WO2013111460A1 - 打撃工具 - Google Patents

打撃工具 Download PDF

Info

Publication number
WO2013111460A1
WO2013111460A1 PCT/JP2012/081804 JP2012081804W WO2013111460A1 WO 2013111460 A1 WO2013111460 A1 WO 2013111460A1 JP 2012081804 W JP2012081804 W JP 2012081804W WO 2013111460 A1 WO2013111460 A1 WO 2013111460A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
tool
drive shaft
shaft
bit
Prior art date
Application number
PCT/JP2012/081804
Other languages
English (en)
French (fr)
Inventor
聖展 吉兼
吉隆 町田
真司 小野田
斉 飯田
Original Assignee
株式会社マキタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マキタ filed Critical 株式会社マキタ
Priority to CN201280068043.2A priority Critical patent/CN104066556B/zh
Priority to US14/374,508 priority patent/US9724814B2/en
Priority to DE112012005769.4T priority patent/DE112012005769T5/de
Publication of WO2013111460A1 publication Critical patent/WO2013111460A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D11/00Portable percussive tools with electromotor or other motor drive
    • B25D11/06Means for driving the impulse member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D11/00Portable percussive tools with electromotor or other motor drive
    • B25D11/06Means for driving the impulse member
    • B25D11/062Means for driving the impulse member comprising a wobbling mechanism, swash plate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D11/00Portable percussive tools with electromotor or other motor drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D16/00Portable percussive machines with superimposed rotation, the rotational movement of the output shaft of a motor being modified to generate axial impacts on the tool bit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D17/00Details of, or accessories for, portable power-driven percussive tools
    • B25D17/24Damping the reaction force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2211/00Details of portable percussive tools with electromotor or other motor drive
    • B25D2211/003Crossed drill and motor spindles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2211/00Details of portable percussive tools with electromotor or other motor drive
    • B25D2211/006Parallel drill and motor spindles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2217/00Details of, or accessories for, portable power-driven percussive tools
    • B25D2217/0073Arrangements for damping of the reaction force
    • B25D2217/0076Arrangements for damping of the reaction force by use of counterweights
    • B25D2217/0092Arrangements for damping of the reaction force by use of counterweights being spring-mounted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/091Electrically-powered tool components
    • B25D2250/095Electric motors

