WO2013125359A1 - ポリエステル樹脂組成物からなる成形体 - Google Patents

ポリエステル樹脂組成物からなる成形体 Download PDF

Info

Publication number
WO2013125359A1
WO2013125359A1 PCT/JP2013/052831 JP2013052831W WO2013125359A1 WO 2013125359 A1 WO2013125359 A1 WO 2013125359A1 JP 2013052831 W JP2013052831 W JP 2013052831W WO 2013125359 A1 WO2013125359 A1 WO 2013125359A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
group
resin composition
less
temperature
Prior art date
Application number
PCT/JP2013/052831
Other languages
English (en)
French (fr)
Inventor
広樹 沢田
茂久 上村
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN201380010612.2A priority Critical patent/CN104159969B/zh
Priority to EP13751881.7A priority patent/EP2818518B1/en
Priority to US14/375,613 priority patent/US9062199B2/en
Priority to KR1020147025647A priority patent/KR101889135B1/ko
Publication of WO2013125359A1 publication Critical patent/WO2013125359A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0017Combinations of extrusion moulding with other shaping operations combined with blow-moulding or thermoforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/02Combined thermoforming and manufacture of the preform
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/18Plasticising macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • B29K2067/046PLA, i.e. polylactic acid or polylactide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0038Plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/256Sheets, plates, blanks or films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/004Semi-crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides

Definitions

  • the present invention relates to a molded body made of a polyester resin composition. More specifically, the present invention relates to a molded article made of a polyester resin composition that can be suitably used as household goods, household appliance parts, food containers, and the like, and a method for producing the molded article.
  • biodegradable resin When biodegradable resin is placed in soil, seawater, or the body of an animal, for example, it begins to degrade in a few weeks due to the action of enzymes produced by microorganisms that inhabit the natural world. Disappears. Therefore, in recent years, its use has attracted attention due to the growing environmental awareness.
  • Patent Document 1 a polyester system having a repeating unit of a dihydric alcohol, the terminal is sealed with a monobasic acid and / or a monohydric alcohol, and the sum of the acid value and the hydroxyl value is 40 or less. with plasticizer, because of their excellent compatibility with the polymer, while maintaining the transparency of the lactic acid-based polymer, a resin composition excellent in water resistance and flexibility are disclosed to be obtained.
  • Patent Document 2 a resin composition excellent in flexibility and storage stability can be obtained by melt-kneading a plasticizer in a lactic acid-based polyester in which a polymerization catalyst is deactivated with a chelating agent and / or an acidic phosphate ester. It has been reported that a molded product having excellent heat resistance and solvent resistance can be obtained by molding and crystallizing the composition.
  • Patent Document 3 an amorphous sheet obtained by melt extrusion of a polylactic acid resin composition containing a polylactic acid resin, a plasticizer, and a crystal nucleating agent is rapidly cooled to solidify the crystal nucleating agent, and then heated. Thus, by crystallization, a polylactic acid resin sheet excellent in heat resistance and printability is obtained.
  • Patent Document 4 a molded product obtained by vacuum molding, pressure molding, or vacuum / pressure molding of a resin composition in which a specific (poly) glycerin ester plasticizer is blended with an aliphatic polyester is moderately soft.
  • a specific (poly) glycerin ester plasticizer is blended with an aliphatic polyester
  • blended the specific (poly) glycerin ester type plasticizer with aliphatic polyester is a film which has the outstanding transparency, heat resistance, and flexibility in which the bleeding of a plasticizer is suppressed. It is reported that it is suitable as a raw material for moldings such as As the film, a stretched film having a crystallinity of 20 to 60% is disclosed.
  • Patent Document 7 the composition containing a polylactic acid resin and a flame retardant in the resin composition the degree of crystallinity was compounded cellulose of less than 50%, further examples blended with oligo ester plasticizer is disclosed ing. It has been shown that a molded product obtained by injection molding such a resin composition is excellent in strength, flexibility, impact resistance, and flame retardancy.
  • the present invention relates to the following [1] to [8].
  • R 1 is an alkyl group having 1 to 4 carbon atoms
  • R 2 is an alkylene group having 2 to 4 carbon atoms
  • R 3 is an alkylene group having 2 to 6 carbon atoms
  • m is 1 to 6
  • n represents a number from 1 to 12, provided that all R 2 may be the same or different, and all R 3 may be the same or different.
  • Step (1) A sheet or film obtained by extruding a polyester resin composition containing a polyester resin and a polyester plasticizer represented by formula (I) from a die by an extrusion molding method is used.
  • Step (2-1) The sheet or film obtained in Step (1) is heated to a temperature not lower than the glass transition temperature (Tg) of the polyester resin composition and lower than the melting point (Tm) of the polyester resin composition.
  • Step (2-3) The sheet obtained in the step (1) is uniaxial in a temperature range not lower than the glass transition temperature (Tg) of the polyester resin composition and not higher than the cold crystallization temperature (Tc) of the polyester resin composition.
  • Tg glass transition temperature
  • Tc cold crystallization temperature
  • a process of obtaining a stretched film biaxially stretched and crystallized to a relative crystallinity of 80% or more [6] (1) Clear case for products selected from daily necessities, cosmetics, and home appliances, and transparency of paper boxes Use of the molded article according to the above [1] for producing a packaging container selected from the group consisting of windows, or (2) stationery selected from a clear holder and an ID card case.
  • [7] To produce blister packs or trays for products selected from daily necessities, cosmetics, and household appliances, (2) food containers, or (3) industrial trays used for transport and protection of industrial parts. Use of the molded article according to [1] above. [8] (1) A packaging material for a product selected from daily necessities, cosmetics, and home appliances, (2) an industrial film, or (3) a food packaging film according to the above [1] Use of molded bodies.
  • FIG. 1 is a view showing a mold used when preparing a thermoformed product of an example.
  • a specific plasticizer is blended to increase the compatibility between components, or the resin itself is pretreated to prepare a resin composition in which thermal decomposition of the resin is suppressed, and crystallize it. It is possible to obtain a molded body such as a sheet or film excellent in heat resistance, a thermoformed product excellent in heat resistance, transparency and bleed resistance, and a stretched film excellent in strength and flexibility, transparency and bleed resistance. Is possible. However, since the transparency is not sufficient or the crystallinity is not yet sufficient, the strength is inferior, and the applicable applications are limited.
  • the present invention relates to a sheet or film made of a polyester resin composition, obtained with good workability, good transparency, excellent heat resistance and bleed resistance, and a method for producing them.
  • the present invention relates to a thermoformed article comprising a polyester resin composition having a high crystallinity and excellent in transparency, heat resistance, bleed resistance, and strength, and a method for producing the same.
  • the present invention relates to a stretched film made of a polyester resin composition, which has a high crystallinity and is excellent in transparency, bleed resistance and strength, and a method for producing the same.
  • the sheet or film of the present invention can be obtained with good workability, has excellent transparency and excellent heat resistance and bleed resistance.
  • thermoformed product of the present invention has an excellent effect that it has a high crystallinity and is excellent in transparency, heat resistance, bleed resistance, and strength.
  • the stretched film of the present invention has an excellent effect of having a high degree of crystallinity and excellent transparency, bleed resistance, and strength.
  • the molded article of the present invention comprises a polyester resin composition containing a polyester resin and a polyester plasticizer, and is characterized in that the plasticizer is a specific compound.
  • Specific embodiments of the molded body of the present invention include (1) a sheet or film, (2) a thermoformed product, and (3) a stretched film.
  • polyester plasticizers are polymer compounds having a high acid value or hydroxyl value.
  • the acid group for example, carboxyl group
  • hydroxyl group of the compound causes the polyester resin to be decomposed or bleed to decompose itself. If the material is heated and molded, the transparency of the molded body tends to be lowered. Therefore, in the present invention, the compound represented by the formula (I) is used. Since the compound has few acid groups and hydroxyl groups and the end of the compound is capped, decomposition of the polyester resin is suppressed due to low reactivity with the polyester resin. Further, the compound has a chain structure in which each segment in the molecule has an appropriate polarity, so that an appropriate interaction with the polyester resin is obtained and the compatibility with the polyester resin is improved.
  • the polyester resin composition containing the compound has improved plasticity, and a molded product obtained by molding the obtained resin composition into, for example, a sheet or film is excellent in transparency and excellent in bleed resistance of the plasticizer. It will be a thing.
  • dibasic acid esters composed of monoalkyl ethers of polyalkylene glycols and dibasic acids the ether group content ratio as a polar group is low, and the oxidation stability and volatility resistance are excellent. Smoke from the machine is suppressed and workability is improved, and the heat resistance of the molded body is improved.
  • the polyester resin composition containing the compound has improved plasticity and moldability (wide temperature range that can be molded in thermoforming), and a thermoformed product obtained by secondary processing (thermoforming)
  • the plasticizer has good bleeding resistance, excellent transparency, and excellent heat resistance and strength.
  • the compatibility with the polyester resin and the plasticity are high, the orientation of the polyester molecules in the thermoforming process is promoted uniformly, and the crystallinity is improved.
  • the polyester resin composition containing the compound has improved plasticity and stretchability, and the stretched film obtained by secondary processing (stretching) is excellent in transparency and bleed resistance of the plasticizer. Will also be excellent.
  • the compatibility with the polyester resin and the plasticity are high, the orientation of the polyester molecules in the stretching process is promoted uniformly, and the crystallinity is also improved.
  • polyester resin composition [Polyester resin]
  • the polyester resin is not particularly limited as long as it is known in the art, but preferably has biodegradability, and a biodegradable polyester resin is preferable.
  • a biodegradable polyester resin is preferable.
  • Aliphatic polyester resins such as polybutylene succinate / terephthalate, polybutylene adipate / terephthalate, polytetramethylene adipate / terephthalate, etc .; starch, cellulose, chitin, chitosan, gluten, gelatin, zein And mixtures of natural polymers such as soybean protein, collagen, keratin and the like with
  • biodegradable means a property that can be decomposed into a low molecular weight compound by a microorganism in nature. It means biodegradability based on the “aerobic and ultimate biodegradability and disintegration test”.
  • polylactic acid resin examples include commercially available polylactic acid resins (for example, Mitsui Chemicals, Inc., trade names: Lacia H-100, H-280, H-400, H-440, etc., Nature Works, Inc .: trade name, Nature).
  • Polylactic acid resin synthesized from lactic acid or lactide may be mentioned.
  • a polylactic acid resin having an optical purity of 90% or more is preferable.
  • a polylactic acid resin (NW4032D or the like) manufactured by Nature Works with a relatively high molecular weight and high optical purity is preferable.
  • the polylactic acid resin is obtained by using a lactic acid component mainly composed of different isomers from the viewpoint of coexistence of strength and flexibility of the polyester resin composition, and improvement of heat resistance and transparency.
  • a lactic acid component mainly composed of different isomers from the viewpoint of coexistence of strength and flexibility of the polyester resin composition, and improvement of heat resistance and transparency.
  • stereocomplex polylactic acid composed of two types of polylactic acid may be used.
  • polylactic acid (A) contains 90 to 100 mol% of L isomer and 0 to 10 mol% of other components including D isomer.
  • the other polylactic acid (hereinafter referred to as polylactic acid (B)) contains 90 to 100 mol% of D isomer and 0 to 10 mol% of other components including L isomer.
  • dicarboxylic acid, polyhydric alcohol, hydroxycarboxylic acid, lactone, etc. having a functional group capable of forming two or more ester bonds are exemplified, and unreacted Polyester, polyether, polycarbonate or the like having two or more of the functional groups in the molecule may be used.
  • the weight ratio of polylactic acid (A) to polylactic acid (B) [polylactic acid (A) / polylactic acid (B)] is preferably 10/90 to 90/10, and 20/80 to 80 / 20 is more preferable, and 40/60 to 60/40 is more preferable.
  • the polylactic acid resin in the present invention may be contained as a polymer alloy by blending a non-biodegradable resin other than the polylactic acid resin or a non-biodegradable resin such as polypropylene with a polylactic acid resin.
  • a polylactic acid resin other than a polylactic acid resin (modified polylactic acid resin) composed of a lactic acid component, a dicarboxylic acid component, and a diol component is preferable from the viewpoint of resin physical properties and economy.
  • the content of the polylactic acid resin in the polyester resin is preferably 80% by weight or more, more preferably 90% by weight or more, and further preferably substantially 100% by weight.
  • the content of the polyester resin is not particularly limited, but is preferably 50% by weight or more, more preferably 60% by weight or more, and further preferably 70% by weight or more in the polyester resin composition.
  • R 1 in formula (I) represents an alkyl group having 1 to 4 carbon atoms, and two of them exist in one molecule and exist at both ends of the molecule.
  • R 1 may be linear or branched as long as it has 1 to 4 carbon atoms.
  • the number of carbon atoms of the alkyl group is preferably 1 to 4 and more preferably 1 to 2 from the viewpoint of improving the compatibility with the polyester resin and exhibiting a plasticizing effect.
  • Specific examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a sec-butyl group, a tert-butyl group, and an iso-butyl group.
  • the compatibility with a polyester resin is improved. From the viewpoint of developing a plasticizing effect, a methyl group and an ethyl group are preferable, and a methyl group is more preferable.
  • R 2 in the formula (I) represents an alkylene group having 2 to 4 carbon atoms, and a linear alkylene group is a preferred example.
  • Specific examples include an ethylene group, a 1,3-propylene group, and a 1,4-butylene group.
  • the ethylene group, 1 1,3-propylene group is preferred, ethylene group is more preferred, and ethylene group and 1,4-butylene group are preferred, and ethylene group is more preferred from the viewpoint of developing a plasticizing effect and economical efficiency.
  • all R 2 may be the same or different.
  • R 3 in the formula (I) represents an alkylene group having 2 to 6 carbon atoms, and exists as an oxyalkylene group in the repeating unit.
  • R 3 may be linear or branched as long as it has 2 to 6 carbon atoms.
  • the number of carbon atoms of the alkylene group is preferably 2 to 6 and more preferably 2 to 3 from the viewpoint of improving the compatibility with the polyester resin and exhibiting a plasticizing effect.
  • An ethylene group, 1,2-propylene group, 1,3-propylene group and 1,4-butylene group are preferred. However, all R 3 may be the same or different.
  • M represents the average number of repeating oxyalkylene groups and is a number of 1 to 6.
  • the ether group value of the compound represented by formula (I) increases, and it is oxidized and easily decomposed.
  • the number is 1 to 6, preferably 1 to 4, more preferably 1 to 3.
  • a number of ⁇ 2 is more preferred.
  • n represents the average number of repeating units (average polymerization degree), and from the viewpoint of volatility, it is preferably 1 or more, more preferably 1.2 or more, still more preferably 1.5 or more, and still more preferably 1. 8 or more, more preferably 2 or more. Further, from the viewpoint of plasticizing efficiency, it is preferably 12 or less, more preferably 10 or less, further preferably 8 or less, further preferably 7 or less, and further preferably 6 or less. Further, n is preferably 1 to 12, more preferably 1 to 8, and still more preferably from the viewpoint of improving the compatibility between the volatile resistance and the polyester resin and improving the plasticizing effect and plasticizing efficiency. Is from 1.2 to 8, more preferably from 1.5 to 7, and even more preferably from 1.8 to 7. In the present specification, the average degree of polymerization can be calculated according to the method described in Examples described later.
  • R 1 is methyl
  • R 2 is an ethylene group
  • R 3 is an ethylene group
  • an ester of m 2
  • n is 1.6, R 1 there but a methyl group
  • R 2 is an ethylene group
  • a R 3 is an ethylene group
  • an ester of m 2
  • n is 2.1, R 1 is methyl
  • R 2 is an ethylene group
  • R 3 is an ethylene group
  • An ester wherein m is 2, n is 4.3, R 1 is a methyl group, R 2 is an ethylene group, R 3 is a 1,3-propylene group, m is 1, and n is 4.4 ,
  • R 1 is a methyl group
  • R 2 is an ethylene group
  • R 3 is a 1,2-propylene group
  • m is 1, n is an ester of 3.6
  • R 1 is an ethyl group
  • R 2 is 1, 4 - butylene group
  • a R 3 is 1,3-propylene group
  • R 1 is all methyl group
  • R 2 is ethylene group or 1,4-butylene group
  • R 3 is ethylene group, 1,3-propylene group or 1,2-propylene group
  • m Are compounds in which n is 1 to 3 and n is 1 to 8, R 1 is all methyl, R 2 is ethylene or 1,4-butylene, R 3 is ethylene, 1,3- More preferred is a compound which is a propylene group or a 1,2-propylene group, wherein m is a number of 1 to 2 and n is a number of 1.8 to 7.
  • the compound represented by the formula (I) is not particularly limited as long as it has the above structure, but those obtained using the following raw materials (1) to (3) are preferable.
  • the monohydric alcohol having an alkyl group having 1 to 4 carbon atoms is an alcohol containing R 1 , specifically, methanol, Examples include ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, and 1,1-dimethyl-1-ethanol. Of these, methanol, ethanol, 1-propanol, and 1-butanol are preferable from the viewpoint of improving the compatibility with the polyester resin and exhibiting a plasticizing effect, and increasing the efficiency of the transesterification reaction. More preferred is methanol and even more preferred.
  • the dicarboxylic acid having an alkylene group having 2 to 4 carbon atoms is a dicarboxylic acid containing R 2 , specifically, succinic acid
  • examples include glutaric acid, adipic acid, and derivatives thereof (for example, succinic anhydride, glutaric anhydride, dimethyl succinate, dibutyl succinate, dimethyl glutarate, dimethyl adipate).
  • succinic acid, glutaric acid, and derivatives thereof for example, succinic anhydride, glutaric anhydride, dimethyl succinate, succinic acid are used from the viewpoint of improving the compatibility with the polyester resin and exhibiting a plasticizing effect.
  • succinic acid and derivatives thereof for example, succinic anhydride, dimethyl succinate
  • succinic acid, adipic acid and Their derivatives eg, succinic anhydride, dimethyl succinate, dibutyl succinate, dimethyl adipate
  • succinic acid and its derivatives eg, succinic anhydride, dimethyl succinate, dibutyl succinate
  • Dihydric alcohol having an alkylene group having 2 to 6 carbon atoms is a dihydric alcohol containing R 3 , specifically, Ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, 1,2-pentanediol, 1,4-pentanediol, 1,5 -Pentanediol, 2,2-dimethyl-1,3-propanediol, 2,5-hexanediol, 1,6-hexane Ol, 2,5-hexane
  • diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, tetraethylene glycol, 1,4-butane are used from the viewpoint of improving the compatibility with the polyester resin and exhibiting a plasticizing effect.
  • Diols are preferred, diethylene glycol, triethylene glycol, 1,2-propanediol and 1,3-propanediol are more preferred, and diethylene glycol, 1,2-propanediol and 1,3-propanediol are more preferred.
  • the monohydric alcohol is at least one selected from the group consisting of methanol, ethanol, 1-propanol, and 1-butanol
  • the dicarboxylic acid is a group consisting of succinic acid, glutaric acid, and derivatives thereof.
  • the dihydric alcohol is diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, tetraethylene glycol, and 1,4-butanediol It is preferably at least one selected from (1) The monohydric alcohol is at least one selected from the group consisting of methanol and ethanol, and (2) the dicarboxylic acid is at least one selected from the group consisting of succinic acid, glutaric acid, and derivatives thereof, (3) The dihydric alcohol is more preferably at least one selected from the group consisting of diethylene glycol, triethylene glycol, 1,2-propanediol, and 1,3-propanediol, (1) the monohydric alcohol is methanol, (2) the dicarboxylic acid is at least one selected from the group consisting of succinic acid and derivatives thereof, and (3) the dihydric alcohol is diethylene glycol, 1,2-propanediol, And at least one selected from the group consisting of
  • the method for obtaining the compound represented by the formula (I) by using the above (1) to (3) is not particularly limited, and examples thereof include the following methods 1 and 2.
  • Aspect 1 (2) Step of synthesizing dicarboxylic acid ester by performing esterification reaction of (2) dicarboxylic acid with (1) monohydric alcohol (Step 1), and (3) esterifying the obtained dicarboxylic acid ester and (3) dihydric alcohol
  • the method of aspect 1 in which the alcoholic decomposition of the polyester resin hardly occurs is preferable.
  • Aspect 1 is a method in which a dicarboxylic acid ester, which is a reaction product of a dicarboxylic acid and a monohydric alcohol, is transesterified with a dihydric alcohol, and in this specification, the method of Aspect 1 is also referred to as a transesterification reaction.
  • Step 1 of Embodiment 1 (2) dicarboxylic acid and (1) monohydric alcohol are esterified to synthesize a dicarboxylic acid ester.
  • the esterification method include (2) a dehydration esterification method in which (1) a monohydric alcohol is added to a mixture of a dicarboxylic acid and a catalyst and stirred, and water and monohydric alcohol produced are removed from the system. It is done.
  • the catalyst examples include inorganic acids such as sulfuric acid, phosphoric acid, methanesulfonic acid, and paratoluenesulfonic acid, and organic acids. Among these, paratoluenesulfonic acid is preferable.
  • the amount of the catalyst used is preferably 0.05 to 10 mol, more preferably 0.10 to 3 mol, per 100 mol of dicarboxylic acid.
  • the molar ratio of the monohydric alcohol to the dicarboxylic acid is preferably 2/1 to 20/1, more preferably 3/1 to 12/1, from the viewpoint of improving the reaction rate and economy.
  • the “reaction rate” means the rate at which the raw materials subjected to the reaction have reacted with respect to the dicarboxylic acid.
  • the reaction temperature depends on the type of monohydric alcohol used, but is preferably 50 to 200 ° C., more preferably 80 to 140 ° C. from the viewpoint of improving the reaction rate and suppressing side reactions.
  • the reaction time is preferably 0.5 to 15 hours, more preferably 1.0 to 5 hours.
  • the reaction may be performed under reduced pressure, and the reaction pressure is preferably 2.7 to 101.3 kPa, more preferably 6.7 to 101.3 kPa.
  • the obtained dicarboxylic acid ester has an alkyl esterification rate with respect to two molecular ends of preferably 90% or more, more preferably 95% or more, and further preferably 98% or more.
  • the alkyl esterification rate can be calculated according to the method described in the examples described later.
  • the dicarboxylic acid ester thus obtained is subjected to step 2.
  • the reaction product obtained as described above may be used, but a commercially available product may be used, and the commercially available product may be subjected to Step 2.
  • suitable commercially available products include dimethyl succinate (manufactured by Wako Pure Chemical Industries, Ltd.) and dimethyl adipate (manufactured by Wako Pure Chemical Industries, Ltd.).
  • step 2 of embodiment 1 a transesterification reaction of dicarboxylic acid ester with (3) dihydric alcohol is performed.
  • (3) a dihydric alcohol is continuously added to a mixture of a dicarboxylic acid ester and a catalyst, and the resulting monohydric alcohol is removed from the system, or (3) a divalent Examples include a transesterification reaction in which a dicarboxylic acid ester is continuously added to a mixture of an alcohol and a catalyst, and the resulting monohydric alcohol is removed from the system.
  • the reaction can proceed by shifting the equilibrium by distilling off the produced monohydric alcohol.
  • the catalyst may be added stepwise.
  • the dihydric alcohol is added to the dicarboxylic acid ester, or the dihydric alcohol is added when the dicarboxylic acid ester is added to the dihydric alcohol.
  • the dicarboxylic acid ester used for transesterification can use the reaction mixture obtained by the above-mentioned esterification reaction, or a commercial item as it is, and can also use it after distilling and isolating.
  • the catalyst examples include inorganic acids such as sulfuric acid, phosphoric acid, methanesulfonic acid, and paratoluenesulfonic acid, and organic acids, organic metal compounds such as tetraisopropoxy titanium and tetrabutoxy titanium, and alkalis such as sodium methoxide. An alkoxide etc. are mentioned. Of these, p-toluenesulfonic acid, tetraisopropoxy titanium, tetrabutoxy titanium, and sodium methoxide are preferable.
  • the amount of the catalyst used is, for example, preferably from 0.05 to 10 mol, more preferably from 0.10 to 5 mol, with respect to 100 mol of dicarboxylic acid ester, for paratoluenesulfonic acid and sodium methoxide, tetraisopropoxy titanium In tetrabutoxy titanium, 0.0001 to 0.1 mol is preferable, and 0.0005 to 0.05 mol is more preferable.
  • the usage-amount of a catalyst here means the total usage-amount of the catalyst used at the process 2.
  • the molar ratio of the dicarboxylic acid ester to the dihydric alcohol is preferably 1.1 / 1 to 10/1 from the viewpoint of controlling the molecular weight of the ester compound in the present invention, 1 to 4/1 is more preferable, and 1.3 / 1 to 3/1 is further preferable.
  • the reaction temperature is preferably 50 to 250 ° C., more preferably 60 to 150 ° C. from the viewpoint of improving the reaction rate and suppressing side reactions.
  • the “reaction rate” means the rate at which the raw materials subjected to the reaction have reacted with respect to the dihydric alcohol.
  • the reaction time is preferably 0.1 to 10 hours, and more preferably 1 to 10 hours.
  • the reaction may be performed under reduced pressure, and the reaction pressure is preferably 0.7 to 101.3 kPa, more preferably 2.0 to 101.3 kPa.
  • the raw materials can be supplied in a batch or divided, but the monohydric alcohol may be introduced into the reactor in a divided or continuous manner.
  • the catalyst examples include inorganic acids such as sulfuric acid, phosphoric acid, methanesulfonic acid, and paratoluenesulfonic acid, and organic acids. Among them, paratoluenesulfonic acid is preferable.
  • the amount of catalyst used is preferably 0.05 to 10 mol, more preferably 0.10 to 5 mol, per 100 mol of dicarboxylic acid.
  • the molar ratio of dicarboxylic acid, monohydric alcohol and dihydric alcohol is 1.1 / 1.1 / 1 from the viewpoint of controlling the molecular weight of the ester compound in the present invention. ⁇ 10 / 100/1 is preferred, 1.2 / 3/1 to 3/30/1 is more preferred, and 1.3 / 5/1 to 3/20/1 is even more preferred.
  • the molar ratio of dicarboxylic acid to dihydric alcohol is preferably 1.2 / 1 to 3/1.
  • reaction temperature depends on the type of alcohol used, it is preferably 50 to 200 ° C., and the reaction time is preferably 0.5 to 15 hours.
  • the reaction may be performed under reduced pressure, and preferably under a pressure of 6.7 to 101.3 kPa. Further, the reaction is carried out at a temperature of 70 to 140 ° C. under normal pressure (101.3 kPa) for 3 to 5 hours to remove water and monohydric alcohol to be formed, and then a temperature of 70 to 120 ° C. and a pressure of 0.7 to 26.7 kPa. May be aged for 0.5 to 3 hours.
  • the dicarboxylic acid ester obtained after synthesizing the dicarboxylic acid ester by performing esterification reaction (dehydration esterification reaction) of (2) dicarboxylic acid and (3) dihydric alcohol Furthermore, (1) monohydric alcohol may be esterified (dehydrated esterification).
  • the obtained reaction product may be distilled off unreacted raw materials and by-products according to a known method.
  • the compound represented by the formula (I) has an acid value of preferably 1.00 mgKOH / g or less, more preferably 0.90 mgKOH from the viewpoint of bleed resistance and durability of the sheet, film, thermoformed product and stretched film. / G or less, preferably 0.05 mgKOH / g or more, more preferably 0.1 mgKOH / g or more.
  • the hydroxyl value is preferably 10.0 mgKOH / g or less, more preferably 8.0 mgKOH / g or less, still more preferably 5.0 mgKOH / g or less, preferably 0.1 mgKOH / g. As mentioned above, More preferably, it is 0.2 mgKOH / g or more.
  • the acid value and hydroxyl value of a plasticizer can be measured according to the method as described in the below-mentioned Example.
  • the saponification value of the compound represented by the formula (I) is preferably 500 mgKOH / g or more from the viewpoint of improving the compatibility with the polyester resin and suppressing the generation of volatile organic compounds from the polyester resin composition.
  • 600 mgKOH / g or more is more preferable, 800 mgKOH / g or less is preferable, and 750 mgKOH / g or less is more preferable.
  • 500 to 800 mgKOH / g is preferable, and 600 to 750 mgKOH / g is more preferable.
  • the saponification value of a plasticizer can be measured according to the method as described in the below-mentioned Example.
  • the number average molecular weight of the compound represented by formula (I) is from the viewpoint of improving volatility resistance and plasticizing efficiency, or from the viewpoint of improving volatility resistance and plasticizing efficiency and improving thermoformability, Preferably it is 500 or more, More preferably, it is 600 or more, More preferably, it is 700 or more, Preferably it is 1500 or less, More preferably, it is 1400 or less, More preferably, it is 1300 or less, More preferably, it is 1200 or less. Further, it is preferably 500 to 1500, more preferably 500 to 1400, still more preferably 500 to 1300, still more preferably 500 to 1200, still more preferably 600 to 1200, and still more preferably 700 to 1200.
  • the number average molecular weight of the polyester resin composition becomes good, and the volatilization of the plasticizer from the resin composition is suppressed. Therefore, the bending of the molded body of the resin composition over time Reduction in physical properties such as elastic modulus, heat resistance and bleed resistance is reduced. Further, when the molecular weight is increased, the compatibility with the polylactic acid resin is excellent, and the softening temperature and the crystallization speed are appropriately controlled. As a result, the moldable temperature range is improved.
  • the number average molecular weight of the plasticizer can be calculated according to the method described in Examples described later.
  • the compound represented by the formula (I) preferably has an acid value of 1.00 mgKOH / g or less, a hydroxyl value of 10.0 mgKOH / g or less, a number average molecular weight of 500 to 1500, and an acid value of 0.8. More preferably, it is 90 mgKOH / g or less, the hydroxyl value is 8.0 mgKOH / g or less, and the number average molecular weight is 500 to 1400, the acid value is 0.90 mgKOH / g or less, the hydroxyl value is 8.0 mgKOH / g or less, the number The average molecular weight is more preferably 600 to 1200.
  • the compound represented by the formula (I) has an alkyl esterification rate with respect to two molecular ends (from the viewpoint of improving the compatibility with the polyester resin and developing the plasticizing effect and improving the plasticizing efficiency (The terminal alkyl esterification ratio) is preferably 85% or more, more preferably 90% or more.
  • the terminal alkyl esterification rate of the plasticizer can be calculated according to the method described in Examples described later.
  • the ether group value of the compound represented by the formula (I) is preferably 1 mmol / g or more from the viewpoint of improving the compatibility with the polyester resin and suppressing the generation of volatile organic compounds from the polyester resin composition. Yes, preferably 8 mmol / g or less, more preferably 6 mmol / g or less, and even more preferably 5 mmol / g or less. Further, 0 to 8 mmol / g is preferable, 0 to 6 mmol / g is more preferable, 1 to 6 mmol / g is further preferable, and 1 to 5 mmol / g is further preferable.
  • the ether group value of the plasticizer can be calculated according to the method described in Examples described later.
  • the compound represented by the formula (I) has an SP (Solubility Parameter) value of preferably 10.0 or more, more preferably 10.1 or more, and still more preferably Is 10.2 or more, preferably 12.0 or less, more preferably 11.5 or less, and still more preferably 11.2 or less. Further, it is preferably 10.0 to 12.0, more preferably 10.1 to 11.5, and still more preferably 10.2 to 11.2.
  • SP Solubility Parameter
  • SP value ( ⁇ E / V) 1/2 (cal 1/2 cm ⁇ 3/2 )
  • a plasticizer other than the compound represented by the formula (I) can be used in combination as long as the effects of the present invention are not impaired.
  • the other plasticizer is not particularly limited, and is an ester compound having two or more ester groups in the molecule, and at least one alcohol component constituting the ester compound has 2 to 2 carbon atoms per hydroxyl group.
  • An ester compound which is an alcohol obtained by adding 0.5 to 5 moles of an average of 3 alkylene oxides is preferable.
  • Specific examples thereof include plasticizers described in JP-A-2008-174718 and JP-A-2008-115372. It is done.
  • the content of the compound represented by the formula (I) is preferably 50% by weight or more, more preferably 80% by weight or more from the viewpoint of heat resistance and molding workability in all plasticizer components contained in the composition. 90% by weight or more is more preferable, and substantially 100% by weight is further preferable.
  • the content of the compound represented by the formula (I) is excellent in the plasticizing effect, but the generation of volatile organic compounds is suppressed.
  • the plasticizer content that is, the total content of the other plasticizers and the compound represented by the formula (I) is to improve the heat resistance, transparency and moldability of the molded article made of the polyester resin composition. From the viewpoint, it is preferably 1 part by weight or more, more preferably 5 parts by weight or more, preferably 50 parts by weight or less, more preferably 30 parts by weight or less, with respect to 100 parts by weight of the polyester resin. The amount is preferably 1 to 50 parts by weight, more preferably 5 to 30 parts by weight.
  • the polyester resin composition in the present invention preferably further contains a crystal nucleating agent and a hydrolysis inhibitor in addition to the polyester resin and the compound represented by the formula (I). That is, as one aspect of the polyester resin composition in the present invention, a polyester resin, an embodiment containing a compound represented by formula (I), and a crystal nucleating agent, a polyester resin, a compound represented by formula (I), a crystal The aspect containing a nucleating agent and a hydrolysis inhibitor is mentioned.
  • crystal nucleating agent examples include inorganic crystal nucleating agents and organic crystal nucleating agents.
  • inorganic crystal nucleating agents include natural or synthetic silicate compounds, metal salts such as titanium oxide, barium sulfate, tricalcium phosphate, calcium carbonate, sodium phosphate, kaolinite, halloysite, talc, smectite, vermiculite, mica, etc. Is mentioned.
  • organic crystal nucleating agent include carboxylic acid amides and metal salts of phenylphosphonic acid. From the viewpoint of improving transparency, carboxylic acid amides are preferable.
  • Examples of the carboxylic acid amide include ethylene bis fatty acid amide, alkylene bis fatty acid amide, and alkylene bishydroxy fatty acid amide.
  • Examples of the ethylene bis fatty acid amide include ethylene bis stearic acid amide and ethylene bis oleic acid amide, and examples of the alkylene bis fatty acid amide include propylene bis fatty acid amide and butylene bis fatty acid amide.
  • the alkylene bishydroxy fatty acid amide is preferably an alkylene bishydroxy stearic acid amide having an alkylene group of 1 to 6 carbon atoms, more preferably ethylene bis 12-hydroxy stearic acid amide.
  • the content of the crystal nucleating agent is preferably 0.1 parts by weight or more, preferably 100 parts by weight or more with respect to 100 parts by weight of the polyester resin, from the viewpoint of improving the transparency of the molded article comprising the polyester resin composition or the polyester resin composition.
  • hydrolysis inhibitor examples include carbodiimide compounds such as polycarbodiimide compounds and monocarbodiimide compounds.
