WO2013094058A1 - 窒化アルミニウム単結晶基板、およびこれらの製造方法 - Google Patents

窒化アルミニウム単結晶基板、およびこれらの製造方法 Download PDF

Info

Publication number
WO2013094058A1
WO2013094058A1 PCT/JP2011/079838 JP2011079838W WO2013094058A1 WO 2013094058 A1 WO2013094058 A1 WO 2013094058A1 JP 2011079838 W JP2011079838 W JP 2011079838W WO 2013094058 A1 WO2013094058 A1 WO 2013094058A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
aln
concentration
aluminum nitride
atoms
Prior art date
Application number
PCT/JP2011/079838
Other languages
English (en)
French (fr)
Inventor
纐纈 明伯
熊谷 義直
徹 永島
有紀 久保田
Original Assignee
国立大学法人東京農工大学
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京農工大学, 株式会社トクヤマ filed Critical 国立大学法人東京農工大学
Priority to US14/366,020 priority Critical patent/US9691942B2/en
Priority to EP11878135.0A priority patent/EP2796596B1/en
Priority to PCT/JP2011/079838 priority patent/WO2013094058A1/ja
Priority to CN202010518150.7A priority patent/CN111621852A/zh
Priority to JP2013550032A priority patent/JP5904470B2/ja
Priority to KR1020147016397A priority patent/KR101821301B1/ko
Priority to CN201180075372.5A priority patent/CN103975098A/zh
Publication of WO2013094058A1 publication Critical patent/WO2013094058A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/34Materials of the light emitting region containing only elements of Group IV of the Periodic Table
    • H01L33/343Materials of the light emitting region containing only elements of Group IV of the Periodic Table characterised by the doping materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/08Reaction chambers; Selection of materials therefor
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0054Processes for devices with an active region comprising only group IV elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials

Definitions

  • the present invention relates to a novel aluminum nitride (hereinafter sometimes referred to as AlN) single crystal and a method for producing the same. More specifically, the present invention relates to a novel AlN single crystal having a low concentration of carbon atoms contained in the AlN single crystal and good ultraviolet light transmittance, and a method for producing the same.
  • AlN aluminum nitride
  • a semiconductor element such as an ultraviolet light emitting element, a cladding layer, an active layer, etc. are provided between an n-type semiconductor layer electrically bonded to the n-electrode and a p-type semiconductor layer electrically bonded to the p-electrode. It is necessary to form a laminated structure including it, and from the viewpoint of light emission efficiency, it is important that any layer has high crystallinity, that is, few crystal dislocations and point defects. For these reasons, the above laminated structure is generally formed on a single crystal substrate (hereinafter, also referred to as “self-standing substrate”) having sufficient mechanical strength to exist independently.
  • a single crystal substrate hereinafter, also referred to as “self-standing substrate” having sufficient mechanical strength to exist independently.
  • the self-standing substrate for forming the laminated structure has a small lattice constant difference and thermal expansion coefficient difference from an Al group III nitride single crystal such as aluminum gallium indium nitride (AlGaInN) forming the laminated structure, A high thermal conductivity is required from the viewpoint of preventing deterioration of the element. Therefore, in order to produce a semiconductor element containing AlN, it is advantageous to form the above layer structure using an Al-based group III nitride single crystal substrate as a self-supporting substrate.
  • AlGaInN aluminum gallium indium nitride
  • the Al-based group III nitride single crystal substrate which is a self-supporting substrate transmits light. If light cannot be transmitted, even if the light emission efficiency of the semiconductor device structure is high, the light is absorbed by the Al-based group III nitride single crystal substrate, resulting in an ultraviolet light emitting device with low light emission efficiency. .
  • aluminum nitride single crystal in particular, has a band gap energy of about 6 eV and can emit light with a short wavelength in the ultraviolet region.
  • Use as a base substrate is expected. From the viewpoint of efficiency as an LED, it is important for the AlN single crystal to transmit light having a short wavelength in the ultraviolet region, and the higher the transmittance, the more useful the LED for the light source.
  • HVPE method hydride vapor phase epitaxy method
  • Patent Document 2 as a method of reducing the absorption coefficient of a nitride semiconductor single crystal substrate, that is, improving the transmittance of the nitride semiconductor single crystal substrate, 1 ⁇ 10 17 cm ⁇ 3 or less as an impurity of AlN
  • the total impurity density is described as having an absorption coefficient of 50 cm ⁇ 1 or less in the entire wavelength range of 350 to 780 nm.
  • the substrate temperature during the growth of a single crystal is set to a relatively low value of 900 to 1100 ° C., the concentration of all impurities can be suppressed, while the crystallinity may be lowered.
  • light having a wavelength of 265 nm which is ultraviolet light, is easily absorbed by bacterial DNA, is useful for sterilization from the viewpoint of destroying DNA, and is expected to be put to practical use.
  • the transmittance of 300 nm or less, particularly 265 nm, necessary as a base substrate of the LED for the white light source is sufficient. Instead, it was desired to improve the transmittance around 265 nm.
  • AlN single crystals produced by the hydride vapor phase epitaxy method are known to have a relatively high light transmittance to 265 nm, but the light transmittance is about 40% (the absorption coefficient at 265 nm is 120 cm ⁇ 1 ), which is not sufficient (see Non-Patent Document 1).
  • an object of the present invention is to provide an AlN single crystal that has good transmittance for light having a short wavelength of 265 nm in the ultraviolet region, in other words, has a low absorption coefficient at 265 nm. Furthermore, it is providing the manufacturing method of the said AlN single crystal with favorable ultraviolet-light transmittance.
  • the present inventors have conducted intensive studies. Then, paying attention to the type and concentration of impurity atoms contained in the AlN single crystal, the light transmittance in the ultraviolet region of the AlN single crystal was examined. Then, even if the AlN single crystal obtained by growing at a high temperature by the HVPE method contains a large amount of impurities of 1 ⁇ 10 15 to 1 ⁇ 10 20 atoms / cm 3 , If the concentration is 1 ⁇ 10 14 atoms / cm 3 or more and less than 3 ⁇ 10 17 atoms / cm 3 and the chlorine concentration is 1 ⁇ 10 14 to 1 ⁇ 10 17 atoms / cm 3 , the short wavelength in the ultraviolet region is 265 nm.
  • the main atom that hinders the transmission of light at 265 nm is a carbon atom.
  • the concentration of chlorine atoms contained in the AlN single crystal to a relatively low concentration instead of zero, and controlling the carbon concentration as low as possible, the ultraviolet light transmittance is good.
  • the inventors have found that an AlN single crystal can be obtained, and have completed the present invention.
  • the gist of the present invention for solving the above problems is as follows.
  • the carbon concentration is 1 ⁇ 10 14 atoms / cm 3 or more and less than 3 ⁇ 10 17 atoms / cm 3
  • the chlorine concentration is 1 ⁇ 10 14 to 1 ⁇ 10 17 atoms / cm 3
  • An aluminum nitride single crystal having an absorption coefficient at 265 nm of 40 cm ⁇ 1 or less.
  • An aluminum nitride single crystal is grown on the substrate, and the exposed surface in the hydride vapor phase epitaxy apparatus at a temperature of 1200 ° C. or higher during crystal growth is not reduced or thermally decomposed at a temperature of 1200 ° C. or higher and 1700 ° C. or lower.
  • the exposed surface of the region of 1200 ° C. or higher in the hydride vapor phase epitaxy apparatus is preferably composed of at least one selected from the group consisting of BN, TaC, W and Mo (5 )
  • a method for producing an aluminum nitride single crystal is preferably composed of at least one selected from the group consisting of BN, TaC, W and Mo (5 ) A method for producing an aluminum nitride single crystal.
  • the light transmittance of the AlN single crystal is determined by a number of complicated factors (for example, factors such as manufacturing conditions and crystallinity reflecting it). Therefore, simply reducing the total impurity concentration does not improve the light transmittance.
  • An ideal single crystal that does not contain any impurities (the total amount of impurities is zero) and has no defects is considered to exhibit light transmittance close to the theoretical value, but from the raw material or from the atmosphere in the single crystal manufacturing process. It is impossible with current technology to completely eliminate the contamination and to eliminate all defects.
  • the aluminum nitride (AlN) single crystal of the present invention has excellent ultraviolet light transmittance even when the total impurity concentration is relatively high, and an AlN single crystal that can be used for LEDs in the ultraviolet region is obtained. be able to.
  • AlN single crystal having such an excellent characteristic was obtained by crystal growth at a temperature exceeding 1200 ° C. in the HVPE method, having good crystallinity and a predetermined amount of C and Cl as impurities.
  • the transmittance in a short wavelength region of 300 nm or less greatly depends on the concentration of carbon contained as an impurity.
  • Patent Document 2 Even in Patent Document 2, an AlN single crystal is obtained under a condition that the total impurity concentration is lowered by the HVPE method (naturally, the impurity carbon concentration is also lowered).
  • crystal growth is performed at a temperature of 1100 ° C. or lower. Therefore, it is considered that the light transmittance for light having a wavelength of 300 nm or less could not be improved even if the carbon concentration was low due to the influence of crystallinity and other impurity elements.
  • the carbon concentration is 1 ⁇ 10 14 atoms / cm 3 or more and less than 3 ⁇ 10 17 atoms / cm 3
  • the chlorine concentration is 1 ⁇ 10 14 to 1 ⁇ 10 17 atoms / cm 3
  • the present invention relates to an AlN single crystal having an absorption coefficient at 265 nm of 40 cm ⁇ 1 or less.
  • the AlN single crystal of the present invention has high transparency to light having a wavelength of 265 nm even if the total impurity concentration is relatively high, as long as the concentration of carbon atoms and chlorine atoms contained as impurities is within a predetermined range. Can do.
  • the reason why the AlN single crystal of the present invention can exhibit excellent transparency to light having a wavelength of 265 nm is not necessarily clear, but the present inventors have estimated as follows. That is, in the AlN single crystal having particularly good crystallinity, as described in detail later, the cause of deteriorating the ultraviolet light transmission characteristics is N vacancies generated when carbon impurities are mixed into the AlN single crystal. In addition to reducing the carbon impurity concentration, it is estimated that the formation of N vacancies was suppressed by the electrical neutralization effect of chlorine atoms inevitably mixed in the HVPE method, and the ultraviolet light transmission characteristics were improved. is doing.
  • the N vacancies have a negative charge because they originally lack nitrogen atoms that were in the nitrogen lattice sites of AlN. In this way, when carbon atoms are mixed as impurities, it is considered that the electrical neutrality in the AlN single crystal is maintained by compensating the charges by generating N vacancies. It is done.
  • the ultraviolet light transmission characteristics in the wavelength region are deteriorated particularly when a large amount of carbon impurities is contained among the impurities. Therefore, the present inventors have estimated that N vacancies generated when carbon impurities are mixed into the AlN single crystal deteriorate the ultraviolet light transmission characteristics.
  • chlorine impurities are mixed into the AlN single crystal from a halogen gas containing aluminum atoms, which is a raw material gas for growing the AlN single crystal.
  • concentration of chlorine impurities taken into the AlN single crystal is affected by the growth conditions and the influence of the airflow in the HVPE apparatus, generally, the concentration of chlorine impurities tends to increase as the temperature for growing the AlN single crystal increases. There is.
  • by controlling the carbon impurity it is possible to maintain the ultraviolet light transmission characteristics even if the concentration of the chlorine impurity is increased.
  • halogen-based gas is not used for the raw material gas, so that halogen is not mixed in principle.
  • Chlorine impurities are mixed by hydride vapor phase epitaxy. This is a characteristic characteristic of the grown AlN single crystal.
  • N vacancies generated by the mixing of carbon impurities can be reduced by making the mixing of carbon impurities, chlorine impurities, etc. within a certain range.
  • the present inventors presume that the AlN single crystal of the present invention has good ultraviolet light transmission characteristics.
  • the carbon and chlorine concentrations must satisfy the above range.
  • the concentration of carbon and chlorine is 1 ⁇ 10 14 atoms / cm 3 or more and less than 3 ⁇ 10 17 atoms / cm 3 (carbon Concentration) and 1 ⁇ 10 14 to 1 ⁇ 10 17 atoms / cm 3 (chlorine concentration), and more preferably 5 ⁇ 10 14 to 1 ⁇ 10 17 atoms / cm 3 (carbon concentration) and 5 ⁇ 10 14 to 5 ⁇ 10 16 atoms / cm 3 (chlorine concentration) is preferable. Furthermore, it is more preferable to set to 1 ⁇ 10 15 to 1 ⁇ 10 17 atoms / cm 3 (carbon concentration) and 1 ⁇ 10 15 to 1 ⁇ 10 16 atoms / cm 3 (chlorine concentration).
  • the total concentration of carbon, chlorine, boron, silicon and oxygen contained in the AlN single crystal is preferably 1 ⁇ 10 15 to 1 ⁇ 10 20 atoms / cm 3 , more preferably 1 ⁇ 10. 16 to 5 ⁇ 10 19 atoms / cm 3 , more preferably 1 ⁇ 10 17 to 1 ⁇ 10 19 atoms / cm 3 .
  • the concentrations of boron, silicon, and oxygen are preferably 1 ⁇ 10 15 to 5 ⁇ 10 19 atoms / cm 3 , more preferably 1 ⁇ 10 16 to 1 ⁇ 10 19 atoms / cm 3 , and still more preferably. 5 ⁇ 10 16 to 1 ⁇ 10 18 atoms / cm 3 .
  • impurities are usually mixed from members of a crystal growth apparatus or a raw material for growing an AlN single crystal. Even if the single crystal AlN of the present invention contains such an impurity, it can increase the transparency to light having a wavelength of 300 nm or less, for example, 265 nm.
  • the absorption coefficient at a wavelength of 265 nm which is an index of ultraviolet light transmission, is 40 cm ⁇ 1 or less, more preferably 30 cm ⁇ 1 or less.
  • a product of 20 cm ⁇ 1 or less can be obtained.
  • An absorption coefficient (unit: cm ⁇ 1 ) is used as an index of good or bad light transmission. The smaller the absorption coefficient, the better the light transmittance.
  • the absorption coefficient are those values depending on different wavelengths, for use as ultraviolet light-emitting diodes, the absorption coefficient at a wavelength of 265nm is 40 cm -1 or less, more 30 cm -1 or less, more preferably 20 cm -1 It is as follows. Further, the smaller the absorption coefficient is, the better the light transmittance is. Therefore, the lower limit is better, and it is not particularly limited. However, considering industrial production, the lower limit of the absorption coefficient at a wavelength of 265 nm is 1 cm ⁇ 1 . In the present invention, the ultraviolet light transmission index is indicated by an absorption coefficient at a wavelength of 265 nm. However, if the absorption coefficient is a low value satisfying the above range at a wavelength of 265 nm, the absorption coefficient at a wavelength of 240 to 300 nm. Is naturally low, and the light transmission in this region is good.
  • the half width of the X-ray rocking curve of the (0002) plane of the AlN single crystal is preferably 3000 seconds or less, more preferably 1 to 1500 seconds, and further preferably 5 to 1000 seconds.
  • the effect of the present invention tends to be difficult to obtain.
  • the crystal growth temperature in order to improve the crystallinity, it is necessary to increase the crystal growth temperature.
  • problems such as increased contamination of impurities occur.
  • the present invention as described above, it is only necessary to control the mixing amount of carbon and chlorine, so that such excellent crystallinity can be easily achieved.
  • the peak due to the c-plane of AlN such as the (0002) plane or the (0004) plane when X-ray diffraction ⁇ -2 ⁇ mode measurement is performed. Is mainly observed.
  • the AlN single crystal of the present invention can confirm a peak at 209 nm, which is the band edge emission of AlN, in photoluminescence measurement. That is, using a 193 nm ArF laser as an excitation light source, the sample is irradiated vertically to excite the sample. Further, the luminescence light generated from the sample is imaged by a focusing lens and then detected by a spectroscope to obtain an intensity spectrum with respect to the wavelength. In the band edge emission, the emission wavelength may slightly vary depending on the impurities contained in AlN. However, in the AlN single crystal of the present invention, band edge emission is observed in the range of 205 to 215 nm when measured at room temperature (23 ° C.). .
  • the method for producing an AlN single crystal of the present invention is not particularly limited as long as the carbon concentration and the chlorine concentration can be controlled within a predetermined range, but the single crystal AlN of the present invention can be produced with good reproducibility.
  • HVPE method hydride vapor phase epitaxy method
  • the HVPE method is a method of growing AlN by supplying an Al source gas and a nitrogen source gas onto a heated single crystal substrate.
  • aluminum trichloride gas is used as the Al source gas.
  • ammonia gas is used as the nitrogen source gas.
  • aluminum trichloride gas is preferably used as the Al source gas because the concentration of chlorine contained in the single crystal AlN is easily controlled.
  • the single crystal substrate is not particularly limited as long as it is a single crystal AlN substrate with good crystallinity, but for the reason that the single crystal AlN of the present invention with good crystallinity can be obtained efficiently, the following It is preferable to use a single-crystal AlN free-standing substrate obtained by the method or a composite AlN free-standing substrate in which a layer made of single-crystal AlN is laminated on a main layer made of polycrystalline and / or amorphous AlN.
  • the single crystal AlN free-standing substrate can be suitably manufactured by the method disclosed in JP 2010-89971. Specifically, first, a seed crystal substrate having a first AlN single crystal layer on its surface is prepared by a method such as forming a single crystal AlN layer on a heterogeneous single crystal substrate such as sapphire or single crystal Si. Next, on the first AlN single crystal layer of the seed crystal substrate, a layer made of the AlN single crystal (hereinafter sometimes referred to as “second AlN single crystal layer”) is formed by vapor phase growth. A laminated body is manufactured. Next, by separating the second AlN single crystal layer from the laminate (removing the seed crystal substrate), a single crystal AlN free-standing substrate made of an AlN single crystal (second AlN single crystal layer) is obtained. Can do.
  • a seed crystal substrate having a first AlN single crystal layer on its surface is prepared by a method such as forming a single crystal AlN layer on a heterogeneous single crystal substrate such as sapphire or single crystal Si.
  • the composite AlN free-standing substrate can be manufactured, for example, according to the method described in WO2009 / 090821 and JP2010-10613.
  • a single crystal AlN thin film layer is formed on a heterogeneous single crystal substrate such as sapphire or single crystal Si, and an AlN non-single crystal layer made of polycrystalline, amorphous, or a mixture thereof is formed thereon. Then, it can be manufactured by removing the heterogeneous single crystal substrate.
  • a heterogeneous single crystal substrate such as sapphire or single crystal Si
  • an AlN non-single crystal layer made of polycrystalline, amorphous, or a mixture thereof is formed thereon. Then, it can be manufactured by removing the heterogeneous single crystal substrate.
  • the composite AlN free-standing substrate is used as a substrate for the HVPE method
  • the single crystal AlN thin film layer exposed by removing the different single crystal substrate is used as the crystal growth surface.
