WO2022196729A1 - 還元剤およびガスの製造方法 - Google Patents

還元剤およびガスの製造方法 Download PDF

Info

Publication number
WO2022196729A1
WO2022196729A1 PCT/JP2022/011954 JP2022011954W WO2022196729A1 WO 2022196729 A1 WO2022196729 A1 WO 2022196729A1 JP 2022011954 W JP2022011954 W JP 2022011954W WO 2022196729 A1 WO2022196729 A1 WO 2022196729A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing agent
electronegativity
carbon dioxide
agent according
site
Prior art date
Application number
PCT/JP2022/011954
Other languages
English (en)
French (fr)
Inventor
圭祐 飯島
昂嗣 滝沢
理沙 櫻井
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to EP22771474.8A priority Critical patent/EP4309786A1/en
Priority to CN202280021852.1A priority patent/CN117042876A/zh
Priority to JP2023507155A priority patent/JPWO2022196729A1/ja
Publication of WO2022196729A1 publication Critical patent/WO2022196729A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium

Definitions

  • the present invention relates to a reducing agent and a method for producing a gas, and more particularly to a reducing agent that can be used in chemical looping, and a method for producing a gas using such a reducing agent.
  • a chemical looping method is used to convert (synthesize) carbon monoxide from carbon dioxide.
  • the chemical looping method referred to here divides the reverse water gas shift reaction into two reactions, a reduction reaction with hydrogen and a reaction of producing carbon monoxide from carbon dioxide, and divides these reactions into oxygen carrier (for example, It is a method of bridging with a metal oxide: MO x ) (see the formula below).
  • MO x-1 represents a state in which part or all of the metal oxide has been reduced.
  • Patent Document 1 discloses a catalyst composite that can be used in a chemical looping method, comprising a perovskite oxide of formula ABO 3 (A is an alkaline earth element, a rare earth element, an alkali metal element, a metal element, or a and B is a transition metal element, a metal element, or a combination thereof) and an oxide support having a formula different from the perovskite oxide.
  • Patent Document 1 discloses only La 0.75 Sr 0.25 FeO 3 as a specific example of the perovskite oxide. has been found to require the use of large amounts of hydrogen. The production of hydrogen inevitably consumes a large amount of energy, and the production of this energy is accompanied by the generation of carbon dioxide, so it is difficult to say that the effect of reducing carbon dioxide is high.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to set the combination of metal elements, their composition ratio, etc. in a perovskite oxide, thereby sufficiently reducing carbon dioxide and reducing carbon dioxide.
  • An object of the present invention is to provide a reducing agent with high conversion efficiency of carbon to carbon valuables (that is, yield of carbon valuables) and/or reduction efficiency with hydrogen, and a method for producing gas using such a reducing agent.
  • the reducing agent of the present invention is a reducing agent that produces carbon valuables by reducing carbon dioxide
  • the reducing agent has a perovskite crystal structure represented by the compositional formula: ABO x (where x is a real number of 2 to 4) and contains an oxygen carrier with oxygen ion conductivity
  • the A-site element contains at least one metal element belonging to Groups 1 to 3 of the periodic table
  • the B-site element contains at least one metal element different from the A-site element,
  • T (K) Ax ⁇ Bx and 10 4 ⁇ [( B ⁇ -A ⁇ )/T] ⁇ 8.31.
  • the electronegativity A ⁇ , the electronegativity B ⁇ and the temperature T (K) satisfy the relationship 10 4 ⁇ [(B ⁇ A ⁇ )/T] ⁇ 8.07. preferably.
  • the electronegativity A ⁇ , the electronegativity B ⁇ and the temperature T (K) satisfy the relationship 10 4 ⁇ [(B ⁇ A ⁇ )/T] ⁇ 7.47. preferably.
  • the electronegativity A.chi. and the electronegativity B.chi. further satisfy the relationship of B.chi.-A.chi.
  • the electronegativity A.chi. and the electronegativity B.chi. further satisfy the relationship of B.chi.-A.chi.
  • the electronegativity A ⁇ is preferably 0.93 to 1.3.
  • the electronegativity A ⁇ is preferably 1 to 1.2.
  • the electronegativity B ⁇ is preferably 1.40 to 1.88.
  • the A-site elements are lanthanum (La), calcium (Ca), strontium (Sr), barium (Ba), neodymium (Nd), samarium (Sm), and gadolinium (Gd). and praseodymium (Pr).
  • the reducing agent of the present invention further includes at least one selected from lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and magnesium (Mg). It is preferred to have the element as an A-site element.
  • the A-site element includes a first metal element having an electronegativity of more than 1 and a second metal element having an electronegativity of 1 or less, and the second metal It is preferable that the molar ratio of the first metal element to the element is 2.5 or less.
  • the B-site element is magnesium (Mg), scandium (Sc), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni) and gallium (Ga).
  • the B-site element preferably contains at least one metal element having an electronegativity of 1.83 or less.
  • the B-site element preferably contains at least one metal element having an electronegativity of 1.81 or less.
  • the amount of the oxygen carrier is preferably more than 90 parts by mass with respect to 100 parts by mass of the reducing agent.
  • the reducing agent of the present invention is used for producing a generated gas containing carbon monoxide as the carbon value by reducing the carbon dioxide by contacting the raw material gas containing the carbon dioxide. preferably.
  • the reducing agent of the present invention is preferably reduced by contact with a reducing gas containing hydrogen.
  • the amount of hydrogen brought into contact with the reducing agent is preferably 0.01 to 50 mmol with respect to 1 g of the reducing agent.
  • the amount of hydrogen brought into contact with the reducing agent is preferably 1 to 50 mmol with respect to 1 g of the reducing agent.
  • the amount of carbon dioxide brought into contact with the reducing agent is preferably 0.01 to 50 mmol with respect to 1 g of the reducing agent.
  • the amount of carbon dioxide brought into contact with the reducing agent is preferably 1 to 50 mmol per 1 g of the reducing agent.
  • the reducing agent of the present invention is preferably used in separate reaction steps for the reduction reaction of carbon dioxide and the reduction reaction of the reducing agent.
  • the method for producing a gas of the present invention comprises bringing the reducing agent of the present invention into contact with a raw material gas containing carbon dioxide to reduce the carbon dioxide to produce a generated gas containing carbon monoxide. characterized by
  • carbon valuables can be efficiently produced from carbon dioxide while sufficiently reducing carbon dioxide.
  • the reducing agent of the present invention can be used, for example, in a chemical looping method.
  • FIG. 1 is a diagram schematically showing a perovskite-type crystal structure
  • the reducing agent of the present invention is used in producing a product gas containing carbon monoxide (carbon valuables) by reducing carbon dioxide by bringing it into contact with a raw material gas containing carbon dioxide (i.e., the present used in the method of producing gas of the invention). Also, the reducing agent can be reduced (regenerated) by bringing a reducing gas into contact with the oxidized reducing agent.
  • a raw material gas and a reducing gas are alternately passed through a reaction tube (reaction vessel) filled with the reducing agent of the present invention, thereby converting carbon dioxide into carbon monoxide by the reducing agent, Regeneration of the reducing agent in an oxidized state by the reducing gas is performed.
  • the reducing agent of the present invention contains an oxygen carrier with oxygen ion conductivity.
  • the oxygen carrier is a compound that can cause reversible oxygen deficiency, and the oxygen element itself is deficient due to reduction. It refers to a compound that shows the action of depriving carbon dioxide of oxygen element and reducing it.
  • the oxygen carrier in the present invention has a perovskite-type crystal structure (see FIG. 1) represented by the compositional formula: ABO x (x is a real number of 2 to 4). Composition formula: ABO x may have a perovskite crystal structure, and x may take any real number in the range of 2-4.
  • the perovskite-type crystal structure means that the B-site element represented by the composition formula ABO x is present inside an octahedral structure with six oxygen elements as vertices in the crystal structure. It refers to a structure in which an A-site element exists in a gap between a plurality of octahedrons.
  • the octahedral structure having six oxygen atoms as vertices may or may not be a regular octahedron, and the crystal structure as a whole may be isotropic or anisotropic.
  • the perovskite crystal structure may take a cubic system, a rhombohedral system, a tetragonal system, an orthogonal system, or the like.
  • the oxygen element may not be present at at least one vertex of the octahedral structure.
  • an oxygen element that does not belong to the vertices of the octahedral structure may be present.
  • the metal composition and crystal structure in the perovskite crystal structure can be determined, for example, by energy dispersive X-ray spectroscopy (EDX method), inductively coupled plasma emission spectroscopy (ICP method), X-ray fluorescence spectroscopy (XRF method), X-ray It can be measured by an emission spectroscopic analysis method such as line photoelectron spectroscopy (XPS method) and X-ray diffraction method (XRD). Examples of the above methods include ICP method, XRD method, scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX method) and transmission electron microscope-energy dispersive X-ray spectroscopy (TEM-EDX method).
  • the at least one method allows identification of perovskite-type reducing agents. More preferably, the above analysis methods are used in combination, and the resulting analysis results can be combined to analyze or identify the reducing agent of the present invention.
  • the oxygen carrier in the present invention has a perovskite crystal structure in which the A-site element includes at least one metal element belonging to Groups 1 to 3 of the periodic table, and the B-site element is the A-site element. It contains at least one different metal element.
  • the present inventors paid attention to the electronegativities of A-site elements and B-site elements that constitute the perovskite-type crystal structure, and conducted extensive studies.
  • electronegativity means Pauling's electronegativity.
  • the electronegativity of each site element is the sum of the electronegativity of the metal element that constitutes it x the molar ratio of the metal element in each site element. (weighted average).
  • the metal element composition of the A-site element is A1 x1 A2 x2 .
  • the electronegativity A ⁇ of the A-site element is ⁇ 1 ⁇ x1+ ⁇ 2 ⁇ x2+ . . . + ⁇ n ⁇ xn.
  • the electronegativity Bx of the B-site element is also the same as the electronegativity Ax of the A-site element.
  • the electronegativity A ⁇ of the A-site element contributes to the ease of entry and exit of the oxygen element (oxygen ion) with respect to the oxygen carrier (perovskite-type crystal structure), and that of the B-site element.
  • the electronegativity Bx is presumed to contribute to enhancing the adsorption of carbon dioxide to oxygen carriers and the activity of carbon dioxide.
  • the electronegativity A ⁇ of the A-site element, the electronegativity B ⁇ of the B-site element, and the temperature T (K) at which carbon dioxide and the reducing agent are brought into contact are A ⁇ B ⁇ and 10 4 ⁇ [(B ⁇ - Ax)/T] ⁇ 8.31.
  • the electronegativity A.chi. of the A-site element and the electronegativity B.chi. of the B-site element are preferably set so as to further satisfy the relationship of A.chi. ⁇ B.chi.
  • A-site elements and B-site elements can exist in close proximity.
  • the electronegativity Ax of the A-site element and the electronegativity Bx of the B-site element do not deviate too much. Therefore, the oxygen element is easily transferred smoothly between the A-site element and the B-site element.
  • the oxygen element can be extracted from the oxygen carrier in the oxidized state and regenerated stably.
  • Oxygen vacancy generation energy is an important parameter for prediction of oxygen carrier performance, which is used for prediction of oxygen diffusion.
  • the number of additive metal species increases and the composition formula becomes more complex, the diversity of the local environment at the atomic and lattice level, such as the degree of freedom of ion arrangement and defect generation positions, increases infinitely, making the calculations extremely time-consuming. and it takes time.
  • the present invention in an oxygen carrier having a perovskite-type crystal structure, selection of each type of A-site element and B-site element, electronegativity A ⁇ of the A-site element and electronegativity B ⁇ of the B-site element
  • the performance of the reducing agent can be predicted to some extent by setting the relationship between , A ⁇ , B ⁇ , and the temperature at which the reducing agent is brought into contact. Therefore, it is possible to omit the calculation of the oxygen deficiency generation energy using dedicated software, which is extremely convenient.
  • 10 4 ⁇ [(B ⁇ A ⁇ )/T] may be less than 8.31, preferably 8.07 or less, more preferably 7.47 or less. Further, the 10 4 ⁇ [(B ⁇ -A ⁇ )/T] is preferably 3.50 or more.
