WO2012056928A1 - 光学素子の製造方法 - Google Patents

光学素子の製造方法 Download PDF

Info

Publication number
WO2012056928A1
WO2012056928A1 PCT/JP2011/073831 JP2011073831W WO2012056928A1 WO 2012056928 A1 WO2012056928 A1 WO 2012056928A1 JP 2011073831 W JP2011073831 W JP 2011073831W WO 2012056928 A1 WO2012056928 A1 WO 2012056928A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum nitride
single crystal
optical element
layer
crystal layer
Prior art date
Application number
PCT/JP2011/073831
Other languages
English (en)
French (fr)
Inventor
亨 木下
和哉 高田
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to US13/881,385 priority Critical patent/US20130214325A1/en
Priority to EP11836064.3A priority patent/EP2634294B1/en
Priority to KR1020137005745A priority patent/KR101852519B1/ko
Priority to JP2012540780A priority patent/JP5931737B2/ja
Publication of WO2012056928A1 publication Critical patent/WO2012056928A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate

Definitions

  • the present invention relates to a novel optical element manufacturing method and an optical element laminate.
  • an optical method includes a step of forming an aluminum nitride single crystal layer having excellent optical characteristics on an aluminum nitride seed substrate, forming an optical element layer on the aluminum nitride single crystal layer, and removing the aluminum nitride seed substrate.
  • the present invention relates to a method for manufacturing an element.
  • the present invention also includes an aluminum nitride seed substrate, an aluminum nitride single crystal layer having excellent optical properties formed on the aluminum nitride seed substrate, and an optical element formed on the aluminum nitride single crystal layer.
  • the present invention relates to an optical element laminate.
  • the optical element laminate is an intermediate product in the optical element manufacturing process, and facilitates the transportation and storage of the intermediate product in the optical element manufacturing process, thereby contributing to an improvement in manufacturing efficiency.
  • a group III nitride semiconductor containing aluminum (Al) has a direct transition band structure in the ultraviolet region corresponding to a wavelength of 200 nm to 360 nm, a highly efficient ultraviolet light emitting device can be manufactured.
  • Group III nitride semiconductor devices are generally produced by chemical vapor deposition such as metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), or halide vapor epitaxy (HVPE). It is manufactured by growing a group III nitride semiconductor thin film on a crystal substrate.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • HVPE halide vapor epitaxy
  • a group III nitride semiconductor crystal containing Al is formed on a dissimilar material substrate such as a sapphire substrate or a silicon carbide substrate.
  • a dissimilar material substrate such as a sapphire substrate
  • the interface between the group III nitride semiconductor crystal layer and the seed substrate is large because the lattice constant difference between the group III nitride semiconductor crystal layer and the seed substrate is large. Therefore, there is a problem that high-density dislocations are generated in the group III nitride semiconductor crystal layer, and as a result, the dislocation density in the device layer is also increased.
  • the following method has been proposed as a method of forming a group III nitride semiconductor crystal containing Al on a group III nitride seed substrate (same substrate). Specifically, first, a group III nitride single crystal thin film layer containing Al and a group III nitride non-single crystal layer containing Al are stacked on a dissimilar material substrate. Next, the dissimilar material substrate is removed, and a group III nitride single crystal layer containing Al is further laminated on the exposed thin film layer.
  • a group III nitride semiconductor crystal containing Al is formed on a group III nitride seed substrate (same type substrate) produced by a physical vapor phase method represented by a sublimation method.
  • a group III nitride seed substrate (same type substrate) produced by a physical vapor phase method represented by a sublimation method.
  • the same kind of substrate having a small lattice constant difference from the group III nitride semiconductor crystal layer is used, generation of dislocations at the interface between the group III nitride semiconductor crystal layer and the seed substrate can be suppressed.
  • the physical vapor phase method can obtain a low dislocation density group III nitride seed crystal, the use of such a substrate reduces the dislocation density in the group III nitride semiconductor crystal layer.
  • Non-Patent Document 1 a seed substrate manufactured by a physical vapor phase method has many impurities or point defects, so that the seed substrate has a disadvantage that an absorption coefficient at a wavelength of 200 nm to 300 nm is remarkably large (non-patent document).
  • Reference 2). As a result, since ultraviolet light is absorbed by the substrate, it has been difficult to produce a highly efficient optical element, particularly a highly efficient ultraviolet LED.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an optical element using an aluminum nitride single crystal layer having a high ultraviolet transmittance and a low dislocation density as a free-standing substrate.
  • the present invention for solving the above-mentioned problems includes the following matters as a gist.
  • the optical element laminate according to the present invention has an aluminum nitride seed substrate, which is the same kind of substrate, as the aluminum nitride single crystal layer and the optical element layer. is there.
  • FIG. 1 is a schematic view showing one embodiment of the production process of the laminate of the present invention.
  • an optical element manufacturing method of the present invention forms an aluminum nitride single crystal layer 12 by chemical vapor deposition on an aluminum nitride seed substrate 11 whose outermost surface is an aluminum nitride single crystal surface 11a.
  • a first step of forming the optical element layer 20 on the aluminum nitride single crystal layer 12 to obtain the optical element laminate 2, and the optical nitride layer 2 from the optical element laminate 2 A third step of removing the seed substrate 11.
  • an aluminum nitride single crystal layer 12 is formed by chemical vapor deposition on an aluminum nitride seed substrate 11 that is the same kind of substrate to obtain a first stacked body (self-standing substrate) 1.
  • the manufacturing method of the aluminum nitride seed substrate 11 whose outermost surface is the aluminum nitride single crystal surface 11a is not particularly limited, and a known method is used.
  • the aluminum nitride seed substrate 11 may be an aluminum nitride substrate manufactured by a chemical vapor deposition method and having an aluminum nitride single crystal surface on the outermost surface, and is a nitride manufactured by a physical vapor method such as a sublimation method.
  • An aluminum single crystal substrate may be used.
  • an aluminum nitride single crystal seed substrate produced by chemical vapor deposition and having an aluminum nitride single crystal surface on the outermost surface will be described below.
  • an aluminum nitride single crystal substrate as proposed in Japanese Patent Application Laid-Open No. 2010-89971 may be used.
  • an aluminum nitride-based laminate including an aluminum nitride non-single crystal layer as proposed in WO2009 / 090821 and JP2010-10613 may be used.
  • an aluminum nitride non-single crystal layer is formed among the seed substrates manufactured by such chemical vapor deposition. It is preferable to use an aluminum nitride-based laminate including the same. Specifically, an aluminum nitride-based laminate in which an aluminum nitride single-crystal thin film layer that forms the outermost surface is laminated on a non-single-crystal aluminum nitride layer made of polycrystalline, amorphous, or a mixture thereof is used. Is preferred.
  • the thickness of the aluminum nitride single crystal thin film layer forming the outermost surface is 10 nm to 1.5 ⁇ m, It is preferable to use an aluminum nitride-based laminate in which the thickness of the crystal layer is 100 times or more that of the aluminum nitride single crystal thin film layer.
  • such an aluminum nitride-based laminate has a non-single crystal layer, it has a low ultraviolet transmittance and is unsuitable as a component of an optical element.
  • the seed substrate itself is removed during the manufacturing process. Therefore, there is no particular problem in the optical element as the final product.
  • a dissimilar substrate such as a sapphire substrate
