WO2013111460A1 - 打撃工具 - Google Patents
打撃工具 Download PDFInfo
- Publication number
- WO2013111460A1 WO2013111460A1 PCT/JP2012/081804 JP2012081804W WO2013111460A1 WO 2013111460 A1 WO2013111460 A1 WO 2013111460A1 JP 2012081804 W JP2012081804 W JP 2012081804W WO 2013111460 A1 WO2013111460 A1 WO 2013111460A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- tool
- drive shaft
- shaft
- bit
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25D—PERCUSSIVE TOOLS
- B25D11/00—Portable percussive tools with electromotor or other motor drive
- B25D11/06—Means for driving the impulse member
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25D—PERCUSSIVE TOOLS
- B25D11/00—Portable percussive tools with electromotor or other motor drive
- B25D11/06—Means for driving the impulse member
- B25D11/062—Means for driving the impulse member comprising a wobbling mechanism, swash plate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25D—PERCUSSIVE TOOLS
- B25D11/00—Portable percussive tools with electromotor or other motor drive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25D—PERCUSSIVE TOOLS
- B25D16/00—Portable percussive machines with superimposed rotation, the rotational movement of the output shaft of a motor being modified to generate axial impacts on the tool bit
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25D—PERCUSSIVE TOOLS
- B25D17/00—Details of, or accessories for, portable power-driven percussive tools
- B25D17/24—Damping the reaction force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25D—PERCUSSIVE TOOLS
- B25D2211/00—Details of portable percussive tools with electromotor or other motor drive
- B25D2211/003—Crossed drill and motor spindles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25D—PERCUSSIVE TOOLS
- B25D2211/00—Details of portable percussive tools with electromotor or other motor drive
- B25D2211/006—Parallel drill and motor spindles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25D—PERCUSSIVE TOOLS
- B25D2217/00—Details of, or accessories for, portable power-driven percussive tools
- B25D2217/0073—Arrangements for damping of the reaction force
- B25D2217/0076—Arrangements for damping of the reaction force by use of counterweights
- B25D2217/0092—Arrangements for damping of the reaction force by use of counterweights being spring-mounted
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25D—PERCUSSIVE TOOLS
- B25D2250/00—General details of portable percussive tools; Components used in portable percussive tools
- B25D2250/091—Electrically-powered tool components
- B25D2250/095—Electric motors
Definitions
- the present invention relates to an impact tool that performs a predetermined machining operation on a workpiece by driving a tool bit linearly using a swing mechanism.
- Japanese Patent Application Laid-Open No. 2007-7832 discloses a swash bearing type electric hammer drill that drives a tool bit linearly using a swing mechanism.
- the electric hammer drill as an impact tool described in the above publication is mainly composed of a rotating body that is rotationally driven by an electric motor, and an oscillating member that oscillates in the tool bit long axis direction as the rotating body rotates.
- a swash bearing type swing mechanism is provided.
- the electric hammer drill is configured to convert the rotation output of the electric motor into a linear motion by a swing mechanism and drive the tool bit in a straight line.
- the electric motor employs an inner rotor type motor having a stator and a rotor disposed inside the stator, and the motor speed is reduced by a reduction mechanism and transmitted to the rotating body. .
- the swash bearing type rocking mechanism having the above configuration is adopted in a relatively small hammer drill.
- a small electric hammer drill there is a high demand for improvement in operability by reducing the weight of the airframe. .
- the present invention has been made in view of the above, and an object of the present invention is to provide a striking tool effective in reducing the weight and improving the operability.
- a striking tool for performing a predetermined processing operation on a workpiece by a striking operation in the major axis direction of a tool bit.
- the impact tool includes a motor having a rotor and a stator, a tool main body that accommodates the motor, a drive shaft that is arranged in parallel with the long axis of the tool bit, and is driven to rotate by the motor, and is supported by the drive shaft.
- a swing member that swings in the axial direction of the drive shaft based on the rotational motion of the drive shaft, and a linear motion in the major axis direction of the tool bit by the swing motion of the swing member
- the motor is configured as an outer rotor type motor in which the rotor is disposed outside the stator.
- the motor is an outer rotor type motor in which the rotor is disposed outside the stator, so that the outer diameter of the rotating portion of the motor can be increased, and the rotor of the drive motor has a large rotor inertia. It is possible to have a moment. For this reason, compared with the impact tool which employ
- the outer rotor type motor can generate a larger torque than the inner rotor type motor, so that the rotational speed of the motor can be lowered. As a result, the vibration of the impact tool due to motor vibration can be reduced.
- the drive shaft is configured to be driven at the same rotational speed as the output shaft of the motor.
- the phrase “driven at the same number of revolutions” in this form suitably includes not only a form driven literally at the same number of revolutions but also a form driven substantially at the same number of revolutions.
- the “drive” mode suitably includes both a mode in which the drive shaft is directly connected to the output shaft of the motor and a mode in which the drive shaft is indirectly connected to the output shaft.
- the aspect which a drive shaft connects with an output shaft via a gear or a belt can be considered, for example.
- the 1st bearing which supports the output shaft of a motor rotatably, and the 2nd bearing which supports a drive shaft rotatably can be interposed via a single bearing support member. Supported by the tool body. According to this aspect, since the first bearing and the second bearing are supported by the single bearing support member, the first bearing and the second bearing are supported by the separate support members. Compared with the configuration, the shaft center accuracy between the drive shaft and the motor output shaft can be improved, the number of members can be reduced, the structure can be simplified, and the assembly can be improved.
- the output shaft and drive shaft of a motor are arrange
- the output shaft and the drive shaft of the motor are arranged coaxially, so that a space can be formed above the motor on the extended line of the long axis of the tool bit, and the space can be used for other functions. It can be used as an arrangement space for members.
- the long axis of the tool bit and the drive shaft are arranged in parallel and spaced apart from each other by a predetermined distance in the direction intersecting the extending direction of the long axis.
- At least a part of a predetermined functional member for processing work is disposed inside the projection area of the motor.
- the “predetermined functional member for the machining operation” typically means a protection provided to prevent or reduce the vibration of the striking tool operation handle held by the operator during the machining operation.
- the vibration member is applicable. According to this embodiment, by arranging at least a part of the functional member to be hidden behind the motor, the outer shape can be reduced in size in the direction perpendicular to the plane including both the long axis of the tool bit and the drive shaft. It becomes possible to plan.
- a functional member is an anti-vibration mechanism for suppressing the vibration of a tool main body.
- the “vibration isolation mechanism” in this embodiment typically corresponds to a vibration damping mechanism such as a dynamic vibration absorber or a counterweight that operates to suppress the vibration of the tool body.
- a vibration damping mechanism such as a dynamic vibration absorber or a counterweight that operates to suppress the vibration of the tool body.
- the impact tool which concerns on this invention, it further has a handle for an operator to grip, and the said handle is connected with the tool main body.
- the functional member is an elastic body that connects the tool body and the handle.
- the output shaft and drive shaft of a motor are arrange
- a configuration in which the major axis direction of the motor output shaft and the major axis direction of the tool bit intersect each other, that is, the impact tool in which the tool bit and the motor are arranged in an L shape. can be configured.
- a striking tool effective in reducing weight and improving operability is provided.
- FIG. 4 is a sectional view taken along line AA in FIG. 3.
- FIG. 4 is a sectional view taken along line BB in FIG. 3.
- FIG. 7 is a cross-sectional view taken along the line CC of FIG.
- FIG. 7 is a sectional view taken along the line DD in FIG. 6. It is sectional drawing which shows the structure of the electric hammer drill which concerns on 4th Embodiment.
- the electric hammer drill 100 is configured mainly by a main body 101 that forms an outline of the electric hammer drill 100 as viewed generally.
- a hammer bit 119 is detachably attached to the distal end region of the main body 101 via a cylindrical tool holder 159.
- the hammer bit 119 is attached to the tool holder 159 so as to be relatively movable in the axial direction and integrally rotate in the circumferential direction.
- a hand grip 107 gripped by the operator is connected to the end of the main body 101 opposite to the tip region.
