WO2013088541A1 - ヒートポンプ装置ならびに、それを備えた空気調和機、ヒートポンプ給湯機、冷蔵庫、および冷凍機 - Google Patents

ヒートポンプ装置ならびに、それを備えた空気調和機、ヒートポンプ給湯機、冷蔵庫、および冷凍機 Download PDF

Info

Publication number
WO2013088541A1
WO2013088541A1 PCT/JP2011/078973 JP2011078973W WO2013088541A1 WO 2013088541 A1 WO2013088541 A1 WO 2013088541A1 JP 2011078973 W JP2011078973 W JP 2011078973W WO 2013088541 A1 WO2013088541 A1 WO 2013088541A1
Authority
WO
WIPO (PCT)
Prior art keywords
energization
heat pump
frequency
command
compressor
Prior art date
Application number
PCT/JP2011/078973
Other languages
English (en)
French (fr)
Inventor
和徳 畠山
庄太 神谷
健太 湯淺
真也 松下
真作 楠部
牧野 勉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP11877449.6A priority Critical patent/EP2803921B1/en
Priority to CN201180075457.3A priority patent/CN103988030B/zh
Priority to AU2011383457A priority patent/AU2011383457B2/en
Priority to PCT/JP2011/078973 priority patent/WO2013088541A1/ja
Priority to JP2013549013A priority patent/JP5937619B2/ja
Priority to US14/364,353 priority patent/US10208991B2/en
Publication of WO2013088541A1 publication Critical patent/WO2013088541A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/27Problems to be solved characterised by the stop of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/28Means for preventing liquid refrigerant entering into the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a heat pump device and an air conditioner, a heat pump water heater, a refrigerator, and a refrigerator equipped with the heat pump device.
  • Patent Document 2 a technique for preheating the motor without rotating the rotor by using a copper loss generated in the motor winding by passing a direct current through the motor winding according to the outside air temperature is disclosed.
  • Patent Document 2 a technique for preheating the motor without rotating the rotor by using a copper loss generated in the motor winding by passing a direct current through the motor winding according to the outside air temperature is disclosed.
  • the present invention has been made in view of the above, and efficiently heats the compressor according to the required amount of heating, reliably prevents the refrigerant from staying in the compressor, and has standby power. It is an object of the present invention to provide a heat pump device that can reduce the amount of air and an air conditioner, a heat pump water heater, a refrigerator, and a refrigerator equipped with the heat pump device.
  • a heat pump device includes a compressor having a compression mechanism for compressing a refrigerant and a motor for driving the compression mechanism, a heat exchanger, and the motor.
  • a heat pump device comprising: an inverter that applies a desired voltage; and an inverter control unit that generates a drive signal for driving the inverter, wherein the inverter control unit is configured to wait for operation of the compressor while the compressor When it is determined whether the compressor needs to be heated based on the refrigerant stagnation amount, and when it is determined that the compressor needs to be heated, Accordingly, either one of a DC energization for supplying a DC voltage to the motor and a high-frequency energization for supplying a high frequency voltage having a higher frequency than that during normal operation to the motor is selected. And restraining power supply controller that outputs the constraint energization command for carrying out the constraining power of the serial motor, characterized in that it comprises
  • the present invention it is possible to efficiently heat the compressor according to the required heating amount, reliably prevent the refrigerant from staying in the compressor, and reduce standby power. There is an effect.
  • FIG. 1 is a diagram illustrating a configuration example of the heat pump device according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of an inverter in the heat pump device according to the first embodiment.
  • FIG. 3 is a diagram illustrating a configuration example of an inverter control unit in the heat pump apparatus according to the first embodiment.
  • FIG. 4 is a diagram illustrating a configuration example of a restraint energization control unit in the heat pump device according to the first embodiment.
  • FIG. 5 is a diagram for explaining the operation of the heating determination unit in the heat pump device according to the first embodiment.
  • FIG. 6 is a diagram illustrating another configuration example of the refrigerant stagnation amount output unit in the heat pump device according to the first embodiment.
  • FIG. 7 is a diagram illustrating a configuration example of a DC energization command generation unit in the heat pump device according to the first embodiment.
  • FIG. 8 is a diagram illustrating a configuration example of a high-frequency energization command generation unit in the heat pump device according to the first embodiment.
  • FIG. 9 is a diagram illustrating eight switching patterns in the heat pump apparatus according to the first embodiment.
  • FIG. 10 is a diagram illustrating each signal waveform when direct current energization is selected in the heat pump apparatus according to the first embodiment.
  • FIG. 11 is a diagram illustrating signal waveforms when high-frequency energization is selected in the heat pump device according to the first embodiment.
  • FIG. 12 is a flowchart of the refrigerant heating operation process in the heat pump device according to the first embodiment.
  • FIG. 13 is a diagram illustrating a configuration example of a high-frequency energization command generation unit in the heat pump apparatus according to the second embodiment.
  • FIG. 14 is a diagram illustrating signal waveforms at the time of high-frequency energization in the heat pump device according to the second embodiment.
  • FIG. 15 is a diagram illustrating ON / OFF states of the switching elements in the inverter corresponding to the voltage vectors.
  • FIG. 16 is a diagram illustrating an example of a rotor stop position of the IPM motor at the time of high-frequency energization.
  • FIG. 17 is a diagram illustrating the relationship between the rotor position and each phase current.
  • FIG. 18 is a diagram illustrating an applied voltage when the reference phase ⁇ f is changed.
  • FIG. 19 is a diagram illustrating a current waveform of each phase when the reference phase ⁇ f is 0 °, 30 °, and 60 °.
  • FIG. 20 is a diagram illustrating a configuration example of a refrigeration cycle according to the fourth embodiment.
  • FIG. 21 is a Mollier diagram showing the state transition of the refrigerant in the refrigeration cycle shown in FIG.
  • FIG. 1 is a diagram illustrating a configuration example of the heat pump device according to the first embodiment.
  • the heat pump device 100 according to the first embodiment includes a compressor 1, a four-way valve 2, a heat exchanger 3, an expansion mechanism 4, and a heat exchanger 5 that are sequentially connected via a refrigerant pipe 6.
  • a refrigeration cycle 50 is formed.
  • a basic configuration for forming the refrigeration cycle 50 is shown, and some components are omitted.
  • a compression mechanism 7 for compressing the refrigerant and a motor 8 for operating the compression mechanism 7 are provided inside the compressor 1.
  • the motor 8 is a three-phase motor having three-phase windings of U phase, V phase, and W phase.
  • An inverter 9 is electrically connected to the motor 8.
  • the inverter 9 is connected to a DC voltage source 11, and uses the DC voltage (bus voltage) Vdc supplied from the DC voltage source 11 as a power source, and the voltages Vu, Vv, Vw is applied respectively.
  • an inverter control unit 10 is electrically connected to the inverter 9.
  • the inverter control unit 10 outputs a drive signal for driving the inverter 9 to the inverter 9.
  • the inverter control unit 10 has two operation modes, a normal operation mode and a heating operation mode.
  • the inverter control unit 10 In the normal operation mode, the inverter control unit 10 generates and outputs a PWM (Pulse Width Modulation) signal (drive signal) for rotationally driving the motor 8. Further, in the heating operation mode, unlike the normal operation mode, the inverter control unit 10 heats the motor 8 by energizing the motor 8 so that the motor 8 is not rotationally driven during operation standby, and stays in the compressor 1. This is an operation mode in which the liquid refrigerant is warmed and vaporized and discharged. In this heating operation mode, a direct current or a high-frequency current that cannot be followed by the motor 8 is passed through the motor 8 to heat the liquid refrigerant staying inside the compressor 1 using the heat generated in the motor 8.
  • PWM Pulse Width Modulation
  • heating with energization so as not to rotationally drive the motor 8 is hereinafter referred to as “restraint energization”.
  • direct current energization flowing a direct current to the motor 8 to perform restraint energization
  • high frequency energization flowing a high frequency current to the motor 8 to perform restraint energization
  • the inverter control unit 10 includes a restraint energization control unit 12 and a drive signal generation unit 13 as components that realize the heating operation mode.
  • the restraint energization control unit 12 includes a heating determination unit 14, a DC energization command generation unit 15, and a high frequency energization command generation unit 16.
  • a part of the constituent elements for realizing the normal operation mode is omitted.
  • FIG. 2 is a diagram illustrating a configuration example of the inverter 9 in the heat pump apparatus according to the first embodiment.
  • the inverter 9 includes switching elements 70a to 70f that are bridge-connected, and freewheeling diodes 80a to 80f that are connected in parallel to the switching elements 70a to 70f, respectively.
  • This inverter 9 is connected to a DC voltage source 11 and uses a bus voltage Vdc as a power source, and switching corresponding to each by PWM signals (UP, VP, WP, UN, VN, WN) sent from the inverter control unit 10.
  • PWM signals UP, VP, WP, UN, VN, WN
  • Element is driven (UP corresponds to switching element 70a, VP corresponds to switching element 70b, WP corresponds to switching element 70c, UN corresponds to switching element 70d, VN corresponds to switching element 70e, and WN corresponds to switching element 70f).
  • the three-phase voltages Vu, Vv, and Vw to be applied to the V-phase and W-phase windings are generated.
  • FIG. 3 is a diagram of a configuration example of the inverter control unit according to the first embodiment.
  • the inverter control unit 10 includes the restraint energization control unit 12 and the drive signal generation unit 13 that include the heating determination unit 14, the DC energization command generation unit 15, and the high-frequency energization command generation unit 16.
  • the heating determination unit 14 includes a heating command unit 17 and an energization switching unit 18.
  • the drive signal generation unit 13 includes a voltage command calculation unit 19 and a PWM signal generation unit 20.
  • the DC energization command generation unit 15 generates a DC energization command including the DC voltage command Vdc * and the DC voltage phase command ⁇ dc based on the heating amount H * output from the heating command unit 17, and the high frequency energization command generation unit 16. Generates a high-frequency energization command including a high-frequency voltage command Vac * and a high-frequency voltage phase command ⁇ ac based on the heating amount H * output from the heating command unit 17.
  • the heating command unit 17 estimates the stagnation amount of the liquid refrigerant staying in the compressor 1, outputs the necessity of heating to the drive signal generation unit 13, and obtains the heating amount H * necessary for driving out the liquid refrigerant.
  • the DC energization command generation unit 15 and the high frequency energization command generation unit 16 the DC energization command including the DC voltage command Vdc * and the DC voltage phase command ⁇ dc, which are the outputs of the DC energization command generation unit 15, and the high frequency energization command generation
  • the energization switching unit 18 selects either the DC voltage command Vdc * and the DC voltage phase command ⁇ dc or the high-frequency voltage command Vac * and the high-frequency voltage phase command ⁇ ac, that is, either the DC energization command or the high-frequency energization command.
  • the restraint energization command including the command V * and the voltage phase command ⁇ is output to the drive signal generation unit 13.
  • the voltage command calculation unit 19 generates three-phase (U-phase, V-phase, W-phase) voltage commands Vu *, Vv *, Vw * based on the voltage command V * and the voltage phase command ⁇ .
  • the PWM signal generation unit 20 generates PWM signals (UP, VP, WP, UN, VN, WN) for driving the inverter 9 based on the three-phase voltage commands Vu *, Vv *, Vw * and the bus voltage Vdc. Generate.
  • FIG. 4 is a diagram illustrating a configuration example of a restraint energization control unit in the heat pump device according to the first embodiment.
  • FIG. 5 is a diagram for explaining the operation of the heating determination unit in the heat pump device according to the first embodiment.
  • FIG. 5A shows the relationship between the ambient temperature around the compressor 1 (for example, the outside air temperature) Tc and the temperature of the compressor 1 (compressor temperature) To and time
  • FIG. 5B shows the unit.
  • the refrigerant stagnation amount per time is shown
  • FIG. 5C shows the heating amount H * per unit time.
  • FIG. 6 is a diagram illustrating another configuration example of the heating determination unit in the heat pump device according to the first embodiment.
  • the restraint energization control unit 12 includes the heating determination unit 14, the DC energization command generation unit 15, and the high frequency energization command generation unit 16, and the heating determination unit 14 includes the heating command unit 17 and the energization switching unit 18.
  • the heating command unit 17 includes a refrigerant stagnation amount output unit 40, a heating necessity determination unit 25, a heating amount calculation unit 26, and an energization switching determination unit 27.
  • the refrigerant stagnation amount output unit 40 includes a temperature detection unit 21 and a refrigerant stagnation amount estimation unit 22.
  • the energization switching unit 18 and the energization switching determination unit 27 constitute an energization switching control unit 33.
  • the temperature detector 21 detects the ambient temperature (for example, the outside air temperature) Tc around the compressor 1 and the temperature (compressor temperature) To of the compressor 1, and the refrigerant stagnation amount estimation unit 22 Based on the compressor temperature To, the stagnation amount of the liquid refrigerant staying in the compressor 1 is estimated.
  • the refrigerant circulating in the refrigeration cycle 50 condenses and accumulates at the lowest temperature among the constituent parts forming the refrigeration cycle 50. Since the compressor 1 has the largest heat capacity among the components forming the refrigeration cycle 50, the compressor temperature To rises with a delay with respect to the rise in the ambient temperature Tc, as shown in FIG. The temperature will be the lowest. For this reason, the liquid refrigerant stays inside the compressor 1.
  • the refrigerant stagnation amount estimation unit 22 for example, based on the relationship between the ambient temperature Tc and the compressor temperature To obtained in advance through experiments or the like, as shown in FIG. Estimate the amount of refrigerant stagnation per t.
  • the heat capacity of the compressor 1 is known in advance, only the ambient temperature Tc is detected, and by estimating how much the compressor temperature To changes with respect to the change in the ambient temperature Tc.
  • the refrigerant stagnation amount per unit time t can be estimated. In this case, the number of sensors for detecting the compressor temperature To can be reduced, and the cost can be reduced.
  • the temperature of the heat exchanger 3 or the like having a smaller heat capacity than that of the compressor 1 among the components forming the refrigeration cycle 50 may be similarly detected per unit time t. It goes without saying that it is possible to estimate the amount of refrigerant stagnation.
  • the refrigerant stagnation amount output unit 40a is replaced with the temperature detection unit 21 and the refrigerant stagnation amount estimation unit 22 described in FIG.
  • a refrigerant stagnation amount detection unit 23 for detecting the amount is provided.
  • the refrigerant stagnation amount is detected more directly, it is possible to grasp the more accurate refrigerant stagnation amount.
  • coolant stagnation amount inside the compressor 1 the distance between the upper part of the compressor 1 and the liquid level of a refrigerant
  • coolant stagnation amount output part 40b provided with the temperature detection part 21, the refrigerant
  • the heating necessity determination unit 25 determines whether or not the compressor 1 needs to be heated based on the refrigerant stagnation amount that is the output of the refrigerant stagnation amount output unit 40 (or 40a or 40b). If the compressor 1 needs to be heated, that is, if the liquid refrigerant stays inside the compressor 1 or if it is estimated that the liquid refrigerant stays inside the compressor 1, heating is performed.
  • the necessity determination unit 25 outputs an ON signal to the PWM signal generation unit 20 and instructs the heating amount calculation unit 26 to start calculation of the heating amount H * necessary for expelling the liquid refrigerant staying inside the compressor 1.
  • the heating necessity determination unit 25 outputs an OFF signal to the PWM signal generation unit 20.
  • the heating amount calculation unit 26 When the heating amount calculation unit 26 is instructed by the heating necessity determination unit 25 to start calculating the heating amount H *, the heating amount calculation unit 26 sets the refrigerant stagnation amount, which is the output of the refrigerant stagnation amount output unit 40 (or 40a or 40b). Accordingly, the heating amount H * necessary to drive out the liquid refrigerant staying in the compressor 1 is calculated and output to the DC energization command generation unit 15, the high frequency energization command generation unit 16, and the energization switching determination unit 27.
