WO2012081532A1 - ポリ乳酸樹脂組成物 - Google Patents

ポリ乳酸樹脂組成物 Download PDF

Info

Publication number
WO2012081532A1
WO2012081532A1 PCT/JP2011/078650 JP2011078650W WO2012081532A1 WO 2012081532 A1 WO2012081532 A1 WO 2012081532A1 JP 2011078650 W JP2011078650 W JP 2011078650W WO 2012081532 A1 WO2012081532 A1 WO 2012081532A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
acid resin
resin composition
sheet
formula
Prior art date
Application number
PCT/JP2011/078650
Other languages
English (en)
French (fr)
Inventor
宗尚 奥津
橋本 良一
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN201180059551XA priority Critical patent/CN103261320A/zh
Priority to EP11848434.4A priority patent/EP2653499A1/en
Priority to US13/992,158 priority patent/US20130261214A1/en
Priority to KR1020137017997A priority patent/KR20130133808A/ko
Publication of WO2012081532A1 publication Critical patent/WO2012081532A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/002Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/10Forming by pressure difference, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • B29K2067/046PLA, i.e. polylactic acid or polylactide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0059Degradable
    • B29K2995/006Bio-degradable, e.g. bioabsorbable, bioresorbable or bioerodible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a polylactic acid resin composition. More specifically, the polylactic acid resin composition with improved secondary processability, especially stretchability and thermoformability, a sheet obtained using the composition, and a stretched film obtained by secondary processing of the sheet
  • the present invention relates to a molded body such as a thermoformed product, a secondary processing method of the sheet, and a packaging material comprising a stretched film or a molded body.
  • stretched films of crystalline polyester resin represented by polyethylene terephthalate (PET) have transparency and excellent mechanical properties such as strength. It is applied to a wide range of applications including materials.
  • an amorphous or semi-crystalline sheet produced by extrusion molding or the like is generally used in the temperature range from the glass transition temperature (Tg) to the cold crystallization temperature (Tc).
  • Tg glass transition temperature
  • Tc cold crystallization temperature
  • the method of manufacturing by biaxial stretching to the target thickness and then performing heat treatment is employed.
  • molecular orientation advances and mechanical properties such as strength are improved (see Non-Patent Document 1).
  • polylactic acid resin not only has hard and brittle physical properties, but also has low secondary processability, and problems such as insufficient flexibility and whitening when bent into a sheet or film, etc. There is. Moreover, since it is difficult to extend
  • the present situation is that the molded product of polylactic acid resin is limited to use mainly in the field of hard molded products. Therefore, a method of adding various plasticizers or the like has been attempted in order to compensate for the above drawbacks.
  • lactic acid for example, from the viewpoint of affinity with polylactic acid resin and suppression of bleed out, attempts to use lactic acid, lactic acid oligomer, aliphatic polycarboxylic acid ester, or a copolymer of polylactic acid and polyalkylene ether as a plasticizer has been made.
  • the plasticizer has low thermal stability at the time of molding, inferior strength of the resulting film, and there are problems such as insufficient improvement of secondary workability and bleeding out, and in particular, application to stretched film Was difficult.
  • Patent Document 1 discloses a method of using an aliphatic phosphate ester compound having an aliphatic chain having 12 to 28 carbon atoms as a lubricant during molding of a polylactic acid resin composition.
  • Patent Document 2 discloses that an aliphatic phosphate triester can be added as a plasticizer to improve stretch processability in the production of a porous sheet.
  • Patent Document 1 since the long-chain aliphatic phosphate disclosed in Patent Document 1 has low compatibility with the polylactic acid resin, it is considered that the long-chain aliphatic phosphate easily bleeds out when crystallization of the polylactic acid resin proceeds during molding such as stretching. .
  • the aliphatic phosphate triester of Patent Document 2 is a compound different from the aliphatic phosphate ester in the present invention, and the stretch processability is achieved by stretching a sheet obtained by adding an inorganic salt (filler) to a polylactic acid resin.
  • the aliphatic phosphate triester mainly improves the dispersibility of the inorganic salt, not the stretchability of the polylactic acid resin itself. It is thought that it is added for the purpose, and the stretchability of the resin itself in forming a stretched film cannot be expected. Thus, it is easily compatible with polylactic acid resin, has high bleed resistance, and is excellent in secondary workability (stretchability) when used in food containers that can be used for food packaging. There is no known additive capable of providing a polylactic acid resin composition.
  • polylactic acid resin composition containing a plasticizer capable of efficiently imparting flexibility and stretchability to a polylactic acid resin and forming a stretched film and a plasticizer with little bleed-out during molding is desired.
  • thermoforming such as vacuum forming.
  • the polylactic acid resin is a resin that is difficult to thermoform because the temperature range in which the secondary workability (stretchability) and crystallization are compatible, that is, the temperature range that can be molded in thermoforming is extremely narrow. Therefore, development of a plasticizer that can widen the moldable temperature range in thermoforming of polylactic acid resin and improve crystallization is desired.
  • the present invention [1] For the polylactic acid resin and 100 parts by weight of the polylactic acid resin, the formula (I):
  • a polylactic acid resin composition comprising 0.1 to 30 parts by weight of a compound represented by the formula: [2]
  • FIG. 1 shows a mold used for thermoformability evaluation.
  • the present invention includes a polylactic acid resin composition containing an additive capable of imparting sufficient secondary processability to a polylactic acid resin, and having improved secondary processability, particularly stretchability and thermoformability, and the composition
  • the present invention relates to a sheet obtained by using a product, a molded body such as a stretched film and a thermoformed product obtained by secondary processing of the sheet, a secondary processing method of the sheet, and a packaging material comprising the stretched film or the molded body.
  • the present invention also provides a polylactic acid resin composition excellent in strength, transparency, heat resistance and bleed resistance, a sheet obtained using the composition, a stretched film obtained by secondary processing of the sheet, and thermoforming
  • the present invention relates to a molded article such as a product, a secondary processing method of the sheet, and a packaging material comprising a stretched film or a molded article.
  • the polylactic acid resin composition of the present invention is excellent in secondary processability, in particular, stretchability and thermoformability, it has the effect that it can be molded very easily as a sheet, film or thermoform. Moreover, since it is excellent in secondary workability, in particular stretchability and thermoformability, the polylactic acid resin composition of the present invention is excellent in strength, transparency, heat resistance, bleed resistance, and further excellent in accordance with the purpose. In addition, it is possible to obtain heat shrink characteristics and fracture resistance.
  • the polylactic acid resin composition of the present invention has the formula (I): from the viewpoint of improving plasticization of the polylactic acid resin in addition to the polylactic acid resin.
  • R 1 , R 2 and R 3 each independently represents an alkyl group having 1 to 4 carbon atoms, and A 1 , A 2 and A 3 each independently represents an alkylene group having 2 or 3 carbon atoms
  • M, n, and p are each independently a positive number indicating the average number of moles added of the oxyalkylene group, and m + n + p is a number exceeding 3 and satisfying 12 or less) It has the characteristics in containing the compound represented by these.
  • the compound represented by the formula (I) not only has an excellent affinity with a polylactic acid resin, but also has a very high plasticizing efficiency as a plasticizer.
  • the strength represented by the strength at break is improved, the temperature range for thermoforming is widened, and the crystallization speed is improved, resulting in transparency, heat resistance, moldability, and fitability. It is estimated that it will be excellent.
  • the compound represented by the formula (I) is a polyether-type phosphate triester, which may be a symmetric structure or an asymmetric structure. However, from the viewpoint of ease of production, a symmetric structure phosphate triester is preferable.
  • R 1 , R 2 , and R 3 each independently represents an alkyl group having 1 to 4 carbon atoms, and may be linear or branched. Specific examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and an isobutyl group, and an ethyl group, a propyl group, and a butyl group are preferable. Further, from the viewpoint of improving bleed resistance and secondary processability, an alkyl group having 2 to 3 carbon atoms, that is, an ethyl group or a propyl group is more preferable.
  • a 1 , A 2 , and A 3 each independently represent an alkylene group having 2 or 3 carbon atoms, and may be linear or branched. Specific examples include an ethylene group, an n-propylene group, and an isopropylene group. Among these, an ethylene group is preferable from the viewpoint of improving bleed resistance and secondary processability.
  • a 1 , A 2 , and A 3 form adjacent oxygen atoms and an oxyalkylene group (alkylene oxide) to form a repeating structure in the compound represented by formula (I).
  • M, n, and p are each independently a positive number indicating the average added mole number of the oxyalkylene group, and m + n + p is a number exceeding 3 and satisfying 12 or less.
  • m, n, and p are positive numbers and m + n + p is 3 from the viewpoint of imparting sufficient secondary processability to the polylactic acid resin and suppressing bleeding in the obtained molded article.
  • a number satisfying less than 12 is preferable, and a number exceeding 4 and less than 12 is more preferable.
  • a number satisfying 6 or more and 9 or less is more preferable.
  • R 1 , R 2 and R 3 each independently represents an alkyl group having 1 to 4 carbon atoms
  • a 1 , A 2 and A 3 each independently represents an alkylene group having 2 or 3 carbon atoms
  • M, n, and p are each independently a positive number indicating the average number of moles added of the oxyalkylene group, and m + n + p is a number exceeding 3 and satisfying 12 or less
  • R 1 , R 2 and R 3 each independently represents an alkyl group having 1 to 4 carbon atoms
  • a 1 , A 2 and A 3 each independently represents an alkylene group having 2 or 3 carbon atoms.
  • R 1 , R 2 , and R 3 each independently represents an alkyl group having 2 to 3 carbon atoms, A 1 , A 2 , and A 3 are all ethylene groups, and m, n, and p are positive And more preferably a compound in which m + n + p is more than 4 and less than 12;
  • R 1 , R 2 , and R 3 each independently represent an alkyl group having 2 to 3 carbon atoms, A 1 , A 2 , and A 3 are all ethylene groups, and m, n, and p are positive And a compound satisfying m + n + p of 6 or more and 9 or less is even more preferable.
  • the compound represented by the formula (I) may be a commercially available product or a compound synthesized according to a known production method. Below, the case where it synthesize
  • the polyether type phosphoric acid triester can be synthesized by the method disclosed in, for example, JP-A-10-17581. That is, formula (III): R—O (AO) n H (III) Wherein R represents an alkyl group having 1 to 4 carbon atoms, A represents an alkylene group having 2 or 3 carbon atoms, n A may be the same or different, and n is an average addition of alkylene oxide. (Indicates a number from 2 to 4 representing the number of moles) One or two or more organic hydroxy compounds represented by the above are reacted with phosphorus oxyhalide sequentially or collectively, and the reaction is carried out while removing by-product hydrogen halide from the reaction system.
  • the content of the compound represented by the formula (I) is 0.1 to 30 parts by weight, preferably 0.5 to 30 parts by weight, and 1.0 to 10 parts by weight with respect to 100 parts by weight of the polylactic acid resin. Part is more preferred, 2.0 to 8.0 parts by weight is still more preferred, and 3.0 to 7.0 parts by weight is even more preferred.
  • the plasticizing improvement effect of the compound represented by formula (I) is satisfactorily exhibited, and when it is 30 parts by weight or less, the resin composition is not too soft, and in secondary processing. Good handleability.
  • polylactic acid resin composition of the present invention can contain a plasticizer other than the compound represented by the formula (I) as long as the effects of the present invention are not impaired.
  • the other plasticizers include conventional plasticizers such as phthalic acid esters, succinic acid esters, and adipic acid esters, fatty acid esters of aliphatic polyols such as glycerin, and the like.
  • succinic acid esters disclosed in JP-A-2006-176748 are preferably used from the viewpoint of the effect of adding a plasticizer and the improvement of bleeding resistance. These contents are preferably 10 parts by weight or less, more preferably 5 parts by weight or less, and still more preferably 1 part by weight or less with respect to 100 parts by weight of the polylactic acid resin from the viewpoint of not inhibiting the effects of the present invention.
  • the content of the compound represented by the formula (I) in the total plasticizer is preferably 30% by weight or more, more preferably 60% by weight or more, from the viewpoint of improving stretchable secondary processability. More preferably, it is 70 weight% or more, 80 weight% or more is more preferable, 90 weight% or more is more preferable, It is still more preferable that it is substantially 100 weight%.
  • the total plasticizer means a combination of the compound represented by the formula (I) contained in the composition and another plasticizer.
  • polylactic acid resin examples include commercially available polylactic acid resins (for example, Mitsui Chemical Co., Ltd .: trade name: Lacia H-100, H-280, H-400, H-440, etc., Nature Works, Inc .: trade name: Nature In addition to Works PLAs / NW3001D, NW4032D, etc.), polylactic acid resin synthesized from lactic acid or lactide can be mentioned. From the viewpoint of improving strength and heat resistance, a polylactic acid resin having an optical purity of 90% or more is preferable. For example, a polylactic acid resin (NW4032D or the like) manufactured by Nature Works with a relatively high molecular weight and high optical purity is preferable.
  • NW4032D or the like manufactured by Nature Works with a relatively high molecular weight and high optical purity is preferable.
  • the polylactic acid resin is obtained by using a lactic acid component mainly composed of different isomers from the viewpoint of compatibility between strength and flexibility of the polylactic acid resin composition, heat resistance and transparency.
  • Stereocomplex polylactic acid composed of the two types of polylactic acid obtained may be used.
  • polylactic acid (A) contains 90 to 100 mol% of L isomer and 0 to 10 mol% of other components including D isomer.
  • the other polylactic acid (hereinafter referred to as polylactic acid (B)) contains 90 to 100 mol% of D isomer and 0 to 10 mol% of other components including L isomer.
  • dicarboxylic acid, polyhydric alcohol, hydroxycarboxylic acid, lactone, etc. having a functional group capable of forming two or more ester bonds are exemplified, and unreacted Polyester, polyether, polycarbonate or the like having two or more of the functional groups in the molecule may be used.
  • the weight ratio of polylactic acid (A) to polylactic acid (B) [polylactic acid (A) / polylactic acid (B)] is preferably 10/90 to 90/10, and 20/80 to 80 / 20 is more preferable, and 40/60 to 60/40 is more preferable.
  • the polylactic acid resin composition of the present invention can further contain a crystal nucleating agent and a hydrolysis inhibitor in addition to the polylactic acid resin and the plasticizer containing the compound represented by the formula (I). That is, one embodiment of the polylactic acid resin composition of the present invention includes a polylactic acid resin, a plasticizer containing a compound represented by the formula (I), a crystal nucleating agent, and a hydrolysis inhibitor. .
  • Crystal nucleating agents include natural or synthetic silicate compounds, metal salts such as titanium oxide, barium sulfate, tricalcium phosphate, calcium carbonate, sodium phosphate, kaolinite, halloysite, talc, smectite, vermulite, mica, etc.
  • organic crystal nucleating agents such as ethylene bis fatty acid amide, propylene bis fatty acid amide, butylene bis fatty acid amide, and phenylphosphonic acid metal salts are listed.