- the handgrip 107 extends from the end of the main body 101 in a direction intersecting with the long axis direction of the main body 101 (the long axis direction of the hammer bit 119), whereby the pistol type electric hammer drill 100 is seen in a side view. Is configured.
- a side grip 109 as an auxiliary handle is detachably attached to the distal end region side of the main body 101, and an operator holds the hand grip 107 and the side grip 109 and operates the electric hammer drill 100 to perform machining work. I do.
- the main body 101 corresponds to the “tool main body” in the present invention
- the hammer bit 119 corresponds to the “tool bit” in the present invention
- the hand grip 107 is an example of an implementation configuration corresponding to the “handle” in the present invention. It is.
- the hammer bit 119 side in the longitudinal direction of the main body 101 is defined as “front side” or “front side”
- the handgrip 107 side is defined as “rear side” or “rear side”.
- ”. 1 is defined as “upper side” or “upper side”
- the lower side of the page is defined as “lower side” or “lower side”.
- the main body 101 mainly includes a motor housing 103 that houses the electric motor 110 and a gear housing 105 that houses the motion conversion mechanism 120, the striking element 140, and the power transmission mechanism 150.
- the electric motor 110 is an example of an implementation configuration corresponding to the “motor” in the present invention.
- the rotation output of the electric motor 110 is appropriately converted into a linear motion by the motion conversion mechanism 120 and then transmitted to the striking element 140.
- an impact force in the major axis direction (left and right direction in FIG. 1) of the hammer bit 119 is generated via the striking element 140.
- the rotational output of the electric motor 110 is transmitted to the hammer bit 119 after being appropriately decelerated by the power transmission mechanism 150. Thereby, the hammer bit 119 is rotated in the circumferential direction.
- the electric motor 110 is energized and driven by a pulling operation of a trigger 107 a disposed on the hand grip 107.
- the electric motor 110 is configured as an outer rotor type motor in which a stator 111 is disposed on the inner side and a rotor 112 is disposed on the outer side.
- the electric motor 110 is arranged such that the major axis direction of the rotor 112 (motor shaft 113) is parallel to the major axis direction of the hammer bit 119 (accordingly, the major axis direction of the main body 101).
- the stator 111 is mainly composed of a substantially annular coil holding member 111b and a mounting flange member 111c.
- the coil holding member 111b holds a drive coil 111a for driving the rotor 112.
- the mounting flange member 111c has a cylindrical portion for supporting the coil holding member 111b, and supports the coil holding member 111b by press-fitting the cylindrical portion into an annular hole of the coil holding member 111b.
- the flange portion of the mounting flange member 111 c is fixed to the rear vertical wall portion 103 a of the motor housing 103 with a screw 114.
- the rotor 112 is formed as a substantially cup-shaped member that is supported by the motor shaft 113 so as to be integrally rotatable.
- a magnet 115 is attached to the inner peripheral surface of the rotor 112 so as to face the outer periphery of the stator 111, and
- a motor shaft 113 is press-fitted and fixed at the center.
- the motor shaft 113 is an example of an implementation configuration corresponding to the “output shaft” in the present invention.
- the rear side of the motor shaft 113 extends loosely through the center hole of the mounting flange member 111 c of the stator 111 and extends rearward, and the extended end of the motor shaft 113 extends vertically behind the motor housing 103.
- the wall 103a is rotatably supported via a bearing (ball bearing) 116. Further, the front side of the motor shaft 113 extending toward the gear housing 105 side is rotatably supported by a vertical wall portion 106 a of the inner housing 106 via a bearing (ball bearing) 117, and It extends through the vertical wall 106 a and into the gear housing 105. A drive gear 121 is attached to the extended end portion so as to rotate integrally.
- the inner housing 106 is fixedly disposed in the gear housing 105.
- the motion conversion mechanism 120 includes a drive gear 121 that is rotationally driven in a vertical plane by the electric motor 110, a driven gear 123 that meshes and engages with the drive gear 121, and an intermediate shaft 125 that rotates integrally with the driven gear 123.
- the rotating body 127 that rotates integrally with the intermediate shaft 125, the substantially annular rocking ring 129 that rocks in the longitudinal direction of the hammer bit 119 by the rotation of the rotating body 127, and the straight line by the rocking of the rocking ring 129.
- a cylindrical piston 130 having a bottomed cylindrical shape that is reciprocally moved in the shape.
- the intermediate shaft 125 corresponds to a “drive shaft” in the present invention
- the swing ring 129 is an example of an implementation configuration corresponding to a “swing member” in the present invention.
- the drive gear 121 and the driven gear 123 are set for constant-speed rotation transmission from the motor shaft 113 to the intermediate shaft 125, and can drive the intermediate shaft 125 at the same rotational speed as the motor shaft 113.
- the driving gear 121 is attached to the front end portion of the motor shaft 113 and is rotated integrally with the motor shaft 113.
- the intermediate shaft 125 is disposed in parallel with the major axis direction of the hammer bit 119 (and therefore in parallel with the motor shaft 113). Further, the intermediate shaft 125 is rotatably supported by the gear housing 105 via a bearing (ball bearing) 125a at the front end portion, and at the rear end portion, a bearing (ball ball) is supported on the vertical wall portion 106a of the inner housing 106. Bearing) 125b is supported rotatably.
- the bearing 117 that supports the front end portion of the motor shaft 113 and the bearing 125b that supports the rear end portion of the intermediate shaft 125 are connected via the inner housing 106 as a single member, specifically, the vertical wall portion 106a.
- the motor shaft 113 is disposed between the axis of the intermediate shaft 125 and the axial extension line of the hammer bit 119 and behind the intermediate shaft 125.
- the vertical wall 106a of the inner housing 106 corresponds to the “single bearing support member” in the present invention
- the bearing 117 corresponds to the “first bearing” in the present invention
- the bearing 125b in the present invention “ It is an example of the implementation structure corresponding to a "2nd bearing.”
- the vertical wall portion 106 a of the inner housing 106 also functions as a member that partitions the internal space of the motor housing 103 and the internal space of the gear housing 105.
- An O-ring 133 is interposed between the inner wall surface of the gear housing 105 and the outer peripheral surface of the vertical wall portion 106a, and an oil seal 135 is interposed between the vertical wall portion 106a and the motor shaft 113. Has been. Thus, leakage of the lubricating oil filled in the gear housing 105 to the motor housing 103 side is prevented.
- the rotary body 127 attached to the intermediate shaft 125 has a groove that is inclined at a predetermined inclination angle with respect to the axis of the intermediate shaft 125 on the outer peripheral surface thereof.
- the swing ring 129 is fitted and supported by the rotating body 127 through a ball 128 as a rolling element so as to be relatively rotatable.
- the ball 128 rolls in the groove of the rotating body 127.
- the rocking ring 129 is rocked in the major axis direction of the hammer bit 119 in accordance with the rotating operation of the rotating body 127.
- a columnar rocking rod 129 a is projected in the radial direction (upward) in the upper end region of the rocking ring 129.
- the rocking rod 129 a is inserted in a loosely fitting manner in the radial direction with respect to a connecting shaft 131 provided at the rear end portion of the cylindrical piston 130. Accordingly, the swing ring 129 is connected to the cylindrical piston 130 via the swing rod 129a and the connecting shaft 131.
- the connecting shaft 131 is rotatably attached around a horizontal axis that intersects the long axis of the hammer bit 119.
- the swash bearing type swing mechanism is configured by the rotating body 127, the ball 128, and the swing ring 129 that rotate integrally with the intermediate shaft 125.
- the cylindrical piston 130 is slidably disposed in the rear cylinder portion of the tool holder 159, and interlocks with the swinging motion of the swinging ring 129 (longitudinal direction component of the hammer bit 119). Performs linear motion along the bore inner wall. Inside the cylindrical piston 130, an air chamber 130a partitioned by a striker 143 described later is formed.
- the striking element 140 is mainly composed of a striker 143 as a striker and an impact bolt 145 as a meson.
- the striker 143 is slidably disposed on the bore inner wall of the cylindrical piston 130.