Definitions

  • the present invention relates to an impact tool that performs a predetermined machining operation on a workpiece by driving a tool bit linearly using a swing mechanism.
  • Japanese Patent Application Laid-Open No. 2007-7832 discloses a swash bearing type electric hammer drill that drives a tool bit linearly using a swing mechanism.
  • the electric hammer drill as an impact tool described in the above publication is mainly composed of a rotating body that is rotationally driven by an electric motor, and an oscillating member that oscillates in the tool bit long axis direction as the rotating body rotates.
  • a swash bearing type swing mechanism is provided.
  • the electric hammer drill is configured to convert the rotation output of the electric motor into a linear motion by a swing mechanism and drive the tool bit in a straight line.
  • the electric motor employs an inner rotor type motor having a stator and a rotor disposed inside the stator, and the motor speed is reduced by a reduction mechanism and transmitted to the rotating body. .
  • the swash bearing type rocking mechanism having the above configuration is adopted in a relatively small hammer drill.
  • a small electric hammer drill there is a high demand for improvement in operability by reducing the weight of the airframe. .
  • the present invention has been made in view of the above, and an object of the present invention is to provide a striking tool effective in reducing the weight and improving the operability.
  • a striking tool for performing a predetermined processing operation on a workpiece by a striking operation in the major axis direction of a tool bit.
  • the impact tool includes a motor having a rotor and a stator, a tool main body that accommodates the motor, a drive shaft that is arranged in parallel with the long axis of the tool bit, and is driven to rotate by the motor, and is supported by the drive shaft.
  • a swing member that swings in the axial direction of the drive shaft based on the rotational motion of the drive shaft, and a linear motion in the major axis direction of the tool bit by the swing motion of the swing member
  • the motor is configured as an outer rotor type motor in which the rotor is disposed outside the stator.
  • the motor is an outer rotor type motor in which the rotor is disposed outside the stator, so that the outer diameter of the rotating portion of the motor can be increased, and the rotor of the drive motor has a large rotor inertia. It is possible to have a moment. For this reason, compared with the impact tool which employ
  • the outer rotor type motor can generate a larger torque than the inner rotor type motor, so that the rotational speed of the motor can be lowered. As a result, the vibration of the impact tool due to motor vibration can be reduced.
  • the drive shaft is configured to be driven at the same rotational speed as the output shaft of the motor.
  • the phrase “driven at the same number of revolutions” in this form suitably includes not only a form driven literally at the same number of revolutions but also a form driven substantially at the same number of revolutions.
  • the “drive” mode suitably includes both a mode in which the drive shaft is directly connected to the output shaft of the motor and a mode in which the drive shaft is indirectly connected to the output shaft.
  • the aspect which a drive shaft connects with an output shaft via a gear or a belt can be considered, for example.
  • the 1st bearing which supports the output shaft of a motor rotatably, and the 2nd bearing which supports a drive shaft rotatably can be interposed via a single bearing support member. Supported by the tool body. According to this aspect, since the first bearing and the second bearing are supported by the single bearing support member, the first bearing and the second bearing are supported by the separate support members. Compared with the configuration, the shaft center accuracy between the drive shaft and the motor output shaft can be improved, the number of members can be reduced, the structure can be simplified, and the assembly can be improved.
  • the output shaft and drive shaft of a motor are arrange
  • the output shaft and the drive shaft of the motor are arranged coaxially, so that a space can be formed above the motor on the extended line of the long axis of the tool bit, and the space can be used for other functions. It can be used as an arrangement space for members.
  • the long axis of the tool bit and the drive shaft are arranged in parallel and spaced apart from each other by a predetermined distance in the direction intersecting the extending direction of the long axis.
  • At least a part of a predetermined functional member for processing work is disposed inside the projection area of the motor.
  • the “predetermined functional member for the machining operation” typically means a protection provided to prevent or reduce the vibration of the striking tool operation handle held by the operator during the machining operation.
  • the vibration member is applicable. According to this embodiment, by arranging at least a part of the functional member to be hidden behind the motor, the outer shape can be reduced in size in the direction perpendicular to the plane including both the long axis of the tool bit and the drive shaft. It becomes possible to plan.
  • a functional member is an anti-vibration mechanism for suppressing the vibration of a tool main body.
  • the “vibration isolation mechanism” in this embodiment typically corresponds to a vibration damping mechanism such as a dynamic vibration absorber or a counterweight that operates to suppress the vibration of the tool body.
  • a vibration damping mechanism such as a dynamic vibration absorber or a counterweight that operates to suppress the vibration of the tool body.
  • the impact tool which concerns on this invention, it further has a handle for an operator to grip, and the said handle is connected with the tool main body.
  • the functional member is an elastic body that connects the tool body and the handle.
  • the output shaft and drive shaft of a motor are arrange
  • a configuration in which the major axis direction of the motor output shaft and the major axis direction of the tool bit intersect each other, that is, the impact tool in which the tool bit and the motor are arranged in an L shape. can be configured.
  • a striking tool effective in reducing weight and improving operability is provided.
  • FIG. 4 is a sectional view taken along line AA in FIG. 3.
  • FIG. 4 is a sectional view taken along line BB in FIG. 3.
  • FIG. 7 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 7 is a sectional view taken along the line DD in FIG. 6. It is sectional drawing which shows the structure of the electric hammer drill which concerns on 4th Embodiment.
  • the electric hammer drill 100 is configured mainly by a main body 101 that forms an outline of the electric hammer drill 100 as viewed generally.
  • a hammer bit 119 is detachably attached to the distal end region of the main body 101 via a cylindrical tool holder 159.
  • the hammer bit 119 is attached to the tool holder 159 so as to be relatively movable in the axial direction and integrally rotate in the circumferential direction.
  • a hand grip 107 gripped by the operator is connected to the end of the main body 101 opposite to the tip region.
  • the handgrip 107 extends from the end of the main body 101 in a direction intersecting with the long axis direction of the main body 101 (the long axis direction of the hammer bit 119), whereby the pistol type electric hammer drill 100 is seen in a side view. Is configured.
  • a side grip 109 as an auxiliary handle is detachably attached to the distal end region side of the main body 101, and an operator holds the hand grip 107 and the side grip 109 and operates the electric hammer drill 100 to perform machining work. I do.
  • the main body 101 corresponds to the “tool main body” in the present invention
  • the hammer bit 119 corresponds to the “tool bit” in the present invention
  • the hand grip 107 is an example of an implementation configuration corresponding to the “handle” in the present invention. It is.
  • the hammer bit 119 side in the longitudinal direction of the main body 101 is defined as “front side” or “front side”
  • the handgrip 107 side is defined as “rear side” or “rear side”.
  • ”. 1 is defined as “upper side” or “upper side”
  • the lower side of the page is defined as “lower side” or “lower side”.
  • the main body 101 mainly includes a motor housing 103 that houses the electric motor 110 and a gear housing 105 that houses the motion conversion mechanism 120, the striking element 140, and the power transmission mechanism 150.
  • the electric motor 110 is an example of an implementation configuration corresponding to the “motor” in the present invention.
  • the rotation output of the electric motor 110 is appropriately converted into a linear motion by the motion conversion mechanism 120 and then transmitted to the striking element 140.
  • an impact force in the major axis direction (left and right direction in FIG. 1) of the hammer bit 119 is generated via the striking element 140.
  • the rotational output of the electric motor 110 is transmitted to the hammer bit 119 after being appropriately decelerated by the power transmission mechanism 150. Thereby, the hammer bit 119 is rotated in the circumferential direction.
  • the electric motor 110 is energized and driven by a pulling operation of a trigger 107 a disposed on the hand grip 107.
  • the electric motor 110 is configured as an outer rotor type motor in which a stator 111 is disposed on the inner side and a rotor 112 is disposed on the outer side.
  • the electric motor 110 is arranged such that the major axis direction of the rotor 112 (motor shaft 113) is parallel to the major axis direction of the hammer bit 119 (accordingly, the major axis direction of the main body 101).
  • the stator 111 is mainly composed of a substantially annular coil holding member 111b and a mounting flange member 111c.
  • the coil holding member 111b holds a drive coil 111a for driving the rotor 112.
  • the mounting flange member 111c has a cylindrical portion for supporting the coil holding member 111b, and supports the coil holding member 111b by press-fitting the cylindrical portion into an annular hole of the coil holding member 111b.
  • the flange portion of the mounting flange member 111 c is fixed to the rear vertical wall portion 103 a of the motor housing 103 with a screw 114.
  • the rotor 112 is formed as a substantially cup-shaped member that is supported by the motor shaft 113 so as to be integrally rotatable.
  • a magnet 115 is attached to the inner peripheral surface of the rotor 112 so as to face the outer periphery of the stator 111, and
  • a motor shaft 113 is press-fitted and fixed at the center.
  • the motor shaft 113 is an example of an implementation configuration corresponding to the “output shaft” in the present invention.
  • the rear side of the motor shaft 113 extends loosely through the center hole of the mounting flange member 111 c of the stator 111 and extends rearward, and the extended end of the motor shaft 113 extends vertically behind the motor housing 103.
  • the wall 103a is rotatably supported via a bearing (ball bearing) 116. Further, the front side of the motor shaft 113 extending toward the gear housing 105 side is rotatably supported by a vertical wall portion 106 a of the inner housing 106 via a bearing (ball bearing) 117, and It extends through the vertical wall 106 a and into the gear housing 105. A drive gear 121 is attached to the extended end portion so as to rotate integrally.
  • the inner housing 106 is fixedly disposed in the gear housing 105.
  • the motion conversion mechanism 120 includes a drive gear 121 that is rotationally driven in a vertical plane by the electric motor 110, a driven gear 123 that meshes and engages with the drive gear 121, and an intermediate shaft 125 that rotates integrally with the driven gear 123.
  • the rotating body 127 that rotates integrally with the intermediate shaft 125, the substantially annular rocking ring 129 that rocks in the longitudinal direction of the hammer bit 119 by the rotation of the rotating body 127, and the straight line by the rocking of the rocking ring 129.
  • a cylindrical piston 130 having a bottomed cylindrical shape that is reciprocally moved in the shape.
  • the intermediate shaft 125 corresponds to a “drive shaft” in the present invention
  • the swing ring 129 is an example of an implementation configuration corresponding to a “swing member” in the present invention.
  • the drive gear 121 and the driven gear 123 are set for constant-speed rotation transmission from the motor shaft 113 to the intermediate shaft 125, and can drive the intermediate shaft 125 at the same rotational speed as the motor shaft 113.
  • the driving gear 121 is attached to the front end portion of the motor shaft 113 and is rotated integrally with the motor shaft 113.
  • the intermediate shaft 125 is disposed in parallel with the major axis direction of the hammer bit 119 (and therefore in parallel with the motor shaft 113). Further, the intermediate shaft 125 is rotatably supported by the gear housing 105 via a bearing (ball bearing) 125a at the front end portion, and at the rear end portion, a bearing (ball ball) is supported on the vertical wall portion 106a of the inner housing 106. Bearing) 125b is supported rotatably.
  • the bearing 117 that supports the front end portion of the motor shaft 113 and the bearing 125b that supports the rear end portion of the intermediate shaft 125 are connected via the inner housing 106 as a single member, specifically, the vertical wall portion 106a.
  • the motor shaft 113 is disposed between the axis of the intermediate shaft 125 and the axial extension line of the hammer bit 119 and behind the intermediate shaft 125.
  • the vertical wall 106a of the inner housing 106 corresponds to the “single bearing support member” in the present invention
  • the bearing 117 corresponds to the “first bearing” in the present invention
  • the bearing 125b in the present invention “ It is an example of the implementation structure corresponding to a "2nd bearing.”
  • the vertical wall portion 106 a of the inner housing 106 also functions as a member that partitions the internal space of the motor housing 103 and the internal space of the gear housing 105.
  • An O-ring 133 is interposed between the inner wall surface of the gear housing 105 and the outer peripheral surface of the vertical wall portion 106a, and an oil seal 135 is interposed between the vertical wall portion 106a and the motor shaft 113. Has been. Thus, leakage of the lubricating oil filled in the gear housing 105 to the motor housing 103 side is prevented.
  • the rotary body 127 attached to the intermediate shaft 125 has a groove that is inclined at a predetermined inclination angle with respect to the axis of the intermediate shaft 125 on the outer peripheral surface thereof.
  • the swing ring 129 is fitted and supported by the rotating body 127 through a ball 128 as a rolling element so as to be relatively rotatable.
  • the ball 128 rolls in the groove of the rotating body 127.
  • the rocking ring 129 is rocked in the major axis direction of the hammer bit 119 in accordance with the rotating operation of the rotating body 127.
  • a columnar rocking rod 129 a is projected in the radial direction (upward) in the upper end region of the rocking ring 129.
  • the rocking rod 129 a is inserted in a loosely fitting manner in the radial direction with respect to a connecting shaft 131 provided at the rear end portion of the cylindrical piston 130. Accordingly, the swing ring 129 is connected to the cylindrical piston 130 via the swing rod 129a and the connecting shaft 131.
  • the connecting shaft 131 is rotatably attached around a horizontal axis that intersects the long axis of the hammer bit 119.
  • the swash bearing type swing mechanism is configured by the rotating body 127, the ball 128, and the swing ring 129 that rotate integrally with the intermediate shaft 125.
  • the cylindrical piston 130 is slidably disposed in the rear cylinder portion of the tool holder 159, and interlocks with the swinging motion of the swinging ring 129 (longitudinal direction component of the hammer bit 119). Performs linear motion along the bore inner wall. Inside the cylindrical piston 130, an air chamber 130a partitioned by a striker 143 described later is formed.
  • the striking element 140 is mainly composed of a striker 143 as a striker and an impact bolt 145 as a meson.
  • the striker 143 is slidably disposed on the bore inner wall of the cylindrical piston 130.
  • the striker 143 is driven via a pressure fluctuation (air spring) in the air chamber 130a accompanying the sliding movement of the cylindrical piston 130, and collides (hits) the impact bolt 145.
  • the impact bolt 145 is slidably disposed in the front cylinder portion of the tool holder 159 and transmits the operating energy (striking force) of the striker 143 to the hammer bit 119.
  • the cylindrical tool 130, the striker 143, and the impact bolt 145 constitute the “tool drive mechanism” in the present invention.
  • the power transmission mechanism 150 is mainly configured by a first transmission gear 151, a second transmission gear 153, and a tool holder 159 as a final shaft.
  • the first transmission gear 151 is disposed on the opposite side of the driven gear 123 on the intermediate shaft 125 with the rocking ring 129 interposed therebetween.
  • the second transmission gear 153 meshes with and engages with the first transmission gear 151 and rotates around the long axis direction of the hammer bit 119.
  • the tool holder 159 rotates coaxially with the second transmission gear 153 around the long axis direction of the hammer bit 119.
  • the tool holder 159 is a substantially cylindrical tubular member, and is held by the gear housing 105 so as to be rotatable around the long axis of the hammer bit 119. Further, the tool holder 159 includes a front cylindrical portion that accommodates and holds the shaft portion of the hammer bit 119 and the impact bolt 145, and a cylindrical piston 130 that is slidably accommodated and extends rearwardly from the front cylindrical portion. A rear cylinder portion.
  • the power transmission mechanism 150 configured in this way transmits the rotational output of the intermediate shaft 125 that is rotationally driven by the electric motor 110 from the first transmission gear 151 to the tool holder 159 and the hammer bit 119 via the second transmission gear 153. To do.
  • the electric hammer drill 100 configured as described above, when the electric motor 110 is energized and driven by the pulling operation of the trigger 107a by the user, and the rotating body 127 is rotated together with the intermediate shaft 125, the swing ring 129 is turned into the hammer bit. 119 is swung in the long axis direction. Thereby, the cylindrical piston 130 is slid linearly in the tool holder 159. Then, the striker 143 linearly moves in the cylindrical piston 130 due to the pressure fluctuation of the air in the air chamber 130 a due to the swinging motion of the cylindrical piston 130. The striker 143 collides with the impact bolt 145 to transmit the kinetic energy to the hammer bit 119.
  • the tool holder 159 is rotated in the vertical plane via the first transmission gear 151 and the second transmission gear 153, and the tool holder 159 is further rotated.
  • the hammer bit 119 held at is rotated integrally.
  • the hammer bit 119 performs the hammering operation in the axial direction and the drilling operation in the circumferential direction, and performs a drilling operation on the workpiece (concrete).
  • the electric motor 110 is constituted by an outer rotor type motor in which the rotor 112 is disposed outside the stator 111.
  • the outer rotor type motor By adopting the outer rotor type motor, it is possible to increase the outer diameter of the rotor 112 and to provide a large rotor inertia moment. For this reason, compared with an inner rotor type motor, a big torque can be generated.
  • the electric motor is an inner rotor type motor, a speed reduction mechanism must be provided between the motor shaft and the intermediate shaft in order to secure the torque necessary to generate a predetermined striking force, which increases the weight. Or, there is a possibility that the aircraft will become larger.
  • the electric motor 110 is configured by the outer rotor type motor, it is possible to reduce the size and weight of the machine body, thereby improving the operability of the electric hammer drill 100 when performing a machining operation. Can be improved.
  • the output of the electric motor 110 is constant, the number of rotations can be reduced, so that vibration of the electric hammer drill 100 due to motor vibration can be reduced, and countermeasures for resonance are not required, and durability of the bearings 116 and 117 is improved. Can do.
  • the bearing 116 that receives the rear end portion of the motor shaft 113 is directly supported by the rear vertical wall portion 103 a of the motor housing 103.
  • the conventional electric hammer drill is configured to support the bearing 116 on the motor housing 103 via an elastic body.