  • the thickness of the single crystal AlN thin film layer forming the outermost surface is 10 nm to 1.5 ⁇ m, and the thickness of the AlN non-single crystal layer is However, those having a thickness 100 times or more that of the AlN single crystal thin film layer are preferably used.
  • the growth temperature (substrate temperature at the time of crystal growth) is set to 1200 ° C. or more and 1700 ° C. or less.
  • a material that does not undergo reductive decomposition or thermal decomposition of the exposed surface of a region in the apparatus (hereinafter also referred to as a “high temperature heating region”) that is 1200 ° C. or higher during crystal growth at a temperature of 1200 ° C. or higher and 1700 ° C. or lower, or reductive decomposition
  • it is necessary to use an apparatus composed only of members made of materials that do not generate carbon atom-containing gas even when pyrolyzed hereinafter collectively referred to as “carbon-free materials”).
  • the chlorine concentration contained in the grown single crystal AlN may be outside the range of the chlorine concentration in the single crystal AlN of the present invention, but also a single crystal with high crystallinity. It becomes difficult to obtain AlN, and the single crystal AlN of the present invention cannot be produced with good reproducibility.
  • an HVPE apparatus an apparatus in which a material that generates a gas containing carbon atoms by reductive decomposition or thermal decomposition at a temperature of 1200 ° C. or higher and 1700 ° C. or lower in a region where the temperature is 1200 ° C. or higher during crystal growth is exposed. Is used, it is very difficult to make the carbon concentration contained in the single crystal AlN within the range of the single crystal AlN of the present invention.
  • the HVPE apparatus will be described in more detail.
  • the HVPE apparatus currently used is a susceptor equipped with a high-frequency induction heating apparatus or a rotation mechanism in order to grow single crystal AlN having good crystallinity uniformly and at high speed on a substrate.
  • graphite or silicon carbide is generally used as a material of a member constituting a region having a temperature of 1200 ° C. or higher.
  • a nitride ceramic sintered member, graphite, or the like was surface-coated with TaC or BN having extremely high heat resistance.
  • a member etc. may be used, and the carbon generation amount can be significantly reduced by taking such measures.
  • the inventors of the present invention thoroughly studied the above-described points regarding the HVPE apparatus, and took measures to configure the exposed surface of the high-temperature heating region in the HVPE apparatus only with members made of carbon-free materials.
  • the single crystal AlN of the present invention was successfully produced.
  • the underlying material is exposed on the surface (via the pinholes). Therefore, when using a member whose surface is coated with a graphite material such as TaC or BN, it is necessary to strictly check for the presence of pinholes and use those that do not have pinholes. Also, if a gas containing carbon atoms leaks into the reaction atmosphere through a gap after the screws are mounted, at least the surface thereof needs to be a carbon-free material.
  • BN, TaC, W, Mo, Ta etc. can be considered as a carbon non-generation material.
  • carbon, carbon with SiC coating layer, BN sintered body, AlN sintered body, SiC sintered body, TaC or BN coated Even if it is carbon with a layer, what has a crack and a pinhole in a coating layer, etc. can be considered.
  • the single crystal AlN of the present invention can be grown in the presence of a suitable carbon source and chlorine source by employing the above conditions.
  • the thickness of the layer made of the AlN of the present invention obtained by the method of the present invention is not particularly limited, and may be appropriately determined according to the application to be used. Usually, it is 50 ⁇ m or more and 2000 ⁇ m or less.
  • the AlN single crystal of the present invention can be obtained by separating and removing the substrate from the laminate produced by the above method.
  • a known method can be adopted as a method for separating and removing the substrate.
  • the seed crystal substrate can be removed from the laminate by mechanically cutting or polishing to obtain a second AlN single crystal layer (AlN single crystal of the present invention).
  • Example 1 (Preparation of substrate)
  • a composite AlN free-standing substrate was produced as a substrate by the method described in WO2009 / 090821.
  • the thickness of the AlN single crystal thin film layer constituting the AlN single crystal plane is 230 nm
  • the thickness of the underlying AlN non-single crystal layer is 350 ⁇ m.
  • the composite AlN free-standing substrate was cleaned in acetone for 3 minutes with an ultrasonic wave with a frequency of 100 kHz, and further washed in 2-propanol with an ultrasonic wave with a frequency of 100 kHz for 3 minutes, and then with ultrapure water. Rinse and blow the substrate with dry nitrogen to remove ultra pure water.
  • the susceptor is made of BN coated graphite with the entire surface of the susceptor, BN is used for the susceptor rotation shaft and the heat shield around the susceptor, and BN is used to fix the susceptor and the rotation shaft.
  • a graphite screw coated with is used.
  • the BN coat layer of the susceptor was observed over the entire periphery with a stereomicroscope at an observation magnification of 8 to 56 times, and it was confirmed that there were no pinholes or cracks in the coat layer.
  • the composite AlN free-standing substrate is placed on a tungsten susceptor in an HVPE apparatus so that the AlN single crystal surface becomes the outermost surface, and then the pressure is set to 150 Torr, and hydrogen gas (7000 sccm) and nitrogen gas (3000 sccm) are mixed. While circulating with a carrier gas, the composite AlN free-standing substrate was heated to 1450 ° C. and held for 10 minutes to perform surface cleaning. At this time, ammonia gas was supplied so that it might become 0.5 volume% with respect to the total carrier gas flow rate (10000 sccm). Next, aluminum chloride gas obtained by reacting metal aluminum heated to 420 ° C. with hydrogen chloride gas was supplied at 0.05% by volume with respect to the total carrier gas flow rate. This state was maintained for 15 hours, and an AlN single crystal layer of the present invention was grown on the substrate by 300 ⁇ m.
  • the supply of aluminum chloride gas was stopped, and the type of carrier gas was switched to nitrogen gas and cooled to room temperature. Ammonia gas was continuously supplied until the substrate temperature dropped to 800 ° C.
  • the composite AlN free-standing substrate used in this example is supported by an AlN polycrystalline layer having a thickness of 350 ⁇ m.
  • the AlN polycrystalline layer has many particle interfaces, light scattering occurs and ultraviolet light transmittance is reduced. I can't get it. Therefore, in order to evaluate the absorption coefficient of the grown AlN single crystal layer, the composite AlN free-standing substrate is removed by polishing, and the surface of the remaining AlN single crystal layer is further polished, thereby growing the grown AlN single crystal layer.
  • a sample made of AlN single crystal consisting of only 200 ⁇ m thick was prepared. The surface of the sample was finished in a double-sided mirror polished state having an RMS value of about 5 nm.
  • the concentration of oxygen atoms and the concentration of carbon atoms in the sample were determined based on a calibration curve using a separately prepared AlN standard sample by measuring the secondary ion intensity at a depth of 5 ⁇ m from the surface side.
  • the carbon atom concentration of the sample was 1 ⁇ 10 17 cm ⁇ 3
  • the oxygen atom concentration was 3 ⁇ 10 17 cm ⁇ 3 .
  • the concentration of chlorine atoms is 1 ⁇ 10 15 cm ⁇ 3
  • the total concentration of carbon, chlorine, boron, silicon and oxygen contained in this sample is 5.1 ⁇ 10 17 cm ⁇ 3.
  • the total concentration of boron, silicon, and oxygen contained in the solution was 4.1 ⁇ 10 17 cm ⁇ 3 .
  • the half-value width of the X-ray rocking curve on the (0002) plane of the sample was 1200 seconds. Further, when X-ray diffraction measurement of the ⁇ -2 ⁇ mode was performed, only the (0002) plane and (0004) plane of AlN were observed.
  • photoluminescence measurement at room temperature was performed.
  • HT800UV Laser light source: ExciStarS-200
  • Horiba, Ltd. was used as a measuring apparatus.
  • the sample was excited by irradiating the sample perpendicularly.
  • the luminescence light generated from the sample was imaged with a condenser lens and then detected with a spectroscope to obtain a spectrum with respect to wavelength.
  • the irradiation time was 10 seconds, the number of integrations was 3, the hole diameter was 1000 ⁇ m, and the grating was 300 grooves / mm.
  • a peak near 209 nm which is emission at the band edge of AlN, was confirmed.
  • Example 2 In order to fix the susceptor and the rotating shaft of the HVPE apparatus, a tungsten screw was used, and the temperature during growth of the AlN single crystal layer of the present invention was set to 1350 ° C. A crystal layer was grown.
  • a sample having a thickness of 200 ⁇ m composed of only the grown AlN single crystal layer is prepared by mirror polishing both surfaces, and the linear transmittance at 265 nm, the concentration of impurities, the half-value width of the X-ray rocking curve of the (0002) plane, An X-ray diffraction profile and a photoluminescence spectrum in the ⁇ -2 ⁇ mode were measured by the same method as in Example 1.
  • the linear transmittance was 58%, and the absorption coefficient was calculated to be 27 cm ⁇ 1 .
  • the concentration of carbon atoms was 3 ⁇ 10 16 cm ⁇ 3 and the concentration of oxygen atoms was 5 ⁇ 10 17 cm ⁇ 3 .
  • the concentration of chlorine atoms is 5 ⁇ 10 15 cm ⁇ 3
  • the total concentration of carbon, chlorine, boron, silicon and oxygen contained in this sample is 8.4 ⁇ 10 17 cm ⁇ 3.
  • the total concentration of boron, silicon, and oxygen contained in the solution was 8.0 ⁇ 10 17 cm ⁇ 3 .
  • the half width of the X-ray rocking curve on the (0002) plane of the sample was 1800 seconds. Further, when X-ray diffraction measurement of the ⁇ -2 ⁇ mode was performed, only the (0002) plane and (0004) plane of AlN were observed. In addition, as a result of performing photoluminescence measurement at room temperature (23 ° C.), a peak near 209 nm, which is AlN band edge emission, was confirmed.
  • Example 3 In order to fix the susceptor and the rotating shaft of the HVPE apparatus, a TaC screw was used, and the temperature during growth of the AlN single crystal layer of the present invention was set to 1250 ° C. A crystal layer was grown.
  • a sample having a thickness of 200 ⁇ m composed of only the grown AlN single crystal layer is prepared by mirror polishing both surfaces, and the linear transmittance at 265 nm, the concentration of impurities, the half-value width of the X-ray rocking curve of the (0002) plane, An X-ray diffraction profile and a photoluminescence spectrum in the ⁇ -2 ⁇ mode were measured by the same method as in Example 1.
  • the linear transmittance was calculated to be 45%
  • the absorption coefficient was calculated to be 40 cm ⁇ 1 .
  • the concentration of carbon atoms was 3 ⁇ 10 16 cm ⁇ 3
  • the concentration of oxygen atoms was 1 ⁇ 10 17 cm ⁇ 3 .
  • the concentration of chlorine atoms is 7 ⁇ 10 14 cm ⁇ 3
  • the total concentration of carbon, chlorine, boron, silicon and oxygen contained in this sample is 5.3 ⁇ 10 17 cm ⁇ 3.
  • the total concentration of boron, silicon, and oxygen contained in was 5.0 ⁇ 10 17 cm ⁇ 3 .
  • the half width of the X-ray rocking curve on the (0002) plane of the sample was 2800 seconds. Further, when X-ray diffraction measurement of the ⁇ -2 ⁇ mode was performed, only the (0002) plane and (0004) plane of AlN were observed. In addition, as a result of performing photoluminescence measurement at room temperature (23 ° C.), a peak near 209 nm, which is AlN band edge emission, was confirmed.
  • Comparative Example 1 In order to fix the susceptor and the rotating shaft of the HVPE apparatus, a graphite screw was used, and the temperature during growth of the AlN single crystal layer of the present invention was changed to 1550 ° C. A crystal layer was grown.
  • a sample having a thickness of 200 ⁇ m composed of only the grown AlN single crystal layer is prepared by mirror polishing both surfaces, and the linear transmittance at 265 nm, the concentration of impurities, the half-value width of the X-ray rocking curve of the (0002) plane, An X-ray diffraction profile and a photoluminescence spectrum in the ⁇ -2 ⁇ mode were measured by the same method as in Example 1.
  • the linear transmittance was 38%, and the absorption coefficient was calculated to be 48 cm ⁇ 1 .
  • the concentration of carbon atoms was 7 ⁇ 10 17 cm ⁇ 3
  • the concentration of oxygen atoms was 5 ⁇ 10 16 cm ⁇ 3 .
  • the concentration of chlorine atoms is 4 ⁇ 10 14 cm ⁇ 3
  • the total concentration of carbon, chlorine, boron, silicon, and oxygen contained in this sample is 1.1 ⁇ 10 18 cm ⁇ 3.
  • the total concentration of boron, silicon and oxygen contained in was 3.5 ⁇ 10 17 cm ⁇ 3 .
  • the half-value width of the X-ray rocking curve on the (0002) plane of the sample was 1000 seconds. Further, when X-ray diffraction measurement of the ⁇ -2 ⁇ mode was performed, only the (0002) plane and (0004) plane of AlN were observed. In addition, as a result of performing photoluminescence measurement at room temperature (23 ° C.), a peak near 209 nm, which is AlN band edge emission, was confirmed.
  • Comparative Example 2 The AlN single crystal layer is formed in the same procedure as in Example 1 except that graphite with BN coated on the entire susceptor surface is used as the susceptor material of the HVPE apparatus, and graphite is used for the screws for fixing the susceptor and the rotating shaft. did.
  • graphite with BN coated on the entire susceptor surface is used as the susceptor material of the HVPE apparatus, and graphite is used for the screws for fixing the susceptor and the rotating shaft.
  • graphite with BN coated on the entire susceptor surface is used as the susceptor material of the HVPE apparatus, and graphite is used for the screws for fixing the susceptor and the rotating shaft. did.
  • graphite with BN coated on the entire susceptor surface is used as the susceptor material of the HVPE apparatus, and graphite is used for the screws for fixing the susceptor and the rotating shaft.
  • the entire outer periphery of the BN coat layer of the susceptor used in this comparative example
  • a sample having a thickness of 200 ⁇ m composed of only the grown AlN single crystal layer is prepared by mirror polishing both surfaces, and the linear transmittance at 265 nm, the concentration of impurities, the half-value width of the X-ray rocking curve of the (0002) plane, An X-ray diffraction profile and a photoluminescence spectrum in the ⁇ -2 ⁇ mode were measured by the same method as in Example 1.
  • the linear transmittance was 17%, and the absorption coefficient was calculated to be 90 cm ⁇ 1 .
  • the concentration of carbon atoms was 4 ⁇ 10 18 cm ⁇ 3 and the concentration of oxygen atoms was 5 ⁇ 10 16 cm ⁇ 3 .
  • the concentration of chlorine atoms is 4 ⁇ 10 15 cm ⁇ 3
  • the total concentration of carbon, chlorine, boron, silicon, and oxygen contained in this sample is 4.1 ⁇ 10 18 cm ⁇ 3.
  • the total concentration of boron, silicon, and oxygen contained in 9.1 was 9.1 ⁇ 10 16 cm ⁇ 3 .
  • the half width of the X-ray rocking curve of the (0002) plane of the sample plate was 1250 seconds. Further, when X-ray diffraction measurement of the ⁇ -2 ⁇ mode was performed, only the (0002) plane and (0004) plane of AlN were observed. In addition, as a result of performing photoluminescence measurement at room temperature (23 ° C.), a peak near 209 nm, which is AlN band edge emission, was confirmed.
  • Comparative Example 3 The AlN single crystal is processed in the same manner as in Example 1 except that SiC is used as the susceptor material of the HVPE apparatus, TaC is used as a screw for fixing the susceptor and the rotating shaft, and the thickness of the grown AlN layer is 150 ⁇ m. A layer was formed.
  • a sample having a thickness of 150 ⁇ m consisting only of the grown AlN single crystal layer is prepared by mirror polishing both surfaces, and the linear transmittance at 265 nm, the concentration of impurities, the half width of the X-ray rocking curve of the (0002) plane, An X-ray diffraction profile and a photoluminescence spectrum in the ⁇ -2 ⁇ mode were measured by the same method as in Example 1.
  • the linear transmittance was 0.1%, and the absorption coefficient was calculated to be 435 cm ⁇ 1 .
  • the concentration of carbon atoms was 1 ⁇ 10 19 cm ⁇ 3
  • the concentration of oxygen atoms was 5 ⁇ 10 17 cm ⁇ 3 .
  • the concentration of chlorine atoms is 8 ⁇ 10 14 cm ⁇ 3
  • the total concentration of carbon, chlorine, boron, silicon and oxygen contained in this sample is 1.1 ⁇ 10 19 cm ⁇ 3.
  • the total concentration of boron, silicon, and oxygen contained in the solution was 1.0 ⁇ 10 18 cm ⁇ 3 .
  • the half width of the X-ray rocking curve on the (0002) plane of the sample was 2500 seconds. Further, when X-ray diffraction measurement of the ⁇ -2 ⁇ mode was performed, only the (0002) plane and (0004) plane of AlN were observed. In addition, as a result of performing photoluminescence measurement at room temperature (23 ° C.), a peak near 209 nm, which is AlN band edge emission, was confirmed.
  • Comparative Example 4 Using graphite as the susceptor material of the HVPE apparatus, a sapphire substrate is installed as an oxygen source so as to surround the entire outer periphery of the substrate, and graphite is used as a screw for fixing the susceptor and the rotating shaft.
  • An AlN single crystal layer was grown in the same procedure as in Example 1 except that.
  • a sample having a thickness of 200 ⁇ m composed of only the grown AlN single crystal layer is prepared by mirror polishing both surfaces, and the linear transmittance at 265 nm, the concentration of impurities, the half-value width of the X-ray rocking curve of the (0002) plane, An X-ray diffraction profile and a photoluminescence spectrum in the ⁇ -2 ⁇ mode were measured by the same method as in Example 1.
  • the linear transmittance was 6%, and the absorption coefficient was calculated to be 141 cm ⁇ 1 .
  • the concentration of carbon atoms was 6 ⁇ 10 17 cm ⁇ 3
  • the concentration of oxygen atoms was 2 ⁇ 10 20 cm ⁇ 3 .
  • the concentration of chlorine atoms is 8 ⁇ 10 16 cm ⁇ 3
  • the total concentration of carbon, chlorine, boron, silicon and oxygen contained in this sample is 2.1 ⁇ 10 20 cm ⁇ 3.
  • the total concentration of boron, silicon, and oxygen contained in the single-crystal free-standing substrate was 2.1 ⁇ 10 20 cm ⁇ 3 .
  • the half width of the X-ray rocking curve of the (0002) plane of the AlN single crystal free-standing substrate was 5300 seconds. Further, when X-ray diffraction measurement of the ⁇ -2 ⁇ mode was performed, only the (0002) plane and (0004) plane of AlN were observed. In addition, as a result of performing photoluminescence measurement at room temperature (23 ° C.), a peak near 209 nm, which is AlN band edge emission, was confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 本発明は、炭素の濃度が、1×1014 atoms/cm以上3×1017 atoms/cm未満であり、塩素の濃度が、1×1014~1×1017 atoms/cmであり、波長265nmにおける吸収係数が40cm-1以下であることを特徴とする窒化アルミニウム単結晶に関する。