  • carbodiimide compounds such as polycarbodiimide compounds and monocarbodiimide compounds.
  • polycarbodiimide compounds are preferable, and durability of the polyester resin composition is preferred.
  • a monocarbodiimide compound is preferable.
  • polycarbodiimide compound examples include poly (4,4′-diphenylmethanecarbodiimide), poly (4,4′-dicyclohexylmethanecarbodiimide), poly (1,3,5-triisopropylbenzene) polycarbodiimide, poly (1,3,3). 5-triisopropylbenzene and 1,3-diisopropylbenzene) polycarbodiimide and the like, and examples of the monocarbodiimide compound include N, N′-di-2,6-diisopropylphenylcarbodiimide and the like.
  • the carbodiimide compound may be used singly or in combination of two or more in order to satisfy the durability, impact resistance and moldability of the molded body made of the polyester resin composition.
  • Poly (4,4′-dicyclohexylmethanecarbodiimide) is obtained by converting carbodilite LA-1 (manufactured by Nisshinbo Chemical Co., Ltd.), poly (1,3,5-triisopropylbenzene) polycarbodiimide and poly (1,3,5-trimethyl).
  • the content of the hydrolysis inhibitor is preferably 0.05 parts by weight or more, more preferably 100 parts by weight or more with respect to 100 parts by weight of the polyester resin, from the viewpoint of improving the transparency and moldability of the molded body made of the polyester resin composition. It is 0.10 parts by weight or more, preferably 3 parts by weight or less, more preferably 2 parts by weight or less. Further, 0.05 to 3 parts by weight is preferable, and 0.10 to 2 parts by weight is more preferable.
  • Polyester resin composition of the present invention as components other than the fillers (inorganic fillers, organic fillers), flame retardants, antioxidants, a hydrocarbon-based wax or an anionic surface active agent lubricants , UV absorbers, antistatic agents, antifogging agents, light stabilizers, pigments, antifungal agents, antibacterial agents, foaming agents and the like can be contained within a range not impairing the effects of the present invention. Similarly, other polymer materials and other resin compositions can be added within a range that does not impair the effects of the present invention.
  • the polyester resin composition in the present invention can be prepared without particular limitation as long as it contains a polyester resin and a compound represented by the formula (I).
  • the polyester resin composition is represented by the polyester resin and the formula (I).
  • a raw material containing a compound and, if necessary, various additives can be prepared by melt-kneading using a known kneader such as a closed kneader, a single or twin screw extruder, and an open roll kneader. .
  • the raw materials can be subjected to melt kneading after being uniformly mixed in advance using a Henschel mixer, a super mixer, or the like.
  • it may be melt-mixed in the presence of a supercritical gas.
  • the melt kneading temperature is preferably 170 ° C. or higher, more preferably 175 ° C. or higher, more preferably 180 ° C. or higher, preferably 240 ° C. or lower, from the viewpoint of improving the moldability and deterioration prevention of the polyester resin composition.
  • it is 220 degrees C or less, More preferably, it is 210 degrees C or less.
  • it is preferably 170 to 240 ° C, more preferably 175 to 220 ° C, and further preferably 180 to 210 ° C.
  • the melt-kneading time cannot be generally determined depending on the melt-kneading temperature and the type of the kneader, but is preferably 15 to 900 seconds.
  • the glass transition temperature (Tg) of the obtained melt-kneaded product is preferably 30 ° C. or higher, more preferably 35 ° C. or higher, because the compound represented by the formula (I) works effectively as a plasticizer.
  • Tg glass transition temperature
  • it is 60 degrees C or less, More preferably, it is 55 degrees C or less. Further, it is preferably 30 to 60 ° C., more preferably 30 to 55 ° C., and further preferably 35 to 55 ° C.
  • the cold crystallization temperature (Tc) of the melt-kneaded product is preferably 50 ° C. or more, more preferably 60 ° C. or more, preferably because the compound represented by the formula (I) works effectively as a plasticizer. It is 110 degrees C or less, More preferably, it is 100 degrees C or less, More preferably, it is 90 degrees C or less.
  • the temperature is preferably 50 to 110 ° C, more preferably 50 to 100 ° C, and still more preferably 60 to 90 ° C.
  • the melting point (Tm) of the melt-kneaded product is preferably 130 ° C. or higher, more preferably 140 ° C. or higher, further preferably 150 ° C. or higher, preferably 210 ° C. or lower, from the viewpoint of heat resistance and workability of the molded body. More preferably, it is 200 degrees C or less, More preferably, it is 180 degrees C or less. Further, it is preferably 130 to 210 ° C, more preferably 140 to 200 ° C, and further preferably 150 to 180 ° C.
  • fusing point (Tm) of a polyester resin composition can be measured according to the method as described in the below-mentioned Example.
  • the melt-kneaded product thus obtained is excellent in secondary processability such as stretchability and thermoformability, and is thus formed into a primary processed product (also referred to as a primary molded product) made of a polyester resin composition.
  • a primary processed product also referred to as a primary molded product
  • the primary processed product include sheets and films. From the viewpoint of processability to thermoformed products and stretched films, sheets are preferred.
  • sheet means a flat plate having a thickness of 0.1 mm or more
  • film means a flat plate having a thickness of less than 0.1 mm.
  • the primary processed product can be prepared by extrusion molding or press molding the polyester resin composition.
  • a sheet-like or film-like molded product can be obtained by melting the polyester resin composition filled in a heated extruder and then extruding it from a T die.
  • the molded product is immediately brought into contact with a cooling roll and cooled to less than the Tg of the polyester resin composition to be in an amorphous state or a semi-crystalline state, and then pulled away from the cooling roll, and they are wound on a winding roll.
  • the primary processed product in the present invention can be obtained.
  • the raw materials constituting the polyester resin composition in the present invention for example, the polyester resin and the compound represented by the formula (I), and further containing various additives as necessary are filled.
  • the amorphous state and the semicrystalline state refer to the case where the relative crystallinity obtained by the method of Test Example 1-1 described later is less than 60%, the amorphous state and the relative crystallinity. A case where it is 60% or more and less than 80% is defined as a semicrystalline state. Therefore, a molded body in an amorphous state or a semi-crystalline state means a molded body having a relative crystallinity of less than 80%.
  • the temperature of the extruder is preferably 170 ° C. or higher, more preferably 175 ° C. or higher, and further preferably 180 ° C. or higher, from the viewpoint of uniformly mixing the polyester resin composition and preventing deterioration of the polyester resin.
  • the temperature of a cooling roll is set to less than Tg of a polyester resin composition from a viewpoint of obtaining the primary processed goods of an amorphous state or a semi-crystalline state, specifically, less than 40 degreeC is preferable and 30 degrees C or less Is more preferable, and 20 ° C. or less is more preferable.
  • the temperature of the extruder means the barrel set temperature of the extruder.
  • the time for contacting the cooling roll is preferably 0.1 to 50 seconds, more preferably 0.5 to 10 seconds, and more preferably 0.8 to 5 seconds from the viewpoint of obtaining a molded body in an amorphous state or a semicrystalline state. Is more preferable.
  • the extrusion speed is preferably 1 to 100 m / min, more preferably 5 to 80 m / min, and even more preferably 10 to 50 m / min from the viewpoint of obtaining a molded body in an amorphous state or a semicrystalline state.
  • the polyester resin composition of the present invention can be enclosed and press-molded by a frame having a sheet shape.
  • the press molding temperature and pressure are preferably 170 to 240 ° C., 5 to 30 MPa, more preferably 175 to 220 ° C., 10 to 25 MPa, and more preferably 180. It is preferable to press at a temperature of 210 ° C. and a pressure of 10-20 MPa.
  • the pressing time cannot be determined unconditionally depending on the temperature and pressure of the pressing, but is preferably 1 to 10 minutes, more preferably 1 to 7 minutes, and further preferably 1 to 5 minutes.
  • a temperature of preferably 0 to 40 ° C., a pressure of 5 to 30 MPa, a temperature of 10 to 30 ° C., a pressure of 10 to 25 MPa is more preferable, and even more preferably 10
  • the polyester resin composition in the present invention can be cooled to less than its Tg to maintain an amorphous state or a semi-crystalline state.
  • the pressing time cannot be determined unconditionally depending on the temperature and pressure of the pressing, but is preferably 1 to 10 minutes, more preferably 1 to 7 minutes, and further preferably 1 to 5 minutes.
  • the thickness thereof is preferably 0.1 mm or more, more preferably from the viewpoint of obtaining a uniform molded product (secondary processed product). It is 15 mm or more, preferably 1.5 mm or less, more preferably 1.4 mm or less, and still more preferably 1.2 mm or less. Further, it is preferably 0.1 to 1.5 mm, more preferably 0.1 to 1.4 mm, and further preferably 0.15 to 1.2 mm.
  • the thickness is preferably 0.01 mm or more, more preferably from the viewpoint of obtaining a uniform molded product (secondary processed product). It is 02 mm or more, more preferably 0.03 mm or more, preferably less than 0.1 mm, more preferably 0.09 mm or less, and still more preferably 0.08 mm or less. Also, it is preferably 0.01 mm or more and less than 0.1 mm, more preferably 0.02 to 0.09 mm, and further preferably 0.03 to 0.08 mm.
  • the primary processed product thus obtained is further processed to obtain a secondary processed product (also referred to as a secondary molded body).
  • the primary processed product in the amorphous state or semi-crystalline state may be subjected to secondary processing such as crystallization (crystallization by heating), thermoforming, stretching treatment, etc., but the compound represented by the formula (I) is a polyester resin. Because of its high plasticizing effect and high affinity with polyester resins, it has excellent bleeding resistance even when additives such as crystal nucleating agents and hydrolysis inhibitors are blended. Further, the crystallization of the polyester resin is promoted by the stretching treatment even without the addition of the crystal nucleating agent.
  • a secondary processed product with high crystallinity can be obtained by heating the primary processed product as it is to a temperature not lower than the glass transition temperature (Tg) and lower than the melting point (Tm) of the polyester resin composition.
  • the temperature is preferably 60 ° C or higher, more preferably 70 ° C or higher, preferably 120 ° C or lower, more preferably 110 ° C or lower, and preferably 60 to 120 ° C, more preferably 70 to 110 ° C.
  • Crystallization is carried out by maintaining at a temperature of ° C.
  • crystallization in which the relative crystallinity obtained by the method of Test Example 1-1 described later is preferably 80% or more, more preferably 90% or more.
  • the thickness of the obtained crystallized sheet or crystallized film is such that the sheet or film itself is less likely to expand or contract due to heating during crystallization, so that the primary state of the amorphous or semi-crystalline sheet It is preferable to have a thickness comparable to that of a processed product or a film-shaped primary processed product in an amorphous state or a semicrystalline state.
  • thermoformed product can be formed using the primary processed product according to a known method without any particular limitation.
  • the amorphous or semi-crystalline sheet prepared by the above method is crystallized by thermoforming it in a temperature range not lower than the glass transition temperature (Tg) and lower than the melting point (Tm) of the polyester resin composition.
  • Tg glass transition temperature
  • Tm melting point
  • thermoformed product in the present invention for example, a molded body obtained by vacuum forming or pressure forming is cited. These can be molded according to a known method without any particular limitation.
  • the amorphous or semi-crystalline sheet of the present invention is placed in a mold in a vacuum / pressure forming machine, and the mold is polyester.
  • the resin composition can be obtained by heating to a temperature not lower than the glass transition temperature (Tg) and lower than the melting point (Tm), and maintaining the pressure or non-pressurized state for molding.
  • the mold temperature from the viewpoint of improving the crystallization rate and improve workability of the polylactic acid resin composition, the glass transition temperature of the polyester resin composition (Tg) above may be a temperature lower than the melting point (Tm), specifically Specifically, 120 ° C. or lower is preferable, 115 ° C. or lower is more preferable, and 110 ° C. or lower is further preferable. Moreover, 70 degreeC or more is preferable, 75 degreeC or more is more preferable, and 80 degreeC or more is further more preferable. From this viewpoint, the mold temperature is preferably 70 to 120 ° C, more preferably 75 to 115 ° C, and further preferably 80 to 110 ° C.
  • the holding time in the mold is preferably 2 to 60 seconds, preferably 3 to 30 seconds in a 90 ° C. mold, for example, from the viewpoint of improving the heat resistance and productivity of the thermoformed product made of the polyester resin composition. More preferred is 5 to 20 seconds. Since the polyester resin composition of the present invention has a high crystallization rate, a molded product having sufficient heat resistance can be obtained even with a short holding time as described above.
  • the thickness of the thermoformed product of the present invention is not particularly limited, but is preferably 0.1 mm or more, more preferably 0.15 mm or more, from the viewpoint of obtaining a uniform molded body (secondary processed product).
  • it is 0.2 mm or more,
  • it is 1.5 mm or less, More preferably, it is 1.4 mm or less, More preferably, it is 1.2 mm or less.
  • it is preferably 0.1 to 1.5 mm, more preferably 0.15 to 1.4 mm, and still more preferably 0.2 to 1.2 mm.
  • thermoformed product of the present invention is excellent in fitting property because the amorphous or semi-crystalline sheet has good thermoformability, and thus the temperature range for thermoforming is widened. Moreover, since the plasticizing effect by the compound represented by the formula (I) is excellent, the obtained molded body has high crystallinity, and is excellent in heat resistance and transparency.
  • a stretched film can be formed using the primary processed product according to a known method without any particular limitation.
  • an amorphous or semi-crystalline sheet prepared by the above method is uniaxially formed to a desired thickness in a temperature range of not less than the glass transition temperature (Tg) of the polyester resin composition and not more than the cold crystallization temperature (Tc).
  • Tg glass transition temperature
  • Tc cold crystallization temperature
  • crystallization was performed by biaxial stretching, and for example, crystallization was performed such that the relative crystallinity obtained by the method of Test Example 3-1 described below is preferably 80% or more, more preferably 90% or more. It can be set as a stretched film.
  • biaxial stretching a stretched film can be formed by simultaneous stretching or sequential stretching.
  • the temperature at the time of stretching may be in the temperature range from the glass transition temperature (Tg) to the cold crystallization temperature (Tc) of the polyester resin composition, specifically, preferably 45 ° C. or more, more Preferably it is 50 degreeC or more, More preferably, it is 55 degreeC or more, Preferably it is 80 degrees C or less, More preferably, it is 75 degrees C or less, More preferably, it is 70 degrees C or less. Further, it is preferably 45 to 80 ° C, more preferably 50 to 75 ° C, and further preferably 55 to 70 ° C.
  • heat treatment specifically, preferably maintained at a temperature of 80 to 160 ° C., more preferably 90 to 150 ° C., preferably 3 to 120 seconds, more preferably 5 to 60 seconds. can do.
  • the heat-shrinkable film can be set as a heat shrink film as one aspect
  • the heat-shrinkable film can be produced according to a known method without any particular limitation. For example, it can be obtained by stretching the crystal to a desired thickness in at least one direction and crystallizing it, and substantially not performing heat setting.
  • a stretching method uniaxial stretching or biaxial stretching can be performed. In the case of biaxial stretching, either simultaneous stretching or sequential stretching may be used.
  • a stretched film showing better physical properties as a shrink label can be obtained because it is possible to produce a heat-shrinkable film having greatly different longitudinal and lateral stretching ratios.
  • the thickness of the stretched film of the present invention is preferably 0.01 mm or more, more preferably 0.02 mm or more, still more preferably 0.03 mm or more, preferably 0.00. It is less than 1 mm, more preferably 0.09 mm or less, still more preferably 0.08 mm or less. Also, it is preferably 0.01 mm or more and less than 0.1 mm, more preferably 0.02 to 0.09 mm, and further preferably 0.03 to 0.08 mm.
  • the stretched film of the present invention is crystallized by uniaxial or biaxial stretching, the mechanical strength increases, and good physical properties as a stretched film are exhibited. Moreover, since it is excellent in the plasticizing effect by the compound represented by the formula (I) and has high affinity with the polylactic acid resin, it is excellent in bleed resistance and crystallinity.
  • the present invention also provides a method for producing the sheet or film of the present invention.
  • the production method is not particularly limited as long as it includes a step of molding a polyester resin composition containing the polyester resin and the compound represented by the formula (I), and depending on the type of a molded product to be obtained, Steps can be added as appropriate.
  • Step (1) A polyester resin composition containing a polyester resin and a compound represented by formula (I) is extruded from a die by an extrusion molding method to prepare a sheet or film, and then the glass transition temperature (Tg) of the polyester resin composition.
  • Step (2-1) for obtaining a sheet or film having a relative crystallinity of less than 80% by cooling to less than the glass transition temperature (Tg) of the polyester resin composition.
  • Step (1) is a step of obtaining a sheet or film having a relative crystallinity of less than 80%.
  • the polyester resin composition containing the polyester resin and the compound represented by formula (I) is preferably 170 ° C. or higher, more preferably 175 ° C. or higher, further preferably 180 ° C. or higher, preferably 240 ° C. or lower, more preferably 220 ° C. or lower, further preferably 210 ° C. or lower, preferably 170 to 240 ° C., more preferably 175 to 220 ° C., and more preferably 180 to 210 ° C. Is 170 ° C. or higher, more preferably 175 ° C. or higher, more preferably 180 ° C.
  • the extruder is heated to 175 to 220 ° C., more preferably 180 to 210 ° C. Extrusion from the die, and then preferably into a cooling roll set at less than 40 ° C., more preferably 30 ° C. or less, and even more preferably 20 ° C. or less, preferably 0.1-50 seconds, more preferably 0.5-10 seconds More preferably, a sheet or film having a relative crystallinity of less than 80% can be prepared by cooling by contact for 0.8 to 5 seconds. Further, depending on the type of the extruder used, the raw material of the polyester resin composition may be filled in the extruder, melt-kneaded as it is, and then extruded.
  • Step (2-1) is a step of crystallizing a sheet or film having a relative crystallinity of less than 80%.
  • the glass transition temperature of the polyester resin composition (Tg) or higher may be heated to a temperature below the melting point (Tm), preferably 60 ° C. or higher, more preferably 70 ° C. or higher
  • Crystallization can be performed by maintaining the temperature at 120 ° C. or lower, more preferably 110 ° C. or lower, and preferably 60 to 120 ° C., more preferably 70 to 110 ° C.
  • the maintaining time is preferably 5 to 60 seconds, more preferably 7 to 45 seconds, and further preferably 10 to 30 seconds.
  • the sheet or film of the present invention thus obtained has a relative crystallinity of preferably 80% or more, more preferably 90% or more and high crystallinity, good transparency, heat resistance and resistance. Because of its excellent bleedability, it can be suitably used in various applications, in particular, clear cases such as daily necessities, cosmetics, and home appliances, packaging containers such as transparent windows in paper boxes, and stationery items such as clear holders and ID card cases. .
  • the present invention also provides a method for producing the thermoformed product of the present invention.
  • the production method is not particularly limited as long as it is a method including a step of thermoforming a polyester resin composition containing the polyester resin and the compound represented by formula (I), depending on the type of the molded product to be obtained. A process can be added as appropriate.
  • Step (1) A polyester resin composition containing a polyester resin and a compound represented by formula (I) is extruded from a die by an extrusion molding method to prepare a sheet, and then the glass transition temperature (Tg) of the polyester resin composition is lowered. Step of cooling to obtain a sheet having a relative crystallinity of less than 80% (2-2)
  • the sheet obtained in step (1) is not less than the glass transition temperature (Tg) of the polyester resin composition and less than the melting point (Tm).
  • Tg glass transition temperature
  • Tm melting point
  • Step (1) is the same as described above, but preferably, in step (1), a sheet having a relative crystallinity of less than 80% is obtained.
  • Step (2-2) is a step of thermoforming and crystallizing a sheet having a relative crystallinity of less than 80%.
  • the sheet is preferably 70 ° C. or higher, more preferably 75 ° C. or higher, further preferably 80 ° C. or higher, preferably 120 ° C. or lower, more preferably 115 ° C. or lower, more preferably 110 ° C. or lower, and preferably Is placed in a mold at 70 to 120 ° C., more preferably 75 to 115 ° C., and still more preferably 80 to 110 ° C., and crystallization can be carried out by keeping it under pressure or no pressure.
  • the thickness of the obtained molded product is not particularly limited, but is preferably 0.1 to 1.5 mm, more preferably 0.15 to 1.4 mm.
  • thermoformed product of the present invention thus obtained has a high crystallinity, preferably a relative crystallinity of 80% or more, more preferably 90% or more, and has good transparency, heat resistance, Because of its excellent bleed and strength, it can be used in various applications, especially blister packs and trays for daily necessities, cosmetics, home appliances, food containers such as lunch box lids, and industrial trays used for transport and protection of industrial parts. It can be used suitably.
  • the present invention also provides a method for producing the stretched film of the present invention.
  • the production method is not particularly limited as long as it includes a step of stretching the polyester resin and the polyester resin composition containing the compound represented by the formula (I), and depending on the type of the molded product obtained, Steps can be added as appropriate.
  • Step (1) A polyester resin composition containing a polyester resin and a compound represented by formula (I) is extruded from a die by an extrusion molding method to prepare a sheet, and then the glass transition temperature (Tg) of the polyester resin composition is lowered. Step of cooling to obtain a sheet having a relative crystallinity of less than 80% (2-3) The sheet obtained in step (1) is cooled to a glass crystallization temperature (Tg) or higher of the polyester resin composition at a cold crystallization temperature ( Tc) A step of obtaining a stretched film that is uniaxially or biaxially stretched in the following temperature range and crystallized to a relative crystallinity of 80% or more.
  • Tg glass crystallization temperature
  • Tc cold crystallization temperature
  • Step (1) is the same as described above, but preferably, in step (1), a sheet having a relative crystallinity of less than 80% is obtained.
  • a sheet having a relative crystallinity of less than 80% is obtained.
  • it is extruded into a tube shape by an inflation molding machine equipped with a circular die, and then is preferably less than 40 ° C., more preferably 30 ° C. or less, and further preferably 20 ° C. or less.
  • By cooling in a chiller or water tank installed in the water preferably 0.1 to 50 seconds, more preferably 0.5 to 10 seconds, and still more preferably 0.8 to 5 seconds.
  • a sheet having a relative crystallinity of less than 80% can be prepared.
  • Step (2-3) is a step of crystallizing a sheet having a relative crystallinity of less than 80% by uniaxial or biaxial stretching.
  • the sheet is preferably 45 ° C. or higher, more preferably 50 ° C. or higher, further preferably 55 ° C. or higher, preferably 80 ° C. or lower, more preferably 75 ° C. or lower, still more preferably 70 ° C.
  • crystallization can be performed by uniaxial or biaxial stretching to 0.03 to 0.08 mm. After stretching, a heat treatment (heat setting), specifically, a step of maintaining at a temperature of preferably 80 to 160 ° C., more preferably 90 to 150 ° C. may be performed.
  • a heat treatment heat setting
  • a step of maintaining at a temperature of preferably 80 to 160 ° C., more preferably 90 to 150 ° C. may be performed.
  • the draw ratio is appropriately selected in the longitudinal direction, preferably 1.5 to 6 times, more preferably 2 to 5 times, and in the transverse direction, preferably 1.5 to 6 times, more preferably 2 to 5 times.
  • The is preferably at least twice as long as the length and width.
  • the product of the draw ratio in the machine direction and the draw ratio in the transverse direction, that is, the area draw ratio is preferably 4 to 36 times, more preferably 6 to 20 times, and further preferably 8 to 16 times.
  • the stretching speed is preferably 10 to 100,000% / min, more preferably 100 to 10,000% / min.
  • the stretched film of the present invention thus obtained has a high crystallinity of a relative crystallinity of preferably 80% or more, more preferably 90% or more, and has good transparency, film strength and bleed resistance. Because of its excellent properties, it can be suitably used for various applications, in particular, packaging materials for daily necessities, cosmetics, home appliances, etc., various films for industrial use, food packaging films for bread, confectionery, vegetables and the like.
  • the present invention can relate to any of the following: ⁇ 1> A group comprising (1) a sheet or film, (2) a thermoformed article, and (3) a stretched film, comprising a polyester resin and a polyester resin composition comprising a polyester plasticizer represented by the following formula (I) More compacts to be selected.
  • R 1 O—CO—R 2 —CO — [(OR 3 ) m O—CO—R 2 —CO—] n
  • OR 1 (I) (Wherein R 1 is an alkyl group having 1 to 4 carbon atoms, R 2 is an alkylene group having 2 to 4 carbon atoms, R 3 is an alkylene group having 2 to 6 carbon atoms, and m is 1 to 6)
  • n represents a number from 1 to 12, provided that all R 2 may be the same or different, and all R 3 may be the same or different.
  • ⁇ 2> The molded article according to ⁇ 1>, wherein the polyester resin contains a polylactic acid resin.
  • the content of the polylactic acid resin in the polyester resin is preferably 80% by weight or more, more preferably 90% by weight or more, and still more preferably substantially 100% by weight.
  • R 1 in the formula (I) represents an alkyl group having 1 to 4 carbon atoms, preferably 1 to 2 carbon atoms, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert-butyl.
  • R 2 in Formula (I) represents an alkylene group having 2 to 4 carbon atoms, and is at least one selected from the group consisting of an ethylene group, a 1,3-propylene group, and a 1,4-butylene group, The molded product according to any one of ⁇ 1> to ⁇ 5>, preferably an ethylene group, a 1,3-propylene group or an ethylene group or a 1,4-butylene group, more preferably an ethylene group.
  • R 3 in the formula (I) represents an alkylene group having 2 to 6, preferably 2 to 3 carbon atoms, and is an ethylene group, a 1,2-propylene group, a 1,3-propylene group, or a 1,2-butylene group.
  • ⁇ 8> M in the formula (I) is a number of 1 to 6, preferably a number of 1 to 4, more preferably a number of 1 to 3, and even more preferably a number of 1 to 2, ⁇ 1> to ⁇ 7>
  • ⁇ 9> N in the formula (I) is preferably 1 or more, more preferably 1.2 or more, still more preferably 1.5 or more, still more preferably 1.8 or more, further preferably 2 or more, preferably 12 or less, more
  • R 1 is a methyl group
  • R 2 is an ethylene group
  • R 3 is an ethylene group
  • m is 2 and n is an ester of 1.6
  • R 1 is a methyl group
  • R 2 is an ethylene group
  • R 3 is an ethylene group
  • m is an ester of 2
  • n is 2.1
  • R 1 is a methyl group
  • R 2 is an ethylene group
  • R 3 is an ethylene group
  • m is 2
  • n is 4.3 ester
  • R 1 is methyl group
  • R 2 is ethylene group
  • R 3 is 1,3-propylene group
  • m is 1, n is 4.4 ester
  • R 1 is Methyl group
  • R 2 is ethylene group
  • R 3 is 1,2-propylene group
  • m is 1, n is 3.6 ester
  • R 1 is ethyl group
  • R 2 is 1,4-butylene group
  • a R 3 is 1,3-propylene group
  • m
  • R 1 is methyl
  • R 2 is an ethylene group
  • a R 3 is 2-methyl-1,3-propylene group
  • m is 1, n is favored ester 3 Ku
  • R 1 are all methyl groups
  • R 2 is an ethylene group or a 1,4-butylene group
  • R 3 is an ethylene group, a 1,3-propylene group, or a 1,2-propylene group
  • m is 1 ⁇
  • More preferred are compounds wherein n is 1 and n is 1 to 8, R 1 is all methyl groups, R 2 is ethylene group or 1,4-butylene group, R 3 is ethylene group, 1,3-propylene group Or a molded product according to any one of ⁇ 1> to ⁇ 9>, wherein the compound is a 1,2-propylene group, wherein m is a number of 1 to 2 and n is a number of 1.8 to 7.
  • ⁇ 11> The molded product according to any one of ⁇ 1> to ⁇ 10>, wherein the compound represented by the formula (I) is preferably obtained using the following raw materials (1) to (3).
  • a monohydric alcohol having an alkyl group having 1 to 4 carbon atoms (2) a dicarboxylic acid having an alkylene group having 2 to 4 carbon atoms (3) a dihydric alcohol having an alkylene group having 2 to 6 carbon atoms ⁇ 12>
  • Monohydric alcohols having an alkyl group having 1 to 4 carbon atoms are methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, and 1, 1 or more selected from the group consisting of 1-dimethyl-1-ethanol, methanol, ethanol, 1-propanol and 1-butanol are preferred, methanol and ethanol are more preferred, and methanol is even more preferred, ⁇ 11> Molded body.
  • Dicarboxylic acid having an alkylene group having 2 to 4 carbon atoms is succinic acid, glutaric acid, adipic acid, and derivatives thereof (for example, succinic anhydride, glutaric anhydride, dimethyl succinate, succinic acid)
  • succinic acid, glutaric acid, adipic acid, and derivatives thereof are more preferable, or succinic acid, adipic acid and derivatives thereof (for example, succinic anhydride, Dimethyl succinate, dibutyl succinate, dimethyl adipate), succinic acid and its derivatives
  • succinic anhydride, dimethyl succinate Dimethyl succinate, adipic acid and derivatives thereof
  • succinic anhydride, dimethyl succinate Dimethyl succinate, dibutyl succinate, dimethyl adipate
  • succinic acid and its derivatives for example, succinic anhydride, dimethyl succinate,
  • Dihydric alcohols having an alkylene group having 2 to 6 carbon atoms are ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl- 1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2-methyl-1,3-propane Diol, 1,2-pentanediol, 1,4-pentanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol, 2,5-hexanediol, 1,6-hexanediol, One or more selected from the group consisting of 2,5-hexanediol and 3-methyl-1,5-pentanedio
  • the monohydric alcohol is at least one selected from the group consisting of methanol, ethanol, 1-propanol, and 1-butanol
  • the dicarboxylic acid is a group consisting of succinic acid, glutaric acid, and derivatives thereof.
  • the dihydric alcohol is diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, tetraethylene glycol, and 1,4-butanediol It is preferably at least one selected from (1) The monohydric alcohol is at least one selected from the group consisting of methanol and ethanol, and (2) the dicarboxylic acid is at least one selected from the group consisting of succinic acid, glutaric acid, and derivatives thereof, (3) The dihydric alcohol is more preferably at least one selected from the group consisting of diethylene glycol, triethylene glycol, 1,2-propanediol, and 1,3-propanediol, (1) the monohydric alcohol is methanol, (2) the dicarboxylic acid is at least one selected from the group consisting of succinic acid and derivatives thereof, and (3) the dihydric alcohol is diethylene glycol, 1,2-propanediol, And the molded article according to ⁇ 11>
  • the molded product according to any one of ⁇ 1> to ⁇ 16>, which is at least / g. ⁇ 18> The compound represented by the formula (I) preferably has a hydroxyl value of 10.0 mgKOH / g or less, more preferably 8.0 mgKOH / g or less, still more preferably 5.0 mgKOH / g or less, preferably 0.1 mgKOH. / G or more, More preferably, it is 0.2 mgKOH / g or more, The molded object in any one of ⁇ 1>- ⁇ 17>.
  • the saponification value of the compound represented by the formula (I) is preferably 500 mgKOH / g or more, more preferably 600 mgKOH / g or more, preferably 800 mgKOH / g or less, more preferably 750 mgKOH / g or less, ⁇ 1> to ⁇ 18> A molded article according to any one of the above.
  • the number average molecular weight of the compound represented by the formula (I) is preferably 500 or more, more preferably 600 or more, still more preferably 700 or more, preferably 1500 or less, more preferably 1400 or less, and still more preferably 1300 or less.
  • the compound represented by formula (I) preferably has an acid value of 1.00 mgKOH / g or less, a hydroxyl value of 10.0 mgKOH / g or less, a number average molecular weight of 500 to 1500, and an acid value of 0.90 mgKOH. / G or less, the hydroxyl value is 8.0 mgKOH / g or less, and the number average molecular weight is more preferably 500 to 1400, the acid value is 0.90 mgKOH / g or less, the hydroxyl value is 8.0 mgKOH / g or less, and the number average.
  • the molded product according to any one of ⁇ 1> to ⁇ 20>, which further preferably has a molecular weight of 600 to 1200.
  • ⁇ 22> The molded product according to any one of ⁇ 1> to ⁇ 21>, wherein the compound represented by the formula (I) has a terminal alkyl esterification rate of preferably 85% or more, more preferably 90% or more.
  • the ether group value of the compound represented by the formula (I) is preferably 1 mmol / g or more, preferably 8 mmol / g or less, more preferably 6 mmol / g or less, and further preferably 5 mmol / g or less.
  • the compound represented by the formula (I) has an SP (Solubility Parameter) value of preferably 10.0 or more, more preferably 10.1 or more, further preferably 10.2 or more, preferably
  • the content of the compound represented by the formula (I) is preferably 1 part by weight or more, more preferably 5 parts by weight or more, preferably 50 parts by weight or less, more preferably 100 parts by weight of the polyester resin.
  • the molded product according to any one of ⁇ 1> to ⁇ 24> which is 30 parts by weight or less.
  • the crystal nucleating agent is preferably an inorganic crystal nucleating agent or an organic crystal nucleating agent, more preferably an organic crystal nucleating agent, more preferably a metal salt of a carboxylic acid amide and phenylphosphonic acid, still more preferably a carboxylic acid amide, ethylene Bis fatty acid amide, alkylene bis fatty acid amide, alkylene bishydroxy fatty acid amide are more preferred, alkylene bishydroxy stearic acid amide having an alkylene group having 1 to 6 carbon atoms is more preferred, ethylene bis 12-hydroxy stearic acid amide is more preferred, ⁇ 26> The molded product according to the description.
  • the content of the crystal nucleating agent is preferably 0.1 parts by weight or more, preferably 1.0 parts by weight or less, more preferably 0.5 parts by weight or less with respect to 100 parts by weight of the polyester resin. 26> or ⁇ 27>.
  • ⁇ 29> The molded article according to any one of ⁇ 1> to ⁇ 28>, wherein the polyester resin composition further contains a hydrolysis inhibitor.
  • the hydrolysis inhibitor is preferably a polycarbodiimide compound or a monocarbodiimide compound.
  • the content of the hydrolysis inhibitor is preferably 0.05 parts by weight or more, more preferably 0.10 parts by weight or more, preferably 3 parts by weight or less, more preferably 2 parts by weight with respect to 100 parts by weight of the polyester resin.
