示された試料化合物は、水素の生成能も高いといえる。また、ペロブスカイト型複合酸化物における酸素の放出、取り込みは、主に構成イオンの価数変化によって起こる。そして、Bサイトイオンは価数が変化するが、Aサイトイオンは実質的に価数が変化しない。このため、BサイトをCo、Ni、Mgで置換したペロブスカイト型複合酸化物は、Aサイトイオンの種類や置換割合によらず一酸化炭素および水素の生成能が高いといえる。
 以上より、BサイトイオンをCo、Ni、Mgで所定の割合だけ置換したペロブスカイト型複合酸化物は、一酸化炭素および水素の生成量および生成速度が優れており、また高温のサイクル反応に対し物理的、化学的に高い安定性を有することが確認された。よって、これらのペロブスカイト型複合酸化物を含む反応媒体によれば、水素や一酸化炭素の製造効率の向上を図ることができる。
 本発明は、水素および一酸化炭素の少なくとも一方の製造方法、合成ガスの製造方法ならびに反応媒体に利用することができる。
 10 流入口、 12 試験管、 14 オイルバス、 16 スターラー、 18 反応媒体、 20 赤外線イメージ炉、 22 熱電対、 24 水冷トラップ、 26 熱伝導度検出器、 28 キャピラリー、 30 質量分析器、 100,200 装置。

Claims (5)

  1.  ペロブスカイト構造を有する化合物の酸化体を加熱還元して酸素を放出させる第1工程と、
     前記第1工程で得られる前記化合物の還元体を酸化させて前記酸化体に戻す際に、水素を含む物質、ならびに炭素および酸素を含む物質の少なくとも一方と還元体とを反応させて、水素および一酸化炭素の少なくとも一方を生成する第2工程と、を含み、
     前記酸化体は、一般式A(1-x)(1-y)(Aは希土類元素からなる群より選択される少なくとも一種の元素であり、Qはアルカリ土類金属元素からなる群より選択される少なくとも一種の元素であり、Bは第一遷移元素およびMgからなる群より選択される少なくとも一種の元素であり、RはCo、NiまたはMgであって且つBとは異なり、xは0.1≦x≦0.4を満たす範囲であり、RがCoであるときyは0<y≦0.5を満たす範囲であり、RがNiであるときyは0.15<y≦0.3を満たす範囲であり、RがMgであるときyは0<y<0.15を満たす範囲である)で表される、
    水素および一酸化炭素の少なくとも一方の製造方法。
  2.  RがCoであるときyは0.05≦y≦0.5を満たす範囲であり、RがNiであるときyは0.175≦y≦0.3を満たす範囲であり、RがMgであるときyは0.05≦y≦0.125を満たす範囲である、
    請求項1に記載の製造方法。
  3.  前記AはLaであり、前記QはSrであり、前記BはMnである、
    請求項1または2に記載の製造方法。
  4.  請求項1乃至3のいずれか1項に記載の製造方法により、水素および一酸化炭素の両方を生成して合成ガスを製造することを含む、
    合成ガスの製造方法。
  5.  ペロブスカイト構造を有する化合物を含む反応媒体であって、
     前記化合物の酸化体は加熱還元されて還元体になるとともに酸素を放出し、前記還元体は酸化されて前記酸化体に戻る際に、水素を含む物質、ならびに炭素および酸素を含む物質の少なくとも一方と反応して、水素および一酸化炭素の少なくとも一方を生成し、
     前記酸化体は、一般式A(1-x)(1-y)(Aは希土類元素からなる群より選択される少なくとも一種の元素であり、Qはアルカリ土類金属元素からなる群より選択される少なくとも一種の元素であり、Bは第一遷移元素およびMgからなる群より選択される少なくとも一種の元素であり、RはCo、NiまたはMgであって且つBとは異なり、xは0.1≦x≦0.4を満たす範囲であり、RがCoであるときyは0<y≦0.5を満たす範囲であり、RがNiであるときyは0.15<y≦0.3を満たす範囲であり、RがMgであるときyは0<y<0.15を満たす範囲である)で表される、
    反応媒体。
PCT/JP2022/042454 2021-12-24 2022-11-15 水素および一酸化炭素の少なくとも一方の製造方法、合成ガスの製造方法ならびに反応媒体 WO2023119956A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-211314 2021-12-24
JP2021211314 2021-12-24

Publications (1)

Publication Number Publication Date
WO2023119956A1 true WO2023119956A1 (ja) 2023-06-29

Family

ID=86902125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042454 WO2023119956A1 (ja) 2021-12-24 2022-11-15 水素および一酸化炭素の少なくとも一方の製造方法、合成ガスの製造方法ならびに反応媒体

Country Status (1)