Description

窒化アルミニウム単結晶基板、およびこれらの製造方法
 本発明は、新規な窒化アルミニウム(以下、AlNということもある)単結晶、およびその製造方法に関するものである。より具体的には、AlN単結晶に含まれる炭素原子の濃度が低く、紫外光透過性が良好な新規なAlN単結晶、およびその製造方法に関するものである。
 紫外発光素子などの半導体素子を形成するためには、n電極に電気的に接合したn形半導体層とp電極に電気的に接合したp形半導体層との間にクラッド層、活性層等を含む積層構造を形成する必要があり、発光効率の点から何れの層においても高い結晶性、すなわち、結晶の転位や点欠陥が少ないことが重要である。このような理由から、一般に上記積層構造は、自立して存在するに十分な機械的強度を有する単結晶基板(以下、「自立基板」と言う場合がある)上に形成される。
 上記積層構造形成用の自立基板としては、積層構造を形成する窒化アルミニウムガリウムインジウム(AlGaInN)などのAl系III族窒化物単結晶との格子定数差や熱膨張係数差が小さいこと、さらには、素子の劣化を防ぐ観点から熱伝導率が高いことが要求される。そのため、AlNを含有する半導体素子を作製するためにはAl系III族窒化物単結晶基板を自立基板として、上記層構造を形成するのが有利である。
 上記層構造とした場合、活性層から光を取り出すためには、自立基板であるAl系III族窒化物単結晶基板が光を透過することが重要である。もし、光を透過することが出来なければ、半導体素子構造の発光効率が高かったとしても、Al系III族窒化物単結晶基板に光が吸収され、結果として発光効率が低い紫外発光素子となる。
 Al系III族窒化物単結晶のうち、特に、窒化アルミニウム単結晶は、約6eVのバンドギャップエネルギーを持ち、紫外線領域の短波長の発光が可能となるため、紫外光源や白色光源用のLEDの下地基板としての利用が期待されている。LEDとしての効率の観点から、AlN単結晶が紫外線領域の短波長の光を透過することが重要であり、透過率が高いほど前記光源用のLEDとして有用である。
 したがって、紫外線領域の短波長の光の透過率が高いAlN単結晶を作製する方法が盛んに研究されており、例えば、特許文献1に示すようなハイドライド気相エピタキシー法(HVPE法)を用いたAlN単結晶の手法が知られている。
 また、特許文献2では、窒化物半導体単結晶基板の吸収係数を低減させる、つまり、窒化物半導体単結晶基板の透過率を向上させる方法として、AlNの不純物として、1×1017cm-3以下の全不純物密度であれば、350~780nmの全波長範囲における50cm-1以下の吸収係数を有することが記載されている。なお、特許文献2においては、単結晶の成長時の基板温度が900~1100℃と比較的低く設定するため、不純物全体の濃度が抑えられる一方で、結晶性が下がる可能性がある。
 一方、紫外光である265nmの波長を持つ光は、細菌のDNAに吸収されやすく、DNAを破壊するという観点から、殺菌に有用であり、実用化が期待されている。しかしながら、上記の350~780nmの全波長範囲における50cm-1以下の吸収係数を有していたとしても、白色光源用のLEDの下地基板として必要な300nm以下、特に、265nmの透過率は、十分ではなく、265nm付近の透過率を改善することが望まれていた。
 ハイドライド気相エピタキシー法(HVPE法)により製造したAlN単結晶については、265nmに対する光透過率が比較的高いものも知られているが、その光透過率は約40%程度(265nmにおける吸収係数は120cm-1程度)であり、十分とは言えない(非特許文献1参照)。
特開2010-089971 特開2009-078971 Journal of Crystal Growth 312,2530-2536,(2010)
 したがって、本発明は、紫外線領域である265nmの短波長の光の透過性が良好な、別言すれば265nmにおける吸収係数が低い、AlN単結晶を提供することにある。さらに、前記の紫外光透過性が良好なAlN単結晶の製造方法を提供することにある。
 本発明者等は、上記課題を解決するために、鋭意検討を行った。そして、AlN単結晶に含まれる不純物原子の種類と濃度に注目し、AlN単結晶の紫外線領域の光の透過性の検討を行った。すると、HVPE法により高温で成長して得られたAlN単結晶については、全不純物量が1×1015~1×1020 atoms/cmと多量に含まれている場合であっても、炭素濃度が、1×1014 atoms/cm以上3×1017 atoms/cm未満であり、塩素濃度が1×1014~1×1017 atoms/cmであれば、紫外線領域の短波長265nmにおける吸収係数が40cm-1以下であることを特徴とするAlN単結晶が得られることが分かった。つまり、本発明者等の検討によると、不純物量と紫外領域の光透過性に関しては、単にAlN単結晶に含まれる不純物の総量だけが問題ではないことが明らかとなった。
 さらに検討を進めたところ、265nmの光の透過を妨げる原因となる主たる原子は、炭素原子であることが分かった。具体的には、AlN単結晶に含まれる塩素原子の濃度を0とするのではなく比較的低濃度に制御すると共に炭素濃度を可及的に低く制御することにより、紫外光透過性が良好であるAlN単結晶が得られることを見出し、本発明を完成するに至った。
 すなわち、上記の課題を解決する本発明の要旨は以下のとおりである。
 (1) 炭素の濃度が、1×1014 atoms/cm以上3×1017 atoms/cm未満であり、塩素の濃度が、1×1014~1×1017 atoms/cmであり、265nmにおける吸収係数が40cm-1以下である窒化アルミニウム単結晶。
 (2) 前記窒化アルミニウム単結晶に含まれる炭素、塩素、ホウ素、ケイ素、酸素の濃度の総和が、1×1015~1×1020 atoms/cmである(1)記載の窒化アルミニウム単結晶。
 (3) 前記窒化アルミニウム単結晶の(0002)面のX線ロッキングカーブの半値幅が2000秒以下である(1)または(2)記載の窒化アルミニウム単結晶。
 (4) フォトルミネッセンス測定において、窒化アルミニウムのバンド端発光である209nmのピークを確認することが出来る(1)乃至(3)記載の窒化アルミニウム単結晶。
 (5) ハイドライド気相エピタキシー法により単結晶基板上に窒化アルミニウム単結晶を成長させることにより(1)記載の窒化アルミニウム単結晶を製造する方法であって、1200℃以上1700℃以下の温度で前記基板上に窒化アルミニウム単結晶を成長させると共に、ハイドライド気相エピタキシー装置内の、結晶成長時において1200℃以上となる領域の露出表面を、1200℃以上1700℃以下の温度において還元分解若しくは熱分解しない材料、又は還元分解若しくは熱分解しても炭素原子を含むガスを発生させない材料からなる部材のみで構成した装置を用いることを特徴とする方法。
 (6) ハイドライド気相エピタキシー装置内の1200℃以上となる領域の露出表面を、好ましくは、BN、TaC、WおよびMoからなる群より選ばれる少なくとも1種で構成することを特徴とする(5)記載の窒化アルミニウム単結晶の製造方法。
 従来は、光透過性に優れたAlN単結晶を得るためにはAlN単結晶に含まれる不純物量が極めて低くなるように低減する必要があると考えられていた。しかし、特許文献2に示されるように全不純物濃度を極めて低くできたとしても300nm以下の波長の光に対する透過性を高くすることには成功していない。また、特許文献2と非特許文献1とに開示されるAlN単結晶は、何れもHVPE法に製造されたものであるが、光透過率の波長依存性には差がある。
 このような事実から、AlN単結晶の光透過率、特に300nm以下の光に対する透過率については、多くの因子(たとえば、製造条件やそれを反映した結晶性などの因子)が複雑に絡んで決定されているものと推定され、単純に全不純物濃度を低くすれば光透過率が向上するというものではない。不純物を全く含まず(全不純物量がゼロであり)欠陥の全く存在しない理想的な単結晶では、理論値に近い光透過率を示すと考えられるが、原料からあるいは単結晶製造過程における雰囲気からのコンタミネーションを完全になくすこと、および欠陥を全くなくすことは、現在の技術では不可能である。
 これに対し、本発明の窒化アルミニウム(AlN)単結晶は、全不純物濃度が比較的高くても、紫外光透過性の優れたものとなり、紫外領域のLED等に使用可能なAlN単結晶を得ることができる。
 このような優れた特徴を有するAlN単結晶を得ることができたのは、HVPE法において1200℃を越える温度で結晶成長を行って得た、結晶性が良好で不純物としてCおよびClを所定量含むAlN単結晶においては、300nm以下の短波長領域の透過性が不純物として含まれる炭素濃度に大きく依存することを見出したことによる。
 特許文献2でもHVPE法で全不純物濃度が低くなる(当然、不純物炭素濃度も低くなる)ような条件下でAlN単結晶を得ているが、該特許文献では1100℃以下の温度で結晶成長を行っているため、結晶性や他の不純物元素の影響により、炭素濃度が低くても300nm以下の波長を有する光に対する光透過性を向上させることはできなかったものと思われる。
 以下、本発明について詳細に説明する。
(窒化アルミニウム単結晶)
 本発明は、炭素の濃度が、1×1014 atoms/cm以上3×1017 atoms/cm未満であり、塩素の濃度が、1×1014~1×1017 atoms/cmであり、265nmにおける吸収係数が40cm-1以下であるAlN単結晶に関する。
 本発明のAlN単結晶は、不純物として含まれる炭素原子および塩素原子の濃度が所定の範囲内であれば、全不純物濃度が比較的高くても265nmの波長を有する光に対する透過性を高くすることができる。
 AlN単結晶の光透過性については、特許文献2以外にも幾つかの報告例があるが(例えば、Physica Status Solidi B246,No.6,1181-1183(2009))、そこでは不純物として含まれる酸素原子の影響により光透過性が低下すると考えられており、光透過性低下の原因物質として炭素はそれほど着目されていなかった。ところが、HVPE法により高温で成長させたAlNに関する本発明者等の検討によれば、不純物のなかでも特に、炭素不純物が多く含まれる場合に前記波長領域の紫外光透過特性が悪化することが明らかとなった。
 本願発明のAlN単結晶が265nmの波長を有する光に対して優れた透過性を示すことができる理由は必ずしも明らかではないが、本発明者等は、次のように推定している。すなわち、特に結晶性の良好なAlN単結晶においては、後に詳述するように、紫外光透過特性を悪化させる原因は、炭素不純物がAlN単結晶に混入したときに生成するN空孔であると考えており、炭素不純物濃度を低減することに加えてHVPE法において不可避的に混入する塩素原子の電気的中和作用によりN空孔の形成が抑制され、紫外光透過特性が向上したものと推定している。
 なお、前記した特許文献2で紫外光透過特性が低かった理由としては、成長温度が低いことに起因して、AlNの結晶性が低くなり、また、不純物として含まれる塩素濃度が低くなる傾向があるため、上記したようなメカニズムが有効に機能しなかったものと考えられる。
 以下に現時点で考えられるメカニズムを詳述する。
 炭素原子が不純物としてAlN単結晶に混入した場合、炭素原子がAlNの窒素サイトに導入されるものと考えられる。炭素原子は、窒素原子よりも最外殻電子が1個少ないため、AlNの窒素格子サイトを置換した炭素は正電荷が過剰になる。正電荷に関しては半導体分野ではホールとして取り扱われるが、このような電子の不足をもたらす不純物種を一般的にはアクセプタ不純物と呼んでいる。このようなアクセプタ不純物が含まれる場合、結晶中の電荷バランスは全体的に正に帯電することになり、電気的には不安定な状態になるので、この正電荷を打ち消すために負電荷を持った別の欠陥種が発生する。AlN単結晶において、起こり得る可能性のある欠陥種として考えられるものは、窒素の空孔(N空孔)である。N空孔は、元々はAlNの窒素格子サイトにあった窒素原子が欠落したものであるため、負電荷を持つことになる。このようにして、炭素原子が不純物として混入した場合には、N空孔を生成することにより電荷を補償し合ってAlN単結晶中の電気的中性状態が保たれることになるものと考えられる。
 本発明者等の検討によれば、不純物のなかでも特に、炭素不純物が多く含まれる場合に前記波長領域の紫外光透過特性が悪化することが明らかとなった。したがって、本発明者等は、炭素不純物がAlN単結晶に混入したときに生成するN空孔が紫外光透過特性を悪化させていると推定している。
 また、塩素不純物は、AlN単結晶を成長させるための原料ガスであるアルミニウム原子を含むハロゲンガスよりAlN単結晶に混入すると考えられる。成長条件やHVPE装置内の気流の影響によりAlN単結晶に取り込まれる塩素不純物の濃度は影響を受けるが、一般的に、AlN単結晶を成長させる温度が高くなると、塩素不純物の濃度が大きくなる傾向がある。しかしながら、前述したように、炭素不純物を制御することで、塩素不純物の濃度が大きくなったとしても、紫外光透過特性を維持することが可能となる。従来のAlN単結晶の成長方法である昇華法等では、原料ガスにハロゲン系のガスを使用しないため、原理的にハロゲンが混入することはなく、塩素不純物の混入は、ハイドライド気相エピタキシー法で成長させたAlN単結晶特有の特徴である。