  • the electric motor 110 is constituted by an outer rotor type motor, the number of rotations of the motor shaft 113 can be reduced, so that the bearing 116 is directly supported by the motor housing 103 without an elastic body.
  • the occurrence of resonance can be suppressed. Thereby, the number of parts can be reduced and the structure can be simplified.
  • the bearing 117 that rotatably supports the front end portion of the motor shaft 113 and the bearing 125 b that rotatably supports the rear end portion of the intermediate shaft 125 are arranged in the vertical direction of the inner housing 106. It is supported by the wall 106a. That is, it is set as the structure which supports the bearings 117 and 125b of two different shafts with one member called the vertical direction wall part 106a. For this reason, the shaft center accuracy between the shafts of the motor shaft 113 and the intermediate shaft 125 can be improved as compared with the case where the motor shaft bearing 117 and the intermediate shaft bearing 125b are individually supported by separate support members. In addition, the number of members can be reduced, the structure can be simplified, and the assemblability can be improved.
  • the motor shaft 113 of the electric motor 110 and the intermediate shaft 125 of the motion conversion mechanism 120 are arranged coaxially and directly connected (that is, directly coupled). ).
  • the motor shaft 113 and the intermediate shaft 125 arranged on the same axis have a square hole formed on one of the shaft end faces facing each other, and a square axis formed on the other, and the angle between the square hole and the square axis. It is connected so that power can be transmitted by fitting.
  • the coupling means between the motor shaft 113 and the intermediate shaft 125 is not limited to coupling by fitting, but can be changed to coupling by screws or press-fitting or coupling via an intermediate member such as a coupling. is there.
  • the arrangement position of the electric motor 110 is displaced downward as compared with the case of the first embodiment.
  • an empty area can be formed inside the motor housing 103 above the electric motor 110 and behind the extension line of the hammer bit 119, that is, behind the striking axis.
  • the dynamic vibration absorber 160 is arranged using the empty area.
  • the dynamic vibration absorber 160 is an example of an implementation configuration corresponding to the “predetermined functional member for processing work” in the present invention.
  • the dynamic vibration absorber 160 is located on the left and right side areas of the empty area, that is, at an obliquely upper position when viewed from the center position of the electric motor 110 and the hammer bit 119. It is disposed on a horizontal axis that crosses the axis, and is accommodated in the internal space of the motor housing 103. Both the left and right dynamic vibration absorbers 160 have the same structure.
  • the dynamic vibration absorber 160 includes a cylindrical body 161, a substantially cylindrical weight 163, an urging spring 165 as an elastic element, a guide sleeve 167 that guides the weight 163, and a spring receiver 169. , And the main constituent.
  • the cylindrical body 161 is formed so as to extend in parallel with the major axis direction of the hammer bit 119.
  • the weight 163 is slidably disposed in the cylinder 161.
  • the urging springs 165 are disposed in the cylinder body 161 at the front and rear in the longitudinal direction of the hammer bit 119 of the weight 163 in order to apply an elastic force to the weight 163.
  • the spring receiver 169 is disposed at one end of each of the front and rear biasing springs 165 and supports the end of the hammer bit 119 opposite to the weight 163 side in the major axis direction.
  • the guide sleeve 167 is provided as a circular cylindrical member that ensures a stable sliding operation of the weight 163 and is fitted into the cylindrical hole of the cylindrical body 161.
  • the weight 163 as the vibration damping element and the biasing spring 165 cooperate with the main body 101 as the vibration damping object in a passive manner. Perform proper vibration control. Thereby, the vibration which arises in the main-body part 101 can be suppressed.
  • the airframe can be reduced in size and weight as in the first embodiment described above. It is possible to achieve the operational effects such as improvement in performance.
  • the motor shaft 113 of the electric motor 110 is arranged coaxially with the intermediate shaft 125 of the motion conversion mechanism 120, so that the electric motor 110 inside the motor housing 103 is located above the electric motor 110 and behind the striking axis. An empty area is formed, and the dynamic vibration absorber 160 is arranged on the striking axis in the empty area in a side view. For this reason, it is possible to efficiently suppress the vibration of the main body 101 by the dynamic vibration absorber 160 during processing work, and the work environment when the operator grips the hand grip 107 and operates the electric hammer drill 100 is improved. Can improve.
  • the dynamic vibration absorber 160 when the dynamic vibration absorber 160 is accommodated and disposed in the upper empty area in the motor housing 103, the electric hammer drill 100 is viewed from the lower side intersecting the long axis direction of the hammer bit 119 in FIG. In this case, at least a part of the dynamic vibration absorber 160 is disposed in a region that cannot be visually recognized by the electric motor 110. That is, the dynamic vibration absorber 160 is configured such that a part thereof is hidden behind the electric motor 110.
  • the outer rotor type motor in which the stator 111 and the rotor 112 are arranged directly in the motor housing 103 is adopted as the electric motor 110, the dynamic vibration absorber 160 is the same as the electric motor 110.
  • the configuration is such that it is hidden behind the rotor 112.
  • the dynamic vibration absorber 160 is preferably arranged so that almost all of the dynamic vibration absorber 160 is hidden behind the electric motor 110.
  • the outer shape of the dynamic vibration absorber 160 is mounted with respect to the direction orthogonal to the plane including both the axis of the hammer bit 119 and the axis of the motor shaft 113. It becomes possible to achieve downsizing.
  • the electric hammer drill 100 was viewed from the side which is a straight line perpendicular to a plane including both the axis of the hammer bit 119 and the axis of the motor shaft 113 and is along the straight line intersecting the axis of the hammer bit 119.
  • the dynamic vibration absorber 160 is preferably arranged so that almost all of the dynamic vibration absorber 160 is hidden behind the electric motor 110.
  • the motor shaft 113 and the intermediate shaft 125 have a direct connection structure, it is possible to prevent the occurrence of noise due to backlash when power is transmitted by a gear.
  • the electric hammer drill 100 is a modification of the second embodiment.
  • an empty region above the electric motor 110 is replaced with a dynamic vibration absorber 160 to provide vibration isolation for hand grips.
  • a spring 179 is arranged. That is, the electric motor 110 employs an outer rotor type motor, and the motor shaft 113 is coaxially disposed and directly connected to the intermediate shaft 125 of the motion conversion mechanism 120 as shown in FIG. As a result, an empty area is formed above the electric motor 110 and behind the striking axis.
  • the anti-vibration spring 179 is arranged on the striking axis in a side view in the empty area. Yes.
  • the anti-vibration spring 179 corresponds to the “predetermined functional member for processing operation” and the “elastic body” in the present invention.
  • the hand grip 107 includes an upper cover 171 extending forward so as to cover the motor housing 103, and on the left and right sides of the upper cover 171, as shown in FIG. 8.
  • a substantially U-shaped recess 171a extending linearly in the major axis direction of the hammer bit 119 is formed.
  • the motor housing 103 is provided with a guide member 173 for connecting the hand grip 107.
  • the guide member 173 has left and right protrusions 173a with which the concave portion 171a of the upper cover 171 is slidably engaged.
  • the hand grip 107 can be moved relative to the motor housing 103 in the longitudinal direction of the hammer bit 119. Articulated.
  • the concave portion 171a may be provided on the guide member 173, and the protrusion 173a may be provided on the upper cover 171.
  • the guide member 173 has two cylindrical guide portions 173b on the left and right sides that extend linearly in the major axis direction of the hammer bit 119 below the protrusion 173a.
  • the rod-shaped member 175 having a circular cross section provided on the hand grip 107 is slidably supported by the cylindrical guide portion 173b. That is, the guide member 173 is provided as a connecting member of the hand grip 107 with respect to the motor housing 103, and integrally includes left and right protrusions 173a and left and right cylindrical guide portions 173b.
  • the left and right cylindrical guide portions 173b are arranged parallel to each other across the hammering axis of the hammer bit 119 and on the hammering axis in a side view.
  • the left and right protrusions 173a are disposed parallel to each other across the hammer axis of the hammer bit 119 and above the hammer axis in a side view.
  • the rod-like member 175 of the hand grip 107 is inserted from the rear into the cylindrical hole of the cylindrical guide portion 173b of the guide member 173, and the front end portion and the rear end portion thereof are slidable in the cylindrical hole of the cylindrical guide portion 173b. Is fitted.
  • a stopper screw 177 is screwed into each guide member 173 from its front end, and the head 177a of the stopper screw 177 abuts against the radial end surface of the cylindrical guide portion 173b, so that the cylindrical guide portion 173b is in contact with the guide member 173.
  • the rod-shaped member 175 is prevented from coming off.
  • the anti-vibration spring 179 is configured by a compression coil spring, and one end in the axial direction is in contact with the cylindrical guide portion 173 b and the other end is in contact with the rod-shaped member 175. As a result, the anti-vibration spring 179 applies a biasing force to the hand grip 107 rearwardly away from the motor housing 103.
  • the hand grip 107 is elastically connected to the motor housing 103 via the vibration-proof spring 179. Since the configuration other than the above is configured in the same manner as in the second embodiment, the same components as those in the second embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the vibration generated in the main body 101 during the processing operation is Transmission to the grip 107 can be cut off or reduced by the anti-vibration spring 179.
  • An outer rotor type motor is adopted as the electric motor 110.
  • the anti-vibration spring 179 when the anti-vibration spring 179 is arranged on the striking axis in a side view in the motor housing 103, the hammer bit 119 is pressed against the workpiece to perform the machining operation. Then, the relative movement operation of the hand grip 107 with respect to the motor housing 103 is stabilized. Thereby, the anti-vibration function of the anti-vibration spring 179 can be exhibited efficiently.
  • the left and right anti-vibration springs 179 are visually recognized by the electric motor 110 when the electric hammer drill 100 is viewed from the lower side intersecting the long axis direction of the hammer bit 119 in FIG. It is set as the structure arrange
  • the vibration isolation spring 179 is the same as the electric motor 110. Of these, the configuration is such that it is hidden behind the rotor 112.
  • the whole is hidden behind the electric motor 110 literally means that the whole of the anti-vibration spring 179 is hidden behind the electric motor 110, and the entire anti-vibration spring 179 is almost entirely hidden.
  • a mode that is hidden in the shade is preferably included.
  • the vibration isolating spring 179 is in an area that cannot be visually recognized by the electric motor 110. It is good also as a structure arrange
  • the vibration-proof spring 179 is preferably arranged so that almost all of the vibration-proof spring 179 is hidden behind the electric motor 110.
  • the electric hammer drill 100 includes a hand grip 107 having an upper end and a lower end connected to the main body 101, and a battery pack 180 serving as a driving power source for the electric motor 110 at the lower end of the hand grip 107. Is removably attached.
  • the hand grip 107 is configured as a D-type main handle in a side view.
  • an electric motor 110 is disposed in a lower region of the main body 101 as shown in the drawing.
  • the electric motor 110 is configured as an outer rotor type motor in which the rotor 112 is disposed outside the stator 111, as in the above-described embodiments.
  • mold motor the same code
  • the motor shaft 113 of the electric motor 110 intersects (orthogonal) with respect to the intermediate shaft 125 and is connected to the intermediate shaft 125 via two bevel gears 181 and 183. That is, a drive bevel gear 181 that rotates integrally with the motor shaft 113 is provided at the tip (upper end) of the motor shaft 113, and the rear end of the intermediate shaft 125 is engaged with and engaged with the drive bevel gear 181. A driven bevel gear 183 that rotates integrally with 125 is provided.
  • the bevel gears 181 and 183 are set so that the reduction ratio is 1. That is, the motor shaft 113 and the intermediate shaft 125 are configured to be rotationally driven at a constant speed.
  • the intermediate shaft 125 is disposed parallel to the axis of the hammer bit 119. Since the configuration of the electric hammer drill 100 other than the above is configured in substantially the same manner as in the first embodiment described above, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the electric motor 110 is disposed in the lower region of the main body 101.
  • the rotational speed of the motor shaft is reduced by a driving bevel gear and a driven bevel gear arranged between the motor shaft and the intermediate shaft.
  • the required striking force is secured by increasing the torque.
  • the outer diameter of the driven bevel gear is increased, and as a result, the position of the electric motor 110 is further lowered.
  • the position of the center of gravity of the electric hammer drill 100 is far from the long axis of the hammer bit 119, that is, the hitting axis. Therefore, there is a difficulty in that the reaction (moment about the center of gravity) received from the workpiece side during machining is large and difficult to operate.
  • the electric motor 110 is constituted by an outer rotor type motor, when the rotation output is transmitted from the motor shaft 113 of the electric motor 110 to the intermediate shaft 125, the rotational speed of the motor shaft 113 is reduced. Even if not, the required striking force can be secured. For this reason, the outer diameter of the driven bevel gear 183 can be reduced, the electric motor 110 can be disposed close to the striking axis, and the center of gravity position of the electric hammer drill 100 can be brought close to the striking axis. Thereby, the reaction (moment about the center of gravity) received from the workpiece side during the machining operation is reduced, and the operability can be improved.
  • the electric motor 110 is composed of an outer rotor type motor
  • the airframe can be reduced in size and weight as in the case of the first embodiment described above, and the operability is improved. It is possible to achieve the effects such as.
  • the “functional member” disposed in the empty area above the electric motor 110 has been described in the case of the dynamic vibration absorber 160 and the vibration isolation spring 179, but is not limited thereto.
  • a hook as a functional member used when the electric hammer drill 100 is housed in a wall or when the electric hammer drill 100 is carried by being hooked on a predetermined portion.
  • at least a part of the dynamic vibration absorber 160 and the vibration-proof spring 179 is hidden inside the outline of the electric motor 110 (the maximum outer diameter portion of the rotor 112), that is, behind the electric motor 110.
  • the motor shaft 113 and the intermediate shaft 125 may not be arranged on the same axis as long as they can be arranged.
  • the motor shaft 113 and the intermediate shaft 125 are arranged coaxially
  • the motor shaft 113 and the intermediate shaft 125 are directly connected.
  • both the shafts 113 and 125 are integrally formed. It doesn't matter.
  • the electric hammer drill 100 has been described as an example of a striking tool.
  • the hammer bit 119 may be applied to an electric hammer that performs only a linear motion.
  • the main body 101 is an example of a configuration corresponding to the “tool main body” of the present invention.
  • the hammer bit 119 is an example of a configuration corresponding to the “tool bit” of the present invention.
  • the hand grip 107 is an example of a configuration corresponding to the “handle” of the present invention.
  • the electric motor 110 is an example of a configuration corresponding to the “motor” of the present invention.
  • the motor shaft 113 is an example of a configuration corresponding to the “output shaft” of the present invention.
  • the intermediate shaft 125 is an example of a configuration corresponding to the “drive shaft” of the present invention.
  • the swing ring 129 is an example of a configuration corresponding to the “swing member” of the present invention.
  • the vertical wall portion 106a of the inner housing 106 is an example of a configuration corresponding to the “single bearing support member” of the present invention.
  • the bearing 117 is an example of a configuration corresponding to the “first bearing” of the present invention.
  • the bearing 125b is an example of a configuration corresponding to the “second bearing” of the present invention.
  • the dynamic vibration absorber 160 is an example of a configuration corresponding to the “predetermined functional member for processing work” of the present invention.
  • the anti-vibration spring 179 is an example of a configuration corresponding to the “predetermined functional member for processing work” of the present invention.
  • the anti-vibration spring 179 is an example of a configuration corresponding to the “elastic body” of the present invention.
  • the working tool according to the present invention can be configured in the following manner.
  • (Aspect 1) “It is a striking tool that performs a predetermined processing operation on a workpiece by a striking motion of the tool bit in the long axis direction, A motor having a rotor and a stator; A tool body for housing the motor; A drive shaft that is arranged parallel to the long axis of the tool bit and is driven to rotate by the motor; A swing member supported by the drive shaft and performing a swing operation in the axial direction of the drive shaft based on a rotation operation of the drive shaft; A tool driving mechanism coupled to the swing member, linearly moving in the longitudinal direction of the tool bit by the swing operation of the swing member, and driving the tool bit linearly;
  • the said motor is comprised as an outer rotor type motor with which the said rotor is arrange
  • (Aspect 2) A striking tool according to the first aspect, The impact tool characterized in that the drive shaft is configured to be driven at the same rotational speed as the output shaft of the motor.
  • (Aspect 3) A striking tool according to aspect 1 or 2, A first bearing that rotatably supports the output shaft of the motor, and a second bearing that rotatably supports the drive shaft; The impact tool, wherein the first bearing and the second bearing are supported by the tool body via a single bearing support member.
  • (Aspect 4) A striking tool according to any one of the first to third aspects, An impact tool, wherein an output shaft of the motor and the drive shaft are arranged coaxially.
  • (Aspect 5) A striking tool according to any one of the first to fourth aspects, The long axis of the tool bit and the drive shaft are arranged in parallel with a predetermined distance apart in a direction intersecting the extending direction of the long axis, A virtual projection plane when viewed from one side in a direction along the straight line, which is a straight line along a plane including both the long axis of the tool bit and the drive shaft, and intersects the long axis of the tool bit An impact tool, wherein at least a part of a predetermined functional member for the machining operation is disposed inside a projection area of the motor.
  • (Aspect 6) A striking tool according to any one of the above aspects 1 to 5,
  • the long axis of the tool bit and the drive shaft are arranged in parallel and separated by a predetermined distance in a direction intersecting the extending direction of the long axis,
  • An impact tool wherein at least a part of a predetermined functional member for the machining operation is disposed inside a projection area of the motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Percussive Tools And Related Accessories (AREA)

