JP5693714B2 - ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法 - Google Patents

ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法 Download PDF

Info

Publication number
JP5693714B2
JP5693714B2 JP2013511846A JP2013511846A JP5693714B2 JP 5693714 B2 JP5693714 B2 JP 5693714B2 JP 2013511846 A JP2013511846 A JP 2013511846A JP 2013511846 A JP2013511846 A JP 2013511846A JP 5693714 B2 JP5693714 B2 JP 5693714B2
Authority
JP
Japan
Prior art keywords
inverter
voltage
current
current value
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013511846A
Other languages
English (en)
Other versions
JPWO2012147192A1 (ja
Inventor
和徳 畠山
和徳 畠山
卓也 下麥
卓也 下麥
真也 松下
真也 松下
真作 楠部
真作 楠部
牧野 勉
勉 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2012147192A1 publication Critical patent/JPWO2012147192A1/ja
Application granted granted Critical
Publication of JP5693714B2 publication Critical patent/JP5693714B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current
    • F25B2700/151Power, e.g. by voltage or current of the compressor motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

この発明は、ヒートポンプ装置に使用される圧縮機の加熱方法に関する。
特許文献1には、暖房時の運転停止中に高周波の低電圧を圧縮機に供給することについての記載がある。特許文献2には、空気調和機の周囲が低温になった場合に、25kHzといった、通常運転時より高周波数である単相交流電圧を圧縮機に供給することについての記載がある。
特許文献1および2に記載された技術は、いずれも、外気温度の低下に応じて圧縮機に高周波の交流電圧を印加することで圧縮機を加熱もしくは保温し、圧縮機内部の潤滑作用を円滑にするものである。
実開昭60−68341号公報 特開昭61−91445号公報
高周波の交流電圧を圧縮機に供給した場合、圧縮機に流れる電流値を正確に計測することが難しくなり、製造ばらつきや環境ばらつきによる影響によらず、加熱量を適切に制御することが難しい。特許文献1,2には、高周波の交流電圧を圧縮機に供給した場合に、いかにして加熱量を適切に制御するかについては記載されていない。
この発明は、高周波の交流電圧を圧縮機に供給して圧縮機を加熱する場合に、製造ばらつきや環境ばらつきによる影響によらず、圧縮機の加熱量を一定に保つことを目的とする。
この発明に係るヒートポンプ装置は、冷媒を圧縮する圧縮機構を有する圧縮機と、前記圧縮機が有する前記圧縮機構を動作させるモータと、前記モータに所定の電圧を印加するインバータと、前記インバータから前記モータに印加される電圧が正になる区間と、前記電圧が負になる区間との間に、前記電圧がゼロになる無通電区間を有する高周波交流電圧を前記インバータに発生させるインバータ制御部とを備え、前記インバータ制御部は、前記インバータに流れる電流値を検出する電流値検出部と、前記インバータで検出された電源電圧値と前記電流値検出部が検出した電流値に応じた高周波交流電圧を前記インバータに発生させる高周波電圧発生部とを備えることを特徴とする。