  • the non-single crystal layer has an advantage that it can be easily removed in the third step.
  • a method for forming the aluminum nitride single crystal layer 12 on the aluminum nitride single crystal surface 11a located on the outermost surface of the aluminum nitride seed substrate 11 by the chemical vapor deposition method is not particularly limited. Is used. As the chemical vapor deposition method, an HVPE method or the like is common.
  • the aluminum nitride single crystal layer 12 thus obtained can have an absorption coefficient as low as 30 cm ⁇ 1 or less at a wavelength of 240 nm to 300 nm and a dislocation density of 10 9 cm ⁇ 2 or less.
  • the thickness of the aluminum nitride single crystal layer 12 formed in the first step is preferably as thin as possible from the viewpoint of manufacturing cost. However, handling in the manufacturing step is facilitated, and yield reduction due to generation of cracks is suppressed.
  • the thickness is preferably 50 ⁇ m or more, and from a practical viewpoint, it is more preferably 100 to 300 ⁇ m, and particularly preferably 100 to 250 ⁇ m.
  • the thickness of the aluminum nitride single crystal layer 12 is 500 ⁇ m or less, further 300 ⁇ m or less, particularly 250 ⁇ m or less, handling in the manufacturing process can be facilitated.
  • the optical element layer 20 is formed on the first laminated body (self-standing substrate) having the aluminum nitride seed substrate 11 to be finally removed. That is, since the aluminum nitride seed substrate 11 is provided, the first stacked body (self-standing substrate) has sufficient strength even if the aluminum nitride single crystal layer 12 is thin.
  • the optical element 22 obtained by the present invention has the aluminum nitride single crystal layer 12 having a relatively thin thickness, the ultraviolet transmittance can be increased. When the aluminum nitride single crystal layer 12 is thick, it is difficult to transmit ultraviolet rays. However, according to the method of the present invention, the single crystal layer 12 can be thinned, which is advantageous in this respect.
  • the thickness of the aluminum nitride seed substrate 11 is not particularly limited, but considering the productivity of the optical element laminate described below, handling properties, and the ease of the third step, It is preferably 100 to 500 ⁇ m. In addition, when the said aluminum nitride type laminated body is used as this seed substrate, it is preferable that the thickness of this laminated body itself satisfies the said range.
  • the surface roughness after the formation of the aluminum nitride single crystal layer 12 is not particularly limited. However, when the surface immediately after the growth of the aluminum nitride single crystal layer 12 is rough, thereby reducing the performance of the optical element layer formed in the second step, the aluminum nitride single crystal layer after the first step is finished. It is preferable to perform surface polishing of 12 to smooth the surface.
  • the surface roughness of the aluminum nitride single crystal layer 12 is preferably 5 nm or less in terms of root mean square roughness (RMS value), and more preferably 1 nm or less. Preferably there is. Even when this polishing is performed, since the substrate having the seed substrate portion is handled, the substrate has sufficient strength and can be easily polished.
  • the optical element layer 20 is formed on the first laminate (self-standing substrate) 1 obtained in the first step, and the second laminate, that is, the laminate for optical elements. Obtain body 2.
  • the method for forming the optical element layer 20 on the aluminum nitride single crystal layer 12 is not particularly limited, and a known method is used. Normally, the optical element layer 20 is formed by chemical vapor deposition such as MOCVD.
  • the formation of the optical element layer 20 by the MOCVD method will be described below.
  • an organometallic group III source gas and a nitrogen source source gas are supplied onto a substrate, and a group III nitride single crystal layer is grown on the substrate.
  • a known raw material can be used without particular limitation depending on the composition of the target group III nitride single crystal layer. Specifically, it is preferable to use a trimethylaluminum, triethylaluminum, trimethylgallium, triethylgallium, or trimethylindium gas as the group III source gas.
  • the MOCVD apparatus used in the present invention is not particularly limited as long as the structure can implement the present invention, and a known apparatus or a commercially available MOCVD apparatus can be used.
  • the LED structure described below is an example of a structure in which an N-type group III nitride semiconductor layer, an active layer, a P-type group III nitride semiconductor layer, and a P-type group III nitride contact layer are sequentially stacked on a substrate.
  • the present invention is not limited to the following structure.
  • the free-standing substrate 1 is heated to 1050 ° C. or higher, more preferably 1150 ° C. or higher, and a hydrogen atmosphere
  • trimethylaluminum, trimethylgallium, ammonia, monosilane or tetraethylsilane, and hydrogen, nitrogen, etc. as a carrier gas of the source gas are introduced into the MOCVD apparatus, and N-type A group III nitride semiconductor layer is formed.
  • a buffer layer can be formed for the purpose of improving N-type characteristics before forming the N-type Group III nitride semiconductor layer.
  • the buffer layer is preferably an N-type Group III nitride layer having the same or intermediate lattice constant as the Group III nitride semiconductor layer and the aluminum nitride single crystal layer.
  • the buffer layer may be a single layer or a plurality of laminated bodies having different compositions.
  • the quantum well structure is a stacked structure in which a well layer having a thickness of several to several tens of nm and a barrier layer having a larger band gap energy than the well layer are combined.
  • the film thickness and the like may be appropriately set so that desired optical characteristics can be obtained.
  • trimethylindium, N-type or P-type impurity raw materials may be added for the purpose of improving optical characteristics.
  • trimethylaluminum, trimethylgallium, ammonia, biscyclopentadienylmagnesium, and hydrogen, nitrogen or the like as a source gas carrier gas are introduced into the MOCVD apparatus to form a P-type group III nitride semiconductor layer.
  • trimethylgallium, ammonia, biscyclopentadienylmagnesium, and hydrogen, nitrogen, etc. as a source gas are introduced into the MOCVD apparatus to form a P-type group III nitride semiconductor contact layer.
  • the raw material supply ratio, the growth temperature, the ratio of the group V element (nitrogen, etc.) to the group III element (V / III ratio), etc. when forming the group III nitride semiconductor layer are the desired optical characteristics and What is necessary is just to set suitably so that an electroconductive characteristic may be acquired.
  • the optical element laminate 2 of the present invention is an intermediate product obtained through the second step, and is an aluminum nitride seed substrate and nitrided with excellent optical properties formed on the aluminum nitride seed substrate.
  • An aluminum single crystal layer and an optical element formed on the aluminum nitride single crystal layer are included.
  • the optical element laminate 2 of the present invention facilitates its transportation, storage, and the like in the optical element manufacturing process, and improves manufacturing efficiency.
  • the aluminum nitride seed substrate 11 is removed from the optical element laminate 2 obtained in the second step to obtain the optical element 22.
  • the optical element 22 manufactured by the above-described process function as a device it is necessary to perform processing for elementization, such as etching processing for exposing a predetermined conductive layer, electrode formation processing on the surface of the conductive layer, etc. There is.
  • the third step of the present invention can be performed before performing the processing step for forming the device, or can be performed after performing the processing for forming the device.
  • the order in which the processing steps for elementization and the third step of the present invention are performed may be determined as appropriate in the implementation of the present invention in consideration of productivity and handling properties.
  • the method for removing the aluminum nitride seed substrate 11 from the optical element laminate 2 is not particularly limited, and known methods such as polishing, reactive ion etching, and wet etching using an alkaline solution can be used. It is preferable to remove by polishing.
  • forming irregularities on the surface of the aluminum nitride single crystal layer 12 on the side from which the aluminum nitride seed substrate 11 has been removed is also preferable as a means for improving the performance of the optical element.
  • the optical element 22 obtained in this way is subjected to processing such as chipping if necessary and used for various purposes.
  • Examples of the optical element include an LED (light emitting diode).
  • the aluminum nitride single crystal layer 12 is formed by the chemical vapor deposition method on the aluminum nitride single crystal seed substrate 11 which is the same type substrate manufactured by the chemical vapor deposition method. 1 laminate (free-standing substrate) 1 is prepared.
  • the dislocation density of the aluminum nitride single crystal seed substrate 11 is low, the dislocation density can be reduced also in the aluminum nitride single crystal layer 12 and the optical element layer 20 formed thereon.
  • the aluminum nitride single crystal layer 12 is formed by chemical vapor deposition, low dislocations and high ultraviolet transmission efficiency can be realized.
  • the difference in refractive efficiency between the aluminum nitride single crystal layer 12 and the optical element layer 20 is small, the light extraction efficiency is also improved as compared with the conventional case.
  • the aluminum nitride single crystal seed substrate 11 may be produced by a physical vapor deposition method such as a sublimation method other than the above-described chemical vapor deposition method.
  • the ultraviolet light emitting element is exemplified as the optical element according to the present invention, but the electronic component according to the present invention is not limited to a light emitting element such as a light emitting diode element.
  • the optical element manufacturing method of the present invention can also be applied to manufacturing a light receiving element in which a semiconductor element having a wide range of sensitivity from ultraviolet to infrared is sealed.
  • the aluminum nitride seed substrate 11 was produced by the method described in WO2009 / 090821.
  • the thickness of the aluminum nitride single crystal thin film layer constituting the aluminum nitride single crystal surface 11a is 200 nm
  • the thickness of the aluminum nitride non-single crystal layer (aluminum nitride polycrystalline layer) therebelow is A laminate having a thickness of 300 ⁇ m was used.
  • two aluminum nitride seed substrates 11 having an 8 mm square were prepared.
  • the aluminum nitride seed substrate 11 is flowed at a flow rate of 10 slm of hydrogen and 200 sccm of ammonia.
  • the seed substrate 11 was heated to 1450 ° C. and held for 20 minutes to perform surface cleaning.
  • aluminum trichloride gas 5 sccm obtained by reacting metallic aluminum heated to 500 ° C. and hydrogen chloride gas, ammonia gas 15 sccm, nitrogen gas 1500 sccm and hydrogen 5000 sccm as carrier gases are supplied onto the aluminum nitride seed substrate 11.
  • the single crystal layer 12 was grown to 150 ⁇ m.
  • the surface of the aluminum nitride single crystal layer 12 was observed with a differential interference optical microscope, and in each sample, it was confirmed that the surface of the aluminum nitride single crystal layer 12 was free of cracks. Further, although the surface of the aluminum nitride single crystal layer 12 was very flat locally, relatively large irregularities existed on the entire surface of the substrate as an entire 8 mm square.
  • the non-single-crystal aluminum nitride layer (aluminum nitride polycrystalline layer) on the back surface is removed by mechanical polishing, and then CMP is performed. By polishing until the RMS value became 5 nm or less, a single body of the aluminum nitride single crystal layer 12 in a substantially double-sided mirror state was taken out.
  • the film thickness of the aluminum nitride single crystal layer 12 after polishing was 100 ⁇ m.
  • the threading dislocation density on the surface of the polished aluminum nitride single crystal layer 12 was measured by plane observation using a transmission electron microscope (acceleration voltage 300 kV), it was 3 ⁇ 10 8 cm ⁇ 2 . Further, when the transmittance of the aluminum nitride single crystal layer 12 was measured with an ultraviolet-visible spectrophotometer (UV-2550, manufactured by Shimadzu Corporation), the external transmittance at a wavelength of 240 nm to 350 nm was 40% or more. When the refractive index of the aluminum nitride single crystal was 2.4 and the absorption coefficient was calculated from the film thickness and transmittance, the absorption coefficient at wavelengths from 240 nm to 350 nm was 20 cm ⁇ 1 or less.
  • one of the first laminates 1 was placed on a susceptor in the MOCVD apparatus so that the polished aluminum nitride single crystal layer 12 surface was the outermost surface. Thereafter, while flowing hydrogen at a flow rate of 13 slm, the free-standing substrate 1 was heated to 1250 ° C. and held for 10 minutes to perform surface cleaning.
  • the aluminum nitride buffer layer is formed on the aluminum nitride single crystal layer 12 under the conditions that the temperature of the self-supporting substrate 1 is 1200 ° C., the trimethylaluminum flow rate is 25 ⁇ mol / min, the ammonia flow rate is 1 slm, the total flow rate is 10 slm, and the pressure is 50 Torr. Was formed to a thickness of 0.1 ⁇ m. Then, the 1120 ° C.
  • the substrate temperature on the susceptor trimethylgallium flow rate 20 [mu] mol / min, trimethylaluminum 35 [mu] mol / min, ammonia flow rate 1.5 slm, entire flow 10 slm, the pressure is under the condition of 50 Torr Al 0.7 Ga
  • a 0.3 N buffer layer was formed to 0.2 ⁇ m.
  • an N-type Al 0.7 Ga 0.3 N layer was formed to 1.2 ⁇ m under the same conditions as the buffer layer except that 3 nmol / min of tetraethylsilane was simultaneously supplied.
  • an Al 0.3 Ga 0.7 N well layer was formed to 2 nm under the same conditions as the buffer layer except that the trimethylgallium flow rate was 40 ⁇ mol / min and trimethylaluminum was 3 ⁇ mol / min.
  • a 15 nm barrier layer was formed under the same conditions as the buffer layer.
  • a triple quantum well layer was formed by repeating the growth of the well layer and the barrier layer three times.
  • a P-type Al 0.8 Ga 0.2 N layer is formed to a thickness of 20 nm under the same conditions as the buffer layer except that the trimethylgallium flow rate is 15 ⁇ mol / min and biscyclopentadienyl magnesium 0.8 ⁇ mol / min is simultaneously supplied. did.
  • a 0.2 ⁇ m P-type GaN contact layer is formed under the conditions of a trimethylgallium flow rate of 40 ⁇ mol / min, biscyclopentadienyl magnesium 0.3 ⁇ mol / min, an ammonia flow rate of 2.0 slm, a total flow rate of 8 slm, and a pressure of 150 Torr. did.
  • the substrate was taken out of the MOCVD apparatus and heat-treated in a nitrogen atmosphere for 20 minutes at 800 ° C.
  • Ti (20 nm) / Al (100 nm) / A Ti (20 nm) / Au (50 nm) electrode was formed, and heat treatment was performed in a nitrogen atmosphere at 1000 ° C. for 1 minute.
  • a Ni (20 nm) / Au (100 nm) electrode was formed on the P-type GaN contact layer by vacuum deposition, and heat treatment was performed in a nitrogen atmosphere for 5 minutes at 500 ° C.
  • the second laminated body 2 (optical element laminated body 2) in which the optical element layer 20 was laminated on the aluminum nitride single crystal layer 12 of the first laminated body was produced.
  • the light emitting characteristics of the optical element laminate 2 produced in this way were evaluated from the back side of the device at the time of DC 10 mA operation, a weak single emission peak with an emission wavelength of 265 nm could be confirmed.
  • the aluminum nitride non-single-crystal layer (aluminum nitride polycrystal layer) on the back surface of the optical element laminate 2 is removed by mechanical polishing, and then polished by CMP until the RMS value becomes 5 nm or less, whereby the optical element 22 is formed.
  • the optical element 22 had a thickness of about 100 ⁇ m.
  • this optical element 22 was measured for light emission by the same method as that for the optical element laminate 2, it was a single peak emission with an emission wavelength of 265 nm.
  • the emission peak intensity of this optical element 22 was the same as that of the optical element laminate 2. It was confirmed that it was 10 times or more than the strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 最表面が窒化アルミニウム単結晶面11aである窒化アルミニウム種基板11上に、窒化アルミニウム単結晶層12を形成し、前記窒化アルミニウム単結晶層12上に、光学素子層20を形成して光学素子用積層体2を作製し、前記積層体2から前記窒化アルミニウム種基板11を除去する工程を含む光学素子22の製造方法に関する。本発明の方法により、紫外線透過率が高く、しかも転位密度が低い窒化アルミニウム単結晶層を基板とする光学素子を提供する。

Description

光学素子の製造方法
 本発明は、新規な光学素子製造方法および光学素子用積層体に関する。特に、窒化アルミニウム種基板上に、光学特性に優れた窒化アルミニウム単結晶層を形成し、前記窒化アルミニウム単結晶層上に光学素子層を形成し、前記窒化アルミニウム種基板を除去する工程を含む光学素子の製造方法に関する。また、本発明は、窒化アルミニウム種基板と、該窒化アルミニウム種基板上に形成された光学特性に優れた窒化アルミニウム単結晶層と、該窒化アルミニウム単結晶層上に形成された光学素子とを含む光学素子用積層体に関する。該光学素子用積層体は、光学素子の製造工程における中間生成物であり、光学素子の製造工程において、中間生成物の移送、保管等を容易にし、製造効率の向上に寄与する。
 アルミニウム(Al)を含むIII族窒化物半導体は、波長200nmから360nmに相当する紫外領域において直接遷移型のバンド構造を持つため、高効率な紫外発光デバイスの作製が可能である。
 III族窒化物半導体デバイスは、一般に、有機金属気相成長法(MOCVD法)、分子線エピタキシー法(MBE法)、もしくはハライド気相エピタキシー法(HVPE法)等の化学気相成長法によって、単結晶基板上にIII族窒化物半導体薄膜を結晶成長させることにより製造される。
 上記紫外発光デバイスを製造する場合には、Alを含むIII族窒化物半導体結晶と格子定数および熱膨張係数の整合性の良い基板の入手が困難である。そのため、一般的には、サファイア基板や炭化ケイ素基板などの異種材料基板上に、Alを含むIII族窒化物半導体結晶が形成される。しかしながら、サファイア基板のような異種材料基板を種基板として用いる場合、III族窒化物半導体結晶層と種基板との格子定数差が大きいために、III族窒化物半導体結晶層と種基板との界面でIII族窒化物半導体結晶層中に高密度の転位が発生し、その結果、デバイス層中の転位密度も高くなってしまうという問題がある。
 そのため、III族窒化物の種基板(同種基板)上に、Alを含むIII族窒化物半導体結晶を形成する方法として、以下の方法が提案されている。具体的には、先ず、異種材料基板上に、Alを含むIII族窒化物単結晶薄膜層、およびAlを含むIII族窒化物非単結晶層を積層する。次いで、該異種材料基板を除去し、露出した該薄膜層上に、さらに、Alを含むIII族窒化物単結晶層を積層させる。その後、少なくとも、Alを含むIII族窒化物非単結晶層部分を除去し、Alを含むIII族窒化物単結晶層よりなる自立基板を種基板として使用する方法である(特許文献1参照)。しかしながら、Alを含むIII族窒化物単結晶層を取り出して自立基板とするこの方法において、高品質な自立基板を得、さらに、高品質な紫外発光デバイスを得るためには、以下の点で改善の余地があった。つまり、上記方法において、高品質であって、優れた強度を有する自立基板を得るためには、研磨、切断等による取り出しが必要になるが、これらの操作、および自立基板の強度を考慮すると、Alを含むIII族窒化物単結晶層を十分に厚くする必要があった。Alを含むIII族窒化物単結晶層を厚くすると、やはり生産性が低下し、さらには、該単結晶層自体にクラックが発生し易くなるため、これらの点で改善の余地があった。
 また、昇華法に代表される物理気相法によって作製したIII族窒化物の種基板(同種基板)上にAlを含むIII族窒化物半導体結晶を形成させる方法もある。この場合は、III族窒化物半導体結晶層との格子定数差が小さい同種基板を用いるため、III族窒化物半導体結晶層と種基板との界面での転位の発生を抑制することができる。また、一般的に、物理気相法では低転位密度のIII族窒化物の種結晶が得られるため、このような基板を使用することによって、III族窒化物半導体結晶層中の転位密度を低減できるという利点がある(非特許文献1)。しかしながら、一般的に、物理気相法で作製した種基板中には不純物もしくは点欠陥が多く存在するため、該種基板は、波長200nmから300nmにおける吸収係数が著しく大きいという欠点がある(非特許文献2)。その結果、紫外光が基板に吸収されるため、高効率の光学素子、特に高効率の紫外LEDを作製することは困難であった。
国際公開WO2009/090821号パンフレット
Applied Physics Express(アプライド フィジックス エクスプレス) 3(2010)072103 Journal Of Applied Physics(ジャーナル オブ アプライド フィジックス)103,073522(2008)
 光学素子を高効率で製造するうえでは、転位密度が低く、光透過効率の高い自立基板が不可欠である。
 本発明は、上記課題を鑑みてなされたものであって、紫外線透過率が高く、しかも転位密度が低い窒化アルミニウム単結晶層を自立基板とする光学素子を提供することを目的とする。
 上記課題を解決する本発明は、下記事項を要旨として含む。
(1)最表面が窒化アルミニウム単結晶面である窒化アルミニウム種基板上に、化学気相成長法により窒化アルミニウム単結晶層を形成する第1の工程と、
 前記窒化アルミニウム単結晶層上に、光学素子層を形成して光学素子用積層体を得る第2の工程と、
 前記光学素子用積層体から前記窒化アルミニウム種基板を除去する第3の工程と
を含む光学素子の製造方法。
(2) 前記第1の工程における前記窒化アルミニウム単結晶層の厚みは50μm以上である(1)に記載の光学素子の製造方法。
(3) 前記第2の工程における前記光学素子層はLED素子層であることを特徴とする(1)または(2)に記載の光学素子の製造方法。
(4) 最表面が窒化アルミニウム単結晶面である窒化アルミニウム種基板と、
 前記窒化アルミニウム種基板上に形成された窒化アルミニウム単結晶層と、
 前記窒化アルミニウム単結晶層上に形成された光学素子層と、を有する光学素子用積層体。
(5) 前記窒化アルミニウム単結晶層の波長240nmから300nmにおける吸収係数が30cm-1以下である(4)に記載の光学素子用積層体。
(6) 前記窒化アルミニウム単結晶層の転位密度が10cm-2以下である(4)または(5)に記載の光学素子用積層体。
 本発明によれば、紫外線透過率が高く、しかも転位密度が低い窒化アルミニウム単結晶層を自立基板とする光学素子が製造できる。また、本発明に係わる光学素子用積層体は、窒化アルミニウム単結晶層と光学素子層の基板として、同種基板である窒化アルミニウム種基板を有するため、輸送時の破損等が起こりにくくハンドリングが容易である。
図1は本発明の積層体の製造工程の一態様を示す概略図である。
 本発明の光学素子の製造方法は、図1に示すように、最表面が窒化アルミニウム単結晶面11aである窒化アルミニウム種基板11上に、化学気相成長法により窒化アルミニウム単結晶層12を形成する第1の工程と、前記窒化アルミニウム単結晶層12上に、光学素子層20を形成して光学素子用積層体2を得る第2の工程と、前記光学素子用積層体2から前記窒化アルミニウム種基板11を除去する第3の工程とを含む。
 (第1の工程)
 本発明の第1の工程では、同種基板である窒化アルミニウム種基板11上に、化学気相成長法により窒化アルミニウム単結晶層12を形成して第1の積層体(自立基板)1を得る。
 最表面が窒化アルミニウム単結晶面11aである窒化アルミニウム種基板11の製造方法には特に限定はなく、公知の方法が用いられる。たとえば、窒化アルミニウム種基板11は、化学気相成長法により作製され、最表面に窒化アルミニウム単結晶面を有する窒化アルミニウム基板であってもよく、昇華法などの物理気相法により作製された窒化アルミニウム単結晶基板であってもよい。
 本発明の一実施形態として、化学気相成長法により作製され、最表面に窒化アルミニウム単結晶面を有する窒化アルミニウム単結晶種基板について、以下に説明する。
 化学気相成長法により作製され、最表面が窒化アルミニウム単結晶面の窒化アルミニウム種基板としては、たとえば、特開2010-89971に提案されるような窒化アルミニウム単結晶基板を用いてもよい。また、WO2009/090821、特開2010-10613に提案されるような窒化アルミニウム非単結晶層を含む窒化アルミニウム系積層体を用いてもよい。
 このような化学気相成長法で作製される種基板の中でも、種基板自体の生産性、下記に詳述する第3の工程の実施のし易さを考慮すると、窒化アルミニウム非単結晶層を含む窒化アルミニウム系積層体を用いることが好ましい。具体的には、多結晶、非晶質、又はこれらの混合からなる窒化アルミニウム非単結晶層上に、最表面を形成する窒化アルミニウム単結晶薄膜層が積層された窒化アルミニウム系積層体を用いることが好ましい。さらに、該窒化アルミニウム系積層体の生産性、最表面の結晶性を考慮すると、最表面を形成する窒化アルミニウム単結晶薄膜層の厚みが10nm以上1.5μm以下であって、該窒化アルミニウム非単結晶層の厚みが該窒化アルミニウム単結晶薄膜層の100倍以上である窒化アルミニウム系積層体を用いることが好ましい。
 このような窒化アルミニウム系積層体は、非単結晶層を有するため、紫外線透過率は低く、光学素子の構成部材としては不適当であるが、本発明では種基板自体が製造過程で除去されるため、最終製品となる光学素子においては特に問題とはならない。また、サファイア基板などの異種基板とは異なり、同じ窒化アルミニウムからなる積層体であるため、熱膨張係数差が小さいという利点もある。さらに、非単結晶層は、第3の工程で除去し易いという利点もある。
 上記のような窒化アルミニウム種基板11の最表面に位置する窒化アルミニウム単結晶面11a上に、化学気相成長法により窒化アルミニウム単結晶層12を形成する方法には特に限定はなく、公知の方法が用いられる。化学気相成長法としては、HVPE法等が一般的である。
 こうして得られる窒化アルミニウム単結晶層12は、波長240nmから300nmにおける吸収係数が30cm-1以下と低く、転位密度は10cm-2以下とすることができる。
 なお、第1の工程において形成される窒化アルミニウム単結晶層12の厚みは、製造コストの観点からは薄いほど好ましいが、製造工程におけるハンドリングを容易にし、またクラックなどの発生による歩留まり低下を抑制する、という観点から、50μm以上であることが好ましく、実用的な観点等から、さらに好ましくは100~300μm、特に100~250μmであることが好ましい。
 本発明によれば、窒化アルミニウム単結晶層12の厚みを500μm以下、さらには300μm以下、特には250μm以下としても、製造工程におけるハンドリングを容易にできる。これは、光学素子層20が、最終的に除去される窒化アルミニウム種基板11を有する第1の積層体(自立基板)上に形成されるためである。つまり、窒化アルミニウム種基板11を有するため、窒化アルミニウム単結晶層12の厚みが薄くても、第1の積層体(自立基板)が十分な強度を有するからである。さらに、本発明により得られる光学素子22は、比較的薄い厚みの窒化アルミニウム単結晶層12を有するため、紫外線透過率を高めることができる。窒化アルミニウム単結晶層12が厚くなると紫外線を透過し難くなるが、本発明の方法によれば、該単結晶層12を薄くできるため、この点でも有利となる。
 本発明において、窒化アルミニウム種基板11の厚みも、特に制限されるものではないが、下記に詳述する光学素子積層体の生産性、ハンドリング性、および第3の工程の容易さを考慮すると、100~500μmであることが好ましい。なお、該種基板として前記窒化アルミニウム系積層体を使用した場合には、該積層体自体の厚みが前記範囲を満足することが好ましい。
 また、窒化アルミニウム単結晶層12の形成後の表面粗さは、特に限定されるものではない。ただし、窒化アルミニウム単結晶層12の成長直後の表面が粗く、それによって第2の工程において形成される光学素子層の性能を低下させてしまう場合は、第1の工程終了後に窒化アルミニウム単結晶層12の表面研磨を行い、表面を平滑にすることが好ましい。第2の工程で高品質の光学素子層を得るためには、窒化アルミニウム単結晶層12の表面粗さが、二乗平均粗さ(RMS値)で5nm以下であることが好ましく、さらに1nm以下であることが好ましい。この研磨を実施する場合も、種基板部分を有する基板を取り扱うため、十分な強度を有し、研磨を容易に行うことができる。
 (第2の工程)
 本発明の第2の工程では、第1の工程で得られた、第1の積層体(自立基板)1上に光学素子層20を形成して、第2の積層体、すなわち光学素子用積層体2を得る。
 窒化アルミニウム単結晶層12上に、光学素子層20を形成する方法には、特に限定はなく、公知の方法が用いられる。通常は、光学素子層20はMOCVD法等の化学気相成長法により形成される。
 本発明の一実施形態として、MOCVD法による光学素子層20の形成について以下に説明する。
 MOCVD法は、有機金属III族原料ガスと、窒素源原料ガスを基板上に供給し、該基板上に、III族窒化物単結晶層を成長させるものである。本発明で使用する原料ガスは、目的とするIII族窒化物単結晶層の組成に応じて、公知の原料が特に制限なく使用できる。具体的には、III族原料ガスとしては、トリメチルアルミニウム、トリエチルアルミニウム、トリメチルガリウム、トリエチルガリウム、又はトリメチルインジウムのガスを使用することが好ましい。なお、これらIII族原料は、成長させるIII族窒化物単結晶層の組成に応じて、その原料の種類、使用割合を適宜決定すればよい。また、窒素源ガスとしては、アンモニアガスを使用することが好ましい。さらに、導電性の制御を目的として添加する不純物原料ガスとしては、P型不純物原料ガスとしてビスシクロペンタジエニルマグネシウム、N型不純物原料ガスとしてモノシランもしくはテトラエチルシランを用いることが好ましい。また、本発明で使用するMOCVD装置については、本発明を実施できる構造であれば、特に制限されるものではなく、公知の装置、または市販のMOCVD装置を用いることができる。
 以下、一般的な光学素子であるLEDを製造する例について、詳しく説明する。また、以下に説明するLED構造は、基板上にN型III族窒化物半導体層、活性層、P型III族窒化物半導体層、P型III族窒化物コンタクト層を順次積層させた構造を例に説明しているが、本発明は以下の構造に限定されるものではない。
 まず、第1の工程で得られた第1の積層体1(自立基板1)をMOCVD装置内に設置した後、自立基板1を1050℃以上、さらに好ましくは1150℃以上に加熱し、水素雰囲気中で保持することにより自立基板表面のクリーニングを行った後、トリメチルアルミニウム、トリメチルガリウム、アンモニア、モノシランもしくはテトラエチルシラン、および原料ガスのキャリアガスとして水素、窒素などをMOCVD装置内に導入し、N型III族窒化物半導体層を形成する。
 また、上記N型III族窒化物半導体層を形成する前に、N型特性を向上させることを目的として、バッファ層を形成することも出来る。この場合、バッファ層としては、該III族窒化物半導体層および窒化アルミニウム単結晶層と同一もしくは中間の格子定数を有するN型III族窒化物層であることが好ましい。さらに、バッファ層は単一層でもよく、組成の異なる複数の積層体とすることもできる。
 次いで、トリメチルアルミニウム、トリメチルガリウム、アンモニア、および原料ガスのキャリアガスとして水素、窒素などをMOCVD装置内に導入し、発光層となる量子井戸構造を形成する。ここで、量子井戸構造とは、厚み数~数十nmの井戸層と、該井戸層よりもバンドギャップエネルギーの大きい障壁層を組み合わせた積層構造であり、上記井戸層のバンドギャップエネルギーや障壁層膜厚などは、所望とする光学特性が得られるように適宜設定すればよい。また、上記原料に加えて、光学特性を向上させるなどの目的で、トリメチルインジウム、N型もしくはP型不純物原料を加えても良い。
 次いで、トリメチルアルミニウム、トリメチルガリウム、アンモニア、ビスシクロペンタジエニルマグネシウム、および原料ガスのキャリアガスとして水素、窒素などをMOCVD装置内に導入し、P型III族窒化物半導体層を形成する。その後、トリメチルガリウム、アンモニア、ビスシクロペンタジエニルマグネシウム、および原料ガスのキャリアガスとして水素、窒素などをMOCVD装置内に導入し、P型III族窒化物半導体コンタクト層を形成する。ここで、上記III族窒化物半導体層を形成する際の原料供給比、成長温度、V族元素(窒素等)とIII族元素との比(V/III比)などは、所望の光学特性および導電特性が得られるよう適宜設定すればよい。
 なお、本発明の光学素子用積層体2は、上記第2の工程を経て得られる中間生成物であり、窒化アルミニウム種基板と、該窒化アルミニウム種基板上に形成された光学特性に優れた窒化アルミニウム単結晶層と、該窒化アルミニウム単結晶層上に形成された光学素子とを含む。本発明の光学素子用積層体2は、光学素子の製造工程において、その移送、保管等を容易にし、製造効率を向上する。
 (第3の工程)
 本発明の第3の工程では、第2の工程で得られた光学素子用積層体2から窒化アルミニウム種基板11を除去して、光学素子22を得る。
 ここで、上記のプロセスによって製造した光学素子22をデバイスとして機能させる為には、所定の導電層を露出させるエッチング処理、導電層表面への電極形成処理など、素子化のための加工を施す必要がある。本発明の第3の工程は、前記素子化のための加工工程を行う前に行うこともできるし、素子化のための加工を行った後に実施することもできる。素子化のための加工工程と本発明の第3の工程を行う順序は、生産性やハンドリング性等を考慮して、本発明の実施に際し適宜決定すればよい。
 光学素子用積層体2から窒化アルミニウム種基板11を除去する方法には、特に限定はなく、研磨、反応性イオンエッチング、アルカリ溶液などを利用した湿式エッチングなどの公知の方法を用いることができるが、研磨によって除去することが好ましい。
 また、上記第3の工程終了後に、前記窒化アルミニウム種基板11を除去した側の、前記窒化アルミニウム単結晶層12表面に凹凸を形成することも、該光学素子の性能を向上させる手段として好適に用いることができる。例えばLEDに上記凹凸形成プロセスを適用した場合は、該凹凸の存在により、前記基板表面での全反射量が低減し、結果的にLEDの発光特性を向上させることが可能となる。
 このように得られた光学素子22は、必要に応じチップ化等の処理が施され、さまざまな用途に用いられる。光学素子としては、たとえば、LED(発光ダイオード)などが挙げられる。
 上述した本発明の一実施形態では、化学気相成長法により作製される同種基板である窒化アルミニウム単結晶種基板11上に、化学気相成長法により窒化アルミニウム単結晶層12を形成して第1の積層体(自立基板)1を用意する。このとき、該窒化アルミニウム単結晶種基板11の転位密度が低いために、窒化アルミニウム単結晶層12、およびその上に形成される光学素子層20においても転位密度の低減が可能となる。しかも、該窒化アルミニウム単結晶層12は、化学気相成長法により形成されるため、低転位かつ高い紫外線透過効率を実現できる。さらに、該窒化アルミニウム単結晶層12と、光学素子層20との屈折効率差が小さいため、光取り出し効率も従来と比べ向上する。
 なお、本発明は、上述した実施形態に限定されるものではなく、本発明の範囲内で種々に改変することができる。例えば、窒化アルミニウム単結晶種基板11は上述の化学気相成長法以外にも、昇華法などの物理気相成長法によって作製されたものであっても良い。
 また、たとえば、上述した実施形態では、本発明に係わる光学素子として、紫外発光素子を例示したが、本発明に係る電子部品としては、発光ダイオード素子等の発光素子に限定されない。本発明の光学素子の製造方法は、たとえば、紫外線から赤外線までの幅広い領域の感度を有する半導体素子を封止した受光素子の製造にも応用できる。
 以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。
 (窒化アルミニウム種基板11の準備)
 窒化アルミニウム種基板11は、WO2009/090821に記載の方法により作製した。この窒化アルミニウム種基板11は、窒化アルミニウム単結晶面11aを構成する窒化アルミニウム単結晶薄膜層の厚みが200nmであって、その下の窒化アルミニウム非単結晶層(窒化アルミニウム多結晶層)の厚みが300μmである積層体を用いた。また、この窒化アルミニウム種基板11は、8mm角のものを2枚準備した。
 (第1の工程)
 2枚の前記窒化アルミニウム種基板11を窒化アルミニウム単結晶面11aが最表面となるようにHVPE装置内のサセプター上に設置した後、水素を10slm、アンモニアを200sccmの流量で流しながら、該窒化アルミニウム種基板11を1450℃に加熱し、20分間保持することにより表面クリーニングを行った。次いで、500℃に加熱した金属アルミニウムと塩化水素ガスを反応させて得られる三塩化アルミニウムガス5sccm、アンモニアガス15sccm、キャリアガスとして窒素1500sccm、水素5000sccmを窒化アルミニウム種基板11上に供給し、窒化アルミニウム単結晶層12を150μm成長させた。
 窒化アルミニウム単結晶層12の表面を微分干渉光学顕微鏡で観察し、いずれのサンプルも窒化アルミニウム単結晶層12の表面がクラックフリーであることを確認した。また、窒化アルミニウム単結晶層12の表面は、局所的には非常に平坦であるものの、8mm角全体としては、比較的大きな凹凸が基板全面に存在している状態であった。
 (窒化アルミニウム単結晶層12の研磨、および評価)
 次いで、上記窒化アルミニウム単結晶層12の表面をCMP(Chemical Mechanical Polishing)研磨によって、RMS値が1nm以下になるまで研磨し、第1の積層体1(自立基板1)を得た。
 ここで、作製した自立基板1の1枚について、窒化アルミニウム単結晶層12の特性を評価するため、裏面の窒化アルミニウム非単結晶層(窒化アルミニウム多結晶層)を機械研磨により除去し、その後CMP研磨によってRMS値が5nm以下になるまで研磨することにより、略両面鏡面状態の窒化アルミニウム単結晶層12の単体を取り出した。研磨後の窒化アルミニウム単結晶層12の膜厚は100μmであった。透過型電子顕微鏡を用いた平面観察によって(加速電圧300kV)、研磨後の窒化アルミニウム単結晶層12表面の貫通転位密度を測定したところ、3×10cm-2であった。また、紫外可視分光光度計(島津製作所製UV-2550)により、該窒化アルミニウム単結晶層12の透過率を測定したところ、波長240nmから350nmにおける外部透過率は40%以上であった。また、窒化アルミニウム単結晶の屈折率を2.4とし、上記膜厚と透過率から吸収係数を算出したところ、波長240nmから350nmにおける吸収係数は20cm-1以下であった。
 (第2の工程)
 次いで、第1の積層体1(自立基板1)の1枚を、研磨された窒化アルミニウム単結晶層12表面が最表面となるようにMOCVD装置内のサセプター上に設置した。その後、水素を13slmの流量で流しながら、該自立基板1を1250℃まで加熱し、10分間保持することで表面クリーニングを行った。
 次いで、自立基板1の温度を1200℃とし、トリメチルアルミニウム流量が25μmol/min、アンモニア流量が1slm、全流量が10slm、圧力が50Torrの条件で、該窒化アルミニウム単結晶層12上に窒化アルミニウムバッファ層を厚さ0.1μm形成した。次いで、サセプター上の基板温度を1120℃とし、トリメチルガリウム流量が20μmol/min、トリメチルアルミニウムが35μmol/min、アンモニア流量が1.5slm、全流量が10slm、圧力が50Torrの条件でAl0.7Ga0.3Nバッファ層を0.2μm形成した。さらに、テトラエチルシラン3nmol/minを同時に供給した以外はバッファ層と同条件で、N型Al0.7Ga0.3N層を1.2μm形成した。
 次いで、トリメチルガリウム流量を40μmol/min、トリメチルアルミニウムを3μmol/minとした以外はバッファ層と同条件で、Al0.3Ga0.7N井戸層を2nm形成した。次いで、バッファ層と同条件で障壁層を15nm形成した。この井戸層と障壁層の成長を3回繰り返すことにより3重量子井戸層を形成した。
 次いで、トリメチルガリウム流量を15μmol/minとし、ビスシクロペンタジエニルマグネシウム0.8μmol/minを同時に供給した以外はバッファ層と同条件で、P型Al0.8Ga0.2N層を20nm形成した。次いで、トリメチルガリウム流量を40μmol/min、ビスシクロペンタジエニルマグネシウム0.3μmol/min、アンモニア流量が2.0slm、全流量が8slm、圧力が150Torrの条件でP型GaNコンタクト層を0.2μm形成した。この基板をMOCVD装置から取り出し、窒素雰囲気中、20分間、800℃の条件で熱処理を行った。
 次いで、ICPエッチング装置により該基板の一部をSiドーピングAl0.7Ga0.3N層が露出するまでエッチングした後、該露出表面に真空蒸着法によりTi(20nm)/Al(100nm)/Ti(20nm)/Au(50nm)電極を形成し、窒素雰囲気中、1分間、1000℃の条件で熱処理を行った。次いで、上記P型GaNコンタクト層上に真空蒸着法によりNi(20nm)/Au(100nm)電極を形成し、窒素雰囲気中、5分間、500℃の条件で熱処理を行った。
 以上のようにして、第1の積層体の窒化アルミニウム単結晶層12上に、光学素子層20が積層された第2の積層体2(光学素子用積層体2)を作製した。このようにして作製した光学素子用積層体2の直流10mA動作時における素子裏面から発光特性を評価したところ、発光波長265nmの微弱なシングル発光ピークを確認することができた。
 (第3の工程)
 前記光学素子用積層体2の裏面の窒化アルミニウム非単結晶層(窒化アルミニウム多結晶層)を機械研磨により除去し、その後CMP研磨によってRMS値が5nm以下になるまで研磨して、光学素子22を作製した。なお、この光学素子22の厚みは、約100μmであった。この光学素子22を光学素子用積層体2と同様の方法で発光測定を行ったところ、発光波長265nmのシングルピーク発光であり、この光学素子22の発光ピーク強度は、光学素子用積層体2の強度よりも10倍以上であることが確認された。
 2  第2の積層体(光学素子用積層体)
 1  第1の積層体(自立基板)
  11   窒化アルミニウム種基板
    11a 窒化アルミニウム単結晶面
  12   窒化アルミニウム単結晶層
  20   光学素子層
 22 光学素子

Claims (6)

  1.  最表面が窒化アルミニウム単結晶面である窒化アルミニウム種基板上に、化学気相成長法により窒化アルミニウム単結晶層を形成する第1の工程と、
     前記窒化アルミニウム単結晶層上に、光学素子層を形成して光学素子用積層体を得る第2の工程と、
     前記光学素子用積層体から前記窒化アルミニウム種基板を除去する第3の工程と
    を含む光学素子の製造方法。
  2.  前記第1の工程における前記窒化アルミニウム単結晶層の厚みは50μm以上である請求項1に記載の光学素子の製造方法。
  3.  前記第2の工程における前記光学素子層はLED素子層であることを特徴とする請求項1または2に記載の光学素子の製造方法。
  4.  最表面が窒化アルミニウム単結晶面である窒化アルミニウム種基板と、
     前記窒化アルミニウム種基板上に形成された窒化アルミニウム単結晶層と、
     前記窒化アルミニウム単結晶層上に形成された光学素子層と、を有する光学素子用積層体。
  5.  前記窒化アルミニウム単結晶層の240nmから300nmにおける吸収係数が30cm-1以下である請求項4に記載の光学素子用積層体。
  6.  前記窒化アルミニウム単結晶層の転位密度が10cm-2未満である請求項4または5に記載の光学素子用積層体。
PCT/JP2011/073831 2010-10-29 2011-10-17 光学素子の製造方法 WO2012056928A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/881,385 US20130214325A1 (en) 2010-10-29 2011-10-17 Method for Manufacturing Optical Element
EP11836064.3A EP2634294B1 (en) 2010-10-29 2011-10-17 Method for manufacturing optical element and optical element multilayer body
KR1020137005745A KR101852519B1 (ko) 2010-10-29 2011-10-17 광학 소자의 제조 방법
JP2012540780A JP5931737B2 (ja) 2010-10-29 2011-10-17 光学素子の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-243824 2010-10-29
JP2010243824 2010-10-29

Publications (1)

Publication Number Publication Date
WO2012056928A1 true WO2012056928A1 (ja) 2012-05-03

Family

ID=45993643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073831 WO2012056928A1 (ja) 2010-10-29 2011-10-17 光学素子の製造方法

Country Status (5)

Country Link
US (1) US20130214325A1 (ja)
EP (1) EP2634294B1 (ja)
JP (1) JP5931737B2 (ja)
KR (1) KR101852519B1 (ja)
WO (1) WO2012056928A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016511938A (ja) * 2013-01-29 2016-04-21 ヘクサテック,インコーポレイテッド 単結晶窒化アルミニウム基板を組み込む光電子デバイス
US10224458B2 (en) 2015-03-06 2019-03-05 Stanley Electric Co., Ltd. Group III nitride laminate, luminescence element comprising said laminate, and method of producing group III nitride laminate
JP2020537360A (ja) * 2017-10-16 2020-12-17 クリスタル アイエス, インコーポレーテッドCrystal Is, Inc. 電子及び光電子デバイスのための窒化アルミニウム基板の電気化学的除去
JP2022028712A (ja) * 2016-11-29 2022-02-16 パロ アルト リサーチ センター インコーポレイテッド 薄膜および基板除去iii族窒化物ベースのデバイスおよび方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10354862B2 (en) * 2014-11-10 2019-07-16 Tokuyama Corporation Apparatus for manufacturing group III nitride single crystal, method for manufacturing group III nitride single crystal using the apparatus, and aluminum nitride single crystal
US20230227997A1 (en) 2020-08-04 2023-07-20 Tokuyama Corporation Method for washing aluminum nitride single crystal substrate, method for producing aluminum nitride single crystal layered body, and method for producing aluminum nitride single crystal substrate, and aluminum nitride single crystal substrate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009143778A (ja) * 2007-12-17 2009-07-02 Sumitomo Metal Mining Co Ltd 窒化アルミニウム結晶の成長方法と窒化アルミニウム基板および半導体デバイス
JP2009155141A (ja) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd 半導体基板の作成方法ならびに半導体基板およびそれを用いる化合物半導体発光素子
WO2009090821A1 (ja) 2008-01-16 2009-07-23 National University Corporation Tokyo University Of Agriculture And Technology Al系III族窒化物単結晶層を有する積層体の製造方法、該製法で製造される積層体、該積層体を用いたAl系III族窒化物単結晶基板の製造方法、および、窒化アルミニウム単結晶基板
JP2009190918A (ja) * 2008-02-13 2009-08-27 New Japan Radio Co Ltd 窒化物半導体基板の製造方法及び窒化物半導体装置の製造方法
JP2010010613A (ja) 2008-06-30 2010-01-14 Tokuyama Corp 積層体、自立基板製造用基板、自立基板およびこれらの製造方法
JP2010089971A (ja) 2008-10-03 2010-04-22 Tokyo Univ Of Agriculture & Technology 窒化アルミニウム単結晶基板、積層体、およびこれらの製造方法
JP2010521059A (ja) * 2006-10-18 2010-06-17 ナイテック インコーポレイテッド 深紫外線発光素子及びその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI320948B (en) * 2003-03-19 2010-02-21 Japan Science & Tech Agency Method for growing emiconductor crystal and laminated structure thereof and semiconductor device
US7338555B2 (en) * 2003-09-12 2008-03-04 Tokuyama Corporation Highly crystalline aluminum nitride multi-layered substrate and production process thereof
JP4592388B2 (ja) * 2004-11-04 2010-12-01 シャープ株式会社 Iii−v族化合物半導体発光素子およびその製造方法
DE102005041643A1 (de) * 2005-08-29 2007-03-01 Forschungsverbund Berlin E.V. Halbleitersubstrat sowie Verfahren und Maskenschicht zur Herstellung eines freistehenden Halbleitersubstrats mittels der Hydrid-Gasphasenepitaxie
US20070138505A1 (en) * 2005-12-12 2007-06-21 Kyma Technologies, Inc. Low defect group III nitride films useful for electronic and optoelectronic devices and methods for making the same
JP4862442B2 (ja) * 2006-03-15 2012-01-25 日立電線株式会社 Iii−v族窒化物系半導体基板の製造方法及びiii−v族窒化物系デバイスの製造方法
US8012257B2 (en) * 2006-03-30 2011-09-06 Crystal Is, Inc. Methods for controllable doping of aluminum nitride bulk crystals
US9034103B2 (en) * 2006-03-30 2015-05-19 Crystal Is, Inc. Aluminum nitride bulk crystals having high transparency to ultraviolet light and methods of forming them
JP5099008B2 (ja) * 2006-07-26 2012-12-12 富士通株式会社 SiC基板を用いた化合物半導体装置とその製造方法
WO2008067537A2 (en) * 2006-11-30 2008-06-05 University Of South Carolina Method and apparatus for growth of iii-nitride semiconductor epitaxial layers
US8080833B2 (en) * 2007-01-26 2011-12-20 Crystal Is, Inc. Thick pseudomorphic nitride epitaxial layers
US8269251B2 (en) * 2007-05-17 2012-09-18 Mitsubishi Chemical Corporation Method for producing group III nitride semiconductor crystal, group III nitride semiconductor substrate, and semiconductor light-emitting device
JP5262545B2 (ja) * 2007-10-29 2013-08-14 日立電線株式会社 窒化物半導体自立基板及びそれを用いたデバイス
US9331240B2 (en) * 2008-06-06 2016-05-03 University Of South Carolina Utlraviolet light emitting devices and methods of fabrication
EP2253988A1 (en) * 2008-09-19 2010-11-24 Christie Digital Systems USA, Inc. A light integrator for more than one lamp

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010521059A (ja) * 2006-10-18 2010-06-17 ナイテック インコーポレイテッド 深紫外線発光素子及びその製造方法
JP2009143778A (ja) * 2007-12-17 2009-07-02 Sumitomo Metal Mining Co Ltd 窒化アルミニウム結晶の成長方法と窒化アルミニウム基板および半導体デバイス
JP2009155141A (ja) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd 半導体基板の作成方法ならびに半導体基板およびそれを用いる化合物半導体発光素子
WO2009090821A1 (ja) 2008-01-16 2009-07-23 National University Corporation Tokyo University Of Agriculture And Technology Al系III族窒化物単結晶層を有する積層体の製造方法、該製法で製造される積層体、該積層体を用いたAl系III族窒化物単結晶基板の製造方法、および、窒化アルミニウム単結晶基板
JP2009190918A (ja) * 2008-02-13 2009-08-27 New Japan Radio Co Ltd 窒化物半導体基板の製造方法及び窒化物半導体装置の製造方法
JP2010010613A (ja) 2008-06-30 2010-01-14 Tokuyama Corp 積層体、自立基板製造用基板、自立基板およびこれらの製造方法
JP2010089971A (ja) 2008-10-03 2010-04-22 Tokyo Univ Of Agriculture & Technology 窒化アルミニウム単結晶基板、積層体、およびこれらの製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
APPLIED PHYSICS EXPRESS, vol. 3, 2010, pages 072103
JOURNAL OF APPLIED PHYSICS, vol. 103, 2008, pages 073522
See also references of EP2634294A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016511938A (ja) * 2013-01-29 2016-04-21 ヘクサテック,インコーポレイテッド 単結晶窒化アルミニウム基板を組み込む光電子デバイス
US10224458B2 (en) 2015-03-06 2019-03-05 Stanley Electric Co., Ltd. Group III nitride laminate, luminescence element comprising said laminate, and method of producing group III nitride laminate
JP2022028712A (ja) * 2016-11-29 2022-02-16 パロ アルト リサーチ センター インコーポレイテッド 薄膜および基板除去iii族窒化物ベースのデバイスおよび方法
JP7216790B2 (ja) 2016-11-29 2023-02-01 パロ アルト リサーチ センター インコーポレイテッド 薄膜および基板除去iii族窒化物ベースのデバイスおよび方法
JP2020537360A (ja) * 2017-10-16 2020-12-17 クリスタル アイエス, インコーポレーテッドCrystal Is, Inc. 電子及び光電子デバイスのための窒化アルミニウム基板の電気化学的除去

Also Published As

Publication number Publication date
EP2634294A1 (en) 2013-09-04
EP2634294B1 (en) 2020-04-29
JPWO2012056928A1 (ja) 2014-03-20
US20130214325A1 (en) 2013-08-22
EP2634294A4 (en) 2015-05-13
KR101852519B1 (ko) 2018-04-26
JP5931737B2 (ja) 2016-06-08
KR20130122727A (ko) 2013-11-08

Similar Documents

Publication Publication Date Title
JP4335187B2 (ja) 窒化物系半導体装置の製造方法
JP5319810B2 (ja) 窒化物半導体層の製造方法
JP4991828B2 (ja) 窒化ガリウム系化合物半導体の作製方法
JP5931737B2 (ja) 光学素子の製造方法
JP2006253628A (ja) 化合物半導体装置及びその製造方法
CN109075224B (zh) 半导体晶片
JP4724901B2 (ja) 窒化物半導体の製造方法
JP4525309B2 (ja) Iii−v族窒化物系半導体基板の評価方法
JP5073624B2 (ja) 酸化亜鉛系半導体の成長方法及び半導体発光素子の製造方法
US9896780B2 (en) Method for pretreatment of base substrate and method for manufacturing layered body using pretreated base substrate
JP2017208554A (ja) 半導体積層体
JP2005072310A (ja) Iii族窒化物系化合物半導体の製造方法
CN106129201B (zh) 一种发光二极管的外延片及其制备方法
CN112530791B (zh) 一种生长高密度铟镓氮量子点的方法
WO2017164036A1 (ja) Iii族窒化物積層体の製造方法
JP5073623B2 (ja) 酸化亜鉛系半導体の成長方法及び半導体発光素子の製造方法
JP5304715B2 (ja) Iii−v族窒化物系半導体基板
WO2009116232A1 (ja) 化合物半導体基板及びそれを用いた発光素子並びに化合物半導体基板の製造方法
JP7484773B2 (ja) 紫外線発光素子用エピタキシャルウェーハの製造方法、紫外線発光素子用基板の製造方法及び紫外線発光素子用エピタキシャルウェーハ
WO2023286574A1 (ja) 紫外線発光素子用エピタキシャルウェーハ及びその製造方法
TWI596797B (zh) Gallium nitride-based crystal and semiconductor device manufacturing method, and light-emitting Device and method of manufacturing the light-emitting device
JP4963301B2 (ja) 窒化物半導体発光素子の製造方法
JP2011086784A (ja) 窒素化合物半導体素子の製造方法
US20160056243A1 (en) Reusable substrate bases, semiconductor devices using such reusable substsrate bases, and methods for making the reusable substrate bases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137005745

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012540780

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13881385

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011836064

Country of ref document: EP