Abstract

【課題】 軽量化及び操作性の向上に有効な打撃工具を提供する。 【解決手段】 打撃工具であって、回転子112と固定子111を有する電動モータ110と、ハンマビット119の長軸線と平行に配置されて、電動モータ110により回転駆動される中間軸125と、中間軸125に支持されて、当該中間軸125の回転動作に基づき当該中間軸125の軸線方向に揺動動作を行う揺動リング129と、揺動リング129の揺動動作によってハンマビット119の長軸方向に直線動作して、当該ハンマビット119を直線状に駆動する工具駆動機構130,143,145と、を有する。電動モータ110は、回転子112が固定子111の外側に配置されたアウタロータ型モータとして構成されている。

Description

打撃工具
 本発明は、揺動機構を用いて工具ビットを直線状に駆動させることにより、被加工材に所定の加工作業を行う打撃工具に関する。
 2012年1月26日に出願された特願2012-014080号が、関連出願の参照とされ、その内容全体が参照による引用として用いられる。
 特開2007-7832号公報は、揺動機構を用いて工具ビットを直線状に駆動するスワッシュベアリング式の電動ハンマドリルを開示している。上記公報に記載の打撃工具としての電動ハンマドリルは、電動モータで回転駆動される回転体と、当該回転体の回転に伴い工具ビット長軸方向に揺動運動を行う揺動部材と、を主体として構成されるスワッシュベアリング式揺動機構を有している。当該電動ハンマドリルは、電動モータの回転出力を揺動機構により直線運動に変換して、工具ビットを直線状に駆動する構成である。電動モータには、固定子と、当該固定子の内側に配置された回転子と、を有するインナロータ型モータが採用されており、減速機構によってモータ回転数を減速して回転体に伝達している。
 上記構成のスワッシュベアリング式揺動機構は、比較的小型のハンマドリルで採用されているが、このような小型の電動ハンマドリルの場合、機体の軽量化を図ることでの操作性の向上に対する要請が高い。
 本発明は、上記に鑑みてなされたものであり、軽量化及び操作性の向上に有効な打撃工具を提供することを目的とする。
 上記課題を解決するため、本発明の好ましい形態によれば、工具ビットの長軸方向の打撃動作により被加工材に所定の加工作業を行う打撃工具が構成される。打撃工具は、回転子と固定子を有するモータと、モータを収容する工具本体と、工具ビットの長軸線と平行に配置されて、モータにより回転駆動される駆動軸と、駆動軸に支持されて、当該駆動軸の回転動作に基づき当該駆動軸の軸線方向に揺動動作を行う揺動部材と、揺動部材と連結され、揺動部材の揺動動作によって工具ビットの長軸方向に直線動作して、当該工具ビットを直線状に駆動する工具駆動機構と、を有する。そしてモータは、回転子が固定子の外側に配置されたアウタロータ型モータとして構成されている。
 本発明によれば、モータにつき、回転子が固定子の外側に配置されたアウタロータ型モータとしたことにより、モータの回転部分の外径を大きく形成することができて、駆動モータに大きなロータ慣性モーメントを持たせることが可能となる。このため、インナロータ型モータを採用した打撃工具に比べて、大きなトルクを発生することができる。これにより、モータと当該モータにより駆動される駆動軸間に減速機構を必要とするインナロータ型モータが搭載された従来の打撃工具に比べて、機体の小型化、軽量化及び操作性の向上を図る上で有効となる。また、モータの出力を一定とした場合、アウタロータ型モータは、インナロータ型モータよりも大きなトルクを発生し得ることで、モータの回転数を低くすることができる。この結果、モータ振動による打撃工具の振動を低減することができる。
 本発明に係る打撃工具の更なる形態によれば、駆動軸が、モータの出力軸と同一回転数で駆動されるように構成されている。なお、この形態における「同一回転数で駆動される」とは、文字通り同一回転数で駆動される態様のみならず、概ね同一回転数で駆動される態様を好適に包含する。また、「駆動」の態様としては、駆動軸がモータの出力軸と直結する態様、駆動軸が出力軸と間接的に連結する態様のいずれも好適に包含する。なお、間接的に連結する態様としては、例えば、駆動軸がギアないしベルトを介して出力軸と連結する態様が考えられる。
 本発明に係る打撃工具の更なる形態によれば、モータの出力軸を回転自在に支持する第1軸受と、駆動軸を回転自在に支持する第2軸受が、単一の軸受支持部材を介して工具本体に支持されている。
 この形態によれば、第1軸受と第2軸受とを、単一の軸受支持部材で支持する構成としたことにより、第1軸受と第2軸受とのそれぞれを、別々の支持部材で支持する構成の場合に比べ、駆動軸とモータの出力軸との軸相互間の軸心精度を向上できるとともに、部材点数を削減し、構造の簡素化、組付け性の向上を図ることができる。
 本発明に係る打撃工具の更なる形態によれば、モータの出力軸と駆動軸が、同軸で配置されている。
 この形態によれば、モータの出力軸と駆動軸が、同軸で配置される構成とすることで、工具ビットの長軸線の延長線上におけるモータ上方にスペースが形成可能となり、当該スペースを他の機能部材の配置スペースとして活用することができる。
 本発明に係る打撃工具の更なる形態によれば、工具ビットの長軸線と駆動軸とは、当該長軸線の延在方向と交差する方向に所定距離だけ離間して平行に配置されている。そして、工具ビットの長軸線と駆動軸の双方を含む面に沿う直線であって、工具ビットの長軸線と交差する直線に関し、当該直線に沿う方向の一方側から見たときの仮想投影面上におけるモータの投影領域の内側に、加工作業のための所定の機能部材の少なくとも一部が配置されている。なお、この形態における「加工作業のための所定の機能部材」とは、典型的には、加工作業時において、作業者が握る打撃工具操作用ハンドルの振動を防止ないし低減するために備えられる防振部材が該当する。
 この形態によれば、機能部材の少なくとも一部が、モータの陰に隠れる配置とすることにより、工具ビットの長軸線と駆動軸の双方を含む面に直交する方向に関して、外郭形状の小型化を図ることが可能となる。
 本発明に係る打撃工具の更なる形態によれば、機能部材は、工具本体の振動を抑えるための防振機構である。なお、この形態における「防振機構」とは、典型的には、工具本体の振動に対して、当該振動を抑えるように作動する動吸振器、カウンタウェイト等の制振機構が該当する。
 この形態によれば、工具本体の振動を抑える防振機構を備えたことにより、加工作業時において、工具本体の振動を抑えて作業者の作業環境を改善できる。
 本発明に係る打撃工具の更なる形態によれば、作業者が握るためのハンドルを更に有し、当該ハンドルは、工具本体に連結されている。そして、機能部材は、工具本体とハンドルとを連結する弾性体である。
 この形態によれば、加工作業時において、工具本体に発生した振動が、ハンドルに伝達することを防止ないし低減し、作業者の作業環境を改善できる。
 本発明に係る打撃工具の更なる形態によれば、モータの出力軸と駆動軸とは、互いに交差状に配置されて、べベルギアにより連結されている。
 この形態によれば、打撃工具の側面視において、モータの出力軸の長軸方向と工具ビットの長軸方向が互いに交差する構成、すなわち、工具ビットとモータが、L型に配置された打撃工具を構成することができる。
 本発明によれば、軽量化及び操作性を向上する上で有効な打撃工具が提供されることとなった。
 本発明の他の特質、作用および効果については、本明細書、特許請求の範囲、添付図面を参照することで直ちに理解可能である。
第1の実施形態に係る電動ハンマドリルの構成を示す断面図である。 図1の主要部を拡大して示す断面図である。 第2の実施形態に係る電動ハンマドリルの構成を示す断面図である。 図3のA-A線断面図である。 図3のB-B線断面図である。 第3の実施形態に係る電動ハンマドリルの構成を示す断面図である。 図6のC-C線断面図である。 図6のD-D線断面図である。 第4の実施形態に係る電動ハンマドリルの構成を示す断面図である。
 以上および以下の記載に係る構成ないし方法は、本発明にかかる「打撃工具」の製造および使用、当該「打撃工具」の構成要素の使用を実現せしめるべく、他の構成ないし方法と別に、あるいはこれらと組み合わせて用いることができる。本発明の代表的実施形態は、これらの組み合わせも包含し、添付図面を参照しつつ詳細に説明される。以下の詳細な説明は、本発明の好ましい適用例を実施するための詳細情報を当業者に教示するに留まり、本発明の技術的範囲は、当該詳細な説明によって制限されず、特許請求の範囲の記載に基づいて定められる。このため、以下の詳細な説明における構成や方法ステップの組み合わせは、広義の意味において、本発明を実施するのに全て必須であるというものではなく、添付図面の参照番号とともに記載された詳細な説明において、本発明の代表的形態を開示するに留まるものである。
 (本発明の第1の実施形態)
 以下、本発明の第1の実施形態につき、図1及び図2を参照しつつ詳細に説明する。本発明の実施の形態では、打撃工具の一例として電動ハンマドリルを用いて説明する。図1に示すように、電動ハンマドリル100は、概括的に見て、電動ハンマドリル100の外郭を形成する本体部101を主体として構成される。本体部101の先端領域には、ハンマビット119が、筒状のツールホルダ159を介して着脱自在に取付けられる。ハンマビット119は、ツールホルダ159に対し、軸方向には相対移動可能とされ、周方向には一体回転するように装着される。本体部101の先端領域の反対側端部には、作業者が握るハンドグリップ107が連接されている。ハンドグリップ107は、本体部101の端部から当該本体部101の長軸方向(ハンマビット119の長軸方向)と交差する方向に延在され、これにより、側面視でピストル型の電動ハンマドリル100が構成されている。また、本体部101の先端領域側には、補助ハンドルとしてのサイドグリップ109が取外し自在に取付けられており、作業者はハンドグリップ107とサイドグリップ109を握り、電動ハンマドリル100を操作して加工作業を行う。
 本体部101は、本発明における「工具本体」に対応し、ハンマビット119は、本発明における「工具ビット」に対応し、ハンドグリップ107は、本発明における「ハンドル」に対応する実施構成の一例である。なお、本実施の形態では、便宜上、本体部101の長軸方向におけるハンマビット119側を、「前側」ないし「前方側」として規定し、ハンドグリップ107側を、「後側」ないし「後方側」として規定する。また、図1中の紙面上方を、「上側」ないし「上方側」と規定し、紙面下方を、「下側」ないし「下方側」と規定する。
 本体部101は、電動モータ110を収容したモータハウジング103と、運動変換機構120、打撃要素140及び動力伝達機構150を収容したギアハウジング105と、を主体として構成される。電動モータ110は、本発明における「モータ」に対応する実施構成の一例である。電動モータ110の回転出力は、運動変換機構120によって直線動作に適宜変換された上で、打撃要素140に伝達される。これにより、当該打撃要素140を介したハンマビット119の長軸方向(図1における左右方向)への衝撃力が発生する。また、電動モータ110の回転出力は、動力伝達機構150によって適宜減速された上で、ハンマビット119に伝達される。これにより、当該ハンマビット119が周方向に回転動作される。電動モータ110は、ハンドグリップ107に配置されたトリガ107aの引き操作によって通電駆動される。
 図2に示すように、電動モータ110は、内側に固定子111が配置され、外側に回転子112が配置されたアウタロータ型モータとして構成されている。電動モータ110は、回転子112(モータ軸113)の長軸方向が、ハンマビット119の長軸方向(従って、本体部101の長軸方向)と平行となるように配置されている。固定子111は、略円環状のコイル保持部材111bと、取付フランジ部材111cと、を主体として構成されている。コイル保持部材111bは、回転子112を駆動するための駆動コイル111aを保持している。取付フランジ部材111cは、コイル保持部材111bを支持するための筒状部を有しており、筒状部がコイル保持部材111bの円環孔に圧入されることでコイル保持部材111bを支持する。また、取付フランジ部材111cは、フランジ部分がモータハウジング103の後方鉛直壁部103aにねじ114で固定されている。
 回転子112は、モータ軸113に一体回転可能に支持された略カップ状部材として形成され、内周面には、固定子111の外周と対向して磁石115が取付けられるとともに、カップ状底部の中央にモータ軸113が圧入固定されている。モータ軸113は、本発明における「出力軸」に対応する実施構成の一例である。モータ軸113の後側は、固定子111の取付フランジ部材111cの中央孔内を、遊嵌状に貫通して後方へ延在されるとともに、その延在端部が、モータハウジング103の後方鉛直壁部103aに軸受(ボールベアリング)116を介して回転自在に支持される。また、ギアハウジング105側に向かって延在するモータ軸113の前側は、インナハウジング106の鉛直方向壁部106aに軸受(ボールベアリング)117を介して回転自在に支持されるとともに、インナハウジング106の鉛直方向壁部106aを貫通してギアハウジング105内へと延出されている。その延出端部に駆動ギア121が一体回転するように取付けられている。なお、インナハウジング106は、ギアハウジング105内に固定状に配置されている。
 運動変換機構120は、電動モータ110により鉛直面内にて回転駆動される駆動ギア121と、当該駆動ギア121に噛み合い係合する被動ギア123と、当該被動ギア123と一体回転する中間軸125と、当該中間軸125と一体回転する回転体127と、回転体127の回転によってハンマビット119の長軸方向に揺動される略環状の揺動リング129と、揺動リング129の揺動によって直線状に往復移動される有底筒状の筒状ピストン130と、を主体として構成される。中間軸125は、本発明における「駆動軸」に対応し、揺動リング129は、本発明における「揺動部材」に対応する実施構成の一例である。駆動ギア121及び被動ギア123は、モータ軸113から中間軸125への等速回転伝達用として設定されており、中間軸125をモータ軸113と同一回転数で駆動することができる。
 駆動ギア121は、モータ軸113の前側端部に取付けられ、モータ軸113と一体回転される。中間軸125は、ハンマビット119の長軸方向と平行(従って、モータ軸113と平行)に配置される。また、中間軸125は、前端部においては、ギアハウジング105に軸受(ボールベアリング)125aを介して回転自在に支持され、後端部においては、インナハウジング106の鉛直方向壁部106aに軸受(ボールベアリング)125bを介して回転自在に支持されている。すなわち、モータ軸113の前端部を支持する軸受117と、中間軸125の後端部を支持する軸受125bが、単一部材としてのインナハウジング106、具体的には、鉛直方向壁部106aを介してギアハウジング105に支持されている。なお、モータ軸113は、中間軸125の軸線とハンマビット119の軸方向延長線との間で、かつ当該中間軸125の後方に配置されている。インナハウジング106の鉛直方向壁部106aは、本発明における「単一の軸受支持部材」に対応し、軸受117は、本発明における「第1軸受」に対応し、軸受125bは、本発明における「第2軸受」に対応する実施構成の一例である。