 そして、塩素原子が不純物としてAlN単結晶に混入した場合、塩素原子はAlNの窒素サイトか格子間サイトに存在するものと考えられる。塩素原子は、窒素原子よりも最外殻電子が2個多いため、AlNの窒素格子サイトを置換した塩素は負電荷が過剰になる。格子間サイトに存在した場合であっても、塩素原子の存在によりAlN結晶中では負電荷が過剰になると考えられる。AlNの窒素サイトに置換した炭素原子は正電荷が過剰であるため、塩素原子が有する負電荷によって炭素原子が有する正電荷をバランスすることになり、結果として炭素原子の存在により誘起されると考えられる窒素空孔の生成を抑制するように作用すると考えられる。
 以上のことから、炭素不純物や塩素不純物等の混入を一定範囲にすることで、炭素不純物の混入により発生するN空孔が低減できるものと考えられる。その結果、本発明のAlN単結晶は、紫外光透過特性が良好なものになると本発明者等は推定している。
 したがって、本発明のAlN単結晶は、炭素と塩素の濃度が上記範囲を満足するものでなくてはならない。中でも、AlN単結晶の生産性、優れた光透過性および結晶性を示すためには、炭素と塩素の濃度がそれぞれ1×1014 atoms/cm以上3×1017 atoms/cm未満(炭素濃度)と1×1014~1×1017 atoms/cm(塩素濃度)とすることが好ましく、さらに5×1014~1×1017 atoms/cm(炭素濃度)と5×1014~5×1016 atoms/cm(塩素濃度)とすることが好ましい。またさらに1×1015~1×1017 atoms/cm(炭素濃度)と1×1015~1×1016 atoms/cm(塩素濃度)とすることがより好ましい。
 なお、炭素濃度を1×1014 atoms/cm未満とすることは困難であるが、このような下限値を超えて炭素濃度を低くした場合には不純物塩素による悪影響が懸念される。
 また、本発明では、前記AlN単結晶に含まれる炭素、塩素、ホウ素、ケイ素、酸素の濃度の総和が、好ましくは1×1015~1×1020 atoms/cm、より好ましくは1×1016~5×1019 atoms/cm、さらに好ましくは1×1017~1×1019 atoms/cmである。このうち、ホウ素、ケイ素、酸素の濃度は、好ましくはそれぞれ、1×1015~5×1019 atoms/cm、より好ましくは1×1016~1×1019 atoms/cm、さらに好ましくは5×1016~1×1018 atoms/cmである。これらの不純物は、通常、結晶成長装置の部材やAlN単結晶の成長のための原料から混入する。本発明の単結晶AlNはこのような不純物を含んでいても波長300nm以下、たとえば265nmの波長の光に対する透過性を高くすることができる。
 以上のような不純物濃度の炭素原子と塩素原子を有するAlN単結晶とすることで、紫外光透過性の指標となる波長265nmにおける吸収係数が40cm-1以下、さらには30cm-1以下、製造条件の最適化を図れば20cm-1以下のものが得られる。光透過性の良し悪しの指標としては吸収係数(単位:cm-1)が用いられる。吸収係数が小さいほど、光透過性が良好であることを示す。吸収係数は波長に依存して値が異なるものであるが、紫外発光ダイオードとして用いるためには、波長265nmにおける吸収係数は、40cm-1以下、さらには30cm-1以下、さらに好ましくは20cm-1以下である。また、吸収係数は、小さいほど光透過性が良好であるため、その下限値は、小さい方がよく、特に制限されるものではない。ただし、工業的な生産を考慮すると、波長265nmにおける吸収係数の下限値は、1cm-1である。なお、本発明においては、紫外光透過性の指標を波長265nmにおける吸収係数で示したが、波長265nmで吸収係数が上記範囲を満足するような低い値であれば、波長240~300nmにおける吸収係数は当然低く、この領域での光透過性は良好なものとなる。
 なお、ここでいう吸収係数は、AlN単結晶を厚さ(t、単位:cm)の板状に加工した測定片の波長265nmにおける直線透過率(T、単位:%)を測定した結果から、下記式に従って計算される吸光係数αを意味する。
   α=2.303/t×log10(100/T)
 さらに、本発明では、前記AlN単結晶の(0002)面のX線ロッキングカーブの半値幅が、好ましくは3000秒以下、より好ましくは1~1500秒、さらに好ましくは5~1000秒である。結晶性が低下すると本願発明の効果が得られにくい傾向がある。
 一般に、結晶性を改善するためには結晶成長温度を高くする必要があるが、成長温度が高温の場合、不純物の混入が増加するなどの問題が発生する。本発明では、上記のように、炭素および塩素についてのみその混入量を制御すればよいので、容易にこのような優れた結晶性を達成することができる。なお、本発明では、前記AlNが単結晶であるため、X線回折のθ-2θモード測定を行った場合には、(0002)面や(0004)面等のAlNのc面に起因するピークが主として観測される。
 また、本発明のAlN単結晶は、フォトルミネッセンス測定において、AlNのバンド端発光である209nmのピークを確認することが出来る。すなわち、励起光源に193nmのArFレーザーを用いて、試料に垂直に照射し、試料を励起させる。さらに、試料から発生したルミネッセンス光を集束レンズにて結像した後、分光器にて検出し、波長に対する強度スペクトルを得るものである。バンド端発光はAlNに含まれる不純物により発光波長が若干変動する場合があるが、本発明のAlN単結晶では、室温(23℃)における測定により205~215nmの範囲にバンド端発光が観測される。
 次に、本発明のAlN単結晶の製造方法について説明する。
 本発明のAlN単結晶の製造方法は、炭素濃度及び塩素濃度を所定の範囲に制御できる方法であれば特に限定されないが、再現性よく確実に本発明の単結晶AlNを製造することができるという理由から、ハイドライド気相エピタキシー法(HVPE法)により、次のようにして製造することが好ましい。すなわち、本発明のAlN単結晶は、HVPE法において単結晶基板上にAlN単結晶を成長させるに際し、1200℃以上1700℃以下の温度で前記基板上にAlN単結晶を成長させると共に、ハイドライド気相エピタキシー装置内の、結晶成長時において1200℃以上となる領域の露出表面を、1200℃以上1700℃以下の温度において還元分解若しくは熱分解しない材料、又は還元分解若しくは熱分解しても炭素原子を含むガスを発生させない材料からなる部材のみで構成した装置を用いる方法(本発明の方法)により、好適に製造することができる。
 ここで、HVPE法とは、Al源ガスと窒素源ガスとを、加熱された単結晶基板上に供給してAlNを成長させる方法であり、通常、Al源ガスとしては三塩化アルミニウムガスが使用され、窒素源ガスとしてはアンモニアガスが使用される。本発明の方法においても単結晶AlNに含まれる塩素濃度を制御し易いという理由から、Al源ガスとしては三塩化アルミニウムガスを使用することが好ましい。
 また、単結晶基板としては、結晶性の良好な単結晶AlN基板であれば、特に制限されないが、結晶性の良好な本発明の単結晶AlNを効率よく得ることができるという理由から、以下の方法により得た単結晶AlN自立基板または、多結晶及び/又は非晶質AlNからなる主層上に単結晶AlNからなる層が積層された複合AlN自立基板を使用することが好ましい。
 単結晶AlN自立基板は、特開2010-89971に開示される方法により好適に製造することができる。具体的には、先ず、サファイアや単結晶Siなどの異種単結晶基板上に単結晶AlN層を形成するなどの方法により、表面に第一のAlN単結晶層を有する種結晶基板を準備する。次に、該種結晶基板の第一のAlN単結晶層上に、気相成長法により上記AlN単結晶よりなる層(以下、「第二のAlN単結晶層」とする場合もある)を積層した積層体を製造する。次いで、該積層体から第二のAlN単結晶層を分離する(前記種結晶基板を除去する)ことにより、AlN単結晶(第二のAlN単結晶層)からなる単結晶AlN自立基板を得ることができる。
 また、複合AlN自立基板は、たとえばWO2009/090821、特開2010-10613に記載された方法に従い、製造することができる。
 具体的には、サファイアや単結晶Siなどの異種単結晶基板上に単結晶AlN薄膜層を形成し、その上に多結晶、非晶質、又はこれらの混合からなるAlN非単結晶層を形成した後に、上記異種単結晶基板を除去することにより製造することができる。なお、該複合AlN自立基板をHVPE法の基板として使用する場合には、異種単結晶基板を除去することにより露出した単結晶AlN薄膜層を結晶成長面として使用する。該複合AlN自立基板としては、生産性、最表面の結晶性の観点から、最表面を形成する単結晶AlN薄膜層の厚みが10nm以上1.5μm以下であって、AlN非単結晶層の厚みが該AlN単結晶薄膜層の100倍以上としたものが好適に用いられる。
 本発明の方法では、前記のような基板の表面にHVPE法により単結晶AlNを成長させるに際し、成長温度(結晶成長時の基板温度)を1200℃以上1700℃以下とすると共に、HVPE装置として、結晶成長時において1200℃以上となる装置内の領域(以下、「高温加熱領域」ともいう。)の露出表面を、1200℃以上1700℃以下の温度において還元分解若しくは熱分解しない材料、又は還元分解若しくは熱分解しても炭素原子を含むガスを発生させない材料(以下、総称して「炭素不発生材料」ともいう。)からなる部材のみで構成した装置を用いる必要がある。
 成長温度が1200℃未満の場合には、成長される単結晶AlNに含まれる塩素濃度が本発明の単結晶AlNにおける塩素濃度の範囲外となることがあるばかりでなく、結晶性の高い単結晶AlNが得られにくくなり、再現性よく本発明の単結晶AlNを製造することができない。
 また、HVPE装置として、結晶成長時において1200℃以上の温度となる領域に1200℃以上1700℃以下の温度において還元分解又は熱分解して炭素原子を含むガスを発生するような材料が露出した装置を用いた場合には、単結晶AlNに含まれる炭素濃度を本発明の単結晶AlNにおける範囲内とすることが非常に困難である。
 HVPE装置についてさらに詳しく説明すると、現在使用されているHVPE装置は、基板上に結晶性の良好な単結晶AlNを均一且つ高速で成長させるために、高周波誘導加熱装置や、回転機構を備えたサセプタ(基板支持台)などを備えているが、たとえば1200℃以上の温度となる領域を構成する部材の材質としては、グラファイトや炭化珪素を使用するのが一般的である。これら材料から多量に発生する炭素が単結晶AlN中に混入することを防止するという観点から、窒化物セラミックス焼結体製の部材やグラファイト等を非常に耐熱性の高いTaCやBNで表面コートした部材などが使用されることがあり、このような対策を施すことにより炭素発生量を大幅に低減することができる。しかしながら、前記対策を施したとしても再現性よく3×1017cm-3未満の炭素原子濃度にすることは困難であった。
 しかしながら、通常は、(炭素の影響をそれほど深刻に捉えていなかったことも一因であると思われるが)このような対策を採ることにより十分な効果がえられると判断し、それ以上の対策がとられることは無かった。すなわち、ネジなどの微細で加工が難しい部品についてはグラファイト製のものが使用されていたり、窒化物セラミックス焼結体(製造時に有機物からなるバインダーを使用するため不純物として無視できない量の炭素が含まれることがある。)などの材料自体に不純物として含まれる炭素やコート層に存在する微小なピンホールについては全く対策が採られていなかった。
 本発明者等は、HVPE装置について、上記したような点についても徹底的に検討し、HVPE装置内の高温加熱領域の露出表面を、炭素不発生材料からなる部材のみで構成するという対策を採った結果、初めて本発明の単結晶AlNの製造に成功したものである。なお、コート層にピンホールが存在する場合には、下地の材料が(ピンホールを介して)表面に露出することになる。したがって、グラファイト材料をTaCやBNなどで表面コートした部材を使用する場合には、ピンホールの存在について厳しくチェックし、ピンホールが存在しないものを使用する必要がある。また、ネジなどについても装着後、隙間を介して炭素原子を含むガスが僅かにでも反応雰囲気に漏れ出る場合には、少なくともその表面は炭素不発生材料とする必要がある。
 なお、炭素不発生材料としては、BN、TaC、W、Mo、Ta等が考えられる。反対に、還元分解又は熱分解して炭素原子を含むガスを発生させる部材としては、カーボン、SiCコート層付きカーボン、またBN焼結体、AlN焼結体、SiC焼結体、TaCもしくはBNコート層付きカーボンであってもコート層にクラックやピンホールが存在するもの等が考えられる。
 本発明の単結晶AlNは、上記条件を採用することにより、適当な炭素源及び塩素源存在下で成長させることができる。なお、本発明の方法で得られる本発明のAlNからなる層の厚みは、特に制限されるものではなく、使用する用途に応じて適宜決定すればよい。通常は、50μm以上2000μm以下である。
 上記方法により製造された積層体から、基板を分離除去することにより、本発明のAlN単結晶を得ることができる。基板を分離除去する方法は、公知の方法を採用することができる。具体的には、機械的に切断を行ったり、研磨を行うことにより、積層体から種結晶基板を除去し、第二のAlN単結晶層(本発明のAlN単結晶)を得ることができる。