  • Crystal nucleating agent is preferable, ethylene bis fatty acid amide such as ethylene bis stearic acid amide and ethylene bis oleic acid amide, alkylene bis fatty acid amide such as propylene bis fatty acid amide, butylene bis fatty acid amide is more preferable, ethylene bis 12-hydroxystearic acid Alkylene vinyl such as amide More preferred is a hydroxy fatty acid amide.
  • the content of the crystal nucleating agent is based on 100 parts by weight of the polylactic acid resin from the viewpoint of improving the transparency of the polylactic acid resin composition or a molded product (sheet, film, thermoformed product) obtained from the polylactic acid resin composition. 0.1 to 1.0 part by weight is preferable, and 0.1 to 0.5 part by weight is more preferable.
  • hydrolysis inhibitor examples include carbodiimide compounds such as polycarbodiimide compounds and monocarbodiimide compounds.
  • the polycarbodiimide compound is preferable, and the polylactic acid resin composition From the viewpoint of improving the durability and moldability, a monocarbodiimide compound is preferred.
  • polycarbodiimide compound examples include poly (4,4′-diphenylmethanecarbodiimide), poly (4,4′-dicyclohexylmethanecarbodiimide), poly (1,3,5-triisopropylbenzene) polycarbodiimide, poly (1,3,3). 5-triisopropylbenzene and 1,5-diisopropylbenzene) polycarbodiimide and the like, and examples of the monocarbodiimide compound include N, N′-di-2,6-diisopropylphenylcarbodiimide and the like.
  • the carbodiimide compound may be used singly or in combination of two or more in order to satisfy the durability, impact resistance and moldability of the molded article made of the polylactic acid resin composition.
  • Poly (4,4′-dicyclohexylmethanecarbodiimide) is obtained by converting carbodilite LA-1 (manufactured by Nisshinbo Chemical Co., Ltd.), poly (1,3,5-triisopropylbenzene) polycarbodiimide and poly (1,3,5-trimethyl).
  • polycarbodiimide is Stavaxol P and Stavaxol P-100 (Rhein Chemie), and N, N'-di-2,6-diisopropylphenylcarbodiimide is Stavaxol I (Rhein Chemie) Can be used.
  • poly (4,4′-dicyclohexylmethanecarbodiimide) (product) from the viewpoint of improving the transparency of polylactic acid resin compositions and molded products (sheets, films, thermoformed products) obtained from polylactic acid resin compositions Name: Carbodilite LA-1, manufactured by Nisshinbo Chemical Co., Ltd.) is preferable.
  • the content of the hydrolysis inhibitor is preferably 0.05 to 3 parts by weight with respect to 100 parts by weight of the polylactic acid resin from the viewpoint of improving the transparency and moldability of the molded body made of the polylactic acid resin composition.
  • the amount is more preferably 0.10 to 2 parts by weight, and further preferably 0.2 to 1 part by weight.
  • the polylactic acid resin composition of the present invention includes, as components other than those described above, resins other than polylactic acid resins, fillers (inorganic fillers, organic fillers), flame retardants, antioxidants, hydrocarbon waxes, Anionic surfactants such as lubricants, ultraviolet absorbers, antistatic agents, antifogging agents, light stabilizers, pigments, antifungal agents, antibacterial agents, foaming agents and the like are included in a range that does not hinder the achievement of the object of the present invention, It can contain in the range which does not inhibit secondary processability, such as a drawability and thermoformability, and transparency as a stretched film. Similarly, other polymer materials and other resin compositions can be added within a range that does not impair the effects of the present invention.
  • resins other than polylactic acid resin include biodegradable polyester resins such as polybutylene succinate, polyhydroxyalkanoic acid, and the like.
  • the said polylactic acid resin may be contained as a polymer alloy by the blend of said other biodegradable resin and non-biodegradable resins, such as a polypropylene, and a polylactic acid resin.
  • biodegradable means a property that can be decomposed into low molecular weight compounds by microorganisms in nature, and specifically, JIS K6953 (ISO 14855) “controlled aerobic composting conditions. This means biodegradability based on the “Aerobic and Ultimate Biodegradation and Disintegration Test”.
  • the polylactic acid resin composition of the present invention can be prepared without particular limitation as long as it contains a polylactic acid resin and a compound represented by the formula (I).
  • a compound represented by the formula (I) Prepared by melt-kneading the compounds represented, and further, if necessary, a raw material containing various additives using a known kneader such as a closed kneader, a single or twin screw extruder, and an open roll kneader. be able to.
  • the raw materials can be mixed in advance using a Henschel mixer, a super mixer, etc., and then subjected to melt kneading. Since the compound represented by the formula (I) works as a good plasticizer for the polylactic acid resin by the melt kneading, the melt viscosity at the time of melt kneading is significantly reduced.
  • the melt kneading temperature is preferably from 160 to 220 ° C, more preferably from 170 to 200 ° C, and even more preferably from 170 to 190 ° C from the viewpoint of improving the moldability and prevention of deterioration of the polylactic acid resin composition.
  • the melt-kneading time cannot be generally determined depending on the melt-kneading temperature and the type of the kneader, but is preferably 15 to 900 seconds.
  • the glass transition temperature (Tg) of the obtained melt-kneaded product is preferably 30 to 60 ° C., more preferably 30 to 55 ° C., because the compound represented by the formula (I) works effectively as a plasticizer. More preferably, it is 35 to 55 ° C.
  • the cold crystallization temperature (Tc) is preferably 50 to 110 ° C., more preferably 50 to 100 ° C., and still more preferably 60, because the compound represented by formula (I) effectively acts as a plasticizer. ⁇ 90 ° C.
  • the glass transition temperature (Tg) and cold crystallization temperature (Tc) of a polylactic acid resin composition can be measured according to the method as described in the below-mentioned Example.
  • the present invention can also be processed into a stretched film or a molded article excellent in heat resistance, in an amorphous state or A molded body in a semi-crystalline state (for example, a sheet-shaped molded body) is provided.
  • the amorphous state and the semi-crystalline state are an amorphous state and a relative crystallinity of 60 to 60 when the relative crystallinity obtained by the method of Test Example 8 described later is less than 60%.
  • the case of 80% is defined as a semi-crystalline state. Therefore, the molded body in an amorphous state or a semi-crystalline state means a molded body having a relative crystallinity of 80% or less.
  • the molded body in an amorphous state or a semi-crystalline state can be prepared by, for example, extrusion molding or press molding the polylactic acid resin composition of the present invention when molding a sheet-shaped molded body.
  • the polylactic acid resin composition of the present invention filled in a heated extruder is melted and then extruded from a T die to obtain a sheet-like molded product.
  • the sheet-like molded product is immediately brought into contact with a cooling roll, and the sheet is cooled to Tg of the polylactic acid resin composition or less to be in an amorphous state or a semi-crystalline state, and then separated from the cooling roll, and they are taken up as a winding roll. Can be wound up to obtain a sheet-like molded body.
  • the raw material constituting the polylactic acid resin of the present invention for example, the polylactic acid resin and the compound represented by the formula (I), and further containing various additives as necessary are filled.
  • extrusion molding may be performed.
  • the temperature of the extruder is preferably 170 to 240 ° C., more preferably 175 to 220 ° C., and further preferably 180 to 210 ° C. from the viewpoint of uniformly mixing the polylactic acid resin composition and preventing deterioration of the polylactic acid resin. preferable.
  • the temperature of the cooling roll is preferably 40 ° C. or lower, more preferably 30 ° C. or lower, and further preferably 10 ° C. or lower from the viewpoint of obtaining a molded body in an amorphous state or a semi-crystalline state.
  • the temperature of an extruder means the barrel preset temperature of an extruder.
  • the extrusion speed is preferably 1 to 200 m / min, more preferably 5 to 150 m / min, and further preferably 10 to 100 m / min from the viewpoint of obtaining a molded body in an amorphous state or a semicrystalline state.
  • a sheet-like molded body When forming a sheet-like molded body by press molding, it can be prepared by surrounding the polylactic acid resin composition of the present invention with a frame having a sheet shape and press-molding.
  • the temperature and pressure of the press molding for example, when preparing a molded body in an amorphous state or a semicrystalline state, the temperature is preferably 170 to 240 ° C., and the pressure is 5 to 30 MPa, and more preferably 175 to 220.
  • the pressing is preferably performed under the conditions of a temperature of 10 ° C. and a pressure of 10 to 25 MPa, more preferably a temperature of 180 to 210 ° C. and a pressure of 10 to 20 MPa.
  • the pressing time cannot be determined unconditionally depending on the temperature and pressure of the pressing, but is preferably 1 to 10 minutes, more preferably 1 to 7 minutes, and further preferably 1 to 5 minutes.
  • a temperature of preferably 0 to 40 ° C., a pressure of 5 to 30 MPa, a temperature of 10 to 30 ° C., a pressure of 10 to 25 MPa is more preferable, and even more preferably 10
  • the pressing time is generally determined by the pressing temperature and pressure. However, it is preferably 1 to 10 minutes, more preferably 1 to 7 minutes, and even more preferably 1 to 5 minutes.
  • the thickness is preferably 0.1 to 1.5 mm from the viewpoint of obtaining a uniform molded body (secondary processed product), 0.2 to 1.4 mm is more preferable, and 0.3 to 1.2 mm is more preferable.
  • the amorphous or semi-crystalline sheet thus obtained has a high effect of plasticizing the polylactic acid resin by the compound represented by the formula (I) even when subjected to secondary processing such as stretching and thermoforming, In addition, since it has high affinity with polylactic acid resin, it has excellent bleed resistance even when additives such as crystal nucleating agents and hydrolysis inhibitors are blended. Therefore, the non-crystalline or semi-crystalline sheet of the present invention is suitably used for secondary processing applications such as stretching and thermoforming.
  • a molded body may be formed by molding the amorphous or semi-crystalline sheet of the present invention. Accordingly, the present invention also provides a molded body (secondary processed product) obtained by secondary processing of the amorphous or semi-crystalline sheet of the present invention and the amorphous or semi-crystalline sheet of the present invention. Provide next processing method.
  • a film obtained by uniaxially or biaxially stretching a sheet obtained by using the polylactic acid resin composition of the present invention (collectively referred to as the stretched film of the present invention), and the poly of the present invention.
  • the stretched film of the present invention examples include a molded body (also referred to as a thermoformed body) formed by vacuum forming or pressure forming a sheet obtained using the lactic acid resin composition.
  • the stretched film can be formed according to a known method without any particular limitation.
  • an amorphous sheet prepared by the above method is in the temperature range from the glass transition temperature (Tg) to the cold crystallization temperature (Tc).
  • Tg glass transition temperature
  • Tc cold crystallization temperature
  • biaxial stretching a stretched film can be formed by simultaneous stretching or sequential stretching.
  • the stretched film of the present invention exhibits good physical properties as a stretched film due to an increase in mechanical strength due to biaxial stretching. Moreover, since it is excellent in the plasticizing effect by the compound represented by the formula (I) and has high affinity with the polylactic acid resin, it is excellent in bleeding resistance and high in crystallinity.
  • a heat shrinkable film can be used as an embodiment of the stretched film.
  • the heat-shrinkable film can be produced according to a known method without any particular limitation. For example, it can be obtained by substantially not heat setting after stretching in at least one direction to a desired thickness.
  • a stretching method uniaxial stretching or biaxial stretching can be performed. In the case of biaxial stretching, either simultaneous stretching or sequential stretching may be used.
  • a stretched film showing better physical properties as a shrink label can be obtained because it is possible to produce a heat-shrinkable film having greatly different longitudinal and lateral stretching ratios.
  • a molded body formed by vacuum forming or pressure forming can be formed according to a known method without any particular limitation.
  • the amorphous or semi-crystalline sheet of the present invention is placed in a mold in a vacuum / pressure forming machine. It can be obtained by installing and heating the inside of the mold, and keeping it under pressure or no pressure.
  • the mold temperature is preferably 120 ° C. or lower, more preferably 115 ° C. or lower, and even more preferably 110 ° C. or lower from the viewpoint of improving the crystallization speed and workability of the polylactic acid resin composition. Moreover, 70 degreeC or more is preferable, 75 degreeC or more is more preferable, and 80 degreeC or more is further more preferable. From this viewpoint, the mold temperature is preferably 70 to 120 ° C, more preferably 75 to 115 ° C, and further preferably 80 to 110 ° C.
  • the holding time in the mold is preferably 2 to 60 seconds, preferably 3 to 30 seconds in a mold at 90 ° C., for example, from the viewpoint of improving the heat resistance and productivity of the molded article made of the polylactic acid resin composition. More preferred is 5 to 20 seconds. Since the polylactic acid resin composition of the present invention has a high crystallization rate, a molded product having sufficient heat resistance can be obtained even with a short holding time as described above.
  • the obtained molded body is excellent in fitting property because the amorphous or semi-crystalline sheet of the present invention has good thermoformability. Moreover, since the plasticizing effect by the compound represented by the formula (I) is excellent, the obtained molded body has high crystallinity, and is excellent in heat resistance and transparency.
  • the non-crystalline or semi-crystalline sheet obtained above is preferably crystallized by maintaining it at a temperature of 60 to 120 ° C., more preferably 70 to 110 ° C. It may be a crystal sheet.
  • the secondary processing method of the amorphous or semi-crystalline sheet of the present invention is not particularly limited as long as it is a method of forming the sheet and preparing the stretched film or thermoformed product of the present invention. It is.
  • the stretched film and thermoformed product of the present invention thus obtained have high crystallinity, excellent bleed resistance, heat resistance and transparency, and also have high mechanical strength and fitability. It can be used for various industrial uses such as goods, home appliance parts, packaging materials for home appliance parts, automobile parts, etc. Among them, it is suitably used as various packaging materials including food packaging.
  • Plasticizer Production Example 1 Tris (ethoxyethoxyethyl) phosphate
  • 600 g (4.47 mol) of diethylene glycol monoethyl ether was added and stirred under reduced pressure (20 kPa) while blowing dry nitrogen gas at a flow rate of 50 mL per minute.
  • 114 g (0.745 mol) of phosphorus oxychloride was slowly added dropwise while maintaining the reaction system at room temperature (15 ° C.), and then aged at 40-60 ° C. for 5 hours.
  • phase-separated lower phase was drained, and the remaining upper phase was dehydrated under reduced pressure at 75 ° C., and the solid content was further removed by filtration to obtain 266 g of the desired tris (ethoxyethoxyethyl) phosphate ( Yield 80%).
  • This tris (ethoxyethoxyethyl) phosphate is a colorless and transparent uniform liquid.
  • the chloro ion content was 10 mg / kg or less.
  • the obtained diester had a weight average molecular weight of 410, a viscosity (23 ° C.) of 27 mPa ⁇ s, an acid value of 0.2 KOH mg / g, a saponification value of 274 KOH mg / g, a hydroxyl value of 1 KOH mg / g or less, and a hue APHA200.
  • Plasticizer Production Example 3 (Dilauryl butyl phosphate) A compound having the following structure was synthesized according to the method described in JP-A-8-231565.
  • Plasticizer Production Example 4 (Tris (methoxyethoxyethyl) phosphate) With reference to the method described in Production Example 1, a compound having the following structure was synthesized.
  • Plasticizer Production Example 5 (Tris (ethoxyethoxyethoxyethoxyethyl) phosphate) With reference to the method described in Production Example 1, a compound having the following structure was synthesized.