 また、インナハウジング106の鉛直方向壁部106aは、モータハウジング103の内部空間とギアハウジング105の内部空間とを仕切る部材としても機能している。ギアハウジング105の内壁面と鉛直方向壁部106aの外周面との間には、Oリング133が介在されており、鉛直方向壁部106aとモータ軸113との間には、オイルシール135が介在されている。これにより、ギアハウジング105内に充填された潤滑油のモータハウジング103側への漏出が、防止されている。
 中間軸125に取り付けられた回転体127は、その外周面に、中間軸125の軸線に対し所定の傾斜角度で傾斜する溝が形成されている。揺動リング129は、転動体としてのボール128を介して、回転体127に相対回転可能に嵌合支持されている。なお、ボール128は、回転体127の溝を転動する。また、揺動リング129は、当該回転体127の回転動作に伴って、ハンマビット119の長軸方向に揺動される。揺動リング129の上端部領域には、円柱状の揺動ロッド129aが径方向(上方向)に突設されている。当該揺動ロッド129aは、筒状ピストン130の後端部に設けた連結軸131に対して、径方向に遊嵌状に挿通されている。これにより、揺動リング129は、揺動ロッド129a及び連結軸131を介して、筒状ピストン130と連結された構成とされる。なお、連結軸131は、ハンマビット119の長軸線と交差する水平軸線周りに、回動自在に取付けられている。中間軸125と一体回転する回転体127、ボール128及び揺動リング129によってスワッシュベアリング式揺動機構が構成される。
 筒状ピストン130は、ツールホルダ159のうちの後方筒部内に摺動自在に配置され、揺動リング129の揺動動作(ハンマビット119の長軸方向成分)に連動して、ツールホルダ159のボア内壁に沿った直線動作を行う。筒状ピストン130の内側には、後述するストライカ143によって仕切られる空気室130aが形成されている。
 打撃要素140は、打撃子としてのストライカ143と、中間子としてのインパクトボルト145と、を主体として構成される。ストライカ143は、筒状ピストン130のボア内壁に摺動自在に配置されている。ストライカ143は、筒状ピストン130の摺動動作に伴う空気室130aの圧力変動(空気ばね)を介して駆動され、インパクトボルト145に衝突(打撃)する。インパクトボルト145は、ツールホルダ159のうちの前方筒部内に摺動自在に配置されるとともに、ストライカ143の動作エネルギ(打撃力)をハンマビット119に伝達する。筒状ピストン130、ストライカ143及びインパクトボルト145によって、本発明における「工具駆動機構」が構成される。
 動力伝達機構150は、第1伝達ギア151と、第2伝達ギア153と、最終軸としてのツールホルダ159と、を主体として構成される。第1伝達ギア151は、中間軸125上において、揺動リング129を挟んで、被動ギア123の反対側に配置されている。第2伝達ギア153は、当該第1伝達ギア151に噛み合い係合して、ハンマビット119の長軸方向周りに回転する。ツールホルダ159は、当該第2伝達ギア153と共に同軸でハンマビット119の長軸方向周りに回転する。また、ツールホルダ159は、略円筒状の筒状部材であり、ギアハウジング105によってハンマビット119の長軸周りに回転自在に保持されている。さらに、ツールホルダ159は、ハンマビット119の軸部及びインパクトボルト145を収容保持する前方筒部と、当該前方筒部から後方へ一体に延在して筒状ピストン130を摺動自在に収容保持する後方筒部と、を備えている。
こうして構成された動力伝達機構150は、電動モータ110によって回転駆動される中間軸125の回転出力を、第1伝達ギア151から第2伝達ギア153を経て、ツールホルダ159及びハンマビット119へと伝達する。
 上記のように構成される電動ハンマドリル100において、使用者によるトリガ107aの引き操作によって電動モータ110が通電駆動され、中間軸125と共に回転体127が回転駆動されると、揺動リング129がハンマビット119の長軸方向に揺動される。これにより、筒状ピストン130がツールホルダ159内を直線状に摺動動作される。そして、当該筒状ピストン130の揺動動作による空気室130a内の空気の圧力変動により、ストライカ143が筒状ピストン130内を直線運動する。ストライカ143は、インパクトボルト145に衝突することで、その運動エネルギをハンマビット119に伝達する。
 一方、中間軸125とともに第1伝達ギア151が回転されると、第1伝達ギア151及び第2伝達ギア153を介して、ツールホルダ159が鉛直面内にて回転され、更に、当該ツールホルダ159にて保持されるハンマビット119が一体状に回転される。かくして、ハンマビット119が軸方向のハンマ動作と周方向のドリル動作を行い、被加工材(コンクリート)に穴開け作業を遂行する。
 本実施の形態においては、電動モータ110につき、回転子112が固定子111の外側に配置されたアウタロータ型モータによって構成している。アウタロータ型モータを採用したことにより、回転子112の外径を大きく形成することができ、大きなロータ慣性モーメントを持たせることが可能となる。このため、インナロータ型モータに比べて、大きなトルクを発生することができる。電動モータがインナロータ型モータの場合であれば、所定の打撃力を発生させるに必要なトルクを確保するには、モータ軸と中間軸との間に減速機構を設けなければならず、重量の増大、あるいは機体が大型化する可能性がる。しかるに、本実施の形態によれば、電動モータ110をアウタロータ型モータで構成したことにより、機体の小型化、軽量化が可能となり、これにより、加工作業を行うときの電動ハンマドリル100の操作性を向上できる。また、電動モータ110の出力を一定とした場合、回転数を低くできるため、モータ振動による電動ハンマドリル100の振動を低減できるとともに、共振対策が不要となり、軸受116,117の耐久性を向上することができる。
 また、本実施の形態においては、モータ軸113の後端部を受ける軸受116を、モータハウジング103の後方鉛直壁部103aに直接支持する構成としている。当該構成においては、モータ軸113の回転数が高い場合、モータハウジング103が共振する可能性があることから、従来の電動ハンマドリルでは、弾性体を介して軸受116をモータハウジング103に支持する構成を採用している。しかるに、本実施の形態によれば、電動モータ110をアウタロータ型モータで構成したことにより、モータ軸113の回転数を低くできるため、弾性体を介することなく軸受116をモータハウジング103に直接支持させても共振の発生が抑えられる。これにより、部品点数を削減し、構造の簡素化を図ることができる。
 また、本実施の形態によれば、モータ軸113の前端部を回転自在に支持する軸受117と、中間軸125の後端部を回転自在に支持する軸受125bとを、インナハウジング106の鉛直方向壁部106aによって支持している。すなわち、鉛直方向壁部106aという1つの部材で異なる2つの軸の軸受117,125bを支持する構成としている。このため、モータ軸用軸受117と中間軸用軸受125bとのそれぞれを別々の支持部材で個々に支持する場合に比べ、モータ軸113と中間軸125との軸相互間の軸心精度を向上できるとともに、部材点数を削減し、構造の簡素化、組付け性の向上を図ることができる。
(本発明の第2の実施形態)
 次に本発明の第2の実施形態につき、図3~図5を参照しつつ説明する。本実施の形態に係る電動ハンマドリル100は、図3に示すように、電動モータ110のモータ軸113と運動変換機構120の中間軸125とを、同軸上に配置させて直結(すなわち、直接に結合)する構成としている。同軸上に配置されたモータ軸113と中間軸125とは、互いに対向する軸端面の一方には角孔が形成され、他方には角軸が形成されており、これら角孔と角軸との嵌め合いによって動力伝達可能に結合される。なお、モータ軸113と中間軸125との結合手段については、嵌め合いによる結合に限らず、ねじや圧入による結合、あるいはカップリング等の中間部材を介しての結合等に変更することが可能である。
 本実施の形態では、モータ軸113を中間軸125に同軸上に直結させるために、電動モータ110の配置位置を、前述の第1の実施形態の場合よりも下方へと変位させている。これにより、モータハウジング103の内部には、電動モータ110の上方で、かつハンマビット119の軸線の延長線後方、すなわち、打撃軸線の後方に空き領域(スペース)を形成することができる。本実施の形態では、当該空き領域を利用して動吸振器160を配置する構成としている。動吸振器160は、本発明における「加工作業のための所定の機能部材」に対応する実施構成の一例である。なお、上記以外の構成、すなわち、運動変換機構120、打撃要素140、動力伝達機構150の各構成、及び電動モータ110がアウタロータ型モータであることについては、前述した第1の実施形態と同様である。このため、第1の実施形態と同一符号を付して、その説明を省略又は簡略する。
 図4及び図5に示すように、動吸振器160は、空き領域のうちの左側と右側の側方領域、すなわち、電動モータ110の中心位置から見て斜め上方位置で、かつハンマビット119の軸線を横切る水平軸線上に配置され、モータハウジング103の内部空間に収容されている。左右の動吸振器160は、共に同一構造である。
 図4に示すように、動吸振器160は、筒体161と、略円柱状のウェイト163と、弾性要素としての付勢ばね165と、ウェイト163を案内するガイドスリーブ167と、ばね受169と、を主体として構成される。筒体161は、ハンマビット119の長軸方向と平行に延在するように形成されている。ウェイト163は、当該筒体161内に摺動自在に配置されている。付勢ばね165は、筒体161内において、ウェイト163に弾性力を付与するべく、当該ウェイト163のハンマビット119の長軸方向の前方と後方にそれぞれ配置されている。ばね受169は、前後の付勢ばね165それぞれの一端であって、ハンマビット119の長軸方向におけるウェイト163側とは反対側の端部を支持するように配置されている。なお、ガイドスリーブ167は、ウェイト163の安定した摺動動作を確保する円形の筒状部材として備えられ、筒体161の筒孔に嵌入されている。
 上述した動吸振器160によれば、電動ハンマドリル100の加工作業時において、制振対象である本体部101に対して、制振要素であるウェイト163及び付勢ばね165が協働して受動的な制振を行なう。これにより、本体部101に生ずる振動を抑制することができる。
 上記のように構成された本実施の形態によれば、電動モータ110としてアウタロータ型モータを搭載したことにより、前述した第1の実施形態と同様、機体の小型化、軽量化が可能となり、操作性が向上する等の作用効果を奏することができる。特に、本実施の形態では、電動モータ110のモータ軸113を、運動変換機構120の中間軸125と同軸に配置することで、モータハウジング103内部における電動モータ110の上方で、かつ打撃軸線後方に空き領域を形成し、側面視で空き領域における打撃軸線上に動吸振器160を配置する構成としている。このため、加工作業時において、動吸振器160により本体部101の振動抑制を効率的に行うことが可能となり、作業者がハンドグリップ107を把持して電動ハンマドリル100を操作するときの作業環境を改善できる。
 また、本実施の形態においては、動吸振器160をモータハウジング103内の上方空き領域に収容配置する際に、図5において、ハンマビット119の長軸方向と交差する下方から電動ハンマドリル100を見た場合に、電動モータ110によって視認することができない領域に、動吸振器160の少なくとも一部が位置するように配置されている。すなわち、動吸振器160は、その一部が、電動モータ110の陰に隠れるように配置された構成とされる。ここで、本実施形態では、電動モータ110として、固定子111および回転子112が、モータハウジング103内に直接配置される態様のアウタロータ型モータを採用したため、動吸振器160は、電動モータ110のうち、回転子112の陰に隠れるように配置された構成とされる。なお、動吸振器160は、その概ね全てが、電動モータ110の陰に隠れるように配置されることが好ましい。このように動吸振器160を配置することにより、動吸振器160を搭載する構成でありながら、ハンマビット119の軸線とモータ軸113の軸線との双方を含む面に直交する方向に関して、外郭形状の小型化を図ることが可能となる。なお、ハンマビット119の軸線とモータ軸113の軸線との双方を含む面に直交する直線であって、ハンマビット119の軸線と交差する直線に沿う方向である側方から電動ハンマドリル100を見た場合に、電動モータ110によって視認することができない領域に、動吸振器160の少なくとも一部が位置するように配置された構成、すなわち、動吸振器160の一部が、電動モータ110の陰に隠れるように配置された構成としても良い。なお、この場合、動吸振器160は、その概ね全てが、電動モータ110の陰に隠れるように配置されることが好ましい。当該構成を採用することにより、ハンマビット119の軸線およびモータ軸113の軸線の双方に直交する方向に関しても、外郭形状の小型化を図ることが可能となる。
 また、本実施の形態では、モータ軸113と中間軸125とを直結構造としたので、ギアにより動力伝達を行う場合のバックラッシュに起因する騒音の発生を未然に防止することができる。
(本発明の第3の実施形態)
 次に本発明の第3の実施形態につき、図6~図8を参照して説明する。本実施の形態に係る電動ハンマドリル100は、第2の実施形態の変形例であり、モータハウジング103内における電動モータ110の上方の空き領域に、動吸振器160に変えてハンドグリップ用の防振ばね179を配置したものである。すなわち、電動モータ110は、アウタロータ型モータが採用され、図6に示すように、モータ軸113が、運動変換機構120の中間軸125に対し同軸で配置されて直結されている。これにより、電動モータ110の上方で、かつ打撃軸線の後方に空き領域が形成されるため、本実施の形態では、当該空き領域における側面視で打撃軸線上に防振ばね179を配置する構成としている。防振ばね179は、本発明における「加工作業のための所定の機能部材」及び「弾性体」に対応する。
 図6に示すように、ハンドグリップ107は、モータハウジング103の上方に被さるように前方へと延在する上部カバー171を備え、この上部カバー171の内側の左右には、図8に示すように、ハンマビット119の長軸方向に直線状に延在する略U字状の凹部171aが形成されている。電動モータ110の上方の空き領域において、モータハウジング103には、ハンドグリップ107を連接するためのガイド部材173が設けられている。ガイド部材173は、上部カバー171の凹部171aが摺動自在に係合する左右の突部173aを有し、モータハウジング103に対し、ハンドグリップ107が、ハンマビット119の長軸方向に相対移動可能に連接する。なお、凹部171aをガイド部材173に設け、突部173aを上部カバー171に設けてもよい。
 また、ガイド部材173は、図7及び図8に示すように、突部173aよりも下方において、ハンマビット119の長軸方向に直線状に延在する左右2個の円形の筒状ガイド部173bを有し、この筒状ガイド部173bによって、ハンドグリップ107に設けた断面円形の棒状部材175を摺動自在に支持している。すなわち、ガイド部材173は、モータハウジング103に対するハンドグリップ107の連接部材として備えられ、左右の突部173aと左右の筒状ガイド部173bとを一体に備えている。そして、左右の筒状ガイド部173bは、ハンマビット119の打撃軸線を挟んで互いに平行に、かつ側面視で打撃軸線上に配置されている。また左右の突部173aは、ハンマビット119の打撃軸線を挟んで互いに平行に、かつ側面視で打撃軸線よりも上方に配置されている。