Country Link
WO (1) WO2023119956A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07277849A (ja) * 1994-04-13 1995-10-24 Ngk Insulators Ltd 多孔質焼結体、耐熱性電極及び固体電解質型燃料電池
WO2013141385A1 (ja) * 2012-03-23 2013-09-26 独立行政法人科学技術振興機構 熱化学燃料製造用触媒及び熱化学燃料製造方法
WO2022196729A1 (ja) * 2021-03-17 2022-09-22 積水化学工業株式会社 還元剤およびガスの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07277849A (ja) * 1994-04-13 1995-10-24 Ngk Insulators Ltd 多孔質焼結体、耐熱性電極及び固体電解質型燃料電池
WO2013141385A1 (ja) * 2012-03-23 2013-09-26 独立行政法人科学技術振興機構 熱化学燃料製造用触媒及び熱化学燃料製造方法
WO2022196729A1 (ja) * 2021-03-17 2022-09-22 積水化学工業株式会社 還元剤およびガスの製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BORK A. H., KUBICEK M., STRUZIK M., RUPP J. L. M.: "Perovskite La 0.6 Sr 0.4 Cr 1−x Co x O 3−δ solid solutions for solar-thermochemical fuel production: strategies to lower the operation temperature", JOURNAL OF MATERIALS CHEMISTRY A, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 3, no. 30, 1 January 2015 (2015-01-01), GB , pages 15546 - 15557, XP055970353, ISSN: 2050-7488, DOI: 10.1039/C5TA02519B *
HAEUSSLER ANITA, ABANADES STÉPHANE, JOUANNAUX JULIEN, JULBE ANNE: "Non-Stoichiometric Redox Active Perovskite Materials for Solar Thermochemical Fuel Production: A Review", CATALYSTS, vol. 8, no. 12, 3 December 2018 (2018-12-03), pages 611, XP093073880, DOI: 10.3390/catal8120611 *
HAEUSSLER ANITA; JULBE ANNE; ABANADES STÉPHANE: "Investigation of reactive perovskite materials for solar fuel production via two-step redox cycles: Thermochemical activity, thermodynamic properties and reduction kinetics", MATERIALS CHEMISTRY AND PHYSICS, ELSEVIER SA, SWITZERLAND, TAIWAN, REPUBLIC OF CHINA, vol. 276, 125358, 15 October 2021 (2021-10-15), Switzerland, Taiwan, Republic of China , XP086876807, ISSN: 0254-0584, DOI: 10.1016/j.matchemphys.2021.125358 *
KUBICEK MARKUS, BORK ALEXANDER H., RUPP JENNIFER L. M.: "Perovskite oxides – a review on a versatile material class for solar-to-fuel conversion processes", JOURNAL OF MATERIALS CHEMISTRY A, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 5, no. 24, 1 January 2017 (2017-01-01), GB , pages 11983 - 12000, XP093073883, ISSN: 2050-7488, DOI: 10.1039/C7TA00987A *
LORI NALBANDIAN; ANTIGONI EVDOU; VASSILIS ZASPALIS;: "LaSrMFeOperovskites as oxygen-carrier materials for chemical-looping reforming", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, ELSEVIER, AMSTERDAM, NL, vol. 36, no. 11, 28 February 2011 (2011-02-28), AMSTERDAM, NL, pages 6657 - 6670, XP028384848, ISSN: 0360-3199, DOI: 10.1016/j.ijhydene.2011.02.146 *
TABISH AHMAD, VARGHESE ANISH MATHAI, WAHAB MD A., KARANIKOLOS GEORGIOS N.: "Perovskites in the Energy Grid and CO2 Conversion: Current Context and Future Directions", CATALYSTS, vol. 10, no. 1, 9 January 2020 (2020-01-09), pages 95, XP093073887, DOI: 10.3390/catal10010095 *

Similar Documents

Publication Publication Date Title
Zhao et al. Synergistic improvements in stability and performance of the double perovskite-type oxides La2− xSrxFeCoO6 for chemical looping steam methane reforming
KR101790093B1 (ko) 열화학 연료 제조용 촉매 및 열화학 연료 제조 방법
Zhao et al. Perovskite-type oxides LaFe1− xCoxO3 for chemical looping steam methane reforming to syngas and hydrogen co-production
Zhang et al. Experimental assessment of oxygen exchange capacity and thermochemical redox cycle behavior of Ba and Sr series perovskites for solar energy storage
Murugan et al. A chemical looping process for hydrogen production using iron-containing perovskites
CN1982205B (zh) 复合金属氧化物在氢气的自热产生中的用途
He et al. The use of La1− xSrxFeO3 perovskite-type oxides as oxygen carriers in chemical-looping reforming of methane
Evdou et al. La1− xSrxFeO3− δ perovskites as redox materials for application in a membrane reactor for simultaneous production of pure hydrogen and synthesis gas
Wang et al. Oxidative steam reforming of biomass tar model compound via catalytic BaBi0. 05Co0. 8Nb0. 15O3− δ hollow fiber membrane reactor
Luciani et al. Partial substitution of B cation in La0. 6Sr0. 4MnO3 perovskites: A promising strategy to improve the redox properties useful for solar thermochemical water and carbon dioxide splitting
JP5327323B2 (ja) 炭化水素系ガス改質用触媒、その製造方法、および合成ガスの製造方法
US20180118576A1 (en) Thermochemical gas reduction process using poly-cation oxide
Gao et al. Sr-doped SmMnO 3 perovskites for high-performance near-isothermal solar thermochemical CO 2-to-fuel conversion
Yin et al. Chemical looping steam methane reforming using Al doped LaMnO3+ δ perovskites as oxygen carriers
CA2654364A1 (en) Oxygen separation membrane
Xiaoping et al. Effect of calcination temperature and reaction conditions on methane partial oxidation using lanthanum-based perovskite as oxygen donor
WO2023119956A1 (ja) 水素および一酸化炭素の少なくとも一方の製造方法、合成ガスの製造方法ならびに反応媒体
US9580326B1 (en) Method for carbon dioxide splitting
JP7417224B2 (ja) 水素の製造方法、一酸化炭素の製造方法および反応媒体
US20200384447A1 (en) Carbon dioxide conversion method using metal oxides
Ge et al. Low-temperature synthesis of La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ perovskite powder via asymmetric sol–gel process and catalytic auto-combustion
WO2008074181A1 (en) Oxygen separation membrane
US20240067527A1 (en) Facile co2 sequestration and fuel production from a hydrocarbon
US9868636B1 (en) Thermochemically active iron titanium oxide materials
Jiang et al. A mini smart solar driven hydrogen production process with chemical looping reforming for microgrids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910675

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023569164

Country of ref document: JP

Kind code of ref document: A