 以下に、本発明の具体的な実施例、比較例について説明するが、本発明はそれらの実施例に限定されるものではない。
 実施例1
 (基板の準備)
 本発明においては、基板として、複合AlN自立基板をWO2009/090821に記載の方法により作製した。この複合AlN自立基板は、AlN単結晶面を構成するAlN単結晶薄膜層の厚みが230nmであって、その下のAlN非単結晶層(AlN多結晶層)の厚みが350μmである。
 複合AlN自立基板は、アセトン中において周波数100kHzの超音波にて3分間の洗浄を行い、さらに2-プロパノール中において周波数100kHzの超音波にて3分間の洗浄を行った後、超純水にてリンスし、乾燥窒素により基板をブローして超純水を除去した。
 (本発明の単結晶AlNの製造)
 本実施例で使用したHVPE装置においては、1200℃以上となる領域において還元分解又は熱分解して炭素原子を含むガスを発生させる部材を排除した。具体的には、サセプタ材質にはサセプタ表面全体をBNでコートされたグラファイトを使用し、サセプタの回転軸とサセプタ周囲の遮熱板にBNを使用し、サセプタと回転軸を固定するためにBNでコートされたグラファイト製のネジを使用した。なお、サセプタのBNコート層は実体顕微鏡を用いて観察倍率8倍から56倍の範囲で外周全体の観察を行って、コート層のピンホールやクラックがないことを確認した。
 まず、前記複合AlN自立基板をAlN単結晶面が最表面になるようにHVPE装置内のタングステン製サセプタ上に設置した後、圧力を150Torrとし、水素ガス(7000sccm)と窒素ガス(3000sccm)の混合キャリアガスで流通しながら、該複合AlN自立基板を1450℃に加熱し、10分間保持することにより表面クリーニングを行った。このとき、全キャリアガス流量(10000sccm)に対して0.5体積%になるようにアンモニアガスを供給した。次いで、420℃に加熱した金属アルミニウムと塩化水素ガスを反応させることによって得られる塩化アルミニウムガスを全キャリアガス流量に対して0.05体積%になるように供給した。この状態を15時間保持して基板上に、本発明のAlN単結晶層を300μm成長させた。
 AlN単結晶層が前記膜厚になった後、塩化アルミニウムガスの供給を停止し、さらにキャリアガスの種類を窒素ガスに切り替えて室温まで冷却した。アンモニアガスは基板温度が800℃に下がるまで供給し続けた。
 (得られたAlN単結晶層の研磨および評価)
 本実施例で用いた複合AlN自立基板は厚さ350μmのAlN多結晶層に支持されているが、該AlN多結晶層は多くの粒子界面を有するため、光の散乱が起こり紫外光透過性が得られない。そこで、成長させたAlN単結晶層の吸収係数を評価するために、複合AlN自立基板を研磨により除去し、さらに残ったAlN単結晶層の表面を研磨することにより、成長させたAlN単結晶層のみからなる厚さ200μmのAlN単結晶からなる試料を作製した。試料の表面はRMS値が5nm程度の両面鏡面研磨状態に仕上げた。
 紫外可視分光光度計(日本分光製V-7300)により、該試料の波長265nmの直線透過率を評価したところ70%であり、吸収係数α(単位:cm-1)は18cm-1と計算された。さらに、加速電圧15kVのセシウムイオンを1次イオンに用いた2次イオン質量分析法(CAMECA製IMS-f6)により酸素原子の濃度、および炭素原子の濃度の定量分析を行った。試料の酸素原子の濃度、および炭素原子の濃度は、表面側から深さ5μm位置の2次イオン強度を測定し、別途準備したAlN標準試料を用いた検量線に基づき定量した。その結果、試料の炭素原子の濃度は1×1017cm-3、酸素原子の濃度は3×1017cm-3であった。また、塩素原子の濃度は1×1015cm-3であり、この試料に含まれる炭素、塩素、ホウ素、ケイ素、酸素の濃度の総和は5.1×1017cm-3であり、この試料に含まれるホウ素、ケイ素、酸素の濃度の総和は4.1×1017cm-3であった。
 該試料の(0002)面のX線ロッキングカーブの半値幅は1200秒であった。また、θ-2θモードのX線回折測定を行ったところ、AlNの(0002)面、(0004)面のみが観測された。
 また、室温(23℃)におけるフォトルミネッセンス測定を行った。測定装置として、堀場製作所製HT800UV(レーザー光源:ExciStarS-200)を使用した。励起光源に193nmのArFレーザーを用いて、該試料に垂直に照射して試料を励起させた。該試料から発生したルミネッセンス光を集光レンズにて結像した後、分光器にて検出して波長に対するスペクトルを得た。照射時間は10秒として、積算回数は3回、ホール径は1000μm、グレーティングは300grooves/mmとした。その結果、AlNのバンド端発光である209nm付近のピークを確認することが出来た。
 実施例2
 HVPE装置のサセプタと回転軸を固定するためにタングステン製のネジを使用して、本発明のAlN単結晶層の成長時の温度を1350℃とした以外は実施例1と同様の手順でAlN単結晶層を成長した。
 両面を鏡面研磨することにより、成長させたAlN単結晶層のみからなる厚さ200μmの試料を作製し、265nmにおける直線透過率、不純物の濃度、(0002)面のX線ロッキングカーブの半値幅、θ-2θモードのX線回折プロファイル、フォトルミネッセンススペクトルを実施例1と同様の方法で測定した。その結果、直線透過率は58%であり、吸収係数は27cm-1と計算された。炭素原子の濃度は3×1016cm-3、酸素原子の濃度は5×1017cm-3であった。また、塩素原子の濃度は5×1015cm-3であり、この試料に含まれる炭素、塩素、ホウ素、ケイ素、酸素の濃度の総和は8.4×1017cm-3であり、この試料に含まれるホウ素、ケイ素、酸素の濃度の総和は8.0×1017cm-3であった。
 該試料の(0002)面のX線ロッキングカーブの半値幅は1800秒であった。また、θ-2θモードのX線回折測定を行ったところ、AlNの(0002)面、(0004)面のみが観測された。また、室温(23℃)におけるフォトルミネッセンス測定を行った結果、AlNのバンド端発光である209nm付近のピークを確認した。
 実施例3
 HVPE装置のサセプタと回転軸を固定するためにTaC製のネジを使用して、本発明のAlN単結晶層の成長時の温度を1250℃とした以外は実施例1と同様の手順でAlN単結晶層を成長した。
 両面を鏡面研磨することにより、成長させたAlN単結晶層のみからなる厚さ200μmの試料を作製し、265nmにおける直線透過率、不純物の濃度、(0002)面のX線ロッキングカーブの半値幅、θ-2θモードのX線回折プロファイル、フォトルミネッセンススペクトルを実施例1と同様の方法で測定した。その結果、直線透過率は45%であり、吸収係数は40cm-1と計算された。炭素原子の濃度は3×1016cm-3、酸素原子の濃度は1×1017cm-3であった。また、塩素原子の濃度は7×1014cm-3であり、この試料に含まれる炭素、塩素、ホウ素、ケイ素、酸素の濃度の総和は5.3×1017cm-3であり、この試料に含まれるホウ素、ケイ素、酸素の濃度の総和は5.0×1017cm-3であった。
 該試料の(0002)面のX線ロッキングカーブの半値幅は2800秒であった。また、θ-2θモードのX線回折測定を行ったところ、AlNの(0002)面、(0004)面のみが観測された。また、室温(23℃)におけるフォトルミネッセンス測定を行った結果、AlNのバンド端発光である209nm付近のピークを確認した。
 比較例1
 HVPE装置のサセプタと回転軸を固定するためにグラファイト製のネジを使用して、本発明のAlN単結晶層の成長時の温度を1550℃とした以外は実施例1と同様の手順でAlN単結晶層を成長した。
 両面を鏡面研磨することにより、成長させたAlN単結晶層のみからなる厚さ200μmの試料を作製し、265nmにおける直線透過率、不純物の濃度、(0002)面のX線ロッキングカーブの半値幅、θ-2θモードのX線回折プロファイル、フォトルミネッセンススペクトルを実施例1と同様の方法で測定した。その結果、直線透過率は38%であり、吸収係数は48cm-1と計算された。炭素原子の濃度は7×1017cm-3、酸素原子の濃度は5×1016cm-3であった。また、塩素原子の濃度は4×1014cm-3であり、この試料に含まれる炭素、塩素、ホウ素、ケイ素、酸素の濃度の総和は1.1×1018cm-3であり、この試料に含まれるホウ素、ケイ素、酸素の濃度の総和は3.5×1017cm-3であった。
 該試料の(0002)面のX線ロッキングカーブの半値幅は1000秒であった。また、θ-2θモードのX線回折測定を行ったところ、AlNの(0002)面、(0004)面のみが観測された。また、室温(23℃)におけるフォトルミネッセンス測定を行った結果、AlNのバンド端発光である209nm付近のピークを確認した。
 比較例2
 HVPE装置のサセプタ材質としてサセプタ表面全体をBNでコートされたグラファイトを使用し、サセプタと回転軸を固定するネジにはグラファイトを使用した以外は実施例1と同様の手順でAlN単結晶層を形成した。なお、本比較例で使用した本サセプタのBNコート層を実体顕微鏡を用いて観察倍率8倍から56倍の範囲で外周全体の観察を行ったところ、コート層に直径1mm程度のピンホールが数カ所あり、ピンホール部分はサセプタの基材であるグラファイトが露出していることを確認した。
 両面を鏡面研磨することにより、成長させたAlN単結晶層のみからなる厚さ200μmの試料を作製し、265nmにおける直線透過率、不純物の濃度、(0002)面のX線ロッキングカーブの半値幅、θ-2θモードのX線回折プロファイル、フォトルミネッセンススペクトルを実施例1と同様の方法で測定した。その結果、直線透過率は17%であり、吸収係数は90cm-1と計算された。炭素原子の濃度は4×1018cm-3、酸素原子の濃度は5×1016cm-3であった。また、塩素原子の濃度は4×1015cm-3であり、この試料に含まれる炭素、塩素、ホウ素、ケイ素、酸素の濃度の総和は4.1×1018cm-3であり、この試料に含まれるホウ素、ケイ素、酸素の濃度の総和は9.1×1016cm-3であった。
 該試料板の(0002)面のX線ロッキングカーブの半値幅は1250秒であった。また、θ-2θモードのX線回折測定を行ったところ、AlNの(0002)面、(0004)面のみが観測された。また、室温(23℃)におけるフォトルミネッセンス測定を行った結果、AlNのバンド端発光である209nm付近のピークを確認した。
 比較例3
 HVPE装置のサセプタ材質としてSiCを使用し、サセプタと回転軸を固定するネジにはTaCを使用し、成長させるAlN層の厚さを150μmとした以外は実施例1と同様の手順でAlN単結晶層を形成した。
 両面を鏡面研磨することにより、成長させたAlN単結晶層のみからなる厚さ150μmの試料を作製し、265nmにおける直線透過率、不純物の濃度、(0002)面のX線ロッキングカーブの半値幅、θ-2θモードのX線回折プロファイル、フォトルミネッセンススペクトルを実施例1と同様の方法で測定した。その結果、直線透過率は0.1%であり、吸収係数は435cm-1と計算された。炭素原子の濃度は1×1019cm-3、酸素原子の濃度は5×1017cm-3であった。また、塩素原子の濃度は8×1014cm-3であり、この試料に含まれる炭素、塩素、ホウ素、ケイ素、酸素の濃度の総和は1.1×1019cm-3であり、この試料に含まれるホウ素、ケイ素、酸素の濃度の総和は1.0×1018cm-3であった。
 該試料の(0002)面のX線ロッキングカーブの半値幅は2500秒であった。また、θ-2θモードのX線回折測定を行ったところ、AlNの(0002)面、(0004)面のみが観測された。また、室温(23℃)におけるフォトルミネッセンス測定を行った結果、AlNのバンド端発光である209nm付近のピークを確認した。
 比較例4
 HVPE装置のサセプタ材質としてグラファイトを使用して、基板の全外周部を取り囲むように酸素源としてサファイア基板を設置し、サセプタと回転軸を固定するネジにグラファイトを使用して、成長温度を1490℃とした以外は実施例1と同様の手順でのAlN単結晶層を成長した。
 両面を鏡面研磨することにより、成長させたAlN単結晶層のみからなる厚さ200μmの試料を作製し、265nmにおける直線透過率、不純物の濃度、(0002)面のX線ロッキングカーブの半値幅、θ-2θモードのX線回折プロファイル、フォトルミネッセンススペクトルを実施例1と同様の方法で測定した。その結果、直線透過率は6%であり、吸収係数は141cm-1と計算された。炭素原子の濃度は6×1017cm-3、酸素原子の濃度は2×1020cm-3であった。また、塩素原子の濃度は8×1016cm-3であり、この試料に含まれる炭素、塩素、ホウ素、ケイ素、酸素の濃度の総和は2.1×1020cm-3であり、このAlN単結晶自立基板に含まれるホウ素、ケイ素、酸素の濃度の総和は2.1×1020cm-3であった。
 該AlN単結晶自立基板の(0002)面のX線ロッキングカーブの半値幅は5300秒であった。また、θ-2θモードのX線回折測定を行ったところ、AlNの(0002)面、(0004)面のみが観測された。また、室温(23℃)におけるフォトルミネッセンス測定を行った結果、AlNのバンド端発光である209nm付近のピークを確認した。
Figure JPOXMLDOC01-appb-T000001