 ハンドグリップ107の棒状部材175は、ガイド部材173の筒状ガイド部173bの筒孔に後方から挿入されるとともに、その前端部及び後端部が、筒状ガイド部173bの筒孔に摺動自在に嵌合されている。各ガイド部材173には、その前端からストッパねじ177がねじ込まれ、このストッパねじ177の頭部177aが、筒状ガイド部173bの径方向の端面に当接することで、筒状ガイド部173bに対し棒状部材175が抜け止めされている。
 筒状ガイド部173bの内周面と棒状部材175の外周面との間には、軸方向に所定長さに亘って環状空間が設定され、当該環状空間に防振ばね179が収容されている。防振ばね179は、圧縮コイルばねによって構成され、軸方向の一端が筒状ガイド部173bに当接され、他端が棒状部材175に当接されている。これにより、防振ばね179は、ハンドグリップ107に対し、モータハウジング103から離間する後方へ付勢力を作用する。
 このように、本実施の形態においては、ハンドグリップ107は、モータハウジング103に対して、防振ばね179を介して弾性連結したものである。上記以外の構成については、第2の実施形態と同様に構成されるため、同一の構成部材については、第2の実施形態と同一符号を付して、その説明を省略又は簡略する。
 上記のように構成された本実施形態によれば、左右の防振ばね179を介してハンドグリップ107をモータハウジング103に弾性連結したので、加工作業時において、本体部101に発生した振動がハンドグリップ107に伝達することを、防振ばね179により遮断ないし低減することができる。なお、電動モータ110としてアウタロータ型モータを採用している。このため、前述した第1の実施形態の場合と同様、機体の小型化、軽量化が可能となり、操作性が向上する等の作用効果を奏することができる。
 また、本実施の形態においては、防振ばね179を、モータハウジング103内の側面視で打撃軸線上に配置する構成としたことにより、被加工材にハンマビット119を押し付けて加工作業をする場合において、モータハウジング103に対するハンドグリップ107の相対移動動作が安定化する。これにより、防振ばね179の防振機能を効率的に発揮させることができる。
 また、本実施の形態によれば、左右の防振ばね179は、図8において、ハンマビット119の長軸方向と交差する下方から電動ハンマドリル100を見た場合に、電動モータ110によって視認することができない領域に配置された構成とされる。すなわち、防振ばね179は、その全体が電動モータ110の陰に隠れるように配置された構成とされる。ここで、本実施形態では、電動モータ110として、固定子111および回転子112が、モータハウジング103内に直接配置される態様のアウタロータ型モータを採用したため、防振ばね179は、電動モータ110のうち、回転子112の陰に隠れるように配置された構成とされる。なお、「その全体が電動モータ110の陰に隠れる」とは、文字通り、防振ばね179の全体が電動モータ110の陰に隠れる態様はもちろんのこと、防振ばね179の概ね全体が電動モータ110の陰に隠れる態様を好適に包含する。このように防振ばね179を配置することにより、防振ばね179を配置する構成でありながら、ハンマビット119の軸線とモータ軸113の軸線との双方を含む面に直交する方向に関して、外郭形状の小型化を図ることが可能となる。なお、ハンマビット119の軸線とモータ軸113の軸線との双方を含む面に直交する側方から電動ハンマドリル100を見た場合に、電動モータ110によって視認することができない領域に、防振ばね179の少なくとも一部が位置するように配置された構成、すなわち、防振ばね179の一部が、電動モータ110の陰に隠れるように配置された構成としても良い。なお、この場合、防振ばね179は、その概ね全てが、電動モータ110の陰に隠れるように配置されることが好ましい。当該構成を採用することにより、ハンマビット119の軸線およびモータ軸113の軸線の双方に直交する方向に関しても、外郭形状の小型化を図ることが可能となる。
(本発明の第4の実施形態)
 次に本発明の第4の実施形態につき、図9を参照して説明する。本実施の形態は、ハンマビット119の長軸線と電動モータ110のモータ軸113の軸線が、交差状に配置された側面視でL型の電動ハンマドリル100に適用した場合である。本実施の形態に係る電動ハンマドリル100は、本体部101に対して上端と下端が連接されたハンドグリップ107を備え、当該ハンドグリップ107の下端部に、電動モータ110の駆動電源となるバッテリパック180が取外し自在に取付けられている。ハンドグリップ107は、側面視でD型のメインハンドルとして構成されている。
 L型の電動ハンマドリル100の場合、図示のように、本体部101の下方領域に電動モータ110が配置される。当該電動モータ110は、前述した各実施形態と同様、固定子111の外側に回転子112が配置されたアウタロータ型モータとして構成される。なお、アウタロータ型モータの具体的な構成については、上述した各実施形態と同一符号を付して、その説明をする。
 電動モータ110のモータ軸113は、中間軸125に対して交差(直交)し、当該中間軸125と2個のべベルギア181,183を介して連結されている。すなわち、モータ軸113の先端(上端)には、モータ軸113と一体回転する駆動べベルギア181が設けられ、中間軸125の後端には、駆動べベルギア181に噛み合い係合するとともに、中間軸125と一体回転する被動べベルギア183が設けられている。そして、両べベルギア181,183は、その減速比が1となるように設定されている。すなわち、モータ軸113と中間軸125とは、等速で回転駆動される構成とされる。なお、中間軸125は、ハンマビット119の軸線に平行に配置されている。上記以外の電動ハンマドリル100の構成については、前述した第1の実施形態と概ね同様に構成されるため、同一構成部材については、同一符号を付して、その説明を省略する。
 L型の電動ハンマドリル100の場合、本体部101の下方領域に電動モータ110が配置される。そして、電動モータがインナロータ型モータから構成される従来の電動ハンマドリルの場合には、モータ軸と中間軸との間に配置される駆動べベルギアと被動べベルギアによりモータ軸の回転数を減速して、トルクを大きくすることで所要の打撃力を確保している。このため、被動べベルギアの外径が大きくなり、その分だけ電動モータ110の位置がより下方へと位置する結果、電動ハンマドリル100の重心位置が、ハンマビット119の長軸線、すなわち打撃軸線から遠くなり、加工作業時において、被加工材側から受ける反動(重心回りのモーメント)が大きく、操作し辛いという点で難点がある。
 しかるに、本実施の形態においては、電動モータ110をアウタロータ型モータにより構成したことにより、電動モータ110のモータ軸113から中間軸125に回転出力を伝達する場合に、モータ軸113の回転数を減速しなくても所要の打撃力が確保可能となる。このため、被動べベルギア183の外径を小さくでき、電動モータ110を打撃軸線に接近して配置し、電動ハンマドリル100の重心位置を打撃軸線に接近させることが可能となる。これにより、加工作業時において、被加工材側から受ける反動(重心回りのモーメント)が減少し、操作性を向上することができる。
 また、本実施の形態によれば、電動モータ110をアウタロータ型モータで構成したことにより、前述した第1の実施形態の場合と同様、機体の小型化、軽量化が可能となり、操作性が向上する等の作用効果を奏することができる。
 なお、上述した実施形態では、電動モータ110の上方の空き領域に配置する「機能部材」として、動吸振器160と防振ばね179の場合で説明したが、これに限定されない。例えば、電動ハンマドリル100を壁に収納するときや、所定部位に引っ掛けて電動ハンマドリル100を運搬するときに用いる機能部材としてのフックを配置することが可能である。
 また、上述した実施形態では、モータ軸113と中間軸125とを同軸上に配置することによって、モータハウジング103の内部に形成した空き領域に、動吸振器160や防振ばね179を配置する構成としたが、動吸振器160や防振ばね179の少なくとも一部が、電動モータ110の外形線(回転子112の最大外径部)よりも内側、すなわち、電動モータ110の陰に隠れるように配置できれば良く、モータ軸113と中間軸125とは、同軸上に配置されていなくても構わない。   
 また、モータ軸113と中間軸125とを同軸で配置する構成において、本実施の形態では、モータ軸113と中間軸125とを直結する構成としたが、両軸113,125を一体に形成しても構わない。
 また、本実施形態では打撃工具の一例として、電動式のハンマドリル100の場合で説明したが、ハンマビット119が直線動作のみを行う電動ハンマに適用してもよい。
(実施形態の各構成要素と本発明の各構成要素の対応関係)
 本実施形態は、本発明を実施するための形態の一例を示すものである。したがって、本発明は、本実施形態の構成に限定されるものではない。なお、本実施形態の各構成要素と本発明の各構成要素の対応関係を以下に示す。
 本体部101は、本発明の「工具本体」に対応する構成の一例である。
 ハンマビット119は、本発明の「工具ビット」に対応する構成の一例である。
 ハンドグリップ107は、本発明の「ハンドル」に対応する構成の一例である。
 電動モータ110は、本発明の「モータ」に対応する構成の一例である。
 モータ軸113は、本発明の「出力軸」に対応する構成の一例である。
 中間軸125は、本発明の「駆動軸」に対応する構成の一例である。
 揺動リング129は、本発明の「揺動部材」に対応する構成の一例である。
 インナハウジング106の鉛直方向壁部106aは、本発明の「単一の軸受け支持部材」に対応する構成の一例である。
 軸受117は、本発明の「第1軸受」に対応する構成の一例である。
 軸受125bは、本発明の「第2軸受」に対応する構成の一例である。
 動吸振器160は、本発明の「加工作業のための所定の機能部材」に対応する構成の一例である。
 防振ばね179は、本発明の「加工作業のための所定の機能部材」に対応する構成の一例である。
 防振ばね179は、本発明の「弾性体」に対応する構成の一例である。
 以上の発明の趣旨に鑑み、本発明に係る作業工具は、下記の態様が構成可能である。
(態様1)
「工具ビットの長軸方向の打撃動作により被加工材に所定の加工作業を行う打撃工具であって、
 回転子と固定子を有するモータと、
 前記モータを収容する工具本体と、
 前記工具ビットの長軸線と平行に配置されて、前記モータにより回転駆動される駆動軸と、
 前記駆動軸に支持されて、当該駆動軸の回転動作に基づき当該駆動軸の軸線方向に揺動動作を行う揺動部材と、
 前記揺動部材と連結され、当該揺動部材の揺動動作によって前記工具ビットの長軸方向に直線動作して、当該工具ビットを直線状に駆動する工具駆動機構と、
 を有し、
 前記モータは、前記回転子が前記固定子の外側に配置されたアウタロータ型モータとして構成されていることを特徴とする打撃工具。」
(態様2)
「前記態様1に記載の打撃工具であって、
 前記駆動軸が、前記モータの出力軸と同一回転数で駆動されるように構成されていることを特徴とする打撃工具。」
(態様3)
「前記態様1又は2に記載の打撃工具であって、
 前記モータの出力軸を回転自在に支持する第1軸受と、前記駆動軸を回転自在に支持する第2軸受とを有し、
 前記第1軸受と前記第2軸受が、単一の軸受支持部材を介して前記工具本体に支持されていることを特徴とする打撃工具。」
(態様4)
「前記態様1~3のいずれか1つに記載の打撃工具であって、
 前記モータの出力軸と前記駆動軸が、同軸で配置されていることを特徴とする打撃工具。」
(態様5)
「前記態様1~4のいずれか1つに記載の打撃工具であって、
 前記工具ビットの長軸線と前記駆動軸とは、当該長軸線の延在方向と交差する方向に、所定距離だけ離間して平行に配置されており、
 前記工具ビットの長軸線と前記駆動軸の双方を含む面に沿う直線であって、前記工具ビットの長軸線と交差する直線に関し、当該直線に沿う方向の一方側から見たときの仮想投影面上における前記モータの投影領域の内側に、前記加工作業のための所定の機能部材の少なくとも一部が配置されていることを特徴とする打撃工具。」
(態様6)
「前記態様1~5のいずれか1つに記載の打撃工具であって、
 前記工具ビットの長軸線と前記駆動軸とは、当該長軸線の延在方向と交差する方向に所定距離だけ離間して平行に配置されており、
 前記工具ビットの長軸線と前記駆動軸の双方を含む面に直交する直線であって、前記工具ビットの長軸線と交差する直線に関し、当該直線に沿う方向から見たときの仮想投影面上における前記モータの投影領域の内側に、前記加工作業のための所定の機能部材の少なくとも一部が配置されていることを特徴とする打撃工具。」
(態様7)
「前記態様5又は6に記載の打撃工具であって、
 前記機能部材は、前記工具本体の振動を抑えるための防振機構であることを特徴とする打撃工具。」
(態様8)
「前記態様5又は6に記載の打撃工具であって、
 前記工具本体に連結された作業者が握るためのハンドルを有し、
 前記機能部材は、前記工具本体と前記ハンドルとを連結する弾性体であることを特徴とする打撃工具。」
(態様9)
「前記態様5又は6に記載の打撃工具であって、
 作業者が握るためのハンドルを有し、
 前記ハンドルは、前記工具本体に連結されており、
 前記機能部材は、前記工具本体と前記ハンドルとを連結する弾性体であることを特徴とする打撃工具。」
(態様10)
「前記態様2に記載の打撃工具であって、
 前記モータの出力軸と前記駆動軸とは、互いに交差状に配置されて、べベルギアにより連結されていることを特徴とする打撃工具。」
100 電動ハンマドリル(打撃工具)
101 本体部(工具本体)
103 モータハウジング
103a 後方鉛直壁部
105 ギアハウジング
106 インナハウジング
106a 鉛直方向壁部(単一の軸受支持部材)
107 ハンドグリップ(ハンドル)
107a トリガ
109 サイドグリップ
110 電動モータ(モータ)
111 固定子
111a 駆動コイル
111b コイル保持部材
111c 取付フランジ部材
112 回転子
113 モータ軸(出力軸)
114 ねじ
115 磁石
116 軸受
117 軸受(第1軸受)
119 ハンマビット(工具ビット)
120 運動変換機構
121 駆動ギア
123 被動ギア
125 中間軸(駆動軸)
125a 軸受
125b 軸受(第2軸受)
127 回転体
128 ボール
129 揺動リング(揺動部材)
129a 揺動ロッド
130 筒状ピストン(工具駆動機構)
130a 空気室
131 連結軸
133 Oリング
135 オイルシール
140 打撃要素
143 ストライカ(工具駆動機構)
145 インパクトボルト(工具駆動機構)
150 動力伝達機構
151 第1伝達ギア
153 第2伝達ギア
159 ツールホルダ
160 動吸振器(機能部材及び防振機構)
161 筒体
163 ウェイト
165 付勢ばね
167 ガイドスリーブ
169 ばね受
171 上部カバー
171a 凹部
173 ガイド部材
173a 突部
173b 筒状ガイド部
175 棒状部材
177 ストッパねじ
177a 頭部
179 防振ばね(機能部材及び弾性体)
180 バッテリパック
181 駆動べベルギア
183 被動べベルギア