  • the oxygen element absorption and release capabilities and the carbon dioxide adsorption and activation capabilities of the oxygen carrier can be appropriately adjusted in each temperature range. It can be activated and efficient conversion of carbon dioxide to carbon valuables can be performed. In addition, the perovskite-type crystal structure is easily stabilized.
  • Bx-Ax may be 0.90 or less, preferably 0.75 or less, more preferably 0.65 or less, and even more preferably 0.55 or less.
  • Bx-Ax is preferably 0.3 or more, more preferably 0.35 or more, and even more preferably 0.4 or more.
  • the electronegativity A ⁇ of the A-site element is preferably 0.93 to 1.3, more preferably 1 to 1.2, even more preferably 1.025 to 1.15, and 1 0.05 to 1.1 is even more preferred. This allows the oxygen element to enter and leave the oxygen carrier more smoothly.
  • the A-site element may include at least one of the metal elements belonging to Groups 1 to 3 of the periodic table, but lanthanum (La; 1.1), calcium (Ca; 1.00), strontium (Sr; 0.95), barium (Ba; 0.89), neodymium (Nd; 1.14), samarium (Sm; 1.17), gadolinium (Gd; 1.2) and praseodymium (Pr; 1.2). 13) is preferably included.
  • the number after the symbol of the element means Pauling's electronegativity. When the A-site element contains these metal elements, the oxygen element moves in and out of the oxygen carrier more smoothly.
  • the A-site element preferably includes a first metal element having an electronegativity of more than 1 and a second metal element having an electronegativity of 1 or less.
  • the molar ratio of the first metal element to the second metal element contained in the A-site element is preferably 2.5 or less, more preferably 1.5 or less, and further preferably 1.2 or less. preferable. In this case, it becomes easier to adjust the electronegativity Ax of the A-site element to the above range.
  • the first metal element includes metal elements belonging to lanthanoids and actinides, preferably metal elements belonging to lanthanides, preferably at least one of lanthanum, samarium, neodymium and gadolinium, more preferably neodymium and lanthanum.
  • the second metal element includes metal elements belonging to alkali metals and alkaline earth metals, preferably at least one of lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium and barium, At least one of lithium, sodium, potassium, rubidium, cesium, magnesium, calcium and strontium is more preferred.
  • the electronegativity B ⁇ of the B-site element is preferably 1.40 to 1.88, more preferably 1.50 to 1.85, and more preferably 1.55 to 1.75. More preferred. Thereby, the adsorption of carbon dioxide to the oxygen carrier and the activity of carbon dioxide can be further enhanced.
  • the B-site element may contain at least one metal element different from the A-site element, such as magnesium (Mg; 1.31), scandium (Sc; 1.36), chromium (Cr; 1.66), manganese (Mn; 1.55), iron (Fe; 1.83), cobalt (Co; 1.88), nickel (Ni; 1.91), tungsten (W; 2.36), palladium (Pd; 2.
  • 20 preferably contains at least one of aluminum (Al; 1.61), indium (In; 1.78), copper (Cu; 1.90) and gallium (Ga; 1.81), It preferably contains at least one of magnesium (Mg), scandium (Sc), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni) and gallium (Ga) .
  • the number after the symbol of the element means Pauling's electronegativity.
  • the B-site element preferably contains at least one metal element with an electronegativity of 1.83 or less, more preferably at least one metal element with an electronegativity of 1.81 or less, and at least one metal element with an electronegativity of 1.7 or less. It more preferably contains one metal element, and even more preferably contains at least one metal element of 1.6 or less. In this case, it becomes easier to adjust the electronegativity Bx of the B-site element within the above range.
  • Such metal elements include magnesium, scandium, chromium, manganese and gallium, preferably at least one of magnesium, scandium, chromium and manganese, more preferably manganese.
  • the A-site element and the B-site element interact more highly, and the oxygen element is transferred more smoothly between them.
  • the B-site element contains two or more metal elements
  • the combination thereof is preferably a combination of iron and manganese, a combination of manganese and magnesium, a combination of manganese and cobalt, and the like.
  • the amount of the oxygen carrier is preferably more than 90 parts by mass, more preferably 95 parts by mass or more, and may be 100 parts by mass with respect to 100 parts by mass of the reducing agent.
  • the amount of the oxygen carrier contained in the reducing agent within the above range, it is possible to promote the conversion of carbon dioxide to carbon monoxide by the reducing agent while maintaining a sufficient effect of reducing carbon dioxide, that is, to improve the conversion efficiency. Further, it is possible to increase the efficiency of reduction with a reducing gas containing hydrogen.
  • An embodiment in which the entire reducing agent is not composed of the oxygen carrier includes an embodiment in which fine particles of the oxygen carrier are bound with a binder (carrier).
  • the binder is not particularly limited as long as it is difficult to denature depending on the raw material gas, reaction conditions, and the like.
  • Specific examples of binders include carbon materials ( graphite, graphene, etc.), zeolite, montmorillonite, SiO2 , ZrO2, TiO2 , V2O5 , MgO , Al2O3 , or composite oxides containing these. etc.
  • the packing density of the reducing agent is preferably 4 g/mL or less, more preferably 0.5 to 3 g/mL, even more preferably 1 to 2.5 g/mL. If the packing density is too low, the gas passing speed becomes too fast, and the contact time between the reducing agent and the raw material gas and the reducing gas is shortened. As a result, the efficiency of conversion of carbon dioxide to carbon monoxide by the reducing agent and the efficiency of regeneration of the reducing agent in the oxidized state by the reducing gas tend to decrease. On the other hand, if the packing density is too high, the passage speed of the gas becomes too slow, making it difficult for the reaction to proceed or requiring a long time to produce the product gas.
  • the pore volume of the reducing agent is preferably 0.1 cm 3 /g or more, more preferably 1 to 30 cm 3 /g, even more preferably 5 to 20 cm 3 /g. If the pore volume is too small, it becomes difficult for the raw material gas and the reducing gas to enter the inside of the reducing agent. As a result, the contact area between the reducing agent and the raw material gas and the reducing gas is reduced, and the efficiency of conversion of carbon dioxide to carbon monoxide by the reducing agent and the efficiency of regeneration of the reducing agent in the oxidized state by the reducing gas tend to decrease. On the other hand, even if the pore volume exceeds the upper limit, no further increase in the effect can be expected, and the mechanical strength tends to decrease depending on the type of reducing agent.
  • the shape of the reducing agent is not particularly limited, it is preferably granular, for example. If it is granular, it is easy to adjust the filling density of the reducing agent to the above range.
  • "granular" is a concept including powdery, particulate, lumpy, pellet-like, etc., and its shape may be any of spherical, plate-like, polygonal, crushed, columnar, needle-like, scale-like, etc. .
  • the average particle size of the reducing agent is preferably 1 ⁇ m to 5 mm, more preferably 10 ⁇ m to 1 mm, even more preferably 20 ⁇ m to 0.5 mm. A reducing agent having such an average particle size tends to have a packing density within the above range.
  • the average particle size means the average value of the particle sizes of arbitrary 200 reducing agents in one field observed with an electron microscope.
  • the "particle size” means the maximum length among the distances between two points on the outline of the reducing agent.
  • the maximum length of the distance between two points on the contour line of the end face is defined as the "particle diameter”.
  • the average particle size is, for example, in the form of lumps, and means the average particle size of the secondary particles when the primary particles are agglomerated.
  • the BET specific surface area of the reducing agent is preferably 1 to 500 m 2 /g, more preferably 3 to 450 m 2 /g, even more preferably 5 to 400 m 2 /g. When the BET specific surface area is within the above range, it becomes easier to improve the conversion efficiency of carbon dioxide to carbon monoxide by the reducing agent.
  • the reducing agent oxygen capacity can be maintained at a high level. That is, the reducing agent of the present invention can efficiently convert carbon dioxide to carbon monoxide over a wide temperature range, and can be efficiently reduced by a hydrogen-containing reducing gas.
  • the oxygen capacity of the reducing agent at 400° C. is preferably 1 to 40% by mass, more preferably 2 to 30% by mass. If the oxygen capacity of the reducing agent at low temperatures is within the above range, it means that the oxygen capacity is sufficiently high even at temperatures (650 ° C. or higher) during actual operation, and the conversion efficiency of carbon dioxide to carbon monoxide is high. It can be said that it is an extremely high reducing agent.
  • the method for producing the reducing agent is not particularly limited, and examples thereof include a sol-gel method, a coprecipitation method, a solid phase method, a hydrothermal synthesis method and the like.
  • the reducing agent can be produced as follows. First, an aqueous solution is prepared by dissolving a salt of a metal element constituting a reducing agent in water. Then, after gelling the aqueous solution, it is dried and baked. That is, the reducing agent of the present invention can be easily and reliably produced by the so-called sol-gel method.
  • acidic water adjusted to be acidic with citric acid, acetic acid, malic acid, tartaric acid, hydrochloric acid, nitric acid, or a mixture thereof may be used.
  • salts of metal elements include nitrates, sulfates, chlorides, hydroxides, carbonates, and composites thereof. Of these, nitrates are preferred. Moreover, you may use a hydrate for the salt of a metal element as needed. Drying of the gel is preferably carried out at a temperature of 20 to 200° C., more preferably 50 to 150° C., preferably for 0.5 to 20 hours, more preferably 1 to 15 hours. By drying in this manner, the gel can be dried uniformly.
  • Calcination of the gel is preferably carried out at a temperature of 300 to 1200° C., more preferably 700 to 1000° C., for 1 to 24 hours, more preferably 1.5 to 20 hours.
  • the gel preferably becomes an oxide upon calcination, but can be easily converted to a reducing agent by calcination under the above calcination conditions. Further, if the firing is performed under the above firing conditions, excessive particle growth of the reducing agent can be prevented.
  • the temperature should be raised at a rate of 1 to 20° C./min, preferably 2 to 10° C./min, until the firing temperature is reached. As a result, the growth of the reducing agent particles can be promoted, and cracking of the crystals (particles) can be avoided.
  • the reducing agent of the present invention can be used, for example, in the chemical looping method, as described above.
  • the reducing agent of the present invention can be used for reducing carbon dioxide as described above. More specifically, a reduction reaction of carbon dioxide and a reduction reaction of a reducing agent are preferably performed, and the reducing agent is used so as to circulate between the reduction reaction of carbon dioxide and the reduction reaction of the reducing agent. is preferred. Note that another reducing agent (reducing gas) is used in the reduction reaction of the reducing agent.
  • the reducing agent of the present invention is preferably used for so-called reverse water gas shift reaction.
  • the reverse water gas shift reaction is a reaction that produces carbon monoxide and water from carbon dioxide and hydrogen.
  • the reverse water gas shift reaction is divided into a reducing reaction of the reducing agent (first process) and a reducing reaction of carbon dioxide (second process).
  • the reaction is represented by the formula (A)
  • the reduction reaction of carbon dioxide is represented by the following formula (B).
  • n is usually a value smaller than 3, preferably 0.02 to 1.5, more preferably 0.1 to 1.2, It is more preferably 0.15 to 1.0.
  • the perovskite-type crystal structure of the oxygen carrier can be favorably maintained, and the hydrogen utilization rate of the reducing agent can be increased. That is, in the reduction reaction of the reducing agent, hydrogen, which is a type of reducing gas, is oxidized to produce water. Further, in the carbon dioxide reduction reaction, carbon dioxide is reduced to produce carbon monoxide.
  • the reaction temperature in the reduction reaction of the reducing agent may be any temperature at which the reduction reaction can proceed, but is preferably 300° C. or higher, more preferably 400° C. or higher, and even more preferably 500° C. or higher. , 550° C. or higher is particularly preferred. Within this temperature range, the reduction reaction of the reducing agent can proceed efficiently.
  • the upper limit of the reaction temperature is preferably 1000° C. or lower, more preferably 850° C. or lower, and even more preferably 800° C. or lower. By setting the upper limit of the reaction temperature within the above range, economic efficiency can be improved.