  • This heating amount H * varies depending on the type and size of the compressor 1, and when the compressor 1 is large or the material or shape is difficult to transmit heat, the heating amount H * may be set high.
  • the energization switching determination unit 27 has a threshold value for determining whether to perform direct current energization or high frequency energization in advance, and the heating amount H * is greater than or less than the threshold.
  • the energization switching unit 18 is controlled based on whether or not When the heating amount H * is equal to or greater than the threshold value, the energization switching determination unit 27 selects the DC voltage command Vdc * and the DC voltage phase command ⁇ dc output from the DC energization command generation unit 15 by the energization switching unit 18 (hereinafter referred to as “the heating amount H *”).
  • the high-frequency voltage command Vac * and the high-frequency voltage phase command ⁇ ac output from the high-frequency energization command generation unit 16 by the switching unit 18 are selected (hereinafter referred to as “select high-frequency energization”) to be used as the voltage command V * and the voltage phase command ⁇ . Control to output.
  • FIG. 7 is a diagram illustrating a configuration example of a DC energization command generation unit in the heat pump device according to the first embodiment.
  • the DC energization command generation unit 15 includes a DC voltage command calculation unit 28 and a DC voltage phase command calculation unit 29.
  • the DC voltage command calculator 28 stores in advance the relationship between the heating amount H * and the DC voltage command Vdc * as table data, and the DC voltage command calculator 28 determines the DC voltage according to the heating amount H * input from the heating amount calculator 26.
  • Command Vdc * is calculated and output.
  • the heating amount H * is input.
  • various information such as the ambient temperature (for example, the outside air temperature) Tc and the compressor temperature To around the compressor 1 and information on the structure of the compressor 1 can be used. It goes without saying that the reliability of the DC voltage command Vdc * can be improved by using the data.
  • the DC voltage phase command calculation unit 29 obtains a DC voltage phase command ⁇ dc for energizing the motor 8.
  • FIG. 8 is a diagram illustrating a configuration example of a high-frequency energization command generation unit in the heat pump device according to the first embodiment.
  • the high frequency energization command generation unit 16 includes a high frequency voltage command calculation unit 30 and a high frequency voltage phase command calculation unit 31.
  • the high-frequency voltage command calculation unit 30 stores in advance the relationship between the heating amount H * and the high-frequency voltage command Vac * as table data, and according to the heating amount H * input from the heating amount calculation unit 26, the high-frequency voltage command calculation unit 30 Command Vac * is calculated and output.
  • the heating amount H * is input, but the ambient temperature (for example, the outside air temperature) Tc, the compressor temperature To, and the compressor around the compressor 1 are the same as the DC voltage command calculation unit 28. It goes without saying that the reliability of the high-frequency voltage command Vac can be improved by using various data such as information relating to the structure of 1.
  • the high-frequency voltage phase command calculation unit 31 obtains a high-frequency voltage phase command ⁇ ac for energizing the motor 8.
  • the high frequency voltage phase command ⁇ ac is continuously changed in the range of 0 ° to 360 °.
  • the frequency of the high frequency voltage can be increased by shortening the period in which the high frequency voltage phase command ⁇ ac changes in the range of 0 ° to 360 °.
  • the iron loss can be increased to increase the amount of heat generation, and furthermore, the impedance due to the inductance of the motor 8 can be increased. It is possible to suppress the loss of the inverter 9 and highly efficient heating of the liquid refrigerant staying inside the motor 8 is possible, which is suitable for heating the refrigerant for a long time during operation standby. For this reason, it is possible to save energy by reducing standby power and contribute to the prevention of global warming.
  • the liquid refrigerant when the heating amount H * is large, the liquid refrigerant is discharged in a short time by increasing the heating amount by performing direct current energization, and when the heating amount H * is small.
  • the power consumption is reduced by conducting high-frequency energization.
  • each voltage command value Vu *, Vv *, Vw * is defined as a cosine wave (sine wave) whose phase is different by 2 ⁇ / 3 as shown in the following equations (1) to (3).
  • Vu * V * ⁇ cos ⁇ (1)
  • Vv * V * ⁇ cos ( ⁇ (2/3) ⁇ ) (2)
  • Vw * V * ⁇ cos ( ⁇ + (2/3) ⁇ ) (3)
  • the voltage command calculation unit 19 calculates each voltage command value Vu *, Vv *, Vw * using the above equations (1) to (3) to generate a PWM signal.
  • the PWM signal generation unit 20 compares each voltage command value Vu *, Vv *, Vw * with a carrier signal (reference signal) having an amplitude value of ⁇ (Vdc / 2) at a predetermined frequency, and the magnitude relationship between them.
  • the PWM signals UP, VP, WP, UN, VN, and WN are generated based on the above.
  • each voltage command Vu *, Vv *, Vw * is obtained by a simple trigonometric function.
  • two-phase modulation or third harmonic superposition modulation is used.
  • the voltage commands Vu *, Vv *, and Vw * may be obtained using other methods such as space vector modulation.
  • UP is a voltage for turning on the switching element 70a
  • UN is a voltage for turning off the switching element 70d.
  • VP and VN are determined by comparing the voltage command value Vv * and the carrier signal
  • WP and WN are determined by comparing the voltage command value Vw * and the carrier signal.
  • FIG. 9 is a diagram illustrating eight switching patterns in the heat pump apparatus according to the first embodiment.
  • the voltage vectors generated in each switching pattern are denoted by symbols V0 to V7.
  • the voltage direction of each voltage vector is represented by ⁇ U, ⁇ V, ⁇ W (0 when no voltage is generated).
  • + U is a voltage that generates a current in the U-phase direction that flows into the motor 8 via the U-phase and flows out of the motor 8 via the V-phase and the W-phase
  • ⁇ U is the V-phase.
  • a voltage that generates a current in the ⁇ U-phase direction that flows into the motor 8 via the W-phase and flows out of the motor 8 via the U-phase The same interpretation is applied to ⁇ V and ⁇ W.
  • a desired voltage can be output to the inverter 9 by combining the switching patterns shown in FIG.
  • the operation is generally performed in a range of several tens Hz to several kHz.
  • direct current energization in the heating operation mode can be performed by setting the voltage phase command ⁇ to a fixed value
  • high frequency energization in the heating operation mode can be performed by changing the voltage phase command ⁇ at a higher speed than in the normal operation mode. It can be performed.
  • FIG. 10 is a diagram illustrating signal waveforms when direct current energization is selected in the heat pump apparatus according to the first embodiment.
  • FIG. PWM signals UP, VP, WP, UN, VN, WN are obtained, and the voltage vectors V0 (0 voltage), V2 (+ V voltage), V6 (-W voltage), and V7 (0 voltage) in FIG. 9 are output.
  • a direct current can be passed through the motor 8.
  • FIG. 11 is a diagram illustrating signal waveforms when high-frequency energization is selected in the heat pump apparatus according to the first embodiment.
  • the voltage phase command ⁇ is set to 0 ° to 360 °. Therefore, as shown in FIG. 11, Vu *, Vv *, and Vw * are sine (cosine) waves with a phase difference of 120 °.
  • the PWM signals UP, VP, WP, UN, VN, WN shown in FIG. 11 are obtained, the voltage vector changes with time, and a high-frequency current can flow through the motor 8. Become.
  • FIG. 12 is a flowchart of the refrigerant heating operation process in the heat pump device according to the first embodiment. As shown in FIG. 12, the refrigerant heating operation process in the heat pump device according to the first embodiment is divided into four steps: a heating determination step, an energization switching step, a voltage command value calculation step, and a PWM signal generation step.
  • the heating necessity determination unit 25 determines whether or not the compressor 1 needs to be heated (step ST101). In the present embodiment, as described above, the heating necessity determination unit 25 determines whether or not the compressor 1 needs to be heated based on the refrigerant stagnation amount that is the output of the refrigerant stagnation amount output unit 40.
  • the heating necessity determination unit 25 When heating to the compressor 1 is unnecessary, that is, when it is estimated that the liquid refrigerant does not stay in the compressor 1 or that the liquid refrigerant does not stay inside the compressor 1 (step) ST101; No), the heating necessity determination unit 25 outputs an OFF signal to the PWM signal generation unit 20 and repeats this heating necessity determination step until the compressor 1 needs to be heated.
  • the heating necessity determination unit 25 When heating to the compressor 1 is necessary, that is, when it is estimated that the liquid refrigerant stays inside the compressor 1 or when the liquid refrigerant stays inside the compressor 1 (step) ST101; Yes), the heating necessity determination unit 25 outputs an ON signal to the PWM signal generation unit 20, and at the same time, the heating amount H required to expel the liquid refrigerant staying in the compressor 1 to the heating amount calculation unit 26. Instructs to start * calculation.
  • the heating amount calculation unit 26 calculates the heating amount H * according to the refrigerant stagnation amount, It outputs to the high frequency energization command generation part 16 and the energization switching judgment part 27 (step ST102).
  • the DC energization command generator 15 generates a DC voltage command Vdc * and a DC voltage phase command ⁇ dc in accordance with the heating amount H *, and the high-frequency energization command generator 16 in response to the heating amount H *.
  • a high frequency voltage command Vac * and a high frequency voltage phase command ⁇ ac are generated (step ST103).
  • the energization switching determination unit 27 determines whether the heating amount H * is greater than or less than the threshold (step ST104).
  • the energization switching determination unit 27 selects DC energization when the heating amount H * is equal to or greater than the threshold (step ST104; Yes), and the DC voltage command Vdc * and the DC voltage phase output from the DC energization command generation unit 15 are selected.
  • the energization switching unit 18 is controlled so that the command ⁇ dc is output.
  • high-frequency energization is selected (step ST104; No), and is output from the high-frequency energization command generation unit 16.
  • the energization switching unit 18 is controlled so that the high-frequency voltage command Vac * and the high-frequency voltage phase command ⁇ ac are output.
  • step ST104 When DC energization is selected (step ST104; Yes), the voltage command calculation unit 19 determines each voltage command value Vu *, Vv based on the DC voltage command Vdc * and the DC voltage phase command ⁇ dc that are DC energization commands. * And Vw * are calculated and output to the PWM signal generator 20 (step ST105a).
  • step ST104 when high-frequency energization is selected (step ST104; No), the voltage command calculation unit 19 determines each voltage command value Vu * based on the high-frequency voltage command Vac * and the high-frequency voltage phase command ⁇ ac that are high-frequency energization commands. , Vv *, Vw * are calculated and output to the PWM signal generator 20 (step ST105b).
  • the PWM signal generator 20 generates each PWM signal UP, VP, WP, UN, VN, WN based on each voltage command value Vu *, Vv *, Vw *, and supplies it to each switching element 70a to 70f of the inverter 9. Output (step ST106), return to step ST101, and repeat the processing of step ST101 to step ST106 until the operation in the normal operation mode is started.
  • the heat pump device of the first embodiment during the standby state of the compressor, when the liquid refrigerant stays inside the compressor, or when the liquid refrigerant stays inside the compressor.
  • the amount of heat required to vaporize and discharge the liquid refrigerant that has accumulated inside the compressor is determined based on the detected or estimated amount of refrigerant stagnation. If it is equal to or higher than the threshold value, restraint energization by DC voltage application, that is, DC energization is performed. If it is less than the threshold value, restraint energization by high frequency voltage application, that is, high frequency energization is performed.
  • the frequency of the voltage output from the inverter be equal to or higher than the operation frequency during the compression operation.
  • a high-frequency voltage of 1 kHz or more that is the operating frequency at the time of the compression operation is applied to the motor when high-frequency energization is performed while the compressor is on standby. do it.
  • a high frequency voltage of 14 kHz or higher is applied to the motor, the vibration sound of the motor iron core approaches the audible frequency upper limit, which is effective in reducing noise.
  • a high-frequency voltage of about 20 kHz outside the audible frequency is set, noise can be further reduced.
  • switching in the inverter is performed to ensure reliability. It is desirable to apply a high-frequency voltage below the maximum rated frequency of the element.
  • the motor of the compressor is an IPM (Interior Permanent Magnet) structure embedded magnet type motor
  • IPM Interior Permanent Magnet
  • the surface of the rotor where the high-frequency magnetic flux interlinks becomes a heat generating portion when high-frequency current is applied Therefore, rapid heating of the compression mechanism can be realized by increasing the refrigerant contact surface, and more efficient refrigerant heating can be achieved.
  • the example in which the direct current energization and the high frequency energization are switched according to the heating amount necessary for vaporizing and discharging the liquid refrigerant staying inside the compressor has been described. It is also possible to configure the inverter control unit so that a direct current and a high-frequency current flow simultaneously. In that case, a large amount of heat generation, which is a merit of direct current conduction described above, and a low loss, which is a merit of high-frequency conduction. Combined restraint energization is possible.
  • Embodiment 2 the example in which the voltage phase command ⁇ is continuously changed in the range of 0 ° to 360 ° in high-frequency energization has been described, but in the present embodiment, the voltage phase is inverted in synchronization with the carrier frequency. Thus, an example in which high-frequency energization equal to the carrier frequency is performed will be described.
  • FIG. 13 is a diagram illustrating a configuration example of a high-frequency energization command generation unit in the heat pump apparatus according to the second embodiment.
  • FIG. 14 is a figure which shows each signal waveform at the time of the high frequency electricity supply in the heat pump apparatus concerning Embodiment 2.
  • FIG. 14 since the whole structure of the heat pump apparatus concerning Embodiment 2 is the same as the whole structure of the heat pump apparatus concerning Embodiment 1, description is abbreviate
  • the high-frequency energization command generation unit 16a in the second embodiment is a high frequency that inverts the output of the high-frequency voltage phase command calculation unit 31 in synchronization with the carrier signal.
  • a phase switching unit 32 is provided.
  • the upper limit of the carrier frequency which is the frequency of the carrier signal, is determined by the switching speed of the switching element of the inverter. For this reason, it is difficult to output a high-frequency voltage equal to or higher than the carrier frequency that is a carrier wave.
  • the upper limit of the switching speed is about 20 kHz.
  • the frequency of the high frequency voltage is about 1/10 or more of the carrier frequency
  • the waveform output accuracy of the high frequency voltage is deteriorated and there is a possibility of adverse effects such as superposition of DC components.
  • the frequency of the high frequency voltage is 1/10 or less of the carrier frequency, for example, when the carrier frequency is 20 kHz, the frequency of the high frequency voltage is 2 kHz or less and falls within the audible frequency band. Noise caused by electromagnetic noise of the motor becomes a problem.
  • the voltage phase (hereinafter referred to as “reference phase”) output from the high-frequency voltage phase command calculation unit 31 is a fixed value, and as shown in FIG.
  • the output from the high-frequency voltage phase command calculation unit 31 is inverted by 180 ° in the period up to the top, that is, in one cycle (1 / fc) of the carrier frequency fc.
  • Synchronized high-accuracy PWM signals UP, VP, WP, UN, VN, and WN are generated.
  • FIG. 15 is a diagram showing the ON / OFF state of each switching element in the inverter corresponding to each voltage vector.
  • the switching element surrounded by a broken line is ON, and the others are OFF.
  • the rotation direction of thick arrows indicating the change order of voltage vectors corresponds to the example shown in FIG.
  • each PWM signal UP, VP, WP, UN, VN, WN makes one rotation of the four circuit states in FIG. 15 in one carrier cycle.
  • a current having one carrier period as one period is supplied to the motor 8.
  • V4 vector and the V3 vector are alternately output, and + Iu and -Iu flow alternately in the winding of the motor 8, so that the forward and reverse torques are instantaneously switched. For this reason, forward and reverse torques are canceled out, and it is possible to apply a voltage that suppresses vibration of the rotor.
  • the reference phase output from the high-frequency voltage phase command calculation unit is a fixed value, and is inverted in synchronization with the frequency of the carrier signal, so that it is equal to the carrier frequency. Since high-frequency energization is performed, a high-accuracy high-frequency voltage synchronized with the frequency of the carrier signal can be applied to the winding of the motor, and noise due to electromagnetic noise of the motor can be suppressed.
  • the V4 vector and the V3 vector are alternately output via the V0 vector and the V7 vector, and the direction of the U-phase current is instantaneously switched. Since the forward and reverse torques are instantaneously switched and the forward and reverse torques are canceled out, the vibration of the rotor can be suppressed.
  • Embodiment 3 FIG.
  • the example in which the voltage phase (reference phase) output from the high-frequency voltage phase command calculation unit is a fixed value has been described.
  • the present embodiment an example in which the reference phase is changed over time is described. To do.
  • the whole structure of the heat pump apparatus concerning Embodiment 3 the structure of an inverter control part, and the structure of a restraint electricity supply control part are the same as the whole structure of the heat pump apparatus concerning Embodiment 1, it demonstrates here. Omitted.
  • the configuration of the high-frequency energization command generation unit in the heat pump device according to the third embodiment is the same as the configuration of the high-frequency energization command generation unit in the heat pump device according to the second embodiment, and thus description thereof is omitted here.
  • FIG. 16 is a diagram illustrating an example of the rotor stop position of the IPM motor when high-frequency current is applied.
  • the motor 8 is an IPM motor (Interior Permanent Magnet Motor)
  • the rotor stop position of the motor 8 is an angle at which the direction of the N pole of the rotor is deviated from the U-phase direction. It is represented by the size of ⁇ .
  • FIG. 17 is a diagram showing the relationship between the rotor position and each phase current.
  • the winding inductance value at the time of high-frequency energization depends on the rotor position. Therefore, the winding impedance represented by the product of the electrical angular frequency ⁇ and the winding inductance value varies depending on the rotor position. Therefore, even when the same voltage is applied during DC energization during operation standby, the current flowing through the winding of the motor 8 varies depending on the rotor stop position, and the amount of heating changes. As a result, depending on the rotor stop position, a large amount of electric power may be consumed in order to obtain a necessary heating amount.
  • FIG. 18 is a diagram showing an applied voltage when the reference phase ⁇ f is changed.
  • the high-frequency voltage phase command ⁇ ac which is the output of the high-frequency energization command generation unit 16a, is switched between 0 ° and 180 °.
  • ⁇ ac is switched between 45 ° and 225 °.
  • ⁇ ac is switched between 90 ° and 270 °.
  • the high-frequency voltage phase command ⁇ ac that is inverted in synchronization with the carrier signal also changes by 45 °. Regardless of the stop position, the voltage can be uniformly applied to the rotor, and the liquid refrigerant staying in the compressor 1 can be efficiently heated.
  • FIG. 19 is a diagram showing each phase current waveform when the reference phase ⁇ f is 0 °, 30 °, and 60 °.
  • each phase current waveform has a trapezoidal shape and becomes a current with less harmonic components.
  • each phase current waveform has a trapezoidal shape and is a current with less harmonic components.
  • each phase current waveform is distorted and harmonics as shown in FIG.
  • the current has a lot of wave components.
  • the distortion of each phase current waveform may cause factors such as motor noise and motor shaft vibration.
  • each phase current waveform has a trapezoidal shape and a current with less harmonic components.
  • the reference phase ⁇ f when the reference phase ⁇ f is switched other than n times of 60 °, the high-frequency voltage phase command ⁇ ac does not become a multiple of 60 °, so that another voltage vector is 2 between the V0 vector and the V7 vector. Each phase current waveform is distorted, resulting in a current with many harmonic components. Therefore, it is desirable to change the reference phase ⁇ f in multiples of 60 °, such as 0 °, 60 °, 120 °,.
  • the energization phase of the high-frequency AC voltage is changed when the high-frequency energization is performed by changing the reference phase output from the high-frequency voltage phase command calculation unit every predetermined time. Is changed every predetermined time, so that the influence of the inductance characteristics due to the rotor stop position can be eliminated, and the liquid refrigerant staying inside the compressor can be heated efficiently and uniformly regardless of the rotor stop position. Can do.
  • the reference phase is changed at a multiple of 60 ° every predetermined time, harmonic components of each phase current waveform can be suppressed, and motor noise and motor shaft vibration can be prevented.
  • Embodiment 4 FIG. In this embodiment, an air conditioner, a heat pump water heater, a refrigerator, and a refrigerator to which the heat pump device described in Embodiments 1 to 3 can be applied will be described.
  • FIG. 20 is a diagram illustrating a configuration example of a refrigeration cycle according to the fourth embodiment.
  • FIG. 21 is a Mollier diagram showing refrigerant state transition in the refrigeration cycle shown in FIG.
  • the horizontal axis represents specific enthalpy and the vertical axis represents refrigerant pressure.
  • the refrigeration cycle 50a includes a compressor 51, a heat exchanger 52, an expansion mechanism 53, a receiver 54, an internal heat exchanger 55, an expansion mechanism 56, and a heat exchanger 57. Are connected to each other in order to form a main refrigerant circuit 58 through which the refrigerant circulates.
  • a four-way valve 59 is provided on the discharge side of the compressor 51 so that the refrigerant circulation direction can be switched.
  • a fan 60 is provided in the vicinity of the heat exchanger 57.
  • a compressor 51 that compresses the refrigerant and a motor 8 that operates the compressor 7 are provided inside the compressor 51.
  • the refrigeration cycle 50a includes an injection circuit 62 that connects between the receiver 54 and the internal heat exchanger 55 to the injection pipe of the compressor 51 by piping.
  • An expansion mechanism 61 and an internal heat exchanger 55 are sequentially connected to the injection circuit 62.
  • a water circuit 63 through which water circulates is connected to the heat exchanger 52.
  • the water circuit 63 is connected to a device that uses water such as a water heater (not shown), a radiator (not shown), a radiator (not shown) such as floor heating.
  • the heating operation includes not only a heating operation in an air conditioner but also a hot water supply operation in which heat is applied to water to produce hot water in a heat pump water heater.
  • the gas-phase refrigerant (point A in FIG. 21) that has become high temperature and high pressure in the compressor 51 is discharged from the compressor 51, and is liquefied by heat exchange in a heat exchanger 52 that is a condenser and a radiator. (Point B in FIG. 21).
  • the water circulated through the water circuit 63 is warmed by the heat radiated from the refrigerant, and is used for the heating operation in the air conditioner and the hot water supply operation in the heat pump water heater.
  • the liquid-phase refrigerant liquefied by the heat exchanger 52 is decompressed by the expansion mechanism 53 and becomes a gas-liquid two-phase state (point C in FIG. 21).
  • the refrigerant in the gas-liquid two-phase state by the expansion mechanism 53 is heat-exchanged with the refrigerant sucked into the compressor 51 by the receiver 54, cooled, and liquefied (point D in FIG. 21).
  • the liquid phase refrigerant liquefied by the receiver 54 branches and flows into the main refrigerant circuit 58 and the injection circuit 62.
  • the liquid phase refrigerant flowing through the main refrigerant circuit 58 is heat-exchanged by the internal heat exchanger 55 with the refrigerant flowing through the injection circuit 62 that has been decompressed by the expansion mechanism 61 and is in a gas-liquid two-phase state, and further cooled (FIG. 21). E point).
  • the liquid-phase refrigerant cooled by the internal heat exchanger 55 is decompressed by the expansion mechanism 56 and becomes a gas-liquid two-phase state (point F in FIG. 21).
  • the refrigerant that has been in the gas-liquid two-phase state by the expansion mechanism 56 is heat-exchanged with the outside air by the heat exchanger 57 serving as an evaporator and heated (point G in FIG. 21). Then, the refrigerant heated by the heat exchanger 57 is further heated by the receiver 54 (point H in FIG. 21) and sucked into the compressor 51.
  • the refrigerant flowing through the injection circuit 62 is decompressed by the expansion mechanism 61 (point I in FIG. 21), and is heat-exchanged by the internal heat exchanger 55 (point J in FIG. 21).
  • the gas-liquid two-phase refrigerant (injection refrigerant) heat-exchanged by the internal heat exchanger 55 flows into the compressor 51 from the injection pipe of the compressor 51 in the gas-liquid two-phase state.
  • the refrigerant (point H in FIG. 21) sucked from the main refrigerant circuit 58 is compressed and heated to an intermediate pressure (point K in FIG. 21).
  • the injection refrigerant (point J in FIG. 21) joins the refrigerant compressed to the intermediate pressure and heated (point K in FIG. 21), and the temperature decreases (point L in FIG. 21).
  • the refrigerant whose temperature has decreased (point L in FIG. 21) is further compressed and heated to become high temperature and pressure and discharged (point A in FIG. 21).
  • the opening of the expansion mechanism 61 is fully closed. That is, when the injection operation is performed, the opening degree of the expansion mechanism 61 is larger than the predetermined opening degree. However, when the injection operation is not performed, the opening degree of the expansion mechanism 61 is more than the predetermined opening degree. Make it smaller. Thereby, the refrigerant does not flow into the injection pipe of the compressor 51.
  • the opening degree of the expansion mechanism 61 is controlled by electronic control by a control unit (not shown) such as a microcomputer.
  • the cooling operation includes not only the cooling operation in the air conditioner but also the production of cold water by taking heat from water in the refrigerator and the freezing operation in the refrigerator.
  • the gas-phase refrigerant (point A in FIG. 21) that has become high-temperature and high-pressure in the compressor 51 is discharged from the compressor 51, and is heat-exchanged and liquefied by a heat exchanger 57 that is a condenser and a radiator. B point).
  • the liquid-phase refrigerant liquefied by the heat exchanger 57 is decompressed by the expansion mechanism 56 and becomes a gas-liquid two-phase state (point C in FIG. 21).
  • the refrigerant in the gas-liquid two-phase state by the expansion mechanism 56 is heat-exchanged by the internal heat exchanger 55, cooled and liquefied (point D in FIG. 21).
  • the refrigerant that has become a gas-liquid two-phase state by the expansion mechanism 56 and the liquid-phase refrigerant that has been liquefied by the internal heat exchanger 55 have been decompressed by the expansion mechanism 61, and have become a gas-liquid two-phase state.
  • Heat exchange is performed with the refrigerant (point I in FIG. 21).
  • the liquid-phase refrigerant (point D in FIG. 21) heat-exchanged by the internal heat exchanger 55 branches and flows to the main refrigerant circuit 58 and the injection circuit 62.
  • the liquid-phase refrigerant flowing through the main refrigerant circuit 58 is heat-exchanged with the refrigerant sucked into the compressor 51 by the receiver 54 and further cooled (point E in FIG. 21).
  • the liquid-phase refrigerant cooled by the receiver 54 is decompressed by the expansion mechanism 53 and becomes a gas-liquid two-phase state (point F in FIG. 21).
  • the refrigerant in the gas-liquid two-phase state by the expansion mechanism 53 is heat-exchanged and heated by the heat exchanger 52 serving as an evaporator (point G in FIG. 21).
  • the water circulating in the water circuit 63 is cooled and used for the cooling operation in the air conditioner and the refrigeration operation in the refrigerator.
  • the refrigerant heated by the heat exchanger 52 is further heated by the receiver 54 (H point in FIG. 21) and sucked into the compressor 51.
  • the refrigerant flowing through the injection circuit 62 is decompressed by the expansion mechanism 61 (point I in FIG. 21), and is heat-exchanged by the internal heat exchanger 55 (point J in FIG. 21).
  • the gas-liquid two-phase refrigerant (injection refrigerant) heat-exchanged by the internal heat exchanger 55 flows into the compressor 51 from the injection pipe of the compressor 51 in the gas-liquid two-phase state.
  • the opening of the expansion mechanism 61 is fully closed so that the refrigerant does not flow into the injection pipe of the compressor 51, as in the heating operation.
  • the heat exchanger 52 has been described as a heat exchanger such as a plate heat exchanger that exchanges heat between the refrigerant and the water circulating in the water circuit 63.
  • the heat exchanger 52 is not limited to this and may exchange heat between the refrigerant and the air.
  • the water circuit 63 may be a circuit in which other fluid circulates instead of a circuit in which water circulates.
  • the embodiment As described above, according to the air conditioner, the heat pump water heater, the refrigerator, and the refrigerator of the fourth embodiment, by applying the heat pump device described in the first to third embodiments, the embodiment The effects described in 1 to 3 can be obtained, energy can be saved by reducing standby power, and contribution to global warming prevention.
  • the switching element constituting the inverter in the above-described embodiment and the freewheeling diode connected in parallel to the switching element, it is generally mainstream to use a Si-based semiconductor made of silicon (Si: silicon).
  • a wide band gap (WBG) semiconductor made of silicon carbide (SiC), gallium nitride (GaN), or diamond may be used.
  • a switching element or a diode element formed of such a WBG semiconductor has a high withstand voltage and a high allowable current density. Therefore, the switching element and the diode element can be reduced in size, and by using these reduced switching element and diode element, the semiconductor module incorporating these elements can be reduced in size.
  • the switching element and the diode element formed of such a WBG semiconductor have high heat resistance.
  • the heat sink fins of the heat sink can be miniaturized and the water cooling part can be air cooled, so that the semiconductor module can be further miniaturized.
  • switching elements and diode elements formed of such WBG semiconductors have low power loss. For this reason, it is possible to increase the efficiency of the switching element and the diode element, and to increase the efficiency of the semiconductor module.
  • both the switching element and the diode element are preferably formed of a WBG semiconductor, any one of the elements may be formed of a WBG semiconductor, and the effects in the above-described embodiments can be obtained. .
  • the same effect can be obtained by using a super junction structure MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) known as a highly efficient switching element in addition to the WBG semiconductor.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the compressor with the scroll mechanism it is difficult for the compressor with the scroll mechanism to perform high-pressure relief of the compression chamber. Therefore, compared with other types of compressors, there is a high possibility that excessive compression will be applied to the compression mechanism when liquid compression is performed.
  • the compressor in the heat pump device according to the above-described embodiment, the compressor can be efficiently heated, and the retention of the liquid refrigerant in the compressor can be suppressed. Therefore, since liquid compression can be prevented, it is effective also when using the compressor of a scroll mechanism.
  • the voltage command V * may be adjusted in advance so as not to exceed 50 W, or the feedback control may be performed so that the flowing current and voltage are detected and become 50 W or less.
  • the inverter control unit can be constituted by a discrete system of CPU (Central Processing Unit), DSP (Digital Signal Processor), and microcomputer (microcomputer), and other electric circuit elements such as analog circuits and digital circuits. It may be configured.
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • microcomputer microcomputer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compressor (AREA)
  • Control Of Ac Motors In General (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 必要な加熱量に応じて効率よく圧縮機への加熱を実施することにより、確実に圧縮機内部への冷媒の滞留を防止すると共に、待機電力の削減を図ることを可能とするヒートポンプ装置ならびに、それを備えた空気調和機、ヒートポンプ給湯機、冷蔵庫、および冷凍機を得ること。インバータ制御部10は、圧縮機1の運転待機中において、圧縮機1への冷媒寝込量に基づいて、圧縮機1への加熱が必要であるか否かを判定すると共に、圧縮機1への加熱が必要であると判定した場合に、冷媒寝込量に応じて、モータ8に直流電圧を供給する直流通電とモータ8に通常運転時よりも高い周波数の高周波電圧を供給する高周波通電とのうち、いずれか一方を選択して、モータ8の拘束通電を実施するための拘束通電指令を出力する拘束通電制御部12と、拘束通電指令に基づき駆動信号を生成する駆動信号生成部13と、を備える。

Description

ヒートポンプ装置ならびに、それを備えた空気調和機、ヒートポンプ給湯機、冷蔵庫、および冷凍機
 本発明は、ヒートポンプ装置ならびに、それを備えた空気調和機、ヒートポンプ給湯機、冷蔵庫、および冷凍機に関する。
 従来、空気調和機等に用いられるヒートポンプ装置の運転停止中において、圧縮機内部への液冷媒の滞留を防止する技術として、圧縮機内部のモータを駆動することなくモータ巻線に通電(以下「拘束通電」という)して、圧縮機を加熱することにより液冷媒を気化させて排出するものがある。例えば、空気調和機の周囲温度が低温状態を検知した際に、通常運転時における通常周波数より高い約25kHzの単相交流電圧を圧縮機に供給して、騒音や振動、過大な温度上昇や圧縮機の回転部の回転を抑制しつつ、圧縮機内部への液冷媒の滞留を防止して圧縮機内部の潤滑作用を円滑にする技術が開示されている(例えば、特許文献1)。
 さらに、例えば、外気温度に応じてモータ巻線に直流電流を流すことによりモータの巻線に発生する銅損を利用して、ロータを回転させることなくモータの予備加熱を行う技術が開示されている(例えば、特許文献2)。
特開昭61-91445号公報 特開2007-166766号公報
 しかしながら、特許文献1に記載された技術では、高周波の単相交流電圧を圧縮機に供給しているので、全てのスイッチング素子がオフとなる全オフ区間が比較的長く発生することになる。このような全オフ区間では、電流は還流ダイオードを介して直流電源に回生するため、モータに効率的に高周波電流を流すことができず、圧縮機の加熱効率が悪くなる、という問題があった。また、小型で鉄損の小さなモータを用いた場合、印加電圧に対する発熱量が小さくなるため、使用可能範囲内の電圧では必要な加熱量を得られない、という問題があった。
 また、特許文献3に記載されたように、モータ巻線に直流電流を流してモータの予備加熱を行う場合、発熱量は巻線抵抗と電流の二乗との積で得られるが、近年のモータの高効率設計によりモータの巻線抵抗が小さくなる傾向にあるため、十分な加熱量を得るには、巻線抵抗が減少した分、モータに流れる電流を増加させる必要がある。このため、インバータに流れる電流も増加し、インバータの損失が増大して圧縮機の加熱効率が悪化する、という問題があった。
 本発明は、上記に鑑みてなされたものであって、必要な加熱量に応じて効率よく圧縮機への加熱を実施し、確実に圧縮機内部への冷媒の滞留を防止すると共に、待機電力の削減を図ることを可能とするヒートポンプ装置ならびに、それを備えた空気調和機、ヒートポンプ給湯機、冷蔵庫、および冷凍機を提供することを目的とする。
 上述した課題を解決し、目的を達成するため、本発明にかかるヒートポンプ装置は、冷媒を圧縮する圧縮機構と前記圧縮機構を駆動するモータとを有する圧縮機と、熱交換器と、前記モータに所望の電圧を印加するインバータと、前記インバータを駆動する駆動信号を生成するインバータ制御部と、を備えるヒートポンプ装置であって、前記インバータ制御部は、前記圧縮機の運転待機中において、前記圧縮機への冷媒寝込量に基づいて、当該圧縮機への加熱が必要であるか否かを判定すると共に、当該圧縮機への加熱が必要であると判定した場合に、前記冷媒寝込量に応じて、前記モータに直流電圧を供給する直流通電と前記モータに通常運転時よりも高い周波数の高周波電圧を供給する高周波通電とのうち、いずれか一方を選択して、前記モータの拘束通電を実施するための拘束通電指令を出力する拘束通電制御部と、前記拘束通電指令に基づき前記駆動信号を生成する駆動信号生成部と、を備えることを特徴とする。
 本発明によれば、必要な加熱量に応じて効率よく圧縮機への加熱を実施し、確実に圧縮機内部への冷媒の滞留を防止すると共に、待機電力の削減を図ることができる、という効果を奏する。
図1は、実施の形態1にかかるヒートポンプ装置の一構成例を示す図である。 図2は、実施の形態1にかかるヒートポンプ装置におけるインバータの一構成例を示す図である。 図3は、実施の形態1にかかるヒートポンプ装置におけるインバータ制御部の一構成例を示す図である。 図4は、実施の形態1にかかるヒートポンプ装置における拘束通電制御部の一構成例を示す図である。 図5は、実施の形態1にかかるヒートポンプ装置における加熱判定部の動作を説明するための図である。 図6は、実施の形態1にかかるヒートポンプ装置における冷媒寝込量出力部の別の構成例を示す図である。 図7は、実施の形態1にかかるヒートポンプ装置における直流通電指令生成部の一構成例を示す図である。 図8は、実施の形態1にかかるヒートポンプ装置における高周波通電指令生成部の一構成例を示す図である。 図9は、実施の形態1にかかるヒートポンプ装置における8通りのスイッチングパターンを示す図である。 図10は、実施の形態1にかかるヒートポンプ装置において直流通電を選択した場合の各信号波形を示す図である。 図11は、実施の形態1にかかるヒートポンプ装置において高周波通電を選択した場合の各信号波形を示す図である。 図12は、実施の形態1にかかるヒートポンプ装置における冷媒加熱動作処理のフローチャートである。 図13は、実施の形態2にかかるヒートポンプ装置における高周波通電指令生成部の一構成例を示す図である。 図14は、実施の形態2にかかるヒートポンプ装置における高周波通電時の各信号波形を示す図である。 図15は、各電圧ベクトルに対応するインバータ内の各スイッチング素子のON/OFF状態を示す図である。 図16は、高周波通電時におけるIPMモータのロータ停止位置の一例を示す図である。 図17は、ロータ位置と各相電流との関係を示す図である。 図18は、基準位相θfを変化させた場合の印加電圧を示す図である。 図19は、基準位相θfが0°、30°、60°である場合の各相電流波形を示す図である。 図20は、実施の形態4にかかる冷凍サイクルの一構成例を示す図である。 図21は、図20に示す冷凍サイクルにおける冷媒の状態遷移を示すモリエル線図である。
 以下に添付図面を参照し、本発明の実施の形態にかかるヒートポンプ装置ならびに、それを備えた空気調和機、ヒートポンプ給湯機、冷蔵庫、および冷凍機について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。
実施の形態1.
 図1は、実施の形態1にかかるヒートポンプ装置の一構成例を示す図である。図1に示すように、実施の形態1にかかるヒートポンプ装置100は、圧縮機1、四方弁2、熱交換器3、膨張機構4、および熱交換器5が冷媒配管6を介して順次接続され、冷凍サイクル50が形成される。なお、図1に示す例では、冷凍サイクル50を形成する基本的な構成を示しており、一部構成要素を省略した図としている。
 圧縮機1の内部には、冷媒を圧縮する圧縮機構7と、この圧縮機構7を動作させるモータ8とが設けられている。モータ8は、U相、V相、W相の三相の巻き線を有する三相モータである。
 モータ8には、インバータ9が電気的に接続されている。インバータ9は、直流電圧源11に接続され、直流電圧源11から供給される直流電圧(母線電圧)Vdcを電源としてモータ8のU相、V相、W相の巻き線に電圧Vu、Vv、Vwをそれぞれ印加する。
 また、インバータ9には、インバータ制御部10が電気的に接続されている。インバータ制御部10は、インバータ9を駆動するための駆動信号をインバータ9へ出力する。このインバータ制御部10は、通常運転モードおよび加熱運転モードの2つの運転モードを備えている。
 通常運転モードでは、インバータ制御部10は、モータ8を回転駆動するためのPWM(Pulse Width Modulation)信号(駆動信号)を生成して出力する。また、加熱運転モードでは、インバータ制御部10は、通常運転モードとは異なり、運転待機中においてモータ8を回転駆動させないように通電することによりモータ8の加熱を行い、圧縮機1内部に滞留した液冷媒を温め気化させて排出する運転モードである。この加熱運転モードでは、モータ8に直流電流もしくはモータ8が追従できない高周波電流を流すことにより、モータ8に発生する熱を利用して、圧縮機1内部に滞留した液冷媒に加熱する。本実施の形態では、この加熱運転モードにおいて、モータ8を回転駆動させないように通電して加熱を行うことを、以下「拘束通電」と呼ぶ。なお、モータ8に直流電流を流して拘束通電を実施することを、以下「直流通電」と呼び、モータ8に高周波電流を流して拘束通電を実施することを、以下「高周波通電」と呼ぶ。また、本実施の形態では、以下、加熱運転モードを実現する構成部および動作について説明する。
 インバータ制御部10は、加熱運転モードを実現する構成部として、拘束通電制御部12および駆動信号生成部13を備えている。拘束通電制御部12は、加熱判定部14、直流通電指令生成部15、および高周波通電指令生成部16を備えている。なお、ここでは、通常運転モードを実現するための一部構成要素を省略した図としている。
 図2は、実施の形態1にかかるヒートポンプ装置におけるインバータ9の一構成例を示す図である。図2に示すように、インバータ9は、ブリッジ結線されたスイッチング素子70a~70f、および各スイッチング素子70a~70fにそれぞれ並列接続された還流ダイオード80a~80fを有している。このインバータ9は、直流電圧源11に接続され、母線電圧Vdcを電源として、インバータ制御部10より送られたPWM信号(UP、VP、WP、UN、VN,WN)により、それぞれに対応したスイッチング素子(UPはスイッチング素子70a、VPはスイッチング素子70b、WPはスイッチング素子70c、UNはスイッチング素子70d、VNはスイッチング素子70e、WNはスイッチング素子70fにそれぞれ対応)が駆動され、モータ8のU相、V相、W相の巻き線にそれぞれ印加する三相の電圧Vu、Vv、Vwを発生させる。
 図3は、実施の形態1にかかるインバータ制御部の一構成例を示す図である。インバータ制御部10は、上述したように、加熱判定部14、直流通電指令生成部15、および高周波通電指令生成部16を備える拘束通電制御部12および駆動信号生成部13を備え構成される。加熱判定部14は、加熱指令部17および通電切替部18を備えている。また、駆動信号生成部13は、電圧指令算出部19およびPWM信号生成部20を備えている。
 直流通電指令生成部15は、加熱指令部17から出力される加熱量H*に基づいて、直流電圧指令Vdc*および直流電圧位相指令θdcを含む直流通電指令を生成し、高周波通電指令生成部16は、加熱指令部17から出力される加熱量H*に基づいて、高周波電圧指令Vac*および高周波電圧位相指令θacを含む高周波通電指令を生成する。
 加熱指令部17は、圧縮機1に滞留した液冷媒の寝込量を推定して、加熱要否を駆動信号生成部13に出力すると共に、液冷媒の追い出しに必要な加熱量H*を求めて直流通電指令生成部15および高周波通電指令生成部16に出力し、直流通電指令生成部15の出力である直流電圧指令Vdc*および直流電圧位相指令θdcを含む直流通電指令と、高周波通電指令生成部16の出力である高周波電圧指令Vac*および高周波電圧位相指令θacを含む高周波通電指令とを切り替える通電切替信号を通電切替部18に出力する。
 通電切替部18は、直流電圧指令Vdc*および直流電圧位相指令θdcもしくは高周波電圧指令Vac*および高周波電圧位相指令θacのいずれか、つまり、直流通電指令もしくは高周波通電指令のいずれかを選択し、電圧指令V*および電圧位相指令θを含む拘束通電指令として駆動信号生成部13に出力する。
 電圧指令算出部19は、電圧指令V*および電圧位相指令θに基づいて三相(U相、V相、W相)電圧指令Vu*、Vv*、Vw*を生成する。PWM信号生成部20は、三相電圧指令Vu*、Vv*、Vw*および母線電圧Vdcに基づいて、インバータ9を駆動するためのPWM信号(UP、VP、WP、UN、VN、WN)を生成する。
 つぎに、実施の形態1にかかるヒートポンプ装置100における拘束通電制御部12の詳細構成および動作について、図4~図6を参照して説明する。
 図4は、実施の形態1にかかるヒートポンプ装置における拘束通電制御部の一構成例を示す図である。また、図5は、実施の形態1にかかるヒートポンプ装置における加熱判定部の動作を説明するための図である。図5(a)は、圧縮機1の周辺の雰囲気温度(例えば、外気温度)Tcおよび圧縮機1の温度(圧縮機温度)Toと時間との関係を示し、図5(b)は、単位時間当たりの冷媒寝込量を示し、図5(c)は、単位時間あたりの加熱量H*を示している。また、図6は、実施の形態1にかかるヒートポンプ装置における加熱判定部の別の構成例を示す図である。
 拘束通電制御部12は、上述したように、加熱判定部14、直流通電指令生成部15、および高周波通電指令生成部16を備え、加熱判定部14は、加熱指令部17および通電切替部18を備えている。加熱指令部17は、図4に示すように、冷媒寝込量出力部40、加熱要否判定部25、加熱量演算部26、および通電切替判断部27を備え構成される。冷媒寝込量出力部40は、温度検出部21および冷媒寝込量推定部22を備えている。また、通電切替部18および通電切替判断部27は、通電切替制御部33を構成している。
 温度検出部21は、圧縮機1の周辺の雰囲気温度(例えば、外気温度)Tcおよび圧縮機1の温度(圧縮機温度)Toを検出し、冷媒寝込量推定部22は、雰囲気温度Tcおよび圧縮機温度Toに基づいて、圧縮機1内に滞留した液冷媒の寝込量を推定する。ここで、冷凍サイクル50を循環する冷媒は、冷凍サイクル50を形成する各構成部のうち、最も温度の低い箇所で凝縮して溜まり込んでいく。圧縮機1は、冷凍サイクル50を形成する各構成部の中で最も熱容量が大きいため、図5(b)に示すように、雰囲気温度Tcの上昇に対して、圧縮機温度Toが遅れて上昇して最も温度が低くなる。このため、圧縮機1の内部に液冷媒が滞留する。本実施の形態では、冷媒寝込量推定部22は、例えば、あらかじめ実験等により求めた雰囲気温度Tcと圧縮機温度Toとの関係に基づいて、図5(b)に示すように、単位時間t当たりの冷媒寝込量を推定する。なお、圧縮機1の熱容量をあらかじめ把握している場合には、雰囲気温度Tcのみを検出して、雰囲気温度Tcの変化に対して圧縮機温度Toがどの程度遅れて変化するか推定することにより、単位時間t当たりの冷媒寝込量を推定することが可能である。この場合には、圧縮機温度Toを検出するセンサを削減することができ、コストを削減することができる。また、雰囲気温度Tcに代えて、冷凍サイクル50を形成する各構成部の中で圧縮機1よりも熱容量が小さい熱交換器3等の温度を検出するようにしても、同様に単位時間t当たりの冷媒寝込量を推定することが可能であることは言うまでもない。
 また、図6(a)に示すように、冷媒寝込量出力部40aは、図5において説明した温度検出部21および冷媒寝込量推定部22に代えて、圧縮機1内部の冷媒寝込量を検出する冷媒寝込量検出部23を設けている。このように、より直接的に冷媒寝込量を検出するようにすれば、より正確な冷媒寝込量を把握することが可能である。なお、圧縮機1内部の冷媒寝込量を検出するセンサとしては、液量を測る静電容量センサや、レーザーや音、電磁波等により圧縮機1の上部と冷媒の液面との距離を測るセンサ等がある。また、図6(b)に示すように、温度検出部21、冷媒寝込量推定部22、冷媒寝込量検出部23、および冷媒寝込判定切替部24を備える冷媒寝込量出力部40bを設け、冷媒寝込量の推定値と検出値とのうちのいずれかを選択するように構成してもよいし、さらには、冷媒寝込量の推定値および検出値の両方を用いて以降の制御を行うようにしてもよい。
 加熱要否判定部25は、冷媒寝込量出力部40(あるいは40a、または40b)の出力である冷媒寝込量に基づいて、圧縮機1への加熱要否を判定する。圧縮機1への加熱が必要である、つまり、液冷媒が圧縮機1内部に滞留している場合、あるいは、液冷媒が圧縮機1内部に滞留していると推定された場合には、加熱要否判定部25は、PWM信号生成部20にON信号を出力すると共に、加熱量演算部26に圧縮機1内部に滞留した液冷媒を追い出すために必要な加熱量H*の演算開始を指示し、圧縮機1への加熱が不要である、つまり、液冷媒が圧縮機1内部に滞留していない場合、あるいは、液冷媒が圧縮機1内部に滞留していないと推定された場合には、加熱要否判定部25は、PWM信号生成部20にOFF信号を出力する。
 加熱量演算部26は、加熱要否判定部25から加熱量H*の演算開始を指示されると、冷媒寝込量出力部40(あるいは40a、または40b)の出力である冷媒寝込量に応じて、圧縮機1内部に滞留した液冷媒を追い出すために必要な加熱量H*を演算し、直流通電指令生成部15、高周波通電指令生成部16および通電切替判断部27に出力する。この加熱量H*は、圧縮機1の種類や大きさにより変化し、圧縮機1が大きい場合や熱が伝わりにくい素材や形状である場合には、加熱量H*を高く設定すればよい。
 通電切替判断部27は、図5(c)に示すように、あらかじめ直流通電を行うか高周波通電を行うかを決定する閾値を有しており、加熱量H*が閾値以上であるか閾値未満であるかに基づいて、通電切替部18を制御する。加熱量H*が閾値以上である場合には、通電切替判断部27は、通電切替部18により直流通電指令生成部15から出力される直流電圧指令Vdc*および直流電圧位相指令θdcを選択(以下、「直流通電を選択」という)して電圧指令V*および電圧位相指令θとして出力されるように制御し、加熱量H*が閾値未満である場合には、通電切替判断部27は、通電切替部18により高周波通電指令生成部16から出力される高周波電圧指令Vac*および高周波電圧位相指令θacを選択(以下、「高周波通電を選択」という)して電圧指令V*および電圧位相指令θとして出力されるように制御する。
 つぎに、実施の形態1にかかるヒートポンプ装置における直流通電指令生成部15の詳細構成および動作について、図7を参照して説明する。図7は、実施の形態1にかかるヒートポンプ装置における直流通電指令生成部の一構成例を示す図である。図7に示すように、直流通電指令生成部15は、直流電圧指令演算部28および直流電圧位相指令演算部29を備え構成される。
 直流電圧指令演算部28は、加熱量H*と直流電圧指令Vdc*との関係をテーブルデータとしてあらかじめ記憶しておき、加熱量演算部26から入力される加熱量H*に応じて、直流電圧指令Vdc*を演算して出力する。なお、上述した例では、加熱量H*を入力としているが、上述した圧縮機1の周辺の雰囲気温度(例えば、外気温度)Tcや圧縮機温度To、圧縮機1の構造に関する情報など種々のデータを用いて、直流電圧指令Vdc*の信頼性を向上させることも可能であることは言うまでもない。
 また、直流電圧位相指令演算部29は、モータ8に通電する直流電圧位相指令θdcを求める。ここでは、直流電圧を印加するために直流電圧位相指令θdcは固定値とし、例えばモータ8の0°の位置において通電する場合には、θdc=0を出力する。ただし、固定値で連続通電を行った場合、モータ8の特定部分のみが発熱するため、本実施の形態では、時間の経過と共に直流電圧位相指令θdcを変化させ、モータ8を均一に加熱するようにしている。
 つぎに、実施の形態1にかかるヒートポンプ装置における高周波通電指令生成部16の詳細構成および動作について、図8を参照して説明する。図8は、実施の形態1にかかるヒートポンプ装置における高周波通電指令生成部の一構成例を示す図である。高周波通電指令生成部16は、高周波電圧指令演算部30および高周波電圧位相指令演算部31を備え構成される。
 高周波電圧指令演算部30は、加熱量H*と高周波電圧指令Vac*との関係をテーブルデータとしてあらかじめ記憶しておき、加熱量演算部26から入力される加熱量H*に応じて、高周波電圧指令Vac*を演算して出力する。なお、上述した例では、加熱量H*を入力としているが、直流電圧指令演算部28と同様に、圧縮機1の周辺の雰囲気温度(例えば、外気温度)Tcや圧縮機温度To、圧縮機1の構造に関する情報など種々のデータを用いて、高周波電圧指令Vacの信頼性を向上させることも可能であることは言うまでもない。
 また、高周波電圧位相指令演算部31は、モータ8に通電する高周波電圧位相指令θacを求める。ここでは、高周波電圧を印加するために高周波電圧位相指令θacを0°~360°の範囲で連続的に変化させる。ここで、高周波電圧位相指令θacが0°~360°の範囲で変化する周期を短くすることにより、高周波電圧の周波数を増加させることができる。
 ここで、実施の形態1にかかるヒートポンプ装置100において、直流通電と高周波通電とを加熱量に応じて切り替える主旨について説明する。
 直流通電の場合、モータ8に直流電流Idcを流すことにより、モータ8を構成する巻線の抵抗RとIdcとに比例した銅損をモータ8の巻線に発生させることにより、モータ8内部に滞留した液冷媒に加熱することができる。
 また、直流電流Idcを増加させるようにインバータ9を駆動することにより、大きな発熱量を得ることができ、圧縮機1内部に滞留した液冷媒を短時間で排出することが可能である。しかし、近年のモータは、高効率設計により巻線の抵抗値が小さくなる傾向であるので、従来よりも巻線の抵抗値が小さくなった分、十分な加熱量を得るためには、直流電流Idcを増加させる必要がある。このため、インバータ9の損失が増大してモータ8の加熱効率が悪化し、消費電力が増加するため、運転待機中に長時間冷媒加熱を行うのに適した通電手法ではない。
 一方、高周波通電の場合、インバータ9によりモータ8に高周波電流Iacを流すことにより、モータ8を構成する固定子や回転子の材料である磁性体に渦電流損やヒステリシス損といった鉄損を発生させることにより、モータ8内部に滞留した液冷媒に加熱することができる。
 また、高周波電流Iacの角周波数ωを高くすることにより、鉄損が増加して発熱量を大きくすることができ、さらには、モータ8のインダクタンスによるインピーダンスを高くすることができるので、高周波電流Iacを抑制することでき、インバータ9の損失を低減しつつモータ8内部に滞留した液冷媒への高効率な加熱が可能となるため、運転待機中に長時間冷媒加熱を行うのに適している。このため、待機電力の削減による省エネルギー化が可能であり、地球温暖化防止に寄与することができる。しかし、高周波通電を行う場合には、通電周波数が可聴帯域内であるとモータ8の電磁音による騒音が問題となるため、可聴周波数限界である20kHzに近づける必要がある。また、鉄損が小さい小型のモータ8を用いた場合や、インダクタンスが大きいモータ8を用いた場合には、印加電圧に対する発熱量が小さくなる。
 したがって、本実施の形態では、加熱量H*が大きい場合には、直流通電を行うことで加熱量を大きくすることにより短時間で液冷媒の排出を行い、加熱量H*が小さい場合には、高周波通電を行うことにより消費電力の削減を図る。このように、加熱量H*の大きさに応じて、直流通電と高周波通電とを切り替えることにより、確実に圧縮機1内部に滞留した液冷媒を排出可能となり、消費電力を削減して地球温暖化防止に寄与した冷媒加熱運転が可能となるだけでなく、インバータ9に大きな直流電流Idcが流れる時間を短縮できるので、信頼性の向上やインバータ9の放熱構造の簡素化によるコスト削減が可能となる。
 つぎに、電圧指令算出部19における電圧指令値Vu*,Vv*,Vw*の生成手法と、PWM信号生成部20におけるPWM信号の生成手法とについて、図9~図11を参照して説明する。
 モータ8が三相モータである場合には、一般的に、U相、V相、およびW相の各位相は、互いに120°(=2π/3)ずつ異なる。そのため、各電圧指令値Vu*,Vv*,Vw*を次式(1)~(3)のように位相が2π/3ずつ異なる余弦波(正弦波)と定義する。
 Vu*=V*×cosθ … (1)
 Vv*=V*×cos(θ-(2/3)π) … (2)
 Vw*=V*×cos(θ+(2/3)π) … (3)
 電圧指令算出部19は、電圧指令V*および電圧位相指令θに基づき、上式(1)~(3)を用いて各電圧指令値Vu*,Vv*,Vw*を算出してPWM信号生成部20に出力する。PWM信号生成部20は、各電圧指令値Vu*,Vv*,Vw*と、所定の周波数で振幅値が±(Vdc/2)のキャリア信号(基準信号)とを比較し、相互の大小関係に基づき各PWM信号UP,VP,WP,UN,VN,WNを生成する。
 なお、上式(1)~(3)では、単純な三角関数で各電圧指令Vu*,Vv*,Vw*を求めているが、上述した手法以外に、二相変調や三次高調波重畳変調、空間ベクトル変調といった他の手法を用いて、電圧指令Vu*,Vv*,Vw*を求めてもよい。
 ここで、電圧指令値Vu*がキャリア信号よりも大きい場合には、UPはスイッチング素子70aをオンにする電圧とし、UNはスイッチング素子70dをオフにする電圧とする。また、電圧指令値Vu*がキャリア信号よりも小さい場合には、逆に、UPはスイッチング素子70aをオフにする電圧とし、UNはスイッチング素子70dをオンにする電圧とする。他の信号についても同様であり、電圧指令値Vv*とキャリア信号との比較によりVPおよびVNが決定され、電圧指令値Vw*とキャリア信号との比較によりWPおよびWNが決定される。
 一般的なインバータの場合、相補PWM方式を採用しているため、UPおよびUN、VPおよびVN、WPおよびWNはそれぞれ互いに論理反転した関係となる。そのため、スイッチングパターンは全部で8通りとなる。
 図9は、実施の形態1にかかるヒートポンプ装置における8通りのスイッチングパターンを示す図である。なお、図9では、各スイッチングパターンで発生する電圧ベクトルにV0~V7の符号を付している。また、各電圧ベクトルの電圧の方向を±U,±V,±W(電圧が発生しない場合には0)で表している。ここで、+Uとは、U相を介してモータ8へ流入し、V相及びW相を介してモータ8から流出するU相方向の電流を発生させる電圧であり、-Uとは、V相及びW相を介してモータ8へ流入し、U相を介してモータ8から流出する-U相方向の電流を発生させる電圧である。±V,±Wについても同様の解釈である。
 図9に示すスイッチングパターンを組み合わせることにより、インバータ9に所望の電圧を出力させることができる。例えば、通常の圧縮動作を行う通常運転モードでは、数10Hz~数kHzの範囲で動作させることが一般的である。ここで、電圧位相指令θを固定値にすることにより、加熱運転モードにおける直流通電を行うことができ、電圧位相指令θを通常運転モードよりも高速で変化させることにより、加熱運転モードにおける高周波通電を行うことができる。
 図10は、実施の形態1にかかるヒートポンプ装置において直流通電を選択した場合の各信号波形を示す図である。θ=90°に設定した場合は、図10に示すように、Vu*=0、Vv*=-0.5V*、Vw*=0.5V*となり、基準信号と比較した結果、図10に示す各PWM信号UP,VP,WP,UN,VN,WNが得られ、図9の電圧ベクトルV0(0電圧)、V2(+V電圧)、V6(―W電圧)、V7(0電圧)が出力され、モータ8に直流電流を流すことが可能となる。
 また、図11は、実施の形態1にかかるヒートポンプ装置において高周波通電を選択した場合の各信号波形を示す図である。高周波通電では、電圧位相指令θ=0°~360°に設定しているため、図11に示すように、Vu*、Vv*、Vw*はそれぞれ120°位相差の正弦(余弦)波となり、基準信号と比較した結果、図11に示す各PWM信号UP,VP,WP,UN,VN,WNが得られ、時間の変化とともに電圧ベクトルが変化し、モータ8に高周波電流を流すことが可能となる。
 つぎに、実施の形態1にかかるヒートポンプ装置100における冷媒加熱動作処理について、図12を参照して説明する。図12は、実施の形態1にかかるヒートポンプ装置における冷媒加熱動作処理のフローチャートである。図12に示すように、実施の形態1にかかるヒートポンプ装置における冷媒加熱動作処理は、加熱判定ステップ、通電切替ステップ、電圧指令値算出ステップ、およびPWM信号生成ステップの4つのステップに分割される。
 運転待機中において、加熱要否判定部25は、圧縮機1への加熱が必要か否かを判定する(ステップST101)。本実施の形態では、上述したように、加熱要否判定部25は、冷媒寝込量出力部40の出力である冷媒寝込量に基づいて、圧縮機1への加熱要否を判定する。
 圧縮機1への加熱が不要である、つまり、液冷媒が圧縮機1内部に滞留していない場合、あるいは、液冷媒が圧縮機1内部に滞留していないと推定された場合には(ステップST101;No)、加熱要否判定部25は、PWM信号生成部20にOFF信号を出力して、圧縮機1への加熱が必要となるまで、この加熱要否判定ステップを繰り返し実施する。
 圧縮機1への加熱が必要である、つまり、液冷媒が圧縮機1内部に滞留している場合、あるいは、液冷媒が圧縮機1内部に滞留していると推定された場合には(ステップST101;Yes)、加熱要否判定部25は、PWM信号生成部20にON信号を出力すると共に、加熱量演算部26に圧縮機1内部に滞留した液冷媒を追い出すために必要な加熱量H*の演算開始を指示する。
 加熱量演算部26は、加熱要否判定部25から加熱量H*の演算開始を指示されると、冷媒寝込量に応じて、加熱量H*を演算し、直流通電指令生成部15、高周波通電指令生成部16および通電切替判断部27に出力する(ステップST102)。
 続いて、直流通電指令生成部15は、加熱量H*に応じて、直流電圧指令Vdc*および直流電圧位相指令θdcを生成し、高周波通電指令生成部16は、加熱量H*に応じて、高周波電圧指令Vac*および高周波電圧位相指令θacを生成する(ステップST103)。
 続いて、通電切替判断部27は、加熱量H*が閾値以上であるか閾値未満であるかを判定する(ステップST104)。通電切替判断部27は、加熱量H*が閾値以上である場合には直流通電を選択し(ステップST104;Yes)、直流通電指令生成部15から出力される直流電圧指令Vdc*および直流電圧位相指令θdcが出力されるように通電切替部18を制御し、加熱量H*が閾値未満である場合には高周波通電を選択し(ステップST104;No)、高周波通電指令生成部16から出力される高周波電圧指令Vac*および高周波電圧位相指令θacが出力されるように通電切替部18を制御する。
 電圧指令算出部19は、直流通電が選択された場合には(ステップST104;Yes)、直流通電指令である直流電圧指令Vdc*および直流電圧位相指令θdcに基づき、各電圧指令値Vu*,Vv*,Vw*を算出してPWM信号生成部20に出力する(ステップST105a)。
 また、電圧指令算出部19は、高周波通電が選択された場合には(ステップST104;No)、高周波通電指令である高周波電圧指令Vac*および高周波電圧位相指令θacに基づき、各電圧指令値Vu*,Vv*,Vw*を算出してPWM信号生成部20に出力する(ステップST105b)。
 PWM信号生成部20は、各電圧指令値Vu*,Vv*,Vw*に基づき、各PWM信号UP,VP,WP,UN,VN,WNを生成してインバータ9の各スイッチング素子70a~70fに出力し(ステップST106)、ステップST101に戻り、通常運転モードによる運転が開始されるまで、ステップST101~ステップST106の処理を繰り返し実施する。
 以上説明したように、実施の形態1のヒートポンプ装置によれば、圧縮機の運転待機中において、液冷媒が圧縮機内部に滞留している場合、あるいは、液冷媒が圧縮機内部に滞留していると推定された場合に、検出あるいは推定された冷媒寝込量に基づいて、圧縮機内部に滞留した液冷媒を気化させて排出するために必要な加熱量を求め、その加熱量があらかじめ設定した閾値以上である場合には、直流電圧印加による拘束通電、つまり、直流通電を実施し、閾値未満である場合には、高周波電圧印加による拘束通電、つまり、高周波通電を実施するようにしたので、加熱量が大きい場合には、大きな発熱量を得ることができる直流通電を行うことにより、短時間で確実に圧縮機内部への冷媒の滞留を防止することができ、加熱量が小さい場合には、高効率な加熱が可能な高周波通電を行うことにより、運転待機中における消費電力を削減することができる。このように、必要な加熱量に応じて効率よく圧縮機への加熱を実施することにより、確実に圧縮機内部への冷媒の滞留を防止すると共に、待機電力の削減を図ることができ、待機電力の削減による省エネルギー化が可能となり、地球温暖化防止に寄与することができる。
 なお、直流通電を実施する場合には、モータに直流電流が流れることにより、モータのロータを直流励磁により所定位置に固定することが可能となるため、ロータの回転や振動が発生しない。
 また、高周波通電を実施する場合には、圧縮動作時の運転周波数以上の高周波電圧をモータに印加すれば、モータ内のロータが高周波電圧に追従できなくなり、回転や振動が発生することが無くなる。そのためインバータが出力する電圧の周波数が圧縮動作時の運転周波数以上となるようにすることが望ましい。
 一般に、圧縮動作時の運転周波数は、高々1kHz程度であるので、圧縮機の運転待機中において高周波通電を実施する場合には、圧縮動作時の運転周波数である1kHz以上の高周波電圧をモータに印加すればよい。また、例えば14kHz以上の高周波電圧をモータに印加すれば、モータの鉄心の振動音がほぼ可聴周波数上限に近づくため、騒音の低減にも効果がある。ここで、例えば、可聴周波数外の20kHz程度の高周波電圧となるようにすれば、より騒音を低減させることができるが、高周波通電を実施する際には、信頼性確保のため、インバータ内のスイッチング素子の最大定格周波数以下の高周波電圧を印加するのが望ましい。
 また、圧縮機のモータがIPM(Interior Permanent Magnet)構造の埋込磁石型モータである場合には、高周波通電を実施する際には、高周波磁束が鎖交するロータ表面も発熱部となる。したがって、冷媒接触面の増加により圧縮機構への速やかな加熱を実現でき、より高効率な冷媒加熱が可能となる。
 なお、上述した実施の形態1では、圧縮機内部に滞留した液冷媒を気化させて排出するために必要な加熱量に応じて、直流通電と高周波通電とを切替える例について説明したが、例えば、直流電流と高周波電流とが同時に流れるようにインバータ制御部を構成することも可能であり、その場合には、上述した直流通電のメリットである大きな発熱量と高周波通電のメリットである低損失とを兼ね備えた拘束通電が可能となる。
実施の形態2.
 実施の形態1では、高周波通電において電圧位相指令θを0°~360°の範囲で連続的に変化させる例について説明したが、本実施の形態では、キャリア周波数に同期して電圧位相を反転させることにより、キャリア周波数に等しい高周波通電を実施する例について説明する。
 図13は、実施の形態2にかかるヒートポンプ装置における高周波通電指令生成部の一構成例を示す図である。また、図14は、実施の形態2にかかるヒートポンプ装置における高周波通電時の各信号波形を示す図である。なお、実施の形態2にかかるヒートポンプ装置の全体構成は、実施の形態1にかかるヒートポンプ装置の全体構成と同一であるので、ここでは説明を省略する。
 図13に示すように、実施の形態2における高周波通電指令生成部16aは、実施の形態1において説明した構成に加え、高周波電圧位相指令演算部31の出力をキャリア信号に同期して反転させる高周波位相切替部32を備えている。
 ここで、実施の形態2にかかるヒートポンプ装置100において、キャリア周波数に同期して電圧位相を反転させる主旨について説明する。
 一般的なインバータの場合、キャリア信号の周波数であるキャリア周波数は、インバータのスイッチング素子のスイッチングスピードにより上限が決まっている。そのため、搬送波であるキャリア周波数以上の高周波電圧を出力することは困難である。なお、一般的なIGBT(Insulated Gate Bipolar Transistor)の場合、スイッチングスピードの上限は20kHz程度である。
 また、高周波電圧の周波数がキャリア周波数の1/10程度以上になると、高周波電圧の波形出力精度が悪化し直流成分が重畳するなど悪影響を及ぼす虞がある。この点を考慮して、高周波電圧の周波数をキャリア周波数の1/10以下とすると、例えば、キャリア周波数が20kHzである場合には、高周波電圧の周波数が2kHz以下となり、可聴周波数帯域内となるので、モータの電磁音による騒音が問題となる。
 したがって、本実施の形態では、高周波電圧位相指令演算部31から出力させる電圧位相(以下、「基準位相」という)を固定値とし、図14に示すように、キャリア信号の山の頂点から谷の頂点に至るまでの期間、つまり、キャリア周波数fcの1周期(1/fc)で高周波電圧位相指令演算部31の出力を180°反転させるように構成している。このように構成することにより、後段の電圧指令算出部19においてキャリア信号に同期して反転する電圧指令Vu*,Vv*,Vw*が得られ、さらに後段のPWM信号生成部20においてキャリア信号に同期した高精度な各PWM信号UP,VP,WP,UN,VN,WNが生成される。このとき、電圧ベクトルは、V0(UP=VP=WP=0)、V4(UP=1、VP=WP=0)、V7(UP=VP=WP=1)、V3(UP=0、VP=WP=1)、V0(UP=VP=WP=0)、…の順で変化する。
 図15は、各電圧ベクトルに対応するインバータ内の各スイッチング素子のON/OFF状態を示す図である。図15に示す各回路図では、破線で囲まれたスイッチング素子がON、それ以外がOFFであることを示している。また、電圧ベクトルの変化順序を示す太矢印の回転方向(電圧ベクトルV0→V4→V7→V3→V0…の回転方向)は、図14に示す例に対応している。
 図15に示す例では、各PWM信号UP,VP,WP,UN,VN,WNは、1キャリア周期で図15の4つの回路状態を1回転する。これにより、1キャリア周期を1周期とする電流をモータ8に流すように構成している。
 図15に示すように、V0ベクトル、V7ベクトル印加時は、モータ8の線間が短絡状態となり、電圧が出力されない。この場合、モータ8のインダクタンスに蓄えられたエネルギーが電流となって短絡回路中を流れる。また、V4ベクトル印加時には、U相を介してモータ8へ流入し、V相およびW相を介してモータ8から流出するU相方向の電流(+Iu)が流れ、V3ベクトル印加時には、V相およびW相を介してモータ8へ流入し、U相を介してモータ8から流出する-U相方向の電流(-Iu)がモータ8の巻線に流れる。つまり、V4ベクトル印加時と、V3ベクトル印加時とでは、逆方向の電流がモータ8の巻線に流れる。そして、電圧ベクトルがV0、V4、V7、V3、V0、…の順で変化するため、+Iuと-Iuとが交互にモータ8の巻線に流れることになる。この結果、図15に示すように、V4ベクトルとV3ベクトルとが1キャリア周期の間に現れるため、キャリア信号の周波数に同期した高周波電圧をモータ8の巻線に印加することが可能となる。
 また、V4ベクトルとV3ベクトルとが交互に出力され、+Iuと-Iuとが交互にモータ8の巻線に流れるため、正逆のトルクが瞬時に切り替わる。このため、正逆のトルクが相殺され、ロータの振動を抑えた電圧の印加が可能となる。
 以上説明したように、実施の形態2のヒートポンプ装置によれば、高周波電圧位相指令演算部から出力させる基準位相を固定値とし、キャリア信号の周波数に同期して反転させることにより、キャリア周波数に等しい高周波通電を実施するようにしたので、キャリア信号の周波数に同期した高精度な高周波電圧をモータの巻線に印加することができ、モータの電磁音による騒音を抑制することができる。
 また、基準位相を0°と180°との間で反転させることにより、V4ベクトルとV3ベクトルとがV0ベクトルおよびV7ベクトルを介して交互に出力され、U相電流の方向が瞬時に切り替わる、つまり、正逆のトルクが瞬時に切り替わり、正逆のトルクが相殺されるため、ロータの振動を抑制することができる。
実施の形態3.
 実施の形態2では、高周波電圧位相指令演算部から出力させる電圧位相(基準位相)を固定値とする例について説明したが、本実施の形態では、基準位相を時間の経過と共に変化させる例について説明する。なお、実施の形態3にかかるヒートポンプ装置の全体構成、インバータ制御部の構成、および拘束通電制御部の構成は、実施の形態1にかかるヒートポンプ装置の全体構成と同一であるので、ここでは説明を省略する。また、実施の形態3にかかるヒートポンプ装置における高周波通電指令生成部の構成は、実施の形態2にかかるヒートポンプ装置における高周波通電指令生成部の構成と同一であるので、ここでは説明を省略する。
 図16は、高周波通電時におけるIPMモータのロータ停止位置の一例を示す図である。図16に示すように、モータ8がIPMモータ(Interior Permanent Magnet Motor:埋込磁石型モータ)である場合、モータ8のロータ停止位置は、ロータのN極の向きがU相方向からずれた角度φの大きさによって表される。
 図17は、ロータ位置と各相電流との関係を示す図である。IPMモータの場合、高周波通電時における巻線インダクタンス値は、ロータ位置に依存する。そのため、電気角周波数ωと巻線インダクタンス値との積で表される巻線インピーダンスは、ロータ位置に応じて変動する。したがって、運転待機中に直流通電を実施する際に、同一の電圧を印加した場合においても、ロータ停止位置によって、モータ8の巻線に流れる電流が変動してしまい、加熱量が変化する。この結果、ロータ停止位置によっては、必要な加熱量を得るために、多くの電力が消費される虞がある。
 したがって、本実施の形態では、高周波電圧位相指令演算部31から出力させる電圧位相(基準位相=θfとする)を時間の経過と共に変化させることにより、ロータに満遍なく電圧を印加する。
 図18は、基準位相θfを変化させた場合の印加電圧を示す図である。図18(a)に示す例では、基準位相θf=0°である場合の例を示している。この場合には、高周波通電指令生成部16aの出力である高周波電圧位相指令θacは、0°と180°との間で切り替えられる。図18(b)に示す例では、θf=45°である場合の例を示している。この場合には、θacは、45°と225°との間で切り替えられる。図18(c)に示す例では、θf=90°である場合の例を示している。この場合には、θacは、90°と270°との間で切り替えられる。図18(d)に示す例では、θf=135°である場合の例を示している。この場合には、θacは、135°と315°との間で切り替えられる。
 つまり、図18に示すように、基準位相θfを45°ずつ所定時間の経過と共に変化させることにより、キャリア信号に同期して反転する高周波電圧位相指令θacも45°ずつ変化していくので、ロータ停止位置によらず、ロータに満遍なく電圧を印加することができ、効率よく圧縮機1内部に滞留した液冷媒を加熱することができる。
 図19は、基準位相θfが0°、30°、60°である場合の各相電流波形を示す図である。図19(a)は、θf=0°である場合の各相電流波形を示し、図19(b)は、θf=30°である場合の各相電流波形を示し、図19(c)は、θf=60°である場合の各相電流波形を示している。
 θf=0°である場合には、図15に示すように、V0ベクトルとV7ベクトルとの間に、他の電圧ベクトル(正電圧側のスイッチング素子1つと負電圧側のスイッチング素子2つ、あるいは、正電圧側のスイッチング素子2つと負電圧側のスイッチング素子1つがオン状態となる電圧ベクトル)が1つのみ発生する。この場合には、図19(a)に示すように、各相電流波形は台形状となり、高調波成分の少ない電流となる。
 また、θf=60°である場合も、θf=0°である場合と同様に、V0ベクトルとV7ベクトルとの間に他の電圧ベクトルが1つのみ発生するので、図19(c)に示すように、各相電流波形は台形状となり、高調波成分が少ない電流となる。
 しかし、θf=30°である場合には、V0ベクトルとV7ベクトルとの間に異なる2つの電圧ベクトルが発生することとなり、図19(b)に示すように、各相電流波形が歪み、高調波成分の多い電流となる。この各相電流波形の歪みは、モータ騒音やモータ軸振動などの要因となる虞がある。
 つまり、基準位相θfを60°のn倍(nは0以上の整数)で切り替えるようにすれば、高周波電圧位相指令θacも常に60°の倍数となり、0°と180°との間、60°と240°との間、120°と300°との間で常に切り替わる。このようにすれば、V0ベクトルとV7ベクトルとの間に他の電圧ベクトルが1つのみ発生するため、各相電流波形は台形状となり、高調波成分が少ない電流となる。一方、基準位相θfを60°のn倍以外で切り替えるようにした場合には、高周波電圧位相指令θacが60°の倍数とならないため、V0ベクトルとV7ベクトルとの間に他の電圧ベクトルが2つ発生し、各相電流波形が歪み、高調波成分の多い電流となる。したがって、基準位相θfは、0°、60°、120°、…のように60°の倍数で変化させることが望ましい。
 以上説明したように、実施の形態3のヒートポンプ装置によれば、高周波電圧位相指令演算部から出力させる基準位相を所定時間毎に変化させ、高周波通電を実施する際に、高周波交流電圧の通電位相を所定時間毎に変化させるようにしたので、ロータ停止位置によるインダクタンス特性の影響を排除することができ、ロータ停止位置によらず、効率よく均一に圧縮機内部に滞留した液冷媒を加熱することができる。
 また、基準位相を所定時間毎に60°の倍数で変化させるようにすれば、各相電流波形の高調波成分を抑制することができ、モータ騒音やモータ軸振動の発生を防止することができる。
実施の形態4.
 本実施の形態では、実施の形態1~3に記載したヒートポンプ装置を適用可能な空気調和機、ヒートポンプ給湯機、冷蔵庫、および冷凍機について説明する。
 ここでは、実施の形態4にかかる空気調和機、ヒートポンプ給湯機、冷蔵庫、および冷凍機の冷凍サイクルのより具体的な構成および通常運転モードにおける動作について、図20、図21を参照して説明する。
 図20は、実施の形態4にかかる冷凍サイクルの一構成例を示す図である。また、図21は、図20に示す冷凍サイクルにおける冷媒の状態遷移を示すモリエル線図である。図21において、横軸は比エンタルピ、縦軸は冷媒圧力を示す。
 実施の形態4にかかる冷凍サイクル50aは、圧縮機51と、熱交換器52と、膨張機構53と、レシーバ54と、内部熱交換器55と、膨張機構56と、熱交換器57とが配管により順次接続され、冷媒が循環する主冷媒回路58を備え形成される。なお、主冷媒回路58において、圧縮機51の吐出側には、四方弁59が設けられ、冷媒の循環方向が切り替え可能となっている。また、熱交換器57の近傍には、ファン60が設けられる。また、圧縮機51の内部には、冷媒を圧縮する圧縮機構7と、この圧縮機構7を動作させるモータ8とが設けられている。さらに、冷凍サイクル50aは、レシーバ54と内部熱交換器55との間から、圧縮機51のインジェクションパイプまでを配管により繋ぐインジェクション回路62を備える。インジェクション回路62には、膨張機構61、内部熱交換器55が順次接続される。
 熱交換器52には、水が循環する水回路63が接続される。なお、水回路63には、給湯器(図示せず)、ラジエータ(図示せず)や床暖房等の放熱器(図示せず)等の水を利用する装置が接続される。
 まず、冷凍サイクル50aにおける暖房運転時の動作について説明する。暖房運転時には、四方弁59は、図20中の実線方向に設定される。なお、この暖房運転とは、空気調和機における暖房運転だけでなく、ヒートポンプ給湯機において水に熱を与えて温水を作る給湯運転も含む。
 図21において、圧縮機51で高温高圧となった気相冷媒(図21のA点)は、圧縮機51から吐出され、凝縮器であり放熱器となる熱交換器52で熱交換されて液化する(図21のB点)。このとき、冷媒から放熱された熱により、水回路63を循環する水が温められ、空気調和機における暖房運転やヒートポンプ給湯機における給湯運転に利用される。
 熱交換器52で液化された液相冷媒は、膨張機構53で減圧され、気液二相状態になる(図21のC点)。膨張機構53で気液二相状態になった冷媒は、レシーバ54で圧縮機51へ吸入される冷媒と熱交換され、冷却されて液化される(図21のD点)。レシーバ54で液化された液相冷媒は、主冷媒回路58と、インジェクション回路62とに分岐して流れる。
 主冷媒回路58を流れる液相冷媒は、膨張機構61で減圧され気液二相状態となったインジェクション回路62を流れる冷媒と内部熱交換器55で熱交換されて、さらに冷却される(図21のE点)。内部熱交換器55で冷却された液相冷媒は、膨張機構56で減圧されて気液二相状態になる(図21のF点)。膨張機構56で気液二相状態になった冷媒は、蒸発器となる熱交換器57で外気と熱交換され、加熱される(図21のG点)。そして、熱交換器57で加熱された冷媒は、レシーバ54でさらに加熱され(図21のH点)、圧縮機51に吸入される。
 一方、インジェクション回路62を流れる冷媒は、上述したように、膨張機構61で減圧されて(図21のI点)、内部熱交換器55で熱交換される(図21のJ点)。内部熱交換器55で熱交換された気液二相状態の冷媒(インジェクション冷媒)は、気液二相状態のまま圧縮機51のインジェクションパイプから圧縮機51内へ流入する。
 圧縮機51では、主冷媒回路58から吸入された冷媒(図21のH点)が、中間圧まで圧縮、加熱される(図21のK点)。中間圧まで圧縮、加熱された冷媒(図21のK点)に、インジェクション冷媒(図21のJ点)が合流して、温度が低下する(図21のL点)。そして、温度が低下した冷媒(図21のL点)が、さらに圧縮、加熱され高温高圧となり、吐出される(図21のA点)。
 なお、インジェクション運転を行わない場合には、膨張機構61の開度を全閉にする。つまり、インジェクション運転を行う場合には、膨張機構61の開度が所定の開度よりも大きくなっているが、インジェクション運転を行わない際には、膨張機構61の開度を所定の開度より小さくする。これにより、圧縮機51のインジェクションパイプへ冷媒が流入しない。なお、膨張機構61の開度は、マイクロコンピュータ等の制御部(図示せず)により電子制御により制御される。
 つぎに、冷凍サイクル50aにおける冷房運転時の動作について説明する。冷房運転時には、四方弁59は図20中の破線方向に設定される。なお、この冷房運転とは、空気調和機における冷房運転だけでなく、冷蔵庫において水から熱を奪って冷水を作ることや、冷凍機における冷凍運転も含む。
 圧縮機51で高温高圧となった気相冷媒(図21のA点)は、圧縮機51から吐出され、凝縮器であり放熱器となる熱交換器57で熱交換されて液化する(図21のB点)。熱交換器57で液化された液相冷媒は、膨張機構56で減圧され、気液二相状態になる(図21のC点)。膨張機構56で気液二相状態になった冷媒は、内部熱交換器55で熱交換され、冷却され液化される(図21のD点)。内部熱交換器55では、膨張機構56で気液二相状態になった冷媒と、内部熱交換器55で液化された液相冷媒を膨張機構61で減圧させて気液二相状態になった冷媒(図21のI点)とを熱交換させている。内部熱交換器55で熱交換された液相冷媒(図21のD点)は、主冷媒回路58と、インジェクション回路62とに分岐して流れる。
 主冷媒回路58を流れる液相冷媒は、レシーバ54で圧縮機51に吸入される冷媒と熱交換されて、さらに冷却される(図21のE点)。レシーバ54で冷却された液相冷媒は、膨張機構53で減圧されて気液二相状態になる(図21のF点)。膨張機構53で気液二相状態になった冷媒は、蒸発器となる熱交換器52で熱交換され、加熱される(図21のG点)。このとき、冷媒が吸熱することにより、水回路63を循環する水が冷やされ、空気調和機における冷房運転や冷凍機における冷凍運転に利用される。
 そして、熱交換器52で加熱された冷媒は、レシーバ54でさらに加熱され(図21のH点)、圧縮機51に吸入される。
 一方、インジェクション回路62を流れる冷媒は、上述したように、膨張機構61で減圧されて(図21のI点)、内部熱交換器55で熱交換される(図21のJ点)。内部熱交換器55で熱交換された気液二相状態の冷媒(インジェクション冷媒)は、気液二相状態のまま圧縮機51のインジェクションパイプから圧縮機51内に流入する。
 圧縮機51内での圧縮動作については、暖房運転時と同様であるので、ここでは省略する。
 なお、インジェクション運転を行わない際には、暖房運転時と同様に、膨張機構61の開度を全閉にして、圧縮機51のインジェクションパイプへ冷媒が流入しないようにする。
 また、上記説明では、熱交換器52は、冷媒と、水回路63を循環する水とを熱交換させるプレート式熱交換器のような熱交換器であるとして説明した。熱交換器52は、これに限らず、冷媒と空気を熱交換させるものであってもよい。
 また、水回路63は、水が循環する回路ではなく、他の流体が循環する回路であってもよい。
 以上説明したように、実施の形態4の空気調和機、ヒートポンプ給湯機、冷蔵庫、および冷凍機によれば、上述した実施の形態1~3に記載のヒートポンプ装置を適用することにより、実施の形態1~3において説明した効果を得ることができ、待機電力の削減による省エネルギー化が可能であり、地球温暖化防止に寄与することができる。
 なお、上述した実施の形態におけるインバータを構成するスイッチング素子と、これに並列に接続される環流ダイオードとしては、一般的には珪素(Si:シリコン)を材料とするSi系半導体を用いるのが主流であるが、炭化珪素(SiC)や窒化ガリウム(GaN)、ダイヤモンドを材料とするワイドバンドギャップ(WBG)半導体を用いてもよい。
 このようなWBG半導体によって形成されたスイッチング素子やダイオード素子は、耐電圧性が高く、許容電流密度も高い。そのため、スイッチング素子やダイオード素子の小型化が可能であり、これら小型化されたスイッチング素子やダイオード素子を用いることにより、これらの素子を組み込んだ半導体モジュールの小型化が可能となる。
 また、このようなWBG半導体によって形成されたスイッチング素子やダイオード素子は、耐熱性も高い。そのため、ヒートシンクの放熱フィンの小型化や、水冷部の空冷化が可能であるので、半導体モジュールの一層の小型化が可能になる。
 さらに、このようなWBG半導体によって形成されたスイッチング素子やダイオード素子は、電力損失が低い。そのため、スイッチング素子やダイオード素子の高効率化が可能であり、延いては半導体モジュールの高効率化が可能になる。
 また、より高い周波数でのスイッチングが可能となるため、モータにより高い周波数の電流を流すことが可能となり、モータの巻線インピーダンス増加による巻線電流低減によりインバータへ流れる電流を低減できるため、より効率の高いヒートポンプ装置を得ることが可能となる。さらには、高周波数化が容易であるため、可聴周波数帯域以上の周波数に設定することができ、騒音対策が容易となる等の利点がある。
 また、直流通電においても、電力損失が小さくなるため、発熱が小さくなるだけでなく、仮に大電流が流れた場合でも、高耐熱性能が高いため、信頼性の高いヒートポンプ装置を得ることができる等の利点がある。
 なお、スイッチング素子及びダイオード素子の両方がWBG半導体によって形成されていることが望ましいが、いずれか一方の素子がWBG半導体よって形成されていてもよく、上述した実施の形態における効果を得ることができる。
 WBG半導体の他にも、高効率なスイッチング素子として知られているスーパージャンクション構造のMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)を用いても、同様の効果を得ることが可能である。
 また、スクロール機構の圧縮機は、圧縮室の高圧リリーフが困難である。そのため、他の方式の圧縮機に比べ、液圧縮した場合に圧縮機構に過大なストレスが掛かる可能性が高い。しかし、上述した実施の形態にかかるヒートポンプ装置では、効率よく圧縮機を加熱することが可能であり、圧縮機内部への液冷媒の滞留を抑制することできる。そのため、液圧縮を防止することができるので、スクロール機構の圧縮機を用いる場合にも効果的である。
 さらに、高周波通電を実施する場合に、周波数10kHz、出力50Wを超える加熱機器の場合、法令による制約を受ける場合もある。そのため、事前に50Wを超えないよう電圧指令V*の調整や、流れる電流や電圧を検出して50W以下となるようフィードバック制御を行うようにしてもよい。
 なお、インバータ制御部は、CPU(Central Processing Unit)やDSP(Digital Signal Processor)、マイクロコンピュータ(マイコン)の離散システムで構成可能であり、その他にもアナログ回路やデジタル回路等の電気回路素子などで構成してもよい。
 また、以上の実施の形態に示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。
 1 圧縮機
 2 四方弁
 3 熱交換器
 4 膨張機構
 5 熱交換器
 6 冷媒配管
 7 圧縮機構
 8 モータ
 9 インバータ
 10 インバータ制御部
 11 直流電圧源
 12 拘束通電制御部
 13 駆動信号生成部
 14 加熱判定部
 15 直流通電指令生成部
 16,16a 高周波通電指令生成部
 17 加熱指令部
 18 通電切替部
 19 電圧指令算出部
 20 PWM信号生成部
 21 温度検出部
 22 冷媒寝込量推定部
 23 冷媒寝込量検出部
 24 冷媒寝込判定切替部
 25 加熱要否判定部
 26 加熱量演算部
 27 通電切替判断部
 28 直流電圧指令演算部
 29 直流電圧位相指令演算部
 30 高周波電圧指令演算部
 31 高周波電圧位相指令演算部
 32 高周波位相切替部
 33 通電切替制御部
 40,40a,40b 冷媒寝込量出力部
 50,50a 冷凍サイクル
 51 圧縮機
 52,57 熱交換器
 53,56,61 膨張機構
 54 レシーバ
 55 内部熱交換器
 58 主冷媒回路
 59 四方弁
 60 ファン
 62 インジェクション回路
 63 水回路
 70a~70f スイッチング素子
 80a~80f 還流ダイオード
 100 ヒートポンプ装置

Claims (16)

  1.  冷媒を圧縮する圧縮機構と前記圧縮機構を駆動するモータとを有する圧縮機と、熱交換器と、前記モータに所望の電圧を印加するインバータと、前記インバータを駆動する駆動信号を生成するインバータ制御部と、を備えるヒートポンプ装置であって、
     前記インバータ制御部は、
     前記圧縮機の運転待機中において、前記圧縮機への冷媒寝込量に基づいて、当該圧縮機への加熱が必要であるか否かを判定すると共に、当該圧縮機への加熱が必要であると判定した場合に、前記冷媒寝込量に応じて、前記モータに直流電圧を供給する直流通電と前記モータに通常運転時よりも高い周波数の高周波電圧を供給する高周波通電とのうち、いずれか一方を選択して、前記モータの拘束通電を実施するための拘束通電指令を出力する拘束通電制御部と、
     前記拘束通電指令に基づき前記駆動信号を生成する駆動信号生成部と、
     を備えることを特徴とするヒートポンプ装置。
  2.  前記拘束通電制御部は、
     前記冷媒寝込量を推定あるいは検出して出力する冷媒寝込量出力部と
     前記冷媒寝込量に応じた加熱量を演算する加熱量演算部と、
     前記加熱量に基づいて、前記直流通電を実施するための直流電圧指令および直流電圧位相指令を含む直流通電指令を生成する直流通電指令生成部と、
     前記加熱量に基づいて、前記高周波通電を実施するための高周波電圧指令および高周波電圧位相指令を含む高周波通電指令を生成する高周波通電指令生成部と、
     前記加熱量に基づいて、前記直流通電指令と前記高周波通電指令とを切り替え、前記拘束通電指令として出力する通電切替判断部と、
     を備えることを特徴とする請求項1に記載のヒートポンプ装置。
  3.  前記通電切替判断部は、あらかじめ定められた閾値と前記加熱量とを比較して、前記加熱量が前記閾値以上である場合に、前記通電切替判断部が前記直流通電指令を前記拘束通電指令として出力するように制御し、前記加熱量が前記閾値未満である場合に、前記通電切替判断部が前記高周波通電指令を前記拘束通電指令として出力するように制御することを特徴とする請求項2に記載のヒートポンプ装置。
  4.  前記高周波通電指令生成部は、前記高周波電圧位相指令を前記インバータのキャリア信号に同期させて反転させることを特徴とする請求項3に記載のヒートポンプ装置。
  5.  前記高周波通電指令生成部は、所定時間毎に、前記高周波電圧位相指令を反転させる基準位相を変化させることを特徴とする請求項4に記載のヒートポンプ装置。
  6.  前記高周波通電指令生成部は、前記基準位相を前記所定時間毎に60°の倍数で変化させることを特徴とする請求項5に記載のヒートポンプ装置。
  7.  前記冷媒寝込量出力部は、当該ヒートポンプ装置を構成するいずれかの部品あるいは構成要素の温度および雰囲気温度のうちの少なくとも1つを検出して前記冷媒寝込量を推定することを特徴とする請求項3に記載のヒートポンプ装置。
  8.  前記冷媒寝込量出力部は、前記圧縮機の内部に滞留した液冷媒の液量あるいは液面を検知して前記冷媒寝込量を検出することを特徴とする請求項3に記載のヒートポンプ装置。
  9.  前記加熱量演算部は、前記圧縮機の特性に合わせて前記加熱量を演算することを特徴とする請求項3に記載のヒートポンプ装置。
  10.  前記インバータを構成するスイッチング素子の少なくとも1つは、ワイドバンドギャップ半導体によって形成されたことを特徴とする請求項1に記載のヒートポンプ装置。
  11.  前記インバータを構成するダイオードは、ワイドバンドギャップ半導体によって形成されたことを特徴とする請求項1に記載のヒートポンプ装置。
  12. 前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム系材料又はダイヤモンドであることを特徴とする請求項10または11に記載のヒートポンプ装置。
  13.  請求項1~12のいずれか一項に記載のヒートポンプ装置を備えたことを特徴とする空気調和機。
  14.  請求項1~12のいずれか一項に記載のヒートポンプ装置を備えたことを特徴とするヒートポンプ給湯機。
  15.  請求項1~12のいずれか一項に記載のヒートポンプ装置を備えたことを特徴とする冷蔵庫。
  16.  請求項1~12のいずれか一項に記載のヒートポンプ装置を備えたことを特徴とする冷凍機。
PCT/JP2011/078973 2011-12-14 2011-12-14 ヒートポンプ装置ならびに、それを備えた空気調和機、ヒートポンプ給湯機、冷蔵庫、および冷凍機 WO2013088541A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11877449.6A EP2803921B1 (en) 2011-12-14 2011-12-14 Heat pump device, and air conditioner, heat pump/hot-water supply machine, refrigerator, and freezer equipped with same
CN201180075457.3A CN103988030B (zh) 2011-12-14 2011-12-14 热泵装置、具有热泵装置的空调机、热泵热水器、冰箱和制冷机
AU2011383457A AU2011383457B2 (en) 2011-12-14 2011-12-14 Heat pump device, and air conditioner, heat pump/hot-water supply machine, refrigerator, and freezer equipped with same
PCT/JP2011/078973 WO2013088541A1 (ja) 2011-12-14 2011-12-14 ヒートポンプ装置ならびに、それを備えた空気調和機、ヒートポンプ給湯機、冷蔵庫、および冷凍機
JP2013549013A JP5937619B2 (ja) 2011-12-14 2011-12-14 ヒートポンプ装置ならびに、それを備えた空気調和機、ヒートポンプ給湯機、冷蔵庫、および冷凍機
US14/364,353 US10208991B2 (en) 2011-12-14 2011-12-14 Heat pump device, and air conditioner, heat pump water heater, refrigerator and freezing machine including heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/078973 WO2013088541A1 (ja) 2011-12-14 2011-12-14 ヒートポンプ装置ならびに、それを備えた空気調和機、ヒートポンプ給湯機、冷蔵庫、および冷凍機

Publications (1)

Publication Number Publication Date
WO2013088541A1 true WO2013088541A1 (ja) 2013-06-20

Family

ID=48612027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078973 WO2013088541A1 (ja) 2011-12-14 2011-12-14 ヒートポンプ装置ならびに、それを備えた空気調和機、ヒートポンプ給湯機、冷蔵庫、および冷凍機

Country Status (6)

Country Link
US (1) US10208991B2 (ja)
EP (1) EP2803921B1 (ja)
JP (1) JP5937619B2 (ja)
CN (1) CN103988030B (ja)
AU (1) AU2011383457B2 (ja)
WO (1) WO2013088541A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127621A (ja) * 2013-12-27 2015-07-09 三菱電機株式会社 空気調和機及び空気調和機の制御方法
WO2020008620A1 (ja) * 2018-07-06 2020-01-09 三菱電機株式会社 冷凍サイクル装置および空気調和装置
JPWO2021048895A1 (ja) * 2019-09-09 2021-03-18

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5490260B2 (ja) * 2010-12-21 2014-05-14 三菱電機株式会社 ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法
JP5370560B2 (ja) * 2011-09-30 2013-12-18 ダイキン工業株式会社 冷媒サイクルシステム
US9733008B2 (en) * 2013-03-13 2017-08-15 Whirlpool Corporation Air flow design for controlling temperature in a refrigerator compartment
JP5910611B2 (ja) * 2013-10-31 2016-04-27 株式会社安川電機 モータ制御装置及びモータ制御方法
JP5924327B2 (ja) * 2013-10-31 2016-05-25 株式会社安川電機 モータ制御装置及びモータ制御方法
EP3032194A1 (en) * 2014-12-12 2016-06-15 Danfoss A/S A method for controlling a supply of refrigerant to an evaporator including calculating a reference temperature
CN106016606B (zh) * 2016-05-25 2019-05-14 珠海格力电器股份有限公司 空调压缩机电加热带的控制方法及装置
JP2019533417A (ja) 2016-10-05 2019-11-14 ジョンソン コントロールズ テクノロジー カンパニー Hvac&rシステムのための可変速駆動装置
WO2019139389A1 (ko) 2018-01-10 2019-07-18 엘지전자 주식회사 냉장고
KR102473040B1 (ko) * 2018-01-10 2022-12-01 엘지전자 주식회사 냉장고
CN110953698B (zh) * 2018-09-26 2021-06-08 上海海立电器有限公司 变频空调的载波频率控制方法及变频空调
WO2020138927A1 (ko) * 2018-12-26 2020-07-02 삼성전자주식회사 인버터 및 인버터를 포함하는 냉장고
CN113939699B (zh) * 2019-05-28 2024-02-27 三菱电机株式会社 热泵装置、空调机以及制冷机
WO2020261317A1 (ja) * 2019-06-24 2020-12-30 三菱電機株式会社 空気調和装置および空気調和システム
CN112696795B (zh) * 2020-12-28 2024-01-23 青岛海信日立空调系统有限公司 一种空调器和控制方法
CN114413424B (zh) * 2022-01-27 2023-07-14 佛山市顺德区美的电子科技有限公司 压缩机的预热控制方法、装置及其控制系统
CN114929000B (zh) * 2022-06-21 2024-10-01 温州大学 一种WBG和Si器件混合的电源水冷系统及其控制策略

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191445A (ja) 1984-10-12 1986-05-09 Matsushita Electric Ind Co Ltd 空気調和機の圧縮機駆動装置
JPH0534024A (ja) * 1991-08-01 1993-02-09 Matsushita Seiko Co Ltd 空気調和機の圧縮機予熱装置
JPH05288411A (ja) * 1992-04-07 1993-11-02 Daikin Ind Ltd 圧縮機の予熱制御装置
JP2007166766A (ja) 2005-12-13 2007-06-28 Mitsubishi Electric Corp 空気調和機用圧縮機の駆動制御装置
JP2010210103A (ja) * 2009-03-06 2010-09-24 Mitsubishi Electric Corp ヒートポンプ用熱交換器およびこれを用いたヒートポンプ装置
JP2011024377A (ja) * 2009-07-17 2011-02-03 Toshiba Carrier Corp 圧縮機駆動装置および冷凍サイクル装置
JP2011038689A (ja) * 2009-08-10 2011-02-24 Mitsubishi Electric Corp 空気調和機
JP2011078296A (ja) * 2009-09-04 2011-04-14 Mitsubishi Electric Corp 電力変換回路
WO2011074145A1 (ja) * 2009-12-17 2011-06-23 三菱電機株式会社 空気調和機

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3589139A (en) * 1969-11-07 1971-06-29 Electronic Assistance Corp Refrigerated shipping container
US4006603A (en) * 1975-06-13 1977-02-08 Vapor Corporation Air conditioning system for a railway vehicle
US4151725A (en) * 1977-05-09 1979-05-01 Borg-Warner Corporation Control system for regulating large capacity rotating machinery
US4563624A (en) * 1982-02-11 1986-01-07 Copeland Corporation Variable speed refrigeration compressor
JPS6068341U (ja) 1983-10-19 1985-05-15 株式会社東芝 ヒ−トポンプ式空気調和機
JPS6237093A (ja) * 1985-08-07 1987-02-18 Hitachi Ltd 空気調和機用圧縮機の制御装置
US4893479A (en) * 1987-03-20 1990-01-16 Ranco Electronics Division Compressor drive system
US5200644A (en) * 1988-05-31 1993-04-06 Kabushiki Kaisha Toshiba Air conditioning system having battery for increasing efficiency
JP3360934B2 (ja) 1994-06-07 2003-01-07 株式会社日立製作所 ブラシレスモータの通電位相角制御装置
JPH0835713A (ja) * 1994-07-26 1996-02-06 Fujitsu General Ltd 空気調和機の制御方法およびその装置
JPH08226714A (ja) 1995-02-23 1996-09-03 Matsushita Electric Ind Co Ltd 空気調和機
JPH09236332A (ja) * 1996-02-29 1997-09-09 Sanyo Electric Co Ltd 空調用ヒートポンプ装置
JPH1114124A (ja) * 1997-06-20 1999-01-22 Sharp Corp 空気調和機
JPH11159467A (ja) 1997-11-28 1999-06-15 Zexel:Kk 電動機予熱装置における通電制御方法及び電動機予熱装置
JP2000130825A (ja) * 1998-10-26 2000-05-12 Toshiba Kyaria Kk 空気調和機の室外機用駆動制御ユニット
JP2001027455A (ja) * 1999-05-13 2001-01-30 Denso Corp ヒートポンプ式空調装置
JP2002101683A (ja) 2000-09-26 2002-04-05 Nidec Shibaura Corp ブラシレスdcモータの位相角制御方法
JP4782941B2 (ja) * 2001-05-16 2011-09-28 サンデン株式会社 車両用空気調和装置
US6622505B2 (en) * 2001-06-08 2003-09-23 Thermo King Corporation Alternator/invertor refrigeration unit
JP3713549B2 (ja) 2001-12-11 2005-11-09 日本電産シバウラ株式会社 ブラシレス直流モータ
US6735968B2 (en) * 2002-03-29 2004-05-18 Hitachi, Ltd. Refrigerating apparatus and an inverter device used therein
JP4023249B2 (ja) * 2002-07-25 2007-12-19 ダイキン工業株式会社 圧縮機内部状態推定装置及び空気調和装置
JP4028779B2 (ja) * 2002-08-19 2007-12-26 株式会社東芝 コンプレッサの冷媒漏れ検知装置
JP4428017B2 (ja) * 2002-12-09 2010-03-10 パナソニック株式会社 インバータ装置
JP2004271167A (ja) * 2003-02-19 2004-09-30 Matsushita Electric Ind Co Ltd 空気調和装置
JP2004249897A (ja) * 2003-02-21 2004-09-09 Denso Corp 車両用空調装置
TWI342663B (en) 2004-02-25 2011-05-21 Rohm Co Ltd Phase adjustment circuit, motor driving control circuit, and motor apparatus
JP4671331B2 (ja) 2004-02-25 2011-04-13 ローム株式会社 位相調整回路、モータ駆動制御回路、及びモータ装置
WO2007049506A1 (ja) * 2005-10-26 2007-05-03 Matsushita Electric Industrial Co., Ltd. 膨張機を用いたヒートポンプ応用機器
KR101482101B1 (ko) * 2006-11-29 2015-01-14 엘지전자 주식회사 공기조화기
AU2008204184B2 (en) * 2007-01-09 2010-05-27 Daikin Industries, Ltd. Inverter compressor operation method and compressor drive device
US7876561B2 (en) * 2007-01-22 2011-01-25 Johnson Controls Technology Company Cooling systems for variable speed drives and inductors
KR20080075396A (ko) * 2007-02-12 2008-08-18 삼성전자주식회사 브러시리스 직류모터, 압축기 및 이를 갖는 공기조화기
JP2008209036A (ja) * 2007-02-23 2008-09-11 Daikin Ind Ltd 冷凍装置
JP5468215B2 (ja) * 2008-06-09 2014-04-09 ダイキン工業株式会社 空気調和機及び空気調和機の製造方法
JP4985723B2 (ja) * 2009-07-27 2012-07-25 三菱電機株式会社 空気調和機
US8698433B2 (en) * 2009-08-10 2014-04-15 Emerson Climate Technologies, Inc. Controller and method for minimizing phase advance current
JP2011102674A (ja) * 2009-11-11 2011-05-26 Mitsubishi Electric Corp 空気調和機
JP2011214779A (ja) * 2010-03-31 2011-10-27 Daikin Industries Ltd 冷凍装置
ES2550642T3 (es) 2010-08-30 2015-11-11 Mitsubishi Electric Corporation Dispositivo de bomba de calor, sistema de bomba de calor y método de control de inversor trifásico
US9543887B2 (en) * 2010-10-15 2017-01-10 Mitsubishi Electric Corporation Heat pump device, heat pump system, and method for controlling three-phase inverter
JP5490260B2 (ja) * 2010-12-21 2014-05-14 三菱電機株式会社 ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法
DK2668456T3 (en) * 2011-01-26 2019-04-29 Carrier Corp CONTROL SYSTEM
CN103688116B (zh) * 2011-06-17 2016-05-04 三菱电机株式会社 热泵装置、空调机和制冷机
US9885508B2 (en) * 2011-12-28 2018-02-06 Carrier Corporation Discharge pressure calculation from torque in an HVAC system
KR101904870B1 (ko) * 2012-01-30 2018-10-08 엘지전자 주식회사 압축기 제어 장치와 방법, 및 이를 포함한 냉장고
US9739515B2 (en) * 2012-04-16 2017-08-22 Mitsubishi Electric Corporation Heat pump device, air conditioner, and freezer that efficiently heats refrigerant on standby
JP5929450B2 (ja) * 2012-04-16 2016-06-08 三菱電機株式会社 冷凍サイクル装置
US9634593B2 (en) * 2012-04-26 2017-04-25 Emerson Climate Technologies, Inc. System and method for permanent magnet motor control
EP2844931B1 (en) * 2012-04-30 2019-09-04 Johnson Controls Technology Company Control system
EP2884203B1 (en) * 2012-06-29 2019-11-13 Mitsubishi Electric Corporation Heat pump device
JP5960173B2 (ja) * 2013-01-28 2016-08-02 ダイキン工業株式会社 空気調和機
EP2985906A4 (en) * 2013-04-11 2016-12-14 Lg Electronics Inc ENGINE DRIVE APPARATUS AND REFRIGERATOR CONTAINING THE SAME
JP5796620B2 (ja) * 2013-06-19 2015-10-21 ダイキン工業株式会社 コンテナ用冷凍装置
JP6296930B2 (ja) * 2013-09-17 2018-03-20 株式会社東芝 モータ制御装置及び空気調和機
JP6072657B2 (ja) * 2013-09-18 2017-02-01 ヤンマー株式会社 エンジン駆動ヒートポンプ
WO2015056341A1 (ja) * 2013-10-18 2015-04-23 三菱電機株式会社 直流電源装置、電動機駆動装置、空気調和機および冷蔵庫
JP6129070B2 (ja) * 2013-12-27 2017-05-17 ヤンマー株式会社 エンジン駆動ヒートポンプ
JP6072673B2 (ja) * 2013-12-27 2017-02-01 ヤンマー株式会社 エンジン駆動ヒートポンプ
KR102308028B1 (ko) * 2014-06-09 2021-09-30 엘지전자 주식회사 모터 구동장치 및 이를 구비하는 공기조화기
KR102314037B1 (ko) * 2014-06-09 2021-10-15 엘지전자 주식회사 모터 구동장치 및 이를 구비하는 공기조화기
DE102014217005A1 (de) * 2014-08-26 2016-03-03 BSH Hausgeräte GmbH Verfahren zum Bremsen eines Verdichters und Verdichter eines Kältegerätes, Klimageräts oder einer Wärmepumpe sowie Kältegerätes, Klimageräts oder Wärmepumpe damit
DE102014217006A1 (de) * 2014-08-26 2016-03-03 BSH Hausgeräte GmbH Verfahren zum Anhalten eines Verdichters und Verdichter eines Kältegerätes
US9476626B2 (en) * 2014-08-29 2016-10-25 Emerson Climate Technologies, Inc. Variable speed compressor control with lost rotor mitigation
KR101776240B1 (ko) * 2015-08-31 2017-09-07 엘지전자 주식회사 모터 구동장치 및 이를 구비하는 홈 어플라이언스
US20170211829A1 (en) * 2016-01-25 2017-07-27 Sharp Kabushiki Kaisha Optimised heat pump system
KR101759906B1 (ko) * 2016-03-14 2017-07-31 엘지전자 주식회사 압축기 구동장치 및 이를 구비하는 공기조화기

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191445A (ja) 1984-10-12 1986-05-09 Matsushita Electric Ind Co Ltd 空気調和機の圧縮機駆動装置
JPH0534024A (ja) * 1991-08-01 1993-02-09 Matsushita Seiko Co Ltd 空気調和機の圧縮機予熱装置
JPH05288411A (ja) * 1992-04-07 1993-11-02 Daikin Ind Ltd 圧縮機の予熱制御装置
JP2007166766A (ja) 2005-12-13 2007-06-28 Mitsubishi Electric Corp 空気調和機用圧縮機の駆動制御装置
JP2010210103A (ja) * 2009-03-06 2010-09-24 Mitsubishi Electric Corp ヒートポンプ用熱交換器およびこれを用いたヒートポンプ装置
JP2011024377A (ja) * 2009-07-17 2011-02-03 Toshiba Carrier Corp 圧縮機駆動装置および冷凍サイクル装置
JP2011038689A (ja) * 2009-08-10 2011-02-24 Mitsubishi Electric Corp 空気調和機
JP2011078296A (ja) * 2009-09-04 2011-04-14 Mitsubishi Electric Corp 電力変換回路
WO2011074145A1 (ja) * 2009-12-17 2011-06-23 三菱電機株式会社 空気調和機

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127621A (ja) * 2013-12-27 2015-07-09 三菱電機株式会社 空気調和機及び空気調和機の制御方法
RU2598867C2 (ru) * 2013-12-27 2016-09-27 Мицубиси Электрик Корпорейшн Кондиционер воздуха и способ управления кондиционером воздуха
US9696045B2 (en) 2013-12-27 2017-07-04 Mitsubishi Electric Corporation Air conditioner and control method of air conditioner
WO2020008620A1 (ja) * 2018-07-06 2020-01-09 三菱電機株式会社 冷凍サイクル装置および空気調和装置
JPWO2021048895A1 (ja) * 2019-09-09 2021-03-18
WO2021048895A1 (ja) * 2019-09-09 2021-03-18 三菱電機株式会社 圧縮機駆動装置および空気調和装置
JP7258162B2 (ja) 2019-09-09 2023-04-14 三菱電機株式会社 圧縮機駆動装置および空気調和装置

Also Published As

Publication number Publication date
AU2011383457B2 (en) 2016-01-14
US20140338379A1 (en) 2014-11-20
EP2803921A1 (en) 2014-11-19
EP2803921A4 (en) 2015-10-07
AU2011383457A1 (en) 2014-07-24
CN103988030A (zh) 2014-08-13
EP2803921B1 (en) 2020-04-22
JP5937619B2 (ja) 2016-06-22
CN103988030B (zh) 2017-07-11
US10208991B2 (en) 2019-02-19
JPWO2013088541A1 (ja) 2015-04-27

Similar Documents

Publication Publication Date Title
JP5937619B2 (ja) ヒートポンプ装置ならびに、それを備えた空気調和機、ヒートポンプ給湯機、冷蔵庫、および冷凍機
JP5901765B2 (ja) ヒートポンプ装置、空気調和機および冷凍機
JP5490249B2 (ja) ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法
JP5693617B2 (ja) ヒートポンプ装置、ヒートポンプシステム及び三相インバータの制御方法
JP5693714B2 (ja) ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法
JP5968531B2 (ja) ヒートポンプ装置ならびに、それを備えた空気調和機、ヒートポンプ給湯機、冷蔵庫、および冷凍機
JP5460876B2 (ja) ヒートポンプ装置、ヒートポンプシステム及び三相インバータの制御方法
JP5490260B2 (ja) ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法
JP5795085B2 (ja) ヒートポンプ装置、空気調和機および冷凍機
JP5805317B2 (ja) ヒートポンプ装置、空気調和機および冷凍機
JP6619329B2 (ja) ヒートポンプ装置およびヒートポンプシステム
JP6444463B2 (ja) ヒートポンプ装置
JP7175389B2 (ja) ヒートポンプ装置、ヒートポンプシステム、空気調和機および冷凍機
WO2023062682A1 (ja) ヒートポンプ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013549013

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14364353

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011877449

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011383457

Country of ref document: AU

Date of ref document: 20111214

Kind code of ref document: A