- the striker 143 is driven via a pressure fluctuation (air spring) in the air chamber 130a accompanying the sliding movement of the cylindrical piston 130, and collides (hits) the impact bolt 145.
- the impact bolt 145 is slidably disposed in the front cylinder portion of the tool holder 159 and transmits the operating energy (striking force) of the striker 143 to the hammer bit 119.
- the cylindrical tool 130, the striker 143, and the impact bolt 145 constitute the “tool drive mechanism” in the present invention.
- the power transmission mechanism 150 is mainly configured by a first transmission gear 151, a second transmission gear 153, and a tool holder 159 as a final shaft.
- the first transmission gear 151 is disposed on the opposite side of the driven gear 123 on the intermediate shaft 125 with the rocking ring 129 interposed therebetween.
- the second transmission gear 153 meshes with and engages with the first transmission gear 151 and rotates around the long axis direction of the hammer bit 119.
- the tool holder 159 rotates coaxially with the second transmission gear 153 around the long axis direction of the hammer bit 119.
- the tool holder 159 is a substantially cylindrical tubular member, and is held by the gear housing 105 so as to be rotatable around the long axis of the hammer bit 119. Further, the tool holder 159 includes a front cylindrical portion that accommodates and holds the shaft portion of the hammer bit 119 and the impact bolt 145, and a cylindrical piston 130 that is slidably accommodated and extends rearwardly from the front cylindrical portion. A rear cylinder portion.
- the power transmission mechanism 150 configured in this way transmits the rotational output of the intermediate shaft 125 that is rotationally driven by the electric motor 110 from the first transmission gear 151 to the tool holder 159 and the hammer bit 119 via the second transmission gear 153. To do.
- the electric hammer drill 100 configured as described above, when the electric motor 110 is energized and driven by the pulling operation of the trigger 107a by the user, and the rotating body 127 is rotated together with the intermediate shaft 125, the swing ring 129 is turned into the hammer bit. 119 is swung in the long axis direction. Thereby, the cylindrical piston 130 is slid linearly in the tool holder 159. Then, the striker 143 linearly moves in the cylindrical piston 130 due to the pressure fluctuation of the air in the air chamber 130 a due to the swinging motion of the cylindrical piston 130. The striker 143 collides with the impact bolt 145 to transmit the kinetic energy to the hammer bit 119.
- the tool holder 159 is rotated in the vertical plane via the first transmission gear 151 and the second transmission gear 153, and the tool holder 159 is further rotated.
- the hammer bit 119 held at is rotated integrally.
- the hammer bit 119 performs the hammering operation in the axial direction and the drilling operation in the circumferential direction, and performs a drilling operation on the workpiece (concrete).
- the electric motor 110 is constituted by an outer rotor type motor in which the rotor 112 is disposed outside the stator 111.
- the outer rotor type motor By adopting the outer rotor type motor, it is possible to increase the outer diameter of the rotor 112 and to provide a large rotor inertia moment. For this reason, compared with an inner rotor type motor, a big torque can be generated.
- the electric motor is an inner rotor type motor, a speed reduction mechanism must be provided between the motor shaft and the intermediate shaft in order to secure the torque necessary to generate a predetermined striking force, which increases the weight. Or, there is a possibility that the aircraft will become larger.
- the electric motor 110 is configured by the outer rotor type motor, it is possible to reduce the size and weight of the machine body, thereby improving the operability of the electric hammer drill 100 when performing a machining operation. Can be improved.
- the output of the electric motor 110 is constant, the number of rotations can be reduced, so that vibration of the electric hammer drill 100 due to motor vibration can be reduced, and countermeasures for resonance are not required, and durability of the bearings 116 and 117 is improved. Can do.
- the bearing 116 that receives the rear end portion of the motor shaft 113 is directly supported by the rear vertical wall portion 103 a of the motor housing 103.
- the conventional electric hammer drill is configured to support the bearing 116 on the motor housing 103 via an elastic body.
- the electric motor 110 is constituted by an outer rotor type motor, the number of rotations of the motor shaft 113 can be reduced, so that the bearing 116 is directly supported by the motor housing 103 without an elastic body.
- the occurrence of resonance can be suppressed. Thereby, the number of parts can be reduced and the structure can be simplified.
- the bearing 117 that rotatably supports the front end portion of the motor shaft 113 and the bearing 125 b that rotatably supports the rear end portion of the intermediate shaft 125 are arranged in the vertical direction of the inner housing 106. It is supported by the wall 106a. That is, it is set as the structure which supports the bearings 117 and 125b of two different shafts with one member called the vertical direction wall part 106a. For this reason, the shaft center accuracy between the shafts of the motor shaft 113 and the intermediate shaft 125 can be improved as compared with the case where the motor shaft bearing 117 and the intermediate shaft bearing 125b are individually supported by separate support members. In addition, the number of members can be reduced, the structure can be simplified, and the assemblability can be improved.
- the motor shaft 113 of the electric motor 110 and the intermediate shaft 125 of the motion conversion mechanism 120 are arranged coaxially and directly connected (that is, directly coupled). ).
- the motor shaft 113 and the intermediate shaft 125 arranged on the same axis have a square hole formed on one of the shaft end faces facing each other, and a square axis formed on the other, and the angle between the square hole and the square axis. It is connected so that power can be transmitted by fitting.
- the coupling means between the motor shaft 113 and the intermediate shaft 125 is not limited to coupling by fitting, but can be changed to coupling by screws or press-fitting or coupling via an intermediate member such as a coupling. is there.
- the arrangement position of the electric motor 110 is displaced downward as compared with the case of the first embodiment.
- an empty area can be formed inside the motor housing 103 above the electric motor 110 and behind the extension line of the hammer bit 119, that is, behind the striking axis.
- the dynamic vibration absorber 160 is arranged using the empty area.
- the dynamic vibration absorber 160 is an example of an implementation configuration corresponding to the “predetermined functional member for processing work” in the present invention.
- the dynamic vibration absorber 160 is located on the left and right side areas of the empty area, that is, at an obliquely upper position when viewed from the center position of the electric motor 110 and the hammer bit 119. It is disposed on a horizontal axis that crosses the axis, and is accommodated in the internal space of the motor housing 103. Both the left and right dynamic vibration absorbers 160 have the same structure.
- the dynamic vibration absorber 160 includes a cylindrical body 161, a substantially cylindrical weight 163, an urging spring 165 as an elastic element, a guide sleeve 167 that guides the weight 163, and a spring receiver 169. , And the main constituent.
- the cylindrical body 161 is formed so as to extend in parallel with the major axis direction of the hammer bit 119.
- the weight 163 is slidably disposed in the cylinder 161.
- the urging springs 165 are disposed in the cylinder body 161 at the front and rear in the longitudinal direction of the hammer bit 119 of the weight 163 in order to apply an elastic force to the weight 163.
- the spring receiver 169 is disposed at one end of each of the front and rear biasing springs 165 and supports the end of the hammer bit 119 opposite to the weight 163 side in the major axis direction.
- the guide sleeve 167 is provided as a circular cylindrical member that ensures a stable sliding operation of the weight 163 and is fitted into the cylindrical hole of the cylindrical body 161.
- the weight 163 as the vibration damping element and the biasing spring 165 cooperate with the main body 101 as the vibration damping object in a passive manner. Perform proper vibration control. Thereby, the vibration which arises in the main-body part 101 can be suppressed.
- the airframe can be reduced in size and weight as in the first embodiment described above. It is possible to achieve the operational effects such as improvement in performance.
- the motor shaft 113 of the electric motor 110 is arranged coaxially with the intermediate shaft 125 of the motion conversion mechanism 120, so that the electric motor 110 inside the motor housing 103 is located above the electric motor 110 and behind the striking axis. An empty area is formed, and the dynamic vibration absorber 160 is arranged on the striking axis in the empty area in a side view. For this reason, it is possible to efficiently suppress the vibration of the main body 101 by the dynamic vibration absorber 160 during processing work, and the work environment when the operator grips the hand grip 107 and operates the electric hammer drill 100 is improved. Can improve.