Claims (6)

  1.  炭素の濃度が、1×1014 atoms/cm以上3×1017 atoms/cm未満であり、塩素の濃度が、1×1014~1×1017 atoms/cmであり、波長265nmにおける吸収係数が40cm-1以下であることを特徴とする窒化アルミニウム単結晶。
  2.  前記窒化アルミニウム単結晶に含まれる炭素、塩素、ホウ素、ケイ素、酸素の濃度の総和が、1×1015~1×1020 atoms/cmである請求項1記載の窒化アルミニウム単結晶。
  3.  前記窒化アルミニウム単結晶の(0002)面のX線ロッキングカーブの半値幅が3000秒以下である請求項1又は請求項2記載の窒化アルミニウム単結晶。
  4.  フォトルミネッセンス測定において、窒化アルミニウムのバンド端発光である209nmのピークを確認することが出来る請求項1乃至請求項3記載の窒化アルミニウム単結晶。
  5.  ハイドライド気相エピタキシー法により単結晶基板上に窒化アルミニウム単結晶を成長させることにより、請求項1記載の窒化アルミニウム単結晶を製造する方法であって、1200℃以上1700℃以下の温度で前記基板上に窒化アルミニウム単結晶を成長させると共に、ハイドライド気相エピタキシー装置内の、結晶成長時において1200℃以上となる領域の露出表面を、1200℃以上1700℃以下の温度において還元分解若しくは熱分解しない材料、又は還元分解若しくは熱分解しても炭素原子を含むガスを発生させない材料からなる部材のみで構成した装置を用いることを特徴とする方法。
  6.  ハイドライド気相エピタキシー装置内の1200℃以上となる領域の露出表面を、好ましくは、BN、TaC、WおよびMoからなる群より選ばれる少なくとも1種で構成することを特徴とする請求項5に記載方法。
PCT/JP2011/079838 2011-12-22 2011-12-22 窒化アルミニウム単結晶基板、およびこれらの製造方法 WO2013094058A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/366,020 US9691942B2 (en) 2011-12-22 2011-12-22 Single-cystalline aluminum nitride substrate and a manufacturing method thereof
EP11878135.0A EP2796596B1 (en) 2011-12-22 2011-12-22 A single-crystalline aluminum nitride substrate and a manufacturing method thereof
PCT/JP2011/079838 WO2013094058A1 (ja) 2011-12-22 2011-12-22 窒化アルミニウム単結晶基板、およびこれらの製造方法
CN202010518150.7A CN111621852A (zh) 2011-12-22 2011-12-22 氮化铝单晶基板及其制造方法
JP2013550032A JP5904470B2 (ja) 2011-12-22 2011-12-22 窒化アルミニウム単結晶基板、およびこれらの製造方法
KR1020147016397A KR101821301B1 (ko) 2011-12-22 2011-12-22 질화 알루미늄 단결정 기판 및 이들의 제조 방법
CN201180075372.5A CN103975098A (zh) 2011-12-22 2011-12-22 氮化铝单晶基板及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/079838 WO2013094058A1 (ja) 2011-12-22 2011-12-22 窒化アルミニウム単結晶基板、およびこれらの製造方法

Publications (1)

Publication Number Publication Date
WO2013094058A1 true WO2013094058A1 (ja) 2013-06-27

Family

ID=48667983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079838 WO2013094058A1 (ja) 2011-12-22 2011-12-22 窒化アルミニウム単結晶基板、およびこれらの製造方法

Country Status (6)

Country Link
US (1) US9691942B2 (ja)
EP (1) EP2796596B1 (ja)
JP (1) JP5904470B2 (ja)
KR (1) KR101821301B1 (ja)
CN (2) CN111621852A (ja)
WO (1) WO2013094058A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181178A (ja) * 2013-03-15 2014-09-29 Nitride Solutions Inc 低炭素iii族窒化物結晶
WO2015133562A1 (ja) * 2014-03-07 2015-09-11 国立大学法人東京農工大学 ノロウイルスの不活性化方法、ノロウイルス不活性化用発光ダイオード、およびノロウイルスの不活性化装置
WO2016076270A1 (ja) * 2014-11-10 2016-05-19 株式会社トクヤマ Iii族窒化物単結晶製造装置、該装置を用いたiii族窒化物単結晶の製造方法、及び窒化アルミニウム単結晶
JP2016094337A (ja) * 2014-11-10 2016-05-26 株式会社トクヤマ Iii族窒化物単結晶製造装置、該装置を用いたiii族窒化物単結晶の製造方法、及び窒化アルミニウム単結晶
WO2019059381A1 (ja) 2017-09-22 2019-03-28 株式会社トクヤマ Iii族窒化物単結晶基板
JP2020132435A (ja) * 2019-02-12 2020-08-31 パナソニックIpマネジメント株式会社 Iii族元素窒化物結晶の製造方法及び製造装置
JP7215630B1 (ja) 2022-08-22 2023-01-31 信越半導体株式会社 窒化物半導体基板及びその製造方法
WO2023127454A1 (ja) * 2021-12-27 2023-07-06 株式会社トクヤマ Iii族窒化物単結晶基板の製造方法、窒化アルミニウム単結晶基板
WO2023181259A1 (ja) * 2022-03-24 2023-09-28 日本碍子株式会社 AlN単結晶基板及びデバイス