  • the amount of hydrogen brought into contact with the reducing agent in the oxidized state is preferably 0.01 to 50 mmol with respect to 1 g of the reducing agent.
  • the amount of hydrogen is preferably 0.1 mmol or more, more preferably 1 mmol or more, relative to 1 g of the reducing agent.
  • the amount of hydrogen is preferably 35 mmol or less, more preferably 20 mmol or less, relative to 1 g of the reducing agent. It is also preferable that the amount of hydrogen is 1 mmol to 50 mmol with respect to 1 g of the reducing agent.
  • the reducing agent of the present invention has a high hydrogen utilization rate because oxygen atoms enter and exit smoothly. Therefore, the reducing agent of the present invention is sufficiently reduced (regenerated) with a small amount of hydrogen. Therefore, it contributes to the reduction of the energy required for hydrogen production, and thus the reduction of carbon dioxide generated when the energy is obtained.
  • a specific hydrogen utilization rate of the reducing agent of the present invention is a perovskite-type crystal structure represented by La 0.75 Sr 0.25 FeO 3 when 5.2 mmol of hydrogen is brought into contact with 1 g of the reducing agent. It is preferably 1.05 times or more, more preferably 2 times or more, further preferably 3 times or more, and 4 times or more than the hydrogen utilization rate of the reducing agent (oxygen carrier) having is particularly preferred, and 5 times or more is most preferred.
  • the upper limit of the hydrogen utilization rate is usually 18 times or less.
  • the hydrogen utilization rate (%) is the ratio of the amount (number of moles) of generated carbon monoxide to the amount (number of moles) of hydrogen brought into contact with 1 g of the reducing agent, expressed as a percentage.
  • the reaction temperature in the reduction reaction of carbon dioxide is preferably 300° C. or higher, more preferably 350° C. or higher, and even more preferably 400° C. or higher.
  • An efficient carbon dioxide reduction reaction can proceed within this temperature range.
  • the upper limit of the reaction temperature is preferably 1000° C. or lower, more preferably 850° C. or lower, and even more preferably 800° C. or lower. Since the reducing agent can reduce carbon dioxide to carbon monoxide with high efficiency even at low temperatures, the reduction reaction of carbon dioxide can be set to a relatively low temperature. Further, by setting the upper limit of the reaction temperature within the above range, it is possible not only to facilitate utilization of waste heat, but also to further improve economic efficiency.
  • the amount of carbon dioxide brought into contact with the reducing agent is preferably 0.01 to 50 mmol with respect to 1 g of the reducing agent.
  • the amount of carbon dioxide is preferably 0.1 mmol or more, more preferably 1 mmol or more, relative to 1 g of the reducing agent.
  • the amount of carbon dioxide is preferably 30 mmol or less, more preferably 20 mmol or less, relative to 1 g of the reducing agent.
  • the reducing agent of the present invention has a high conversion efficiency of carbon dioxide to carbon monoxide (that is, a large amount of carbon monoxide is produced), and from this point of view also contributes to the reduction of carbon dioxide.
  • the reduction reaction is efficiently performed by the reducing gas containing hydrogen, the reducing agent can be regenerated with a small amount of hydrogen.
  • a specific amount of carbon monoxide produced by the reducing agent of the present invention is perovskite represented by La 0.75 Sr 0.25 FeO 3 when 5.2 mmol of carbon dioxide is brought into contact with 1 g of the reducing agent. It is preferably 1.05 times or more, more preferably 2 times or more, and 3 times or more the amount of carbon monoxide produced by the reducing agent (oxygen carrier) having a crystal structure of the type is more preferable, 4 times or more is particularly preferable, and 5 times or more is most preferable.
  • the upper limit of the amount of carbon monoxide produced is usually 18 times or less.
  • the amount of carbon monoxide produced in the reducing agent of the present invention is preferably about 0.95 to 3.75 mmol per 1 g of the reducing agent.
  • the reduced product (carbon valuables) obtained by the reduction reaction of carbon dioxide may be a substance other than carbon monoxide, and a specific example thereof is methane. It is preferable that the reduced product such as carbon monoxide obtained by the carbon dioxide reduction reaction is further converted into an organic substance or the like by microbial fermentation or the like. Microbial fermentation includes anaerobic fermentation. Organic substances obtained include methanol, ethanol, acetic acid, butanol, derivatives thereof, mixtures thereof, and C5 or higher compounds such as isoprene. Furthermore, the reduced products such as carbon monoxide may be converted into C1 to C20 compounds including hydrocarbons and alcohols conventionally synthesized by petrochemicals by metal oxides.
  • Specific compounds obtained include methane, ethane, propylene, methanol, ethanol, propanol, acetaldehyde, diethyl ether, acetic acid, butyric acid, diethyl carbonate, butadiene, and the like.
  • the reducing agent of the present invention preferably has the following characteristics. That is, when a reducing agent was filled at a height of 40 cm in a stainless steel reaction tube with an inner diameter of 8 mm and a pressure gauge was arranged in the flow channel, and nitrogen gas with a concentration of 100% by volume was passed at 30 mL / min, The pressure rise in 10 minutes is preferably 0.03 MPaG or less, more preferably 0.01 MPaG or less. A reducing agent exhibiting such characteristics can be judged to satisfy the above ranges in packing density and pore volume, and can sufficiently increase the conversion efficiency of carbon dioxide to carbon monoxide.
  • the present invention is not limited to these.
  • the method for producing a reducing agent and gas of the present invention may have any other configuration added to the above embodiments, and may be replaced with any configuration that performs similar functions. Well, part of the configuration may be omitted.
  • Example 1 Production of reducing agent First, as precursors of the reducing agent, lanthanum nitrate hexahydrate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., purity: 99.9%) and magnesium nitrate hexahydrate (FUJIFILM Wako Pure Chemical Industries, Ltd. Yakukogyo Co., Ltd., purity: 99.9%) and iron (III) nitrate nonahydrate (Fujifilm Wako Pure Chemical Industries, Ltd., purity: 99.9%) are weighed in predetermined amounts. did.
  • citric acid manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., purity: 99.5%
  • the above precursor metal nitrate
  • the La:Mg:Fe (molar ratio) in the precursor aqueous solution was set to 0.3:0.7:1.
  • 2.09 g of ethylene glycol manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., purity: 99.5% was added to the aqueous precursor solution, and the temperature was raised to 80°C.
  • a temperature of 80° C. was maintained with continuous stirring until a viscous gel was formed. After that, the gel was transferred to a drying oven. Drying of the gel was performed at 120° C. for 5 hours. The resulting swollen lumps of organic and inorganic compounds were pulverized, heated from room temperature to 450° C. at a rate of 8° C./min, and then calcined at 450° C. for 4 hours. After that, the temperature was further raised to 950° C. at a rate of 8° C./min, and then fired at 950° C. for 8 hours. Finally, the fired agglomerates were finely pulverized mechanically to obtain the desired reducing agent. The reducing agent was granular.
  • the metal composition in the oxygen carrier was analyzed and identified by ICP emission spectrometry using argon gas using SPECTRO ARCOS manufactured by AMETEK.
  • a measurement solution was prepared by the following method. 50 to 100 mg of a reducing agent was dissolved in 100 mL of 1% nitric acid to 1% hydrofluoric acid, and the obtained solution was further diluted 10 times.
  • the ratio of La:Mg:Fe (molar ratio) in the oxygen carrier was 0.3:0.7:1.
  • Example 51 A reducing agent was produced and identified in the same manner as in Example 1, except that the types and amount ratios of the metal elements constituting the reducing agent (oxygen carrier) were changed as shown in Tables 1 to 3.
  • the swollen lumps of the organic and inorganic compounds produced in Example 1 were pulverized, heated from room temperature to 450°C at a rate of 8°C/min, and then heated to 450°C.
  • a reducing agent was produced and identified in the same manner as in Example 1, except that the mixture was calcined for 4 hours, then heated to 750°C at a rate of 8°C/min, and then calcined at 750°C for 8 hours.
  • Each reducing agent was granular.
  • Each oxygen carrier (metal oxide) had a perovskite-type crystal structure, and its content was approximately 100 parts by mass with respect to 100 parts by mass of the reducing agent.
  • a quartz reaction tube having an inner diameter of 3 mm and a length of 78 mm was filled with 0.2 g of a reducing agent. Thereafter, while flowing helium gas at a flow rate of 20 mL/min, the temperature was raised at a temperature elevation rate of 40° C./min and heated for 20 minutes. Next, in order to activate the oxygen carrier, hydrogen gas (reducing gas) was flowed at a flow rate of 5 mL/min for 20 minutes to carry out a reduction reaction (first process) of the oxygen carrier, thereby reducing the oxygen carrier. At this time, the gas discharged from the discharge port contained water vapor.
  • helium gas is flowed at a flow rate of 20 mL/min for 10 minutes, and then carbon dioxide gas is flowed at a flow rate of 5 mL/min for 5 minutes to perform a carbon dioxide reduction reaction (second process).
  • the carbon dioxide gas (source gas) was reduced.
  • the carbon dioxide input was therefore 5.2 mmol per gram of reducing agent.
  • the product gas discharged from the reactor outlet contained carbon monoxide.
  • helium gas was flowed at a flow rate of 20 mL/min for 10 minutes.
  • the temperature of the microreactor was 650° C. (923.15 K), 800° C. (1073.15 K) or 850° C. (1123.15 K) as shown in Tables 1 to 3 when any gas was flowed. ) and under atmospheric pressure conditions.
  • Example 18 and Comparative Example 13 The characteristics of the reducing agent in Example 18 and Comparative Example 13 at a hydrogen input amount of 0.78 mmol/g were evaluated according to the following procedure.
  • a quartz reaction tube having an inner diameter of 4 mm and a length of 430 mm was filled with 0.514 g of a cylindrical reducing agent having a major diameter of 3 mm.
  • the temperature was raised at a temperature elevation rate of 40° C./min and heated for 20 minutes.
  • hydrogen gas reducing gas
  • the gas discharged from the discharge port contained water vapor. Thereafter, for gas exchange, helium gas is flowed at a flow rate of 5 mL/min for 10 minutes, and then carbon dioxide gas is flowed at a flow rate of 5 mL/min for 20 minutes to perform a carbon dioxide reduction reaction (second process). , the carbon dioxide gas (source gas) was reduced. At this time, carbon monoxide was contained in the generated gas discharged from the discharge port.
  • hydrogen gas (reducing gas) was flowed into the microreactor at a flow rate of 3 mL/min for 3 minutes to carry out a reduction reaction (first process) of the reducing agent. returned. Therefore, the amount of hydrogen input was 0.78 mmol per 1 g of reducing agent. At this time, water vapor was contained in the gas discharged from the outlet of the microreactor. Thereafter, for gas exchange, helium gas is flowed at a flow rate of 20 mL/min for 10 minutes, and then carbon dioxide gas is flowed at a flow rate of 3 mL/min for 3 minutes to perform a carbon dioxide reduction reaction (second process). , the carbon dioxide gas (source gas) was reduced.
  • the carbon dioxide input was therefore 0.78 mmol per gram of reducing agent.
  • the product gas discharged from the reactor outlet contained carbon monoxide.
  • helium gas was flowed at a flow rate of 20 mL/min for 10 minutes.
  • the temperature of the microreactor was maintained at 850° C. (1123.15 K) and the test was performed under atmospheric pressure conditions when any gas was flowed.
  • the measurement conditions in the gas chromatograph-mass spectrometer are as follows. Column temperature: 200°C Injection temperature: 200°C Detector temperature: 250°C Column: EGA tube (L: 2.5 m, ⁇ (inner diameter): 0.15 mm, t: 0 mm) Column flow rate: 1.00 mL/min Split ratio: 250 Purge flow rate: 3.0 mL/min
  • Hydrogen utilization rate (%) Carbon monoxide production amount (mmol/1 g of reducing agent) ⁇ Amount of hydrogen input (mmol/1 g of reducing agent) ⁇ 100 Hydrogen utilization rates are shown in Tables 1 to 3 below.
  • Tables 1 to 3 the hydrogen utilization rates of the reducing agents of Examples 1 to 54 and Comparative Examples 2 to 12 are shown as relative values when those of Comparative Example 1 are set to "1".
  • the hydrogen utilization rate when the hydrogen input amount to the reducing agent is 0.78 mmol per 1 g is shown as a relative value when that of Comparative Example 13 is set to "1".
  • the reducing agent of each example had a high hydrogen utilization rate. Further, the hydrogen utilization rate could be adjusted by changing the types and ratios of the metal elements constituting the reducing agent (oxygen carrier). In contrast, the reducing agent of each comparative example had a low hydrogen utilization rate. Also, the composition with a high hydrogen utilization rate varied depending on the reaction temperature, and the hydrogen utilization rate at each reaction temperature could be adjusted by the value of 10 4 ⁇ [(B ⁇ -A ⁇ )/T].

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

【課題】ペロブスカイト酸化物において、金属元素の組み合わせ、その組成比等を設定することにより、二酸化炭素の十分な削減を図りつつ、二酸化炭素の炭素有価物への変換効率(すなわち、炭素有価物の収率)が高く、水素による還元効率の高い還元剤、およびかかる還元剤を使用したガスの製造方法を提供する。 【解決手段】本発明の還元剤は、二酸化炭素の還元により炭素有価物を生成し、水素により容易に還元される。この還元剤は、組成式:ABO(xは、2~4の実数を示す。)で表されるペロブスカイト型の結晶構造を有し、酸素イオン伝導性を備える酸素キャリアを含有し、Aサイト元素が、周期表の第1族~第3族に属する金属元素のうちの少なくとも1種を含み、Bサイト元素が、前記Aサイト元素と異なる少なくとも1種の金属元素を含み、前記Aサイト元素の電気陰性度をAχ、前記Bサイト元素の電気陰性度をBχ、および二酸化炭素と還元剤を接触させる温度をT(K)としたとき、Aχ<Bχかつ10×[(Bχ-Aχ)/T]<8.31なる関係を満足する。

Description

還元剤およびガスの製造方法
 本発明は、還元剤およびガスの製造方法に関し、より詳しくは、例えば、ケミカルルーピング法に利用可能な還元剤、およびかかる還元剤を使用したガスの製造方法に関する。
 近年、温室効果ガスの一種である二酸化炭素は、その大気中の濃度が上昇を続けている。大気中の二酸化炭素の濃度の上昇は、地球温暖化を助長する。したがって、大気中に放出される二酸化炭素を回収することは重要であり、さらに回収した二酸化炭素を有価物質に変換して再利用できれば、炭素循環社会を実現することができる。
 従来、二酸化炭素から一酸化炭素を製造する方法として、逆水性ガスシフト反応を利用した方法が知られている。しかしながら、この従来の逆水性ガスシフト反応は、生成物である一酸化炭素と水とが系内に共存するため、化学平衡の制約により二酸化炭素の一酸化炭素への変換効率が低くなるという点で問題があった。
 そこで、上記問題を解決するため、ケミカルルーピング法を利用して二酸化炭素から一酸化炭素の変換(合成)が行われる。ここで言うケミカルルーピング法とは、上記逆水性ガスシフト反応を、水素による還元反応と、二酸化炭素からの一酸化炭素の生成反応との2つの反応に分割し、これらの反応を酸素キャリア(例えば、金属酸化物:MO)によって橋渡しさせるという方法である(下記式参照)。
  H + MO → HO + MOx-1
  CO + MOx-1 → CO + MO
 なお、上記式中、MOx-1は、金属酸化物の一部または全部が還元された状態を示す。
 かかるケミカルルーピング法では、それぞれの反応時には、逆反応の基質である水および一酸化炭素が共存しないため、逆水性ガスシフト反応の化学平衡よりも高い二酸化炭素の一酸化炭素への変換効率を得られる可能性がある。
 例えば、特許文献1には、ケミカルルーピング法に使用可能な触媒複合体であって、式ABOのペロブスカイト酸化物(Aは、アルカリ土類元素、希土類元素、アルカリ金属元素、金属元素またはそれらの組み合わせであり、Bは、遷移金属元素、金属元素またはそれらの組み合わせである。)と、ペロブスカイト酸化物と異なる式を有する酸化物担体とを含む触媒複合体が開示されている。
国際公開第2018/222749号
 しかしながら、本発明者らの検討によれば、特許文献1では、ペロブスカイト酸化物の具体例としてLa0.75Sr0.25FeOのみが開示され、このペロブスカイト酸化物を還元状態とするためには、多量の水素を使用する必要があることが判明した。水素の生成には、多大なエネルギーを消費せざるを得ず、このエネルギーを得る際にも、二酸化炭素の発生を伴うため、二酸化炭素の削減効果が高いとは言い難い。
 本発明は、かかる状況に鑑みてなされたものであり、その目的は、ペロブスカイト酸化物において、金属元素の組み合わせ、その組成比等を設定することにより、二酸化炭素の十分な削減を図りつつ、二酸化炭素の炭素有価物への変換効率(すなわち、炭素有価物の収率)および/または水素による還元効率が高い還元剤、およびかかる還元剤を使用したガスの製造方法を提供することにある。
 このような目的は、下記の本発明により達成される。
 (1) 本発明の還元剤は、二酸化炭素の還元により炭素有価物を生成する還元剤であって、
 当該還元剤は、組成式:ABO(xは、2~4の実数を示す。)で表されるペロブスカイト型の結晶構造を有し、酸素イオン伝導性を備える酸素キャリアを含有し、
 Aサイト元素が、周期表の第1族~第3族に属する金属元素のうちの少なくとも1種を含み、
 Bサイト元素が、前記Aサイト元素と異なる少なくとも1種の金属元素を含み、
 前記Aサイト元素の電気陰性度をAχ、前記Bサイト元素の電気陰性度をBχ、および二酸化炭素と還元剤を接触させる温度をT(K)としたとき、Aχ<Bχかつ10×[(Bχ-Aχ)/T]<8.31なる関係を満足することを特徴とする。
 (2) 本発明の還元剤では、前記電気陰性度Aχ、前記電気陰性度Bχおよび前記温度T(K)が、10×[(Bχ-Aχ)/T]≦8.07なる関係を満足することが好ましい。
 (3) 本発明の還元剤では、前記電気陰性度Aχ、前記電気陰性度Bχおよび前記温度T(K)が、10×[(Bχ-Aχ)/T]≦7.47なる関係を満足することが好ましい。
 (4) 本発明の還元剤では、前記電気陰性度Aχおよび前記電気陰性度Bχが、Bχ-Aχが0.90以下なる関係をさらに満足することが好ましい。
 (5) 本発明の還元剤では、前記電気陰性度Aχおよび前記電気陰性度Bχが、Bχ-Aχが0.75以下なる関係をさらに満足することが好ましい。
 (6) 本発明の還元剤では、前記電気陰性度Aχが、0.93~1.3であることが好ましい。
 (7) 本発明の還元剤では、前記電気陰性度Aχが、1~1.2であることが好ましい。
 (8) 本発明の還元剤では、前記電気陰性度Bχが、1.40~1.88であることが好ましい。
 (9) 本発明の還元剤では、前記Aサイト元素が、ランタン(La)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ネオジム(Nd)、サマリウム(Sm)、ガドリニウム(Gd)およびプラセオジム(Pr)のうちの少なくとも1種を含むことが好ましい。
 (10) 本発明の還元剤では、さらに、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb),セシウム(Cs)、およびマグネシウム(Mg)から選択される少なくとも1種の元素をAサイト元素に有することが好ましい。
 (11) 本発明の還元剤では、前記Aサイト元素が、電気陰性度が1超である第1金属元素と、電気陰性度が1以下である第2金属元素とを含み、前記第2金属元素に対する前記第1金属元素のモル比が2.5以下であることが好ましい。
 (12) 本発明の還元剤では、前記Bサイト元素が、マグネシウム(Mg)、スカンジウム(Sc)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)およびガリウム(Ga)のうちの少なくとも1種を含むことが好ましい。
 (13) 本発明の還元剤では、前記Bサイト元素が、電気陰性度が1.83以下の少なくとも1種の金属元素を含むことが好ましい。
 (14) 本発明の還元剤では、前記Bサイト元素が、電気陰性度が1.81以下の少なくとも1種の金属元素を含むことが好ましい。
 (15) 本発明の還元剤では、前記酸素キャリアの量が、当該還元剤100質量部に対して、90質量部超であることが好ましい。
 (16) 本発明の還元剤は、前記二酸化炭素を含む原料ガスと接触させることにより、前記二酸化炭素を還元して、前記炭素有価物としての一酸化炭素を含む生成ガスを製造するのに使用されることが好ましい。
 (17) 本発明の還元剤では、当該還元剤は、水素を含む還元ガスと接触させることで還元されることが好ましい。
 (18) 本発明の還元剤では、当該還元剤に接触させる前記水素の量が、当該還元剤1gに対して、0.01~50mmolであることが好ましい。
 (19) 本発明の還元剤では、当該還元剤に接触させる前記水素の量が、当該還元剤1gに対して、1~50mmolであることが好ましい。
 (20) 本発明の還元剤では、当該還元剤に接触させる前記二酸化炭素の量が、当該還元剤1gに対して、0.01~50mmolであることが好ましい。
 (21) 本発明の還元剤では、当該還元剤に接触させる前記二酸化炭素の量が、当該還元剤1gに対して、1~50mmolであることが好ましい。
 (22) 本発明の還元剤は、前記二酸化炭素の還元反応と当該還元剤の還元反応と、別々の反応工程に使用されることが好ましい。
 (23) 本発明のガスの製造方法は、本発明の還元剤を、二酸化炭素を含む原料ガスと接触させることにより、前記二酸化炭素を還元して、一酸化炭素を含む生成ガスを製造することを特徴とする。
 本発明によれば、二酸化炭素の十分な削減を図りつつ、二酸化炭素から効率よく炭素有価物を生成することができる。また、本発明の還元剤は、例えば、ケミカルルーピング法に利用可能である。
ペロブスカイト型の結晶構造を模式的に示す図である。
 以下、本発明の還元剤およびガスの製造方法について、好適実施形態に基づいて詳細に説明する。
 [還元剤]
 本発明の還元剤は、二酸化炭素を含む原料ガスと接触させることにより、二酸化炭素を還元して、一酸化炭素(炭素有価物)を含む生成ガスを製造する際に使用される(すなわち、本発明のガスの製造方法に使用される)。また、酸化された還元剤に還元ガスを接触させることにより、還元剤を還元(再生)することができる。
 この際、好ましくは、本発明の還元剤を充填した反応管(反応容器)内に、原料ガスおよび還元ガスを交互に通過させることにより、還元剤による二酸化炭素の一酸化炭素への変換と、還元ガスによる酸化状態の還元剤の再生とが行われる。
 本発明の還元剤は、酸素イオン伝導性を備える酸素キャリアを含有する。
 ここで、酸素キャリアとは、可逆的な酸素欠損を生じ得る化合物であり、それ自体から還元により酸素元素が欠損するが、酸素元素が欠損した状態(還元状態)で、二酸化炭素と接触すると、二酸化炭素から酸素元素を奪い取って還元する作用を示す化合物のことを言う。
 本発明における酸素キャリアは、組成式:ABO(xは、2~4の実数を示す。)で表されるペロブスカイト型の結晶構造(図1参照)を有する。組成式:ABOは、ペロブスカイト型の結晶構造であればよく、xは2~4の範囲で任意の実数を取り得る。
 ここで、ペロブスカイト型の結晶構造とは、組成式ABOで表されるところのBサイト元素が、結晶構造中で酸素元素6個を頂点とする八面体構造の内部に存在しており、その八面体が複数並んだ隙間にAサイト元素が存在する構造体を指す。この酸素元素6個を頂点として構成される八面体構造は、正八面体であってもそうでなくてもよく、また、結晶構造全体として等方性をもっていても、異方性をもっていてもよい。
 より具体的には、ペロブスカイト型結晶構造は、立方晶系(Cubic)、菱面体晶系(Rhombohedral)、正方晶系(Tetragonal)、直方晶系(Orthorhombic)等の結晶系をとってよい。なお、結晶構造中に含まれる酸素元素の数によっては、上記八面体構造の少なくとも1つの頂点に酸素元素が存在しなくてもよい。また、八面体構造の頂点に属さない酸素元素が存在してもよい。
 ペロブスカイト型の結晶構造中の金属組成や結晶構造は、例えば、エネルギー分散型X線分光法(EDX法)、誘導結合プラズマ発光分光法(ICP法)、蛍光X線分析法(XRF法)、X線光電子分光法(XPS法)、X線回折法(XRD)等の発光分光分析法により測定することができる。上記方法としては、ICP法、XRD法、走査型電子顕微鏡-エネルギー分散型X線分光法(SEM-EDX法)および透過型電子顕微鏡-エネルギー分散型X線分光法(TEM-EDX法)等が好ましく、当該少なくとも1つの方法によりペロブスカイト型の還元剤を同定することができる。より好ましくは上述の分析方法を組み合わせて使用し、得られた解析結果を複合して本発明の還元剤を分析または同定することができる。
 本発明における酸素キャリアは、ペロブスカイト型の結晶構造において、Aサイト元素が、周期表の第1族~第3族に属する金属元素のうちの少なくとも1種を含み、Bサイト元素がAサイト元素と異なる少なくとも1種の金属元素を含む。
 本発明者らは、かかるペロブスカイト型の結晶構造を構成するAサイト元素およびBサイト元素の電気陰性度に着目し、鋭意検討を重ねた。なお、本明細書中において、電気陰性度とは、ポーリングの電気陰性度を意味する。
 また、各サイト元素が2種以上の金属元素からなる場合、各サイト元素の電気陰性度は、それを構成する金属元素の電気陰性度×その金属元素の各サイト元素中に占めるモル比の和(加重平均)とする。
 具体的には、Aサイト元素の金属元素組成がA1x1A2x2・・・Anxn(nは自然数であり、xnはモル比を示し、x1+x2+・・・+xn=1である。)であり、Anの電気陰性度をχnとしたとき、Aサイト元素の電気陰性度Aχは、χ1×x1+χ2×x2+・・・+χn×xnである。
 また、Bサイト元素の電気陰性度Bχも、Aサイト元素の電気陰性度Aχと同様である。
 本発明者らの検討によれば、Aサイト元素の電気陰性度Aχは、酸素キャリア(ペロブスカイト型の結晶構造)に対する酸素元素(酸素イオン)の出入りのし易さに寄与し、Bサイト元素の電気陰性度Bχは、酸素キャリアに対する二酸化炭素の吸着性および二酸化炭素の活性を高めるのに寄与すると推定される。
 そして、本発明では、Aサイト元素の電気陰性度AχとBサイト元素の電気陰性度Bχおよび二酸化炭素と還元剤を接触させる温度T(K)が、Aχ<Bχかつ10×[(Bχ-Aχ)/T]<8.31なる関係を満足するように設定する。
 本発明では、Aサイト元素の電気陰性度AχとBサイト元素の電気陰性度Bχとを、Aχ<BχかつBχ-Aχが0.90以下なる関係をさらに満足するように設定すると好ましい。
 ペロブスカイト型の結晶構造では、Aサイト元素とBサイト元素とが近接して存在することができる。特に、本発明では、Aサイト元素の電気陰性度AχとBサイト元素の電気陰性度Bχとが乖離し過ぎていない。このため、Aサイト元素とBサイト元素との間で、酸素元素が円滑に受け渡され易くなる。その結果、少ない量の還元ガスであっても、酸化状態の酸素キャリアから酸素元素を引き抜き、その再生を安定的に行うことができる。
 このように、還元ガスの使用量を減少させることにより、還元ガスを生成する際のエネルギーの消費量を低減することができ、ひいてはエネルギーを得る際に発生する二酸化炭素を削減することができるので、二酸化炭素の削減効果が高い。
 また、従来、ペロブスカイト型の結晶構造を有する還元剤の性能を予測する際には、製造された還元剤(酸素キャリア)毎に、その酸素欠損生成エネルギーをVASP等の専用ソフトウェアで計算する必要がある。酸素欠損生成エネルギーは、酸素拡散の予測に用いる、酸素キャリアの性能予測に重要なパラメーターである。一方で、添加金属種が増加し、複雑な組成式になると、イオン配置自由度や欠陥生成位置等の原子・格子レベルの局所環境における多様性が無数に増えるため、その計算には膨大な手間と時間がかかっている。
 これに対して、本発明では、ペロブスカイト型の結晶構造を有する酸素キャリアにおいて、Aサイト元素およびBサイト元素それぞれの種類の選択、Aサイト元素の電気陰性度AχとBサイト元素の電気陰性度Bχとの関係、Aχ、Bχおよび還元剤を接触させる温度との関係等の設定により、還元剤の性能をある程度予測することができる。このため、専用ソフトウェアでの酸素欠損生成エネルギーの計算を省略することができ、極めて簡便である。
 10×[(Bχ-Aχ)/T]は8.31未満であればよいが、8.07以下であることが好ましく、7.47以下であることがより好ましい。また、前記10×[(Bχ-Aχ)/T]は3.50以上であることが好ましい。
 10×[(Bχ-Aχ)/T]を上記範囲に設定することにより、酸素キャリアが有する酸素元素の吸収および放出能力、二酸化炭素の吸着性および活性化能力を、各温度域において適切に発揮させ、二酸化炭素の効率的な炭素有価物への変換を行うことができる。また、ペロブスカイト型の結晶構造が安定化し易い。
 Bχ-Aχは、0.90以下であればよいが、0.75以下であることが好ましく、0.65以下であることがより好ましく、0.55以下であることがさらに好ましい。Bχ-Aχは、0.3以上であることが好ましく、0.35以上であることがより好ましく、0.4以上であることがさらに好ましい。Bχ-Aχを上記範囲に設定することにより、上記効果をより向上させることができる。また、ペロブスカイト型の結晶構造が安定化し易い。
 また、ペロブスカイト型の結晶構造を備える酸素キャリアは、不純物を吸着し難く、二酸化炭素から酸素元素を奪い取る能力を長時間にわたって維持することができる。その結果、還元剤による二酸化炭素からの一酸化炭素への変換効率を高めることができ、一方水素を含む還元ガスによる還元効率を高めることができる。
 Aサイト元素の電気陰性度Aχは、0.93~1.3であることが好ましく、1~1.2であることがより好ましく、1.025~1.15であることがさらに好ましく、1.05~1.1であることがよりさらに好ましい。これにより、酸素キャリアに対する酸素元素の出入りがより円滑になされるようになる。
 Aサイト元素は、周期表の第1族~第3族に属する金属元素のうちの少なくとも1種を含めばよいが、ランタン(La;1.1)、カルシウム(Ca;1.00)、ストロンチウム(Sr;0.95)、バリウム(Ba;0.89)、ネオジム(Nd;1.14)、サマリウム(Sm;1.17)、ガドリニウム(Gd;1.2)およびプラセオジム(Pr;1.13)のうちの少なくとも1種を含むことが好ましい。なお、元素記号の後の数字はポーリングの電気陰性度を意味する。Aサイト元素がこれらの金属元素を含む場合、酸素キャリアに対する酸素元素の出入りがより円滑になされる。
 また、Aサイト元素は、電気陰性度が1超である第1金属元素と、電気陰性度が1以下である第2金属元素とを含むことが好ましい。かかる組み合わせで2種以上の金属元素をAサイト元素は含むことにより、酸素キャリアに対する酸素元素の出入りの程度を調整し易くなる。
 Aサイト元素に含まれる第2金属元素に対する第1金属元素のモル比は、2.5以下であることが好ましく、1.5以下であることがより好ましく、1.2以下であることがさらに好ましい。この場合、Aサイト元素の電気陰性度Aχを上記範囲に調整し易くなる。
 第1金属元素としては、ランタノイドおよびアクチノイドに属する金属元素が挙げられ、ランタノイドに属する金属元素が好ましく、ランタン、サマリウム、ネオジムおよびガドリニウムのうちの少なくとも1種が好ましく、ネオジム、ランタンがより好ましい。
 一方、第2金属元素としては、アルカリ金属およびアルカリ土類金属に属する金属元素が挙げられ、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウムおよびバリウムのうちの少なくとも1種が好ましく、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウムおよびストロンチウムのうちの少なくとも1種がより好ましい。
 これらの金属元素を選択することにより、Aサイト元素とBサイト元素とがより高度に相互作用して、これらの間で酸素元素がより円滑に受け渡されるようになる。
 一方、Bサイト元素の電気陰性度Bχは、1.40~1.88であることが好ましく、1.50~1.85であることがより好ましく、1.55~1.75であることがさらに好ましい。これにより、酸素キャリアに対する二酸化炭素の吸着性および二酸化炭素の活性をより高めることができる。
 Bサイト元素は、Aサイト元素と異なる少なくとも1種の金属元素を含めばよいが、マグネシウム(Mg;1.31)、スカンジウム(Sc;1.36)、クロム(Cr;1.66)、マンガン(Mn;1.55)、鉄(Fe;1.83)、コバルト(Co;1.88)、ニッケル(Ni;1.91)、タングステン(W;2.36)、パラジウム(Pd;2.20)、アルミニウム(Al;1.61)、インジウム(In;1.78)、銅(Cu;1.90)およびガリウム(Ga;1.81)のうちの少なくとも1種を含むことが好ましく、マグネシウム(Mg)、スカンジウム(Sc)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)およびガリウム(Ga)のうちの少なくとも1種を含むことが好ましい。なお、元素記号の後の数字はポーリングの電気陰性度を意味する。これらの金属元素をBサイト元素が含む場合、酸素キャリアに対する二酸化炭素の吸着性および二酸化炭素の還元活性をより高めることができ、水素を含む還元ガスによる還元効率を高くすることができる。
 Bサイト元素は、電気陰性度が1.83以下の少なくとも1種の金属元素を含むことが好ましく、1.81以下の少なくとも1種の金属元素を含むことがより好ましく、1.7以下の少なくとも1種の金属元素を含むことがさらに好ましく、1.6以下の少なくとも1種の金属元素を含むことがよりさらに好ましい。この場合、Bサイト元素の電気陰性度Bχを上記範囲に調整し易くなる。
 かかる金属元素としては、マグネシウム、スカンジウム、クロム、マンガン、ガリウムが挙げられ、マグネシウム、スカンジウム、クロムおよびマンガンのうちの少なくとも1種が好ましく、マンガンがより好ましい。これらの金属元素を選択することにより、Aサイト元素とBサイト元素とがより高度に相互作用して、これらの間で酸素元素がより円滑に受け渡されるようになる。
 なお、Bサイト元素が2種以上の金属元素を含む場合、その組み合わせとしては、鉄とマンガンとの組み合わせ、マンガンとマグネシウムとの組み合わせ、マンガンとコバルトとの組み合わせ等が好適である。
 酸素キャリアの量は、還元剤100質量部に対して、90質量部超であることが好ましく、95質量部以上であることがより好ましく、100質量部であってもよい。還元剤に含まれる酸素キャリアの量を上記範囲とすることにより、二酸化炭素の十分な削減効果を維持しつつ、還元剤による二酸化炭素の一酸化炭素への変換を促進すること、すなわち変換効率をさらに高めることができ、また水素を含む還元ガスによる還元効率を高めることができる。
 還元剤の全体が酸素キャリアで構成されない態様としては、酸素キャリアの微粒子を結合剤(担体)で結合した態様が挙げられる。結合剤は、原料ガスや反応条件等に応じて変性し難いものであればよく、特に限定されない。
 結合剤の具体例としては、例えば、炭素材料(グラファイト、グラフェン等)、ゼオライト、モンモリロナイト、SiO、ZrO、TiO、V、MgO、Alまたはこれらを含む複合酸化物等が挙げられる。
 還元剤の充填密度は、4g/mL以下であることが好ましく、0.5~3g/mLであることがより好ましく、1~2.5g/mLであることがさらに好ましい。この充填密度が低過ぎると、ガスの通過速度が速くなり過ぎ、還元剤と原料ガスおよび還元ガスとが接触する時間が減少する。その結果、還元剤による二酸化炭素の一酸化炭素への変換効率や、還元ガスによる酸化状態の還元剤の再生効率が低下し易い。一方、この充填密度が高過ぎると、ガスの通過速度が遅くなり過ぎ、反応が進行し難くなったり、生成ガスを製造するのに長時間を要するようになったりする。
 還元剤の細孔容積は、0.1cm/g以上であることが好ましく、1~30cm/gであることがより好ましく、5~20cm/gであることがさらに好ましい。この細孔容積が小さ過ぎると、原料ガスおよび還元ガスが還元剤の内部にまで入り難くなる。その結果、還元剤と原料ガスおよび還元ガスとの接触面積が減少し、還元剤による二酸化炭素の一酸化炭素への変換効率や、還元ガスによる酸化状態の還元剤の再生効率が低下し易い。一方、この細孔容積の上限値を超えて大きくしても、それ以上の効果の増大が期待できず、還元剤の種類によっては機械的強度が低下する傾向を示す。
 還元剤の形状としては、特に限定されないが、例えば、粒状が好ましい。粒状であれば、還元剤の充填密度を上記範囲に調整し易い。
 ここで、粒状とは、粉末状、粒子状、塊状、ペレット状等を含む概念であり、その形態も球状、板状、多角状、破砕状、柱状、針状、鱗片状等のいずれでもよい。
 還元剤の平均粒径は、1μm~5mmであることが好ましく、10μm~1mmであることがより好ましく、20μm~0.5mmであることがさらに好ましい。かかる平均粒径を有する還元剤であれば、その充填密度が上記範囲になり易い。
 なお、本明細書において、平均粒径とは、電子顕微鏡で観察される一視野中の任意の200個の還元剤の粒径の平均値を意味する。この際、「粒径」とは、還元剤の輪郭線上の2点間の距離のうち最大の長さを意味する。なお、還元剤が柱状である場合、その端面の輪郭線上の2点間の距離のうち最大の長さを「粒径」とする。また、平均粒径は、例えば、塊状などであり、一次粒子が凝集している場合には、二次粒子の平均粒径を意味する。
 還元剤のBET比表面積は、1~500m2/gであることが好ましく、3~450m/gであることがより好ましく、5~400m2/gであることがさらに好ましい。BET比表面積が上記範囲内であることで、還元剤による二酸化炭素の一酸化炭素への変換効率を向上させ易くなる。
 また、本発明では、酸素キャリア(ペロブスカイト型の結晶構造)の格子欠損の歪みを十分に大きくすることができるため、低温(400℃程度)~高温(1000℃程度)の広い範囲において、還元剤の酸素容量を高い状態に維持することができる。すなわち、本発明の還元剤は、広い温度範囲で二酸化炭素を一酸化炭素へ効率よく変換することができ、水素を含む還元ガスによって効率的に還元されることができる。
 還元剤の400℃における酸素容量は、1~40質量%であることが好ましく、2~30質量%であることがより好ましい。還元剤の低温における酸素容量が上記範囲であれば、実稼働時の温度(650℃以上)においても酸素容量が十分に高いことを意味しており、二酸化炭素の一酸化炭素への変換効率が極めて高い還元剤であると言える。
 [還元剤の製造方法]
 次に、還元剤の製造方法について説明する。
 還元剤の製造方法としては、特に限定されないが、例えば、ゾル-ゲル法、共沈法、固相法、水熱合成法等が挙げられる。
 還元剤は、一例として、例えば、次のようにして製造することができる。まず、還元剤を構成する金属元素の塩を水に溶解して水溶液を調製する。次いで、この水溶液をゲル化した後、乾燥および焼成する。すなわち、本発明の還元剤は、いわゆるゾル-ゲル法により、容易かつ確実に製造することができる。
 なお、水溶液の調整には、例えば、クエン酸、酢酸、リンゴ酸、酒石酸、塩酸、硝酸またはこれらの混合物等で酸性に調整した酸性水を用いてもよい。
 金属元素の塩としては、例えば、硝酸塩、硫酸塩、塩化物、水酸化物、炭酸塩またはこれらの複合物等が挙げられるが、これらの中でも硝酸塩であることが好ましい。また、金属元素の塩には、必要に応じて、水和物を使用してもよい。
 ゲルの乾燥は、好ましくは20~200℃、より好ましくは50~150℃の温度で、好ましくは0.5~20時間、より好ましくは1~15時間の時間で行うとよい。このように乾燥することで、ゲルを均一に乾燥させることができる。
 ゲルの焼成は、好ましくは300~1200℃、より好ましくは700~1000℃での温度で、好ましくは1~24時間、より好ましくは1.5~20時間の時間で行うとよい。ゲルは、焼成により、好ましくは酸化物となるが、上記焼成条件での焼成により還元剤に容易に変換され得る。また、上記焼成条件で焼成すれば、還元剤の過度の粒子成長を防ぐこともできる。
 上記焼成温度に到達するまでは、昇温速度1~20℃/分、好ましくは昇温速度2~10℃/分で昇温するとよい。これにより、還元剤の粒子の成長を促進させるとともに、結晶(粒子)の割れを回避することもできる。
 [還元剤の使用方法]
 本発明の還元剤は、上述したように、例えば、ケミカルルーピング法で利用することができる。また、本発明の還元剤は、上述したように、二酸化炭素を還元する用途に使用することができる。
 より具体的には、二酸化炭素の還元反応と、還元剤の還元反応とを行うとよく、還元剤は、二酸化炭素の還元反応と還元剤の還元反応との間で循環するように使用することが好ましい。なお、還元剤の還元反応では、他の還元剤(還元ガス)を使用する。
 また、本発明の還元剤は、いわゆる逆水性ガスシフト反応に使用することが好ましい。逆水性ガスシフト反応とは、二酸化炭素と水素とから、一酸化炭素と水とを生成する反応である。逆水性ガスシフト反応は、ケミカルルーピング法を適用する場合、還元剤の還元反応(第1プロセス)と二酸化炭素の還元反応(第2プロセス)とに分割して行われ、還元剤の還元反応が下記式(A)で示す反応となり、二酸化炭素の還元反応が下記式(B)で示す反応となる。
 H(ガス)+A(固体)
     →HO(ガス)+Ax-n(固体) (A)
 CO(ガス)+Ax-n(固体)
     →CO(ガス)+A       (B)
 なお、式(A)および(B)において、nは、通常3より小さい値であり、0.02~1.5であることが好ましく、0.1~1.2であることがより好ましく、0.15~1.0であることがさらに好ましい。上記範囲であれば、酸素キャリアのペロブスカイト型の結晶構造を良好に維持しつつ、還元剤の水素利用率を高めることができる。
 すなわち、還元剤の還元反応では、還元ガスの一種である水素が酸化されて水が生成される。また、二酸化炭素の還元反応では、二酸化炭素が還元されて一酸化炭素が生成される。
 還元剤の還元反応における反応温度は、還元反応が進行できる温度であればよいが、300℃以上であることが好ましく、400℃以上であることがより好ましく、500℃以上であることがさらに好ましく、550℃以上であることが特に好ましい。かかる温度範囲で、効率的な還元剤の還元反応を進行させることができる。
 この反応温度の上限は、1000℃以下であることが好ましく、850℃以下であることがより好ましく、800℃以下であることがさらに好ましい。反応温度の上限を上記範囲に設定することにより、経済性の向上を図ることができる。
 また、還元剤の還元反応の際、酸化状態の還元剤に接触させる水素の量は、還元剤1gに対して、0.01~50mmolであることが好ましい。前記水素の量は、還元剤1gに対して0.1mmol以上であるのが好ましく、1mmol以上であるのがより好ましい。前記水素の量は、還元剤1gに対して35mmol以下であるのが好ましく、20mmol以下であるのがより好ましい。前記水素の量は、還元剤1gに対して1mmol~50mmolであることも好ましい。
 本発明の還元剤は、上述したような理由から、酸素原子の出入りが円滑になされるため、水素利用率が高い。したがって、本発明の還元剤は、少量の水素で十分に還元(再生)される。よって、水素の生成に必要なエネルギーを減少させること、ひいてはエネルギーを得る際に発生する二酸化炭素の削減にも寄与する。
 本発明の還元剤の具体的な水素利用率は、還元剤1gに対して5.2mmolの水素を接触させたとき、La0.75Sr0.25FeOで表されるペロブスカイト型の結晶構造を有する還元剤(酸素キャリア)の水素利用率に比べて、1.05倍以上であることが好ましく、2倍以上であることがより好ましく、3倍以上であることがさらに好ましく、4倍以上であることが特に好ましく、5倍以上であることが最も好ましい。水素利用率の上限は、通常、18倍以下である。
 なお、水素利用率(%)は、還元剤1gに接触させた水素投入量(モル数)に対する生成した一酸化炭素の量(モル数)の比率を100分率で表した値である。
 また、二酸化炭素の還元反応における反応温度は、300℃以上であることが好ましく、350℃以上であることがより好ましく、400℃以上であることがさらに好ましい。かかる温度範囲で、効率的な二酸化炭素の還元反応を進行させることができる。
 この反応温度の上限は、1000℃以下であることが好ましく、850℃以下であることがより好ましく、800℃以下であることがさらに好ましい。還元剤は、低温下でも高い効率で二酸化炭素の一酸化炭素への還元反応を行うことができるので、二酸化炭素の還元反応を比較的低温に設定することができる。また、反応温度の上限を上記範囲に設定することにより、廃熱活用が容易になるばかりでなく、更なる経済性の向上を図ることができる。
 また、二酸化炭素の還元反応の際、還元剤に接触させる二酸化炭素の量は、還元剤1gに対して、0.01~50mmolであることが好ましい。前記二酸化炭素の量は、還元剤1gに対して0.1mmol以上であるのが好ましく、1mmol以上であるのがより好ましい。前記二酸化炭素の量は、還元剤1gに対して30mmol以下であるのが好ましく、20mmol以下であるのがより好ましい。本発明の還元剤は、上述したような理由から、二酸化炭素を吸着し易く、かつ酸素原子の出入りが円滑になされる。このため、本発明の還元剤は、二酸化炭素の一酸化炭素への変換効率が高く(すなわち、一酸化炭素の生成量が多く)、かかる観点からも、二酸化炭素の削減に寄与する。一方、水素を含む還元ガスによって効率的に還元反応が行われるため、少ない水素量により還元剤を再生することができる。
 本発明の還元剤の具体的な一酸化炭素の生成量は、還元剤1gに対して5.2mmolの二酸化炭素を接触させたとき、La0.75Sr0.25FeOで表されるペロブスカイト型の結晶構造を有する還元剤(酸素キャリア)の一酸化炭素の生成量に比べて、1.05倍以上であることが好ましく、2倍以上であることがより好ましく、3倍以上であることがさらに好ましく、4倍以上であることが特に好ましく、5倍以上であることが最も好ましい。一酸化炭素の生成量の上限は、通常、18倍以下である。
 本発明の還元剤における上記一酸化炭素の生成量は、還元剤1gに対して0.95~3.75mmol程度であることが好ましい。
 なお、本発明では、二酸化炭素の還元反応で得られる還元物(炭素有価物)は、一酸化炭素以外の物質であってもよく、具体的にはメタンが挙げられる。上記二酸化炭素の還元反応で得られた一酸化炭素等の還元物は、さらに微生物発酵等により有機物質等に変換されることが好ましい。微生物発酵としては、嫌気性発酵が挙げられる。得られる有機物質としては、メタノール、エタノール、酢酸、ブタノール、これらの誘導体、またはこれらの混合物、イソプレン等のC5以上の化合物等が挙げられる。
 さらに、一酸化炭素等の還元物は、金属酸化物等により、従来石油化学により合成される炭化水素、アルコールを含むC1からC20までの化合物に変換されてもよい。得られる具体的な化合物としては、メタン、エタン、プロピレン、メタノール、エタノール、プロパノール、アセトアルデヒド、ジエチルエーテル、酢酸、酪酸、炭酸ジエチル、ブタジエン等が挙げられる。
 [還元剤の特性]
 本発明の還元剤は、次のような特性を有することが好ましい。
 すなわち、流路内に圧力計を配置した内径8mmのステンレス鋼製の反応管内に、還元剤を40cmの高さで充填し、濃度100体積%の窒素ガスを30mL/分で通過させたとき、10分間での圧力上昇が0.03MPaG以下であることが好ましく、0.01MPaG以下であることがより好ましい。
 かかる特性を示す還元剤は、充填密度および細孔容積が上記範囲を満たすと判断することができ、二酸化炭素の一酸化炭素への変換効率を十分に高めることができる。
 以上、本発明の還元剤およびガスの製造方法について説明したが、本発明は、これらに限定されるものではない。
 例えば、本発明の還元剤およびガスの製造方法は、上記実施形態に対して、他の任意の追加の構成を有していてもよく、同様の機能を発揮する任意の構成と置換されていてよく、一部の構成が省略されていてもよい。
 以下に、実施例および比較例を挙げて、本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではない。
 (実施例1)
 1.還元剤の製造
 まず、還元剤の前駆体として、硝酸ランタン六水和物(富士フイルム和光純薬工業株式会社製、純度:99.9%)と、硝酸マグネシウム六水和物(富士フイルム和光純薬工業株式会社製、純度:99.9%)と、硝酸鉄(III)九水和物(富士フイルム和光純薬工業株式会社製、純度:99.9%)とを、それぞれ所定量を計量した。
 次いで、4.32gのクエン酸(富士フイルム和光純薬工業株式会社製、純度:99.5%)を計量し、60mLの脱イオン水に溶解してクエン酸水溶液を得た。その後、上記前駆体(硝酸金属塩)を、攪拌しつつクエン酸水溶液に室温で添加して、前駆体水溶液を調製した。なお、前駆体水溶液中におけるLa:Mg:Fe(モル比)を、0.3:0.7:1とした。
 30分経過後、2.09gのエチレングリコール(富士フイルム和光純薬工業株式会社製、純度:99.5%)を前駆体水溶液に添加し、温度を80℃に上昇させた。
 粘性のゲルが形成されるまで、連続して撹拌しつつ、80℃の温度を維持した。その後、ゲルを乾燥炉へ移動させた。
 ゲルの乾燥は、120℃、5時間で行った。
 生成された有機および無機化合物の膨潤した塊状物を粉砕し、室温から450℃まで8℃/minの速度で昇温した後、450℃で4時間焼成した。その後、さらに950℃まで8℃/minの速度で昇温した後、950℃で8時間焼成した。
 最後に、焼成した塊状物を機械的に細かく粉砕して、目的とする還元剤を得た。なお、還元剤は粒状であった。
 2.還元剤の同定
 酸素キャリア(金属酸化物)中の金属組成は、AMETEK社製のSPECTRO ARCOSを用いてアルゴンガスによるICP発光分光分析法により分析、同定した。
 測定溶液は、以下の手法により調製した。還元剤50~100mgを1%硝酸ないし1%フッ酸100mLに溶解させ、得られた溶液をさらに10倍に希釈した。
 上記測定溶液を分析した結果、酸素キャリア中におけるLa:Mg:Fe(モル比)は、0.3:0.7:1であった。
 また、結晶学的データは、RINT-TTRIII装置(CuKα放射線、50kV、300mA)を使用したX線回折(XRD)により収集した。
 その結果、La、MgおよびFeを含む酸素キャリア(金属酸化物)は、ペロブスカイト型の結晶構造を有しており、La:Mg:Fe(モル比)はICP発光分光分析法で得られた比率同様、0.3:0.7:1であった。また、その含有量は、還元剤100質量部に対してほぼ100質量部であった。
 (実施例2~実施例54および比較例1~12)
 還元剤(酸素キャリア)を構成する金属元素の種類および量比を表1~表3となるように変更した以外は、実施例1と同様にして、還元剤を製造および同定した。ここで、実施例51においては、実施例1において、生成された有機および無機化合物の膨潤した塊状物を粉砕し、室温から450℃まで8℃/minの速度で昇温した後、450℃で4時間焼成し、その後、さらに750℃まで8℃/minの速度で昇温した後、750℃で8時間焼成した以外は、実施例1と同様にして、還元剤を製造および同定した。
 なお、各還元剤は粒状であった。また、各酸素キャリア(金属酸化物)は、ペロブスカイト型の結晶構造を有し、その含有量は、還元剤100質量部に対してほぼ100質量部であった。
 3.還元剤の特性評価
 マイクロリアクターと、マイクロリアクターに直結するガスクロマトグラフ質量分析計(GC/MS)とを備える迅速触媒評価システム(フロンティア・ラボ株式会社製、「シングルμ-リアクターRx-3050SR」)を用いて、以下の手順により還元剤の特性を評価した。
 まず、内径3mm、長さ78mmの石英反応管内に、0.2gの還元剤を充填した。その後、20mL/minの流量でヘリウムガスを流しつつ、40℃/minの昇温速度で昇温させ、20分間加熱した。
 次に、酸素キャリアの賦活化のため、水素ガス(還元ガス)を流量5mL/minで20分間流して酸素キャリアの還元反応(第1プロセス)を実施して、酸素キャリアを還元した。このとき、排出口から排出されるガスには、水蒸気が含まれていた。
 その後、ガス交換のために、ヘリウムガスを流量5mL/minで10分間流した後、二酸化炭素ガスを流量5mL/minで20分間流して、二酸化炭素の還元反応(第2プロセス)を実施して、二酸化炭素ガス(原料ガス)を還元した。このとき、排出口から排出される生成ガスには、一酸化炭素が含まれていた。
 続いて、還元剤の特性評価のため、マイクロリアクターには、水素ガス(還元ガス)を流量5mL/minまたは15mL/minで5分間流して還元剤の還元反応(第1プロセス)を実施して、還元剤を還元した。したがって、水素投入量は、還元剤1gあたり5.2mmolまたは約15mmolであった。このとき、マイクロリアクターの排出口から排出されるガスには、水蒸気が含まれていた。
 その後、ガス交換のために、ヘリウムガスを流量20mL/minで10分間流した後、二酸化炭素ガスを流量5mL/minで5分間流して、二酸化炭素の還元反応(第2プロセス)を実施して、二酸化炭素ガス(原料ガス)を還元した。したがって、二酸化炭素投入量は、還元剤1gあたり5.2mmolであった。このとき、リアクターの排出口から排出される生成ガスには、一酸化炭素が含まれていた。
 その後、ガス交換のために、ヘリウムガスを流量20mL/minで10分間流した。
 なお、本試験では、いずれのガスを流す際にも、マイクロリアクターの温度を表1~3に示すとおり、650℃(923.15K)、800℃(1073.15K)または850℃(1123.15K)のいずれかに維持するとともに、大気圧条件で行った。
 なお、実施例18と比較例13の、水素投入量0.78mmоl/gにおける還元剤の特性評価は、以下の手順により評価した。
 まず、内径4mm、長さ430mmの石英反応管内に、長径3mmに成型した円柱状の還元剤を0.514g充填した。その後、20mL/minの流量でヘリウムガスを流しつつ、40℃/minの昇温速度で昇温させ、20分間加熱した。
 次に、酸素キャリアの賦活化のため、水素ガス(還元ガス)を流量5mL/minで20分間流して酸素キャリアの還元反応(第1プロセス)を実施して、酸素キャリアを還元した。このとき、排出口から排出されるガスには、水蒸気が含まれていた。
 その後、ガス交換のために、ヘリウムガスを流量5mL/minで10分間流した後、二酸化炭素ガスを流量5mL/minで20分間流して、二酸化炭素の還元反応(第2プロセス)を実施して、二酸化炭素ガス(原料ガス)を還元した。このとき、排出口から排出される生成ガスには、一酸化炭素が含まれていた。
 続いて、還元剤の特性評価のため、マイクロリアクターには、水素ガス(還元ガス)を流量3mL/minで3分間流して還元剤の還元反応(第1プロセス)を実施して、還元剤を還元した。したがって、水素投入量は、還元剤1gあたり0.78mmоlであった。このとき、マイクロリアクターの排出口から排出されるガスには、水蒸気が含まれていた。
 その後、ガス交換のために、ヘリウムガスを流量20mL/minで10分間流した後、二酸化炭素ガスを流量3mL/minで3分間流して、二酸化炭素の還元反応(第2プロセス)を実施して、二酸化炭素ガス(原料ガス)を還元した。したがって、二酸化炭素投入量は、還元剤1gあたり0.78mmolであった。このとき、リアクターの排出口から排出される生成ガスには、一酸化炭素が含まれていた。
 その後、ガス交換のために、ヘリウムガスを流量20mL/minで10分間流した。
 なお、本試験では、いずれのガスを流す際にも、マイクロリアクターの温度を850℃(1123.15K)に維持して、大気圧条件で行った。
 なお、ガスクロマトグラフ質量分析計における測定条件は、以下の通りである。
 カラム温度: 200℃
 インジェクション温度: 200℃
 検出器温度: 250℃
 カラム: EGAチューブ(L:2.5m、φ(内径):0.15mm、t:0mm)
 カラム流量: 1.00mL/min
 スプリット比: 250
 パージ流量: 3.0mL/min
 還元剤による水素利用率は、次の式により計算した。
 水素利用率(%)=一酸化炭素生成量(mmol/還元剤1g)
           ÷水素投入量(mmol/還元剤1g)×100
 水素利用率を、以下の表1~表3に示す。
 なお、表1~表3中には、各実施例1~54、比較例2~12の還元剤の水素利用率は、比較例1のそれらを「1」とした場合の相対値として示す。
 ただし、還元剤に対する水素投入量が1gあたり0.78mmоlの場合の水素利用率は、比較例13のそれを「1」とした場合の相対値として示す。
 これらの結果を、以下の表1~表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 各実施例の還元剤は、水素利用率が高かった。また、還元剤(酸素キャリア)を構成する金属元素の種類、その比率を変更することにより、水素利用率を調整することができた。
 これに対して、各比較例の還元剤は、水素利用率が低かった。
 また、反応温度によって水素利用率が高い組成は異なっており、10×[(Bχ-Aχ)/T]の値により各反応温度における水素利用率を調整することができた。