この発明に係るヒートポンプ装置では、無通電区間の開始直前から無通電区間の終了直後までの間に電流値を検出する。これにより、高周波交流電圧を印加した場合における電流のピーク値を検出することができる。このピーク値に応じて高周波交流電圧を制御することにより、モータに流す電流を所望の値にすることができる。その結果、製造ばらつきや環境ばらつきによる影響によらず、圧縮機の加熱量を一定に保つことができる。
実施の形態1におけるヒートポンプ装置100の構成を示す図。 実施の形態1におけるインバータ9の構成を示す図。 実施の形態1におけるインバータ制御部10の構成を示す図。 実施の形態1におけるPWM信号生成部26の入出力波形を示す図。 実施の形態1における8通りのスイッチングパターンを示す図。 実施の形態1における加熱判定部12の構成を示す図。 実施の形態1におけるインバータ制御部10の動作を示すフローチャート。 実施の形態2におけるインバータ制御部10の構成を示す図。 選択部23がキャリア信号の頂及び底のタイミングで、位相θpと位相θnとを交互に切り替えた場合のタイミングチャート。 図9に示す電圧ベクトルの変化の説明図。 選択部23がキャリア信号の底のタイミングで、位相θpと位相θnとを交互に切り替えた場合のタイミングチャート。 IPMモータのロータ位置の説明図。 ロータ位置による電流変化を示す図。 θfを時間の経過とともに変化させた場合の印加電圧を示す図。 θfが0度(U相(V4)方向が0度)、30度、60度の時のモータ8のUVWの各相に流れる電流を表した図。 実施の形態3におけるインバータ制御部10の構成を示す図。 図9に示すタイミングチャートに、モータ8に流れる電圧・電流を示した図。 実施の形態3における加熱判定部12の構成を示す図。 圧縮機1に滞留した液冷媒を漏出させるために必要な電力と、電力を得るのに必要な電流値との関係を示す図。 モータ電流に直流オフセットが重畳した場合の処理の説明図。 実施の形態4におけるインバータ9の構成を示す図。 図9に示すタイミングチャートに、モータ8に流れる電圧・電流と、直流電流検出部42が検出する電流とを示した図。 実施の形態5におけるインバータ9の構成を示す図。 図9に示すタイミングチャートに、モータ8に流れる電圧・電流と、インバータ電流検出部43が検出する電流とを示した図。 実施の形態6に係るヒートポンプ装置100の回路構成図。 図25に示すヒートポンプ装置100の冷媒の状態についてのモリエル線図。
実施の形態1.
実施の形態1では、ヒートポンプ装置100の基本的な構成及び動作について説明する。
図1は、実施の形態1におけるヒートポンプ装置100の構成を示す図である。
実施の形態1におけるヒートポンプ装置100は、圧縮機1、四方弁2、熱交換器3、膨張機構4、熱交換器5が、冷媒配管6を介して順次接続された冷凍サイクルを備える。圧縮機1の内部には冷媒を圧縮する圧縮機構7と、この圧縮機構7を動作させるモータ8とが設けられている。モータ8は、U相、V相、W相の三相の巻き線を有する三相モータである。
モータ8に電圧を与え駆動させるインバータ9は、モータ8と電気的に接続されている。インバータ9は、モータ8のU相、V相、W相の巻き線に電圧Vu、Vv、Vwをそれぞれ印加する。
インバータ9には、高周波電圧発生部11と加熱判定部12(状態検出部)とを備えるインバータ制御部10が電気的に接続されている。インバータ制御部10は、インバータ9から送られるインバータ9の電源電圧である母線電圧Vdcと、モータ8に流れる電流Iの値とに基づいて、モータ8を加熱する必要があるか判断するとともに、モータ8を加熱する必要がある場合に、PWM(Pulse Width Modulation)信号(駆動信号)をインバータ9へ出力する。
図2は、実施の形態1におけるインバータ9の構成を示す図である。
インバータ9は、交流電源13と、交流電源13から供給される電圧を整流する整流器14と、整流器14で整流された電圧を平滑して直流電圧(母線電圧Vdc)を生成する平滑コンデンサ15と、平滑コンデンサ15で生成された母線電圧Vdcを検出してインバータ制御部10へ出力する母線電圧検出部16とを備える。
また、インバータ9は、母線電圧Vdcを電源とする電圧印加部19を備える。電圧印加部19は、2つのスイッチング素子(17aと17d、17bと17e、17cと17f)の直列接続部が3個並列に接続され、各スイッチング素子17a〜17fそれぞれと並列に接続された環流ダイオード18a〜18fを備える回路である。電圧印加部19は、インバータ制御部10より送られるPWM信号UP、VP、WP、UN、VN、WNに応じて、それぞれに対応したスイッチング素子(UPは17a、VPは17b、WPは17c、UNは17d、VNは17e、WNは17f)を駆動する。そして、電圧印加部19は、駆動したスイッチング素子17に応じた電圧Vu、Vv、Vwを、モータ8のU相、V相、W相の巻き線それぞれに印加する。
さらに、インバータ9は、モータ8のU相、V相、W相の巻き線に電圧Vu、Vv、Vwを印加することにより、インバータ9からモータ8へ流れる電流Iを検出してインバータ制御部10へ出力する電流検出部20を備える。
図3は、実施の形態1におけるインバータ制御部10の構成を示す図である。
上述したように、インバータ制御部10は、高周波電圧発生部11と加熱判定部12とを備える。加熱判定部12については後述し、ここでは高周波電圧発生部11について説明する。
高周波電圧発生部11は、テーブルデータ21、外部入力部22、選択部23、積分器24、電圧指令生成部25、PWM信号生成部26を備える。
選択部23は、加熱判定部12から出力された電圧指令値Vcと、テーブルデータ21に記録された電圧指令値Vtと、外部入力部22から入力された電圧指令値Vaとのうちいずれか1つを電圧指令値V*として選択して出力する。また、選択部23は、テーブルデータ21に記録された回転数指令値ωtと、外部入力部22から入力された回転数指令値ωaとのうちいずれかを回転数指令値ω*として選択して出力する。
積分器24は、選択部23が出力した回転数指令値ω*から電圧位相θを求める。
電圧指令生成部25は、選択部23が出力した電圧指令値V*と、積分器24が求めた電圧位相θとを入力として、電圧指令値Vu*、Vv*、Vw*を生成して出力する。
PWM信号生成部26は、電圧指令生成部25が出力した電圧指令値Vu*、Vv*、Vw*と、母線電圧Vdcとに基づいて、PWM信号(UP、VP、WP、UN、VN,WN)を生成し、インバータ9へ出力する。
電圧指令生成部25の電圧指令値Vu*、Vv*、Vw*の生成方法と、PWM信号生成部26のPWM信号の生成方法とについて説明する。
図4は、実施の形態1におけるPWM信号生成部26の入出力波形を示す図である。
例えば、電圧指令値Vu*、Vv*、Vw*を式(1)〜式(3)のように位相が2π/3づつ異なる余弦波(正弦波)と定義する。但し、V*は電圧指令値の振幅、θは電圧指令値の位相である。
(1)Vu*=V*cosθ
(2)Vv*=V*cos(θ−(2/3)π)
(3)Vw*=V*cos(θ+(2/3)π)
電圧指令生成部25は、選択部23が出力した電圧指令値V*と、積分器24が求めた電圧位相θとに基づき、式(1)〜式(3)により電圧指令値Vu*、Vv*、Vw*を計算し、計算した電圧指令値Vu*、Vv*、Vw*をPWM信号生成部26へ出力する。PWM信号生成部26は、電圧指令値Vu*、Vv*、Vw*と、所定の周波数で振幅Vdc/2のキャリア信号(基準信号)とを比較し、相互の大小関係に基づきPWM信号UP、VP、WP、UN、VN、WNを生成する。
例えば、電圧指令値Vu*がキャリア信号よりも大きい場合には、UPはスイッチング素子17aをオンにする電圧とし、UNはスイッチング素子17dをオフにする電圧とする。また、電圧指令値Vu*がキャリア信号よりも小さい場合には、逆に、UPはスイッチング素子17aをオフにする電圧とし、UNはスイッチング素子17dをオンにする電圧とする。他の信号についても同様であり、電圧指令値Vv*とキャリア信号との比較によりVP、VNが決定され、電圧指令値Vw*とキャリア信号との比較によりWP、WNが決定される。
一般的なインバータの場合、相補PWM方式を採用しているため、UPとUN、VPとVN、WPとWNは互いに逆の関係となる。そのため、スイッチングパターンは全部で8通りとなる。
図5は、実施の形態1における8通りのスイッチングパターンを示す図である。なお、図5では、各スイッチングパターンで発生する電圧ベクトルにV0〜V7の符号を付している。また、各電圧ベクトルの電圧の方向を±U,±V,±W(電圧が発生しない場合には0)で表している。ここで、+Uとは、U相を介してモータ8へ流入し、V相及びW相を介してモータ8から流出するU相方向の電流を発生させる電圧であり、−Uとは、V相及びW相を介してモータ8へ流入し、U相を介してモータ8から流出する−U相方向の電流を発生させる電圧である。±V,±Wについても同様の解釈である。