Claims (8)

  1.  工具ビットの長軸方向の打撃動作により被加工材に所定の加工作業を行う打撃工具であって、
     回転子と固定子を有するモータと、
     前記モータを収容する工具本体と、
     前記工具ビットの長軸線と平行に配置されて、前記モータにより回転駆動される駆動軸と、
     前記駆動軸に支持されて、当該駆動軸の回転動作に基づき当該駆動軸の軸線方向に揺動動作を行う揺動部材と、
     前記揺動部材と連結され、当該揺動部材の揺動動作によって前記工具ビットの長軸方向に直線動作して、当該工具ビットを直線状に駆動する工具駆動機構と、
     を有し、
     前記モータは、前記回転子が前記固定子の外側に配置されたアウタロータ型モータとして構成されていることを特徴とする打撃工具。
  2.  請求項1に記載の打撃工具であって、
     前記駆動軸が、前記モータの出力軸と同一回転数で駆動されるように構成されていることを特徴とする打撃工具。
  3.  請求項1又は2に記載の打撃工具であって、
     前記モータの出力軸を回転自在に支持する第1軸受と、前記駆動軸を回転自在に支持する第2軸受とを有し、
     前記第1軸受と前記第2軸受が、単一の軸受支持部材を介して前記工具本体に支持されていることを特徴とする打撃工具。
  4.  請求項1~3のいずれか1つに記載の打撃工具であって、
     前記モータの出力軸と前記駆動軸が、同軸で配置されていることを特徴とする打撃工具。
  5.  請求項1~4のいずれか1つに記載の打撃工具であって、
     前記工具ビットの長軸線と前記駆動軸とは、当該長軸線の延在方向と交差する方向に所定距離だけ離間して平行に配置されており、
     前記工具ビットの長軸線と前記駆動軸の双方を含む面に沿う直線であって、前記工具ビットの長軸線と交差する直線に関し、当該直線に沿う方向の一方側から見たときの仮想投影面上における前記モータの投影領域の内側に、前記加工作業のための所定の機能部材の少なくとも一部が配置されていることを特徴とする打撃工具。
  6.  請求項5に記載の打撃工具であって、
     前記機能部材は、前記工具本体の振動を抑えるための防振機構であることを特徴とする打撃工具。
  7.  請求項5に記載の打撃工具であって、
     作業者が握るためのハンドルを有し、
     該ハンドルは、前記工具本体に連結されており、
     前記機能部材は、前記工具本体と前記ハンドルとを連結する弾性体であることを特徴とする打撃工具。
  8.  請求項2に記載の打撃工具であって、
     前記モータの出力軸と前記駆動軸とは、互いに交差状に配置されて、べベルギアにより連結されていることを特徴とする打撃工具。
PCT/JP2012/081804 2012-01-26 2012-12-07 打撃工具 WO2013111460A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280068043.2A CN104066556B (zh) 2012-01-26 2012-12-07 冲击工具
US14/374,508 US9724814B2 (en) 2012-01-26 2012-12-07 Impact tool
DE112012005769.4T DE112012005769T5 (de) 2012-01-26 2012-12-07 Schlagwerkzeug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-014080 2012-01-26
JP2012014080A JP2013151055A (ja) 2012-01-26 2012-01-26 打撃工具

Publications (1)

Publication Number Publication Date
WO2013111460A1 true WO2013111460A1 (ja) 2013-08-01

Family

ID=48873201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081804 WO2013111460A1 (ja) 2012-01-26 2012-12-07 打撃工具

Country Status (5)

Country Link
US (1) US9724814B2 (ja)
JP (1) JP2013151055A (ja)
CN (1) CN104066556B (ja)
DE (1) DE112012005769T5 (ja)
WO (1) WO2013111460A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114148125A (zh) * 2021-12-08 2022-03-08 黑河学院 一种可拆装防水壁画基底及其主框开槽装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6116058B2 (ja) * 2013-11-26 2017-04-19 株式会社マキタ 作業工具
JP6334144B2 (ja) 2013-11-26 2018-05-30 株式会社マキタ 往復動式作業工具
DE102014202218A1 (de) * 2014-02-06 2015-08-06 Robert Bosch Gmbh Handwerkzeugmaschine mit einem elektronisch kommutierten Elektromotor
JP6325360B2 (ja) * 2014-06-12 2018-05-16 株式会社マキタ 打撃工具
EP3213876B1 (en) * 2014-11-12 2021-01-13 Makita Corporation Striking device
JP6863704B2 (ja) 2016-10-07 2021-04-21 株式会社マキタ 打撃工具
US10875168B2 (en) * 2016-10-07 2020-12-29 Makita Corporation Power tool
CN215789518U (zh) 2018-12-10 2022-02-11 米沃奇电动工具公司 冲击工具
JP7246202B2 (ja) 2019-02-19 2023-03-27 株式会社マキタ 震動機構付き電動工具
JP7229807B2 (ja) 2019-02-21 2023-02-28 株式会社マキタ 電動工具
US11670977B2 (en) 2019-04-24 2023-06-06 Black & Decker Inc. Outer rotor brushless motor stator mount
US12021437B2 (en) 2019-06-12 2024-06-25 Milwaukee Electric Tool Corporation Rotary power tool
EP3822037A1 (de) * 2019-11-15 2021-05-19 Hilti Aktiengesellschaft Schlagwerksanordnung
US11757330B2 (en) 2019-12-19 2023-09-12 Black & Decker, Inc. Canned outer-rotor brushless motor for a power tool
US11437900B2 (en) 2019-12-19 2022-09-06 Black & Decker Inc. Modular outer-rotor brushless motor for a power tool
JP2022119301A (ja) * 2021-02-04 2022-08-17 株式会社マキタ 打撃工具
SE546110C2 (en) * 2021-02-15 2024-05-28 Husqvarna Ab A drill unit with a motor unit and a gear unit comprising a wall part and a sealing flange
US11642769B2 (en) * 2021-02-22 2023-05-09 Makita Corporation Power tool having a hammer mechanism
US11858100B2 (en) 2021-04-07 2024-01-02 Milwaukee Electric Tool Corporation Impact power tool
USD1034128S1 (en) * 2022-02-07 2024-07-09 Robert Bosch Gmbh Hammer drill
JP2024007799A (ja) * 2022-07-06 2024-01-19 株式会社マキタ ハンマドリル
JP2024033183A (ja) * 2022-08-30 2024-03-13 株式会社マキタ 打撃工具用補助グリップ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005040880A (ja) * 2003-07-25 2005-02-17 Hitachi Koki Co Ltd 打撃工具及び打撃工具の空打ち防止機構
JP2005305647A (ja) * 2004-04-24 2005-11-04 Robert Bosch Gmbh 回転駆動装置及び/又は打撃駆動装置を備えた手持ち式工作機械
JP2006123023A (ja) * 2004-10-26 2006-05-18 Matsushita Electric Works Ltd 衝撃工具
JP2010005751A (ja) * 2008-06-27 2010-01-14 Makita Corp 手持式作業工具
JP2010012586A (ja) * 2008-07-07 2010-01-21 Makita Corp 作業工具

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7141263U (de) * 1971-11-02 1973-04-19 Bosch R Gmbh Elektrowerkzeug insbesondere elektrische schlagbohrmaschine
US3831048A (en) * 1973-07-30 1974-08-20 Singer Co Bearing assembly for power tools
JPS6043278B2 (ja) * 1977-02-04 1985-09-27 芝浦メカトロニクス株式会社 ハンマドリル
US4523116A (en) * 1983-03-31 1985-06-11 Black & Decker, Inc. Electrical connection system for motors
JPS59232774A (ja) 1983-06-10 1984-12-27 松下電工株式会社 振動ドリル
JPH0741551B2 (ja) 1986-11-12 1995-05-10 株式会社芝浦製作所 衝撃工具
JP2867107B2 (ja) 1994-02-03 1999-03-08 株式会社マキタ 電動スクリュドライバのサイレントクラッチ
JPH0825249A (ja) * 1994-07-12 1996-01-30 Makita Corp 振動工具及び防振リング
JP3424880B2 (ja) * 1995-08-18 2003-07-07 株式会社マキタ ハンマードリル
SE509564C2 (sv) 1997-02-19 1999-02-08 Atlas Copco Tools Ab Motorverktyg med smord vinkelväxel
JP4364323B2 (ja) 1998-03-16 2009-11-18 株式会社ケーティーエス 空気回転工具の回転速度調節装置
US6066033A (en) 1998-07-29 2000-05-23 K-R Industry Company Limited Rotational speed adjusting device for a pneumatic rotational tool
DE10045620A1 (de) * 2000-09-15 2002-04-04 Bosch Gmbh Robert Werkzeugmaschine mit einem Raum mit Schmiermittel und einer Druckausgleichseinrichtung des Raums
US6880223B2 (en) * 2002-04-25 2005-04-19 Milwaukee Electric Tool Corporation Grease slinger
JP2004046023A (ja) 2002-07-16 2004-02-12 Japan Servo Co Ltd 回転電機による回転体駆動法
EP1728596B1 (en) * 2005-06-02 2009-02-11 Makita Corporation Power tool
JP4593387B2 (ja) 2005-07-04 2010-12-08 株式会社マキタ 電動工具
JP4362657B2 (ja) 2005-09-07 2009-11-11 ヨコタ工業株式会社 電動式衝撃締め付け工具
JP2007215308A (ja) 2006-02-08 2007-08-23 Shinano Kenshi Co Ltd 電動機の駆動装置
DE102006031745A1 (de) 2006-03-10 2007-09-13 Robert Bosch Gmbh Handwerkzeugmaschine, insbesondere Bohr- und/oder Meißelhammer
JP5217222B2 (ja) 2007-04-18 2013-06-19 マックス株式会社 電動工具
US8485274B2 (en) 2007-05-14 2013-07-16 Makita Corporation Impact tool
JP5050667B2 (ja) 2007-06-05 2012-10-17 マックス株式会社 打撃工具
JP5073449B2 (ja) * 2007-10-25 2012-11-14 株式会社マキタ 動力工具のハウジング
CN101444909B (zh) * 2007-11-27 2013-03-27 希尔蒂股份公司 具有气动冲击装置的手持式工具机
JP5171432B2 (ja) 2008-06-26 2013-03-27 株式会社マキタ 電動工具
US20090321101A1 (en) 2008-06-26 2009-12-31 Makita Corporation Power tool
DE102008040767A1 (de) 2008-07-28 2010-02-04 Robert Bosch Gmbh Schlagvorrichtung
DE102008054458A1 (de) * 2008-12-10 2010-06-17 Robert Bosch Gmbh Handwerkzeugmaschine
JP5479023B2 (ja) * 2009-10-20 2014-04-23 株式会社マキタ 充電式電動工具
DE102009050014B4 (de) 2009-10-21 2013-07-11 Metabowerke Gmbh Motorisch angetriebenes Werkzeuggerät mit Bohrhammerbetriebsart
JP5502581B2 (ja) * 2010-04-22 2014-05-28 株式会社マキタ 作業工具
CN201900631U (zh) 2010-12-15 2011-07-20 乐舟中 一种钉钉子的电动冲击锤
CN102267129A (zh) 2011-07-01 2011-12-07 浙江海王电器有限公司 两功能轻型电锤

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005040880A (ja) * 2003-07-25 2005-02-17 Hitachi Koki Co Ltd 打撃工具及び打撃工具の空打ち防止機構
JP2005305647A (ja) * 2004-04-24 2005-11-04 Robert Bosch Gmbh 回転駆動装置及び/又は打撃駆動装置を備えた手持ち式工作機械
JP2006123023A (ja) * 2004-10-26 2006-05-18 Matsushita Electric Works Ltd 衝撃工具
JP2010005751A (ja) * 2008-06-27 2010-01-14 Makita Corp 手持式作業工具
JP2010012586A (ja) * 2008-07-07 2010-01-21 Makita Corp 作業工具

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114148125A (zh) * 2021-12-08 2022-03-08 黑河学院 一种可拆装防水壁画基底及其主框开槽装置

Also Published As

Publication number Publication date
US9724814B2 (en) 2017-08-08
CN104066556A (zh) 2014-09-24
DE112012005769T5 (de) 2014-10-30
CN104066556B (zh) 2016-11-16
US20150041170A1 (en) 2015-02-12
JP2013151055A (ja) 2013-08-08

Similar Documents

Publication Publication Date Title
WO2013111460A1 (ja) 打撃工具
JP4195818B2 (ja) 電動ハンマ
JP4863942B2 (ja) 打撃工具
JP5128998B2 (ja) 手持式作業工具
JP5290666B2 (ja) 打撃工具
JP4659737B2 (ja) 作業工具
JP5361504B2 (ja) 打撃工具
JP6441588B2 (ja) 打撃工具
JP5767511B2 (ja) 往復動式作業工具
EP1932627A2 (en) Vibration reduction apparatus for power tool and power tool incorporating such apparatus
WO2009119760A1 (ja) 作業工具
CN108290278B (zh) 往复动作业机
CN107107322B (zh) 冲击工具
JP5009059B2 (ja) 打撃工具
WO2006041139A1 (ja) 往復作動式作業工具
JP2006021261A (ja) 往復作動式工具
EP2415563B1 (en) Impact tool
JP5009060B2 (ja) 打撃工具
JP4805288B2 (ja) 電動ハンマ
AU2012203415B2 (en) Wobble bearing arrangement for a power tool
JP2010052118A (ja) 打撃工具
JP6612496B2 (ja) 打撃工具
JP2013163234A (ja) 打撃工具
JP2004330377A (ja) 作業工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866930

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14374508

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120057694

Country of ref document: DE

Ref document number: 112012005769

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12866930

Country of ref document: EP

Kind code of ref document: A1