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016143653A1 (ja) * 2015-03-06 2018-01-18 スタンレー電気株式会社 Iii族窒化物積層体、及び該積層体を有する発光素子
JP2017122028A (ja) * 2016-01-07 2017-07-13 Jfeミネラル株式会社 窒化アルミニウム単結晶
JP6932995B2 (ja) * 2017-05-23 2021-09-08 Tdk株式会社 窒化物の単結晶
US10954608B2 (en) 2017-11-10 2021-03-23 Crystal Is, Inc. UV-transparent aluminum nitride single crystal having a diameter of 35 mm to 150 mm and a predefined UV transparency metric at a wavelength of 265 nm
CN107955970B (zh) * 2017-12-29 2021-04-27 北京华进创威电子有限公司 一种高质量氮化铝单晶的生长方法
CN111647945A (zh) * 2018-05-18 2020-09-11 北京华进创威电子有限公司 一种氮化铝晶体的制备方法
WO2022030550A1 (ja) 2020-08-04 2022-02-10 株式会社トクヤマ 窒化アルミニウム単結晶基板の洗浄方法、窒化アルミニウム単結晶積層体の製造方法、及び窒化アルミニウム単結晶基板の製造方法、並びに窒化アルミニウム単結晶基板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096884A1 (ja) * 2007-02-07 2008-08-14 National University Corporation Tokyo University Of Agriculture And Technology n型導電性窒化アルミニウム半導体結晶及びその製造方法
JP2009078971A (ja) 2009-01-07 2009-04-16 Sumitomo Electric Ind Ltd 窒化物半導体単結晶基板とその合成方法
WO2009090821A1 (ja) 2008-01-16 2009-07-23 National University Corporation Tokyo University Of Agriculture And Technology Al系III族窒化物単結晶層を有する積層体の製造方法、該製法で製造される積層体、該積層体を用いたAl系III族窒化物単結晶基板の製造方法、および、窒化アルミニウム単結晶基板
JP2010010613A (ja) 2008-06-30 2010-01-14 Tokuyama Corp 積層体、自立基板製造用基板、自立基板およびこれらの製造方法
JP2010042950A (ja) * 2008-08-11 2010-02-25 Sumitomo Electric Ind Ltd AlN結晶の製造方法、AlN基板の製造方法および圧電振動子の製造方法
JP2010089971A (ja) 2008-10-03 2010-04-22 Tokyo Univ Of Agriculture & Technology 窒化アルミニウム単結晶基板、積層体、およびこれらの製造方法
WO2010122801A1 (ja) * 2009-04-24 2010-10-28 独立行政法人産業技術総合研究所 窒化アルミニウム単結晶の製造装置、窒化アルミニウム単結晶の製造方法および窒化アルミニウム単結晶

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044982A (ja) * 2004-08-04 2006-02-16 Sumitomo Electric Ind Ltd 窒化物半導体単結晶基板とその合成方法
JP5186733B2 (ja) * 2005-07-29 2013-04-24 住友電気工業株式会社 AlN結晶の成長方法
JP2009517329A (ja) * 2005-11-28 2009-04-30 クリスタル・イズ,インコーポレイテッド 低欠陥の大きな窒化アルミニウム結晶及びそれを製造する方法
JP2009536605A (ja) * 2006-05-08 2009-10-15 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア アルミニウムを含むiii族窒化物半導体化合物の成長方法及び材料。
JP5099008B2 (ja) * 2006-07-26 2012-12-12 富士通株式会社 SiC基板を用いた化合物半導体装置とその製造方法
CN101205627A (zh) * 2006-12-21 2008-06-25 中国科学院半导体研究所 一种制备氮化物单晶衬底的氢化物气相外延装置
JP2011151163A (ja) 2010-01-21 2011-08-04 Furukawa Electric Co Ltd:The 半導体ウエハ表面保護テープ、樹脂製基材フィルム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096884A1 (ja) * 2007-02-07 2008-08-14 National University Corporation Tokyo University Of Agriculture And Technology n型導電性窒化アルミニウム半導体結晶及びその製造方法
WO2009090821A1 (ja) 2008-01-16 2009-07-23 National University Corporation Tokyo University Of Agriculture And Technology Al系III族窒化物単結晶層を有する積層体の製造方法、該製法で製造される積層体、該積層体を用いたAl系III族窒化物単結晶基板の製造方法、および、窒化アルミニウム単結晶基板
JP2010010613A (ja) 2008-06-30 2010-01-14 Tokuyama Corp 積層体、自立基板製造用基板、自立基板およびこれらの製造方法
JP2010042950A (ja) * 2008-08-11 2010-02-25 Sumitomo Electric Ind Ltd AlN結晶の製造方法、AlN基板の製造方法および圧電振動子の製造方法
JP2010089971A (ja) 2008-10-03 2010-04-22 Tokyo Univ Of Agriculture & Technology 窒化アルミニウム単結晶基板、積層体、およびこれらの製造方法
JP2009078971A (ja) 2009-01-07 2009-04-16 Sumitomo Electric Ind Ltd 窒化物半導体単結晶基板とその合成方法
WO2010122801A1 (ja) * 2009-04-24 2010-10-28 独立行政法人産業技術総合研究所 窒化アルミニウム単結晶の製造装置、窒化アルミニウム単結晶の製造方法および窒化アルミニウム単結晶

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF CRYSTAL GROWTH, vol. 312, 2010, pages 2530 - 2536
PHYSICA STATUS SOLIDI, vol. 246, no. 6, 2009, pages 1181 - 1183
See also references of EP2796596A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181178A (ja) * 2013-03-15 2014-09-29 Nitride Solutions Inc 低炭素iii族窒化物結晶
WO2015133562A1 (ja) * 2014-03-07 2015-09-11 国立大学法人東京農工大学 ノロウイルスの不活性化方法、ノロウイルス不活性化用発光ダイオード、およびノロウイルスの不活性化装置
WO2016076270A1 (ja) * 2014-11-10 2016-05-19 株式会社トクヤマ Iii族窒化物単結晶製造装置、該装置を用いたiii族窒化物単結晶の製造方法、及び窒化アルミニウム単結晶
JP2016094337A (ja) * 2014-11-10 2016-05-26 株式会社トクヤマ Iii族窒化物単結晶製造装置、該装置を用いたiii族窒化物単結晶の製造方法、及び窒化アルミニウム単結晶
EP3219833A4 (en) * 2014-11-10 2018-05-30 Tokuyama Corporation Device for manufacturing group-iii nitride single crystal, method for manufacturing group-iii nitride single crystal using same, and aluminum nitride single crystal
US11348785B2 (en) 2014-11-10 2022-05-31 Tokuyama Corporation Apparatus for manufacturing group III nitride single crystal, method for manufacturing group III nitride single crystal using the apparatus, and aluminum nitride single crystal
US10354862B2 (en) 2014-11-10 2019-07-16 Tokuyama Corporation Apparatus for manufacturing group III nitride single crystal, method for manufacturing group III nitride single crystal using the apparatus, and aluminum nitride single crystal
JPWO2019059381A1 (ja) * 2017-09-22 2020-09-10 株式会社トクヤマ Iii族窒化物単結晶基板
WO2019059381A1 (ja) 2017-09-22 2019-03-28 株式会社トクヤマ Iii族窒化物単結晶基板
JP7107951B2 (ja) 2017-09-22 2022-07-27 株式会社トクヤマ Iii族窒化物単結晶基板
US11767612B2 (en) 2017-09-22 2023-09-26 Tokuyama Corporation Group III nitride single crystal substrate
JP2020132435A (ja) * 2019-02-12 2020-08-31 パナソニックIpマネジメント株式会社 Iii族元素窒化物結晶の製造方法及び製造装置
JP7182166B2 (ja) 2019-02-12 2022-12-02 パナソニックIpマネジメント株式会社 Iii族元素窒化物結晶の製造方法及び製造装置
WO2023127454A1 (ja) * 2021-12-27 2023-07-06 株式会社トクヤマ Iii族窒化物単結晶基板の製造方法、窒化アルミニウム単結晶基板
WO2023181259A1 (ja) * 2022-03-24 2023-09-28 日本碍子株式会社 AlN単結晶基板及びデバイス
JP7215630B1 (ja) 2022-08-22 2023-01-31 信越半導体株式会社 窒化物半導体基板及びその製造方法
WO2024042836A1 (ja) * 2022-08-22 2024-02-29 信越半導体株式会社 窒化物半導体基板及びその製造方法
JP2024029700A (ja) * 2022-08-22 2024-03-06 信越半導体株式会社 窒化物半導体基板及びその製造方法

Also Published As

Publication number Publication date
EP2796596A4 (en) 2015-07-01
JP5904470B2 (ja) 2016-04-13
CN111621852A (zh) 2020-09-04
KR20140104438A (ko) 2014-08-28
CN103975098A (zh) 2014-08-06
US20140346638A1 (en) 2014-11-27
EP2796596B1 (en) 2021-01-27
JPWO2013094058A1 (ja) 2015-04-27
EP2796596A1 (en) 2014-10-29
US9691942B2 (en) 2017-06-27
KR101821301B1 (ko) 2018-01-23

Similar Documents

Publication Publication Date Title
JP5904470B2 (ja) 窒化アルミニウム単結晶基板、およびこれらの製造方法
JP6042545B2 (ja) 高透明性窒化アルミニウム単結晶層、及びこれからなる素子
JP5251893B2 (ja) 導電性iii族窒化物結晶の製造方法及び導電性iii族窒化物基板の製造方法
RU2485219C1 (ru) Устройство для производства монокристаллического нитрида алюминия, способ производства монокристаллического нитрида алюминия и монокристаллический нитрид алюминия
US11348785B2 (en) Apparatus for manufacturing group III nitride single crystal, method for manufacturing group III nitride single crystal using the apparatus, and aluminum nitride single crystal
CN111164242B (zh) Iii族氮化物单晶基板
JP2007320790A (ja) 炭化珪素単結晶の製造方法、炭化珪素単結晶インゴット及び炭化珪素単結晶基板
Bickermann et al. Growth of AlN bulk crystals on SiC seeds: Chemical analysis and crystal properties
KR20130023257A (ko) 에피텍셜 박막형성방법, 진공처리장치, 반도체 발광소자 제조방법, 반도체 발광소자, 및 조명장치
US20210047751A1 (en) Aluminum nitride single crystals having large crystal augmentation parameters
Liaw et al. GaN epilayers grown on 100 mm diameter Si (111) substrates
JP6635756B2 (ja) Iii族窒化物単結晶製造装置、該装置を用いたiii族窒化物単結晶の製造方法、及び窒化アルミニウム単結晶
TWI760069B (zh) 半絕緣單晶碳化矽粉末的製備方法
WO2017126561A1 (ja) 単結晶ダイヤモンド、単結晶ダイヤモンドの製造方法およびそれに用いられる化学気相堆積装置
Huang et al. Microstructure and optical properties of ZnO/porous silicon nanocomposite films
Sedov et al. Photoluminescence of Si-vacancy color centers in diamond films grown in microwave plasma in methane-hydrogen-silane mixtures
JP6080148B2 (ja) 窒化アルミニウム単結晶およびその製造方法
JP4525897B2 (ja) ダイヤモンド単結晶基板
WO2023127455A1 (ja) 窒化アルミニウム単結晶、及びiii族窒化物単結晶の製造方法
Kukushkin et al. The optical constants of zinc oxide epitaxial films grown on silicon with a buffer nanolayer of silicon carbide
Jain et al. Growth of AlN films and their characterization
JP2010010571A (ja) 発光素子およびその製造方法
JP2009032707A (ja) Si基板表面の炭化による結晶性SiCの形成方法及び結晶性SiC基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878135

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013550032

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147016397

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14366020

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011878135

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE