JP2010010613A - 積層体、自立基板製造用基板、自立基板およびこれらの製造方法 - Google Patents
積層体、自立基板製造用基板、自立基板およびこれらの製造方法 Download PDFInfo
- Publication number
- JP2010010613A JP2010010613A JP2008171209A JP2008171209A JP2010010613A JP 2010010613 A JP2010010613 A JP 2010010613A JP 2008171209 A JP2008171209 A JP 2008171209A JP 2008171209 A JP2008171209 A JP 2008171209A JP 2010010613 A JP2010010613 A JP 2010010613A
- Authority
- JP
- Japan
- Prior art keywords
- group iii
- iii nitride
- substrate
- single crystal
- crystal layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
- Recrystallisation Techniques (AREA)
Abstract
【解決手段】不活性ガス中1000℃において分解しない無機物質であって、1000℃以上1600℃以下で還元性ガスと接触することにより分解して揮発性物質を生成する無機物質の単結晶からなるベース基板、ベース基板上に形成された、単結晶Al系III族窒化物、または単結晶Al系III族窒化物と非晶質Al系III族窒化物との混合物からなる厚さ3nm以上200nm以下のAl系III族窒化物薄膜層、Al系III族窒化物薄膜層上に形成された、Al系III族窒化物薄膜層の厚さの100倍以上の厚さを備えたIII族窒化物非単結晶層、を備えて構成される積層体とし、ベース基板とAl系III族窒化物薄膜層との界面に複数の空隙を設ける。
【選択図】図1
Description
また、III族窒化物非単結晶層(30)が非晶質の場合には、上記の回折が起こらないが、本発明の効果は十分に得られる。
(A) 不活性ガス中1000℃において分解しない無機物質であって、1000℃以上1600℃以下で還元性ガスと接触することにより分解して揮発性物質を生成する無機物質の単結晶からなるベース基板(10)上に、単結晶Al系III族窒化物を含む厚さ3nm以上200nm以下のAl系III族窒化物薄膜層(20)が形成された原料積層基板を準備する工程、
(B) 原料積層基板を還元性ガスおよびアンモニアガスを含む雰囲気中で1000℃以上1600℃以下に加熱することにより、ベース基板(10)とAl系III族窒化物薄膜層(20)との界面においてベース基板(10)を選択的に分解し、界面に空隙(12)を形成する工程、
(C) 工程(B)で得られた積層体のAl系III族窒化物薄膜層(20)上にIII族窒化物非単結晶を成長させてIII族窒化物非単結晶層(30)を形成する工程、
を備えてなる、積層体の製造方法。
(A) 不活性ガス中1000℃において分解しない無機物質であって、1000℃以上1600℃以下で還元性ガスと接触することにより分解して揮発性物質を生成する無機物質の単結晶からなるベース基板(10)上に、単結晶Al系III族窒化物を含む厚さ3nm以上200nm以下のAl系III族窒化物薄膜層(20)が形成された原料積層基板を準備する工程、
(B) 原料積層基板を還元性ガスおよびアンモニアガスを含む雰囲気中で1000℃以上1600℃以下に加熱することにより、ベース基板(10)とAl系III族窒化物薄膜層(20)との界面においてベース基板(10)を選択的に分解し、界面に空隙(12)を形成する工程、
(B´)工程(B)で得られた積層体のAl系III族窒化物薄膜層(20)上に、Al系III族窒化物単結晶を成長させて、0.0004μm以上10μm以下の第1のAl系III族窒化物単結晶層(22)を形成する工程、および、
(C) 工程(B´)で得られた積層体の第1のAl系III族窒化物単結晶層(22)上にIII族窒化物非単結晶を成長させてIII族窒化物非単結晶層(30)を形成する工程、
を備えてなる、積層体の製造方法。
また、第7の本発明は、上記第6の本発明において、Al系III族窒化物薄膜層(20)、第1のAl系III族窒化物単結晶層(22)およびIII族窒化物非単結晶層(30)を一体として分離する分離した後、さらに、Al系III族窒化物薄膜層(20)を除去する工程、を備えてなる、自立基板製造用基板の製造方法である。Al系III族窒化物薄膜層(20)を除去することにより、格子不整合応力が低減された単結晶層(22)を表層に備えた自立基板製造用基板を製造できる。さらに、自立基板製造用基板の歩留を向上させることができる。
第10の本発明は、第7の本発明の方法で得られた第1のAl系III族窒化物単結晶層(22)およびIII族窒化物非単結晶層(30)からなる自立基板製造用基板であって、第1のAl系III族窒化物単結晶層(22)側に着目した結晶面の曲率半径の絶対値が1m以上である、自立基板製造用基板である。上記と同様に、空隙(12)および非単結晶層(30)により、第1のAl系III族窒化物単結晶層(22)の格子不整合応力を低減させており、これにより、結晶面の曲率半径の絶対値を大きくすることができる。
また、第5〜7の本発明の方法で得られた自立基板製造用基板は、後述するELO法を採用して、自立基板を製造することもできる。この場合、Al系III族窒化物薄膜層(20)、または第1のAl系III族窒化物単結晶層(22)を分離して、第2のAl系III族窒化物単結晶層(40)のみからなる自立基板としてもよい。
<積層体>
本発明の積層体は、不活性ガス中1000℃において分解しない無機物質であって、1000℃以上1600℃以下で還元性ガスと接触することにより分解して揮発性物質を生成する無機物質の単結晶からなるベース基板10、該ベース基板10上に形成された、単結晶Al系III族窒化物を含む厚さ3nm以上200nm以下のAl系III族窒化物薄膜層20、該Al系III族窒化物薄膜層20上に形成された、該Al系III族窒化物薄膜層20の厚さの100倍以上の厚さを備えたIII族窒化物非単結晶層30、を備えて構成され、該ベース基板10と該Al系III族窒化物薄膜層20との界面に複数の空隙12を有する、積層体である。