  • Plasticizer Production Example 6 Tris (propoxyethoxyethyl) phosphate
  • a compound having the following structure was synthesized.
  • Plasticizer Production Example 7 (Tris (butoxyethoxyethyl) phosphate) With reference to the method described in Production Example 1, a compound having the following structure was synthesized.
  • Production Example 8 of Plasticizer ( ⁇ Bis (ethoxyethoxyethyl) ⁇ ⁇ butoxyethoxyethyl ⁇ phosphate) In the same manner as in Production Example 3, a compound having the following structure was synthesized by the method described in JP-A-8-231565.
  • Crystal nucleating agent Ethylene bis 12-hydroxystearic acid amide (Nippon Kasei Co., Ltd., trade name: SLIPAX H)
  • Hydrolysis inhibitor Polycarbodiimide (manufactured by Nisshinbo Chemical Co., Ltd., trade name: Carbodilite LA-1)
  • Example 1 and Comparative Examples 1 and 2 Example 1 and comparative example using 50 g of polylactic acid (NW4032D) manufactured by Nature Works, adding 5 g of the plasticizer shown in Table 1 to this, and using a small kneader (Laboplast Mill, 30C150 manufactured by Toyo Seiki Co., Ltd.) 1 composition was prepared, the melt viscosity at the time of kneading was measured, and the flexibility at the time of kneading was evaluated. Specifically, the kneading was performed for 10 minutes at a kneading temperature of 180 ° C. and a rotation speed of 90 rotations / minute, and the torque of the kneader was measured 30 seconds after the start of kneading and 10 minutes after the start of kneading. The results are shown in Table 1.
  • Examples 2 to 3 and Comparative Examples 3 to 4 As a polylactic acid resin, 100 parts by weight of polylactic acid (NW4032D) manufactured by Nature Works was added in the amount shown in Table 2, and a twin-screw extrusion kneader (HK-25D) manufactured by PARKER was added. A polylactic acid resin composition was prepared using a kneading temperature of 180 ° C., a rotation speed of 90 rotations / minute, and a discharge rate of 10 kg / h.
  • polylactic acid NW4032D
  • HK-25D twin-screw extrusion kneader
  • Amorphous Sheet With respect to the obtained polylactic acid resin composition, two chrome-plated stainless steel metal plates (ferro plates), a thickness of 0.2 mm, and a frame size of 20 cm square A metal spacer frame (width 1 cm) is used, a predetermined amount (about 9.3 g) of a polylactic acid resin composition is sandwiched in the center of the frame, and an auto press molding machine manufactured by Toyo Seiki Co., Ltd.
  • the sheet was rapidly cooled to (25 ° C.) (15.5 ° C./second) to obtain a sheet (thickness 0.2 mm).
  • seat used for evaluation of secondary workability changes the quantity of a polylactic acid resin composition into 22g, is 0.4 mm in thickness, and is 20 mm square metal spacer frames (width) 1 cm) was used in the same manner (thickness 0.4 mm).
  • Test Example 1 ⁇ Measurement of Glass Transition Temperature and Cold Crystallization Temperature> About each composition used for sheeting, the glass transition temperature (degreeC) and the cold crystallization temperature (degreeC) were measured according to JISK7121. However, the temperature raising condition was 25 ° C. to 200 ° C. at 15 ° C./min, and the measurement sample amount was 7.5 mg. A lower crystallization temperature (° C.) indicates a higher crystallization rate.
  • Test Example 2 ⁇ Evaluation of secondary workability (stretchability)> About the amorphous
  • Test Example 3 ⁇ Evaluation of bleed resistance> About the crystal
  • Test Example 4 ⁇ Evaluation of secondary workability (stretch orientation)> The amorphous sheet of each composition was cut into a 12 cm ⁇ 10 cm (thickness 0.2 mm) rectangle and stretched at 55-60 ° C. (Comparative Example 4) using a table tenter tester (manufactured by Iwamoto Seisakusho). Only 80 ° C), preheating time 45 seconds, stretching speed 5 mm / s, holding time 3 minutes, biaxial simultaneous stretching up to a stretching ratio of 10.2 times (stretching range 10 cm square), biaxial with a thickness of 22 ⁇ m A stretched film was prepared.
  • Test Example 5 ⁇ Evaluation of secondary workability (fitability)> A mold of a lid portion (FIG. 1) of a commercially available container (trade name: Yubumimi 90, Shino CPC Kasei Co., Ltd.) was prepared, and attached to a single-shot vacuum / pressure forming machine (FVS-500P WAKITEC, manufactured by Wakisaka Seisakusho).
  • the amorphous sheet of each composition was cut into a 15 cm ⁇ 15 cm (thickness 0.4 mm) square, and cut out using a single vacuum / pressure forming machine (FVS-500P WAKITEC, manufactured by Wakisaka Seisakusho).
  • the sheet was heated until the temperature of the sheet surface reached the temperature shown in Table 2 by changing the holding time in the heater section where the heater temperature was set to 400 ° C.
  • the sheet heated to each temperature was subjected to vacuum forming using upper and lower molds set at 90 ° C., and held in the mold for 10 seconds to take out the vacuum formed body.
  • Test Example 6 ⁇ Evaluation of heat resistance>
  • the fitting property when the molded product that can be easily fitted is immersed in hot water at 80 ° C. for 30 seconds and the fitting property does not change, “A”, the fitting property is large. When it changed, it was set as “B”.
  • Test Example 7 ⁇ Evaluation of transparency>
  • a part of the molded product that could be easily fitted was cut out, and the haze value was measured using a haze meter (HM-150 model, manufactured by Murakami Color Research Laboratory Co., Ltd.). It was used as an index.
  • HM-150 model manufactured by Murakami Color Research Laboratory Co., Ltd.
  • Comparative Example 4 no measurement was performed because a molded article that could be easily fitted was not obtained.
  • the resin composition (Examples 2 and 3) containing the polyether-type phosphate ester is similar to the resin composition (Comparative Example 3) containing only the succinic acid ester which is an existing plasticizer.
  • the resin composition of Example 2 had a high stretch ratio at which whitening occurred, and did not break even at the measurement limit of the stretching apparatus, and exhibited high stretchability. This is the same in Example 3 used in combination with an existing plasticizer (succinic acid ester), and it was suggested that stretchability can be imparted by adding a polyether type phosphoric acid ester. Also, crystallization by stretching was sufficient.
  • the polylactic acid resin composition (Examples 2 and 3) containing a polyether-type phosphate ester is easy to be biaxially stretched, and exhibits high mechanical properties (initial elastic modulus, stress at break), Good physical properties were exhibited as a stretched film. Also, crystallization by stretching was sufficient.
  • Example 4 and Comparative Examples 5-6 Polyphosphate (NW4032D) 100 parts by weight manufactured by Nature Works, tris (ethoxyethoxyethyl) phosphate of a polyether type phosphate ester, tris (butoxyethyl) phosphate which is a phosphate triester, or a long chain lauryl group
  • NW4032D Polyphosphate
  • a polylactic acid resin composition was added at a kneading temperature of 180 ° C., a rotation speed of 90 revolutions / minute, and a discharge rate of 10 kg / h using the same apparatus as in Example 2. Prepared.
  • Examples 5-9 As a polylactic acid resin, a raw material shown in Table 4 was added to 100 parts by weight of polylactic acid (NW4032D) manufactured by Nature Works, and a polylactic acid resin composition was prepared in the same manner as in Example 2. did. Using the obtained polylactic acid resin composition, the same evaluations (Test Examples 1 to 8) as in Examples 2 to 3 and Comparative Examples 3 to 4 were performed. The results are shown in Table 4.
  • the compounds of Examples 5 to 9 were easy to biaxially stretch, exhibited high mechanical properties (initial elastic modulus, stress at break), and exhibited good physical properties as a stretched film. Also, crystallization by stretching was sufficient.
  • the compounds of Examples 5 to 9 have a wide temperature range (molding temperature range) in which sufficient formability can be obtained even when the temperature of the sheet surface changes due to different holding times in the heating zone. Moreover, the heat resistance, transparency, and crystallinity of the molded product obtained in that range were also good.
  • Examples 10-15 15 parts by weight of the compound of the present invention shown in Table 5 is added to 100 parts by weight of polylactic acid (NW4032D) manufactured by Nature Works, and the kneading temperature is 180 ° C. and the rotation speed is the same as in Example 2.
  • a polylactic acid resin composition was prepared at 90 rpm and a discharge rate of 10 kg / h.
  • Example 2 Using the resulting composition, a crystalline sheet was prepared in the same manner as in Example 2, and the bleed resistance was evaluated in the same manner as in Test Example 3. The crystallinity of the crystalline sheet was confirmed by the same method as in Test Example 8. The results are shown in Table 5.
  • Example 16 As a polylactic acid resin, 100 parts by weight of polylactic acid (NW4032D) manufactured by Nature Works was added in the amount shown in Table 6 in an amount shown in Table 6, and a twin screw extrusion kneader (HK-25D) manufactured by PARKER was used. A polylactic acid resin composition was prepared using a kneading temperature of 180 ° C., a rotation speed of 90 rotations / minute, and a discharge rate of 10 kg / h.
  • NW4032D polylactic acid
  • HK-25D twin screw extrusion kneader
  • Example 6 Using the obtained polylactic acid resin composition, an amorphous sheet was prepared in the same manner as in Example 2, and the characteristics of the polylactic acid resin composition and the sheet were evaluated according to the following Test Examples 9 to 12. . The results are shown in Table 6.
  • Test Example 9 Evaluation of crystallinity> A part of an amorphous sheet (before stretching) used for evaluation of secondary workability described later was cut out, and the relative crystallinity was determined in the same manner as in Test Example 8.
  • Test Example 10 ⁇ Evaluation of secondary workability (heat shrinkage characteristics)> The amorphous sheet is cut into a square of 12 cm ⁇ 12 cm (thickness 0.2 mm) and stretched at a temperature of 55-60 ° C., a preheating time of 45 seconds, and a stretching speed using a table tenter tester (manufactured by Iwamoto Seisakusho). Uniaxial stretching was performed at a constant width of 10 cm up to a stretching ratio of 4 times under the condition of 5 mm / s (stretching range: 10 cm square), and a heat-shrinkable film having a thickness of 50 ⁇ m that was immediately cooled and not subjected to substantial heat setting was prepared.
  • the test direction is the longitudinal direction
  • the length is 140 mm
  • the width is 80 mm.
  • a marked line between the lengths of 100 mm is inserted in the test direction, and immersed in a hot water bath at 50 ° C. and 80 ° C. for 10 seconds. Then, after cooling for 5 seconds in a 25 ° C. water bath, the dimension between the marked lines was measured, the shrinkage rate at each temperature was calculated according to the following formula, and the heat shrinkage characteristics were evaluated.
  • Shrinkage rate (%) 100 ⁇ ⁇ size before shrinkage (mm) ⁇ size after shrinkage (mm) ⁇ / size before shrinkage (mm)
  • Test Example 11 Evaluation of Transparency> A part of the heat shrink film used in the evaluation of the secondary workability was cut out, and the haze value was measured in the same manner as in Test Example 7, and this was used as an index of transparency.
  • Test Example 12 ⁇ Evaluation of fracture resistance>
  • a tensile test was performed using an autograph (AGS-X 1 kN) manufactured by Shimadzu Corporation, and elongation at break (%) was measured, which was used as a substitute evaluation for fracture resistance.
  • the shrink film has a low elongation, the fracture resistance is low.
  • the elongation is high, the fracture resistance is high.
  • Those having an elongation at break of 50% or more have good rupture resistance, and those having 10% or more and less than 50% have slightly good rupture resistance, and those having less than 10% are not suitable.
  • the polylactic acid resin composition containing the compound of the present invention is easily stretched and has good heat shrinkage characteristics that are hardly shrunk at 50 ° C. and a sufficient shrinkage rate is obtained at 80 ° C. Excellent transparency and rupture resistance and good physical properties as a heat shrinkable film.
  • the polylactic acid resin composition of the present invention can be suitably used for various industrial uses such as household goods, household appliance parts, packaging materials for household appliance parts, and automobile parts.
  • the present invention may relate to any of the following: ⁇ 1>
  • a polylactic acid resin composition comprising 0.1 to 30 parts by weight of a compound represented by the formula: ⁇ 2>
  • R 1 , R 2 and R 3 in formula (I) are preferably each independently a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, or an isobutyl group, and more preferably each independently.
  • the polylactic acid resin according to ⁇ 1> which is an ethyl group, a propyl group, or a butyl group, more preferably each independently an ethyl group or a propyl group, and still more preferably any one of them is an ethyl group or a propyl group.
  • Composition is an ethyl group, a propyl group, or a butyl group, more preferably each independently an ethyl group or a propyl group, and still more preferably any one of them is an ethyl group or a propyl group.
  • ⁇ 4> M + n + p in the formula (I) is preferably a number satisfying more than 3 and less than 12, more preferably a number exceeding 4 and less than 12, more preferably a number satisfying 9 to 9
  • a 1 , A 2 and A 3 in the formula (I) are preferably each independently an ethylene group, an n-propylene group or an isopropylene group, more preferably an ethylene group or an n-propylene group.
  • the compound represented by the formula (I) is preferably a symmetric polyether type phosphate triester or an asymmetric polyether type phosphate triester, more preferably a symmetric polyether type phosphate triester.
  • the compound of formula (I) is preferably tris (ethoxyethoxyethyl) phosphate, tris (methoxyethoxyethyl) phosphate, tris (propoxyethoxyethyl) phosphate, tris (butoxyethoxyethyl) phosphate, tris (methoxyethoxyethoxy).
  • Ethyl) phosphate tris (ethoxyethoxyethoxyethyl) phosphate, tris (propoxyethoxyethoxyethyl) phosphate, bis (ethoxyethoxyethyl) methoxyethoxyethoxyethyl phosphate, bis (methoxyethoxyethoxyethyl) ethoxyethoxyethyl phosphate, bis (ethoxyethoxy) Ethyl) ⁇ butoxyethoxyethyl ⁇ phosphate, or a polyoxyethylene adduct of an alcohol having 1 to 4 carbon atoms,
  • a mixture of polyoxypropylene adducts is asymmetric polyether-type phosphate ester obtained by phosphoric esterification so as to satisfy the formula (I), more preferably tris (ethoxyethoxyethyl) phosphate, tris (propoxyethoxyethyl)
  • the polylactic acid resin composition according to any one of
  • the compound represented by the formula (I) is preferably 0.5 to 30 parts by weight, more preferably 1.0 to 10 parts by weight, still more preferably 2.0 to 8 parts by weight based on 100 parts by weight of the polylactic acid resin.
  • the polylactic acid resin composition according to ⁇ 9> wherein the crystal nucleating agent is preferably an organic crystal nucleating agent, more preferably an alkylene bis-fatty acid amide, and still more preferably an alkylene bis-hydroxy fatty acid amide.
  • the crystal nucleating agent is preferably an organic crystal nucleating agent, more preferably ethylene bis stearic acid amide, ethylene bis oleic acid amide, propylene bis fatty acid amide, butylene bis fatty acid amide, and still more preferably ethylene bis 12-hydroxy stearin.
  • the polylactic acid resin composition according to ⁇ 9> which is an acid amide.
  • ⁇ 12> A sheet having a relative crystallinity of 80% or less, comprising the polylactic acid resin composition according to any one of ⁇ 1> to ⁇ 11>.
  • ⁇ 13> ⁇ 12> The sheet according to ⁇ 12>, obtained by extrusion molding or press molding the polylactic acid resin composition according to any one of ⁇ 1> to ⁇ 11>.
  • ⁇ 14> The sheet according to ⁇ 12> or ⁇ 13>, wherein the thickness is preferably 0.1 to 1.5 mm, more preferably 0.2 to 1.4 mm, and still more preferably 0.3 to 1.2 mm.
  • ⁇ 15> ⁇ 12> to ⁇ 14> A film obtained by biaxially stretching a sheet according to any one of the above.
  • ⁇ 16> ⁇ 12> to ⁇ 14> A polylactic acid resin molded article obtained by vacuum forming or pressure forming the sheet according to any one of the above.
  • ⁇ 17> ⁇ 12> to ⁇ 14> A heat shrinkable film obtained by stretching the sheet according to any one of the above.
  • ⁇ 18> ⁇ 12>- ⁇ 14> A sheet secondary processing method, characterized by biaxially stretching the sheet.
  • ⁇ 19> ⁇ 12>- ⁇ 14> A method for secondary processing of a sheet, characterized by vacuum forming or pressure forming the sheet.
  • ⁇ 20> ⁇ 12> to ⁇ 14> A method for secondary processing of a sheet, characterized by uniaxially stretching the sheet.
  • ⁇ 21> ⁇ 15> The packaging material which consists of a film.
  • ⁇ 22> A packaging material comprising the polylactic acid resin molded article according to ⁇ 16>.
  • ⁇ 23> ⁇ 17> A packaging material comprising the heat-shrinkable film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Wrappers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