Claims (23)

  1.  二酸化炭素の還元により炭素有価物を生成する還元剤であって、
     当該還元剤は、組成式:ABO(xは、2~4の実数を示す。)で表されるペロブスカイト型の結晶構造を有し、酸素イオン伝導性を備える酸素キャリアを含有し、
     Aサイト元素が、周期表の第1族~第3族に属する金属元素のうちの少なくとも1種を含み、
     Bサイト元素が、前記Aサイト元素と異なる少なくとも1種の金属元素を含み、
     前記Aサイト元素の電気陰性度をAχ、前記Bサイト元素の電気陰性度をBχ、および二酸化炭素と還元剤を接触させる温度をT(K)としたとき、Aχ<Bχかつ10×[(Bχ-Aχ)/T]<8.31なる関係を満足することを特徴とする還元剤。
  2.  前記電気陰性度Aχ、前記電気陰性度Bχおよび前記温度T(K)が、10×[(Bχ-Aχ)/T]≦8.07なる関係を満足する、請求項1に記載の還元剤。
  3.  前記電気陰性度Aχ、前記電気陰性度Bχおよび前記温度T(K)が、10×[(Bχ-Aχ)/T]≦7.47なる関係を満足する、請求項1に記載の還元剤。
  4. 前記電気陰性度Aχおよび前記電気陰性度Bχが、Bχ-Aχが0.90以下なる関係をさらに満足する、請求項1~3のいずれか1項に記載の還元剤。
  5.  前記電気陰性度Aχおよび前記電気陰性度Bχが、Bχ-Aχが0.75以下なる関係をさらに満足することを特徴とする、請求項1~3のいずれか1項に記載の還元剤。
  6.  前記電気陰性度Aχが、0.93~1.3である、請求項1~5のいずれか1項に記載の還元剤。
  7.  前記電気陰性度Aχが、1~1.2である、請求項1~5のいずれか1項に記載の還元剤。
  8.  前記電気陰性度Bχが、1.40~1.88である、請求項1~7のいずれか1項に記載の還元剤。
  9.  前記Aサイト元素が、ランタン(La)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ネオジム(Nd)、サマリウム(Sm)、ガドリニウム(Gd)およびプラセオジム(Pr)のうちの少なくとも1種を含む、請求項1~8のいずれか1項に記載の還元剤。
  10.  さらに、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb),セシウム(Cs)、およびマグネシウム(Mg)から選択される少なくとも1種の元素をAサイト元素に含む、請求項9に記載の還元剤。
  11.  前記Aサイト元素が、電気陰性度が1超である第1金属元素と、電気陰性度が1以下である第2金属元素とを含み、
     前記第2金属元素に対する前記第1金属元素のモル比が2.5以下である、請求項9に記載の還元剤。
  12.  前記Bサイト元素が、マグネシウム(Mg)、スカンジウム(Sc)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)およびガリウム(Ga)のうちの少なくとも1種を含む、請求項1~11のいずれか1項に記載の還元剤。
  13.  前記Bサイト元素が、電気陰性度が1.83以下の少なくとも1種の金属元素を含む、請求項12に記載の還元剤。
  14.  前記Bサイト元素が、電気陰性度が1.81以下の少なくとも1種の金属元素を含む、請求項12に記載の還元剤。
  15.  前記酸素キャリアの量が、当該還元剤100質量部に対して、90質量部超である、請求項1~14のいずれか1項に記載の還元剤。
  16.  当該還元剤は、前記二酸化炭素を含む原料ガスと接触させることにより、前記二酸化炭素を還元して、前記炭素有価物としての一酸化炭素を含む生成ガスを製造するのに使用される、請求項1~15のいずれか1項に記載の還元剤。
  17.  当該還元剤は、水素を含む還元ガスと接触させることで還元される、請求項1~16のいずれか1項に記載の還元剤。
  18.  当該還元剤に接触させる前記水素の量が、当該還元剤1gに対して、0.01~50mmolである、請求項17に記載の還元剤。
  19.  当該還元剤に接触させる前記水素の量が、当該還元剤1gに対して、1~50mmolである、請求項17に記載の還元剤。
  20.  当該還元剤に接触させる前記二酸化炭素の量が、当該還元剤1gに対して、0.01~50mmolである、請求項16~19のいずれか1項に記載の還元剤。
  21.  当該還元剤に接触させる前記二酸化炭素の量が、当該還元剤1gに対して、1~50mmolである、請求項16~19のいずれか1項に記載の還元剤。
  22.  当該還元剤は、前記二酸化炭素の還元反応と当該還元剤の還元反応と、別々の反応工程に使用される、請求項1~21のいずれか1項に記載の還元剤。
  23.  請求項1~22のいずれか1項に記載の還元剤を、二酸化炭素を含む原料ガスと接触させることにより、前記二酸化炭素を還元して、一酸化炭素を含む生成ガスを製造することを特徴とするガスの製造方法。
PCT/JP2022/011954 2021-03-17 2022-03-16 還元剤およびガスの製造方法 WO2022196729A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22771474.8A EP4309786A1 (en) 2021-03-17 2022-03-16 Reducing agent, and gas production method
CN202280021852.1A CN117042876A (zh) 2021-03-17 2022-03-16 还原剂和气体的制造方法
JP2023507155A JPWO2022196729A1 (ja) 2021-03-17 2022-03-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021043335 2021-03-17
JP2021-043335 2021-03-17

Publications (1)

Publication Number Publication Date
WO2022196729A1 true WO2022196729A1 (ja) 2022-09-22

Family

ID=83321068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011954 WO2022196729A1 (ja) 2021-03-17 2022-03-16 還元剤およびガスの製造方法

Country Status (4)

Country Link
EP (1) EP4309786A1 (ja)
JP (1) JPWO2022196729A1 (ja)
CN (1) CN117042876A (ja)
WO (1) WO2022196729A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119956A1 (ja) * 2021-12-24 2023-06-29 Eneos株式会社 水素および一酸化炭素の少なくとも一方の製造方法、合成ガスの製造方法ならびに反応媒体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141385A1 (ja) * 2012-03-23 2013-09-26 独立行政法人科学技術振興機構 熱化学燃料製造用触媒及び熱化学燃料製造方法
US8999283B1 (en) * 2012-05-30 2015-04-07 University Of South Floria Systems and methods for converting carbon dioxide into chemical feedstock

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141385A1 (ja) * 2012-03-23 2013-09-26 独立行政法人科学技術振興機構 熱化学燃料製造用触媒及び熱化学燃料製造方法
US8999283B1 (en) * 2012-05-30 2015-04-07 University Of South Floria Systems and methods for converting carbon dioxide into chemical feedstock

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BROWER JEREMY C., HARE BRYAN J., BHETHANABOTLA VENKAT R., KUHN JOHN N.: "Mesoporous Silica Supported Perovskite Oxides for Low Temperature Thermochemical CO 2 Conversion", CHEMCATCHEM, vol. 12, no. 24, 16 December 2020 (2020-12-16), pages 6317 - 6328, XP055964244, ISSN: 1867-3880, DOI: 10.1002/cctc.202001216 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119956A1 (ja) * 2021-12-24 2023-06-29 Eneos株式会社 水素および一酸化炭素の少なくとも一方の製造方法、合成ガスの製造方法ならびに反応媒体

Also Published As

Publication number Publication date
EP4309786A1 (en) 2024-01-24
CN117042876A (zh) 2023-11-10
JPWO2022196729A1 (ja) 2022-09-22

Similar Documents

Publication Publication Date Title
Hu et al. Bifunctional Ni-Ca based material for integrated CO2 capture and conversion via calcium-looping dry reforming
Song et al. A high performance oxygen storage material for chemical looping processes with CO 2 capture
Marcos et al. Insights into the methanol synthesis mechanism via CO2 hydrogenation over Cu-ZnO-ZrO2 catalysts: Effects of surfactant/Cu-Zn-Zr molar ratio
Guo et al. Effect of micro-structure and oxygen vacancy on the stability of (Zr-Ce)-additive CaO-based sorbent in CO2 adsorption
CN103118777B (zh) 纳米线催化剂
US9114359B2 (en) Method for producing sorbents for CO2 capture under high temperatures
Cwele et al. Effect of Cu additives on the performance of a cobalt substituted ceria (Ce0. 90Co0. 10O2–δ) catalyst in total and preferential CO oxidation
Liang et al. Template preparation of nanoscale Ce x Fe 1− x O 2 solid solutions and their catalytic properties for ethanol steam reforming
EP4129920A1 (en) Reducing agent, and method for producing gas
Misture et al. Sulfur-resistant and regenerable Ni/Co spinel-based catalysts for methane dry reforming
Ranjbar et al. Reverse water gas shift reaction and CO2 mitigation: nanocrystalline MgO as a support for nickel based catalysts
Zhu et al. Microstructure and reactivity evolution of LaFeAl oxygen carrier for syngas production via chemical looping CH4CO2 reforming
CA2942587A1 (en) Yttrium-containing catalyst for high-temperature carbon dioxide hydration, combined high-temperature carbon dioxide hydration, and reforming and/or reforming, and a method for high-temperature carbon dioxide hydration, combined high-temperature carbon dioxide hydration and reforming an/or reforming
Zhang et al. Hydrothermal synthesis and catalytic performance of single-crystalline La2− xSrxCuO4 for methane oxidation
EP4219403A1 (en) Oxygen carrier, method for producing oxygen carrier, and method for producing gas
WO2022196729A1 (ja) 還元剤およびガスの製造方法
JPWO2021192871A5 (ja)
Ding et al. Migration of cations in layered oxides for creating a highly active interface toward CO preferential oxidation
Li et al. Enhanced performance of the CeO2MgO oxygen carrier by NiO for chemical looping CO2 splitting
Li et al. Ni/ZrO 2 catalysts synthesized via urea combustion method for CO 2 methanation
Sastre et al. Effect of low-loading of Ni on the activity of La0. 9Sr0. 1FeO3 perovskites for chemical looping dry reforming of methane
Summa et al. Optimization of Co-Ni-Mg-Al mixed-oxides CO2 methanation catalysts with solution combustion synthesis: On the importance of Co incorporation and basicity
Bhosale et al. H2 generation from thermochemical water-splitting using sol-gel synthesized ferrites (MxFeyOz, M= Ni, Zn, Sn, Co, Mn, Ce)
WO2005030391A1 (en) Catalyst and method for the generation of co-free hydrogen from methane
WO2021192872A1 (ja) 還元剤およびガスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771474

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023507155

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280021852.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022771474

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022771474

Country of ref document: EP

Effective date: 20231017