ベース基板10の材質は、不活性ガス中1000℃において分解しない無機物質であって、1000℃以上1600℃以下で還元性ガスと接触することにより分解して揮発性物質を生成する無機物質の単結晶である必要がある。不活性ガス中1000℃未満の温度で分解する物質からなる場合には、例えば、窒化アルミニウムを気相成長させる際の基板として使用できないため好ましくない。また、1000℃以上1600℃以下で還元性ガスと接触することにより分解して揮発性物質を生成する物質で無い場合には、ベース基板10と薄膜層20との界面に複数の空隙12を導入することが困難である。また、表面にAl系III族窒化物層が存在しても選択的に還元分解されるという観点から、III族窒化物以外の材料、特に、Al系III族窒化物以外の材料であることが好ましい。
なお、特に制限されるものではないが、ベース基板の厚みは、積層体、および自立基板製造用基板の製造の容易さ、入手のし易さ等を考慮すると50μm以上1000μm以下である。
Al系III族窒化物薄膜層20は、単結晶Al系III族窒化物を含む層である。ここで、Al系III族窒化物とは、Al1−(x+y+z)GaxInyBzN(但し、x、y及びzは夫々独立に0以上1未満の有理数であり、x+y+z<1である。)で示される化合物を意味する。耐熱性が高く、後述する空隙形成のための処理を高温で効率良く行うことができるという理由からx+y+z<0.5であることが好ましく、結晶性が良いAl系III族窒化物薄膜層20が作製しやすいという理由から窒化アルミニウムであることが最も好ましい。
本発明の積層体は、ベース基板10とAl系III族窒化物薄膜層20との界面に複数の空隙12が存在する。このことによって、後に説明するように、ベース基板10をAl系III族窒化物薄膜層20から剥離するのが容易となり、自立基板製造用基板を効率よく製造できる。また、空隙12は、Al系III族窒化物薄膜層20の格子不整合応力を低減させることができるので、歪みや反りが極めて少ない自立基板製造用基板を形成することが可能となる。
III族窒化物非単結晶層30は、単結晶でない材料、具体的には、多結晶、非晶質、または多結晶と非晶質の混合物から構成される層であればよい。また、非単結晶層30がこのような層である場合には、ベース基板10とAl系III族窒化物薄膜層20との格子定数差に起因する応力を緩和することができる。III族窒化物非単結晶層30は、製造の容易さおよび応力緩和の観点から、Al系III族窒化物薄膜層20を構成する材料と同一または類似の組成を有するAl系III族窒化物からなることが好ましい。ここで組成が類似するとは、両材料の組成を比較したときに、各III族元素の組成の差であるΔ{1−(x+y+z)}、Δx、ΔyおよびΔzの絶対値がいずれも0.1以下であることを意味する。
中でも、III族窒化物非単結晶層30は、Al系III族窒化物薄膜層20を構成する材料と同じく、窒化アルミニウムであることが好ましい。
本発明の積層体は、Al系III族窒化物薄膜層20とIII族窒化物非単結晶層30との間に、厚さ0.0004μm以上10μm以下の第1のAl系III族窒化物単結晶層22を備えた形態とすることができる。この場合、自立基板製造用基板の作製の際には、積層体からベース基板10を分離するとともに、Al系III族窒化物薄膜層20を除去して、表面に第1のAl系III族窒化物単結晶層22を備えてなる自立基板製造用基板を製造することもできる。
上記した積層体を製造する方法について以下に説明する。本発明の積層体の製造方法は、以下の工程を備えて構成される。
(A)不活性ガス中1000℃において分解しない無機物質であって、1000℃以上1600℃以下で還元性ガスと接触することにより分解して揮発性物質を生成する無機物質の単結晶からなるベース基板10上に、単結晶Al系III族窒化物または単結晶Al系III族窒化物と非晶質Al系III族窒化物との混合物からなる厚さ3nm以上200nm以下のAl系III族窒化物薄膜層20が形成された原料積層基板を準備する工程、
(B)前記原料積層基板を還元性ガスおよびアンモニアガスを含む雰囲気中で1000℃以上1600℃以下に加熱することにより、ベース基板10とAl系III族窒化物薄膜層20との界面においてベース基板10を選択的に分解し、該界面に空隙12を形成する工程、
(C)工程(B)で得られた積層体のAl系III族窒化物薄膜層20上にIII族窒化物非単結晶を成長させてIII族窒化物非単結晶層30を形成する工程。
工程(A)において、ベース基板10上にAl系III族窒化物薄膜層20を形成する方法としては、気相成長法(HVPE法、MOCVD法、MBE法)、表面窒化法など、このような目的での成膜が可能なことが知られている公知の方法が特に限定されず採用できる。中でも、高品質な自立基板製造用基板、および自立基板を製造するためには、気相成長法を採用することが好ましい。
なお、この場合、予めベース基板を還元性ガス雰囲気下でサーマルクリーニングを行うこともできる。
工程(B)は、原料積層基板のベース基板10とAl系III族窒化物薄膜層20との界面に空隙12を導入するための工程であり、Al系III族窒化物薄膜層20を拡散透過した還元性ガスによってベース基板10を選択的に分解する。Al系III族窒化物も単独で高温の還元性ガスと接触した場合には分解が起こるが、工程(B)においては、還元性ガスにアンモニアガスを共存させることによりその分解を防いでいる。アンモニアはAl系III族窒化物の分解生成物であり、これを共存させることにより分解反応が抑制されるものと考えられる。
III族窒化物非単結晶層30は、単結晶ではない材料で構成されるものであって、Al系III族窒化物薄膜層20を構成する材料と同一の材料若しくは当該材料を主成分とする材料で構成される層であることが好ましい。中でも、製造の容易さおよび応力緩和の観点から、Al系III族窒化物薄膜層20を構成する材料と同一または類似の組成を有するAl系III族窒化物の多結晶、非晶質、またはこれらの混合からなる層であることが好ましい。非単結晶層を形成することにより、成長中もしくは冷却中においても、Al系III族窒化物薄膜層20とIII族窒化物非単結晶層30の反りやクラックが抑制される。
上記した第1のAl系III族窒化物単結晶層22を備えてなる積層体を形成する場合は、工程(B)の後に、以下の工程(B´)により第1のAl系III族窒化物単結晶層22を形成し、この第1のAl系III族窒化物単結晶層22の上に、工程(C)においてIII族窒化物非単結晶層30が形成される。
工程(B´):工程(B)で得られた積層体のAl系III族窒化物薄膜層20上に、Al系III族窒化物単結晶を成長させて、0.0004μm以上10μm以下の第1のAl系III族窒化物単結晶層22を形成する工程。
また、Al系III族窒化物単結晶層22の形成は多段階に分けて行うこともできる。
上記した積層体から、Al系III族窒化物薄膜層20およびIII族窒化物非単結晶層30を一体として分離することにより、Al系III族窒化物薄膜層20およびIII族窒化物非単結晶層30の積層構造からなる自立基板製造用基板が製造される。
特に、気相成長中に自然分離させた場合には、剥離後の成長においては原理的に格子不整合応力が発生しないので、特に品質の高いIII族窒化物非単結晶層が形成できる。但し、成長中に剥離が起こった場合には、ベース基板10との接触が十分でなくなり、ベース基板10を介した熱伝導による十分な加熱が困難となる。このため、成長面の温度を高くすることが困難となり、結晶の成長速度の低下、結晶性の低下が起こりやすくなる。このため、装置的に剥離後の成長面の温度を十分に制御できない場合には、成長中に剥離を起こさせないように空隙率を制御することが好ましい。
本発明においては、上記自然分離は、ベース基板10とAl系III族窒化物薄膜層20およびIII族窒化物非単結晶層30とが完全に分離するような形態で起こることが好ましいが、部分的に起こる場合もある。ただし、この場合でも僅かに外力を加えることによって両者を簡単に分離することができる。しかも何れの場合も、剥離したAl系III族窒化物薄膜層20およびIII族窒化物非単結晶層30には反りが見られないので反り戻し等の煩雑な分離工程を省略することができる。
また、Al系III族窒化物単結晶層22を備えた積層体の場合は、上記のような表面処理によりAl系III族窒化物薄膜層20そのものを除去することも可能である。Al系III族窒化物薄膜層20が除去された場合でも、Al系III族窒化物単結晶層22が存在することにより、本発明の効果は好適に保たれる。このようにしてAl系III族窒化物単結晶層22を表面に備えた自立基板製造用基板が製造される。
上記したように、本発明の自立基板製造用基板は、Al系III族窒化物薄膜層20およびIII族窒化物非単結晶層30からなる自立基板製造用基板(以下、「第1の自立基板製造用基板」という場合がある。)と、Al系III族窒化物薄膜層20、第1のAl系III族窒化物単結晶層22およびIII族窒化物非単結晶層30からなる自立基板製造用基板(以下、「第2の自立基板製造用基板」という場合がある。)と、第1のAl系III族窒化物単結晶層22およびIII族窒化物非単結晶層30からなる自立基板製造用基板(以下、「第3の自立基板製造用基板」という場合がある。)、の三種類が存在する。第1、および第2の自立基板製造用基板においては、Al系III族窒化物薄膜層20側に、単結晶Al系III族窒化物をエピタキシャル成長させることにより、自立基板が製造される。第2の自立基板製造用基板とした場合には、仮にAl系III族窒化物薄膜層20の結晶性が低い場合でも、第1のAl系III族窒化物単結晶層22を有するため、該単結晶層22の結晶面が反映され、該薄膜層20上に、高品質な単結晶層を積層することができる。
また、第3の自立基板製造用基板においては、第1のAl系III族窒化物単結晶層22側に、単結晶Al系III族窒化物をエピタキシャル成長させることにより、自立基板が製造される。
本発明の自立基板は、上記した第1の自立基板製造用基板における、Al系III族窒化物薄膜層20側に、単結晶Al系III族窒化物をエピタキシャル成長させ、第2のAl系III族窒化物単結晶層40が形成し、そして、少なくともIII族窒化物非単結晶層30を分離することにより、製造することができる。III族窒化物非単結晶層30のみを分離した場合には、第2のAl系III族窒化物単結晶層40およびAl系III族窒化物薄膜層20からなる自立基板が得られる。該自立基板は、第2のAl系III族窒化物単結晶層40側に、半導体層等の積層構造が形成され、半導体素子となる。
Al系III族窒化物単結晶を製造する際に、ベース基板の表面に多数の微小凹部または微小凸部をランダムに或いは規則的に配列して形成することにより基板表面に高低差をつけ、相対的に高い位置にある基板表面上から結晶成長を開始させることにより、単結晶をベース基板に対して垂直方向だけでなく水平方向(横方向)にも成長させ、横方向に成長するときに結晶欠陥を減少させるという技術が公知となっている。この技術は、ELO(Epitaxial Lateral Overgrowth)法と呼ばれており、該方法を採用することにより結晶欠陥が減少した高品位なIII族窒化物単結晶を得ることも可能となる。
工程(A):図3に示される構造の反応装置の支持体上に、直径2インチで厚さが430μmのサファイア(0001)基板(ベース基板)を設置した。そして、反応管内の雰囲気を、水素の分圧を0.7atm、窒素の分圧を0.3atmとした。その後、ベース基板を1065℃に加熱した。1065℃に到達後、10分間保持して基板のサーマルクリーニングを行った。次いで、反応管内にIII族元素源ガスとして三塩化アルミニウムガスを分圧5.0×10−4atmで供給した後、アンモニアガスを分圧1.25×10−3atmで供給し、成長を開始した。
参照実験として、同一条件で工程(A)および工程(B)を別途行い、アニール後のベース基板断面の走査電子顕微鏡(SEM)観察を行い、ベース基板と窒化アルミニウム層界面に形成した空隙率を画像解析から計算した。その結果、空隙率は約55%であることが確かめられた。
さらに、曲率半径を算出して反りを評価したところ、曲率半径は5.2mであり、実質的に問題のないレベルであることを確認した。
前記の反応装置の支持台上に自立基板製造用基板の第1の単結晶層側を上面にして設置し、反応器内に水素と窒素の混合キャリアガスを流通させ、その後、外部加熱手段を用いて反応管温度を500℃に加熱し、一方、ベース基板を1500℃に加熱した。次いで、三塩化アルミニウムガス及びアンモニアガスを導入して6時間保持し、自立基板製造用基板上に第2の窒化アルミニウム単結晶層を300μm成長させた。その後、基板を室温まで冷却し、反応器から取り出した。
工程(C)において、非単結晶層を非晶質からなるものとした以外は、工程(A)、工程(B)、工程(B´)は実施例1と同様とした。
工程(C):工程(B)´において第1の窒化アルミニウム単結晶層を成長させた後、ベース基板温度を800℃として、三塩化アルミニウムガスの供給分圧を1.5×10−3atm、アンモニアガスの供給分圧を5.0×10−3atmに変更し、厚さ250μmの非晶質からなる非単結晶層を形成し、三塩化アルミニウムガス及びアンモニアガスの供給を停止した。その後ベース基板を室温に冷却して、反応器から基板を取り出した。自立基板製造用基板の非単結晶層(非晶質層)が露出されている側からX線回折のθ−2θ測定を行ったところ、AlNに関連する回折は(002)回折が観測されたが、そのピークの半値幅が数°程度の大きいものであり、非晶質になっていると考えられた。
さらに、曲率半径を算出して反りを評価したところ、曲率半径は4.9mであり、実質的に問題のないレベルであることを確認した。実施例1と同様の方法で求めた製造上の歩留は44%であった。
得られた自立基板製造用基板を用いて、実施例1と同じ条件で第2のAl系III族窒化物単結晶層(自立基板の製造方法)を形成したが、実施例1と同じく、得られた窒化アルミニウム単結晶自立基板は、基板全面に渡りクラックが観察されなかった。
工程(B´)の第1の単結晶層を設けず、工程(C)における非単結晶層(多結晶層)の厚さを220μmとした以外は、工程(A)、工程(B)、工程(C)は実施例1と同様とした。
基板を取り出した後、基板の側面を研磨したところ、ベース基板であるサファイア基板と窒化アルミニウム積層膜とが剥離し、窒化アルミニウム薄膜層と多結晶からなる非単結晶層とからなる自立基板製造用基板を得た。また、自立基板製造用基板の表面(窒化アルミニウム薄膜層の表面)は鏡面であった。軽く窒化アルミニウム薄膜層の表面を研磨することにより、窒化アルミニウム薄膜層に付着したサファイア基板屑を除去した(第1の自立基板製造用基板を製造した。)。
自立基板製造用基板の多結晶層が露出されている側のX線回折強度比I002/I100は9であった。また、窒化アルミニウム薄膜層側のAlN(002)面のX線ロッキングカーブの半値幅を測定したところ、460秒であった。さらに、曲率半径を算出して反りを評価したところ、曲率半径は3.8mであり、実質的に問題のないレベルであることを確認した。実施例1と同様の方法で求めた製造上の歩留は33%であった。
得られた自立基板製造用基板を用いて、実施例1と同じ条件で第2のAl系III族窒化物単結晶層(自立基板の製造方法)を形成したが、実施例1と同じく、得られた窒化アルミニウム単結晶自立基板は、基板全面に渡りクラックが観察されなかった。
工程(B)の薄膜層の厚さを20nmとし、工程(B´)の第1の窒化アルミニウム単結晶層の膜厚を1μm、工程(C)における非単結晶層(多結晶層)の厚さを300μmとした以外は実施例1と同様とした。
基板を取り出した後、基板の側面を研磨したところ、ベース基板であるサファイア基板と窒化アルミニウム積層膜とが剥離し、窒化アルミニウム薄膜層、第1の単結晶層および多結晶からなる非単結晶層からなる自立基板製造用基板を得た。また、自立基板製造用基板の表面(薄膜層の表面)は鏡面であった。0.5%水酸化テトラメチルアンモニウムに10秒浸漬して、窒化アルミニウム薄膜層と薄膜層に付着したサファイア基板屑を除去した(第3の自立基板製造用基板を製造した。)。
自立基板製造用基板の多結晶層が露出されている側のX線回折強度比I002/I100は6であった。また、第1の窒化アルミニウムよりなる単結晶層(第1の単結晶層)の側のAlN(002)面のX線ロッキングカーブの半値幅を測定したところ、380秒であった。
さらに曲率半径は5.6mであり、実質的に問題のないレベルであることを確認した。実施例1と同様の方法で求めた製造上の歩留は22%であった。
得られた自立基板製造用基板を用いて、実施例1と同じ条件で第2のAl系III族窒化物単結晶層(自立基板の製造方法)を形成したが、実施例1と同じく、得られた窒化アルミニウム単結晶自立基板は、基板全面に渡りクラックが観察されなかった。
工程(B)の薄膜層の厚さを150nmとし、工程(B´)の第1の窒化アルミニウム単結晶層の膜厚を1μm、工程(C)における非単結晶層(多結晶層)の厚さを300μmとした以外は実施例1と同様とした。
基板を取り出した後、基板の側面を研磨したところ、ベース基板であるサファイア基板と窒化アルミニウム積層膜とが剥離し、窒化アルミニウム薄膜層、第1の単結晶層および多結晶からなる非単結晶層からなる自立基板製造用基板を得た。また、自立基板製造用基板の表面(薄膜層の表面)は鏡面であった。軽く窒化アルミニウム薄膜層の表面を研磨することにより、窒化アルミニウム薄膜層に付着したサファイア基板屑を除去した(第2の自立基板製造用基板を製造した。)。
自立基板製造用基板の多結晶層が露出されている側のX線回折強度比I002/I100は6であった。曲率半径は4.7mであり、実質的に問題のないレベルであることを確認した。実施例1と同様の方法で求めた製造上の歩留は44%であった。
得られた自立基板製造用基板を用いて、実施例1と同じ条件で第2のAl系III族窒化物単結晶層(自立基板の製造方法)を形成したが、実施例1と同じく、得られた窒化アルミニウム単結晶自立基板は、基板全面に渡りクラックが観察されなかった。
工程(B´)の第1の窒化アルミニウム単結晶層の膜厚を5μmとした以外は実施例1と同様とした。
基板を取り出した後、基板の側面を研磨したところ、ベース基板であるサファイア基板と窒化アルミニウム積層膜とが剥離し、窒化アルミニウム薄膜層、第1の単結晶層および多結晶からなる非単結晶層からなる自立基板製造用基板を得た。また、自立基板製造用基板の表面(薄膜層の表面)は鏡面であった。0.5%水酸化テトラメチルアンモニウムに10秒浸漬して、窒化アルミニウム薄膜層と薄膜層に付着したサファイア基板屑を除去した(第3の自立基板製造用基板を製造した。)。
自立基板製造用基板の多結晶層が露出されている側のX線回折強度比I002/I100は8であった。また、第1の窒化アルミニウムよりなる単結晶層(第1の単結晶層)の側のAlN(002)面のX線ロッキングカーブの半値幅を測定したところ、350秒であった。
さらに、曲率半径は4.5mであり、実質的に問題のないレベルであることを確認した。実施例1と同様の方法で求めた製造上の歩留は22%であった。
得られた自立基板製造用基板を用いて、実施例1と同じ条件で第2のAl系III族窒化物単結晶層(自立基板の製造方法)を形成したが、実施例1と同じく、得られた窒化アルミニウム単結晶自立基板は、基板全面に渡りクラックが観察されなかった。
工程(A)の窒化アルミニウム薄膜層の膜厚を150nmとした以外は実施例1と同様とした。
基板を取り出した後、基板の側面を研磨したところ、ベース基板であるサファイア基板と窒化アルミニウム積層膜とが剥離し、窒化アルミニウム薄膜層、第1の単結晶層および多結晶からなる非単結晶層からなる自立基板製造用基板を得た。また、自立基板製造用基板の表面(薄膜層の表面)は鏡面であった。0.5%水酸化テトラメチルアンモニウムに10秒浸漬して、窒化アルミニウム薄膜層と薄膜層に付着したサファイア基板屑を除去した(第3の自立基板製造用基板を製造した。)。
自立基板製造用基板の多結晶層が露出されている側のX線回折強度比I002/I100は3.8であった。また、第1の窒化アルミニウムよりなる単結晶層(第1の単結晶層)の側のAlN(002)面のX線ロッキングカーブの半値幅を測定したところ、560秒であった。
さらに、曲率半径は5.8mであり、実質的に問題のないレベルであることを確認した。実施例1と同様の方法で求めた製造上の歩留は33%であった。
得られた自立基板製造用基板を用いて、実施例1と同じ条件で第2のAl系III族窒化物単結晶層(自立基板の製造方法)を形成したが、実施例1と同じく、得られた窒化アルミニウム単結晶自立基板は、基板全面に渡りクラックが観察されなかった。
工程(A)で膜厚100nmの単結晶を含む窒化アルミニウム薄膜層を形成後、工程(B)を省略することでベース基板と窒化アルミニウム薄膜層との界面に空隙を導入しなかった以外は、実施例1と同様とした。
工程(A)の後、1450℃に昇温した後、直ちに工程(B´)を行い、第1の単結晶層を0.5μm成長させた。このときの反応器内の雰囲気、原料ガス供給量などの条件は実施例1と同様とした。次いで、実施例1と同条件の工程(C)により多結晶層からなる200μmの非単結晶層を形成した。その後、ベース基板を室温に冷却して反応器からベース基板を取り出した。
さらに、曲率半径を算出して反りを評価したところ、曲率半径は5.0mであり、実質的に問題のないレベルであることを確認した。実施例1と同様の方法で求めた製造上の歩留は11%と低かった。ベース基板を研磨除去する工程におけるクラックの発生や、研磨し過ぎによる第1の単結晶層の消失が歩留低下の主な原因であった。
Al系III族窒化物薄膜層の厚さを2nmとした以外は実施例1と同様の手順で自立基板製造用基板を製造した比較例である。工程(C)における非単結晶層形成途中に、AlN膜が剥離した。原因を調査したところ、工程(B)終了の段階で空隙率が90%を超えて存在することが明らかになった。すなわち、空隙が高過ぎるために成長中に剥離が起こったものと考えられた。薄膜層が3nm未満である場合には、空隙の形成を制御することが困難であることが確認された。
Al系III族窒化物薄膜の厚さを250nmとした以外は実施例1と同様の手順で自立基板製造用基板を製造した比較例である。基板上にAlN薄膜層、第1の単結晶層、非単結晶層を形成し、基板を冷却して取り出したが、空隙を介してベース基板から剥離することが困難であった。原因を調査した結果、界面の空隙が5%程度と低かったために、界面における破壊現象が起こらなかったものと考えられた。すなわち、薄膜層が厚かったために、本発明において必須の空隙の形成が阻害されたと考えられた。ベース基板を反応性イオンエッチングを用いて除去を試みたが、その制御が困難であり、歩留が11%と低かった。
Al系III族窒化物非単結晶層の膜厚を、Al系III族窒化物薄膜層の90倍に相当する9μmとした以外は実施例1と同様として自立基板製造用基板の製造を試みた比較例である。AlN薄膜層、第1の単結晶層、多結晶層を順次形成し、基板を冷却した。その後、ベース基板からの自立基板製造用基板の剥離を試みたが、自立強度を保つ目的に形成した多結晶層の膜厚が薄いため、剥離途中に積層層にクラックが発生した。このため、歩留が0%であった。
実施例および比較例の結果を表1にまとめた。
12 空隙
20 Al系III族窒化物薄膜層
22 第1のAl系III族窒化物単結晶層
30 III族窒化物非単結晶層
40 第2のAl系III族窒化物単結晶層
81 石英ガラス製反応管
82 外部加熱装置
83 基板支持台
84 ベース基板
85 ノズル(III族金属ガスの導入)
86 基板支持台通電用電極
Claims (22)
- 不活性ガス中1000℃において分解しない無機物質であって、1000℃以上1600℃以下で還元性ガスと接触することにより分解して揮発性物質を生成する無機物質の単結晶からなるベース基板、
該ベース基板上に形成された、単結晶Al系III族窒化物を含む厚さ3nm以上200nm以下のAl系III族窒化物薄膜層、
該Al系III族窒化物薄膜層上に形成された、該Al系III族窒化物薄膜層の厚さの100倍以上の厚さを備えたIII族窒化物非単結晶層、を備えて構成され、
該ベース基板と該Al系III族窒化物薄膜層との界面に複数の空隙を有する、積層体。 - 前記ベース基板と前記Al系III族窒化物薄膜層との界面において、前記Al系III族窒化物薄膜層全体の面積に対する、前記複数の空隙によって前記Al系III族窒化物薄膜層と前記ベース基板とが非接触となった部分の総面積の割合が、10%以上90%以下である、請求項1に記載の積層体。
- 前記III族窒化物非単結晶層が、多結晶、非晶質、またはこれらの混合物からなる、請求項1または2に記載の積層体。
- 前記III族窒化物非単結晶層が多結晶からなり、該多結晶層について前記Al系III族窒化物薄膜層が形成されている側とは反対側の方向からX線回折測定を行った(002)面の回折強度(I002)と(100)面の回折強度(I100)との強度比(I002/I100)が1以上である、請求項1〜3のいずれかに記載の積層体。
- 前記Al系III族窒化物薄膜層と前記III族窒化物非単結晶層との間に、厚さ0.0004μm以上10μm以下の第1のAl系III族窒化物単結晶層を備えてなる、請求項1〜4のいずれかに記載の積層体。
- 請求項1〜4のいずれかに記載の積層体を製造する方法であって、
(A) 不活性ガス中1000℃において分解しない無機物質であって、1000℃以上1600℃以下で還元性ガスと接触することにより分解して揮発性物質を生成する無機物質の単結晶からなるベース基板上に、単結晶Al系III族窒化物を含む厚さ3nm以上200nm以下のAl系III族窒化物薄膜層が形成された原料積層基板を準備する工程、
(B) 前記原料積層基板を還元性ガスおよびアンモニアガスを含む雰囲気中で1000℃以上1600℃以下に加熱することにより、前記ベース基板と前記Al系III族窒化物薄膜層との界面において前記ベース基板を選択的に分解し、該界面に空隙を形成する工程、
(C) 前記工程(B)で得られた積層体の前記Al系III族窒化物薄膜層上にIII族窒化物非単結晶を成長させてIII族窒化物非単結晶層を形成する工程、
を備えてなる、積層体の製造方法。 - 請求項5に記載の積層体を製造する方法であって、
(A) 不活性ガス中1000℃において分解しない無機物質であって、1000℃以上1600℃以下で還元性ガスと接触することにより分解して揮発性物質を生成する無機物質の単結晶からなるベース基板上に、単結晶Al系III族窒化物を含む厚さ3nm以上200nm以下のAl系III族窒化物薄膜層が形成された原料積層基板を準備する工程、
(B) 前記原料積層基板を還元性ガスおよびアンモニアガスを含む雰囲気中で1000℃以上1600℃以下に加熱することにより、前記ベース基板と前記Al系III族窒化物薄膜層との界面において前記ベース基板を選択的に分解し、該界面に空隙を形成する工程、
(B´)前記工程(B)で得られた積層体の前記Al系III族窒化物薄膜層上に、Al系III族窒化物単結晶を成長させて、0.0004μm以上10μm以下の第1のAl系III族窒化物単結晶層を形成する工程、および、
(C) 前記工程(B´)で得られた積層体の前記第1のAl系III族窒化物単結晶層上にIII族窒化物非単結晶を成長させてIII族窒化物非単結晶層を形成する工程、
を備えてなる、積層体の製造方法。 - 前記工程(A)が、加熱された前記ベース基板に、III族元素源ガスおよび窒素源ガスを接触させる気相成長法によってAl系III族窒化物薄膜層を形成する工程を含むものであり、
該気相成長の開始時において、加熱された前記ベース基板にIII族元素源ガスを接触させた後、該ベース基板にIII族元素源ガスおよび窒素源ガスを接触させる、請求項6または7に記載の積層体の製造方法。 - 前記III族窒化物非単結晶層として窒化アルミニウム非単結晶層を形成する請求項6〜8のいずれかに記載の積層体の製造方法。
- Al系III族窒化物薄膜層およびIII族窒化物非単結晶層の積層構造からなる自立基板製造用基板を製造する方法であって、
請求項6に記載の方法により、積層体を製造する工程、
該工程で得られた積層体から、前記Al系III族窒化物薄膜層および前記III族窒化物非単結晶層を一体として分離する分離工程
を備えてなる、自立基板製造用基板の製造方法。 - Al系III族窒化物薄膜層、第1のAl系III族窒化物単結晶層およびIII族窒化物非単結晶の積層構造からなる自立基板製造用基板を製造する方法であって、
請求項7に記載の方法により、積層体を製造する工程、
該工程で得られた積層体から、前記Al系III族窒化物薄膜層、前記第1のAl系III族窒化物単結晶層、および前記III族窒化物非単結晶層を一体として分離する分離工程
を備えてなる、自立基板製造用基板の製造方法。 - 第1のAl系III族窒化物単結晶層およびIII族窒化物非単結晶の積層構造からなる自立基板製造用基板を製造する方法であって、
請求項7に記載の方法により、積層体を製造する工程、
該工程で得られた積層体から、前記Al系III族窒化物薄膜層、前記第1のAl系III族窒化物単結晶層および前記III族窒化物非単結晶層を一体として分離する分離工程、および
前記Al系III族窒化物薄膜層を除去する工程、
を備えてなる、自立基板製造用基板の製造方法。 - 前記積層体を製造する工程において、前記III族窒化物非単結晶層の形成を、500℃以上1600℃以下の温度領域における気相成長法により行い、該気相成長後の冷却時における自然分離として前記分離工程を行う、請求項10〜12のいずれかに記載の自立基板製造用基板の製造方法。
- 前記III族窒化物非単結晶層の形成を、気相成長法により行い、該気相成長中における自然分離として前記分離工程を行い、更に該自然分離後にも上記気相成長を継続する、請求項10〜12のいずれかに記載の自立基板製造用基板の製造方法。
- 前記III族窒化物非単結晶層として窒化アルミニウム非単結晶層を形成する請求項10〜14のいずれかに記載の自立基板製造用基板の製造方法。
- 請求項10に記載された方法で得られたAl系III族窒化物薄膜層およびIII族窒化物非単結晶層からなる自立基板製造用基板であって、
前記Al系III族窒化物薄膜層側に着目した結晶面の曲率半径の絶対値が1m以上である、自立基板製造用基板。 - 請求項11に記載された方法で得られたAl系III族窒化物薄膜層、第1のAl系III族窒化物単結晶層およびIII族窒化物非単結晶層からなる自立基板製造用基板であって、
前記Al系III族窒化物薄膜層側に着目した結晶面の曲率半径の絶対値が1m以上である、自立基板製造用基板。 - 請求項12に記載された方法で得られた第1のAl系III族窒化物単結晶層およびIII族窒化物非単結晶層からなる自立基板製造用基板であって、
第1のAl系III族窒化物単結晶層側に着目した結晶面の曲率半径の絶対値が1m以上である、自立基板製造用基板。 - 請求項10に記載された方法で得られたAl系III族窒化物薄膜層およびIII族窒化物非単結晶層からなる自立基板製造用基板において、
前記Al系III族窒化物薄膜層側に、単結晶Al系III族窒化物をエピタキシャル成長させ、第2のAl系III族窒化物単結晶層を形成する工程、および、
少なくとも前記III族窒化物非単結晶層を分離する工程を備えてなる、
該第2のAl系III族窒化物単結晶層を含む自立基板の製造方法。 - 請求項11に記載された方法で得られたAl系III族窒化物薄膜層、第1のAl系III族窒化物単結晶層およびIII族窒化物非単結晶層からなる自立基板製造用基板において、
前記Al系III族窒化物薄膜層側に、単結晶Al系III族窒化物をエピタキシャル成長させ、第2のAl系III族窒化物単結晶層を形成する工程、および、
少なくとも前記III族窒化物非単結晶層を分離する工程を備えてなる、
該第2のAl系III族窒化物単結晶層を含む自立基板の製造方法。 - 請求項12に記載された方法で得られた第1のAl系III族窒化物単結晶層およびIII族窒化物非単結晶層からなる自立基板製造用基板において、
前記第1のAl系III族窒化物単結晶層側に、単結晶Al系III族窒化物をエピタキシャル成長させ、第2のAl系III族窒化物単結晶層を形成する工程、および、
少なくとも前記III族窒化物非単結晶層を分離する工程を備えてなる、
該第2のAl系III族窒化物単結晶層を含む自立基板の製造方法。 - 請求項19〜21のいずれかの製法により製造される、Al系III族窒化物単結晶層からなる自立基板。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008171209A JP2010010613A (ja) | 2008-06-30 | 2008-06-30 | 積層体、自立基板製造用基板、自立基板およびこれらの製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008171209A JP2010010613A (ja) | 2008-06-30 | 2008-06-30 | 積層体、自立基板製造用基板、自立基板およびこれらの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010010613A true JP2010010613A (ja) | 2010-01-14 |
Family
ID=41590705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008171209A Withdrawn JP2010010613A (ja) | 2008-06-30 | 2008-06-30 | 積層体、自立基板製造用基板、自立基板およびこれらの製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010010613A (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012031027A (ja) * | 2010-08-02 | 2012-02-16 | Tokyo Univ Of Agriculture & Technology | 単結晶窒化アルミニウムの製造方法 |
WO2012056928A1 (ja) | 2010-10-29 | 2012-05-03 | 株式会社トクヤマ | 光学素子の製造方法 |
JP2012188342A (ja) * | 2011-03-08 | 2012-10-04 | Jiaotong Univ | 半導体製造方法 |
JP2013021028A (ja) * | 2011-07-07 | 2013-01-31 | Ritsumeikan | AlN層の製造方法およびAlN層 |
JP2013041892A (ja) * | 2011-08-11 | 2013-02-28 | Hiroshima Univ | 薄膜製造方法、それを用いた半導体デバイスの製造方法およびそれらに用いられる半導体薄膜部品 |
WO2013094058A1 (ja) | 2011-12-22 | 2013-06-27 | 国立大学法人東京農工大学 | 窒化アルミニウム単結晶基板、およびこれらの製造方法 |
JP2015151330A (ja) * | 2014-02-19 | 2015-08-24 | 古河機械金属株式会社 | Iii族窒化物半導体層およびiii族窒化物半導体基板の製造方法 |
CN112151355A (zh) * | 2019-06-28 | 2020-12-29 | 东莞市中镓半导体科技有限公司 | 氮化镓自支撑衬底的制作方法 |
WO2021131967A1 (ja) * | 2019-12-23 | 2021-07-01 | 日本碍子株式会社 | AlN積層板 |
-
2008
- 2008-06-30 JP JP2008171209A patent/JP2010010613A/ja not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012031027A (ja) * | 2010-08-02 | 2012-02-16 | Tokyo Univ Of Agriculture & Technology | 単結晶窒化アルミニウムの製造方法 |
WO2012056928A1 (ja) | 2010-10-29 | 2012-05-03 | 株式会社トクヤマ | 光学素子の製造方法 |
JP2012188342A (ja) * | 2011-03-08 | 2012-10-04 | Jiaotong Univ | 半導体製造方法 |
JP2013021028A (ja) * | 2011-07-07 | 2013-01-31 | Ritsumeikan | AlN層の製造方法およびAlN層 |
JP2013041892A (ja) * | 2011-08-11 | 2013-02-28 | Hiroshima Univ | 薄膜製造方法、それを用いた半導体デバイスの製造方法およびそれらに用いられる半導体薄膜部品 |
WO2013094058A1 (ja) | 2011-12-22 | 2013-06-27 | 国立大学法人東京農工大学 | 窒化アルミニウム単結晶基板、およびこれらの製造方法 |
US9691942B2 (en) | 2011-12-22 | 2017-06-27 | National University Corporation Tokyo University Of Agriculture And Technology | Single-cystalline aluminum nitride substrate and a manufacturing method thereof |
JP2015151330A (ja) * | 2014-02-19 | 2015-08-24 | 古河機械金属株式会社 | Iii族窒化物半導体層およびiii族窒化物半導体基板の製造方法 |
CN112151355A (zh) * | 2019-06-28 | 2020-12-29 | 东莞市中镓半导体科技有限公司 | 氮化镓自支撑衬底的制作方法 |
WO2021131967A1 (ja) * | 2019-12-23 | 2021-07-01 | 日本碍子株式会社 | AlN積層板 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5324110B2 (ja) | 積層体およびその製造方法 | |
US6177292B1 (en) | Method for forming GaN semiconductor single crystal substrate and GaN diode with the substrate | |
JP5274785B2 (ja) | AlGaN結晶層の形成方法 | |
JP4597259B2 (ja) | Iii族窒化物半導体成長用基板、iii族窒化物半導体エピタキシャル基板、iii族窒化物半導体素子およびiii族窒化物半導体自立基板、ならびに、これらの製造方法 | |
JP2010010613A (ja) | 積層体、自立基板製造用基板、自立基板およびこれらの製造方法 | |
US7632741B2 (en) | Method for forming AlGaN crystal layer | |
JPWO2009090821A1 (ja) | Al系III族窒化物単結晶層を有する積層体の製造方法、該製法で製造される積層体、該積層体を用いたAl系III族窒化物単結晶基板の製造方法、および、窒化アルミニウム単結晶基板 | |
KR101582021B1 (ko) | 복합 기판, 그 제조 방법, 13족 원소 질화물로 이루어진 기능층의 제조 방법 및 기능 소자 | |
JP4823856B2 (ja) | AlN系III族窒化物単結晶厚膜の作製方法 | |
JP4886711B2 (ja) | Iii族窒化物単結晶の製造方法 | |
JP2006290671A (ja) | Iii−v族窒化物半導体結晶の製造方法 | |
JP2009519202A (ja) | Iii族窒化物製品及び同製品の作製方法 | |
US7348278B2 (en) | Method of making nitride-based compound semiconductor crystal and substrate | |
JP4565042B1 (ja) | Iii族窒化物結晶基板の製造方法 | |
JP4554469B2 (ja) | Iii族窒化物結晶の形成方法、積層体、およびエピタキシャル基板 | |
JP4707755B2 (ja) | 窒化アルミニウム単結晶層を有する積層体の製造方法、該製法で製造される積層体、該積層体を用いた窒化アルミニウム単結晶基板の製造方法、および、窒化アルミニウム単結晶基板 | |
JP2008285401A (ja) | Iii族窒化物単結晶基板の製造方法、および該基板を積層した積層基板 | |
JP6117821B2 (ja) | 複合基板および機能素子 | |
JP4907127B2 (ja) | Iii族窒化物の自立単結晶作製方法およびiii族窒化物単結晶層を含む積層体 | |
JP5430467B2 (ja) | Iii族窒化物半導体成長用基板、iii族窒化物半導体自立基板、iii族窒化物半導体素子、ならびに、これらの製造方法 | |
JP5254263B2 (ja) | Iii族窒化物結晶の形成方法、積層体、およびエピタキシャル基板 | |
JP2010278470A (ja) | Iii族窒化物半導体成長用基板、iii族窒化物半導体エピタキシャル基板、iii族窒化物半導体素子およびiii族窒化物半導体自立基板、ならびに、これらの製造方法 | |
JP2006185962A (ja) | 半導体成長用基板および半導体膜の製造方法 | |
JP2010192698A (ja) | イオン注入iii族窒化物半導体基板、iii族窒化物半導体層接合基板およびiii族窒化物半導体デバイスの製造方法 | |
JP2011222778A (ja) | 積層体の製造方法、iii族窒化物単結晶自立基板の製造方法、および、積層体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101005 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20101005 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20101101 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20101105 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20121012 |