 ポリ乳酸樹脂、及び該ポリ乳酸樹脂100重量部に対して、式(I)で表されるポリエーテル型リン酸トリエステル化合物を0.1~30重量部含有してなるポリ乳酸樹脂組成物、該組成物を用いて得られるシート、該シートを二次加工して得られる延伸フィルム又は熱成形品、該延伸フィルム又は熱成形品からなる包装材。本発明のポリ乳酸樹脂組成物は、日用雑貨品、家電部品、家電部品用梱包資材、自動車部品等の様々な工業用途に好適に使用することができる。

Description

ポリ乳酸樹脂組成物
 本発明は、ポリ乳酸樹脂組成物に関する。さらに詳しくは、二次加工性、なかでも延伸性、熱成形性が改善されたポリ乳酸樹脂組成物、該組成物を用いて得られるシート、該シートを二次加工して得られる、延伸フィルム、熱成形品等の成形体、該シートの二次加工方法、及び、延伸フィルム又は成形体からなる包装材に関する。
 食品包装をはじめ各種包装用途に利用されるフィルムにおいて、ポリエチレンテレフタレート(PET)に代表される結晶性ポリエステル樹脂の延伸フィルムは、透明性とともに強度等の優れた機械的性質を有することから、一般包装材をはじめ幅広い用途に応用されている。
 この結晶性ポリエステル樹脂の延伸フィルムの製造には、一般に押出成形等により製造した非晶状態又は半結晶状態のシートを、ガラス転移温度(Tg)から冷結晶化温度(Tc)までの温度領域中で目的の厚みまで二軸延伸させ、次いで熱処理を行うことで製造する方法が採用されている。前記延伸工程では、分子配向が進み、強度等の機械的性質の改善がなされている(非特許文献1参照)。
 近年、環境意識の高まりから、良好な生分解性を有する環境調和型樹脂フィルムの開発が進められており、中でもポリ乳酸樹脂は優れた生分解性を有する環境調和型樹脂として、多くの検討が進められている。
 しかしながら、ポリ乳酸樹脂は硬くて脆い物性を有するだけでなく、二次加工性が低く、シートやフィルム等に成形する場合は、柔軟性が不足したり、折り曲げたとき白化したりする等の問題がある。また、延伸しにくいために延伸配向による機械的性質の改善も難しいことが知られている(非特許文献2参照)。
 これらのことから、ポリ乳酸樹脂の成形品は主に硬質成形品分野での使用に限られているのが現状である。そこで、前記の欠点を補うために種々の可塑剤等を添加する方法が試みられている。
 例えば、ポリ乳酸樹脂との親和性やブリードアウト抑制の観点から、乳酸や乳酸オリゴマー、脂肪族多価カルボン酸エステル、又はポリ乳酸とポリアルキレンエーテル等との共重合体等を可塑剤として用いる試みがなされている。しかし、前記可塑剤は、成形時の熱安定性が低く、得られるフィルムの強度に劣り、二次加工性の改善が不十分でブリードアウトする等の問題があり、なかでも延伸フィルムへの適用は困難であった。
 一方、一般的な樹脂組成物において、主に滑剤、難燃剤として使用される種々のリン酸エステルをポリ乳酸樹脂組成物に添加し、該組成物の物性や加工性を改善する方法が開示されている。しかしながら、前記リン酸エステルのほとんどが芳香族系のリン酸エステルであり、したがってポリ乳酸樹脂との親和性が悪い為に、食品包装を含めた一般的な包装材、フィルムへの使用は難しい。
 そこで、脂肪族リン酸エステルを添加して、ポリ乳酸樹脂の成形性を改善できる試みがなされている。例えば、特許文献1では、炭素数が12~28の脂肪鎖を有する脂肪族リン酸エステル化合物等を、ポリ乳酸系樹脂組成物の成形時の滑剤として利用する方法が開示されている。特許文献2では、可塑剤として脂肪族リン酸トリエステルを添加し、多孔性シートの製造における延伸加工性を改善できることが開示されている。
 しかし、特許文献1に開示の長鎖の脂肪族リン酸エステルは、ポリ乳酸樹脂との相溶性が低いため延伸等の成形時にポリ乳酸樹脂の結晶化が進むと、容易にブリードアウトすると考えられる。特許文献2の脂肪族リン酸トリエステルは、本発明における脂肪族リン酸エステルと異なる化合物であり、また、延伸加工性は、ポリ乳酸樹脂に無機塩(充填剤)を添加したシートを延伸によって樹脂と充填剤との界面剥離を生じさせて多孔質化していることから、ポリ乳酸樹脂自体の延伸性の向上ではなく、脂肪族リン酸トリエステルは主に前記無機塩の分散性を向上させる目的で添加されていると考えられ、延伸フィルム化における樹脂自体の延伸性は期待できない。このように、ポリ乳酸樹脂と容易に相溶し、かつ耐ブリード性も高く、さらには食品包装にも利用できるような、食品容器に使用する場合の二次加工性(延伸性)にも優れるポリ乳酸樹脂組成物を提供可能な添加剤は知られていない。
 よって、ポリ乳酸樹脂に延伸性等の十分な二次加工性を与え、二次加工用のシートや延伸フィルムとして利用できるポリ乳酸樹脂の改質技術の開発が望まれている。すなわち、効率的にポリ乳酸樹脂に柔軟性や延伸性を与え、延伸フィルム化できる可塑剤、及び成形時にブリードアウトが少ない可塑剤を含有するポリ乳酸樹脂組成物が望まれている。
 一方、食品容器や包装容器等の透明容器の素材にポリ乳酸のような生分解性樹脂を適用する場合、前記容器の成形には、延伸フィルム化同様に非晶状態のシートを用いて圧空成形や真空成形等の熱成形と呼ばれる二次加工を行う必要がある。この場合、シートが金型通りに延伸され、かつ耐熱性の向上の観点から結晶化が十分に進むためには、成形できる温度幅が広いことが望まれる。
 ところが、ポリ乳酸樹脂は、前記の二次加工性(延伸性)と結晶化を両立できる温度範囲、すなわち熱成形における成形可能温度幅が極めて狭く、熱成形が難しい樹脂である。従って、ポリ乳酸樹脂の熱成形における成形可能温度幅を広くでき、かつ、結晶化を向上できる可塑剤の開発が望まれている。
特開2002‐179899号公報 特開2007-112868号公報
高分子学会編 共立出版「フィルムをつくる」、1993年2月15日発行、第10章 DIC Technical Review No.10,2004、p.5
発明の要約
 本発明は、
〔1〕 ポリ乳酸樹脂、及び該ポリ乳酸樹脂100重量部に対して、式(I):
Figure JPOXMLDOC01-appb-C000002
(式中、R、R、Rはそれぞれ独立して炭素数1~4のアルキル基を示し、A、A、Aはそれぞれ独立して炭素数2又は3のアルキレン基を示し、m、n、pはそれぞれ独立してオキシアルキレン基の平均付加モル数を示す正の数であって、m+n+pが3を超え12以下を満足する数である)
で表される化合物を0.1~30重量部含有してなる、ポリ乳酸樹脂組成物、
〔2〕 前記〔1〕記載のポリ乳酸樹脂組成物を含有してなる、相対結晶化度が80%以下のシート、
〔3〕 前記〔2〕記載のシートを二軸延伸してなるフィルム、
〔4〕 前記〔2〕記載のシートを真空成形又は圧空成形して得られるポリ乳酸樹脂成形体、
〔5〕 前記〔2〕記載のシートを二軸延伸することを特徴とする、シートの二次加工方法、
〔6〕 前記〔2〕記載のシートを真空成形又は圧空成形することを特徴とする、シートの二次加工方法、
〔7〕 前記〔3〕記載のフィルムからなる包装材、
〔8〕 前記〔4〕記載のポリ乳酸樹脂成形体からなる包装材、
〔9〕 前記〔2〕記載のシートを延伸してなる熱収縮フィルム、ならびに
〔10〕 前記〔9〕記載の熱収縮フィルムからなる包装材
に関する。
図1は、熱成形性評価の際に用いた金型を示す。
発明の詳細な説明
 本発明者らがこのような状況に鑑みて検討した結果、特定の構造を有するポリエーテル型リン酸トリエステルをポリ乳酸樹脂に添加することで、ポリ乳酸樹脂に十分な二次加工性、なかでも延伸性及び熱成形性を与え、該組成物がシート、さらには延伸フィルム、熱成形品等の二次加工品として極めて容易に成形できること、さらには、強度、透明性、耐熱性、耐ブリード性に優れることを見出した。
 本発明は、ポリ乳酸樹脂に十分な二次加工性を与えることができる添加剤を含有し、二次加工性、なかでも延伸性、熱成形性が改善されたポリ乳酸樹脂組成物、該組成物を用いて得られるシート、該シートを二次加工して得られる、延伸フィルム、熱成形品等の成形体、該シートの二次加工方法、及び、延伸フィルム又は成形体からなる包装材に関する。また、本発明は、強度、透明性、耐熱性、耐ブリード性に優れるポリ乳酸樹脂組成物、該組成物を用いて得られるシート、該シートを二次加工して得られる延伸フィルム、熱成形品等の成形体、該シートの二次加工方法、及び、延伸フィルム又は成形体からなる包装材に関する。
 本発明のポリ乳酸樹脂組成物は、二次加工性、なかでも延伸性及び熱成形性に優れることから、シートやフィルム、熱成形体として極めて容易に成形できるという効果を奏するものである。また、二次加工性、なかでも延伸性及び熱成形性に優れることから、本発明のポリ乳酸樹脂組成物は、強度、透明性、耐熱性、耐ブリード性に優れ、さらに目的に応じて優れた熱収縮特性、耐破断性を得ることができる。
 本発明のポリ乳酸樹脂組成物は、ポリ乳酸樹脂に加えて、ポリ乳酸樹脂の可塑化向上の観点から、式(I):
Figure JPOXMLDOC01-appb-C000003
(式中、R、R、Rはそれぞれ独立して炭素数1~4のアルキル基を示し、A、A、Aはそれぞれ独立して炭素数2又は3のアルキレン基を示し、m、n、pはそれぞれ独立してオキシアルキレン基の平均付加モル数を示す正の数であって、m+n+pが3を超え12以下を満足する数である)
で表される化合物を含有することに特徴を有する。
(可塑剤)
 式(I)で表される化合物は、ポリ乳酸樹脂との親和性に優れるだけでなく、可塑剤としての可塑化効率が極めて高いことから、二次加工性、なかでも延伸加工における延伸配向性が向上し、破断点強度に代表される強度が優れるものとなり、また、熱成形における成形温度幅が広がり、かつ、結晶化速度が向上して、透明性、耐熱性、成形性、嵌合性に優れるものになると推定される。
 式(I)で表される化合物は、ポリエーテル型リン酸トリエステルであり、対称構造でも非対称構造でも構わないが、製造上の簡便さからは、対称構造のリン酸トリエステルが好ましい。
 R、R、Rは、それぞれ独立して炭素数1~4のアルキル基を示し、直鎖であっても分岐鎖であってもよい。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基が挙げられるが、エチル基、プロピル基、ブチル基が好ましい。また、耐ブリード性、2次加工性を向上させる観点から、炭素数2~3のアルキル基、即ち、エチル基、プロピル基がより好ましい。
 A、A、Aは、それぞれ独立して炭素数2又は3のアルキレン基を示し、直鎖であっても分岐鎖であってもよい。具体的には、エチレン基、n-プロピレン基、イソプロピレン基が挙げられ、なかでも、耐ブリード性、2次加工性を向上させる観点から、エチレン基が好ましい。また、A、A、Aは、隣接する酸素原子とオキシアルキレン基(アルキレンオキサイド)を形成し、式(I)で表される化合物における繰り返し構造を形成する。
 m、n、pは、それぞれ独立してオキシアルキレン基の平均付加モル数を示す正の数であって、かつ、m+n+pが3を超え12以下を満足する数である。なかでも、ポリ乳酸樹脂に十分な二次加工性を付与し、かつ、得られる成形体におけるブリードを抑制する観点から、m、n、pは、正の数であって、かつ、m+n+pが3を超え12未満を満足する数が好ましく、4を超え12未満を満足する数がより好ましい。また、耐ブリード性、2次加工性を向上させる観点から、6以上で9以下を満足する数が更に好ましい。
 よって、式(I)で表される化合物としては、
(1)R、R、Rがそれぞれ独立して炭素数1~4のアルキル基を示し、A、A、Aがそれぞれ独立して炭素数2又は3のアルキレン基を示し、m、n、pがそれぞれ独立してオキシアルキレン基の平均付加モル数を示す正の数であって、かつ、m+n+pが3を超え12以下を満足する数である化合物が好ましく、
(2)R、R、Rがそれぞれ独立して炭素数1~4のアルキル基を示し、A、A、Aがそれぞれ独立して炭素数2又は3のアルキレン基を示し、m、n、pが正の数であって、かつ、m+n+pが3を超え12未満を満足する数である化合物がより好ましく、
(3)R、R、Rがそれぞれ独立して炭素数2~3のアルキル基を示し、A、A、Aがいずれもエチレン基であり、m、n、pが正の数であって、かつ、m+n+pが4を超え12未満を満足する数である化合物がさらに好ましく、
(4)R、R、Rがそれぞれ独立して炭素数2~3のアルキル基を示し、A、A、Aがいずれもエチレン基であり、m、n、pが正の数であって、かつ、m+n+pが6以上で9以下を満足する数である化合物がよりさらに好ましい。
 式(I)で表される化合物の具体例としては、式(II):
Figure JPOXMLDOC01-appb-C000004
で表されるトリス(エトキシエトキシエチル)ホスフェート〔式(I)中、R、R、Rはいずれもエチル基、A、A、Aはいずれもエチレン基、m、n、pはいずれも2で、m+n+p=6〕の他に、トリス(メトキシエトキシエチル)ホスフェート(m+n+p=6)、トリス(プロポキシエトキシエチル)ホスフェート(m+n+p=6)、トリス(ブトキシエトキシエチル)ホスフェート(m+n+p=6)、トリス(メトキシエトキシエトキシエチル)ホスフェート(m+n+p=9)、トリス(エトキシエトキシエトキシエチル)ホスフェート(m+n+p=9)、トリス(プロポキシエトキシエトキシエチル)ホスフェート(m+n+p=9)等の対称ポリエーテル型リン酸トリエステルやビス(エトキシエトキシエチル)メトキシエトキシエトキシエチルホスフェート(m+n+p=7)、ビス(メトキシエトキシエトキシエチル)エトキシエトキシエチルホスフェート(m+n+p=8)、ビス(エトキシエトキシエチル){ブトキシエトキシエチル}ホスフェート(m+n+p=6)等の非対称ポリエーテル型リン酸トリエステル、あるいは炭素数1~4のアルコールのポリオキシエチレン付加物又はポリオキシプロピレン付加物の混合物を式(I)を満たすようにリン酸トリエステル化した非対称ポリエーテル型リン酸エステルが挙げられるが、ポリ乳酸樹脂に十分な耐ブリード性、二次加工性を付与する観点から、トリス(エトキシエトキシエチル)ホスフェート、トリス(プロポキシエトキシエチル)ホスフェート、トリス(エトキシエトキシエトキシエチル)ホスフェート、トリス(プロポキシエトキシエトキシエチル)ホスフェートが好ましく、トリス(エトキシエトキシエチル)ホスフェートがより好ましい。
 式(I)で表される化合物は、市販品であっても公知の製造方法に従って合成したものを用いてもよい。以下に、公知の製造方法により合成する場合を説明する。
 ポリエーテル型リン酸トリエステルは、例えば特開平10-17581号公報で開示されている方法により合成することが可能である。すなわち、式(III):
     R-O(AO)H     (III)
(式中、Rは炭素数1~4のアルキル基を示し、Aは炭素数2又は3のアルキレン基を示し、n個のAは同一もしくは異なっていてもよく、nはアルキレンオキサイドの平均付加モル数を表す2~4の数を示す)
で表される1種又は2種以上の有機ヒドロキシ化合物を、オキシハロゲン化リンと順次又は一括で反応させて、その際、副生するハロゲン化水素を反応系外に除去しながら反応を行うことで、極めて選択性良くリン酸トリエステルを製造することが可能である。副生するハロゲン化水素を反応系外に除去する方法としては、乾燥した窒素ガス等の不活性ガスを接触させる方法、あるいは減圧下で系外に除去する方法が有効である。
 式(I)で表される化合物の含有量は、ポリ乳酸樹脂100重量部に対して、0.1~30重量部であり、0.5~30重量部が好ましく、1.0~10重量部がより好ましく、2.0~8.0重量部がさらに好ましく、3.0~7.0重量部がさらにより好ましい。0.1重量部以上であると式(I)で表される化合物の可塑化向上効果が良好に発揮され、30重量部以下であると樹脂組成物が柔らか過ぎることもなく、二次加工におけるハンドリング性が良好である。
 また、本発明のポリ乳酸樹脂組成物は、本発明の効果を損なわない範囲で、式(I)で表される化合物以外の他の可塑剤を含有することができる。
 他の可塑剤としては、具体的には、従来からの可塑剤であるフタル酸エステルやコハク酸エステル、アジピン酸エステルといった多価カルボン酸エステル、グリセリン等脂肪族ポリオールの脂肪酸エステル等が挙げられる。なかでも、可塑剤の添加効果や耐ブリード性の向上という観点から、特開2006-176748号公報に開示されているコハク酸エステルを用いるのが好ましい。これらの含有量としては、本発明の効果を阻害しない観点から、ポリ乳酸樹脂100重量部に対して、10重量部以下が好ましく、5重量部以下がより好ましく、1重量部以下がさらに好ましい。また、式(I)で表される化合物の全可塑剤中の含有量としては、延伸性の二次加工性の向上の観点から、30重量%以上が好ましく、60重量%以上がより好ましく、70重量%以上がさらに好ましく、80重量%以上がさらに好ましく、90重量%以上がさらに好ましく、実質的に100重量%であることがさらにより好ましい。なお、全可塑剤とは、組成物に含有される式(I)で表される化合物と他の可塑剤を合わせたものを意味する。
(ポリ乳酸樹脂)
 ポリ乳酸樹脂としては、市販されているポリ乳酸樹脂(例えば、三井化学社製:商品名 レイシアH-100、H-280、H-400、H-440等や、Nature Works社製:商品名 Nature Works PLA/NW3001D、NW4032D等)の他、乳酸やラクチドから合成したポリ乳酸樹脂が挙げられる。強度や耐熱性の向上の観点から、光学純度90%以上のポリ乳酸樹脂が好ましく、例えば、比較的分子量が高く、また光学純度の高いNature Works社製ポリ乳酸樹脂(NW4032D等)が好ましい。
 また、本発明において、ポリ乳酸樹脂として、ポリ乳酸樹脂組成物の強度と可撓性の両立、耐熱性及び透明性の向上の観点から、異なる異性体を主成分とする乳酸成分を用いて得られた2種類のポリ乳酸からなるステレオコンプレックスポリ乳酸を用いてもよい。
 ステレオコンプレックスポリ乳酸を構成する一方のポリ乳酸〔以降、ポリ乳酸(A)と記載する〕は、L体90~100モル%、D体を含むその他の成分0~10モル%を含有する。他方のポリ乳酸〔以降、ポリ乳酸(B)と記載する〕は、D体90~100モル%、L体を含むその他の成分0~10モル%を含有する。なお、L体及びD体以外のその他の成分としては、2個以上のエステル結合を形成可能な官能基を持つジカルボン酸、多価アルコール、ヒドロキシカルボン酸、ラクトン等が挙げられ、また、未反応の前記官能基を分子内に2つ以上有するポリエステル、ポリエーテル、ポリカーボネート等であってもよい。
 ステレオコンプレックスポリ乳酸における、ポリ乳酸(A)とポリ乳酸(B)の重量比〔ポリ乳酸(A)/ポリ乳酸(B)〕は、10/90~90/10が好ましく、20/80~80/20がより好ましく、40/60~60/40がさらに好ましい。
 また、本発明のポリ乳酸樹脂組成物は、ポリ乳酸樹脂及び式(I)で表される化合物を含む可塑剤以外に、さらに、結晶核剤、加水分解抑制剤を含有することができる。即ち、本発明のポリ乳酸樹脂組成物の一態様としては、ポリ乳酸樹脂、式(I)で表される化合物を含む可塑剤、結晶核剤、及び加水分解抑制剤を含有するものが挙げられる。
 結晶核剤としては、天然又は合成珪酸塩化合物、酸化チタン、硫酸バリウム、リン酸三カルシウム、炭酸カルシウム、リン酸ソーダ等の金属塩やカオリナイト、ハロイサイト、タルク、スメクタイト、バーミュライト、マイカ等の無機系結晶核剤の他、エチレンビス脂肪酸アミドやプロピレンビス脂肪酸アミド、ブチレンビス脂肪酸アミド等や、フェニルホスホン酸金属塩等の有機系結晶核剤が挙げられるが、透明性向上の観点から、有機系結晶核剤が好ましく、エチレンビスステアリン酸アミドやエチレンビスオレイン酸アミド等のエチレンビス脂肪酸アミド、プロピレンビス脂肪酸アミド、ブチレンビス脂肪酸アミド等のアルキレンビス脂肪酸アミドがより好ましく、エチレンビス12-ヒドロキシステアリン酸アミド等のアルキレンビスヒドロキシ脂肪酸アミドが更に好ましい。
 結晶核剤の含有量は、ポリ乳酸樹脂組成物や、ポリ乳酸樹脂組成物から得られる成形物(シートやフィルム、熱成形物)の透明性向上の観点から、ポリ乳酸樹脂100重量部に対して、0.1~1.0重量部が好ましく、0.1~0.5重量部がより好ましい。
 加水分解抑制剤としては、ポリカルボジイミド化合物やモノカルボジイミド化合物等のカルボジイミド化合物が挙げられ、ポリ乳酸樹脂組成物の耐久性、耐衝撃性を向上させる観点からポリカルボジイミド化合物が好ましく、ポリ乳酸樹脂組成物の耐久性、成形性を向上させる観点から、モノカルボジイミド化合物が好ましい。また、ポリ乳酸樹脂組成物からなる成形体の耐久性、耐衝撃性、成形性をより向上させる観点から、モノカルボジイミドとポリカルボジイミドを併用することが好ましい。
 ポリカルボジイミド化合物としては、ポリ(4,4’-ジフェニルメタンカルボジイミド)、ポリ(4,4’-ジシクロヘキシルメタンカルボジイミド)、ポリ(1,3,5-トリイソプロピルベンゼン)ポリカルボジイミド、ポリ(1,3,5-トリイソプロピルベンゼン及び1,5-ジイソプロピルベンゼン)ポリカルボジイミド等が挙げられ、モノカルボジイミド化合物としては、N,N’-ジ-2,6-ジイソプロピルフェニルカルボジイミド等が挙げられる。
 前記カルボジイミド化合物は、ポリ乳酸樹脂組成物からなる成形体の耐久性、耐衝撃性及び成形性を満たすために、単独で又は2種以上組み合わせて用いてもよい。また、ポリ(4,4’-ジシクロヘキシルメタンカルボジイミド)はカルボジライトLA-1(日清紡ケミカル社製)を、ポリ(1,3,5-トリイソプロピルベンゼン)ポリカルボジイミド及びポリ(1,3,5-トリイソプロピルベンゼン及び1,5-ジイソプロピルベンゼン)ポリカルボジイミドは、スタバクゾールP及びスタバクゾールP-100(Rhein Chemie社製)を、N,N’-ジ-2,6-ジイソプロピルフェニルカルボジイミドはスタバクゾールI(Rhein Chemie社製)を使用することができる。これらの中でもポリ乳酸樹脂組成物や、ポリ乳酸樹脂組成物から得られる成形物(シートやフィルム、熱成形物)の透明性向上の観点から、ポリ(4,4’-ジシクロヘキシルメタンカルボジイミド)(製品名:カルボジライトLA-1、日清紡ケミカル社製)が好ましい。
 加水分解抑制剤の含有量は、ポリ乳酸樹脂組成物からなる成形体の透明性、成形性を向上させる観点から、ポリ乳酸樹脂100重量部に対して、0.05~3重量部が好ましく、0.10~2重量部がより好ましく、0.2~1重量部がさらに好ましい。
 本発明のポリ乳酸樹脂組成物は、前記以外の他の成分として、ポリ乳酸樹脂以外の樹脂、充填剤(無機充填剤、有機充填剤)、難燃剤、酸化防止剤、炭化水素系ワックス類やアニオン型界面活性剤である滑剤、紫外線吸収剤、帯電防止剤、防曇剤、光安定剤、顔料、防カビ剤、抗菌剤、発泡剤等を、本発明の目的達成を妨げない範囲、すなわち延伸性、熱成形性等の二次加工性や延伸フィルムとしての透明性を阻害しない範囲で含有することができる。また同様に、本発明の効果を阻害しない範囲内で他の高分子材料や他の樹脂組成物を添加することも可能である。
 ポリ乳酸樹脂以外の樹脂としては、ポリブチレンサクシネート等の生分解性を有するポリエステル樹脂、ポリヒドロキシアルカン酸等が挙げられる。また、前記ポリ乳酸樹脂は、前記他の生分解性樹脂やポリプロピレン等の非生分解性樹脂とポリ乳酸樹脂とのブレンドによるポリマーアロイとして含有されていてもよい。なお、本明細書において「生分解性」とは、自然界において微生物によって低分子化合物に分解され得る性質のことであり、具体的には、JIS K6953(ISO14855)「制御された好気的コンポスト条件の好気的かつ究極的な生分解度及び崩壊度試験」に基づいた生分解性のことを意味する。
 本発明のポリ乳酸樹脂組成物は、ポリ乳酸樹脂及び式(I)で表される化合物を含有するものであれば特に限定なく調製することができ、例えば、ポリ乳酸樹脂及び式(I)で表される化合物、さらに必要により各種添加剤を含有する原料を、密閉式ニーダー、1軸もしくは2軸の押出機、オープンロール型混練機等の公知の混練機を用いて溶融混練して調製することができる。なお、原料は、予めヘンシェルミキサー、スーパーミキサー等を用いて均一に混合した後に、溶融混練に供することも可能である。前記溶融混練により、式(I)で表される化合物がポリ乳酸樹脂の良好な可塑剤として働くため、溶融混錬時の溶融粘度が顕著に低下するという効果が奏される。
 溶融混練温度は、ポリ乳酸樹脂組成物の成形性及び劣化防止を向上する観点から、160~220℃が好ましく、170~200℃がより好ましく、170~190℃がさらに好ましい。溶融混練時間は、溶融混練温度、混練機の種類によって一概には決定できないが、15~900秒間が好ましい。
 得られた溶融混練物のガラス転移温度(Tg)は、式(I)で表される化合物が可塑剤として効果的に働くことから、好ましくは30~60℃、より好ましくは30~55℃、さらに好ましくは35~55℃である。
 また、冷結晶化温度(Tc)は、式(I)で表される化合物が可塑剤として効果的に働くことから、好ましくは50~110℃、より好ましくは50~100℃、さらに好ましくは60~90℃である。なお、本明細書において、ポリ乳酸樹脂組成物のガラス転移温度(Tg)及び冷結晶化温度(Tc)は、後述の実施例に記載の方法に従って、測定することができる。
 かくして得られた溶融混練物は、延伸性、熱成形性等の二次加工性に優れることから、本発明はまた、延伸フィルムや耐熱性に優れる成形品等に加工され得る、非晶状態又は半結晶状態の成形体(例えば、シート状成形体)を提供する。なお、本明細書において、非晶状態及び半結晶状態とは、後述の試験例8の方法により求めた相対結晶化度が60%未満となる場合を非晶状態、相対結晶化度が60~80%となる場合を半結晶状態とする。よって、非晶状態又は半結晶状態の成形体とは、相対結晶化度が80%以下の成形体を意味する。
 非晶状態又は半結晶状態の成形体は、例えばシート状成形体を成形する場合、本発明のポリ乳酸樹脂組成物を押出成形やプレス成形することによって調製することができる。
 押出成形は、加熱した押出機に充填された本発明のポリ乳酸樹脂組成物を溶融させた後にTダイから押出し、シート状成形物を得る。このシート状成形物を直ぐに冷却ロールに接触させ、シートをポリ乳酸樹脂組成物のTg以下に冷却することで非晶状態又は半結晶状態にし、その後、冷却ロールから引き離し、それらを巻き取りロールにて巻き取り、シート状成形体を得ることができる。なお、押出機に充填する際に、本発明のポリ乳酸樹脂を構成する原料、例えば、ポリ乳酸樹脂及び式(I)で表される化合物、さらに必要により各種添加剤を含有する原料を充填して溶融混練後、押出し成形してもよい。
 押出機の温度は、ポリ乳酸樹脂組成物を均一に混合し、且つポリ乳酸樹脂の劣化を防止する観点から、170~240℃が好ましく、175~220℃がより好ましく、180~210℃がさらに好ましい。また冷却ロールの温度は、非晶状態又は半結晶状態の成形体を得る観点から、40℃以下が好ましく、30℃以下がより好ましく、10℃以下がさらに好ましい。なお、本発明において、押出機の温度とは押出し機のバレル設定温度を意味する。
 また押出速度は、非晶状態又は半結晶状態の成形体を得る観点から、1~200m/分が好ましく、5~150m/分がより好ましく、10~100m/分がさらに好ましい。
 プレス成形でシート状成形体を成形する場合は、シート形状を有する枠で本発明のポリ乳酸樹脂組成物を囲みプレス成形して調製することができる。
 プレス成形の温度と圧力としては、例えば、非晶状態又は半結晶状態の成形体を調製する場合、好ましくは170~240℃の温度、5~30MPaの圧力の条件下、より好ましくは175~220℃の温度、10~25MPaの圧力の条件下、さらに好ましくは180~210℃の温度、10~20MPaの圧力の条件下でプレスすることが好ましい。プレス時間は、プレスの温度と圧力によって一概には決定することができないが、1~10分が好ましく、1~7分がより好ましく、1~5分がさらに好ましい。
 また前記条件でプレスした後直ぐに、好ましくは0~40℃の温度、5~30MPaの圧力の条件下、より好ましくは10~30℃の温度、10~25MPaの圧力の条件下、さらに好ましくは10~20℃の温度、10~20MPaの圧力の条件下でプレスして冷却することが好ましい。この温度条件によるプレスにより、本発明のポリ乳酸樹脂組成物をそのTg以下に冷却して非晶状態又は半結晶状態にするため、プレス時間は、プレスの温度と圧力によって一概には決定することができないが、1~10分が好ましく、1~7分がより好ましく、1~5分がさらに好ましい。
 非晶状態又は半結晶状態のシート状成形体を調製する場合、その厚さは均一な成形体(二次加工品)を得る観点から、0.1~1.5mmが好ましく、0.2~1.4mmがより好ましく、0.3~1.2mmがさらに好ましい。
 かくして得られた非晶状態又は半結晶状態のシートは、延伸や熱成形等の二次加工に供しても、式(I)で表される化合物がポリ乳酸樹脂を可塑化する効果が高く、かつポリ乳酸樹脂との親和性も高いことから、結晶核剤や加水分解抑制剤等の添加剤が配合されている場合にでも、耐ブリード性に優れるものである。よって、本発明の非晶状態又は半結晶状態のシートは、延伸や熱成形等の二次加工用途に好適に用いられる。
 また、本発明においては、本発明の非晶状態又は半結晶状態のシートを成形することにより、成形体(二次加工品)としてもよい。従って、本発明はまた、本発明の非晶状態又は半結晶状態のシートを二次加工して得られる成形体(二次加工品)及び本発明の非晶状態又は半結晶状態のシートの二次加工方法を提供する。
 二次加工品の態様としては、本発明のポリ乳酸樹脂組成物を用いて得られたシートを一軸又は二軸延伸してなるフィルム(まとめて本発明の延伸フィルムという)、及び本発明のポリ乳酸樹脂組成物を用いて得られたシートを真空成形又は圧空成形してなる成形体(熱成形体ともいう)が挙げられる。
 延伸フィルムは、特に限定なく公知の方法に従って成形することができるが、例えば、前記方法により調製した非晶状態のシートをガラス転移温度(Tg)から冷結晶化温度(Tc)までの温度領域中で、所望の厚みまで二軸延伸させ、次いで熱処理(熱固定)することにより得られる。二軸延伸では、同時延伸でも逐次延伸によっても延伸フィルム化することが可能である。
 本発明の延伸フィルムは、二軸延伸により機械的強度が増加して、延伸フィルムとしての良好な物性を示す。また、式(I)で表される化合物による可塑化効果に優れ且つポリ乳酸樹脂との親和性が高いことから、耐ブリード性にも優れ、結晶性の高いものである。
 延伸フィルムの一態様としては熱収縮フィルムとすることができる。熱収縮フィルムは、特に限定なく公知の方法に従って製造することができる。例えば、少なくとも一方向に、所望の厚みまで延伸した後に、実質、熱固定を行わないことにより得られる。延伸する方法としては、一軸又は二軸延伸を行うことができるが、二軸延伸する場合には同時延伸でも逐次延伸でもどちらでも良い。なかでも、逐次延伸の場合には、縦横の延伸倍率が大きく異なる熱収縮フィルム作成することが可能であることより、シュリンクラベルとしてより良好な物性を示す延伸フィルムを得ることができる。
 また、真空成形又は圧空成形した成形体は、特に限定なく公知の方法に従って成形することができ、例えば、本発明の非晶状態又は半結晶状態のシートを真空圧空成形機中の金型内に設置して、金型内を加熱し、加圧又は無加圧状態に保ち成形することにより得られる。
 金型温度としては、ポリ乳酸樹脂組成物の結晶化速度向上及び作業性向上の観点から、120℃以下が好ましく、115℃以下がより好ましく、110℃以下がさらに好ましい。また、70℃以上が好ましく、75℃以上がより好ましく、80℃以上がさらに好ましい。かかる観点から、金型温度は70~120℃が好ましく、75~115℃がより好ましく、80~110℃がさらに好ましい。
 金型内での保持時間は、ポリ乳酸樹脂組成物からなる成形体の耐熱性及び生産性の向上の観点から、例えば90℃の金型において、2~60秒が好ましく、3~30秒がより好ましく、5~20秒がさらに好ましい。本発明のポリ乳酸樹脂組成物は、結晶化速度が速いために、前記のような短い時間の保持時間でも十分な耐熱性を有する成形体が得られる。
 得られた成形体は、本発明の非晶状態又は半結晶状態のシートが熱成形性が良好であることから、嵌合性に優れるものである。また、式(I)で表される化合物による可塑化効果に優れることから、得られた成形体は結晶性の高いものであり、耐熱性、透明性に優れるものでもある。
 なお、本発明においては、前記で得られた非晶状態又は半結晶状態のシートを、好ましくは60~120℃、より好ましくは70~110℃の温度下で維持することにより結晶化を行って結晶シートとしてもよい。
 本発明の非晶状態又は半結晶状態のシートの二次加工方法としては、該シートを成形して本発明の延伸フィルムや熱成形体を調製する方法であれば特に限定はなく、前記の通りである。
 かくして得られた本発明の延伸フィルムや熱成形体は、結晶性が高く、かつ耐ブリード性や耐熱性、透明性に優れ、さらには機械的強度や嵌合性も高いことから、日用雑貨品、家電部品、家電部品用梱包資材、自動車部品等の様々な工業用途に使用することができ、なかでも、食品包装をはじめとした各種包装材として好適に用いられる。
 以下、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。
可塑剤の製造例1(トリス(エトキシエトキシエチル)ホスフェート)
 1リットル四つ口フラスコに、ジエチレングリコールモノエチルエーテル600g(4.47モル)を加え、乾燥窒素ガスを毎分50mLの流量で吹き込みながら、減圧下(20kPa)で攪拌した。次いで反応系内を室温(15℃)に保ちながらオキシ塩化リン114g(0.745モル)をゆっくりと滴下し、その後、40~60℃で5時間熟成した。その後、16重量%の水酸化ナトリウム水溶液149gを添加して中和し、過剰の未反応ジエチレングリコールモノエチルエーテルを70~120℃の温度条件で減圧留去し、さらに水蒸気と接触させて粗リン酸トリエステル367gを得た。さらに、この粗リン酸トリエステルに16重量%の塩化ナトリウム水溶液300gを加えて洗浄した。その後、分相した下相を廃水し、残りの上相を75℃の減圧下で脱水した後、さらにろ過で固形分を除去し、目的とするトリス(エトキシエトキシエチル)ホスフェート266gを得た(収率80%)。このトリス(エトキシエトキシエチル)ホスフェートは無色透明の均一液体であり、クロルイオン分析を行った結果、クロルイオン含量は10mg/kg以下であった。
可塑剤の製造例2(コハク酸とトリエチレングリコールモノメチルエーテルとのジエステル)
 攪拌機、温度計、脱水管を備えた3Lフラスコに、無水コハク酸500g、トリエチレングリコールモノメチルエーテル2463g、パラトルエンスルホン酸一水和物9.5gを仕込み、空間部に窒素(500mL/分)を吹き込みながら、減圧下(4~10.7kPa)、110℃で15時間反応させた。反応液の酸価は1.6(KOHmg/g)であった。反応液に吸着剤キョーワード500SH(協和化学工業社製)27gを添加して80℃、2.7kPaで45分間攪拌してろ過した後、液温115~200℃、圧力0.03kPaでトリエチレングリコールモノメチルエーテルを留去し、80℃に冷却後、残液を減圧ろ過して、ろ液として、コハク酸とトリエチレングリコールモノメチルエーテルとのジエステル〔(MeEOSA〕を得た。得られたジエステルは、重量平均分子量410、粘度(23℃)27mPa・s、酸価0.2KOHmg/g、鹸化価274KOHmg/g、水酸基価1KOHmg/g以下、色相APHA200であった。
可塑剤の製造例3(ジラウリルブチルホスフェート)
 特開平8-231565号公報に記載の方法に従って下記構造を有する化合物を合成した。
Figure JPOXMLDOC01-appb-C000005
可塑剤の製造例4(トリス(メトキシエトキシエチル)ホスフェート)
 製造例1記載の方法を参照して、下記構造を有する化合物を合成した。
Figure JPOXMLDOC01-appb-C000006
可塑剤の製造例5(トリス(エトキシエトキシエトキシエチル)ホスフェート)
 製造例1記載の方法を参照して、下記構造を有する化合物を合成した。
Figure JPOXMLDOC01-appb-C000007
可塑剤の製造例6(トリス(プロポキシエトキシエチル)ホスフェート)
 製造例1記載の方法を参照して、下記構造を有する化合物を合成した。
Figure JPOXMLDOC01-appb-C000008
可塑剤の製造例7(トリス(ブトキシエトキシエチル)ホスフェート)
 製造例1記載の方法を参照して、下記構造を有する化合物を合成した。
Figure JPOXMLDOC01-appb-C000009
可塑剤の製造例8({ビス(エトキシエトキシエチル)}{ブトキシエトキシエチル}ホスフェート)
 製造例3と同様に特開平8-231565号公報に記載の方法で、下記構造を有する化合物を合成した。
Figure JPOXMLDOC01-appb-C000010
〔その他の原料〕
結晶核剤:エチレンビス12-ヒドロキシステアリン酸アミド(日本化成社製、商品名:スリパックスH)
加水分解抑制剤:ポリカルボジイミド(日清紡ケミカル社製、商品名:カルボジライトLA-1)
可塑剤:下記に示す化学式で表されるトリス(ブトキシエチル)ホスフェート(和光純薬社製、試薬、式(I)で表される化合物において、R、R、Rはいずれもブチル基、A、A、Aはいずれもエチレン基、m、n、pはいずれも1で、m+n+p=3である化合物)
Figure JPOXMLDOC01-appb-C000011
実施例1及び比較例1~2
 Nature Works社製のポリ乳酸(NW4032D)を50g用い、これに表1に示す可塑剤5gを添加し、小型混練機(東洋精機社製 ラボプラストミル、30C150)を用いて実施例1及び比較例1の組成物を調製し、混練時の溶融粘度を測定し、混練時の柔軟性を評価した。具体的には、混練は、混練温度180℃、回転速度90回転/分で10分間行い、混練開始30秒後と混練開始10分後の混練機のトルクを測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000012
 表1より、合成したポリエーテル型リン酸エステルを添加した場合(実施例1)は、可塑剤未添加の場合(比較例2)や、コハク酸エステルを添加した場合(比較例1)と比較して、トルクが約2分の1に低下している。混練機のトルクが低下したのは、組成物の溶融粘度が低下したためと考えられ、トルクの差、すなわち、溶融粘度の差は混練機が大きくなるほどその絶対値は大きくなり、スケールメリットが出てくるため、可塑剤として極めて優れていることが分った。
実施例2~3及び比較例3~4
 ポリ乳酸樹脂として、Nature Works社製のポリ乳酸(NW4032D)100重量部に対して、表2に示す原料を表2に示す量添加し、PARKER社製二軸押出混練機(HK-25D)を用いて、混練温度180℃、回転速度90回転/分、吐出量10kg/hでポリ乳酸樹脂組成物を調製した。
(1)非晶状態のシートの調製
 得られたポリ乳酸樹脂組成物について、2枚のクロムメッキしたステンレス製の金属板(フェロ板)と、厚さ0.2mm、枠内寸法が20cm四方の金属製スペーサー枠(幅1cm)を使用し、枠内の中央に所定量(約9.3g)のポリ乳酸樹脂組成物を挟み、東洋精機社製のオートプレス成形機(ラボプレス社製 P2-30T)を用いて、まず180℃/4MPaの温度/圧力で2分間プレスした後、さらに続けて180℃/20MPaの温度/圧力で2分間プレスし、その後、直ちにオートプレス成形機の冷却装置により室温(25℃)まで急冷(15.5℃/秒)してシートを得た(厚さ0.2mm)。なお、二次加工性(嵌合性)の評価に用いるシートは、ポリ乳酸樹脂組成物の量を22gに変更し、厚さ0.4mm、枠内寸法が20cm四方の金属製スペーサー枠(幅1cm)を用いる以外は、同様にして調製した(厚さ0.4mm)。
(2)結晶状態のシートの調製
 得られたポリ乳酸樹脂組成物について、2枚のクロムメッキしたステンレス製の金属板(フェロ板)と、厚さ0.4mm、枠内寸法が20cm四方の金属製スペーサー枠(幅1cm)を使用し、枠内の中央に所定量(約20g)のポリ乳酸樹脂組成物を挟み、東洋精機社製のオートプレス成形機を用いて、まず180℃/4MPaの温度/圧力で2分間プレスした後、さらに続けて180℃/20MPaの温度/圧力で2分間プレスし、その後、直ちにオートプレス成形機の冷却装置(ラボプレス社製 P2-30T)の冷却装置により室温(25℃)まで急冷(15.5℃/秒)してシート状成形体を得た。得られたシート状成形体を、さらに80℃/10MPaの温度/圧力で3分間プレスした後、室温まで放冷しスペーサー枠から取り出し、20cm四方のシートを得た(厚さ0.4mm)。
 得られた組成物及びシートについて、以下の試験例1~8に従って特性を評価した。結果を表2に示す。
試験例1<ガラス転移温度及び冷結晶化温度の測定>
 シート化に用いる各組成物について、JIS K 7121に従ってガラス転移温度(℃)及び冷結晶化温度(℃)を測定した。ただし、昇温条件は25℃から200℃まで毎分15℃で行い、また、測定サンプル量を7.5mgとした。冷結晶化温度(℃)が低いほど、結晶化速度が高いことを示す。
試験例2<二次加工性(延伸性)の評価>
 各組成物の非晶状態のシートについて、12cm×10cm(厚さ0.2mm)の長方形に切り出し、テーブルテンター試験機(岩本製作所社製)を用い、長辺側をそれぞれ1cmずつ挟み、延伸温度58℃、延伸速度5mm/sで一軸自由幅延伸を行い、白化及び破断する延伸倍率〔白化伸度(%)、破断伸度(%)〕を観察した。なお、可塑剤を含有していない比較例4のみ、延伸温度80℃で延伸を行った。破断伸度が450%でも破断しなかった場合は「>450%」とした。この延伸性は二次成形性を評価する上で、重要な指標の一つであり、伸度の数値が高いほど良好な二次成形性を有すると判断される。
試験例3<耐ブリード性の評価>
 各組成物の結晶シートについて、シート表面を目視により観察し、ブリードの有無を確認した。ブリードが全く確認されなかった場合を「A」、ブリードが僅かに確認された場合を「B」、ブリードが多く確認された場合を「C」とした。なお、比較例4については、ポリ乳酸樹脂以外の原料が用いられておらず、ブリードアウトしないため、評価を行わなかった。
試験例4<二次加工性(延伸配向性)の評価>
 各組成物の非晶状態のシートについて、12cm×10cm(厚さ0.2mm)の長方形に切り出し、テーブルテンター試験機(岩本製作所社製)を用いて、延伸温度55~60℃(比較例4のみ 80℃)、余熱時間45秒、延伸速度5mm/s、保持時間3分の条件で、延伸倍率10.2倍まで二軸同時延伸を行い(延伸範囲10cm四方)、厚さ22μmの二軸延伸フィルムを作成した。得られた二軸延伸フィルムを用いて、引っ張り試験を行い、初期弾性率(GPa)、破断強度(破断点応力、MPa)を調べた。引っ張り試験には、島津製作所社製のオートグラフ(AGS-X 1kN)を用い、JIS K 7127に従って試験を行った。なお、破断点応力の数値が高いほど延伸配向性に優れると判断される。
試験例5<二次加工性(嵌合性)の評価>
 市販品の容器(商品名 湯呑み90 志野 シーピー化成社製)の蓋部分(図1)の金型を作製し、単発真空圧空成形機(脇坂製作所社製、FVS-500P WAKITEC)に取り付けた。
 各組成物の非晶状態のシートについて、15cm×15cm(厚さ0.4mm)の正方形に切り出し、単発真空圧空成形機(脇坂製作所社製、FVS-500P WAKITEC)を用いて、前記切り出したシートをガイドに取り付け、ヒーター温度を400℃に設定したヒーター部中での保持時間を変えることで、シート表面の温度が表2に示す温度となるまでシートを加熱した。各温度に加熱したシートを90℃に設定した上下金型を用いて真空成形を行い、金型内で10秒間保持して真空成形体を取り出した。
 上記で得られた蓋を市販品の容器(商品名 湯呑み90 志野 シーピー化成社製)の本体部分(φ81mm 高さ51mm 材質 PP入り低発泡PS製)に嵌合させ、容易に嵌合できた場合を「A」とし、嵌合できなかった場合を「B」とした。シート表面の温度は、加熱後のシート表面温度を直接表面温度計にて測定した。なお、使用した金型を図1に示す。
試験例6<耐熱性の評価>
 前記嵌合性の評価で、容易に嵌合できた成形体を80℃の熱水の中に30秒浸漬した後、嵌合性に変化が生じない場合は「A」、嵌合性が大きく変化する場合は「B」とした。
試験例7<透明性の評価>
 前記嵌合性の評価で、容易に嵌合できた成形体の一部を切り取り、ヘイズメーター(HM-150型 村上色彩技術研究所社製)を用いて、Haze値を測定し、これを透明度の指標とした。なお、比較例4については、容易に嵌合できた成形体が得られなかったので測定を行なわなかった。
試験例8<結晶性の評価>
 前記延伸性の評価に使用したシート(成形前)及び一軸延伸後のサンプル(成形後)、前記延伸配向性の評価に使用したシート(成形前)及び二軸延伸フィルム(成形後)、ならびに前記嵌合性の評価に使用したシート(成形前)及びシート表面温度76℃で成形した真空成形体(成形後)の一部を切り取り、相対結晶化度を求めた。具体的には、PerkinElmer社製 DSCを用いて、25℃から200℃まで15℃/minで昇温させ、観察された冷結晶化発熱ピークの絶対値ΔHcと結晶溶融ピークの絶対値ΔHmから下式より相対結晶化度を求めた。
    相対結晶化度(%)=((ΔHm-ΔHc)/ΔHm)×100
Figure JPOXMLDOC01-appb-T000013
 表2より、ポリエーテル型リン酸エステルを含有する樹脂組成物(実施例2、3)は、既存の可塑剤であるコハク酸エステルのみを含有する樹脂組成物(比較例3)と同様に、厚さ0.4mmの(無延伸)結晶状態のシートでは全くブリードは見られず、耐ブリード性は良好であった。また、実施例2の樹脂組成物は、白化が起こる延伸倍率が高く、また延伸装置の測定限界でも破断が起こらず、高い延伸性を示した。これは既存の可塑剤(コハク酸エステル)と併用した実施例3でも同様であり、ポリエーテル型リン酸エステルを添加することで延伸性を付与できることが示唆された。また延伸による結晶化も十分なものであった。
 また、ポリエーテル型リン酸エステルを含有するポリ乳酸樹脂組成物(実施例2、3)は二軸延伸が容易であり、かつ、高い機械的物性(初期弾性率、破断点応力)を示し、延伸フィルムとして良好な物性を示した。また延伸による結晶化も十分なものであった。
 またさらに、ポリエーテル型リン酸エステルを含有するポリ乳酸樹脂組成物(実施例2、3)の場合、加熱ゾーンでの保持時間が異なってシート表面の温度が変化しても、十分な賦形性が得られる温度領域(成形温度幅)が広く、且つその範囲で得られた成形体の耐熱性、透明性、結晶性も良好なものであった。
実施例4及び比較例5~6
 Nature Works社製のポリ乳酸(NW4032D)100重量部に対して、ポリエーテル型リン酸エステルのトリス(エトキシエトキシエチル)ホスフェート、リン酸トリエステルであるトリス(ブトキシエチル)ホスフェート、又は長鎖ラウリル基を有するジラウリルブチルホスフェートを表3に示す量添加し、実施例2と同様の装置を用いて、混練温度180℃、回転速度90回転/分、吐出量10kg/hでポリ乳酸樹脂組成物を調製した。
 得られた組成物を用いて、実施例2と同様にして結晶状態のシートを調製し、試験例3と同様にして耐ブリード性の評価を行った。また、結晶状態のシートの結晶性は、試験例8と同様の方法で確認した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000014
 結果、トリス(ブトキシエチル)ホスフェート及びジラウリルブチルホスフェートを用いた比較例5、6では、十分な耐ブリード性は見られなかった。
実施例5~9
 ポリ乳酸樹脂として、Nature Works社製のポリ乳酸(NW4032D)100重量部に対して、表4に示す原料を表4に示す量添加し、実施例2と同様にしてポリ乳酸樹脂組成物を調製した。得られたポリ乳酸樹脂組成物を用い、実施例2~3及び比較例3~4と同様の評価(試験例1~8)を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000015
 表4より、本発明のポリエーテル型リン酸エステルを含有する樹脂組成物(実施例5~9)は、表2に示す実施例2のトリス(エトキシエトキシエチル)ホスフェートと同様に、アルキル基(式(I)中のR、R、R)をメチル基(実施例5)、プロピル基(実施例7)、ブチル基(実施例8)と変えた化合物、及びEO付加モル数を実施例2のm+n+p=6から9に変更した化合物(実施例6)においても耐ブリード性は良好で、白化が起こる延伸倍率が高く、また延伸装置の測定限界でも破断が起こらず、高い延伸性を示した。
 また、実施例5~9の化合物は、二軸延伸が容易であり、かつ、高い機械的物性(初期弾性率、破断点応力)を示し、延伸フィルムとして良好な物性を示した。また延伸による結晶化も十分なものであった。
 またさらに、また、実施例5~9の化合物は、加熱ゾーンでの保持時間が異なってシート表面の温度が変化しても、十分な賦形性が得られる温度領域(成形温度幅)が広く、且つその範囲で得られた成形体の耐熱性、透明性、結晶性も良好なものであった。
 表2と表4の結果から、本発明の化合物の中でも式(I)中のR、R、Rがエチル基又はプロピル基である化合物が、より2次加工性が優れる結果となった。
実施例10~15
 Nature Works社製のポリ乳酸(NW4032D)100重量部に対して、表5に示す本発明の化合物を15重量部添加し、実施例2と同様の装置を用いて、混練温度180℃、回転速度90回転/分、吐出量10kg/hでポリ乳酸樹脂組成物を調製した。
 得られた組成物を用いて、実施例2と同様にして結晶状態のシートを調製し、試験例3と同様にして耐ブリード性の評価を行った。また、結晶状態のシートの結晶性は、試験例8と同様の方法で確認した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000016
 表5の結果から、本発明の化合物の中でも式(I)中のR、R、Rがエチル基又はプロピル基である化合物(実施例11~13)が、耐ブリード性が添加量によらず良好な結果となった。
実施例16
 ポリ乳酸樹脂として、Nature Works社製のポリ乳酸(NW4032D)100重量部に対して、表6に示す原料を表6に示す量添加し、PARKER社製二軸押出混練機(HK-25D)を用いて、混練温度180℃、回転速度90回転/分、吐出量10kg/hでポリ乳酸樹脂組成物を調製した。
 得られたポリ乳酸樹脂組成物を用いて、実施例2と同様にして非晶状態のシートを調製し、該ポリ乳酸樹脂組成物及びシートについて、以下の試験例9~12に従って特性を評価した。結果を表6に示す。
試験例9<結晶性の評価>
 後記2次加工性の評価に使用する非晶シート(延伸前)の一部を切り取り、試験例8と同様にして、相対結晶化度を求めた。
試験例10<二次加工性(熱収縮特性)の評価>
 非晶状態のシートについて、12cm×12cm(厚さ0.2mm)の正方形に切り出し、テーブルテンター試験機(岩本製作所社製)を用いて、延伸温度55~60℃、余熱時間45秒、延伸速度5mm/sの条件で延伸倍率4倍まで10cm一定幅で一軸延伸を行い(延伸範囲10cm四方)、直ちに冷却して実質熱固定を行わない厚さ50μmの熱収縮フィルムを作成した。得られた熱収縮フィルムを用いて、試験方向を長手として長さ140mm、幅80mmに切り出し、その試験方向に長さ100mm間の標線を入れ、50℃及び80℃の温水浴に10秒間浸漬し、次いで25℃の水浴で5秒間冷却した後、その標線間の寸法を計り、下式に従って各温度における収縮率を算出し、熱収縮特性を評価した。
  収縮率(%)=100×{収縮前の寸法(mm)―収縮後の寸法(mm)}/収縮前の寸法(mm)
試験例11<透明性の評価>
 前記二次加工性の評価で使用した熱収縮フィルムの一部を切り取り、試験例7と同様にして、Haze値を測定し、これを透明度の指標とした。
試験例12<耐破断性の評価>
 JIS K 7127に従って、島津製作所社製のオートグラフ(AGS-X 1kN)を用いて引張試験を行い、破断点伸び(%)を測定し、耐破断性の代用評価とした。収縮フィルムの伸びが低いものは耐破断性が低く、伸びが高ければ耐破断性が高いことを示す。破断点伸びが50%以上のものは耐破断性が良好で、10%以上50%未満を耐破断性がやや良好で、10%未満のものは不適である。
Figure JPOXMLDOC01-appb-T000017
 表6の結果から、本発明の化合物を含有するポリ乳酸樹脂組成物は、延伸が容易であり、かつ、50℃ではほとんど収縮せず80℃で十分な収縮率が得られる良好な熱収縮特性を示し、透明性、耐破断性にも優れ、熱収縮フィルムとして良好な物性を示した。
 本発明のポリ乳酸樹脂組成物は、日用雑貨品、家電部品、家電部品用梱包資材、自動車部品等の様々な工業用途に好適に使用することができる。
 本発明は、下記のいずれかに関し得る;
<1>
 ポリ乳酸樹脂、及び該ポリ乳酸樹脂100重量部に対して、式(I):
Figure JPOXMLDOC01-appb-C000018
(式中、R、R、Rはそれぞれ独立して炭素数1~4のアルキル基を示し、A、A、Aはそれぞれ独立して炭素数2又は3のアルキレン基を示し、m、n、pはそれぞれ独立してオキシアルキレン基の平均付加モル数を示す正の数であって、m+n+pが3を超え12以下を満足する数である)
で表される化合物を0.1~30重量部含有してなる、ポリ乳酸樹脂組成物。
<2>
 式(I)中のR、R、Rが、それぞれ独立して炭素数2~3のアルキル基である、<1>記載のポリ乳酸樹脂組成物。
<3>
 式(I)中のR、R、Rが、好ましくはそれぞれ独立してメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、又はイソブチル基であり、より好ましくはそれぞれ独立してエチル基、プロピル基、又はブチル基であり、さらに好ましくはそれぞれ独立してエチル基又はプロピル基であり、よりさらに好ましくはいずれもがエチル基又はプロピル基である、<1>記載のポリ乳酸樹脂組成物。
<4>
 式(I)中のm+n+pが、好ましくは3を超え12未満を満足する数であり、より好ましくは4を超え12未満を満足する数であり、さらに好ましくは6以上で9以下を満足する数である、<1>~<3>いずれか記載のポリ乳酸樹脂組成物。
<5>
 式(I)中のA、A、Aが、好ましくはそれぞれ独立してエチレン基、n-プロピレン基、又はイソプロピレン基であり、より好ましくはいずれもがエチレン基、n-プロピレン基、又はイソプロピレン基であり、さらに好ましくはいずれもがエチレン基である、<1>~<4>いずれか記載のポリ乳酸樹脂組成物。
<6>
 式(I)で表される化合物が、好ましくは対称ポリエーテル型リン酸トリエステル又は非対称ポリエーテル型リン酸トリエステルであり、より好ましくは対称ポリエーテル型リン酸トリエステルである、<1>~<5>いずれか記載のポリ乳酸樹脂組成物。
<7>
 式(I)で表される化合物が、好ましくはトリス(エトキシエトキシエチル)ホスフェート、トリス(メトキシエトキシエチル)ホスフェート、トリス(プロポキシエトキシエチル)ホスフェート、トリス(ブトキシエトキシエチル)ホスフェート、トリス(メトキシエトキシエトキシエチル)ホスフェート、トリス(エトキシエトキシエトキシエチル)ホスフェート、トリス(プロポキシエトキシエトキシエチル)ホスフェート、ビス(エトキシエトキシエチル)メトキシエトキシエトキシエチルホスフェート、ビス(メトキシエトキシエトキシエチル)エトキシエトキシエチルホスフェート、ビス(エトキシエトキシエチル){ブトキシエトキシエチル}ホスフェート、あるいは炭素数1~4のアルコールのポリオキシエチレン付加物又はポリオキシプロピレン付加物の混合物を式(I)を満たすようにリン酸トリエステル化した非対称ポリエーテル型リン酸エステルであり、より好ましくは、トリス(エトキシエトキシエチル)ホスフェート、トリス(プロポキシエトキシエチル)ホスフェート、トリス(エトキシエトキシエトキシエチル)ホスフェート、トリス(プロポキシエトキシエトキシエチル)ホスフェートであり、さらに好ましくはトリス(エトキシエトキシエチル)ホスフェートである、<1>~<5>いずれか記載のポリ乳酸樹脂組成物。
<8>
 式(I)で表される化合物をポリ乳酸樹脂100重量部に対して、好ましくは0.5~30重量部、より好ましくは1.0~10重量部、さらに好ましくは2.0~8.0重量部、よりさらに好ましくは3.0~7.0重量部含有してなる、<1>~<7>いずれか記載のポリ乳酸樹脂組成物。
<9>
 さらに、結晶核剤を含有してなる、<1>~<8>いずれか記載のポリ乳酸樹脂組成物。
<10>
 結晶核剤が、好ましくは有機系結晶核剤であり、より好ましくはアルキレンビス脂肪酸アミドであり、さらに好ましくはアルキレンビスヒドロキシ脂肪酸アミドである、<9>記載のポリ乳酸樹脂組成物。
<11>
 結晶核剤が、好ましくは有機系結晶核剤であり、より好ましくはエチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド、プロピレンビス脂肪酸アミド、ブチレンビス脂肪酸アミドであり、さらに好ましくはエチレンビス12-ヒドロキシステアリン酸アミドである、<9>記載のポリ乳酸樹脂組成物。
<12>
 <1>~<11>いずれか記載のポリ乳酸樹脂組成物を含有してなる、相対結晶化度が80%以下のシート。
<13>
 <1>~<11>いずれか記載のポリ乳酸樹脂組成物を押出成形又はプレス成形してなる、<12>記載のシート。
<14>
 厚さが、好ましくは0.1~1.5mm、より好ましくは0.2~1.4mm、さらに好ましくは0.3~1.2mmである、<12>又は<13>記載のシート。
<15>
 <12>~<14>いずれか記載のシートを二軸延伸してなるフィルム。
<16>
 <12>~<14>いずれか記載のシートを真空成形又は圧空成形して得られるポリ乳酸樹脂成形体。
<17>
 <12>~<14>いずれか記載のシートを延伸してなる熱収縮フィルム。
<18>
 <12>~<14>いずれか記載のシートを二軸延伸することを特徴とする、シートの二次加工方法。
<19>
 <12>~<14>いずれか記載のシートを真空成形又は圧空成形することを特徴とする、シートの二次加工方法。
<20>
 <12>~<14>いずれか記載のシートを一軸延伸することを特徴とする、シートの二次加工方法。
<21>
 <15>記載のフィルムからなる包装材。
<22>
 <16>記載のポリ乳酸樹脂成形体からなる包装材。
<23>
 <17>記載の熱収縮フィルムからなる包装材。

Claims (16)

  1.  ポリ乳酸樹脂、及び該ポリ乳酸樹脂100重量部に対して、式(I):
    Figure JPOXMLDOC01-appb-C000001
    (式中、R、R、Rはそれぞれ独立して炭素数1~4のアルキル基を示し、A、A、Aはそれぞれ独立して炭素数2又は3のアルキレン基を示し、m、n、pはそれぞれ独立してオキシアルキレン基の平均付加モル数を示す正の数であって、m+n+pが3を超え12以下を満足する数である)
    で表される化合物を0.1~30重量部含有してなる、ポリ乳酸樹脂組成物。
  2.  式(I)中のR、R、Rが、それぞれ独立して炭素数2~3のアルキル基である、請求項1記載のポリ乳酸樹脂組成物。
  3.  式(I)中のm+n+pが、6以上で9以下を満足する数である、請求項1又は2記載のポリ乳酸樹脂組成物。
  4.  式(I)中のA、A、Aが、エチレン基である、請求項1~3のいずれか1項記載のポリ乳酸樹脂組成物。
  5.  式(I)で表される化合物が、トリス(エトキシエトキシエチル)ホスフェートである、請求項1~4のいずれか1項記載のポリ乳酸樹脂組成物。
  6.  式(I)で表される化合物をポリ乳酸樹脂100重量部に対して1.0~10重量部含有してなる、請求項1~5のいずれか1項記載のポリ乳酸樹脂組成物。
  7.  さらに、結晶核剤を含有してなる、請求項1~6のいずれか1項記載のポリ乳酸樹脂組成物。
  8.  請求項1~7のいずれか1項記載のポリ乳酸樹脂組成物を含有してなる、相対結晶化度が80%以下のシート。
  9.  請求項8記載のシートを二軸延伸してなるフィルム。
  10.  請求項8記載のシートを真空成形又は圧空成形して得られるポリ乳酸樹脂成形体。
  11.  請求項8記載のシートを二軸延伸することを特徴とする、シートの二次加工方法。
  12.  請求項8記載のシートを真空成形又は圧空成形することを特徴とする、シートの二次加工方法。
  13.  請求項9記載のフィルムからなる包装材。
  14.  請求項10記載のポリ乳酸樹脂成形体からなる包装材。
  15.  請求項8記載のシートを延伸してなる熱収縮フィルム
  16.  請求項15記載の熱収縮フィルムからなる包装材。
PCT/JP2011/078650 2010-12-14 2011-12-12 ポリ乳酸樹脂組成物 WO2012081532A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180059551XA CN103261320A (zh) 2010-12-14 2011-12-12 聚乳酸树脂组合物
EP11848434.4A EP2653499A1 (en) 2010-12-14 2011-12-12 Polylactic acid resin composition
US13/992,158 US20130261214A1 (en) 2010-12-14 2011-12-12 Polylactic acid resin composition
KR1020137017997A KR20130133808A (ko) 2010-12-14 2011-12-12 폴리락트산 수지 조성물

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-277566 2010-12-14
JP2010277566 2010-12-14
JP2011164649 2011-07-27
JP2011-164649 2011-07-27

Publications (1)

Publication Number Publication Date
WO2012081532A1 true WO2012081532A1 (ja) 2012-06-21

Family

ID=46244632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078650 WO2012081532A1 (ja) 2010-12-14 2011-12-12 ポリ乳酸樹脂組成物

Country Status (6)

Country Link
US (1) US20130261214A1 (ja)
EP (1) EP2653499A1 (ja)
JP (1) JP5184695B2 (ja)
KR (1) KR20130133808A (ja)
CN (1) CN103261320A (ja)
WO (1) WO2012081532A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120296017A1 (en) * 2010-02-02 2012-11-22 Tomoya Tsuboi Process for production of polylactic acid resin composition
WO2013172351A1 (ja) * 2012-05-18 2013-11-21 花王株式会社 熱成形用ポリ乳酸樹脂シート
WO2014156411A1 (ja) * 2013-03-26 2014-10-02 東レ株式会社 積層ポリエステルフィルム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3064983B1 (fr) * 2017-04-06 2020-11-06 Ind Design For Foods Cups Dispositif de fabrication continue de recipients multi-formats et procede de fabrication associe
JP7296608B2 (ja) * 2017-10-04 2023-06-23 株式会社ベルグリーンワイズ 青果物の鮮度保持用収納袋

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231565A (ja) 1995-02-24 1996-09-10 Kao Corp リン酸トリエステル並びにこれらを含有する化粧料及び外用剤
JPH1017581A (ja) 1996-07-02 1998-01-20 Kao Corp リン酸トリエステルの製造方法
JP2002179899A (ja) 2000-12-15 2002-06-26 Kanebo Ltd ポリ乳酸系樹脂組成物及びシート並びにシートの製造方法
WO2005097894A1 (ja) * 2004-03-30 2005-10-20 Nissan Chemical Industries, Ltd. ポリ乳酸樹脂組成物
JP2006176748A (ja) 2004-11-25 2006-07-06 Kao Corp 生分解性樹脂用可塑剤
JP2007112868A (ja) 2005-10-19 2007-05-10 Kao Corp 多孔性シート
JP2007191620A (ja) * 2006-01-20 2007-08-02 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物からなる電気・電子部品
JP2008150492A (ja) * 2006-12-18 2008-07-03 Daicel Polymer Ltd 樹脂組成物
JP2008247956A (ja) * 2007-03-29 2008-10-16 Dic Corp ポリエステル組成物
JP2009249532A (ja) * 2008-04-08 2009-10-29 Kao Corp ポリ乳酸樹脂組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL112686C (ja) * 1957-04-05
CN101522800B (zh) * 2006-10-11 2012-05-30 花王株式会社 生物降解性树脂组合物
WO2010047370A1 (ja) * 2008-10-24 2010-04-29 花王株式会社 樹脂組成物の製造方法
JP5654501B2 (ja) * 2010-02-02 2015-01-14 花王株式会社 ポリ乳酸樹脂組成物の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231565A (ja) 1995-02-24 1996-09-10 Kao Corp リン酸トリエステル並びにこれらを含有する化粧料及び外用剤
JPH1017581A (ja) 1996-07-02 1998-01-20 Kao Corp リン酸トリエステルの製造方法
JP2002179899A (ja) 2000-12-15 2002-06-26 Kanebo Ltd ポリ乳酸系樹脂組成物及びシート並びにシートの製造方法
WO2005097894A1 (ja) * 2004-03-30 2005-10-20 Nissan Chemical Industries, Ltd. ポリ乳酸樹脂組成物
JP2006176748A (ja) 2004-11-25 2006-07-06 Kao Corp 生分解性樹脂用可塑剤
JP2007112868A (ja) 2005-10-19 2007-05-10 Kao Corp 多孔性シート
JP2007191620A (ja) * 2006-01-20 2007-08-02 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物からなる電気・電子部品
JP2008150492A (ja) * 2006-12-18 2008-07-03 Daicel Polymer Ltd 樹脂組成物
JP2008247956A (ja) * 2007-03-29 2008-10-16 Dic Corp ポリエステル組成物
JP2009249532A (ja) * 2008-04-08 2009-10-29 Kao Corp ポリ乳酸樹脂組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Firumu wo Tsukuru (Making Film", 15 February 1993, KYORITSU SHUPPAN
DIC TECHNICAL REVIEW, 2004, pages 10

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120296017A1 (en) * 2010-02-02 2012-11-22 Tomoya Tsuboi Process for production of polylactic acid resin composition
US8785520B2 (en) * 2010-02-02 2014-07-22 Kao Corporation Process for production of polylactic acid resin composition
WO2013172351A1 (ja) * 2012-05-18 2013-11-21 花王株式会社 熱成形用ポリ乳酸樹脂シート
US9938406B2 (en) 2012-05-18 2018-04-10 Kao Corporation Polylactic acid resin sheet for thermal molding use
WO2014156411A1 (ja) * 2013-03-26 2014-10-02 東レ株式会社 積層ポリエステルフィルム
KR20150135197A (ko) * 2013-03-26 2015-12-02 도레이 카부시키가이샤 적층 폴리에스테르 필름
JPWO2014156411A1 (ja) * 2013-03-26 2017-02-16 東レ株式会社 積層ポリエステルフィルム
KR102202905B1 (ko) * 2013-03-26 2021-01-14 도레이 카부시키가이샤 적층 폴리에스테르 필름

Also Published As

Publication number Publication date
EP2653499A1 (en) 2013-10-23
CN103261320A (zh) 2013-08-21
US20130261214A1 (en) 2013-10-03
KR20130133808A (ko) 2013-12-09
JP5184695B2 (ja) 2013-04-17
JP2013047314A (ja) 2013-03-07

Similar Documents

Publication Publication Date Title
KR101889135B1 (ko) 폴리에스테르 수지 조성물로 이루어진 성형체
KR102076953B1 (ko) 열성형용 폴리락트산 수지 시트
JP5833463B2 (ja) ポリ乳酸樹脂組成物
JP5184695B2 (ja) ポリ乳酸樹脂組成物
WO2015119155A1 (ja) 熱成形用ポリ乳酸樹脂シート
JP5302476B1 (ja) ポリエステル樹脂組成物からなる熱成形品
JP6430803B2 (ja) 熱成形用シート
JP2014009266A (ja) ポリ乳酸樹脂組成物からなる熱成形品
JP2014105306A (ja) 生分解性樹脂成形品の製造方法
JP6443988B2 (ja) ポリ乳酸樹脂組成物から成るシート又はフィルム
JP5302475B1 (ja) ポリエステル樹脂組成物からなる延伸フィルム
JP2017024407A (ja) ポリ乳酸樹脂組成物積層シート
JP2014001320A (ja) ポリ乳酸樹脂組成物からなる延伸フィルム
JP2016183222A (ja) ポリ乳酸樹脂組成物
KR20240075226A (ko) 생분해성 조성물 및 이를 포함하는 생분해성 필름
KR20240082525A (ko) 생분해성 필름용 조성물, 이를 포함하는 생분해성 필름 및 생분해성 필름의 제조방법
JP2019111765A (ja) ポリ乳酸樹脂組成物積層シートの製造方法
JP2019111766A (ja) ポリ乳酸樹脂組成物積層シート
JP2016113539A (ja) ポリ乳酸樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848434

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13992158

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137017997

Country of ref document: KR

Kind code of ref document: A