- the dynamic vibration absorber 160 when the dynamic vibration absorber 160 is accommodated and disposed in the upper empty area in the motor housing 103, the electric hammer drill 100 is viewed from the lower side intersecting the long axis direction of the hammer bit 119 in FIG. In this case, at least a part of the dynamic vibration absorber 160 is disposed in a region that cannot be visually recognized by the electric motor 110. That is, the dynamic vibration absorber 160 is configured such that a part thereof is hidden behind the electric motor 110.
- the outer rotor type motor in which the stator 111 and the rotor 112 are arranged directly in the motor housing 103 is adopted as the electric motor 110, the dynamic vibration absorber 160 is the same as the electric motor 110.
- the configuration is such that it is hidden behind the rotor 112.
- the dynamic vibration absorber 160 is preferably arranged so that almost all of the dynamic vibration absorber 160 is hidden behind the electric motor 110.
- the outer shape of the dynamic vibration absorber 160 is mounted with respect to the direction orthogonal to the plane including both the axis of the hammer bit 119 and the axis of the motor shaft 113. It becomes possible to achieve downsizing.
- the electric hammer drill 100 was viewed from the side which is a straight line perpendicular to a plane including both the axis of the hammer bit 119 and the axis of the motor shaft 113 and is along the straight line intersecting the axis of the hammer bit 119.
- the dynamic vibration absorber 160 is preferably arranged so that almost all of the dynamic vibration absorber 160 is hidden behind the electric motor 110.
- the motor shaft 113 and the intermediate shaft 125 have a direct connection structure, it is possible to prevent the occurrence of noise due to backlash when power is transmitted by a gear.
- the electric hammer drill 100 is a modification of the second embodiment.
- an empty region above the electric motor 110 is replaced with a dynamic vibration absorber 160 to provide vibration isolation for hand grips.
- a spring 179 is arranged. That is, the electric motor 110 employs an outer rotor type motor, and the motor shaft 113 is coaxially disposed and directly connected to the intermediate shaft 125 of the motion conversion mechanism 120 as shown in FIG. As a result, an empty area is formed above the electric motor 110 and behind the striking axis.
- the anti-vibration spring 179 is arranged on the striking axis in a side view in the empty area. Yes.
- the anti-vibration spring 179 corresponds to the “predetermined functional member for processing operation” and the “elastic body” in the present invention.
- the hand grip 107 includes an upper cover 171 extending forward so as to cover the motor housing 103, and on the left and right sides of the upper cover 171, as shown in FIG. 8.
- a substantially U-shaped recess 171a extending linearly in the major axis direction of the hammer bit 119 is formed.
- the motor housing 103 is provided with a guide member 173 for connecting the hand grip 107.
- the guide member 173 has left and right protrusions 173a with which the concave portion 171a of the upper cover 171 is slidably engaged.
- the hand grip 107 can be moved relative to the motor housing 103 in the longitudinal direction of the hammer bit 119. Articulated.
- the concave portion 171a may be provided on the guide member 173, and the protrusion 173a may be provided on the upper cover 171.
- the guide member 173 has two cylindrical guide portions 173b on the left and right sides that extend linearly in the major axis direction of the hammer bit 119 below the protrusion 173a.
- the rod-shaped member 175 having a circular cross section provided on the hand grip 107 is slidably supported by the cylindrical guide portion 173b. That is, the guide member 173 is provided as a connecting member of the hand grip 107 with respect to the motor housing 103, and integrally includes left and right protrusions 173a and left and right cylindrical guide portions 173b.
- the left and right cylindrical guide portions 173b are arranged parallel to each other across the hammering axis of the hammer bit 119 and on the hammering axis in a side view.
- the left and right protrusions 173a are disposed parallel to each other across the hammer axis of the hammer bit 119 and above the hammer axis in a side view.
- the rod-like member 175 of the hand grip 107 is inserted from the rear into the cylindrical hole of the cylindrical guide portion 173b of the guide member 173, and the front end portion and the rear end portion thereof are slidable in the cylindrical hole of the cylindrical guide portion 173b. Is fitted.
- a stopper screw 177 is screwed into each guide member 173 from its front end, and the head 177a of the stopper screw 177 abuts against the radial end surface of the cylindrical guide portion 173b, so that the cylindrical guide portion 173b is in contact with the guide member 173.
- the rod-shaped member 175 is prevented from coming off.
- the anti-vibration spring 179 is configured by a compression coil spring, and one end in the axial direction is in contact with the cylindrical guide portion 173 b and the other end is in contact with the rod-shaped member 175. As a result, the anti-vibration spring 179 applies a biasing force to the hand grip 107 rearwardly away from the motor housing 103.
- the hand grip 107 is elastically connected to the motor housing 103 via the vibration-proof spring 179. Since the configuration other than the above is configured in the same manner as in the second embodiment, the same components as those in the second embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.
- the vibration generated in the main body 101 during the processing operation is Transmission to the grip 107 can be cut off or reduced by the anti-vibration spring 179.
- An outer rotor type motor is adopted as the electric motor 110.
- the anti-vibration spring 179 when the anti-vibration spring 179 is arranged on the striking axis in a side view in the motor housing 103, the hammer bit 119 is pressed against the workpiece to perform the machining operation. Then, the relative movement operation of the hand grip 107 with respect to the motor housing 103 is stabilized. Thereby, the anti-vibration function of the anti-vibration spring 179 can be exhibited efficiently.
- the left and right anti-vibration springs 179 are visually recognized by the electric motor 110 when the electric hammer drill 100 is viewed from the lower side intersecting the long axis direction of the hammer bit 119 in FIG. It is set as the structure arrange
- the vibration isolation spring 179 is the same as the electric motor 110. Of these, the configuration is such that it is hidden behind the rotor 112.
- the whole is hidden behind the electric motor 110 literally means that the whole of the anti-vibration spring 179 is hidden behind the electric motor 110, and the entire anti-vibration spring 179 is almost entirely hidden.
- a mode that is hidden in the shade is preferably included.
- the vibration isolating spring 179 is in an area that cannot be visually recognized by the electric motor 110. It is good also as a structure arrange
- the vibration-proof spring 179 is preferably arranged so that almost all of the vibration-proof spring 179 is hidden behind the electric motor 110.
- the electric hammer drill 100 includes a hand grip 107 having an upper end and a lower end connected to the main body 101, and a battery pack 180 serving as a driving power source for the electric motor 110 at the lower end of the hand grip 107. Is removably attached.
- the hand grip 107 is configured as a D-type main handle in a side view.
- an electric motor 110 is disposed in a lower region of the main body 101 as shown in the drawing.
- the electric motor 110 is configured as an outer rotor type motor in which the rotor 112 is disposed outside the stator 111, as in the above-described embodiments.
- mold motor the same code
- the motor shaft 113 of the electric motor 110 intersects (orthogonal) with respect to the intermediate shaft 125 and is connected to the intermediate shaft 125 via two bevel gears 181 and 183. That is, a drive bevel gear 181 that rotates integrally with the motor shaft 113 is provided at the tip (upper end) of the motor shaft 113, and the rear end of the intermediate shaft 125 is engaged with and engaged with the drive bevel gear 181. A driven bevel gear 183 that rotates integrally with 125 is provided.
- the bevel gears 181 and 183 are set so that the reduction ratio is 1. That is, the motor shaft 113 and the intermediate shaft 125 are configured to be rotationally driven at a constant speed.
- the intermediate shaft 125 is disposed parallel to the axis of the hammer bit 119. Since the configuration of the electric hammer drill 100 other than the above is configured in substantially the same manner as in the first embodiment described above, the same components are denoted by the same reference numerals and description thereof is omitted.
- the electric motor 110 is disposed in the lower region of the main body 101.
- the rotational speed of the motor shaft is reduced by a driving bevel gear and a driven bevel gear arranged between the motor shaft and the intermediate shaft.
- the required striking force is secured by increasing the torque.
- the outer diameter of the driven bevel gear is increased, and as a result, the position of the electric motor 110 is further lowered.
- the position of the center of gravity of the electric hammer drill 100 is far from the long axis of the hammer bit 119, that is, the hitting axis. Therefore, there is a difficulty in that the reaction (moment about the center of gravity) received from the workpiece side during machining is large and difficult to operate.
- the electric motor 110 is constituted by an outer rotor type motor, when the rotation output is transmitted from the motor shaft 113 of the electric motor 110 to the intermediate shaft 125, the rotational speed of the motor shaft 113 is reduced. Even if not, the required striking force can be secured. For this reason, the outer diameter of the driven bevel gear 183 can be reduced, the electric motor 110 can be disposed close to the striking axis, and the center of gravity position of the electric hammer drill 100 can be brought close to the striking axis. Thereby, the reaction (moment about the center of gravity) received from the workpiece side during the machining operation is reduced, and the operability can be improved.
- the electric motor 110 is composed of an outer rotor type motor
- the airframe can be reduced in size and weight as in the case of the first embodiment described above, and the operability is improved. It is possible to achieve the effects such as.
- the “functional member” disposed in the empty area above the electric motor 110 has been described in the case of the dynamic vibration absorber 160 and the vibration isolation spring 179, but is not limited thereto.
- a hook as a functional member used when the electric hammer drill 100 is housed in a wall or when the electric hammer drill 100 is carried by being hooked on a predetermined portion.
- at least a part of the dynamic vibration absorber 160 and the vibration-proof spring 179 is hidden inside the outline of the electric motor 110 (the maximum outer diameter portion of the rotor 112), that is, behind the electric motor 110.
- the motor shaft 113 and the intermediate shaft 125 may not be arranged on the same axis as long as they can be arranged.
- the motor shaft 113 and the intermediate shaft 125 are arranged coaxially
- the motor shaft 113 and the intermediate shaft 125 are directly connected.
- both the shafts 113 and 125 are integrally formed. It doesn't matter.
- the electric hammer drill 100 has been described as an example of a striking tool.
- the hammer bit 119 may be applied to an electric hammer that performs only a linear motion.
- the main body 101 is an example of a configuration corresponding to the “tool main body” of the present invention.
- the hammer bit 119 is an example of a configuration corresponding to the “tool bit” of the present invention.
- the hand grip 107 is an example of a configuration corresponding to the “handle” of the present invention.
- the electric motor 110 is an example of a configuration corresponding to the “motor” of the present invention.
- the motor shaft 113 is an example of a configuration corresponding to the “output shaft” of the present invention.
- the intermediate shaft 125 is an example of a configuration corresponding to the “drive shaft” of the present invention.
- the swing ring 129 is an example of a configuration corresponding to the “swing member” of the present invention.
- the vertical wall portion 106a of the inner housing 106 is an example of a configuration corresponding to the “single bearing support member” of the present invention.
- the bearing 117 is an example of a configuration corresponding to the “first bearing” of the present invention.
- the bearing 125b is an example of a configuration corresponding to the “second bearing” of the present invention.
- the dynamic vibration absorber 160 is an example of a configuration corresponding to the “predetermined functional member for processing work” of the present invention.
- the anti-vibration spring 179 is an example of a configuration corresponding to the “predetermined functional member for processing work” of the present invention.
- the anti-vibration spring 179 is an example of a configuration corresponding to the “elastic body” of the present invention.
- the working tool according to the present invention can be configured in the following manner.
- (Aspect 1) “It is a striking tool that performs a predetermined processing operation on a workpiece by a striking motion of the tool bit in the long axis direction, A motor having a rotor and a stator; A tool body for housing the motor; A drive shaft that is arranged parallel to the long axis of the tool bit and is driven to rotate by the motor; A swing member supported by the drive shaft and performing a swing operation in the axial direction of the drive shaft based on a rotation operation of the drive shaft; A tool driving mechanism coupled to the swing member, linearly moving in the longitudinal direction of the tool bit by the swing operation of the swing member, and driving the tool bit linearly;
- the said motor is comprised as an outer rotor type motor with which the said rotor is arrange
- (Aspect 2) A striking tool according to the first aspect, The impact tool characterized in that the drive shaft is configured to be driven at the same rotational speed as the output shaft of the motor.
- (Aspect 3) A striking tool according to aspect 1 or 2, A first bearing that rotatably supports the output shaft of the motor, and a second bearing that rotatably supports the drive shaft; The impact tool, wherein the first bearing and the second bearing are supported by the tool body via a single bearing support member.