  • the melt kneading temperature is preferably 170 ° C. or higher, more preferably 175 ° C.
  • the glass transition temperature (Tg) of the obtained melt-kneaded product is preferably 30 ° C. or higher, more preferably 35 ° C. or higher, preferably 60 ° C. or lower, more preferably 55 ° C. or lower, ⁇ 32> or ⁇ 33>.
  • the cold crystallization temperature (Tc) of the obtained melt-kneaded product is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, preferably 110 ° C. or lower, more preferably 100 ° C.
  • the melting point (Tm) of the obtained melt-kneaded product is preferably 130 ° C. or higher, more preferably 140 ° C. or higher, further preferably 150 ° C. or higher, preferably 210 ° C. or lower, more preferably 200 ° C. or lower, still more preferably.
  • Tm melting point
  • ⁇ 37> The molded product according to any one of ⁇ 1> to ⁇ 36>, wherein the polyester resin composition is molded into a primary processed product selected from a sheet and a film.
  • ⁇ 38> ⁇ 37>
  • the primary processed product is made into an amorphous state or a semi-crystalline state by filling the polyester resin composition into an extruder, extruding from a T die, and contacting a cooling roll to cool to less than Tg of the polyester resin composition.
  • the temperature of the extruder is preferably 170 ° C.
  • ⁇ 39> The molded product according to the description. ⁇ 41> The molded body according to ⁇ 39> or ⁇ 40>, wherein the temperature of the cooling roll is preferably less than 40 ° C, more preferably 30 ° C or less, and further preferably 20 ° C or less. ⁇ 42> The molded product according to ⁇ 37> or ⁇ 38>, wherein the primary processed product is formed by press-molding the polyester resin composition with a frame having a sheet shape.
  • the press molding temperature and pressure are preferably 170 to 240 ° C., 5 to 30 MPa, more preferably 175 to 220 ° C., 10 to 25 MPa, and more preferably 180.
  • the molded article according to ⁇ 42> which is under a condition of a temperature of 210 ° C. and a pressure of 10-20 MPa.
  • the temperature is preferably 0 to 40 ° C., 5 to 30 MPa, more preferably 10 to 30 ° C., 10 to 25 MPa, more preferably 10 to 20 ° C., 10 ⁇ 43>
  • the molded product according to ⁇ 43> which is pressed under a pressure of ⁇ 20 MPa to be in an amorphous state or a semicrystalline state.
  • the thickness of the amorphous or semi-crystalline sheet-like primary processed product is preferably 0.1 mm or more, more preferably 0.15 mm or more, preferably 1.5 mm or less, more preferably 1.4 mm or less. More preferably, the molded product according to ⁇ 39> or ⁇ 44>, which is 1.2 mm or less.
  • the thickness of the amorphous or semi-crystalline film-like primary processed product is preferably 0.01 mm or more, more preferably 0.02 mm or more, further preferably 0.03 mm or more, preferably less than 0.1 mm.
  • the molded article according to ⁇ 39> or ⁇ 44> which is more preferably 0.09 mm or less, and further preferably 0.08 mm or less.
  • ⁇ 47> The molded product according to any one of ⁇ 37> to ⁇ 46>, which is formed into a secondary processed product by further processing the primary processed product.
  • the primary processed product is molded into a secondary processed product with high crystallinity by heating to a temperature not lower than the glass transition temperature (Tg) and lower than the melting point (Tm) of the polyester resin composition as described in ⁇ 47>. Molded body.
  • Tg glass transition temperature
  • Tm melting point
  • ⁇ 50> The molded article according to ⁇ 48> or ⁇ 49>, which is a crystallization sheet or a crystallized film having a relative crystallinity of preferably 80% or more, more preferably 90% or more.
  • ⁇ 51> ⁇ 47> The molded article according to ⁇ 47>, wherein the amorphous or semi-crystalline sheet is thermoformed in a temperature range not lower than the glass transition temperature (Tg) and lower than the melting point (Tm) of the polyester resin composition.
  • a sheet in an amorphous state or a semi-crystalline state is placed in a mold in a vacuum / pressure forming machine, and the inside of the mold is above the glass transition temperature (Tg) of the polyester resin composition and below the melting point (Tm).
  • Tg glass transition temperature
  • Tm melting point
  • the molded body according to ⁇ 51> which is heated to a temperature of and maintained in a pressurized or non-pressurized state.
  • the mold temperature is preferably 120 ° C. or lower, more preferably 115 ° C. or lower, further preferably 110 ° C. or lower, more preferably 70 ° C. or higher, more preferably 75 ° C. or higher, and further preferably 80 ° C. or higher, ⁇ 52> Molded body.
  • thermoformed article having a relative crystallinity of preferably 80% or more, more preferably 90% or more.
  • the thickness of the thermoformed product is preferably 0.1 mm or more, more preferably 0.15 mm or more, further preferably 0.2 mm or more, preferably 1.5 mm or less, more preferably 1.4 mm or less, and still more preferably.
  • a sheet in an amorphous state or a semi-crystalline state is uniaxially or biaxially stretched to a desired thickness in a temperature range not lower than the glass transition temperature (Tg) of the polyester resin composition and not higher than the cold crystallization temperature (Tc).
  • Tg glass transition temperature
  • Tc cold crystallization temperature
  • the temperature during stretching is preferably 45 ° C. or higher, more preferably 50 ° C. or higher, further preferably 55 ° C. or higher, preferably 80 ° C. or lower, more preferably 75 ° C. or lower, more preferably 70 ° C. or lower.
  • the molded product according to the description is preferably 45 ° C. or higher, more preferably 50 ° C. or higher, further preferably 55 ° C. or higher, preferably 80 ° C. or lower, more preferably 75 ° C. or lower, more preferably 70 ° C. or lower.
  • ⁇ 58> Further, it is preferably heat-treated (heat-set) while maintaining at a temperature of 80 to 160 ° C., more preferably 90 to 150 ° C., preferably 3 to 120 seconds, more preferably 5 to 60 seconds, ⁇ 57>
  • ⁇ 59> The molded product according to any one of ⁇ 56> to ⁇ 58>, which is a stretched film having a relative crystallinity of preferably 80% or more, more preferably 90% or more.
  • the thickness of the stretched film is preferably 0.01 mm or more, more preferably 0.02 mm or more, further preferably 0.03 mm or more, preferably less than 0.1 mm, more preferably 0.09 mm or less, still more preferably
  • Step (1) A polyester resin composition containing a polyester resin and a compound represented by formula (I) is extruded from a die by an extrusion molding method to prepare a sheet or film, and then the glass transition temperature (Tg) of the polyester resin composition.
  • Step (2-1) for obtaining a sheet or film having a relative crystallinity of less than 80% by cooling to less than the glass transition temperature (Tg) of the polyester resin composition.
  • a method for producing a thermoformed product comprising the following steps (1) and (2-2).
  • Step (1) A polyester resin composition containing a polyester resin and a compound represented by formula (I) is extruded from a die by an extrusion molding method to prepare a sheet, and then the glass transition temperature (Tg) of the polyester resin composition is lowered. Step of cooling to obtain a sheet having a relative crystallinity of less than 80% (2-2) The sheet obtained in step (1) is not less than the glass transition temperature (Tg) of the polyester resin composition and less than the melting point (Tm).
  • Step ⁇ 63> of obtaining a thermoformed product crystallized to a relative crystallinity of 80% or more by thermoforming in a temperature range of ⁇ 63> A method for producing a stretched film, comprising the following steps (1) and (2-3): Step (1) A polyester resin composition containing a polyester resin and a compound represented by formula (I) is extruded from a die by an extrusion molding method to prepare a sheet, and then the glass transition temperature (Tg) of the polyester resin composition is lowered.
  • Step (1) Step of cooling to obtain a sheet having a relative crystallinity of less than 80% (2-3)
  • the sheet obtained in step (1) is cooled to the glass crystallization temperature (Tg) or higher of the polyester resin composition at a cold crystallization temperature ( Tc) Step of obtaining a stretched film that is uniaxially or biaxially stretched in the following temperature range and crystallized to a relative crystallinity of 80% or more ⁇ 64>
  • the step (1) is preferably a polyester resin composition containing a polyester resin and a compound represented by the formula (I), preferably 170 ° C. or higher, more preferably 175 ° C. or higher, more preferably 180 ° C. or higher, preferably Is 240 ° C. or lower, more preferably 220 ° C.
  • the cooling roll is preferably 0.1 to 50 seconds, more preferably 0.5 to 10 seconds, still more preferably 0.8. 5 seconds in contact with cooling, ⁇ 61> - ⁇ 63> The method according to any one.
  • the sheet or film obtained in the step (1) is used as it is, preferably 60 ° C. or higher, more preferably 70 ° C. or higher, preferably 120 ° C. or lower, more preferably 110 ° C. or lower.
  • the method is maintained for 5 to 60 seconds, more preferably 7 to 45 seconds, and still more preferably 10 to 30 seconds, ⁇ 61> or ⁇ 64>.
  • the sheet obtained in step (1) is preferably 70 ° C or higher, more preferably 75 ° C or higher, still more preferably 80 ° C or higher, preferably 120 ° C or lower, more preferably 115 ° C.
  • the sheet obtained in the step (1) is preferably 45 ° C. or higher, more preferably 50 ° C. or higher, further preferably 55 ° C. or higher, preferably 80 ° C. or lower, more preferably 75 ° C. In the following, it is more preferably 70 ° C. or less, preferably 0.01 mm or more and less than 0.1 mm, more preferably 0.02 to 0.09 mm, further preferably 0.03 to 0.08 mm, uniaxially or biaxially stretched.
  • ⁇ 67> The molded article according to any one of ⁇ 1> to ⁇ 60>, which is suitable for stationery items such as clear containers for daily necessities, cosmetics, home appliances, etc., packaging containers such as transparent windows of paper boxes, clear holders, and ID card cases.
  • ⁇ 68> (1) Clear cases for products selected from daily necessities, cosmetics, and home appliances, and packaging containers selected from the group consisting of transparent windows of paper boxes, or (2) stationery items selected from clear holders and ID card cases Use of the molded product according to any one of ⁇ 1> to ⁇ 50> to produce ⁇ 69> (1) Blister packs or trays for products selected from daily necessities, cosmetics and household appliances, (2) food containers, or (3) industrial trays used for transporting and protecting industrial parts, ⁇ Use of a molded article according to any one of 1> to ⁇ 47> and ⁇ 51> to ⁇ 55>.
  • Weight average molecular weight of polylactic acid resin (Mw) The weight average molecular weight (Mw) is measured by GPC (gel permeation chromatography) under the following measurement conditions. ⁇ Measurement conditions> Column: GMHHR-H + GMHHR-H Column temperature: 40 ° C Detector: RI Eluent: Chloroform Flow rate: 1.0 mL / min Sample concentration: 1 mg / mL Injection volume: 0.1 mL Conversion standard: Polystyrene
  • optical purity of polylactic acid The optical purity was determined according to the D-body content measurement method described in “Voluntary Standard for Food Containers and Packaging Made of Synthetic Resins such as Polyolefins, Third Edition, Revised June 2004, Part 3 Sanitation Test Method P12-13”. Measure under the measurement conditions. Specifically, sodium hydroxide / methanol is added to precisely weighed polylactic acid, set in a water bath shaker set at 65 ° C., and hydrolyzed until the resin content becomes a homogeneous solution.
  • Dilute hydrochloric acid is added to the completed alkaline solution to neutralize it, and the decomposition solution is made up to volume with pure water, and then a fixed volume is separated into a volumetric flask and diluted with a high-performance liquid chromatography (HPLC) mobile phase solution to obtain a pH. Is adjusted to a range of 3-7, filtered into a volumetric flask, filtered through a membrane filter (0.45 ⁇ m), and this adjusted solution is quantified for D-lactic acid and L-lactic acid by HPLC. Obtain the optical purity of lactic acid.
  • HPLC high-performance liquid chromatography
  • the melting point of the polylactic acid resin is determined from the crystal melting endothermic peak temperature by the temperature rising method of differential scanning calorimetry (DSC, manufactured by Perkin Elmer, Diamond DSC) based on JIS-K7121. The melting point is measured by increasing the temperature from 20 ° C. to 250 ° C. at a temperature increase rate of 10 ° C./min.
  • Saponification value Analysis is performed according to the test method of JIS K 0070, except that the temperature of the water bath is 95 ° C. and the heating time is 1 hour.
  • the molecular weight of a polyester plasticizer means a number average molecular weight, and is calculated from the acid value, hydroxyl value, and saponification value according to the following formula.
  • Average molecular weight M (M 1 + M 2 ⁇ M 3 ⁇ 2) ⁇ n + M 1 ⁇ (M 3 ⁇ 17.01) ⁇ 2 + (M 3 ⁇ 17.01) ⁇ p + (M 2 ⁇ 17.01) ⁇ q + 1.
  • Terminal alkyl esterification rate The molecular terminal alkyl esterification rate (terminal alkyl esterification rate) can be calculated from the following formula. The higher the value of the molecular terminal alkyl esterification rate, the free carboxyl group or hydroxyl group There are few, and it shows that the molecular terminal is fully alkylesterified.
  • polyester plasticizer A four-necked flask (with a stirrer, thermometer, dropping funnel, distillation tube, nitrogen blowing tube) was charged with 363 g (3.42 mol) of diethylene glycol and 6.6 g of a methanol solution containing 28 wt% sodium methoxide as a catalyst (sodium methoxide 0). 0.034 mol) was added, and methanol was distilled off while stirring at normal pressure and 120 ° C. for 0.5 hour. Thereafter, 1000 g (6.84 mol) of dimethyl succinate (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise over 3 hours, and methanol produced by the reaction was distilled off at normal pressure and 120 ° C.
  • dimethyl succinate manufactured by Wako Pure Chemical Industries, Ltd.
  • the usage-amount of the catalyst was 0.94 mol with respect to 100 mol of dicarboxylic acid ester.
  • polyester plasticizer In a four-necked flask (with a stirrer, thermometer, dropping funnel, distillation tube, nitrogen blowing tube) 581 g (5.47 mol) of diethylene glycol and 9.1 g of methanol solution containing 28 wt% sodium methoxide as a catalyst (sodium methoxide 0) 0.047 mol), and methanol was distilled off with stirring at normal pressure and 120 ° C. for 0.5 hour. Thereafter, 1200 g (8.21 mol) of dimethyl succinate (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise over 2 hours, and methanol produced by the reaction was distilled off at normal pressure and 120 ° C.
  • dimethyl succinate manufactured by Wako Pure Chemical Industries, Ltd.
  • the mixture was cooled to 75 ° C., the pressure was gradually reduced from normal pressure to 6.7 kPa over 1.5 hours to distill off methanol, and then the pressure was returned to normal pressure. Further, 28 wt% sodium methoxide was used as a catalyst. The methanol solution containing 9.8 g (0.051 mol of sodium methoxide) was added, and the pressure was gradually reduced from normal pressure to 2.9 kPa over 2 hours at 100 ° C. to distill methanol. Then, after cooling to 80 ° C., 28 g of KYOWARD 600S (manufactured by Kyowa Chemical Industry Co., Ltd.) was added and stirred at a pressure of 4.0 kPa and 80 ° C.
  • KYOWARD 600S manufactured by Kyowa Chemical Industry Co., Ltd.
  • the usage-amount of the catalyst was 1.2 mol with respect to 100 mol of dicarboxylic acid ester.
  • polyester plasticizer In a four-necked flask (with a stirrer, thermometer, dropping funnel, distillation tube, nitrogen blowing tube), 521 g (6.84 mol) of 1,3-propanediol and 5.9 g of a methanol solution containing 28 wt% sodium methoxide as a catalyst (Sodium methoxide 0.031 mol) was added, and methanol was distilled off with stirring at normal pressure and 120 ° C. for 0.5 hour. Thereafter, 1500 g (10.26 mol) of dimethyl succinate (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise over 1 hour, and methanol produced by the reaction was distilled off at normal pressure and 120 ° C.
  • dimethyl succinate manufactured by Wako Pure Chemical Industries, Ltd.
  • the filtrate was raised at a pressure of 0.1 kPa and the temperature was raised from 85 ° C. to 194 ° C. over 2.5 hours to distill off the remaining dimethyl succinate to obtain a room temperature yellow liquid.
  • the usage-amount of the catalyst was 0.58 mol with respect to 100 mol of dicarboxylic acid ester.
  • polyester plasticizer A four-necked flask (with a stirrer, thermometer, dropping funnel, distillation tube, nitrogen blowing tube) was charged with 764 g (10.0 mol) of 1,2-propanediol and 14.0 g of a methanol solution containing 28 wt% sodium methoxide as a catalyst. (Sodium methoxide 0.073 mol) was added, and methanol was distilled off while stirring at normal pressure and 120 ° C. for 0.5 hour.
  • the filtrate was heated at a pressure of 0.4 kPa and the temperature was raised from 115 ° C. to 200 ° C. over 1 hour, and the remaining dimethyl succinate was distilled off to obtain a room temperature yellow liquid.
  • the usage-amount of the catalyst was 1.82 mol with respect to 100 mol of dicarboxylic acid ester.
  • Methanol was distilled off gradually from normal pressure to 1.6 kPa over time. Then, after cooling to 80 ° C., 47 g of KYOWARD 600S (manufactured by Kyowa Chemical Industry Co., Ltd.) was added and stirred at a pressure of 4.0 kPa and 80 ° C. for 1 hour, followed by filtration under reduced pressure. The filtrate was heated at a pressure of 0.8 kPa and the temperature was raised from 102 ° C. to 200 ° C. over 3 hours to distill off the remaining dimethyl succinate to obtain a room temperature yellow liquid. In addition, the usage-amount of the catalyst was 1.71 mol with respect to 100 mol of dicarboxylic acid ester.
  • polyester plasticizer In a four-necked flask (with a stirrer, thermometer, dropping funnel, distillation tube, nitrogen blowing tube), 999 g (9.41 mol) of diethylene glycol and 23.6 g of a methanol solution containing 28 wt% sodium methoxide as a catalyst (sodium methoxide 0) .122 mol) was added, and methanol was distilled off while stirring at normal pressure (101.3 kPa) and 120 ° C. for 0.5 hour.
  • Polyester Plasticizer 11 A 4-necked flask (with a stirrer, thermometer, dropping funnel, distillation tube, nitrogen blowing tube), 308 g (3.42 mol) of 1,4-butanediol, and a methanol solution containing 28 wt% sodium methoxide as a catalyst 6 g (0.034 mol of sodium methoxide) was added, and methanol was distilled off while stirring at normal pressure and 120 ° C. for 0.5 hour. Thereafter, 750 g (5.13 mol) of dimethyl succinate (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise over 1 hour, and methanol produced by the reaction was distilled off at normal pressure and 120 ° C.
  • dimethyl succinate manufactured by Wako Pure Chemical Industries, Ltd.
  • the mixture was cooled to 75 ° C., the pressure was gradually reduced from normal pressure to 6.7 kPa over 1 hour to distill off methanol, and then returned to normal pressure. Further, 28 wt% sodium methoxide-containing methanol as a catalyst. 1.7 g of solution (0.009 mol of sodium methoxide) was added, and methanol was distilled by gradually lowering the pressure from normal pressure to 2.9 kPa over 1 hour at 100 ° C.
  • the obtained ester plasticizer acid value of the hydroxyl value, and a saponification value was measured, the number average molecular weight based on the formula, terminal alkyl esterification ratio, average degree of polymerization (n), and to calculate the ether group value .
  • the SP value was also calculated according to the above method. The results are shown in Tables 1-2.
  • Examples 1-1 to 1-11 and Comparative Examples 1-1 to 1-4 As a polyester resin composition, the composition raw materials shown in Tables 3 and 4 were melt-kneaded at a rotation speed of 100 r / min and a melt-kneading temperature of 190 ° C. in a twin-screw extruder (Ikegai Iron Works, PCM-45). Strand cutting was performed to obtain a pellet of a polylactic acid resin composition. The obtained pellets were dried at 70 ° C. under reduced pressure for 1 day, and the water content was adjusted to 500 ppm or less.
  • This pellet was melt-kneaded at a rotation speed of 120 r / min and a melt-kneading temperature of 200 ° C. with a T-die twin screw extruder (TEX44 ⁇ II manufactured by Nippon Steel Works), and a sheet-like composition having a thickness of 0.3 mm was obtained from the T-die.
  • Extrusion and contact with a cooling roll controlled to a surface temperature of 20 ° C. for 2 seconds gave an amorphous sheet having a relative crystallinity of less than 80% (thickness 0.3 mm).
  • the film was brought into contact with an annealing roll controlled at a surface temperature of 80 ° C.
  • the raw materials in Tables 3 and 4 are as follows.
  • NW4032D Polylactic acid resin, manufactured by Nature Works LLC, poly-L-lactic acid, NatureWorks 4032D, optical purity 98.5%, melting point 160 ° C., weight average molecular weight 141000, residual monomer 1200 ppm
  • PET Polyethylene terephthalate, TSUNAMI GS2, manufactured by Eastman Chemical Co., Ltd., glass transition temperature 81 ° C.
  • ⁇ Plasticizer> Production Examples 1 to 11: Polyester plasticizers DAIFACTY-101 listed in Tables 1 and 2: Adipic acid and diethylene glycol monomethyl ether / benzyl alcohol 1/1 mixed diester, manufactured by Daihachi Chemical Industry Co., Ltd.
  • Tyravazole VR-01 ester of polyglycerin and oleic acid, manufactured by Taiyo Kagaku Co., Ltd.
  • ⁇ crystal nucleating agent> SLIPAX H: Ethylene bis 12-hydroxystearic acid amide, manufactured by Nippon Kasei Co., Ltd.
  • Test Example 1-1 ⁇ Evaluation of Crystallinity> 7.5 mg of the molded sheet is precisely weighed, sealed in an aluminum pan, and then heated from 20 ° C. to 200 ° C. at a heating rate of 20 ° C./min as a 1st RUN using a DSC apparatus (Perkin Elmer Diamond DSC). After maintaining at 200 ° C. for 5 minutes, the temperature was decreased from 200 ° C. to 20 ° C. at a temperature decrease rate of ⁇ 20 ° C./minute, held at 20 ° C. for 1 minute, and further set to 2ndRUN, with a temperature increase rate of 20 ° C./minute. The temperature was raised from 200C to 200C.
  • Test Example 1-2 ⁇ Transparency> About the sheet
  • Test Example 1-3 ⁇ Heat resistance> 7.0-8.0 mg of the sheet after molding was precisely weighed, using a thermal analyzer EXTRA TG / DTA 7200 manufactured by SII Nanotechnology, under an air stream (200 mL / min), at a heating rate of 40 ° C. / The temperature was increased from 40 ° C. to 210 ° C. in minutes, and the weight reduction rate (%) when held at 210 ° C. for 30 minutes was measured and used as a measure of heat resistance. A smaller weight reduction rate (%) indicates better heat resistance.
  • Test Example 1-4 ⁇ Bleed Resistance> The molded sheet (length 100 mm ⁇ width 100 mm) is left in a thermostatic chamber at 70 ° C. for 1 week, and the presence or absence of a plasticizer bleed on the surface is observed with the naked eye. Rated by stage. 3: No bleed is observed 2: Slight bleed is observed 1: Clearly bleed is observed
  • Test Example 1-5 ⁇ Smoke resistance> The presence or absence of smoke generation from the extruder was observed and evaluated in three stages depending on the degree. Smaller numbers indicate less fuming, better workability, and less plasticizer loss. 3: Smoke is not observed 2: Smoke is slightly observed 1: Smoke is clearly observed
  • the plasticizer represented by the formula (I) is excellent in compatibility with the polylactic acid resin and polyethylene terephthalate and has a high plasticizing effect. Excellent transparency, good bleed resistance, and high crystallinity when crystallized. Further, since the plasticizer itself has high heat resistance, smoke generation during extrusion molding is suppressed, workability is good, and the heat resistance of the sheet as the molded body is excellent. On the other hand, since the plasticizer used in Comparative Example 1-4 was poorly compatible with the resin, the transparency was poor even in an amorphous state, and the crystallinity after crystallization was low.
  • Comparative Examples 1-1 and 1-2 had insufficient compatibility with the resin, and bleeding was observed during storage.
  • Comparative Example 1-3 the transparency and bleed resistance were good, and when crystallized, the degree of crystallization was high, but the heat resistance of the plasticizer was insufficient. In addition to smoke generation, the heat resistance of the obtained sheet was inferior.
  • Examples 2-1 to 2-11 and comparative examples 2-1 to 2-4 Preparation of Polyester Resin Composition
  • a polyester resin composition raw materials for the compositions shown in Tables 5 and 6 were rotated at a rotational speed of 100 r / min, a melt kneading temperature of 190 using a twin screw extruder (Ikegai Iron Works, PCM-45). The mixture was melt-kneaded at 0 ° C., strand cut was performed, and polylactic acid resin composition pellets were obtained. The obtained pellets were dried at 70 ° C. under reduced pressure for 1 day, and the water content was adjusted to 500 ppm or less.
  • This pellet was melt-kneaded at a rotation speed of 120 r / min and a melt-kneading temperature of 200 ° C. with a T-die twin-screw extruder (TEX44 ⁇ II manufactured by Nippon Steel Works), and a sheet having a thickness of 0.3 mm
  • the composition was extruded from a T-die and contacted with a chill roll controlled at a surface temperature of 20 ° C. for 2 seconds to obtain an amorphous sheet having a relative crystallinity of less than 80% (thickness 0.3 mm).
  • thermoformed product Next, using a single vacuum / pressure forming machine (manufactured by Wakisaka Seisakusho, FVS-500P WAKITEC), the cut amorphous sheet was attached to a guide, and the heater part was set to 400 ° C. By changing the holding time in the inside, the temperature of the sheet surface becomes 70 to 90 ° C, and after heating and softening the sheet to a state where thermoforming is possible, use the upper and lower molds that set the surface temperature to 90 ° C. Then, vacuum forming was performed, and after holding for 10 seconds in the mold, the mold was removed to obtain a thermoformed product. The sheet surface temperature was measured by directly measuring the sheet surface temperature after heating with a surface thermometer. The mold used is shown in FIG.
  • the raw materials in Tables 5 and 6 are as follows.
  • NW4032D Polylactic acid resin, manufactured by Nature Works LLC, poly-L-lactic acid, NatureWorks 4032D, optical purity 98.5%, melting point 164 ° C., weight average molecular weight 141000, residual monomer 1200 ppm
  • PET Polyethylene terephthalate, TSUNAMI GS2, manufactured by Eastman Chemical Co., Ltd., glass transition temperature 81 ° C.
  • ATBC tributyl acetylcitrate, manufactured by Asahi Kasei Finechem Co., Ltd.
  • SLIPAX H Ethylene bis 12-hydroxystearic acid amide, manufactured by Nippon Kasei Co., Ltd.
  • Test Example 2-1 7.5 mg of an amorphous sheet and a thermoformed product are precisely weighed, sealed in an aluminum pan, and then used as a 1stRUN using a DSC apparatus (Diamond DSC manufactured by PerkinElmer Co., Ltd.) from 20 ° C. at a temperature increase rate of 20 ° C./min. The temperature was raised to 200 ° C. and held at 200 ° C. for 5 minutes, then the temperature was lowered from 200 ° C. to 20 ° C. at a temperature drop rate of ⁇ 20 ° C./minute, held at 20 ° C. for 1 minute, and then further heated to 2nd RUN.
  • a DSC apparatus Diamond DSC manufactured by PerkinElmer Co., Ltd.
  • Test Example 2-2 Evaluation of Transparency> A part of the amorphous sheet and the thermoformed product was cut out, and using an integrating sphere light transmittance measuring device (haze meter, HM-150 type, manufactured by Murakami Color Research Laboratory Co., Ltd.) defined in JIS-K7105, The value was measured and used as an index of transparency. It shows that it is excellent in transparency, so that the value of Haze value is small.
  • integrating sphere light transmittance measuring device haze meter, HM-150 type, manufactured by Murakami Color Research Laboratory Co., Ltd.
  • Test Example 2-3 ⁇ Evaluation of heat resistance> 50 cc of 25 ° C. water is put into the main body ( ⁇ 81 mm, height 51 mm, made of low foamed PS containing PP) of a commercially available container (trade name: Yubumi 90, Shino CCP Corporation), and the resulting thermoformed product (lid) was firmly fitted, and the range was raised with a microwave oven at 600 W for 60 seconds, and the heat resistance was evaluated in the following three stages. The surface temperature of the thermoformed product immediately after the test was 95 ° C. 3: Almost no deformation 2: Slight deformation 1: Large deformation
  • Test Example 2-4 ⁇ Evaluation of Bleed Resistance> The thermoformed product was allowed to stand in a thermostatic chamber at 70 ° C. for 1 week, and the presence or absence of bleed of the plasticizer on the surface thereof was evaluated for bleed resistance in the following three stages by visual and touch feeling. 3: No bleed is observed 2: Slight bleed is observed 1: Clearly bleed is observed
  • Test Example 2-5 ⁇ Evaluation of rigidity (elastic modulus)> A sample piece having a width of 1 cm and a length of 4 cm was cut from the flat portion of the top surface of the thermoformed product, and a frequency of 10 Hz was measured with a dynamic viscoelasticity measuring apparatus (EXSTAR6000 manufactured by SII Nanotechnology) based on JIS-K7198.
  • the storage elastic modulus (E ′) in the temperature range of ⁇ 20 ° C. to 80 ° C. was measured at a rate of temperature increase of 2 ° C./min, and the storage elastic modulus (GPa) at 25 ° C. was determined.
  • the plasticizer represented by the formula (I) is excellent in compatibility with the polylactic acid resin and polyethylene terephthalate, so that the thermoformed product of the present invention has a high crystallinity and excellent properties. It showed transparency and had good heat resistance and bleed resistance. Further, the thermoformed product containing the plasticizer had a high elastic modulus and good rigidity. On the other hand, since the plasticizers used in Comparative Examples 2-3 and 2-4 have poor compatibility with the resin, they are not as transparent as the products of the present invention, bleeding is observed during storage, and the elastic modulus is further reduced. Was a big one. In addition, the plasticizers used in Comparative Examples 2-1 and 2-2 were insufficiently compatible with the resin, decreased in transparency, and bleed was observed during storage.
  • thermoformability of the thermoformed product of the present invention was evaluated according to Test Example 2-6 below. The results are shown in Tables 7 and 8.
  • thermoformability was evaluated by using a single vacuum / pressure forming machine (manufactured by Wakisaka Manufacturing Co., Ltd., FVS-500P WAKITEC) with the amorphous sheet attached to the guide and the heater temperature set to 400 ° C. By changing the holding time, the sheet was heated until the temperature of the sheet surface reached the temperature shown in Tables 7 and 8. When the sheet heated to each temperature is vacuum molded using upper and lower molds set at 90 ° C., held in the mold for 10 seconds, the vacuum molded body is taken out, and the case where it can be easily fitted is designated as “A”. Other than that, it was designated as “B”. The sheet surface temperature was measured by directly measuring the sheet surface temperature after heating with a surface thermometer. The mold used is the same as described above.
  • the plasticizer represented by the formula (I) is excellent in compatibility with the polylactic acid resin and polyethylene terephthalate, so that the resin composition containing the plasticizer represented by the formula (I)
  • the product had a wide temperature range (molding temperature range) in which sufficient fit could be obtained even when the sheet surface temperature changed due to different holding times in the heating zone, and was excellent in thermoformability.
  • Examples 3-1 to 3-10 and comparative examples 3-1 to 3-5 Preparation of Polyester Resin Composition
  • the composition raw materials shown in Tables 9 and 10 were rotated at a rotational speed of 100 r / min, melt kneading temperature 190 using a twin screw extruder (Ikegai Iron Works, PCM-45). The mixture was melt-kneaded at 0 ° C., strand cut was performed, and polylactic acid resin composition pellets were obtained. The obtained pellets were dried at 70 ° C. under reduced pressure for 1 day, and the water content was adjusted to 500 ppm or less.
  • This pellet was melt-kneaded at a rotation speed of 120 r / min and a melt-kneading temperature of 200 ° C. with a T-die twin-screw extruder (TEX44 ⁇ II manufactured by Nippon Steel Works), and a sheet having a thickness of 0.3 mm
  • the composition was extruded from a T-die and contacted with a chill roll controlled at a surface temperature of 20 ° C. for 2 seconds to obtain an amorphous sheet having a relative crystallinity of less than 80% (thickness 0.3 mm).
  • the raw materials in Tables 9 and 10 are as follows.
  • NW4032D Polylactic acid resin, manufactured by Nature Works LLC, poly-L-lactic acid, NatureWorks 4032D, optical purity 98.5%, melting point 164 ° C., weight average molecular weight 141000, residual monomer 1200 ppm
  • PET Polyethylene terephthalate, TSUNAMI GS2, manufactured by Eastman Chemical Co., Ltd., glass transition temperature 81 ° C.
  • Poem G-048 Glycerin diacetomonooleate, manufactured by Riken Vitamin Co., Ltd.
  • Poem G-0021 Decaglycerin laurate, manufactured by Riken Vitamin Co., Ltd.
  • Test Example 3-1 ⁇ Evaluation of Crystallinity> 7.5 mg of an amorphous sheet and a biaxially stretched film are accurately weighed, sealed in an aluminum pan, and then used as a 1stRUN using a DSC apparatus (Diamond DSC manufactured by PerkinElmer Co., Ltd.) at a heating rate of 20 ° C./min. The temperature was raised from 200 ° C. to 200 ° C., held at 200 ° C. for 5 minutes, the temperature was lowered from 200 ° C. to 20 ° C. at a temperature drop rate of ⁇ 20 ° C./minute, held at 20 ° C. for 1 minute, and then further increased to 2ndRUN. The temperature was raised from 20 ° C. to 200 ° C.
  • Test Example 3-2 Evaluation of Transparency> A part of the amorphous sheet and the biaxially stretched film was cut out, and using an integrating sphere light transmittance measuring device (haze meter, HM-150 type, manufactured by Murakami Color Research Laboratory Co., Ltd.) defined in JIS-K7105, The haze value was measured and used as an index of transparency. It shows that it is excellent in transparency, so that the value of Haze value is small.
  • haze meter HM-150 type, manufactured by Murakami Color Research Laboratory Co., Ltd.
  • Test Example 3-3 ⁇ bleeding resistance Evaluation> The biaxially stretched film was allowed to stand in a thermostatic chamber at 70 ° C. for 1 week, and the presence or absence of bleed of the plasticizer on the surface was evaluated by the following three stages for the bleed resistance by visual and touch feeling. 3: No bleed is observed 2: Slight bleed is observed 1: Clearly bleed is observed
  • Test Example 3-4 ⁇ Evaluation of Film Strength (Stress at Break)> Using a biaxially stretched film, a tensile test was performed to examine the film strength (stress at break, MPa). For the tensile test, an autograph (AGS-X 1 kN) manufactured by Shimadzu Corporation was used and the test was performed according to JIS K 7127. In addition, it is judged that the higher the numerical value of the stress at break, the better the stretch orientation and the higher the film strength.
  • the stretched film of the present invention has a high crystallinity and excellent properties. It showed transparency and good bleed resistance. Furthermore, since the stretchability of the polylactic acid resin was remarkably improved by containing the plasticizer, the stress at break was high and the film strength was good. On the other hand, since the plasticizers used in Comparative Examples 3-3 and 3-4 have poor compatibility with the resin, they are less transparent than the products of the present invention, bleed is observed during storage, and the stress at break is also high. It was low.
  • Comparative Example 3-5 containing no plasticizer, since the stretchability was inferior, the improvement in stress at break was small and the film strength was inferior.
  • the plasticizers used in Comparative Examples 3-1 and 3-2 had insufficient compatibility with the resin, and the transparency was lowered, and bleeding was observed during storage.
  • the sheet or film of the present invention is excellent in transparency and excellent in heat resistance and bleed resistance, it can be suitably used for various applications such as food, agriculture and industry.
  • the thermoformed product of the present invention is excellent in transparency, heat resistance and bleed resistance, and further excellent in rigidity, so it is suitable for various applications such as food containers, packaging materials for household and household appliances, trays for industrial parts, etc.
  • the stretched film of the present invention is excellent in transparency and bleed resistance, and further excellent in film strength. Therefore, the stretched film should be suitably used for various applications such as food packaging, packaging materials for daily necessities and household appliances, and various industrial films. Can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

 ポリエステル樹脂及び下記式(I)で示されるポリエステル系可塑剤を含有してなるポリエステル樹脂組成物からなる、(1)シート又はフィルム、(2)熱成形品、及び(3)延伸フィルムからなる群より選ばれる成形体。 RO-CO-R-CO-〔(OR)O-CO-R-CO-〕OR (I) (式中、Rは炭素数が1~4のアルキル基、Rは炭素数が2~4のアルキレン基、Rは炭素数が2~6のアルキレン基であり、mは1~6の数、nは1~12の数を示し、但し、全てのR、全てのRはそれぞれ同一でも異なっていてもよい) 本発明の成形体は、例えば、シート又はフィルムは食品、農業、工業等の様々な用途に、熱成形品は食品容器、日用品や家電製品の包装材料、工業用部品のトレイ等の様々な用途に、延伸フィルムは食品包装、日用品や家電製品の包装材料、工業用各種フィルム等の様々な用途に、それぞれ好適に使用することができる。

Description

ポリエステル樹脂組成物からなる成形体
 本発明は、ポリエステル樹脂組成物からなる成形体に関する。さらに詳しくは、日用雑貨品、家電部品、食品容器等として好適に使用し得るポリエステル樹脂組成物からなる成形体、及び該成形体の製造方法に関する。
 生分解性樹脂は、土壌、海水中、あるいは動物の体内などに置かれた場合、自然界に生息する微生物の産出する酵素の働きによって、例えば、数週間で分解が始まり1年から数年の間に消滅する。従って、近年、環境意識の高まりから、その利用が注目されている。
 例えば、特許文献1では、二価アルコールの繰り返し単位を有し、かつ末端を一塩基酸及び/又は一価アルコールで封止された、かつ酸価と水酸基価の合計が40以下であるポリエステル系可塑剤を用いると、ポリマーとの相溶性に優れることから、乳酸系ポリマーの透明性を維持したまま、耐水性及び柔軟性に優れる樹脂組成物が得られることが開示されている。
 特許文献2では、キレート剤及び/又は酸性リン酸エステルで重合触媒を失活処理した乳酸系ポリエステルに、可塑剤を溶融混練することにより、柔軟性及び貯蔵安定性に優れる樹脂組成物が得られ、該組成物を成形して結晶化させることにより、耐熱性や耐溶剤性に優れる成形物が得られることが報告されている。
 特許文献3では、ポリ乳酸樹脂、可塑剤、及び結晶核剤を含有するポリ乳酸樹脂組成物を溶融押出して得られた非晶質シートを、急冷して結晶核剤を固体化させ、次いで加熱して結晶化させることで、耐熱性及び印刷性に優れたポリ乳酸樹脂シートが得られている。
 また、特許文献4では、特定の(ポリ)グリセリンエステル系可塑剤を脂肪族ポリエステルに配合した樹脂組成物を真空成形、圧空成形、又は真空圧空成形して得られた成形物が、適度の柔らかさを有し、穴等を打ち抜いたとき、切り口が良好で、そこからひび割れすることがないこと、また、用いた可塑剤が水中でも溶出せず、高温でもブリードせず、高い耐熱性を有することが報告されている。
 特許文献5では、乳酸系ポリマーに、アミド結合を持つ脂肪族カルボン酸アミドを含む有機結晶核剤と、フタル酸誘導体、イソフタル酸誘導体、アジピン酸誘導体、マレイン酸誘導体、クエン酸誘導体、イタコン酸誘導体、オレイン酸誘導体、リシノール酸誘導体、リン酸エステル類、ヒドロキシ多価カルボン酸エステル類、多価アルコールエステル類等の結晶化促進剤とを配合した乳酸系ポリマー組成物からなるシートを、結晶化度を20~50%にした後、二次成形することにより、耐熱性および透明性に優れた熱成形品を、優れた生産効率で得られることが開示されている。
 また、特許文献6では、特定の(ポリ)グリセリンエステル系可塑剤を脂肪族ポリエステルに配合した組成物が、可塑剤のブリードが抑制され、優れた透明性、耐熱性、及び柔軟性を有するフィルム等の成形物の原料として適するものであることを報告している。また、フィルムとしては、結晶化度が20~60%である延伸フィルムが開示されている。
 特許文献7では、ポリ乳酸樹脂と難燃剤を含有する組成物に、結晶化度が50%未満のセルロースを配合させた樹脂組成物において、さらに、オリゴエステル系可塑剤を配合した例が開示されている。かかる樹脂組成物を射出成形して得られた成形体は、強度、可撓性、耐衝撃性、及び難燃性に優れることが示されている。
特開平7-118513号公報 特開平10-36651号公報 特開2009-62410号公報 特開2002-60605号公報 WO2006-121056号公報 特開2000-302956号公報 特開2011-153296号公報
 本発明は、下記〔1〕~〔8〕に関する。
〔1〕 ポリエステル樹脂及び下記式(I)で示されるポリエステル系可塑剤を含有してなるポリエステル樹脂組成物からなる、(1)シート又はフィルム、(2)熱成形品、及び(3)延伸フィルムからなる群より選ばれる成形体。
  RO-CO-R-CO-〔(OR)O-CO-R-CO-〕OR  (I)
(式中、Rは炭素数が1~4のアルキル基、Rは炭素数が2~4のアルキレン基、Rは炭素数が2~6のアルキレン基であり、mは1~6の数、nは1~12の数を示し、但し、全てのRは同一でも異なっていてもよく、全てのRは同一でも異なっていてもよい)
〔2〕 前記〔1〕記載の成形体の製造方法であって、下記工程(1)を含むことを特徴とする、成形体の製造方法。
工程(1):ポリエステル樹脂と式(I)で表されるポリエステル系可塑剤を含有するポリエステル樹脂組成物を押出成形法によりダイから押出して得られたシート又はフィルムを、該ポリエステル樹脂組成物のガラス転移温度(Tg)未満に冷却して相対結晶化度80%未満のシート又はフィルムを得る工程
〔3〕 さらに、下記工程(2-1)を含む、前記〔2〕記載の成形体の製造方法。
工程(2-1):工程(1)で得られたシート又はフィルムを、ポリエステル樹脂組成物のガラス転移温度(Tg)以上、ポリエステル樹脂組成物の融点(Tm)未満の温度に加熱して相対結晶化度80%以上の結晶化シート又はフィルムを得る工程
〔4〕 さらに、下記工程(2-2)を含む、前記〔2〕記載の成形体の製造方法。
工程(2-2):工程(1)で得られたシートを、ポリエステル樹脂組成物のガラス転移温度(Tg)以上、ポリエステル樹脂組成物の融点(Tm)未満の温度領域中で熱成形して相対結晶化度80%以上に結晶化させた熱成形品を得る工程
〔5〕 さらに、下記工程(2-3)を含む、前記〔2〕記載の成形体の製造方法。
工程(2-3):工程(1)で得られたシートを、ポリエステル樹脂組成物のガラス転移温度(Tg)以上、ポリエステル樹脂組成物の冷結晶化温度(Tc)以下の温度領域中で一軸又は二軸延伸して相対結晶化度80%以上に結晶化させた延伸フィルムを得る工程
〔6〕 (1)日用品、化粧品、及び家電製品から選ばれる製品のためのクリアケース、ならびに紙箱の透明窓、からなる群より選ばれる包装容器、又は(2)クリアホルダー及びIDカードケースから選ばれる文具類を製造するための、前記〔1〕記載の成形体の使用。
〔7〕 (1)日用品、化粧品、及び家電製品から選ばれる製品のためのブリスターパックあるいはトレイ、(2)食品容器、又は(3)工業部品の輸送や保護に用いる工業用トレイを製造するための、前記〔1〕記載の成形体の使用。
〔8〕 (1)日用品、化粧品、及び家電製品から選ばれる製品のための包装材料、(2)工業用フィルム、又は(3)食品包装用フィルムを製造するための、前記〔1〕記載の成形体の使用。
図1は、実施例の熱成形品を調製した際に用いた金型を示す図である。
発明の詳細な説明
 従来技術に拠って、特定の可塑剤を配合して成分間の相溶性を高めたり、予め樹脂自身に処理を行って樹脂の熱分解が抑制されたりした樹脂組成物を調製し、それを結晶化させることで耐熱性に優れるシート又はフィルム、耐熱性、透明性、耐ブリード性に優れる熱成形品、強度や柔軟性、透明性、耐ブリード性に優れる延伸フィルム等の成形体を得ることは可能である。しかしながら、その透明性が十分ではなかったり、結晶性が未だ十分ではないために強度が劣るものであったりするため、適用できる用途が限定されていた。
 本発明は、良好な作業性で得られ、透明性が良好で、かつ、耐熱性及び耐ブリード性に優れる、ポリエステル樹脂組成物からなるシート又はフィルム、及びそれらの製造方法に関する。
 本発明は、高い結晶化度を有し、かつ、透明性、耐熱性、耐ブリード性、及び強度に優れる、ポリエステル樹脂組成物からなる熱成形品、及びその製造方法に関する。
 本発明は、高い結晶化度を有し、かつ、透明性、耐ブリード性、及び強度に優れる、ポリエステル樹脂組成物からなる延伸フィルム、及びその製造方法に関する。
 本発明のシート又はフィルムは、良好な作業性で得られ、透明性が良好で、かつ、耐熱性及び耐ブリード性に優れるという優れた効果を奏する。
 本発明の熱成形品は、高い結晶化度を有し、かつ、透明性、耐熱性、耐ブリード性、及び強度に優れるという優れた効果を奏する。
 本発明の延伸フィルムは、高い結晶化度を有し、かつ、透明性、耐ブリード性、及び強度に優れるという優れた効果を奏する。
 本発明の成形体は、ポリエステル樹脂とポリエステル系可塑剤を含有するポリエステル樹脂組成物からなるものであって、該可塑剤が特定の化合物であることに特徴を有する。本発明の成形体の具体的な態様としては、(1)シート又はフィルム、(2)熱成形品、及び(3)延伸フィルムが挙げられる。
 一般に、ポリエステル系可塑剤は、酸価や水酸基価が高いポリマー化合物が多い。かかる化合物がポリエステル樹脂に配合されると、該化合物の酸基(例えば、カルボキシル基)や水酸基により、ポリエステル樹脂が分解されたり、ブリードして自身も分解したりするため、得られた樹脂組成物を加温して成形すると成形体の透明性が低下しやすくなる。そこで、本発明では、前記式(I)で表される化合物を用いる。該化合物は、酸基や水酸基が少なく、かつ、化合物の末端が封止(capping)されていることから、ポリエステル樹脂との反応性が低いためにポリエステル樹脂の分解が抑制される。また、該化合物は、分子内の各セグメントが適度な極性を持った鎖状構造をしているために、ポリエステル樹脂と適度な相互作用が得られてポリエステル樹脂との相溶性が向上する。
 そのため、該化合物を配合したポリエステル樹脂組成物は可塑性が向上するとともに、得られる樹脂組成物を例えば、シート又はフィルムに成形した成形体は透明性に優れ、且つ可塑剤の耐ブリード性にも優れるものとなる。また、ポリアルキレングリコールのモノアルキルエーテルと二塩基酸とからなる二塩基酸エステルに比べ、極性基としてのエーテル基含有比率が低く、酸化安定性、および耐揮発性に優れ、押出成形時の押出機からの発煙も抑制されて作業性が良好になるとともに、成形体の耐熱性も向上する。
 また、該化合物を配合したポリエステル樹脂組成物は可塑性及び成形性(熱成形における成形可能な温度幅が広い)が向上するとともに、二次加工処理(熱成形)して得られた熱成形品は可塑剤の耐ブリード性が良好で透明性に優れ、且つ耐熱性及び強度に優れるものとなる。また、ポリエステル樹脂との相溶性および可塑性が高いために熱成形工程でのポリエステル分子の配向が均一に促進され、結晶性も向上する。
 さらにまた、該化合物を配合したポリエステル樹脂組成物は可塑性及び延伸性が向上するとともに、二次加工処理(延伸)して得られた延伸フィルムは透明性に優れ、且つ可塑剤の耐ブリード性にも優れるものとなる。また、ポリエステル樹脂との相溶性および可塑性が高いために延伸工程でのポリエステル分子の配向が均一に促進され、結晶性も向上する。
〔ポリエステル樹脂組成物〕
[ポリエステル樹脂]
 ポリエステル樹脂としては、当該分野において公知のものであれば特に限定はないが、生分解性を有していることが好ましく、生分解性ポリエステル樹脂が好ましい。具体的には、ポリヒドロキシブチレート、ポリカプロラクトン、ポリブチレンサクシネート、ポリブチレンサクシネート/アジペート、ポリエチレンサクシネート、ポリエチレンテレフタレート、ポリ乳酸樹脂、ポリリンゴ酸、ポリグリコール酸、ポリジオキサノン、ポリ(2-オキセタノン)等の脂肪族ポリエステル樹脂;ポリブチレンサクシネート/テレフタレート、ポリブチレンアジペート/テレフタレート、ポリテトラメチレンアジペート/テレフタレート等の脂肪族芳香族コポリエステル樹脂;デンプン、セルロース、キチン、キトサン、グルテン、ゼラチン、ゼイン、大豆タンパク、コラーゲン、ケラチン等の天然高分子と上記の脂肪族ポリエステル樹脂あるいは脂肪族芳香族コポリエステル樹脂との混合物等が挙げられる。これらのなかでも、加工性、経済性、入手性、及び物性に優れることから、ポリブチレンサクシネート及びポリ乳酸樹脂が好ましく、ポリ乳酸樹脂がより好ましい。なお、本明細書において「生分解性」とは、自然界において微生物によって低分子化合物に分解され得る性質のことであり、具体的には、JIS K6953(ISO14855)「制御された好気的コンポスト条件の好気的かつ究極的な生分解度及び崩壊度試験」に基づいた生分解性のことを意味する。
 ポリ乳酸樹脂としては、市販されているポリ乳酸樹脂(例えば、三井化学社製:商品名 レイシアH-100、H-280、H-400、H-440等や、Nature Works社製:商品名 Nature Works PLA/NW3001D、NW4032D、トヨタ自動車社製:商品名 エコプラスチックU'z S-09、S-12、S-17等)の他、乳酸やラクチドから合成したポリ乳酸樹脂が挙げられる。強度や耐熱性の向上の観点から、光学純度90%以上のポリ乳酸樹脂が好ましく、例えば、比較的分子量が高く、また光学純度の高いNature Works社製ポリ乳酸樹脂(NW4032D等)が好ましい。
 また、本発明において、ポリ乳酸樹脂として、ポリエステル樹脂組成物の強度と可撓性の両立、耐熱性及び透明性の向上の観点から、異なる異性体を主成分とする乳酸成分を用いて得られた2種類のポリ乳酸からなるステレオコンプレックスポリ乳酸を用いてもよい。
 ステレオコンプレックスポリ乳酸を構成する一方のポリ乳酸〔以降、ポリ乳酸(A)と記載する〕は、L体90~100モル%、D体を含むその他の成分0~10モル%を含有する。他方のポリ乳酸〔以降、ポリ乳酸(B)と記載する〕は、D体90~100モル%、L体を含むその他の成分0~10モル%を含有する。なお、L体及びD体以外のその他の成分としては、2個以上のエステル結合を形成可能な官能基を持つジカルボン酸、多価アルコール、ヒドロキシカルボン酸、ラクトン等が挙げられ、また、未反応の前記官能基を分子内に2つ以上有するポリエステル、ポリエーテル、ポリカーボネート等であってもよい。
 ステレオコンプレックスポリ乳酸における、ポリ乳酸(A)とポリ乳酸(B)の重量比〔ポリ乳酸(A)/ポリ乳酸(B)〕は、10/90~90/10が好ましく、20/80~80/20がより好ましく、40/60~60/40がさらに好ましい。
 また、本発明におけるポリ乳酸樹脂は、ポリ乳酸樹脂以外の生分解性ポリエステル樹脂やポリプロピレン等の非生分解性樹脂とポリ乳酸樹脂とのブレンドによるポリマーアロイとして含有されていてもよい。
 なお、本発明においては、樹脂物性と経済性の観点から、乳酸成分とジカルボン酸成分とジオール成分からなるポリ乳酸樹脂(変性ポリ乳酸樹脂)以外のポリ乳酸樹脂が好ましい。
 ポリエステル樹脂における、ポリ乳酸樹脂の含有量は、好ましくは80重量%以上、より好ましくは90重量%以上、さらに好ましくは実質的に100重量%である。
 また、ポリエステル樹脂の含有量は、特に限定されないが、ポリエステル樹脂組成物中、50重量%以上が好ましく、60重量%以上がより好ましく、70重量%以上がさらに好ましい。
[可塑剤]
 本発明におけるポリエステル系可塑剤としては、下記式(I):
  RO-CO-R-CO-〔(OR)O-CO-R-CO-〕OR  (I)
(式中、Rは炭素数が1~4のアルキル基、Rは炭素数が2~4のアルキレン基、Rは炭素数が2~6のアルキレン基であり、mは1~6の数、nは1~12の数を示し、但し、全てのRは同一でも異なっていてもよく、全てのRは同一でも異なっていてもよい)
で表される化合物が挙げられる。なお、本明細書において、式(I)における〔(ORO-CO-R-CO-〕を、式(I)における繰り返し単位とも言う。
 式(I)におけるRは、炭素数が1~4のアルキル基を示し、1分子中に2個存在して、分子の両末端に存在する。Rは炭素数が1~4であれば、直鎖であっても分岐鎖であってもよい。アルキル基の炭素数としては、ポリエステル樹脂との相溶性を向上させ可塑化効果を発現させる観点から、1~4が好ましく、1~2がより好ましい。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、iso-ブチル基が挙げられ、なかでも、ポリエステル樹脂との相溶性を向上させ可塑化効果を発現させる観点から、メチル基及びエチル基が好ましく、メチル基がより好ましい。
 式(I)におけるRは、炭素数が2~4のアルキレン基を示し、直鎖のアルキレン基が好適例として挙げられる。具体的には、エチレン基、1,3-プロピレン基、1,4-ブチレン基が挙げられ、なかでも、ポリエステル樹脂との相溶性を向上させ可塑化効果を発現させる観点から、エチレン基、1,3-プロピレン基が好ましく、エチレン基がより好ましく、可塑化効果を発現させる観点及び経済性の観点から、エチレン基、1,4-ブチレン基が好ましく、エチレン基がより好ましい。但し、全てのRは同一でも異なっていてもよい。
 式(I)におけるRは、炭素数が2~6のアルキレン基を示し、オキシアルキレン基として、繰り返し単位中に存在する。Rは炭素数が2~6であれば、直鎖であっても分岐鎖であってもよい。アルキレン基の炭素数としては、ポリエステル樹脂との相溶性を向上させ可塑化効果を発現させる観点から、2~6が好ましく、2~3がより好ましい。具体的には、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,3-ブチレン基、1,4-ブチレン基、2-メチル-1,3-プロピレン基、1,2-ペンチレン基、1,4-ペンチレン基、1,5-ペンチレン基、2,2-ジメチル-1,3-プロピレン基、1,2-ヘキシレン基、1,5-ヘキシレン基、1,6-ヘキシレン基、2,5-ヘキシレン基、3-メチル-1,5-ペンチレン基が挙げられ、なかでも、ポリエステル樹脂との相溶性を向上させ可塑化効果を発現させる観点から、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,4-ブチレン基が好ましい。但し、全てのRは同一でも異なっていてもよい。
 mはオキシアルキレン基の平均の繰り返し数を示し、1~6の数である。mが大きくなると、式(I)で表される化合物のエーテル基価が上がり、酸化されて分解しやすくなる。ポリエステル樹脂との相溶性を向上させる観点及び得られる成形体の透明性を向上させる観点から、1~6の数であり、1~4の数が好ましく、1~3の数がより好ましく、1~2の数がさらに好ましい。
 nは繰り返し単位の平均の繰り返し数(平均重合度)を示し、耐揮発性の観点から、好ましくは1以上、より好ましくは1.2以上、さらに好ましくは1.5以上、さらに好ましくは1.8以上、さらに好ましくは2以上である。また、可塑化効率の観点から、好ましくは12以下、より好ましくは10以下、さらに好ましくは8以下、さらに好ましくは7以下、さらに好ましくは6以下である。また、nは、耐揮発性とポリエステル樹脂との相溶性を向上させ可塑化効果及び可塑化効率を向上させる観点から、好ましくは1~12であり、より好ましくは1~8であり、さらに好ましくは1.2~8であり、さらに好ましくは1.5~7であり、さらに好ましくは1.8~7である。なお、本明細書において、平均重合度は、後述の実施例に記載の方法に従って算出することができる。
 式(I)で表される化合物の具体例としては、Rがメチル基、Rがエチレン基、Rがエチレン基であって、mが2、nが1.6のエステル、Rがメチル基、Rがエチレン基、Rがエチレン基であって、mが2、nが2.1のエステル、Rがメチル基、Rがエチレン基、Rがエチレン基であって、mが2、nが4.3のエステル、Rがメチル基、Rがエチレン基、Rが1,3-プロピレン基であって、mが1、nが4.4のエステル、Rがメチル基、Rがエチレン基、Rが1,2-プロピレン基であって、mが1、nが3.6のエステル、Rがエチル基、Rが1,4-ブチレン基、Rが1,3-プロピレン基であって、mが1、nが2のエステル、Rがブチル基、Rがエチレン基、Rがエチレン基であって、mが2、nが1.9のエステル、Rがブチル基、Rが1,3-プロピレン基、Rがエチレン基であって、mが3、nが1.5のエステル、Rがメチル基、Rが1,4-ブチレン基、Rが1,3-プロピレン基であって、mが1、nが4.4のエステル、Rがメチル基、Rがエチレン基、Rが1,4-ブチレン基であって、mが1、nが4.4のエステル、Rがメチル基、Rがエチレン基、Rが1,6-ヘキシレン基であって、mが1、nが3のエステル、Rがメチル基、Rがエチレン基、Rが1,2-プロピレン基であって、mが1、nが6.5のエステル、Rがメチル基、Rがエチレン基、Rが2-メチル-1,3-プロピレン基であって、mが1、nが3のエステル等が挙げられ、これらは1種単独で又は2種以上含有されていてもよい。これらのなかでも、Rが全てメチル基、Rがエチレン基又は1,4-ブチレン基、Rがエチレン基、1,3-プロピレン基、又は1,2-プロピレン基であって、mが1~3の数、nが1~8の数である化合物が好ましく、Rが全てメチル基、Rがエチレン基又は1,4-ブチレン基、Rがエチレン基、1,3-プロピレン基、又は1,2-プロピレン基であって、mが1~2の数、nが1.8~7の数である化合物がより好ましい。
 式(I)で表される化合物は、前記構造を有するのであれば特に限定ないが、下記(1)~(3)の原料を用いて得られるものが好ましい。
(1)炭素数が1~4のアルキル基を有する一価アルコール
 炭素数が1~4のアルキル基を有する一価アルコールとしては、前記Rを含むアルコールであり、具体的には、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、1,1-ジメチル-1-エタノールが挙げられる。なかでも、ポリエステル樹脂との相溶性を向上させ可塑化効果を発現させる観点の他、エステル交換反応の効率を上げる観点から、メタノール、エタノール、1-プロパノール、1-ブタノールが好ましく、メタノール、エタノールがより好ましく、メタノールがさらにより好ましい。
(2)炭素数が2~4のアルキレン基を有するジカルボン酸
 炭素数が2~4のアルキレン基を有するジカルボン酸としては、前記Rを含むジカルボン酸であり、具体的には、コハク酸、グルタル酸、アジピン酸、及びそれらの誘導体(例えば、コハク酸無水物、グルタル酸無水物、コハク酸ジメチル、コハク酸ジブチル、グルタル酸ジメチル、アジピン酸ジメチル)が挙げられる。なかでも、ポリエステル樹脂との相溶性を向上させ可塑化効果を発現させる観点から、コハク酸、グルタル酸、及びそれらの誘導体(例えば、コハク酸無水物、グルタル酸無水物、コハク酸ジメチル、コハク酸ジブチル、グルタル酸ジメチル)が好ましく、コハク酸及びその誘導体(例えば、コハク酸無水物、コハク酸ジメチル)がより好ましく、可塑化効果を発現させる観点及び経済性の観点から、コハク酸、アジピン酸及びそれらの誘導体(例えば、コハク酸無水物、コハク酸ジメチル、コハク酸ジブチル、アジピン酸ジメチル)が好ましく、コハク酸及びその誘導体(例えば、コハク酸無水物、コハク酸ジメチル、コハク酸ジブチル)がより好ましい。
(3)炭素数が2~6のアルキレン基を有する二価アルコール
 炭素数が2~6のアルキレン基を有する二価アルコールとしては、前記Rを含む二価アルコールであり、具体的には、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、1,2-ペンタンジオール、1,4-ペンタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール、2,5-ヘキサンジオール、1,6-ヘキサンジオール、2,5-ヘキサンジオール、3-メチル-1,5-ペンタンジオールが挙げられる。なかでも、ポリエステル樹脂との相溶性を向上させ可塑化効果を発現させる観点から、ジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、テトラエチレングリコール、1,4-ブタンジオールが好ましく、ジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオールがより好ましく、ジエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオールがさらに好ましい。
 よって、前記(1)~(3)としては、
(1)一価アルコールがメタノール、エタノール、1-プロパノール、及び1-ブタノールからなる群より選ばれる少なくとも1種であり、(2)ジカルボン酸がコハク酸、グルタル酸、及びそれらの誘導体からなる群より選ばれる少なくとも1種であり、(3)二価アルコールがジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、テトラエチレングリコール、及び1,4-ブタンジオールからなる群より選ばれる少なくとも1種である、ことが好ましく、
(1)一価アルコールがメタノール及びエタノールからなる群より選ばれる少なくとも1種であり、(2)ジカルボン酸がコハク酸、グルタル酸、及びそれらの誘導体からなる群より選ばれる少なくとも1種であり、(3)二価アルコールがジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、及び1,3-プロパンジオールからなる群より選ばれる少なくとも1種である、ことがより好ましく、
(1)一価アルコールがメタノールであり、(2)ジカルボン酸がコハク酸及びその誘導体からなる群より選ばれる少なくとも1種であり、(3)二価アルコールがジエチレングリコール、1,2-プロパンジオール、及び1,3-プロパンジオールからなる群より選ばれる少なくとも1種である、ことがさらに好ましい。
 前記(1)~(3)を用いて式(I)で表される化合物を得る方法としては、特に限定はないが、例えば、以下の態様1及び態様2の方法が挙げられる。
態様1:(2)ジカルボン酸と(1)一価アルコールのエステル化反応を行ってジカルボン酸エステルを合成する工程(工程1)と、得られたジカルボン酸エステルと(3)二価アルコールをエステル化反応させる工程(工程2)を含む方法
態様2:(1)一価アルコール、(2)ジカルボン酸、及び(3)二価アルコールを一括反応させる工程を含む方法
 これらのなかでも、平均重合度を調整する観点から、ポリエステル樹脂の加アルコール分解の生じ難い態様1の方法が好ましい。
 態様1の方法について、以下に説明する。
 態様1は、ジカルボン酸と一価アルコールとの反応物であるジカルボン酸エステルを二価アルコールとエステル交換反応させる方法であり、本明細書では、態様1の方法をエステル交換反応ともいう。
 具体的には、先ず、態様1の工程1で、(2)ジカルボン酸と(1)一価アルコールのエステル化反応を行ってジカルボン酸エステルを合成する。エステル化方法としては、例えば、(2)ジカルボン酸と触媒の混合物に(1)一価アルコールを添加して攪拌し、生成する水や一価アルコールを系外に除く、脱水エステル化方法が挙げられる。具体的には、
1)ジカルボン酸の中に一価アルコールの蒸気を吹き込んでエステル化反応を行うと共に、生成する水と未反応の一価アルコールを共に除く方法、
2)過剰の一価アルコールを用いてエステル化反応を行うと共に、生成する水と一価アルコールを共沸させて除く方法、
3)エステル化反応を行うと共に、水又は、水、一価アルコール等と共沸をする溶剤(例えばトルエン)を加えて水とアルコールを除く方法
等が挙げられる。
 触媒としては、硫酸、リン酸、メタンスルホン酸、パラトルエンスルホン酸等の無機酸、又は有機酸が挙げられるが、なかでも、パラトルエンスルホン酸が好ましい。触媒の使用量はジカルボン酸100モルに対して、0.05~10モルが好ましく、0.10~3モルがより好ましい。
 一価アルコールとジカルボン酸のモル比(一価アルコール/ジカルボン酸)は、反応率の向上と経済性の観点から、2/1~20/1が好ましく、3/1~12/1がより好ましい。なお、この場合「反応率」とは、ジカルボン酸を基準として、反応に供した原料が反応した割合を意味する。
 反応温度は、用いる一価アルコールの種類にもよるが、反応率の向上と副反応抑制の観点から、50~200℃が好ましく、80~140℃がより好ましい。反応時間は、0.5~15時間が好ましく、1.0~5時間がより好ましい。なお、反応は減圧下で行ってもよく、反応圧力は好ましくは2.7~101.3kPa、より好ましくは6.7~101.3kPaである。
 得られたジカルボン酸エステルは、2個の分子末端に対するアルキルエステル化率が、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上である。なお、本明細書において、アルキルエステル化率は、後述の実施例に記載の方法に従って算出することができる。
 かくして得られたジカルボン酸エステルを工程2に供する。なお、本発明において、ジカルボン酸エステルは、前記のようにして得られた反応物を用いてもよいが、市販品を用いてもよく、市販品を工程2に供してもよい。好適な市販品としては、コハク酸ジメチル(和光純薬工業社製)、アジピン酸ジメチル(和光純薬工業社製)が挙げられる。
 態様1の工程2では、ジカルボン酸エステルの(3)二価アルコールによるエステル交換反応を行う。
 具体的には、例えば、ジカルボン酸エステルと触媒の混合物に(3)二価アルコールを連続的に添加して、生成する一価アルコールを系外に除くエステル交換反応、又は、(3)二価アルコールと触媒の混合物にジカルボン酸エステルを連続的に添加して、生成する一価アルコールを系外に除くエステル交換反応が挙げられる。いずれにおいても、生成した一価アルコールを留去することにより平衡をずらして、反応を進行させることができる。また、触媒は段階的に添加してもよく、例えば、ジカルボン酸エステルに二価アルコールを投入、あるいは、二価アルコールにジカルボン酸エステルを投入する際に存在させ、かつ、生成する一価アルコールを系外に除く段階でさらに添加することができる。なお、エステル交換反応に用いるジカルボン酸エステルは前述のエステル化反応で得られた反応混合物又は市販品をそのまま使用することもできるし、蒸留単離した後、使用することもできる。
 触媒としては、前述の硫酸、リン酸、メタンスルホン酸、パラトルエンスルホン酸等の無機酸、又は有機酸の他、テトライソプロポキシチタン、テトラブトキシチタンなどの有機金属化合物、ナトリウムメトキシドなどのアルカリアルコキシド等が挙げられる。なかでも、パラトルエンスルホン酸、テトライソプロポキシチタン、テトラブトキシチタン、ナトリウムメトキシドが好ましい。触媒の使用量は、例えば、パラトルエンスルホン酸、ナトリウムメトキシドでは、ジカルボン酸エステル100モルに対して、0.05~10モルが好ましく、0.10~5モルがより好ましく、テトライソプロポキシチタン、テトラブトキシチタンでは0.0001~0.1モルが好ましく、0.0005~0.05モルがより好ましい。なお、ここでいう触媒の使用量とは、工程2で用いた触媒の総使用量を言う。
 ジカルボン酸エステルと二価アルコールのモル比(ジカルボン酸エステル/二価アルコール)は、本発明におけるエステル化合物の分子量を制御する観点から、1.1/1~10/1が好ましく、1.2/1~4/1がより好ましく、1.3/1~3/1がさらに好ましい。
 反応温度は、反応率の向上と副反応抑制の観点から、50~250℃が好ましく、60~150℃がより好ましい。この場合、「反応率」とは、二価アルコールを基準として、反応に供した原料が反応した割合を意味する。反応時間は、0.1~10時間が好ましく、1~10時間がより好ましい。なお、反応は減圧下で行ってもよく、反応圧力は好ましくは0.7~101.3kPa、より好ましくは2.0~101.3kPaである。
 態様2の方法について、以下に説明する。
 態様2の方法は、(1)一価アルコール、(2)ジカルボン酸、及び(3)二価アルコールを、必要により、触媒の存在下で一括反応させる方法であり、本明細書では、態様2の方法を一括添加反応ともいう。
 原料は、一括又は分割して供給することができるが、一価アルコールは分割又は連続的に反応器内に導入してもよい。
 触媒としては、硫酸、リン酸、メタンスルホン酸、パラトルエンスルホン酸等の無機酸、又は有機酸が挙げられ、なかでも、パラトルエンスルホン酸が好ましい。触媒の使用量はジカルボン酸100モルに対して、0.05~10モルが好ましく、0.10~5モルがより好ましい。
 ジカルボン酸と、一価アルコール、二価アルコールのモル比(ジカルボン酸/一価アルコール/二価アルコール)は、本発明におけるエステル化合物の分子量を制御する観点から、1.1/1.1/1~10/100/1が好ましく、1.2/3/1~3/30/1がより好ましく、1.3/5/1~3/20/1がさらに好ましい。
 また、本発明におけるエステル化合物の分子量を制御する観点から、ジカルボン酸と二価アルコールのモル比(ジカルボン酸/二価アルコール)は、1.2/1~3/1が好ましい。
 反応温度は、用いるアルコールの種類にもよるが、50~200℃が好ましく、反応時間は0.5~15時間が好ましい。反応は減圧下で行ってもよく、6.7~101.3kPa圧力下が好ましい。また、温度70~140℃、常圧下(101.3kPa)で3~5時間反応させて、生成する水と一価アルコールを除いた後に、温度70~120℃、圧力0.7~26.7kPaで0.5~3時間熟成してもよい。
 また、本発明においては、態様3として、前記(2)ジカルボン酸と(3)二価アルコールのエステル化反応(脱水エステル化反応)を行ってジカルボン酸エステルを合成後に、得られたジカルボン酸エステルに、さらに(1)一価アルコールをエステル化反応(脱水エステル化反応)させてもよい。
 なお、得られた反応物は、公知の方法に従って、未反応原料や副生物を留去してもよい。
 かくして、式(I)で表される化合物が得られる。
 式(I)で表される化合物は、耐ブリード性とシート、フィルム、熱成形品、延伸フィルムの耐久性の観点から、酸価が好ましくは1.00mgKOH/g以下、より好ましくは0.90mgKOH/g以下であり、好ましくは0.05mgKOH/g以上、より好ましくは0.1mgKOH/g以上である。また、耐ブリード性の観点から、水酸基価が好ましくは10.0mgKOH/g以下、より好ましくは8.0mgKOH/g以下、さらに好ましくは5.0mgKOH/g以下であり、好ましくは0.1mgKOH/g以上、より好ましくは0.2mgKOH/g以上である。なお、本明細書において、可塑剤の酸価及び水酸基価は、後述の実施例に記載の方法に従って測定することができる。
 式(I)で表される化合物のケン化価は、ポリエステル樹脂との相溶性を向上し、ポリエステル樹脂組成物からの揮発性有機化合物の発生を抑制する観点から、500mgKOH/g以上が好ましく、600mgKOH/g以上がより好ましく、800mgKOH/g以下が好ましく、750mgKOH/g以下がより好ましい。また、500~800mgKOH/gが好ましく、600~750mgKOH/gがより好ましい。なお、本明細書において、可塑剤のケン化価は、後述の実施例に記載の方法に従って測定することができる。
 式(I)で表される化合物の数平均分子量は、耐揮発性と可塑化効率を向上させる観点、あるいは、耐揮発性と可塑化効率を向上させて、熱成形性を向上させる観点から、好ましくは500以上、より好ましくは600以上、さらに好ましくは700以上であり、好ましくは1500以下、より好ましくは1400以下、さらに好ましくは1300以下、さらに好ましくは1200以下である。また、好ましくは500~1500、より好ましくは500~1400、さらに好ましくは500~1300、さらに好ましくは500~1200、さらに好ましくは600~1200、よりさらに好ましくは700~1200である。数平均分子量が500以上であると、ポリエステル樹脂組成物の耐揮発性が良好となり、該樹脂組成物からの可塑剤の揮発が抑制されるため、経時での該樹脂組成物の成形体の曲げ弾性率、耐熱性、耐ブリード性などの物性低下が少なくなる。さらに分子量が増加すると、ポリ乳酸樹脂と相溶性に優れ、かつ軟化温度と結晶化速度が適度にコントロールされる結果、成形可能な温度幅が向上する。なお、本明細書において、可塑剤の数平均分子量は、後述の実施例に記載の方法に従って算出することができる。
 式(I)で表される化合物としては、酸価が1.00mgKOH/g以下、水酸基価が10.0mgKOH/g以下、数平均分子量が500~1500であることが好ましく、酸価が0.90mgKOH/g以下、水酸基価が8.0mgKOH/g以下、数平均分子量が500~1400であることがより好ましく、酸価が0.90mgKOH/g以下、水酸基価が8.0mgKOH/g以下、数平均分子量が600~1200であることがさらに好ましい。
 また、式(I)で表される化合物は、ポリエステル樹脂との相溶性を向上させ可塑化効果を発現させる観点及び可塑化効率を向上させる観点から、2個の分子末端に対するアルキルエステル化率(末端アルキルエステル化率)が、好ましくは85%以上、より好ましくは90%以上である。なお、本明細書において、可塑剤の末端アルキルエステル化率は、後述の実施例に記載の方法に従って算出することができる。
 式(I)で表される化合物のエーテル基価は、ポリエステル樹脂との相溶性を向上し、ポリエステル樹脂組成物からの揮発性有機化合物の発生を抑制する観点から、好ましくは1mmol/g以上であり、好ましくは8mmol/g以下、より好ましくは6mmol/g以下、さらに好ましくは5mmol/g以下である。また、0~8mmol/gが好ましく、0~6mmol/gがより好ましく、1~6mmol/gがさらに好ましく、1~5mmol/gがさらに好ましい。なお、本明細書において、可塑剤のエーテル基価は、後述の実施例に記載の方法に従って算出することができる。
 式(I)で表される化合物は、ポリエステル樹脂との相溶性の観点から、SP(Solubility Parameter、溶解性パラメータ)値が、好ましくは10.0以上、より好ましくは10.1以上、さらに好ましくは10.2以上であり、好ましくは12.0以下、より好ましくは11.5以下、さらに好ましくは11.2以下である。また、好ましくは10.0~12.0、より好ましくは10.1~11.5、さらに好ましくは10.2~11.2である。なお、本明細書において、SP値とは、凝集エネルギーをΔE、分子容をVとするとき、下記の式:
   SP値=(ΔE/V)1/2   (cal1/2cm-3/2
で定義される量を意味し、例えば、後述の実施例に記載のように、原崎勇次著、”コーティングの基礎科学”、p48、槙書店(1988)に記載されているFedorsの方法を用いて算出することができる。
 本発明においては、本発明の効果を損なわない範囲で、前記式(I)で表される化合物以外の他の可塑剤を併用することができる。他の可塑剤としては特に限定はないが、分子内に2個以上のエステル基を有するエステル化合物であって、該エステル化合物を構成するアルコール成分の少なくとも1種が水酸基1個当たり炭素数2~3のアルキレンオキサイドを平均0.5~5モル付加したアルコールであるエステル化合物が好ましく、具体的には、特開2008-174718号公報及び特開2008-115372号公報に記載の可塑剤等が挙げられる。式(I)で表される化合物の含有量は、組成物に含有される全可塑剤成分中、耐熱性及び成形作業性の観点から、50重量%以上が好ましく、80重量%以上がより好ましく、90重量%以上がさらに好ましく、実質的に100重量%がさらに好ましい。
 また、式(I)で表される化合物の含有量は、可塑化効果にも優れながらも、揮発性有機化合物の発生が抑制されていることから、ポリエステル樹脂100重量部に対して、好ましくは1重量部以上、より好ましくは5重量部以上であり、好ましくは50重量部以下、より好ましくは30重量部以下である。また、1~50重量部が好ましく、5~30重量部がより好ましい。
 可塑剤の含有量、すなわち、他の可塑剤と式(I)で表される化合物との総含有量としては、ポリエステル樹脂組成物からなる成形体の耐熱性、透明性、成形性を向上させる観点から、ポリエステル樹脂100重量部に対して、好ましくは1重量部以上、より好ましくは5重量部以上であり、好ましくは50重量部以下、より好ましくは30重量部以下である。また、好ましくは1~50重量部、より好ましくは5~30重量部である。
 本発明におけるポリエステル樹脂組成物は、前記ポリエステル樹脂及び式(I)で表される化合物以外に、さらに、結晶核剤、加水分解抑制剤を含有することが好ましい。即ち、本発明におけるポリエステル樹脂組成物の一態様として、ポリエステル樹脂、式(I)で表される化合物、及び結晶核剤を含有する態様、ポリエステル樹脂、式(I)で表される化合物、結晶核剤、及び加水分解抑制剤を含有する態様が挙げられる。
[結晶核剤]
 結晶核剤としては、無機系結晶核剤、有機系結晶核剤が挙げられる。無機系結晶核剤としては、天然又は合成珪酸塩化合物、酸化チタン、硫酸バリウム、リン酸三カルシウム、炭酸カルシウム、リン酸ソーダ等の金属塩やカオリナイト、ハロイサイト、タルク、スメクタイト、バーミキュライト、マイカ等が挙げられる。有機系結晶核剤としては、カルボン酸アミドやフェニルホスホン酸の金属塩が挙げられ、透明性向上の観点から、カルボン酸アミドが好ましい。カルボン酸アミドとしては、エチレンビス脂肪酸アミド、アルキレンビス脂肪酸アミド、アルキレンビスヒドロキシ脂肪酸アミドが挙げられる。エチレンビス脂肪酸アミドとしては、エチレンビスステアリン酸アミドやエチレンビスオレイン酸アミドが例示され、アルキレンビス脂肪酸アミドとしては、プロピレンビス脂肪酸アミド、ブチレンビス脂肪酸アミドが例示される。また、アルキレンビスヒドロキシ脂肪酸アミドとしては、炭素数1~6のアルキレン基を有するアルキレンビスヒドロキシステアリン酸アミドが好ましく、エチレンビス12-ヒドロキシステアリン酸アミドがより好ましい。
 結晶核剤の含有量は、ポリエステル樹脂組成物やポリエステル樹脂組成物からなる成形体の透明性向上の観点から、ポリエステル樹脂100重量部に対して、好ましくは0.1重量部以上であり、好ましくは1.0重量部以下、より好ましくは0.5重量部以下である。また、0.1~1.0重量部が好ましく、0.1~0.5重量部がより好ましい。
[加水分解抑制剤]
 加水分解抑制剤としては、ポリカルボジイミド化合物やモノカルボジイミド化合物等のカルボジイミド化合物が挙げられ、ポリエステル樹脂組成物の耐久性、耐衝撃性を向上させる観点からポリカルボジイミド化合物が好ましく、ポリエステル樹脂組成物の耐久性、成形性(流動性)を向上させる観点から、モノカルボジイミド化合物が好ましい。また、ポリエステル樹脂組成物からなる成形体の耐久性、耐衝撃性、成形性をより向上させる観点から、モノカルボジイミドとポリカルボジイミドを併用することが好ましい。
 ポリカルボジイミド化合物としては、ポリ(4,4’-ジフェニルメタンカルボジイミド)、ポリ(4,4’-ジシクロヘキシルメタンカルボジイミド)、ポリ(1,3,5-トリイソプロピルベンゼン)ポリカルボジイミド、ポリ(1,3,5-トリイソプロピルベンゼン及び1,3-ジイソプロピルベンゼン)ポリカルボジイミド等が挙げられ、モノカルボジイミド化合物としては、N,N’-ジ-2,6-ジイソプロピルフェニルカルボジイミド等が挙げられる。
 前記カルボジイミド化合物は、ポリエステル樹脂組成物からなる成形体の耐久性、耐衝撃性及び成形性を満たすために、単独で又は2種以上組み合わせて用いてもよい。また、ポリ(4,4’-ジシクロヘキシルメタンカルボジイミド)はカルボジライトLA-1(日清紡ケミカル社製)を、ポリ(1,3,5-トリイソプロピルベンゼン)ポリカルボジイミド及びポリ(1,3,5-トリイソプロピルベンゼン及び1,3-ジイソプロピルベンゼン)ポリカルボジイミドは、スタバクゾールP及びスタバクゾールP-100(Rhein Chemie社製)を、N,N’-ジ-2,6-ジイソプロピルフェニルカルボジイミドはスタバクゾールI(Rhein Chemie社製)をそれぞれ購入して使用することができる。