- (Aspect 4) A striking tool according to any one of the first to third aspects, An impact tool, wherein an output shaft of the motor and the drive shaft are arranged coaxially.
- (Aspect 5) A striking tool according to any one of the first to fourth aspects, The long axis of the tool bit and the drive shaft are arranged in parallel with a predetermined distance apart in a direction intersecting the extending direction of the long axis, A virtual projection plane when viewed from one side in a direction along the straight line, which is a straight line along a plane including both the long axis of the tool bit and the drive shaft, and intersects the long axis of the tool bit An impact tool, wherein at least a part of a predetermined functional member for the machining operation is disposed inside a projection area of the motor.
- (Aspect 6) A striking tool according to any one of the above aspects 1 to 5,
- the long axis of the tool bit and the drive shaft are arranged in parallel and separated by a predetermined distance in a direction intersecting the extending direction of the long axis,
- An impact tool wherein at least a part of a predetermined functional member for the machining operation is disposed inside a projection area of the motor.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Percussive Tools And Related Accessories (AREA)
Abstract
Description
この形態によれば、第1軸受と第2軸受とを、単一の軸受支持部材で支持する構成としたことにより、第1軸受と第2軸受とのそれぞれを、別々の支持部材で支持する構成の場合に比べ、駆動軸とモータの出力軸との軸相互間の軸心精度を向上できるとともに、部材点数を削減し、構造の簡素化、組付け性の向上を図ることができる。
この形態によれば、モータの出力軸と駆動軸が、同軸で配置される構成とすることで、工具ビットの長軸線の延長線上におけるモータ上方にスペースが形成可能となり、当該スペースを他の機能部材の配置スペースとして活用することができる。
この形態によれば、機能部材の少なくとも一部が、モータの陰に隠れる配置とすることにより、工具ビットの長軸線と駆動軸の双方を含む面に直交する方向に関して、外郭形状の小型化を図ることが可能となる。
この形態によれば、工具本体の振動を抑える防振機構を備えたことにより、加工作業時において、工具本体の振動を抑えて作業者の作業環境を改善できる。
この形態によれば、加工作業時において、工具本体に発生した振動が、ハンドルに伝達することを防止ないし低減し、作業者の作業環境を改善できる。
この形態によれば、打撃工具の側面視において、モータの出力軸の長軸方向と工具ビットの長軸方向が互いに交差する構成、すなわち、工具ビットとモータが、L型に配置された打撃工具を構成することができる。
以下、本発明の第1の実施形態につき、図1及び図2を参照しつつ詳細に説明する。本発明の実施の形態では、打撃工具の一例として電動ハンマドリルを用いて説明する。図1に示すように、電動ハンマドリル100は、概括的に見て、電動ハンマドリル100の外郭を形成する本体部101を主体として構成される。本体部101の先端領域には、ハンマビット119が、筒状のツールホルダ159を介して着脱自在に取付けられる。ハンマビット119は、ツールホルダ159に対し、軸方向には相対移動可能とされ、周方向には一体回転するように装着される。本体部101の先端領域の反対側端部には、作業者が握るハンドグリップ107が連接されている。ハンドグリップ107は、本体部101の端部から当該本体部101の長軸方向(ハンマビット119の長軸方向)と交差する方向に延在され、これにより、側面視でピストル型の電動ハンマドリル100が構成されている。また、本体部101の先端領域側には、補助ハンドルとしてのサイドグリップ109が取外し自在に取付けられており、作業者はハンドグリップ107とサイドグリップ109を握り、電動ハンマドリル100を操作して加工作業を行う。
こうして構成された動力伝達機構150は、電動モータ110によって回転駆動される中間軸125の回転出力を、第1伝達ギア151から第2伝達ギア153を経て、ツールホルダ159及びハンマビット119へと伝達する。
次に本発明の第2の実施形態につき、図3~図5を参照しつつ説明する。本実施の形態に係る電動ハンマドリル100は、図3に示すように、電動モータ110のモータ軸113と運動変換機構120の中間軸125とを、同軸上に配置させて直結(すなわち、直接に結合)する構成としている。同軸上に配置されたモータ軸113と中間軸125とは、互いに対向する軸端面の一方には角孔が形成され、他方には角軸が形成されており、これら角孔と角軸との嵌め合いによって動力伝達可能に結合される。なお、モータ軸113と中間軸125との結合手段については、嵌め合いによる結合に限らず、ねじや圧入による結合、あるいはカップリング等の中間部材を介しての結合等に変更することが可能である。
次に本発明の第3の実施形態につき、図6~図8を参照して説明する。本実施の形態に係る電動ハンマドリル100は、第2の実施形態の変形例であり、モータハウジング103内における電動モータ110の上方の空き領域に、動吸振器160に変えてハンドグリップ用の防振ばね179を配置したものである。すなわち、電動モータ110は、アウタロータ型モータが採用され、図6に示すように、モータ軸113が、運動変換機構120の中間軸125に対し同軸で配置されて直結されている。これにより、電動モータ110の上方で、かつ打撃軸線の後方に空き領域が形成されるため、本実施の形態では、当該空き領域における側面視で打撃軸線上に防振ばね179を配置する構成としている。防振ばね179は、本発明における「加工作業のための所定の機能部材」及び「弾性体」に対応する。
次に本発明の第4の実施形態につき、図9を参照して説明する。本実施の形態は、ハンマビット119の長軸線と電動モータ110のモータ軸113の軸線が、交差状に配置された側面視でL型の電動ハンマドリル100に適用した場合である。本実施の形態に係る電動ハンマドリル100は、本体部101に対して上端と下端が連接されたハンドグリップ107を備え、当該ハンドグリップ107の下端部に、電動モータ110の駆動電源となるバッテリパック180が取外し自在に取付けられている。ハンドグリップ107は、側面視でD型のメインハンドルとして構成されている。
本実施形態は、本発明を実施するための形態の一例を示すものである。したがって、本発明は、本実施形態の構成に限定されるものではない。なお、本実施形態の各構成要素と本発明の各構成要素の対応関係を以下に示す。
本体部101は、本発明の「工具本体」に対応する構成の一例である。
ハンマビット119は、本発明の「工具ビット」に対応する構成の一例である。
ハンドグリップ107は、本発明の「ハンドル」に対応する構成の一例である。
電動モータ110は、本発明の「モータ」に対応する構成の一例である。
モータ軸113は、本発明の「出力軸」に対応する構成の一例である。
中間軸125は、本発明の「駆動軸」に対応する構成の一例である。
揺動リング129は、本発明の「揺動部材」に対応する構成の一例である。
インナハウジング106の鉛直方向壁部106aは、本発明の「単一の軸受け支持部材」に対応する構成の一例である。
軸受117は、本発明の「第1軸受」に対応する構成の一例である。
軸受125bは、本発明の「第2軸受」に対応する構成の一例である。
動吸振器160は、本発明の「加工作業のための所定の機能部材」に対応する構成の一例である。
防振ばね179は、本発明の「加工作業のための所定の機能部材」に対応する構成の一例である。
防振ばね179は、本発明の「弾性体」に対応する構成の一例である。
(態様1)
「工具ビットの長軸方向の打撃動作により被加工材に所定の加工作業を行う打撃工具であって、
回転子と固定子を有するモータと、
前記モータを収容する工具本体と、
前記工具ビットの長軸線と平行に配置されて、前記モータにより回転駆動される駆動軸と、
前記駆動軸に支持されて、当該駆動軸の回転動作に基づき当該駆動軸の軸線方向に揺動動作を行う揺動部材と、
前記揺動部材と連結され、当該揺動部材の揺動動作によって前記工具ビットの長軸方向に直線動作して、当該工具ビットを直線状に駆動する工具駆動機構と、
を有し、
前記モータは、前記回転子が前記固定子の外側に配置されたアウタロータ型モータとして構成されていることを特徴とする打撃工具。」
(態様2)
「前記態様1に記載の打撃工具であって、
前記駆動軸が、前記モータの出力軸と同一回転数で駆動されるように構成されていることを特徴とする打撃工具。」
(態様3)
「前記態様1又は2に記載の打撃工具であって、
前記モータの出力軸を回転自在に支持する第1軸受と、前記駆動軸を回転自在に支持する第2軸受とを有し、
前記第1軸受と前記第2軸受が、単一の軸受支持部材を介して前記工具本体に支持されていることを特徴とする打撃工具。」
(態様4)
「前記態様1~3のいずれか1つに記載の打撃工具であって、
前記モータの出力軸と前記駆動軸が、同軸で配置されていることを特徴とする打撃工具。」
(態様5)
「前記態様1~4のいずれか1つに記載の打撃工具であって、
前記工具ビットの長軸線と前記駆動軸とは、当該長軸線の延在方向と交差する方向に、所定距離だけ離間して平行に配置されており、
前記工具ビットの長軸線と前記駆動軸の双方を含む面に沿う直線であって、前記工具ビットの長軸線と交差する直線に関し、当該直線に沿う方向の一方側から見たときの仮想投影面上における前記モータの投影領域の内側に、前記加工作業のための所定の機能部材の少なくとも一部が配置されていることを特徴とする打撃工具。」
(態様6)
「前記態様1~5のいずれか1つに記載の打撃工具であって、
前記工具ビットの長軸線と前記駆動軸とは、当該長軸線の延在方向と交差する方向に所定距離だけ離間して平行に配置されており、
前記工具ビットの長軸線と前記駆動軸の双方を含む面に直交する直線であって、前記工具ビットの長軸線と交差する直線に関し、当該直線に沿う方向から見たときの仮想投影面上における前記モータの投影領域の内側に、前記加工作業のための所定の機能部材の少なくとも一部が配置されていることを特徴とする打撃工具。」
(態様7)
「前記態様5又は6に記載の打撃工具であって、
前記機能部材は、前記工具本体の振動を抑えるための防振機構であることを特徴とする打撃工具。」
(態様8)
「前記態様5又は6に記載の打撃工具であって、
前記工具本体に連結された作業者が握るためのハンドルを有し、
前記機能部材は、前記工具本体と前記ハンドルとを連結する弾性体であることを特徴とする打撃工具。」
(態様9)
「前記態様5又は6に記載の打撃工具であって、
作業者が握るためのハンドルを有し、
前記ハンドルは、前記工具本体に連結されており、
前記機能部材は、前記工具本体と前記ハンドルとを連結する弾性体であることを特徴とする打撃工具。」
(態様10)
「前記態様2に記載の打撃工具であって、
前記モータの出力軸と前記駆動軸とは、互いに交差状に配置されて、べベルギアにより連結されていることを特徴とする打撃工具。」
101 本体部(工具本体)
103 モータハウジング
103a 後方鉛直壁部
105 ギアハウジング
106 インナハウジング
106a 鉛直方向壁部(単一の軸受支持部材)
107 ハンドグリップ(ハンドル)
107a トリガ
109 サイドグリップ
110 電動モータ(モータ)
111 固定子
111a 駆動コイル
111b コイル保持部材
111c 取付フランジ部材
112 回転子
113 モータ軸(出力軸)
114 ねじ
115 磁石
116 軸受
117 軸受(第1軸受)
119 ハンマビット(工具ビット)
120 運動変換機構
121 駆動ギア
123 被動ギア
125 中間軸(駆動軸)
125a 軸受
125b 軸受(第2軸受)
127 回転体
128 ボール
129 揺動リング(揺動部材)
129a 揺動ロッド
130 筒状ピストン(工具駆動機構)
130a 空気室
131 連結軸
133 Oリング
135 オイルシール
140 打撃要素
143 ストライカ(工具駆動機構)
145 インパクトボルト(工具駆動機構)
150 動力伝達機構
151 第1伝達ギア
153 第2伝達ギア
159 ツールホルダ
160 動吸振器(機能部材及び防振機構)
161 筒体
163 ウェイト
165 付勢ばね
167 ガイドスリーブ
169 ばね受
171 上部カバー
171a 凹部
173 ガイド部材
173a 突部
173b 筒状ガイド部
175 棒状部材
177 ストッパねじ
177a 頭部
179 防振ばね(機能部材及び弾性体)
180 バッテリパック
181 駆動べベルギア
183 被動べベルギア
Claims (8)
- 工具ビットの長軸方向の打撃動作により被加工材に所定の加工作業を行う打撃工具であって、
回転子と固定子を有するモータと、
前記モータを収容する工具本体と、
前記工具ビットの長軸線と平行に配置されて、前記モータにより回転駆動される駆動軸と、
前記駆動軸に支持されて、当該駆動軸の回転動作に基づき当該駆動軸の軸線方向に揺動動作を行う揺動部材と、
前記揺動部材と連結され、当該揺動部材の揺動動作によって前記工具ビットの長軸方向に直線動作して、当該工具ビットを直線状に駆動する工具駆動機構と、
を有し、
前記モータは、前記回転子が前記固定子の外側に配置されたアウタロータ型モータとして構成されていることを特徴とする打撃工具。 - 請求項1に記載の打撃工具であって、
前記駆動軸が、前記モータの出力軸と同一回転数で駆動されるように構成されていることを特徴とする打撃工具。 - 請求項1又は2に記載の打撃工具であって、
前記モータの出力軸を回転自在に支持する第1軸受と、前記駆動軸を回転自在に支持する第2軸受とを有し、
前記第1軸受と前記第2軸受が、単一の軸受支持部材を介して前記工具本体に支持されていることを特徴とする打撃工具。 - 請求項1~3のいずれか1つに記載の打撃工具であって、
前記モータの出力軸と前記駆動軸が、同軸で配置されていることを特徴とする打撃工具。 - 請求項1~4のいずれか1つに記載の打撃工具であって、
前記工具ビットの長軸線と前記駆動軸とは、当該長軸線の延在方向と交差する方向に所定距離だけ離間して平行に配置されており、
前記工具ビットの長軸線と前記駆動軸の双方を含む面に沿う直線であって、前記工具ビットの長軸線と交差する直線に関し、当該直線に沿う方向の一方側から見たときの仮想投影面上における前記モータの投影領域の内側に、前記加工作業のための所定の機能部材の少なくとも一部が配置されていることを特徴とする打撃工具。 - 請求項5に記載の打撃工具であって、
前記機能部材は、前記工具本体の振動を抑えるための防振機構であることを特徴とする打撃工具。 - 請求項5に記載の打撃工具であって、
作業者が握るためのハンドルを有し、
該ハンドルは、前記工具本体に連結されており、
前記機能部材は、前記工具本体と前記ハンドルとを連結する弾性体であることを特徴とする打撃工具。 - 請求項2に記載の打撃工具であって、
前記モータの出力軸と前記駆動軸とは、互いに交差状に配置されて、べベルギアにより連結されていることを特徴とする打撃工具。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280068043.2A CN104066556B (zh) | 2012-01-26 | 2012-12-07 | 冲击工具 |
US14/374,508 US9724814B2 (en) | 2012-01-26 | 2012-12-07 | Impact tool |
DE112012005769.4T DE112012005769T5 (de) | 2012-01-26 | 2012-12-07 | Schlagwerkzeug |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-014080 | 2012-01-26 | ||
JP2012014080A JP2013151055A (ja) | 2012-01-26 | 2012-01-26 | 打撃工具 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013111460A1 true WO2013111460A1 (ja) | 2013-08-01 |
Family
ID=48873201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/081804 WO2013111460A1 (ja) | 2012-01-26 | 2012-12-07 | 打撃工具 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9724814B2 (ja) |
JP (1) | JP2013151055A (ja) |
CN (1) | CN104066556B (ja) |
DE (1) | DE112012005769T5 (ja) |
WO (1) | WO2013111460A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114148125A (zh) * | 2021-12-08 | 2022-03-08 | 黑河学院 | 一种可拆装防水壁画基底及其主框开槽装置 |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6116058B2 (ja) * | 2013-11-26 | 2017-04-19 | 株式会社マキタ | 作業工具 |
JP6334144B2 (ja) | 2013-11-26 | 2018-05-30 | 株式会社マキタ | 往復動式作業工具 |
DE102014202218A1 (de) * | 2014-02-06 | 2015-08-06 | Robert Bosch Gmbh | Handwerkzeugmaschine mit einem elektronisch kommutierten Elektromotor |
JP6325360B2 (ja) * | 2014-06-12 | 2018-05-16 | 株式会社マキタ | 打撃工具 |
EP3213876B1 (en) * | 2014-11-12 | 2021-01-13 | Makita Corporation | Striking device |
JP6863704B2 (ja) | 2016-10-07 | 2021-04-21 | 株式会社マキタ | 打撃工具 |
US10875168B2 (en) * | 2016-10-07 | 2020-12-29 | Makita Corporation | Power tool |
CN215789518U (zh) | 2018-12-10 | 2022-02-11 | 米沃奇电动工具公司 | 冲击工具 |
JP7246202B2 (ja) | 2019-02-19 | 2023-03-27 | 株式会社マキタ | 震動機構付き電動工具 |
JP7229807B2 (ja) | 2019-02-21 | 2023-02-28 | 株式会社マキタ | 電動工具 |
US11670977B2 (en) | 2019-04-24 | 2023-06-06 | Black & Decker Inc. | Outer rotor brushless motor stator mount |
US12021437B2 (en) | 2019-06-12 | 2024-06-25 | Milwaukee Electric Tool Corporation | Rotary power tool |
EP3822037A1 (de) * | 2019-11-15 | 2021-05-19 | Hilti Aktiengesellschaft | Schlagwerksanordnung |
US11757330B2 (en) | 2019-12-19 | 2023-09-12 | Black & Decker, Inc. | Canned outer-rotor brushless motor for a power tool |
US11437900B2 (en) | 2019-12-19 | 2022-09-06 | Black & Decker Inc. | Modular outer-rotor brushless motor for a power tool |
JP2022119301A (ja) * | 2021-02-04 | 2022-08-17 | 株式会社マキタ | 打撃工具 |
SE546110C2 (en) * | 2021-02-15 | 2024-05-28 | Husqvarna Ab | A drill unit with a motor unit and a gear unit comprising a wall part and a sealing flange |
US11642769B2 (en) * | 2021-02-22 | 2023-05-09 | Makita Corporation | Power tool having a hammer mechanism |
US11858100B2 (en) | 2021-04-07 | 2024-01-02 | Milwaukee Electric Tool Corporation | Impact power tool |
USD1034128S1 (en) * | 2022-02-07 | 2024-07-09 | Robert Bosch Gmbh | Hammer drill |
JP2024007799A (ja) * | 2022-07-06 | 2024-01-19 | 株式会社マキタ | ハンマドリル |
JP2024033183A (ja) * | 2022-08-30 | 2024-03-13 | 株式会社マキタ | 打撃工具用補助グリップ |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005040880A (ja) * | 2003-07-25 | 2005-02-17 | Hitachi Koki Co Ltd | 打撃工具及び打撃工具の空打ち防止機構 |
JP2005305647A (ja) * | 2004-04-24 | 2005-11-04 | Robert Bosch Gmbh | 回転駆動装置及び/又は打撃駆動装置を備えた手持ち式工作機械 |
JP2006123023A (ja) * | 2004-10-26 | 2006-05-18 | Matsushita Electric Works Ltd | 衝撃工具 |
JP2010005751A (ja) * | 2008-06-27 | 2010-01-14 | Makita Corp | 手持式作業工具 |
JP2010012586A (ja) * | 2008-07-07 | 2010-01-21 | Makita Corp | 作業工具 |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE7141263U (de) * | 1971-11-02 | 1973-04-19 | Bosch R Gmbh | Elektrowerkzeug insbesondere elektrische schlagbohrmaschine |
US3831048A (en) * | 1973-07-30 | 1974-08-20 | Singer Co | Bearing assembly for power tools |
JPS6043278B2 (ja) * | 1977-02-04 | 1985-09-27 | 芝浦メカトロニクス株式会社 | ハンマドリル |
US4523116A (en) * | 1983-03-31 | 1985-06-11 | Black & Decker, Inc. | Electrical connection system for motors |
JPS59232774A (ja) | 1983-06-10 | 1984-12-27 | 松下電工株式会社 | 振動ドリル |
JPH0741551B2 (ja) | 1986-11-12 | 1995-05-10 | 株式会社芝浦製作所 | 衝撃工具 |
JP2867107B2 (ja) | 1994-02-03 | 1999-03-08 | 株式会社マキタ | 電動スクリュドライバのサイレントクラッチ |
JPH0825249A (ja) * | 1994-07-12 | 1996-01-30 | Makita Corp | 振動工具及び防振リング |
JP3424880B2 (ja) * | 1995-08-18 | 2003-07-07 | 株式会社マキタ | ハンマードリル |
SE509564C2 (sv) | 1997-02-19 | 1999-02-08 | Atlas Copco Tools Ab | Motorverktyg med smord vinkelväxel |
JP4364323B2 (ja) | 1998-03-16 | 2009-11-18 | 株式会社ケーティーエス | 空気回転工具の回転速度調節装置 |
US6066033A (en) | 1998-07-29 | 2000-05-23 | K-R Industry Company Limited | Rotational speed adjusting device for a pneumatic rotational tool |
DE10045620A1 (de) * | 2000-09-15 | 2002-04-04 | Bosch Gmbh Robert | Werkzeugmaschine mit einem Raum mit Schmiermittel und einer Druckausgleichseinrichtung des Raums |
US6880223B2 (en) * | 2002-04-25 | 2005-04-19 | Milwaukee Electric Tool Corporation | Grease slinger |
JP2004046023A (ja) | 2002-07-16 | 2004-02-12 | Japan Servo Co Ltd | 回転電機による回転体駆動法 |
EP1728596B1 (en) * | 2005-06-02 | 2009-02-11 | Makita Corporation | Power tool |
JP4593387B2 (ja) | 2005-07-04 | 2010-12-08 | 株式会社マキタ | 電動工具 |
JP4362657B2 (ja) | 2005-09-07 | 2009-11-11 | ヨコタ工業株式会社 | 電動式衝撃締め付け工具 |
JP2007215308A (ja) | 2006-02-08 | 2007-08-23 | Shinano Kenshi Co Ltd | 電動機の駆動装置 |
DE102006031745A1 (de) | 2006-03-10 | 2007-09-13 | Robert Bosch Gmbh | Handwerkzeugmaschine, insbesondere Bohr- und/oder Meißelhammer |
JP5217222B2 (ja) | 2007-04-18 | 2013-06-19 | マックス株式会社 | 電動工具 |
US8485274B2 (en) | 2007-05-14 | 2013-07-16 | Makita Corporation | Impact tool |
JP5050667B2 (ja) | 2007-06-05 | 2012-10-17 | マックス株式会社 | 打撃工具 |
JP5073449B2 (ja) * | 2007-10-25 | 2012-11-14 | 株式会社マキタ | 動力工具のハウジング |
CN101444909B (zh) * | 2007-11-27 | 2013-03-27 | 希尔蒂股份公司 | 具有气动冲击装置的手持式工具机 |
JP5171432B2 (ja) | 2008-06-26 | 2013-03-27 | 株式会社マキタ | 電動工具 |
US20090321101A1 (en) | 2008-06-26 | 2009-12-31 | Makita Corporation | Power tool |
DE102008040767A1 (de) | 2008-07-28 | 2010-02-04 | Robert Bosch Gmbh | Schlagvorrichtung |
DE102008054458A1 (de) * | 2008-12-10 | 2010-06-17 | Robert Bosch Gmbh | Handwerkzeugmaschine |
JP5479023B2 (ja) * | 2009-10-20 | 2014-04-23 | 株式会社マキタ | 充電式電動工具 |
DE102009050014B4 (de) | 2009-10-21 | 2013-07-11 | Metabowerke Gmbh | Motorisch angetriebenes Werkzeuggerät mit Bohrhammerbetriebsart |
JP5502581B2 (ja) * | 2010-04-22 | 2014-05-28 | 株式会社マキタ | 作業工具 |
CN201900631U (zh) | 2010-12-15 | 2011-07-20 | 乐舟中 | 一种钉钉子的电动冲击锤 |
CN102267129A (zh) | 2011-07-01 | 2011-12-07 | 浙江海王电器有限公司 | 两功能轻型电锤 |
-
2012
- 2012-01-26 JP JP2012014080A patent/JP2013151055A/ja active Pending
- 2012-12-07 WO PCT/JP2012/081804 patent/WO2013111460A1/ja active Application Filing
- 2012-12-07 US US14/374,508 patent/US9724814B2/en not_active Expired - Fee Related
- 2012-12-07 DE DE112012005769.4T patent/DE112012005769T5/de not_active Withdrawn
- 2012-12-07 CN CN201280068043.2A patent/CN104066556B/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005040880A (ja) * | 2003-07-25 | 2005-02-17 | Hitachi Koki Co Ltd | 打撃工具及び打撃工具の空打ち防止機構 |
JP2005305647A (ja) * | 2004-04-24 | 2005-11-04 | Robert Bosch Gmbh | 回転駆動装置及び/又は打撃駆動装置を備えた手持ち式工作機械 |
JP2006123023A (ja) * | 2004-10-26 | 2006-05-18 | Matsushita Electric Works Ltd | 衝撃工具 |
JP2010005751A (ja) * | 2008-06-27 | 2010-01-14 | Makita Corp | 手持式作業工具 |
JP2010012586A (ja) * | 2008-07-07 | 2010-01-21 | Makita Corp | 作業工具 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114148125A (zh) * | 2021-12-08 | 2022-03-08 | 黑河学院 | 一种可拆装防水壁画基底及其主框开槽装置 |
Also Published As
Publication number | Publication date |
---|---|
US9724814B2 (en) | 2017-08-08 |
CN104066556A (zh) | 2014-09-24 |
DE112012005769T5 (de) | 2014-10-30 |
CN104066556B (zh) | 2016-11-16 |
US20150041170A1 (en) | 2015-02-12 |
JP2013151055A (ja) | 2013-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013111460A1 (ja) | 打撃工具 | |
JP4195818B2 (ja) | 電動ハンマ | |
JP4863942B2 (ja) | 打撃工具 | |
JP5128998B2 (ja) | 手持式作業工具 | |
JP5290666B2 (ja) | 打撃工具 | |
JP4659737B2 (ja) | 作業工具 | |
JP5361504B2 (ja) | 打撃工具 | |
JP6441588B2 (ja) | 打撃工具 | |
JP5767511B2 (ja) | 往復動式作業工具 | |
EP1932627A2 (en) | Vibration reduction apparatus for power tool and power tool incorporating such apparatus | |
WO2009119760A1 (ja) | 作業工具 | |
CN108290278B (zh) | 往复动作业机 | |
CN107107322B (zh) | 冲击工具 | |
JP5009059B2 (ja) | 打撃工具 | |
WO2006041139A1 (ja) | 往復作動式作業工具 | |
JP2006021261A (ja) | 往復作動式工具 | |
EP2415563B1 (en) | Impact tool | |
JP5009060B2 (ja) | 打撃工具 | |
JP4805288B2 (ja) | 電動ハンマ | |
AU2012203415B2 (en) | Wobble bearing arrangement for a power tool | |
JP2010052118A (ja) | 打撃工具 | |
JP6612496B2 (ja) | 打撃工具 | |
JP2013163234A (ja) | 打撃工具 | |
JP2004330377A (ja) | 作業工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12866930 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14374508 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120120057694 Country of ref document: DE Ref document number: 112012005769 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12866930 Country of ref document: EP Kind code of ref document: A1 |