 加水分解抑制剤の含有量は、ポリエステル樹脂組成物からなる成形体の透明性、成形性を向上させる観点から、ポリエステル樹脂100重量部に対して、好ましくは0.05重量部以上、より好ましくは0.10重量部以上であり、好ましくは3重量部以下、より好ましくは2重量部以下である。また、0.05~3重量部が好ましく、0.10~2重量部がより好ましい。
 本発明におけるポリエステル樹脂組成物は、前記以外の他の成分として、充填剤(無機充填剤、有機充填剤)、難燃剤、酸化防止剤、炭化水素系ワックス類やアニオン型界面活性剤である滑剤、紫外線吸収剤、帯電防止剤、防曇剤、光安定剤、顔料、防カビ剤、抗菌剤、発泡剤等を、本発明の効果を損なわない範囲で含有することができる。また同様に、本発明の効果を阻害しない範囲内で他の高分子材料や他の樹脂組成物を添加することも可能である。
 本発明におけるポリエステル樹脂組成物は、ポリエステル樹脂及び式(I)で表される化合物を含有するものであれば特に限定なく調製することができ、例えば、ポリエステル樹脂及び式(I)で表される化合物、さらに必要により各種添加剤を含有する原料を、密閉式ニーダー、1軸もしくは2軸の押出機、オープンロール型混練機等の公知の混練機を用いて溶融混練して調製することができる。原料は、予めヘンシェルミキサー、スーパーミキサー等を用いて均一に混合した後に、溶融混練に供することも可能である。なお、ポリエステル樹脂組成物を調製する際にポリエステル樹脂の可塑性を促進させるため、超臨界ガスを存在させて溶融混合させてもよい。
 溶融混練温度は、ポリエステル樹脂組成物の成形性及び劣化防止を向上する観点から、好ましくは170℃以上、より好ましくは175℃以上、さらに好ましくは180℃以上であり、好ましくは240℃以下、より好ましくは220℃以下、さらに好ましくは210℃以下である。また、好ましくは170~240℃、より好ましくは175~220℃、さらに好ましくは180~210℃である。溶融混練時間は、溶融混練温度、混練機の種類によって一概には決定できないが、15~900秒間が好ましい。
 得られた溶融混練物のガラス転移温度(Tg)は、式(I)で表される化合物が可塑剤として効果的に働くことから、好ましくは30℃以上、より好ましくは35℃以上であり、好ましくは60℃以下、より好ましくは55℃以下である。また、好ましくは30~60℃、より好ましくは30~55℃、さらに好ましくは35~55℃である。
 溶融混練物の冷結晶化温度(Tc)は、式(I)で表される化合物が可塑剤として効果的に働くことから、好ましくは50℃以上、より好ましくは60℃以上であり、好ましくは110℃以下、より好ましくは100℃以下、さらに好ましくは90℃以下である。また、好ましくは50~110℃、より好ましくは50~100℃、さらに好ましくは60~90℃である。
 溶融混練物の融点(Tm)は、成形体の耐熱性や加工性の観点から、好ましくは130℃以上、より好ましくは140℃以上、さらに好ましくは150℃以上であり、好ましくは210℃以下、より好ましくは200℃以下、さらに好ましくは180℃以下である。また、好ましくは130~210℃、より好ましくは140~200℃、さらに好ましくは150~180℃である。なお、本明細書において、ポリエステル樹脂組成物のガラス転移温度(Tg)、冷結晶化温度(Tc)、融点(Tm)は、後述の実施例に記載の方法に従って、測定することができる。
 かくして得られた溶融混練物は、延伸性、熱成形性等の二次加工性に優れることから、ポリエステル樹脂組成物からなる一次加工品(一次成形体ともいう)に成形される。一次加工品としては、シートやフィルムが挙げられる。熱成形品や延伸フィルムへの加工性の観点から、シートが好ましい。なお、本明細書において「シート」とは厚さが0.1mm以上の平板状のものをいい、「フィルム」とは厚み0.1mm未満の平板状のものをいう。
 一次加工品は、前記ポリエステル樹脂組成物を押出成形やプレス成形することによって調製することができる。
 押出成形は、加熱した押出機に充填された前記ポリエステル樹脂組成物を溶融させた後にTダイから押出すことにより、シート状又はフィルム状の成形品を得ることができる。この成形品を直ぐに冷却ロールに接触させてポリエステル樹脂組成物のTg未満に冷却することで、非晶状態又は半結晶状態にし、その後、冷却ロールから引き離し、それらを巻き取りロールにて巻き取り、本発明における一次加工品を得ることができる。なお、押出機に充填する際に、本発明におけるポリエステル樹脂組成物を構成する原料、例えば、ポリエステル樹脂及び式(I)で表される化合物、さらに必要により各種添加剤を含有する原料を充填して溶融混練後、押出し成形してもよい。なお、本明細書において、非晶状態及び半結晶状態とは、後述の試験例1-1の方法により求めた相対結晶化度が60%未満となる場合を非晶状態、相対結晶化度が60%以上、80%未満となる場合を半結晶状態とする。よって、非晶状態又は半結晶状態の成形体とは、相対結晶化度が80%未満の成形体を意味する。
 押出機の温度は、ポリエステル樹脂組成物を均一に混合し、且つポリエステル樹脂の劣化を防止する観点から、好ましくは170℃以上、より好ましくは175℃以上、さらに好ましくは180℃以上であり、好ましくは240℃以下、より好ましくは220℃以下、さらに好ましくは210℃以下である。また、170~240℃が好ましく、175~220℃がより好ましく、180~210℃がさらに好ましい。また冷却ロールの温度は、非晶状態又は半結晶状態の一次加工品を得る観点からポリエステル樹脂組成物のTg未満に設定することが好ましく、具体的には、40℃未満が好ましく、30℃以下がより好ましく、20℃以下がさらに好ましい。なお、本発明において、押出機の温度とは押出機のバレル設定温度を意味する。
 また、冷却ロールに接する時間としては、非晶状態又は半結晶状態の成形体を得る観点から、0.1~50秒が好ましく、0.5~10秒がより好ましく、0.8~5秒がさらに好ましい。また押出速度は、非晶状態又は半結晶状態の成形体を得る観点から、1~100m/分が好ましく、5~80m/分がより好ましく、10~50m/分がさらに好ましい。
 プレス成形で一次加工品、例えば、シート状の一次加工品を成形する場合は、シート形状を有する枠で本発明におけるポリエステル樹脂組成物を囲みプレス成形して調製することができる。
 プレス成形の温度と圧力としては、好ましくは170~240℃の温度、5~30MPaの圧力の条件下、より好ましくは175~220℃の温度、10~25MPaの圧力の条件下、さらに好ましくは180~210℃の温度、10~20MPaの圧力の条件下でプレスすることが好ましい。プレス時間は、プレスの温度と圧力によって一概には決定することができないが、1~10分が好ましく、1~7分がより好ましく、1~5分がさらに好ましい。
 また前記条件でプレスした後直ぐに、好ましくは0~40℃の温度、5~30MPaの圧力の条件下、より好ましくは10~30℃の温度、10~25MPaの圧力の条件下、さらに好ましくは10~20℃の温度、10~20MPaの圧力の条件下でプレスして冷却することが好ましい。この温度条件によるプレスにより、本発明におけるポリエステル樹脂組成物をそのTg未満に冷却して、非晶状態又は半結晶状態を維持することができる。プレス時間は、プレスの温度と圧力によって一概には決定することができないが、1~10分が好ましく、1~7分がより好ましく、1~5分がさらに好ましい。
 非晶状態又は半結晶状態のシート状の一次加工品を調製する場合、その厚さは均一な成形体(二次加工品)を得る観点から、好ましくは0.1mm以上、より好ましくは0.15mm以上であり、好ましくは1.5mm以下、より好ましくは1.4mm以下、さらに好ましくは1.2mm以下である。また、0.1~1.5mmが好ましく、0.1~1.4mmがより好ましく、0.15~1.2mmがさらに好ましい。
 非晶状態又は半結晶状態のフィルム状の一次加工品を調製する場合、その厚さは均一な成形体(二次加工品)を得る観点から、好ましくは0.01mm以上、より好ましくは0.02mm以上、さらに好ましくは0.03mm以上であり、好ましくは0.1mm未満以下、より好ましくは0.09mm以下、さらに好ましくは0.08mm以下である。また、0.01mm以上0.1mm未満が好ましく、0.02~0.09mmがより好ましく、0.03~0.08mmがさらに好ましい。
 かくして得られた一次加工品をさらに加工処理することにより二次加工品(二次成形体ともいう)が得られる。前記非晶状態又は半結晶状態の一次加工品は、結晶化(加熱による結晶化)、熱成形、延伸処理等の二次加工に供しても、式(I)で表される化合物がポリエステル樹脂を可塑化する効果が高く、かつポリエステル樹脂との親和性も高いことから、結晶核剤や加水分解抑制剤等の添加剤が配合されている場合にでも、耐ブリード性に優れるものである。また、結晶核剤の配合がなくとも延伸処理によってポリエステル樹脂の結晶化が促進される。
 本発明においては、前記一次加工品をそのまま、ポリエステル樹脂組成物のガラス転移温度(Tg)以上、融点(Tm)未満の温度に加熱することで結晶性の高い二次加工品を得ることができる。具体的には、好ましくは60℃以上、より好ましくは70℃以上、好ましくは120℃以下、より好ましくは110℃以下の温度下で、また、好ましくは60~120℃、より好ましくは70~110℃の温度下で維持することにより結晶化を行って、例えば、後述の試験例1-1の方法により求めた相対結晶化度が好ましくは80%以上、より好ましくは90%以上となる結晶化シート又は結晶化フィルムとすることができる。なお、得られた結晶化シート又は結晶化フィルムの厚みは、結晶化の際の加熱によってシート又はフィルム自体が膨張又は収縮することが少ないことから、非晶状態又は半結晶状態のシート状の一次加工品、あるいは、非晶状態又は半結晶状態のフィルム状の一次加工品と同程度の厚みを有することが好ましい。
 また、本発明においては、前記一次加工品を用いて、特に限定なく公知の方法に従って熱成形品を成形することができる。例えば、前記方法により調製した非晶状態又は半結晶状態のシートを、ポリエステル樹脂組成物のガラス転移温度(Tg)以上、融点(Tm)未満の温度領域中で熱成形することにより結晶化を行って、例えば、後述の試験例2-1の方法により求めた相対結晶化度が好ましくは80%以上、より好ましくは90%以上となる結晶化させた熱成形品とすることができる。
 本発明における熱成形品としては、例えば、真空成形又は圧空成形した成形体が挙げられる。これらは、特に限定なく公知の方法に従って成形することができ、例えば、本発明の非晶状態又は半結晶状態のシートを真空圧空成形機中の金型内に設置して、金型内をポリエステル樹脂組成物のガラス転移温度(Tg)以上、融点(Tm)未満の温度に加熱し、加圧又は無加圧状態に保ち成形することにより得られる。
 金型温度としては、ポリ乳酸樹脂組成物の結晶化速度向上及び作業性向上の観点から、ポリエステル樹脂組成物のガラス転移温度(Tg)以上、融点(Tm)未満の温度であればよく、具体的には、120℃以下が好ましく、115℃以下がより好ましく、110℃以下がさらに好ましい。また、70℃以上が好ましく、75℃以上がより好ましく、80℃以上がさらに好ましい。かかる観点から、金型温度は70~120℃が好ましく、75~115℃がより好ましく、80~110℃がさらに好ましい。
 金型内での保持時間は、ポリエステル樹脂組成物からなる熱成形品の耐熱性及び生産性の向上の観点から、例えば90℃の金型において、2~60秒が好ましく、3~30秒がより好ましく、5~20秒がさらに好ましい。本発明のポリエステル樹脂組成物は、結晶化速度が速いために、前記のような短い時間の保持時間でも十分な耐熱性を有する成形体が得られる。
 かくして得られた本発明の熱成形品の厚みは、特に限定されないが、均一な成形体(二次加工品)を得る観点から、好ましくは0.1mm以上、より好ましくは0.15mm以上、さらに好ましくは0.2mm以上であり、好ましくは1.5mm以下、より好ましくは1.4mm以下、さらに好ましくは1.2mm以下である。また、0.1~1.5mmが好ましく、0.15~1.4mmがより好ましく、0.2~1.2mmがさらに好ましい。
 本発明の熱成形品は、前記非晶状態又は半結晶状態のシートが熱成形性が良好であることから、熱成形における成形温度幅が広がり、嵌合性に優れるものである。また、式(I)で表される化合物による可塑化効果に優れることから、得られた成形体は結晶性の高いものであり、耐熱性、透明性に優れるものでもある。
 また、本発明においては、前記一次加工品を用いて、特に限定なく公知の方法に従って延伸フィルムを成形することができる。例えば、前記方法により調製した非晶状態又は半結晶状態のシートを、ポリエステル樹脂組成物のガラス転移温度(Tg)以上、冷結晶化温度(Tc)以下の温度領域中で、所望の厚みまで一軸又は二軸延伸することにより結晶化を行って、例えば、後述の試験例3-1の方法により求めた相対結晶化度が好ましくは80%以上、より好ましくは90%以上となる結晶化させた延伸フィルムとすることができる。二軸延伸では、同時延伸でも逐次延伸によっても延伸フィルム化することが可能である。
 延伸時の温度としては、ポリエステル樹脂組成物のガラス転移温度(Tg)以上、冷結晶化温度(Tc)以下の温度領域中であればよいが、具体的には、好ましくは45℃以上、より好ましくは50℃以上、さらに好ましくは55℃以上であり、好ましくは80℃以下、より好ましくは75℃以下、さらに好ましくは70℃以下である。また、45~80℃が好ましく、50~75℃がより好ましく、55~70℃がさらに好ましい。なお延伸後には、熱処理(熱固定)、具体的には、好ましくは80~160℃、より好ましくは90~150℃の温度下で、好ましくは3~120秒、より好ましくは5~60秒維持することができる。
 また、延伸フィルムの一態様としては熱収縮フィルムとすることができる。熱収縮フィルムは、特に限定なく公知の方法に従って製造することができる。例えば、少なくとも一方向に、所望の厚みまで延伸して結晶化させた後に、実質、熱固定を行わないことにより得られる。延伸する方法としては、一軸又は二軸延伸を行うことができるが、二軸延伸する場合には同時延伸でも逐次延伸でもどちらでも良い。なかでも、逐次延伸の場合には、縦横の延伸倍率が大きく異なる熱収縮フィルム作成することが可能であることより、シュリンクラベルとしてより良好な物性を示す延伸フィルムを得ることができる。
 かくして得られた本発明の延伸フィルムの厚みは、透明性と剛性の観点から、好ましくは0.01mm以上、より好ましくは0.02mm以上、さらに好ましくは0.03mm以上であり、好ましくは0.1mm未満以下、より好ましくは0.09mm以下、さらに好ましくは0.08mm以下である。また、0.01mm以上0.1mm未満が好ましく、0.02~0.09mmがより好ましく、0.03~0.08mmがさらに好ましい。
 本発明の延伸フィルムは、一軸又は二軸延伸により結晶化されるため、機械的強度が増加して、延伸フィルムとしての良好な物性を示す。また、式(I)で表される化合物による可塑化効果に優れ且つポリ乳酸樹脂との親和性が高いことから、耐ブリード性にも優れ、結晶性に優れるものである。
 本発明はまた、本発明のシート又はフィルムの製造方法を提供する。
 製造方法としては、前記ポリエステル樹脂と式(I)で表される化合物を含有するポリエステル樹脂組成物を成形する工程を含む方法であれば特に限定はなく、得られる成形品の種類に応じて、適宜、工程を追加することができる。
 以下に、相対結晶化度が80%以上の結晶化シート又は結晶化フィルムの製造方法を例に挙げて説明する。
 具体的には、以下の工程(1)及び(2-1)を含む態様が挙げられる。
工程(1) ポリエステル樹脂と式(I)で表される化合物を含有するポリエステル樹脂組成物を押出成形法によりダイから押出してシート又はフィルムを調製後、ポリエステル樹脂組成物のガラス転移温度(Tg)未満に冷却して相対結晶化度80%未満のシート又はフィルムを得る工程
工程(2-1) 工程(1)で得られたシート又はフィルムを、ポリエステル樹脂組成物のガラス転移温度(Tg)以上、ポリエステル樹脂組成物の融点(Tm)未満の温度に加熱して相対結晶化度80%以上の結晶化シート又は結晶化フィルムを得る工程
 工程(1)は、相対結晶化度80%未満のシート又はフィルムを得る工程である。具体的には、ポリエステル樹脂と式(I)で表される化合物を含有するポリエステル樹脂組成物を、好ましくは170℃以上、より好ましくは175℃以上、さらに好ましくは180℃以上であり、好ましくは240℃以下、より好ましくは220℃以下、さらに好ましくは210℃以下で、また、好ましくは170~240℃、より好ましくは175~220℃、さらに好ましくは180~210℃で溶融混練した後、好ましくは170℃以上、より好ましくは175℃以上、さらに好ましくは180℃以上であり、好ましくは240℃以下、より好ましくは220℃以下、さらに好ましくは210℃以下で、また、好ましくは170~240℃、より好ましくは175~220℃、さらに好ましくは180~210℃に加熱した押出機にてダイから押出し、次いで、好ましくは40℃未満、より好ましくは30℃以下、さらに好ましくは20℃以下に設定した冷却ロールに、好ましくは0.1~50秒、より好ましくは0.5~10秒、さらに好ましくは0.8~5秒接触させて冷却することにより、相対結晶化度80%未満のシート又はフィルムを調製することができる。また、用いる押出機の種類によっては、押出機内にポリエステル樹脂組成物の原料を充填し、そのまま溶融混練し、次いで押出し成形してもよい。
 工程(2-1)では、相対結晶化度80%未満のシート又はフィルムを結晶化させる工程である。例えば、前記シート又はフィルムをそのまま、ポリエステル樹脂組成物のガラス転移温度(Tg)以上、融点(Tm)未満の温度に加熱すればよく、好ましくは60℃以上、より好ましくは70℃以上であり、好ましくは120℃以下、より好ましくは110℃以下で、また、好ましくは60~120℃、より好ましくは70~110℃の温度下で維持することにより結晶化を行うことができる。維持する時間は、好ましくは5~60秒、より好ましくは7~45秒、さらに好ましくは10~30秒である。
 かくして得られた本発明のシート又はフィルムは、相対結晶化度が好ましくは80%以上、より好ましくは90%以上と結晶性の高いものであり、かつ、透明性が良好で、耐熱性及び耐ブリード性に優れることから、各種用途、なかでも、日用品、化粧品、家電製品などのクリアケースや紙箱の透明窓等の包装容器やクリアホルダーやIDカードケース等の文具類に好適に用いることができる。
 本発明はまた、本発明の熱成形品の製造方法を提供する。
 製造方法としては、前記ポリエステル樹脂と式(I)で表される化合物を含有するポリエステル樹脂組成物を熱成形する工程を含む方法であれば特に限定はなく、得られる成形品の種類に応じて、適宜、工程を追加することができる。
 具体的には、以下の工程を含む態様が挙げられる。
工程(1) ポリエステル樹脂と式(I)で表される化合物を含有するポリエステル樹脂組成物を押出成形法によりダイから押出してシートを調製後、ポリエステル樹脂組成物のガラス転移温度(Tg)未満に冷却して相対結晶化度80%未満のシートを得る工程
工程(2-2) 工程(1)で得られたシートを、ポリエステル樹脂組成物のガラス転移温度(Tg)以上、融点(Tm)未満の温度領域中で熱成形して相対結晶化度80%以上に結晶化させた熱成形品を得る工程
 工程(1)は、前記と同様であるが、好ましくは、工程(1)では相対結晶化度80%未満のシートを得る。
 工程(2-2)では、相対結晶化度80%未満のシートを熱成形して結晶化させる工程である。例えば、前記シートを好ましくは70℃以上、より好ましくは75℃以上、さらに好ましくは80℃以上で、好ましくは120℃以下、より好ましくは115℃以下、さらに好ましくは110℃以下の、また、好ましくは70~120℃、より好ましくは75~115℃、さらに好ましくは80~110℃の金型内に設置して、加圧又は無加圧状態に保つことにより結晶化を行うことができる。得られる成形品の厚みは、特に限定されないが、好ましくは0.1~1.5mm、より好ましくは0.15~1.4mmにすることが好ましい。なお、工程(1)で得られたシートを金型内に設置する前に、予めシートを、例えば、金型温度付近の温度に加熱してから成形してもよい。
 かくして得られた本発明の熱成形品は、相対結晶化度が好ましくは80%以上、より好ましくは90%以上と結晶性の高いものであり、かつ、透明性が良好で、耐熱性、耐ブリード性、及び強度に優れることから、各種用途、なかでも、日用品、化粧品、家電製品などのブリスターパックやトレイ、お弁当の蓋等の食品容器、工業部品の輸送や保護に用いる工業用トレイに好適に用いることができる。
 本発明はまた、本発明の延伸フィルムの製造方法を提供する。
 製造方法としては、前記ポリエステル樹脂と式(I)で表される化合物を含有するポリエステル樹脂組成物を延伸する工程を含む方法であれば特に限定はなく、得られる成形品の種類に応じて、適宜、工程を追加することができる。
 具体的には、以下の工程を含む態様が挙げられる。
工程(1) ポリエステル樹脂と式(I)で表される化合物を含有するポリエステル樹脂組成物を押出成形法によりダイから押出してシートを調製後、ポリエステル樹脂組成物のガラス転移温度(Tg)未満に冷却して相対結晶化度80%未満のシートを得る工程
工程(2-3) 工程(1)で得られたシートを、ポリエステル樹脂組成物のガラス転移温度(Tg)以上、冷結晶化温度(Tc)以下の温度領域中で一軸又は二軸延伸して相対結晶化度80%以上に結晶化させた延伸フィルムを得る工程
 工程(1)は、前記と同様であるが、好ましくは、工程(1)では相対結晶化度80%未満のシートを得る。また、ダイから押し出す際に、円形ダイが装着されたインフレーション成形機にてチューブ状に押し出し、次いで、好ましくは40℃未満、より好ましくは30℃以下、さらに好ましくは20℃以下に設定したバブル外周に設置された冷水器内または水槽に、好ましくは0.1~50秒、より好ましくは0.5~10秒、さらに好ましくは0.8~5秒接触(浸漬)通過させて冷却することにより、相対結晶化度80%未満のシートを調製することができる。
 工程(2-3)では、相対結晶化度80%未満のシートを一軸又は二軸延伸して結晶化させる工程である。例えば、前記シートを好ましくは45℃以上、より好ましくは50℃以上、さらに好ましくは55℃以上で、好ましくは80℃以下、より好ましくは75℃以下、さらに好ましくは70℃以下で、また、好ましくは45~80℃、より好ましくは50~75℃、さらに好ましくは55~70℃で、所望の厚み、好ましくは0.01mm以上0.1mm未満、より好ましくは0.02~0.09mm、さらに好ましくは0.03~0.08mmまで一軸又は二軸延伸することにより結晶化を行うことができる。なお延伸後には、熱処理(熱固定)、具体的には、好ましくは80~160℃、より好ましくは90~150℃の温度下で維持する工程を行なってもよい。
 延伸倍率は縦方向に、好ましくは1.5~6倍、より好ましくは2~5倍、横方向に、好ましくは1.5~6倍、より好ましくは2~5倍の範囲で適宜選択される。さらに、フィルムの強度と厚み精度の観点から縦横それぞれ2倍以上であることが好ましい。また、縦方向の延伸倍率と横方向の延伸倍率の積、すなわち面積延伸倍率は、4~36倍が好ましく、6~20倍がより好ましく、8~16倍がさらに好ましい。また、延伸速度は好ましくは10~100000%/分、より好ましくは100~10000%/分である。これらの適正範囲は、樹脂の組成や、未延伸シートの熱履歴によって異なってくるので、フィルムの強度、伸びを考慮しながら適宜決められる。
 かくして得られた本発明の延伸フィルムは、相対結晶化度が好ましくは80%以上、より好ましくは90%以上と結晶性の高いものであり、かつ、透明性が良好で、フィルム強度及び耐ブリード性に優れることから、各種用途、なかでも、日用品、化粧品、家電製品などの包装材料や工業用各種フィルム、パン、お菓子、野菜などの食品包装用フィルムに好適に用いることができる。
 本発明は、下記のいずれかに関し得る;
<1>
 ポリエステル樹脂及び下記式(I)で示されるポリエステル系可塑剤を含有してなるポリエステル樹脂組成物からなる、(1)シート又はフィルム、(2)熱成形品、及び(3)延伸フィルムからなる群より選ばれる成形体。
  RO-CO-R-CO-〔(OR)O-CO-R-CO-〕OR  (I)
(式中、Rは炭素数が1~4のアルキル基、Rは炭素数が2~4のアルキレン基、Rは炭素数が2~6のアルキレン基であり、mは1~6の数、nは1~12の数を示し、但し、全てのRは同一でも異なっていてもよく、全てのRは同一でも異なっていてもよい)
<2>
 ポリエステル樹脂がポリ乳酸樹脂を含む、<1>記載の成形体。
<3>
 ポリエステル樹脂における、ポリ乳酸樹脂の含有量は、好ましくは80重量%以上、より好ましくは90重量%以上、さらに好ましくは実質的に100重量%である、<2>記載の成形体。
<4>
 ポリエステル樹脂の含有量は、ポリエステル樹脂組成物中、50重量%以上が好ましく、60重量%以上がより好ましく、70重量%以上がさらに好ましい、<1>~<3>いずれか記載の成形体。
<5>
 式(I)におけるRは、炭素数が1~4、好ましくは1~2のアルキル基を示し、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、及びiso-ブチル基からなる群より選ばれ、メチル基及びエチル基が好ましく、メチル基がより好ましい、<1>~<4>いずれか記載の成形体。
<6>
 式(I)におけるRは、炭素数が2~4のアルキレン基を示し、エチレン基、1,3-プロピレン基、及び1,4-ブチレン基からなる群より選ばれる1種以上であり、エチレン基、1,3-プロピレン基あるいはエチレン基、1,4-ブチレン基が好ましく、エチレン基がより好ましい、<1>~<5>いずれか記載の成形体。
<7>
 式(I)におけるRは、炭素数が2~6、好ましくは2~3のアルキレン基を示し、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,3-ブチレン基、1,4-ブチレン基、2-メチル-1,3-プロピレン基、1,2-ペンチレン基、1,4-ペンチレン基、1,5-ペンチレン基、2,2-ジメチル-1,3-プロピレン基、1,2-ヘキシレン基、1,5-ヘキシレン基、1,6-ヘキシレン基、2,5-ヘキシレン基、及び3-メチル-1,5-ペンチレン基からなる群より選ばれる1種以上であり、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,4-ブチレン基が好ましい、<1>~<6>いずれか記載の成形体。
<8>
 式(I)におけるmは1~6の数であり、1~4の数が好ましく、1~3の数がより好ましく、1~2の数がさらに好ましい、<1>~<7>いずれか記載の成形体。
<9>
 式(I)におけるnは好ましくは1以上、より好ましくは1.2以上、さらに好ましくは1.5以上、さらに好ましくは1.8以上、さらに好ましくは2以上であり、好ましくは12以下、より好ましくは10以下、さらに好ましくは8以下、さらに好ましくは7以下、さらに好ましくは6以下である、<1>~<8>いずれか記載の成形体。
<10>
 式(I)で表される化合物が、Rがメチル基、Rがエチレン基、Rがエチレン基であって、mが2、nが1.6のエステル、Rがメチル基、Rがエチレン基、Rがエチレン基であって、mが2、nが2.1のエステル、Rがメチル基、Rがエチレン基、Rがエチレン基であって、mが2、nが4.3のエステル、Rがメチル基、Rがエチレン基、Rが1,3-プロピレン基であって、mが1、nが4.4のエステル、Rがメチル基、Rがエチレン基、Rが1,2-プロピレン基であって、mが1、nが3.6のエステル、Rがエチル基、Rが1,4-ブチレン基、Rが1,3-プロピレン基であって、mが1、nが2のエステル、Rがブチル基、Rがエチレン基、Rがエチレン基であって、mが2、nが1.9のエステル、Rがブチル基、Rが1,3-プロピレン基、Rがエチレン基であって、mが3、nが1.5のエステル、Rがメチル基、Rが1,4-ブチレン基、Rが1,3-プロピレン基であって、mが1、nが4.4のエステル、Rがメチル基、Rがエチレン基、Rが1,4-ブチレン基であって、mが1、nが4.4のエステル、Rがメチル基、Rがエチレン基、Rが1,6-ヘキシレン基であって、mが1、nが3のエステル、Rがメチル基、Rがエチレン基、Rが1,2-プロピレン基であって、mが1、nが6.5のエステル、Rがメチル基、Rがエチレン基、Rが2-メチル-1,3-プロピレン基であって、mが1、nが3のエステルが好ましく、Rが全てメチル基、Rがエチレン基又は1,4-ブチレン基、Rがエチレン基、1,3-プロピレン基、又は1,2-プロピレン基であって、mが1~3の数、nが1~8の数である化合物がより好ましく、Rが全てメチル基、Rがエチレン基又は1,4-ブチレン基、Rがエチレン基、1,3-プロピレン基、又は1,2-プロピレン基であって、mが1~2の数、nが1.8~7の数である化合物がさらに好ましい、<1>~<9>いずれか記載の成形体。
<11>
 式(I)で表される化合物が、下記(1)~(3)の原料を用いて得られるものが好ましい、<1>~<10>いずれか記載の成形体。
(1)炭素数が1~4のアルキル基を有する一価アルコール
(2)炭素数が2~4のアルキレン基を有するジカルボン酸
(3)炭素数が2~6のアルキレン基を有する二価アルコール
<12>
 (1)炭素数が1~4のアルキル基を有する一価アルコールが、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、及び1,1-ジメチル-1-エタノールからなる群より選ばれる1種以上であり、メタノール、エタノール、1-プロパノール、1-ブタノールが好ましく、メタノール、エタノールがより好ましく、メタノールがさらにより好ましい、<11>記載の成形体。
<13>
 (2)炭素数が2~4のアルキレン基を有するジカルボン酸が、コハク酸、グルタル酸、アジピン酸、及びそれらの誘導体(例えば、コハク酸無水物、グルタル酸無水物、コハク酸ジメチル、コハク酸ジブチル、グルタル酸ジメチル、アジピン酸ジメチル)からなる群より選ばれる1種以上であり、コハク酸、グルタル酸、及びそれらの誘導体(例えば、コハク酸無水物、グルタル酸無水物、コハク酸ジメチル、コハク酸ジブチル、グルタル酸ジメチル)が好ましく、コハク酸及びその誘導体(例えば、コハク酸無水物、コハク酸ジメチル)がより好ましく、あるいは、コハク酸、アジピン酸及びそれらの誘導体(例えば、コハク酸無水物、コハク酸ジメチル、コハク酸ジブチル、アジピン酸ジメチル)が好ましく、コハク酸及びその誘導体(例えば、コハク酸無水物、コハク酸ジメチル、コハク酸ジブチル)がより好ましい、<11>又は<12>記載の成形体。
<14>
 (3)炭素数が2~6のアルキレン基を有する二価アルコールが、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、1,2-ペンタンジオール、1,4-ペンタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール、2,5-ヘキサンジオール、1,6-ヘキサンジオール、2,5-ヘキサンジオール、及び3-メチル-1,5-ペンタンジオールからなる群より選ばれる1種以上であり、ジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、テトラエチレングリコール、1,4-ブタンジオールが好ましく、ジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオールがより好ましく、ジエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオールがさらに好ましい、<11>~<13>いずれか記載の成形体。
<15>
 (1)一価アルコールがメタノール、エタノール、1-プロパノール、及び1-ブタノールからなる群より選ばれる少なくとも1種であり、(2)ジカルボン酸がコハク酸、グルタル酸、及びそれらの誘導体からなる群より選ばれる少なくとも1種であり、(3)二価アルコールがジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、テトラエチレングリコール、及び1,4-ブタンジオールからなる群より選ばれる少なくとも1種である、ことが好ましく、
(1)一価アルコールがメタノール及びエタノールからなる群より選ばれる少なくとも1種であり、(2)ジカルボン酸がコハク酸、グルタル酸、及びそれらの誘導体からなる群より選ばれる少なくとも1種であり、(3)二価アルコールがジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、及び1,3-プロパンジオールからなる群より選ばれる少なくとも1種である、ことがより好ましく、
(1)一価アルコールがメタノールであり、(2)ジカルボン酸がコハク酸及びその誘導体からなる群より選ばれる少なくとも1種であり、(3)二価アルコールがジエチレングリコール、1,2-プロパンジオール、及び1,3-プロパンジオールからなる群より選ばれる少なくとも1種である、ことがさらに好ましい、<11>記載の成形体。
<16>
 式(I)で表される化合物が、以下の態様1又は態様2の方法により得られる、<11>~<15>いずれか記載の成形体。
態様1:(2)ジカルボン酸と(1)一価アルコールのエステル化反応を行ってジカルボン酸エステルを合成する工程(工程1)と、得られたジカルボン酸エステルと(3)二価アルコールをエステル化反応させる工程(工程2)を含む方法
態様2:(1)一価アルコール、(2)ジカルボン酸、及び(3)二価アルコールを一括反応させる工程を含む方法
<17>
 式(I)で表される化合物は、酸価が好ましくは1.00mgKOH/g以下、より好ましくは0.90mgKOH/g以下であり、好ましくは0.05mgKOH/g以上、より好ましくは0.1mgKOH/g以上である、<1>~<16>いずれか記載の成形体。
<18>
 式(I)で表される化合物は、水酸基価が好ましくは10.0mgKOH/g以下、より好ましくは8.0mgKOH/g以下、さらに好ましくは5.0mgKOH/g以下であり、好ましくは0.1mgKOH/g以上、より好ましくは0.2mgKOH/g以上である、<1>~<17>いずれか記載の成形体。
<19>
 式(I)で表される化合物のケン化価は、500mgKOH/g以上が好ましく、600mgKOH/g以上がより好ましく、800mgKOH/g以下が好ましく、750mgKOH/g以下がより好ましい、<1>~<18>いずれか記載の成形体。
<20>
 式(I)で表される化合物の数平均分子量は、好ましくは500以上、より好ましくは600以上、さらに好ましくは700以上であり、好ましくは1500以下、より好ましくは1400以下、さらに好ましくは1300以下、さらに好ましくは1200以下である、<1>~<19>いずれか記載の成形体。
<21>
 式(I)で表される化合物は、酸価が1.00mgKOH/g以下、水酸基価が10.0mgKOH/g以下、数平均分子量が500~1500であることが好ましく、酸価が0.90mgKOH/g以下、水酸基価が8.0mgKOH/g以下、数平均分子量が500~1400であることがより好ましく、酸価が0.90mgKOH/g以下、水酸基価が8.0mgKOH/g以下、数平均分子量が600~1200であることがさらに好ましい、<1>~<20>いずれか記載の成形体。
<22>
 式(I)で表される化合物は末端アルキルエステル化率が、好ましくは85%以上、より好ましくは90%以上である、<1>~<21>いずれか記載の成形体。
<23>
 式(I)で表される化合物のエーテル基価は、好ましくは1mmol/g以上であり、好ましくは8mmol/g以下、より好ましくは6mmol/g以下、さらに好ましくは5mmol/g以下である、<1>~<22>いずれか記載の成形体。
<24>
 式(I)で表される化合物は、SP(Solubility Parameter、溶解性パラメータ)値が、好ましくは10.0以上、より好ましくは10.1以上、さらに好ましくは10.2以上であり、好ましくは12.0以下、より好ましくは11.5以下、さらに好ましくは11.2以下である、<1>~<23>いずれか記載の成形体。
<25>
 式(I)で表される化合物の含有量は、ポリエステル樹脂100重量部に対して、好ましくは1重量部以上、より好ましくは5重量部以上であり、好ましくは50重量部以下、より好ましくは30重量部以下である、<1>~<24>いずれか記載の成形体。
<26>
 ポリエステル樹脂組成物が、さらに、結晶核剤を含有する、<1>~<25>いずれか記載の成形体。
<27>
 結晶核剤は、無機系結晶核剤、有機系結晶核剤が好ましく、有機系結晶核剤がより好ましく、カルボン酸アミド及びフェニルホスホン酸の金属塩がさらに好ましく、カルボン酸アミドがさらに好ましく、エチレンビス脂肪酸アミド、アルキレンビス脂肪酸アミド、アルキレンビスヒドロキシ脂肪酸アミドがさらに好ましく、炭素数1~6のアルキレン基を有するアルキレンビスヒドロキシステアリン酸アミドがさらに好ましく、エチレンビス12-ヒドロキシステアリン酸アミドがさらに好ましい、<26>記載の成形体。
<28>
 結晶核剤の含有量は、ポリエステル樹脂100重量部に対して、好ましくは0.1重量部以上であり、好ましくは1.0重量部以下、より好ましくは0.5重量部以下である、<26>又は<27>記載の成形体。
<29>
 ポリエステル樹脂組成物が、さらに、加水分解抑制剤を含有する、<1>~<28>いずれか記載の成形体。
<30>
 加水分解抑制剤は、ポリカルボジイミド化合物及びモノカルボジイミド化合物が好ましい、<29>記載の成形体。
<31>
 加水分解抑制剤の含有量は、ポリエステル樹脂100重量部に対して、好ましくは0.05重量部以上、より好ましくは0.10重量部以上であり、好ましくは3重量部以下、より好ましくは2重量部以下である、<29>又は<30>記載の成形体。
<32>
 ポリエステル樹脂組成物が、ポリエステル樹脂及び式(I)で表される化合物、さらに必要により各種添加剤を含有する原料を溶融混練して調製されてなる、<1>~<31>いずれか記載の成形体。
<33>
 溶融混練温度は、好ましくは170℃以上、より好ましくは175℃以上、さらに好ましくは180℃以上であり、好ましくは240℃以下、より好ましくは220℃以下、さらに好ましくは210℃以下である、<32>記載の成形体。
<34>
 得られた溶融混練物のガラス転移温度(Tg)は、好ましくは30℃以上、より好ましくは35℃以上であり、好ましくは60℃以下、より好ましくは55℃以下である、<32>又は<33>記載の成形体。
<35>
 得られた溶融混練物の冷結晶化温度(Tc)は、好ましくは50℃以上、より好ましくは60℃以上であり、好ましくは110℃以下、より好ましくは100℃以下、さらに好ましくは90℃以下である、<32>~<34>いずれか記載の成形体。
<36>
 得られた溶融混練物の融点(Tm)は、好ましくは130℃以上、より好ましくは140℃以上、さらに好ましくは150℃以上であり、好ましくは210℃以下、より好ましくは200℃以下、さらに好ましくは180℃以下である、<32>~<35>いずれか記載の成形体。
<37>
 ポリエステル樹脂組成物がシート及びフィルムから選ばれる一次加工品に成形されてなる、<1>~<36>いずれか記載の成形体。
<38>
 一次加工品は、ポリエステル樹脂組成物を押出成形又はプレス成形することによって調製されてなる、<37>記載の成形体。
<39>
 一次加工品が、ポリエステル樹脂組成物を押出機に充填後、Tダイから押出し、冷却ロールに接触させてポリエステル樹脂組成物のTg未満に冷却することで、非晶状態又は半結晶状態にされてなる、<37>又は<38>記載の成形体。
<40>
 押出機の温度は、好ましくは170℃以上、より好ましくは175℃以上、さらに好ましくは180℃以上であり、好ましくは240℃以下、より好ましくは220℃以下、さらに好ましくは210℃以下である、<39>記載の成形体。
<41>
 冷却ロールの温度は、40℃未満が好ましく、30℃以下がより好ましく、20℃以下がさらに好ましい、<39>又は<40>記載の成形体。
<42>
 一次加工品が、シート形状を有する枠でポリエステル樹脂組成物を囲みプレス成形してなる、<37>又は<38>記載の成形体。
<43>
 プレス成形の温度と圧力としては、好ましくは170~240℃の温度、5~30MPaの圧力の条件下、より好ましくは175~220℃の温度、10~25MPaの圧力の条件下、さらに好ましくは180~210℃の温度、10~20MPaの圧力の条件下である、<42>記載の成形体。
<44>
 さらに、好ましくは0~40℃の温度、5~30MPaの圧力の条件下、より好ましくは10~30℃の温度、10~25MPaの圧力の条件下、さらに好ましくは10~20℃の温度、10~20MPaの圧力の条件下でプレスして、非晶状態又は半結晶状態にされてなる、<43>記載の成形体。
<45>
 非晶状態又は半結晶状態のシート状の一次加工品の厚さは、好ましくは0.1mm以上、より好ましくは0.15mm以上であり、好ましくは1.5mm以下、より好ましくは1.4mm以下、さらに好ましくは1.2mm以下である、<39>又は<44>記載の成形体。
<46>
 非晶状態又は半結晶状態のフィルム状の一次加工品の厚さは、好ましくは0.01mm以上、より好ましくは0.02mm以上、さらに好ましくは0.03mm以上であり、好ましくは0.1mm未満以下、より好ましくは0.09mm以下、さらに好ましくは0.08mm以下である、<39>又は<44>記載の成形体。
<47>
 一次加工品をさらに加工処理することにより二次加工品に成形されてなる、<37>~<46>いずれか記載の成形体。
<48>
 一次加工品をそのまま、ポリエステル樹脂組成物のガラス転移温度(Tg)以上、融点(Tm)未満の温度に加熱することで結晶性の高い二次加工品に成形されてなる、<47>記載の成形体。
<49>
 加熱温度が、好ましくは60℃以上、より好ましくは70℃以上、好ましくは120℃以下、より好ましくは110℃以下である、<48>記載の成形体。
<50>
 相対結晶化度が好ましくは80%以上、より好ましくは90%以上の結晶化シート又は結晶化フィルムである、<48>又は<49>記載の成形体。
<51>
 非晶状態又は半結晶状態のシートを、ポリエステル樹脂組成物のガラス転移温度(Tg)以上、融点(Tm)未満の温度領域中で熱成形されてなる、<47>記載の成形体。
<52>
 熱成形が、非晶状態又は半結晶状態のシートを真空圧空成形機中の金型内に設置して、金型内をポリエステル樹脂組成物のガラス転移温度(Tg)以上、融点(Tm)未満の温度に加熱し、加圧又は無加圧状態に保つ、<51>記載の成形体。
<53>
 金型温度が、120℃以下が好ましく、115℃以下がより好ましく、110℃以下がさらに好ましく、70℃以上が好ましく、75℃以上がより好ましく、80℃以上がさらに好ましい、<52>記載の成形体。
<54>
 相対結晶化度が好ましくは80%以上、より好ましくは90%以上の熱成形品である、<51>~<53>いずれか記載の成形体。
<55>
 熱成形品の厚みは、好ましくは0.1mm以上、より好ましくは0.15mm以上、さらに好ましくは0.2mm以上であり、好ましくは1.5mm以下、より好ましくは1.4mm以下、さらに好ましくは1.2mm以下である、<51>~<54>いずれか記載の成形体。
<56>
 非晶状態又は半結晶状態のシートを、ポリエステル樹脂組成物のガラス転移温度(Tg)以上、冷結晶化温度(Tc)以下の温度領域中で、所望の厚みまで一軸又は二軸延伸してなる、<47>記載の成形体。
<57>
 延伸時の温度は、好ましくは45℃以上、より好ましくは50℃以上、さらに好ましくは55℃以上であり、好ましくは80℃以下、より好ましくは75℃以下、さらに好ましくは70℃以下である、<56>記載の成形体。
<58>
 さらに、好ましくは80~160℃、より好ましくは90~150℃の温度下で、好ましくは3~120秒、より好ましくは5~60秒維持して熱処理(熱固定)されてなる、<57>記載の成形体。
<59>
 相対結晶化度が好ましくは80%以上、より好ましくは90%以上の延伸フィルムである、<56>~<58>いずれか記載の成形体。
<60>
 延伸フィルムの厚みは、好ましくは0.01mm以上、より好ましくは0.02mm以上、さらに好ましくは0.03mm以上であり、好ましくは0.1mm未満以下、より好ましくは0.09mm以下、さらに好ましくは0.08mm以下である、<56>~<59>いずれか記載の成形体。
<61>
 以下の工程(1)及び(2-1)を含む、相対結晶化度が80%以上の結晶化シート又は結晶化フィルムの製造方法。
工程(1) ポリエステル樹脂と式(I)で表される化合物を含有するポリエステル樹脂組成物を押出成形法によりダイから押出してシート又はフィルムを調製後、ポリエステル樹脂組成物のガラス転移温度(Tg)未満に冷却して相対結晶化度80%未満のシート又はフィルムを得る工程
工程(2-1) 工程(1)で得られたシート又はフィルムを、ポリエステル樹脂組成物のガラス転移温度(Tg)以上、ポリエステル樹脂組成物の融点(Tm)未満の温度に加熱して相対結晶化度80%以上の結晶化シート又は結晶化フィルムを得る工程
<62>
 以下の工程(1)及び(2-2)を含む、熱成形品の製造方法。
工程(1) ポリエステル樹脂と式(I)で表される化合物を含有するポリエステル樹脂組成物を押出成形法によりダイから押出してシートを調製後、ポリエステル樹脂組成物のガラス転移温度(Tg)未満に冷却して相対結晶化度80%未満のシートを得る工程
工程(2-2) 工程(1)で得られたシートを、ポリエステル樹脂組成物のガラス転移温度(Tg)以上、融点(Tm)未満の温度領域中で熱成形して相対結晶化度80%以上に結晶化させた熱成形品を得る工程
<63>
 以下の工程(1)及び(2-3)を含む、延伸フィルムの製造方法。
工程(1) ポリエステル樹脂と式(I)で表される化合物を含有するポリエステル樹脂組成物を押出成形法によりダイから押出してシートを調製後、ポリエステル樹脂組成物のガラス転移温度(Tg)未満に冷却して相対結晶化度80%未満のシートを得る工程
工程(2-3) 工程(1)で得られたシートを、ポリエステル樹脂組成物のガラス転移温度(Tg)以上、冷結晶化温度(Tc)以下の温度領域中で一軸又は二軸延伸して相対結晶化度80%以上に結晶化させた延伸フィルムを得る工程
<64>
 工程(1)が、ポリエステル樹脂と式(I)で表される化合物を含有するポリエステル樹脂組成物を、好ましくは170℃以上、より好ましくは175℃以上、さらに好ましくは180℃以上であり、好ましくは240℃以下、より好ましくは220℃以下、さらに好ましくは210℃以下で溶融混練した後、好ましくは170℃以上、より好ましくは175℃以上、さらに好ましくは180℃以上であり、好ましくは240℃以下、より好ましくは220℃以下、さらに好ましくは210℃以下に加熱した押出機にてダイから押出し、次いで、好ましくは40℃未満、より好ましくは30℃以下、さらに好ましくは20℃以下に設定した冷却ロールに、好ましくは0.1~50秒、より好ましくは0.5~10秒、さらに好ましくは0.8~5秒接触させて冷却する、<61>~<63>いずれか記載の製造方法。
<65>
 工程(2-1)が、工程(1)で得られたシート又はフィルムをそのまま、好ましくは60℃以上、より好ましくは70℃以上であり、好ましくは120℃以下、より好ましくは110℃以下で、好ましくは5~60秒、より好ましくは7~45秒、さらに好ましくは10~30秒維持する、<61>又は<64>記載の製造方法。
<66>
 工程(2-2)が、工程(1)で得られたシートを好ましくは70℃以上、より好ましくは75℃以上、さらに好ましくは80℃以上で、好ましくは120℃以下、より好ましくは115℃以下、さらに好ましくは110℃以下の金型内に設置して、加圧又は無加圧状態に保つ、<62>又は<64>記載の製造方法。
<66>
 工程(2-3)が、工程(1)で得られたシートを好ましくは45℃以上、より好ましくは50℃以上、さらに好ましくは55℃以上で、好ましくは80℃以下、より好ましくは75℃以下、さらに好ましくは70℃以下で、好ましくは0.01mm以上0.1mm未満、より好ましくは0.02~0.09mm、さらに好ましくは0.03~0.08mmまで一軸又は二軸延伸する、<63>又は<64>記載の製造方法。
<67>
 日用品、化粧品、家電製品などのクリアケースや紙箱の透明窓等の包装容器やクリアホルダーやIDカードケース等の文具類に好適な、<1>~<60>いずれか記載の成形体。
<68>
 (1)日用品、化粧品、及び家電製品から選ばれる製品のためのクリアケース、ならびに紙箱の透明窓、からなる群より選ばれる包装容器、又は(2)クリアホルダー及びIDカードケースから選ばれる文具類を製造するための、<1>~<50>いずれか記載の成形体の使用。
<69>
 (1)日用品、化粧品、及び家電製品から選ばれる製品のためのブリスターパックあるいはトレイ、(2)食品容器、又は(3)工業部品の輸送や保護に用いる工業用トレイを製造するための、<1>~<47>、<51>~<55>いずれか記載の成形体の使用。
<70>
 (1)日用品、化粧品、及び家電製品から選ばれる製品のための包装材料、(2)工業用フィルム、又は(3)食品包装用フィルムを製造するための、<1>~<47>、<56>~<60>いずれか記載の成形体の使用。
 以下、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。なお、例中の部は、特記しない限り重量部である。また、「常圧」とは101.3kPaを、「常温」とは15~25℃を示す。
〔ポリ乳酸樹脂の重量平均分子量(Mw)〕
 重量平均分子量(Mw)は、GPC(ゲルパーミエーションクロマトグラフィー)により、下記の測定条件で測定する。
<測定条件>
  カラム:GMHHR-H+GMHHR-H
  カラム温度:40℃
  検出器:RI
  溶離液:クロロホルム
  流速:1.0mL/min
  サンプル濃度:1mg/mL
  注入量:0.1mL
  換算標準:ポリスチレン
〔ポリ乳酸の光学純度〕
 光学純度は、「ポリオレフィン等合成樹脂製食品容器包装等に関する自主基準 第3版改訂版 2004年6月追補 第3部 衛生試験法 P12-13」記載のD体含有量の測定方法に従って、下記の測定条件で測定する。具体的には、精秤したポリ乳酸に水酸化ナトリウム/メタノールを加え、65℃に設定した水浴振とう器にセットして、樹脂分が均一溶液になるまで加水分解を行い、さらに加水分解が完了したアルカリ溶液に希塩酸を加え中和し、その分解溶液を純水にて定容した後、一定容量をメスフラスコに分液して高速液体クロマトグラフィー(HPLC)移動相溶液により希釈し、pHが3~7の範囲になるように調整してメスフラスコに定容、メンブランフィルター(0.45μm)によりろ過し、この調整溶液をHPLCにてD-乳酸、L-乳酸を定量することによってポリ乳酸の光学純度を求める。
<HPLC測定条件>
カラム  :光学分割カラム
      スミキラルOA6100(46mmφ×150mm、5μm)、住化分析センター社製
プレカラム:光学分割カラム
      スミキラルQA6100(4mmφ×10mm、5μm)、住化分析センター社製
カラム温度:25℃
移動相  :2.5%メタノール含有1.5mM硫酸銅水溶液
移動相流量:1.0mL/分
検出器  :紫外線検出器(UV254nm)
注入量  :20μL
〔ポリ乳酸樹脂及びポリエステル樹脂組成物の融点〕
 ポリ乳酸樹脂の融点は、JIS-K7121に基づく示差走査熱量測定(DSC、パーキンエルマー社製、ダイアモンドDSC)の昇温法による結晶融解吸熱ピーク温度より求められる。融点の測定は、昇温速度10℃/分で20℃から250℃まで昇温して行う。
〔ポリエステル系可塑剤の酸価、水酸基価、及びケン化価〕
酸価:滴定溶媒としてトルエン/エタノール=2/1(体積比)を用いる他は、JIS K 0070の試験法に従って分析を行う。
水酸基価:アセチル化試薬として無水酢酸/ピリジン=1/4(体積比)を用い、添加量を3mLとする他は、JIS K 0070の試験法に従って分析を行う。
ケン化価:水浴の温度を95℃に、加熱時間を1時間にする他は、JIS K 0070の試験法に従って分析を行う。
〔ポリエステル系可塑剤の分子量、末端アルキルエステル化率、及びエーテル基価〕
分子量:本明細書においてポリエステル系可塑剤の分子量とは数平均分子量を意味し、酸価、水酸基価、及びケン化価から次式により算出する。
 平均分子量 M=(M+M-M×2)×n+M-(M-17.01)×2+(M-17.01)×p+(M-17.01)×q+1.01×(2-p-q)
       q=水酸基価×M÷56110
       2-p-q=酸価×M÷56110
       平均重合度 n=ケン化価×M÷(2×56110)-1
末端アルキルエステル化率:分子末端のアルキルエステル化率(末端アルキルエステル化率)は以下の式より算出することができ、分子末端のアルキルエステル化率は数値が大きいほうが、遊離のカルボキシル基や水酸基が少なく、分子末端が十分にアルキルエステル化されていることを示す。
 末端アルキルエステル化率(%)=(p÷2)×100
ただし、M:ニ塩基酸エステルの分子量
    M:二価アルコールの分子量
    M:一価アルコールの分子量
    p:一分子中の末端アルキルエステル基の数
    q:一分子中の末端水酸基の数
エーテル基価:以下の式より、エステル化合物、可塑剤1g中のエーテル基のミリモル(mmol)数であるエーテル基価を算出する。
 エーテル基価(mmol/g)=(m-1)×n×1000÷M
ただし、m:オキシアルキレン基の平均の繰り返し数(m-1は二価アルコール一分子中のエーテル基の数を表す)
〔ポリエステル系可塑剤のSP値の計算〕
 本明細書において、ポリエステル系可塑剤のSP(Solubility Parameter、溶解性パラメータ)値は、凝集エネルギーをΔE、分子容をVとするとき、下記の式で定義される量を意味するものとする。
   SP値=(ΔE/V)1/2   (cal1/2cm-3/2
本発明では、原崎勇次著,”コーティングの基礎科学”,p48,槙書店(1988)に記載されているFedorsの方法を用いて算出する。
〔ポリエステル樹脂組成物のガラス転移点及び冷結晶化温度〕
 JIS K 7121に従い、前記非晶状態のシートの一部を切り取り7.5mg精秤し、アルミパンに封入後、DSC装置(パーキンエルマー社製ダイアモンドDSC)を用い、25℃から200℃まで15℃/minで昇温させ、ガラス転移温度(℃)及び冷結晶化温度(℃)を測定する。
ポリエステル系可塑剤の製造例1
 4ツ口フラスコ(攪拌機、温度計、滴下漏斗、蒸留管、窒素吹き込み管付き)にジエチレングリコール363g(3.42モル)及び触媒として28重量%ナトリウムメトキシド含有メタノール溶液6.6g(ナトリウムメトキシド0.034モル)を入れ、常圧、120℃で0.5時間攪拌しながらメタノールを留去した。その後、コハク酸ジメチル(和光純薬工業社製)1000g(6.84モル)を3時間かけて滴下し、常圧、120℃で、反応により生じるメタノールを留去した。次に、75℃に冷却し、圧力を1.5時間かけて常圧から6.7kPaまで徐々に下げてメタノールを留去した後、常圧にもどし、さらに、触媒として28重量%ナトリウムメトキシド含有メタノール溶液5.8g(ナトリウムメトキシド0.030モル)を添加して、100℃で、圧力を2時間かけて常圧から2.9kPaまで徐々に下げてメタノールを留出させた。その後、80℃に冷却してキョーワード600S(協和化学工業社製)18gを添加し、圧力4.0kPa、80℃で1時間攪拌した後、減圧ろ過を行った。ろ液を圧力0.3kPaで、温度を1時間かけて70℃から190℃に上げて残存コハク酸ジメチルを留去し、常温黄色の液体を得た。なお、触媒の使用量は、ジカルボン酸エステル100モルに対して0.94モルであった。
ポリエステル系可塑剤の製造例2
 4ツ口フラスコ(攪拌機、温度計、滴下漏斗、蒸留管、窒素吹き込み管付き)にジエチレングリコール581g(5.47モル)及び触媒として28重量%ナトリウムメトキシド含有メタノール溶液9.1g(ナトリウムメトキシド0.047モル)を入れ、常圧、120℃で0.5時間攪拌しながらメタノールを留去した。その後、コハク酸ジメチル(和光純薬工業社製)1200g(8.21モル)を2時間かけて滴下し、常圧、120℃で、反応により生じるメタノールを留去した。次に、75℃に冷却し、圧力を1.5時間かけて常圧から6.7kPaまで徐々に下げてメタノールを留去した後、常圧にもどし、さらに、触媒として28重量%ナトリウムメトキシド含有メタノール溶液9.8g(ナトリウムメトキシド0.051モル)を添加して、100℃で、圧力を2時間かけて常圧から2.9kPaまで徐々に下げてメタノールを留出させた。その後、80℃に冷却してキョーワード600S(協和化学工業社製)28gを添加し、圧力4.0kPa、80℃で1時間攪拌した後、減圧ろ過を行った。ろ液を圧力0.3kPaで、温度を2.5時間かけて70℃から170℃に上げて残存コハク酸ジメチルを留去し、常温黄色の液体を得た。なお、触媒の使用量は、ジカルボン酸エステル100モルに対して1.2モルであった。
ポリエステル系可塑剤の製造例3
 4ツ口フラスコ(攪拌機、温度計、滴下漏斗、蒸留管、窒素吹き込み管付き)に1,3-プロパンジオール521g(6.84モル)及び触媒として28重量%ナトリウムメトキシド含有メタノール溶液5.9g(ナトリウムメトキシド0.031モル)を入れ、常圧、120℃で0.5時間攪拌しながらメタノールを留去した。その後、コハク酸ジメチル(和光純薬工業社製)1500g(10.26モル)を1時間かけて滴下し、常圧、120℃で、反応により生じるメタノールを留去した。次に、60℃に冷却し、28重量%ナトリウムメトキシド含有メタノール溶液5.6g(ナトリウムメトキシド0.029モル)を入れ、2時間かけて120℃に昇温した後、圧力を1時間かけて常圧から3.7kPaまで徐々に下げてメタノールを留去した。その後、80℃に冷却してキョーワード600S(協和化学工業社製)18gを添加し、圧力4.0kPa、80℃で1時間攪拌した後、減圧ろ過を行った。ろ液を圧力0.1kPaで、温度を2.5時間かけて85℃から194℃に上げて残存コハク酸ジメチルを留去し、常温黄色の液体を得た。なお、触媒の使用量は、ジカルボン酸エステル100モルに対して0.58モルであった。
ポリエステル系可塑剤の製造例4
 4ツ口フラスコ(攪拌機、温度計、滴下漏斗、蒸留管、窒素吹き込み管付き)に1,2-プロパンジオール764g(10.0モル)及び触媒として28重量%ナトリウムメトキシド含有メタノール溶液14.0g(ナトリウムメトキシド0.073モル)を入れ、常圧、120℃で0.5時間攪拌しながらメタノールを留去した。その後、コハク酸ジメチル(和光純薬工業社製)2200g(15.05モル)を2.5時間かけて滴下し、常圧、120℃で、反応により生じるメタノールを留去した。次に、75℃に冷却し、圧力を0.5時間かけて常圧から6.7kPaまで徐々に下げてメタノールを留去した後、常圧にもどし、さらに、触媒として28重量%ナトリウムメトキシド含有メタノール溶液6.4g(ナトリウムメトキシド0.033モル)を添加して、110℃で、圧力を1時間かけて常圧から5.3kPaまで徐々に下げてメタノールを留出させた。75℃に冷却して常圧にもどした後、再び、触媒として28重量%ナトリウムメトキシド含有メタノール溶液8.4g(ナトリウムメトキシド0.044モル)を添加して、110℃で、圧力を2時間かけて常圧から1.6kPaまで徐々に下げてメタノールを留出させた。その後、80℃に冷却してキョーワード600S(協和化学工業社製)47gを添加し、圧力4.0kPa、80℃で1時間攪拌した後、減圧ろ過を行った。ろ液を圧力0.4kPaで、温度を1時間かけて115℃から200℃に上げて、残存コハク酸ジメチルを留去し、常温黄色の液体を得た。なお、触媒の使用量は、ジカルボン酸エステル100モルに対して1.82モルであった。
ポリエステル系可塑剤の製造例5
 4ツ口フラスコ(攪拌機、温度計、滴下漏斗、蒸留管、窒素吹き込み管付き)に1,2-プロパンジオール955g(12.6モル)及び触媒として28重量%ナトリウムメトキシド含有メタノール溶液15.4g(ナトリウムメトキシド0.080モル)を入れ、常圧、120℃で0.5時間攪拌しながらメタノールを留去した。その後、コハク酸ジメチル(和光純薬工業社製)2567g(17.56モル)を2時間かけて滴下し、常圧、120℃で、反応により生じるメタノールを留去した。次に、75℃に冷却し、圧力を0.5時間かけて常圧から6.7kPaまで徐々に下げてメタノールを留去した後、常圧にもどし、さらに、触媒として28重量%ナトリウムメトキシド含有メタノール溶液8.1g(ナトリウムメトキシド0.042モル)を添加して、110℃で、圧力を1時間かけて常圧から5.3kPaまで徐々に下げてメタノールを留出させた。75℃に冷却して常圧にもどした後、再び、触媒として28重量%ナトリウムメトキシド含有メタノール溶液10.8g(ナトリウムメトキシド0.056モル)を添加して、110℃で、圧力を4時間かけて常圧から1.6kPaまで徐々に下げてメタノールを留出させた。その後、80℃に冷却してキョーワード600S(協和化学工業社製)47gを添加し、圧力4.0kPa、80℃で1時間攪拌した後、減圧ろ過を行った。ろ液を圧力0.8kPaで、温度を3時間かけて102℃から200℃に上げて、残存コハク酸ジメチルを留去し、常温黄色の液体を得た。なお、触媒の使用量は、ジカルボン酸エステル100モルに対して1.71モルであった。
ポリエステル系可塑剤の製造例6
 4ツ口フラスコ(攪拌機、温度計、蒸留管、窒素吹き込み管付き)にジエチレングリコール369g(3.47モル)及び触媒として28重量%ナトリウムメトキシド含有メタノール溶液5.6g(ナトリウムメトキシド0.029モル)を入れ、圧力3.6kPa、84℃で0.5時間攪拌しながらメタノールを留去した。その後、圧力2.7kPa、79℃で製造例10と同様にして得られたコハク酸ジブチル1600g(6.95モル)を2.5時間かけて滴下し、反応により生じる1-ブタノールを留去した。次に、常圧にもどした後、28重量%ナトリウムメトキシド含有メタノール溶液2.1g(ナトリウムメトキシド0.011モル)を添加し、1.5時間かけて85℃、2.1kPaの状態から146℃、1.1kPaの状態まで、徐々に昇温、減圧して、反応により生じる1-ブタノールを留出させた。その後、80℃に冷却してキョーワード600S(協和化学工業社製)11gを添加し、圧力4.0kPa、80℃で1時間攪拌した後、減圧ろ過を行い、常温黄色の液体を得た。なお、触媒の使用量は、ジカルボン酸エステル100モルに対して0.58モルであった。
ポリエステル系可塑剤の製造例7
 4ツ口フラスコ(攪拌機、温度計、滴下漏斗、蒸留管、窒素吹き込み管付き)にジエチレングリコール999g(9.41モル)及び触媒として28重量%ナトリウムメトキシド含有メタノール溶液23.6g(ナトリウムメトキシド0.122モル)を入れ、常圧(101.3kPa)、120℃で0.5時間攪拌しながらメタノールを留去した。その後、コハク酸ジメチル(和光純薬工業社製)4125g(28.2モル)を3時間かけて滴下し、常圧、120℃で、反応により生じるメタノールを留去した。次に、75℃に冷却し、圧力を2時間かけて常圧から6.7kPaまで徐々に下げてメタノールを留去した後、常圧にもどし、さらに、触媒として28重量%ナトリウムメトキシド含有メタノール溶液4.4g(ナトリウムメトキシド0.023モル)を添加して、100℃で、圧力を2時間かけて常圧から2.9kPaまで徐々に下げてメタノールを留出させた。その後、80℃に冷却してキョーワード600S(協和化学工業社製)41gを添加し、圧力4.0kPa、80℃で1時間攪拌した後、減圧ろ過を行った。ろ液を圧力0.3kPaで、温度を4時間かけて70℃から190℃に上げ、残存コハク酸ジメチルを留去し、常温黄色の液体を得た。なお、触媒の使用量は、ジカルボン酸エステル100モルに対して0.51モルであった。
ポリエステル系可塑剤の製造例8
 4ツ口フラスコ(攪拌機、温度計、滴下漏斗、蒸留管、窒素吹き込み管付き)にネオペンチルグリコール263.5g(2.53モル)、アジピン酸ビス(2-エチルヘキシル)1500g(4.05モル)、及び触媒として28重量%ナトリウムメトキシド含有メタノール溶液5.6g(ナトリウムメトキシド0.029モル)を入れ、圧力3.7kPa、120℃で1.5時間反応させながら、反応により生じる2-エチルヘキサノールを留去させた。次に、75℃に冷却後、常圧にもどし、さらに、触媒として28重量%ナトリウムメトキシド含有メタノール溶液3.0g(ナトリウムメトキシド0.016モル)を添加し、圧力0.4kPaで、温度を1時間かけて92℃から160℃に上げて、2-エチルヘキサノールを留出させた。その後、80℃に冷却してキョーワード600S(協和化学工業社製)19gを添加し、圧力4.0kPa、80℃で1時間攪拌した後、減圧ろ過を行った。ろ液を圧力0.3kPaで、温度を2時間かけて166℃から214℃に上げて残存アジピン酸ビス(2-エチルヘキシル)504gを留去し、常温黄色の液体を得た。なお、触媒の使用量は、ジカルボン酸エステル100モルに対して1.11モルであった。
ポリエステル系可塑剤の製造例9
 4ツ口フラスコ(攪拌機、温度計、ディーンスタルク装置、窒素吹き込み管付き)に2-エチルヘキサノール(関東化学社製)2515g(19.3モル)、コハク酸(和光純薬工業社製)877g(7.43モル)、及びパラトルエンスルホン酸一水和物(和光純薬工業社製)14.1g(0.0742モル)を入れ、圧力16kPa、80℃の状態から圧力12kPa、90℃の状態まで、7時間かけて反応を行い、水を留出させた。その後、キョーワード500SH(協和化学工業社製)32gを添加し、圧力4.0kPa、80℃で1時間攪拌した後、減圧ろ過を行った。ろ液を4ツ口フラスコ(攪拌機、温度計、蒸留管、窒素吹き込み管付き)に仕込み、圧力0.7kPa、95℃の状態から圧力0.5kPa、185℃の状態にして残存2-エチルヘキサノールを留去した後、再び、キョーワード500SHを16g添加し、圧力4.0kPa、80℃で1時間攪拌した後、減圧ろ過を行って、コハク酸ビス(2-エチルヘキシル)を得た。次に、4ツ口フラスコ(攪拌機、温度計、滴下漏斗、蒸留管、窒素吹き込み管付き)に、このコハク酸ビス(2-エチルヘキシル)467g(1.36モル)、ジエチレングリコール250g(2.36モル)、及び触媒として28重量%ナトリウムメトキシド含有メタノール溶液2.2g(ナトリウムメトキシド0.011モル)を入れ、110℃で、圧力を45分間かけて2.7kPaから0.9kPaに徐々に下げて、反応により生じる2-エチルヘキサノールを留去した。80℃まで冷却した後、再び、コハク酸ビス(2-エチルヘキシル)1953g(5.70モル)、28重量%ナトリウムメトキシド含有メタノール溶液5.0g(ナトリウムメトキシド0.026モル)を添加し、5.5時間かけて110℃、0.8kPaの状態から158℃、0.4kPaの状態まで、昇温しながら圧力を徐々に下げて、反応により生じる2-エチルヘキサノールを留去した。その後、80℃に冷却してキョーワード600S(協和化学工業社製)10.5gを添加し、圧力4.0kPa、80℃で1時間拌した後、減圧ろ過を行った。ろ液を4.5時間かけて178℃、0.3kPaの状態から220℃、0.1kPaの状態まで、昇温しながら圧力を徐々に下げて、残存コハク酸ビス(2-エチルヘキシル)を留去し、常温黄色の液体を得た。なお、触媒の使用量は、ジカルボン酸エステル100モルに対して0.53モルであった。
ポリエステル系可塑剤の製造例10
 4ツ口フラスコ(攪拌機、温度計、滴下漏斗、蒸留管、窒素吹き込み管付き)に1,3-プロパンジオール763.6g(10.04モル)及び触媒として28重量%ナトリウムメトキシド含有メタノール溶液17.5g(ナトリウムメトキシド0.091モル)を入れ、常圧、120℃で0.5時間攪拌しながらメタノールを留去した。その後、アジピン酸ジメチル(和光純薬工業社製)2622g(15.05モル)を1時間かけて滴下し、常圧、120℃で、反応により生じるメタノールを留去した。次に、70℃に冷却し、28重量%ナトリウムメトキシド含有メタノール溶液6.2g(ナトリウムメトキシド0.032モル)を入れ、圧力5.2kPa、100℃で1時間かけてメタノールを留去した。再び、70℃に冷却し、28重量%ナトリウムメトキシド含有メタノール溶液5.2g(ナトリウムメトキシド0.027モル)を入れ、圧力1.6kPa、100℃で1時間かけてメタノールを留去した。その後、80℃に冷却してキョーワード600S(協和化学工業社製)67gを添加し、圧力4.0kPa、80℃で1時間攪拌した後、減圧ろ過を行った。ろ液を圧力0.4kPaで、温度を1時間かけて135℃から200℃に上げて残存アジピン酸ジメチルを留去し、常温黄色の液体を得た。なお、触媒の使用量は、ジカルボン酸エステル100モルに対して1.0モルであった。
ポリエステル系可塑剤の製造例11
 4ツ口フラスコ(攪拌機、温度計、滴下漏斗、蒸留管、窒素吹き込み管付き)に1,4-ブタンジオール308g(3.42モル)、及び触媒として28重量%ナトリウムメトキシド含有メタノール溶液6.6g(ナトリウムメトキシド0.034モル)を入れ、常圧、120℃で0.5時間攪拌しながらメタノールを留去した。その後、コハク酸ジメチル(和光純薬工業社製)750g(5.13モル)を1時間かけて滴下し、常圧、120℃で、反応により生じるメタノールを留去した。次に、75℃に冷却し、圧力を1時間かけて常圧から6.7kPaまで徐々に下げてメタノールを留去した後、常圧にもどし、さらに、触媒として28重量%ナトリウムメトキシド含有メタノール溶液1.7g(ナトリウムメトキシド0.009モル)を添加して、100℃で、圧力を1時間かけて常圧から2.9kPaまで徐々に下げてメタノールを留出させた。70℃に冷却後、再び28重量%ナトリウムメトキシド含有メタノール溶液1.7g(ナトリウムメトキシド0.009モル)を添加して、100℃で、圧力を1時間かけて常圧から2.9kPaまで徐々に下げてメタノールを留出させた。その後、キョーワード600S(協和化学工業社製)23gを添加し、圧力4.0kPa、90℃で1時間攪拌した後、減圧ろ過を行った。ろ液を圧力0.4kPaで、温度を1時間かけて85℃から180℃に上げて残存コハク酸ジメチルを留去し、常温黄色の固体を得た。なお、触媒の使用量は、ジカルボン酸エステル100モルに対して1.0モルであった。
 得られたエステル系可塑剤の酸価、水酸基価、及びケン化価を測定し、前記式に基づき数平均分子量、末端アルキルエステル化率、平均重合度(n)、及びエーテル基価を算出した。また、SP値についても前記方法に従って算出した。結果を表1~2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
実施例1-1~1-11及び比較例1-1~1-4
 ポリエステル樹脂組成物として、表3、4に示す組成物原料を、2軸押出機(池貝鉄工社製、PCM-45)にて、回転数100r/min、溶融混練温度190℃で溶融混練し、ストランドカットを行い、ポリ乳酸樹脂組成物のペレットを得た。得られたペレットは、70℃減圧下で1日乾燥し、水分量を500ppm以下とした。
 このペレットをTダイ2軸押出機(日本製鋼所社製 TEX44αII)にて、回転数120r/min、溶融混練温度200℃で溶融混練し、厚さ0.3mmのシート状組成物をTダイから押出し、表面温度20℃に制御した冷却ロールに2秒間接触させ、相対結晶化度80%未満の非晶シートを得た(厚さ0.3mm)。次いで、表面温度80℃に制御したアニーリングロールに20秒間接触させ、相対結晶化度80%以上の結晶化シートを得た(厚さ0.3mm)。なお比較例1-4については結晶化速度が遅くほとんど結晶化が進行しないため、アニーリングロールに粘着が生じたが、サンプリングを行い同様の評価を行った。
 なお、表3、4における原料は以下の通りである。
<ポリエステル樹脂>
NW4032D:ポリ乳酸樹脂、ネイチャーワークスLLC社製、ポリ-L-乳酸、NatureWorks 4032D、光学純度98.5%、融点160℃、重量平均分子量141000、残存モノマー1200ppm
PET:ポリエチレンテレフタレート、TSUNAMI GS2、イーストマンケミカル社製、ガラス転移温度81℃
<可塑剤>
製造例1~11:表1~2に記載のポリエステル系可塑剤
DAIFATTY-101:アジピン酸と、ジエチレングリコールモノメチルエーテル/ベンジルアルコール=1/1混合ジエステル、大八化学工業社製、
チラバゾールVR-01:ポリグリセリンとオレイン酸とのエステル、太陽化学社製
<結晶核剤>
スリパックスH:エチレンビス12-ヒドロキシステアリン酸アミド、日本化成社製
<加水分解抑制剤>
カルボジライトLA-1:ポリカルボジイミド、日清紡ケミカル社製
 得られた成形体の特性を、下記の試験例1-1~1-4の方法に従って評価した。また、成形時の発煙性について試験例1-5の方法に従って評価した。結果を表3、4に示す。
試験例1-1<結晶性の評価>
 成形後のシートについて7.5mg精秤し、アルミパンに封入後、DSC装置(パーキンエルマー社製ダイアモンドDSC)を用い、1stRUNとして、昇温速度20℃/分で20℃から200℃まで昇温し、200℃で5分間保持した後、降温速度-20℃/分で200℃から20℃まで降温し、20℃で1分間保持した後、さらに2ndRUNとして、昇温速度20℃/分で20℃から200℃まで昇温した。1stRUNに観測されるポリ乳酸樹脂の冷結晶化エンタルピーの絶対値ΔHcc、2ndRUNに観測される結晶融解エンタルピーΔHmを求め、得られた値から、下記式により相対結晶化度(%)を求めた。
    相対結晶化度(%)={(ΔHm-ΔHcc)/ΔHm}×100
試験例1-2<透明性>
 成形後のシートについて、JIS-K7105規定の積分球式光線透過率測定装置(ヘイズメーター)を用い、ヘイズ値を測定した。数字の小さい方が透明性が良好であることを示す。
試験例1-3<耐熱性>
 成形後のシートについて7.0~8.0mg精秤し、エスアイアイ・ナノテクノロジー社製の熱分析装置EXTRA TG・DTA 7200を用い、空気気流(200mL/分)下、昇温速度40℃/分で40℃から210℃まで昇温し、210℃で30分間保持したときの重量減少率(%)を測定し、耐熱性の尺度とした。重量減少率(%)は小さい方が耐熱性に優れていることを示す。
試験例1-4<耐ブリード性>
 成形後のシート(縦100mm×横100mm)について、70℃の恒温室に1週間放置し、その表面における可塑剤のブリードの有無を肉眼で観察し、目視及び手触り感によりブリード性を以下の3段階で評価した。
3:ブリードが認められない
2:わずかにブリードが認められる
1:明らかにブリードが認められる
試験例1-5<耐発煙性>
 押出成形機からの発煙性の有無を観察し、その程度によって3段階で評価した。数字が小さい方が、発煙が少なく、作業性が良好で、可塑剤量の損失も少ないことを示す。
3:発煙が認められない
2:わずかに発煙が認められる
1:明らかに発煙が認められる
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3、4の結果から明らかなように、式(I)で示される可塑剤がポリ乳酸樹脂及びポリエチレンテレフタレートとの相溶性に優れ、可塑化効果も高いものであるため、本発明のシートは、優れた透明性を示し、耐ブリード性も良好であり、結晶化した場合には高い結晶化度を示すものであった。また、前記可塑剤自身の耐熱性も高いことから、押出成形時の発煙も抑制されて、作業性が良好であり、その成形体であるシートの耐熱性も優れたものであった。一方、比較例1-4で用いた可塑剤は樹脂との相溶性が悪いため、非晶状態でも透明性は悪く、結晶化後の結晶化度は低いものであった。また、比較例1-1及び1-2で用いた可塑剤は樹脂との相溶性が不十分で、保存中にブリードが見られた。比較例1-3では、透明性、耐ブリード性は良好であり、結晶化した場合には結晶化度も高いものであったが、可塑剤の耐熱性が不十分であるため、押出成形時に発煙が生じた他、得られたシートの耐熱性が劣るものであった。
実施例2-1~2-11及び比較例2-1~2-4
ポリエステル樹脂組成物の調製
 ポリエステル樹脂組成物として、表5、6に示す組成物原料を、2軸押出機(池貝鉄工社製、PCM-45)にて、回転数100r/min、溶融混練温度190℃で溶融混練し、ストランドカットを行い、ポリ乳酸樹脂組成物のペレットを得た。得られたペレットは、70℃減圧下で1日乾燥し、水分量を500ppm以下とした。
非晶状態のシートの調製
 このペレットをTダイ2軸押出機(日本製鋼所社製 TEX44αII)にて、回転数120r/min、溶融混練温度200℃で溶融混練し、厚さ0.3mmのシート状組成物をTダイから押出し、表面温度20℃に制御した冷却ロールに2秒間接触させ、相対結晶化度80%未満の非晶シートを得た(厚さ0.3mm)。
熱成形品の調製
 次いで、単発真空圧空成形機(脇坂製作所社製、FVS-500P WAKITEC)を用いて、前記切り出した非晶状態のシートをガイドに取り付け、ヒーター温度を400℃に設定したヒーター部中での保持時間を変えることで、シート表面の温度が70~90℃となり、熱成形可能な状態までシートを加熱・軟化させた後、シートを表面温度90℃に設定した上下金型を用いて真空成形を行い、金型内で10秒間保持した後に脱型し、熱成形品を得た。シート表面の温度は、加熱後のシート表面温度を直接表面温度計にて測定した。なお、使用した金型を図1に示す。
 なお、表5、6における原料は以下の通りである。
<ポリエステル樹脂>
NW4032D:ポリ乳酸樹脂、ネイチャーワークスLLC社製、ポリ-L-乳酸、NatureWorks 4032D、光学純度98.5%、融点164℃、重量平均分子量141000、残存モノマー1200ppm
PET:ポリエチレンテレフタレート、TSUNAMI GS2、イーストマンケミカル社製、ガラス転移温度81℃
<可塑剤>
製造例1~11:表1~2に記載のポリエステル系可塑剤
リケマールPL-019:グリセリンジアセトモノカプリレート、理研ビタミン社製
ATBC:アセチルクエン酸トリブチル、旭化成ファインケム社製
<結晶核剤>
スリパックスH:エチレンビス12-ヒドロキシステアリン酸アミド、日本化成社製
<加水分解抑制剤>
カルボジライトLA-1:ポリカルボジイミド、日清紡ケミカル社製
 得られた成形体の特性を、下記の試験例2-1~2-5の方法に従って評価した。結果を表5、6に示す。
試験例2-1<結晶性の評価>
 非晶状態のシート及び熱成形品について7.5mg精秤し、アルミパンに封入後、DSC装置(パーキンエルマー社製ダイアモンドDSC)を用い、1stRUNとして、昇温速度20℃/分で20℃から200℃まで昇温し、200℃で5分間保持した後、降温速度-20℃/分で200℃から20℃まで降温し、20℃で1分間保持した後、さらに2ndRUNとして、昇温速度20℃/分で20℃から200℃まで昇温した。1stRUNに観測されるポリ乳酸樹脂の冷結晶化エンタルピーの絶対値ΔHcc、2ndRUNに観測される結晶融解エンタルピーΔHmを求め、得られた値から、下記式により相対結晶化度(%)を求めた。
    相対結晶化度(%)={(ΔHm-ΔHcc)/ΔHm}×100
試験例2-2<透明性の評価>
 前記非晶状態のシート及び熱成形品の一部を切り取り、JIS-K7105規定の積分球式光線透過率測定装置(ヘイズメーター、HM-150型 村上色彩技術研究所社製)を用いて、Haze値を測定し、これを透明度の指標とした。Haze値の値が小さいほど、透明性に優れることを示す。
試験例2-3<耐熱性の評価>
 市販品の容器(商品名 湯呑み90 志野 シーピー化成社製)の本体部分(φ81mm 高さ51mm 材質 PP入り低発泡PS製)に25℃の水を50cc入れて、得られた熱成形品(蓋)でしっかり嵌合させ、電子レンジで600W、60秒間レンジアップを行い、耐熱性を以下の3段階で評価した。なお試験直後の熱成形品の表面温度は95℃であった。
3:ほとんど変形がない
2:少し変形する
1:大きく変形する
試験例2-4<耐ブリード性の評価>
 熱成形品を70℃の恒温室に1週間放置し、その表面における可塑剤のブリードの有無について、目視及び手触り感により耐ブリード性を以下の3段階で評価した。
3:ブリードが認められない
2:わずかにブリードが認められる
1:明らかにブリードが認められる
試験例2-5<剛性(弾性率)の評価>
 熱成形品天面の平坦部から幅1cm、長さ4cmのサンプル片を切り取り、JIS-K7198に基づいて、動的粘弾性測定装置(エスアイアイ・ナノテクノロジー社製 EXSTAR6000)にて、周波数10Hz、昇温速度2℃/min、-20℃から80℃の温度領域における貯蔵弾性率(E’)を測定し、25℃における貯蔵弾性率(GPa)を求めた。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表5、6の結果から明らかなように、式(I)で示される可塑剤がポリ乳酸樹脂及びポリエチレンテレフタレートとの相溶性に優れるため、本発明の熱成形品は高い結晶化度と優れた透明性を示し、耐熱性、耐ブリード性も良好であった。また、前記可塑剤を含有する熱成形品は、弾性率が高く、剛性も良好であった。一方、比較例2-3及び2-4で用いた可塑剤は樹脂との相溶性が悪いため、本発明品に比べて透明性は悪く、保存中にブリードがみられ、さらに弾性率の低下が大きいものであった。また比較例2-1及び2-2で用いた可塑剤は樹脂との相溶性が不十分で、透明性も低下し、保存中にブリードが見られた。
 また、本発明の熱成形品について、その熱成形性を以下の試験例2-6に従って評価した。結果を表7、8に示す。
試験例2-6<熱成形性の評価>
 熱成形性の評価は、単発真空圧空成形機(脇坂製作所社製、FVS-500P WAKITEC)を用いて、前記非晶状態のシートをガイドに取り付け、ヒーター温度を400℃に設定したヒーター部中での保持時間を変えることで、シート表面の温度が表7、8に示す温度となるまでシートを加熱した。各温度に加熱したシートを90℃に設定した上下金型を用いて真空成形を行い、金型内で10秒間保持して真空成形体を取り出し、容易に嵌合できた場合を「A」とし、それ以外を「B」とした。シート表面の温度は、加熱後のシート表面温度を直接表面温度計にて測定した。なお、使用した金型は前記と同じである。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表7、8の結果から明らかなように、式(I)で示される可塑剤がポリ乳酸樹脂及びポリエチレンテレフタレートとの相溶性に優れるため、式(I)で示される可塑剤を含有する樹脂組成物は、加熱ゾーンでの保持時間が異なってシート表面の温度が変化しても、十分な嵌合性が得られる温度領域(成形温度幅)が広く、熱成形性に優れるものであった。
実施例3-1~3-10及び比較例3-1~3-5
ポリエステル樹脂組成物の調製
 ポリエステル樹脂組成物として、表9、10に示す組成物原料を、2軸押出機(池貝鉄工社製、PCM-45)にて、回転数100r/min、溶融混練温度190℃で溶融混練し、ストランドカットを行い、ポリ乳酸樹脂組成物のペレットを得た。得られたペレットは、70℃減圧下で1日乾燥し、水分量を500ppm以下とした。
非晶状態のシートの調製
 このペレットをTダイ2軸押出機(日本製鋼所社製 TEX44αII)にて、回転数120r/min、溶融混練温度200℃で溶融混練し、厚さ0.3mmのシート状組成物をTダイから押出し、表面温度20℃に制御した冷却ロールに2秒間接触させ、相対結晶化度80%未満の非晶シートを得た(厚さ0.3mm)。
二軸延伸フィルムの調製
 次いで、各組成物の非晶状態のシートについて、12cm×12cm(厚さ0.2mm)の正方形に切り出し、テーブルテンター試験機(岩本製作所社製)を用いて、延伸温度55~60℃(比較例3-5のみ 80℃)、余熱時間45秒、延伸速度5mm/s、保持時間3分の条件で、面積延伸倍率10.2倍まで二軸同時延伸を行い(延伸範囲10cm×10cmの正方形)、厚さ22μmの二軸延伸フィルムを作成した。
 なお、表9、10における原料は以下の通りである。
<ポリエステル樹脂>
NW4032D:ポリ乳酸樹脂、ネイチャーワークスLLC社製、ポリ-L-乳酸、NatureWorks 4032D、光学純度98.5%、融点164℃、重量平均分子量141000、残存モノマー1200ppm
PET:ポリエチレンテレフタレート、TSUNAMI GS2、イーストマンケミカル社製、ガラス転移温度81℃
<可塑剤>
製造例1~11:表1~2に記載のポリエステル系可塑剤
ポエムG-048:グリセリンジアセトモノオレート、理研ビタミン社製
ポエムG-0021:デカグリセリンラウレート、理研ビタミン社製
 得られた成形体の特性を、下記の試験例3-1~3-4の方法に従って評価した。結果を表9、10に示す。
試験例3-1<結晶性の評価>
 非晶状態のシート及び二軸延伸フィルムについて7.5mg精秤し、アルミパンに封入後、DSC装置(パーキンエルマー社製ダイアモンドDSC)を用い、1stRUNとして、昇温速度20℃/分で20℃から200℃まで昇温し、200℃で5分間保持した後、降温速度-20℃/分で200℃から20℃まで降温し、20℃で1分間保持した後、さらに2ndRUNとして、昇温速度20℃/分で20℃から200℃まで昇温した。1stRUNに観測されるポリ乳酸樹脂の冷結晶化エンタルピーの絶対値ΔHcc、2ndRUNに観測される結晶融解エンタルピーΔHmを求め、得られた値から、下記式により相対結晶化度(%)を求めた。
    相対結晶化度(%)={(ΔHm-ΔHcc)/ΔHm}×100
試験例3-2<透明性の評価>
 前記非晶状態のシート及び二軸延伸フィルムの一部を切り取り、JIS-K7105規定の積分球式光線透過率測定装置(ヘイズメーター、HM-150型 村上色彩技術研究所社製)を用いて、Haze値を測定し、これを透明度の指標とした。Haze値の値が小さいほど、透明性に優れることを示す。
試験例3-3<耐ブリード性の評価>
 二軸延伸フィルムを70℃の恒温室に1週間放置し、その表面における可塑剤のブリードの有無について、目視及び手触り感により耐ブリード性を以下の3段階で評価した。
3:ブリードが認められない
2:わずかにブリードが認められる
1:明らかにブリードが認められる
試験例3-4<フィルム強度(破断点応力)の評価>
 二軸延伸フィルムを用いて、引張試験を行い、フィルム強度(破断点応力、MPa)を調べた。引っ張り試験には、島津製作所社製のオートグラフ(AGS-X 1kN)を用い、JIS K 7127に従って試験を行った。なお、破断点応力の数値が高いほど延伸配向性に優れ、フィルム強度が高いと判断される。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表9、10の結果から明らかなように、式(I)で示される可塑剤がポリ乳酸樹脂及びポリエチレンテレフタレートとの相溶性に優れるため、本発明の延伸フィルムは、高い結晶化度と優れた透明性を示し、耐ブリード性も良好であった。さらに、前記可塑剤を含有することにより、ポリ乳酸樹脂の延伸性が顕著に向上したため、破断点応力が高く、良好なフィルム強度を示した。一方、比較例3-3及び3-4で用いた可塑剤は樹脂との相溶性が悪いため、本発明品に比べて透明性は悪く、保存中にブリードがみられ、さらに破断点応力も低いものであった。また可塑剤を含有しない比較例3-5は、延伸性が劣るために破断点応力の向上が小さくフィルム強度が劣るものであった。比較例3-1及び3-2で用いた可塑剤は樹脂との相溶性が不十分で、透明性も低下し、保存中にブリードが見られた。
 本発明のシート又はフィルムは、透明性に優れ、かつ、耐熱性及び耐ブリード性に優れることから、食品、農業、工業等の様々な用途に好適に使用することができる。本発明の熱成形品は、透明性、耐熱性及び耐ブリード性に優れ、さらに剛性に優れることから、食品容器、日用品や家電製品の包装材料、工業用部品のトレイ等、様々な用途に好適に使用することができる。本発明の延伸フィルムは、透明性、耐ブリード性に優れ、さらにフィルム強度に優れることから、食品包装、日用品や家電製品の包装材料、工業用各種フィルム等、様々な用途に好適に使用することができる。

Claims (17)

  1.  ポリエステル樹脂及び下記式(I)で示されるポリエステル系可塑剤を含有してなるポリエステル樹脂組成物からなる、(1)シート又はフィルム、(2)熱成形品、及び(3)延伸フィルムからなる群より選ばれる成形体。
      RO-CO-R-CO-〔(OR)O-CO-R-CO-〕OR  (I)
    (式中、Rは炭素数が1~4のアルキル基、Rは炭素数が2~4のアルキレン基、Rは炭素数が2~6のアルキレン基であり、mは1~6の数、nは1~12の数を示し、但し、全てのRは同一でも異なっていてもよく、全てのRは同一でも異なっていてもよい)
  2.  ポリエステル系可塑剤の酸価が1.00mgKOH/g以下、水酸基価が10.0mgKOH/g以下、数平均分子量が500~1500である、請求項1記載の成形体。
  3.  ポリエステル系可塑剤のFedoros法による溶解度パラメータが10.0~12.0である、請求項1又は2記載の成形体。
  4.  ポリエステル系可塑剤が下記(1)~(3)を用いて得られる、請求項1~3いずれか記載の成形体。
      (1)炭素数が1~4のアルキル基を有する一価アルコール
      (2)炭素数が2~4のアルキレン基を有するジカルボン酸
      (3)炭素数が2~6のアルキレン基を有する二価アルコール
  5.  ポリエステル樹脂がポリ乳酸樹脂を含む請求項1~4いずれか記載の成形体。
  6.  さらに、有機系結晶核剤を含んでなる、請求項1~5いずれか記載の成形体。
  7.  有機系結晶核剤がカルボン酸アミドを含む請求項6記載の成形体。
  8.  カルボン酸アミドが炭素数1~6のアルキレン基を有するアルキレンビスヒドロキシステアリン酸アミドを含む請求項7記載の成形体。
  9.  式(I)におけるRがエチレン基である、請求項1~8いずれか記載の成形体。
  10.  式(I)におけるnが2以上である、請求項1~9いずれか記載の成形体。
  11.  請求項1~5いずれか記載の成形体の製造方法であって、下記工程(1)を含むことを特徴とする、成形体の製造方法。
    工程(1):ポリエステル樹脂と式(I)で表されるポリエステル系可塑剤を含有するポリエステル樹脂組成物を押出成形法によりダイから押出して得られたシート又はフィルムを、該ポリエステル樹脂組成物のガラス転移温度(Tg)未満に冷却して相対結晶化度80%未満のシート又はフィルムを得る工程
  12.  さらに、下記工程(2-1)を含む、請求項11記載の成形体の製造方法。
    工程(2-1):工程(1)で得られたシート又はフィルムを、ポリエステル樹脂組成物のガラス転移温度(Tg)以上、ポリエステル樹脂組成物の融点(Tm)未満の温度に加熱して相対結晶化度80%以上の結晶化シート又はフィルムを得る工程
  13.  さらに、下記工程(2-2)を含む、請求項11記載の成形体の製造方法。
    工程(2-2):工程(1)で得られたシートを、ポリエステル樹脂組成物のガラス転移温度(Tg)以上、ポリエステル樹脂組成物の融点(Tm)未満の温度領域中で熱成形して相対結晶化度80%以上に結晶化させた熱成形品を得る工程
  14.  さらに、下記工程(2-3)を含む、請求項11記載の成形体の製造方法。
    工程(2-3):工程(1)で得られたシートを、ポリエステル樹脂組成物のガラス転移温度(Tg)以上、ポリエステル樹脂組成物の冷結晶化温度(Tc)以下の温度領域中で一軸又は二軸延伸して相対結晶化度80%以上に結晶化させた延伸フィルムを得る工程
  15.  (1)日用品、化粧品、及び家電製品から選ばれる製品のためのクリアケース、ならびに紙箱の透明窓、からなる群より選ばれる包装容器、又は(2)クリアホルダー及びIDカードケースから選ばれる文具類を製造するための、請求項1~10いずれか記載の成形体の使用。
  16.  (1)日用品、化粧品、及び家電製品から選ばれる製品のためのブリスターパックあるいはトレイ、(2)食品容器、又は(3)工業部品の輸送や保護に用いる工業用トレイを製造するための、請求項1~10いずれか記載の成形体の使用。
  17.  (1)日用品、化粧品、及び家電製品から選ばれる製品のための包装材料、(2)工業用フィルム、又は(3)食品包装用フィルムを製造するための、請求項1~10いずれか記載の成形体の使用。
PCT/JP2013/052831 2012-02-22 2013-02-07 ポリエステル樹脂組成物からなる成形体 WO2013125359A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380010612.2A CN104159969B (zh) 2012-02-22 2013-02-07 由聚酯树脂组合物形成的成型体
EP13751881.7A EP2818518B1 (en) 2012-02-22 2013-02-07 Molded product composed of polyester resin composition
US14/375,613 US9062199B2 (en) 2012-02-22 2013-02-07 Molded product composed of polyester resin composition
KR1020147025647A KR101889135B1 (ko) 2012-02-22 2013-02-07 폴리에스테르 수지 조성물로 이루어진 성형체

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012-036593 2012-02-22
JP2012036595 2012-02-22
JP2012036594 2012-02-22
JP2012036593 2012-02-22
JP2012-036595 2012-02-22
JP2012-036594 2012-02-22
JP2012-176193 2012-08-08
JP2012176193 2012-08-08

Publications (1)

Publication Number Publication Date
WO2013125359A1 true WO2013125359A1 (ja) 2013-08-29

Family

ID=49005547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052831 WO2013125359A1 (ja) 2012-02-22 2013-02-07 ポリエステル樹脂組成物からなる成形体

Country Status (6)

Country Link
US (1) US9062199B2 (ja)
EP (1) EP2818518B1 (ja)
KR (1) KR101889135B1 (ja)
CN (1) CN104159969B (ja)
TW (1) TWI572667B (ja)
WO (1) WO2013125359A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107075342A (zh) * 2014-10-31 2017-08-18 花王株式会社 减振材料用的聚酯树脂组合物
CN108884304A (zh) * 2016-03-17 2018-11-23 花王株式会社 风扇
US10465063B2 (en) 2014-10-31 2019-11-05 Kao Corporation Polyamide resin composition for damping material
US10914312B2 (en) 2016-04-27 2021-02-09 Kao Corporation Fan
WO2021215250A1 (ja) * 2020-04-24 2021-10-28 株式会社エンプラス 樹脂組成物、エミッタ、および点滴灌漑用チューブ
USD964862S1 (en) 2018-08-21 2022-09-27 Intercontinental Great Brands Llc Tray

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160007623A (ko) * 2013-07-19 2016-01-20 미쯔이가가꾸가부시끼가이샤 결정화 고분자 필름 및 그 제조 방법
WO2017094075A1 (ja) * 2015-11-30 2017-06-08 日立化成株式会社 食品包装用フィルム
US20190144661A1 (en) * 2016-04-25 2019-05-16 Kao Corporation Polyester resin molding composition for damping materials
CN110461940A (zh) * 2017-03-28 2019-11-15 东洋纺株式会社 导热性树脂组合物
US11427688B2 (en) * 2017-04-17 2022-08-30 Eastman Chemical Company Copolyesters plasticized with polymeric plasticizer
KR102230780B1 (ko) * 2019-07-24 2021-03-23 주식회사 휴비스 저융점 폴리에스테르 섬유를 포함하는 여과지용 습식부직포
CN112226050B (zh) * 2020-10-13 2022-08-02 安徽农业大学 一种具有高透明性的可生物降解热收缩膜及其制备方法、应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118513A (ja) 1993-10-22 1995-05-09 Dainippon Ink & Chem Inc 乳酸系ポリマー組成物
JPH1036651A (ja) 1996-05-24 1998-02-10 Dainippon Ink & Chem Inc 乳酸系ポリエステル組成物及びその成形物
JP2000302956A (ja) 1999-02-18 2000-10-31 Mitsui Chemicals Inc 脂肪族ポリエステル組成物及び該組成物から得られる延伸フィルム
JP2002060605A (ja) 2000-08-18 2002-02-26 Mitsui Chemicals Inc 乳酸系ポリマー成形物
JP2005023091A (ja) * 2002-05-14 2005-01-27 Daihachi Chemical Industry Co Ltd 生分解性樹脂組成物
WO2006121056A1 (ja) 2005-05-12 2006-11-16 Mitsui Chemicals, Inc. 乳酸系ポリマー組成物、該組成物からなる成形品およびその製造方法
JP2007314751A (ja) * 2006-04-28 2007-12-06 Kawasaki Kasei Chem Ltd 樹脂用の柔軟性付与剤及び当該柔軟性付与剤を含有する生分解性樹脂組成物
JP2008115372A (ja) 2006-10-11 2008-05-22 Kao Corp 生分解性樹脂組成物
JP2008174718A (ja) 2006-12-19 2008-07-31 Kao Corp 生分解性樹脂組成物
JP2009062410A (ja) 2007-09-04 2009-03-26 Sekisui Seikei Ltd ポリ乳酸樹脂シートの製造方法及びそれに使用する製造装置
JP2011153296A (ja) 2009-12-28 2011-08-11 Kao Corp 生分解性樹脂組成物
WO2012023589A1 (ja) * 2010-08-19 2012-02-23 花王株式会社 樹脂組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1029890B1 (en) 1999-02-18 2004-07-28 Mitsui Chemicals, Inc. Aliphatic polyester composition and stretched film obtained from said composition
JP2004099671A (ja) * 2002-09-06 2004-04-02 Unitika Ltd 生分解性フィルムおよびその製造方法
JP4246196B2 (ja) 2005-11-10 2009-04-02 花王株式会社 生分解性樹脂成形品の製造法。
JP4260794B2 (ja) 2005-11-10 2009-04-30 花王株式会社 生分解性樹脂成形品の製造法
WO2008102919A1 (ja) * 2007-02-23 2008-08-28 Teijin Limited ポリ乳酸組成物
EP2674459A4 (en) * 2011-02-07 2017-01-11 Kao Corporation Polylactic acid resin composition

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118513A (ja) 1993-10-22 1995-05-09 Dainippon Ink & Chem Inc 乳酸系ポリマー組成物
JPH1036651A (ja) 1996-05-24 1998-02-10 Dainippon Ink & Chem Inc 乳酸系ポリエステル組成物及びその成形物
JP2000302956A (ja) 1999-02-18 2000-10-31 Mitsui Chemicals Inc 脂肪族ポリエステル組成物及び該組成物から得られる延伸フィルム
JP2002060605A (ja) 2000-08-18 2002-02-26 Mitsui Chemicals Inc 乳酸系ポリマー成形物
JP2005023091A (ja) * 2002-05-14 2005-01-27 Daihachi Chemical Industry Co Ltd 生分解性樹脂組成物
WO2006121056A1 (ja) 2005-05-12 2006-11-16 Mitsui Chemicals, Inc. 乳酸系ポリマー組成物、該組成物からなる成形品およびその製造方法
JP2007314751A (ja) * 2006-04-28 2007-12-06 Kawasaki Kasei Chem Ltd 樹脂用の柔軟性付与剤及び当該柔軟性付与剤を含有する生分解性樹脂組成物
JP2008115372A (ja) 2006-10-11 2008-05-22 Kao Corp 生分解性樹脂組成物
JP2008174718A (ja) 2006-12-19 2008-07-31 Kao Corp 生分解性樹脂組成物
JP2009062410A (ja) 2007-09-04 2009-03-26 Sekisui Seikei Ltd ポリ乳酸樹脂シートの製造方法及びそれに使用する製造装置
JP2011153296A (ja) 2009-12-28 2011-08-11 Kao Corp 生分解性樹脂組成物
WO2012023589A1 (ja) * 2010-08-19 2012-02-23 花王株式会社 樹脂組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Poriorefin-toh Gosei-jushi-sei Shokuhin Youki Houso-toh ni Kansuru Jishukijun", June 2004, article "Eisei Shikenho (Hygienic Test Method", pages: 12 - 13
YUJI HARASAKI: "Kothing no Kisokagaku", 1988, MAKI SHOTEN, pages: 48

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107075342A (zh) * 2014-10-31 2017-08-18 花王株式会社 减振材料用的聚酯树脂组合物
US20170247527A1 (en) * 2014-10-31 2017-08-31 Kao Corporation Polyester resin composition for damping material
US10465063B2 (en) 2014-10-31 2019-11-05 Kao Corporation Polyamide resin composition for damping material
CN107075342B (zh) * 2014-10-31 2020-03-10 花王株式会社 减振材料用的聚酯树脂组合物
CN108884304A (zh) * 2016-03-17 2018-11-23 花王株式会社 风扇
US10914312B2 (en) 2016-04-27 2021-02-09 Kao Corporation Fan
USD964862S1 (en) 2018-08-21 2022-09-27 Intercontinental Great Brands Llc Tray
WO2021215250A1 (ja) * 2020-04-24 2021-10-28 株式会社エンプラス 樹脂組成物、エミッタ、および点滴灌漑用チューブ

Also Published As

Publication number Publication date
CN104159969B (zh) 2016-06-08
EP2818518A4 (en) 2015-10-07
EP2818518A1 (en) 2014-12-31
KR101889135B1 (ko) 2018-09-20
TWI572667B (zh) 2017-03-01
EP2818518B1 (en) 2019-05-01
KR20140125858A (ko) 2014-10-29
CN104159969A (zh) 2014-11-19
US9062199B2 (en) 2015-06-23
TW201343776A (zh) 2013-11-01
US20150018468A1 (en) 2015-01-15

Similar Documents

Publication Publication Date Title
WO2013125359A1 (ja) ポリエステル樹脂組成物からなる成形体
US8722813B2 (en) Resin composition
WO2006077623A1 (ja) 生分解性ポリエステル系樹脂組成物
EP3415565A1 (en) Biodegradable polyester resin composition and molded body formed from said resin composition
TW201350536A (zh) 熱成形用聚乳酸樹脂片材
JP6352094B2 (ja) ポリ乳酸樹脂組成物
JP5302476B1 (ja) ポリエステル樹脂組成物からなる熱成形品
WO2015119155A1 (ja) 熱成形用ポリ乳酸樹脂シート
WO2012081532A1 (ja) ポリ乳酸樹脂組成物
JP6430803B2 (ja) 熱成形用シート
JP5302474B1 (ja) ポリエステル樹脂組成物からなるシート又はフィルム
JP2014105306A (ja) 生分解性樹脂成形品の製造方法
JP5302475B1 (ja) ポリエステル樹脂組成物からなる延伸フィルム
JP2010150385A (ja) ポリ乳酸樹脂組成物
JP6443988B2 (ja) ポリ乳酸樹脂組成物から成るシート又はフィルム
JP2009079188A (ja) ポリ乳酸樹脂組成物
JP4870037B2 (ja) 生分解性樹脂組成物
JP2010150384A (ja) ポリ乳酸樹脂組成物
JP6845659B2 (ja) ポリ乳酸樹脂組成物
JP2014001320A (ja) ポリ乳酸樹脂組成物からなる延伸フィルム
JP2017019957A (ja) ポリ乳酸樹脂組成物
JP2016183222A (ja) ポリ乳酸樹脂組成物
JP2009263561A (ja) ポリ乳酸樹脂組成物、ポリ乳酸樹脂成形体及びポリ乳酸樹脂成形体の製造方法
JP2016113539A (ja) ポリ乳酸樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751881

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14375613

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013751881

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147025647

Country of ref document: KR

Kind code of ref document: A