図5に示すスイッチングパターンを組み合わせて電圧ベクトルを出力することでインバータ9に所望の電圧を出力させることができる。このときに位相θを高速で変化させることにより、高周波の電圧を出力することが可能となる。
なお、式(1)〜式(3)以外にも二相変調や、三次高調波重畳変調、空間ベクトル変調等により電圧指令信号Vu*、Vv*、Vw*を求めても構わない。
図6は、実施の形態1における加熱判定部12の構成を示す図である。
加熱判定部12は、インバータ9の母線電圧検出部16が検出した母線電圧Vdcや、インバータ9の電流検出部20が検出した電流I等に基づき、高周波電圧発生部11の動作状態(ON/OFF)を制御する。
加熱判定部12は、電流比較部27、電圧比較部28、温度検出部29、温度比較部30、第1論理積計算部31、寝込み判定部32、経過時間計測部33、時間比較部34、リセット部35、論理和計算部36、第2論理積計算部37、加熱量判断部38を備える。
電流比較部27は、電流検出部20により検出され出力された電流Iが、Imin<I<Imaxの状態の時に正常状態と判断して1を、それ以外の場合には0を出力する。
ここで、Imaxは電流上限値、Iminは電流下限値である。Imax以上の過大な正の電流、又は、Imin以下の過大な負の電流が流れる場合、電流比較部27は異常状態と判断して0を出力することで、加熱を停止するよう動作する。
電圧比較部28は、母線電圧検出部16により検出した母線電圧Vdcが、Vdc_min<Vdc<Vdc_maxの状態の時に正常状態と判断して1を、それ以外の場合には0を出力する。
ここで、Vdc_maxは母線電圧上限値、Vdc_minは母線電圧下限値である。Vdc_max以上の過大な母線電圧の場合や、Vdc_min以下の過小な母線電圧の場合には、電圧比較部28は異常状態と判断して0を出力することで、加熱を停止するよう動作する。
温度検出部29は、電圧印加部19の温度であるインバータ温度Tinv、圧縮機1の温度Tc、外気温度Toを検出する。
温度比較部30は、予め設定したインバータの保護温度Tp_invとインバータ温度Tinvとを比較するとともに、予め設定した圧縮機1の保護温度Tp_cと圧縮機温度Tcとを比較する。そして、温度比較部30は、Tp_inv>Tinvの状態、かつ、Tp_c>Tcの状態では正常に動作していると判断して1を、それ以外の場合には0を出力する。
ここで、Tp_inv<Tinvとなった場合には、インバータ温度が高温になっており、また、Tp_c<Tcとなった場合には、圧縮機1内のモータ8の巻線温度が高温となっており、絶縁不良等の恐れがある。そのため、温度比較部30は、危険と判断して0を出力して加熱を停止するよう動作する。ここで、圧縮機1はモータ8の巻線に比べて熱容量が大きく、温度の上昇速度が巻線に比べて遅い点を考慮してTp_cを設定する必要がある。
第1論理積計算部31は、以上の電流比較部27、電圧比較部28、温度比較部30の出力値の論理積を出力する。電流比較部27、電圧比較部28、温度比較部30の出力値のいずれか1つでも異常状態の0となった場合には、第1論理積計算部31が0を出力して加熱を停止するよう動作させる。
なお、ここでは、電流I、母線電圧Vdc、温度Tinv、Tcを用いて加熱を停止する方法について述べたが、全てを用いなくてもよい。また、ここで述べた以外のパラメータを用いて加熱を停止するよう構成してもよい。
続いて、温度検出部29により検出した圧縮機1の温度Tcと外気温度Toに基づいて、寝込み判定部32により圧縮機1内の圧縮機1内に液冷媒が滞留した状態(冷媒が寝込んだ状態)か否かを判断する。
圧縮機1は冷凍サイクル中で最も熱容量が大きく、外気温Toの上昇に対して、圧縮機温度Tcは遅れて上昇するため、最も温度が低くなる。冷媒は冷凍サイクル中で最も温度が低い場所で滞留し、液冷媒として溜まるため温度の上昇時に圧縮機1内に冷媒が溜まる。そこで、寝込み判定部32は、To>Tcとなった場合には、冷媒が圧縮機1内に滞留していると判断して1を出力して加熱を開始し、To<Tcとなった場合に加熱を停止する。
なお、Toが上昇傾向の時や、Tcが上昇傾向の時に加熱を開始するよう制御してもよく、TcもしくはToの検出が困難になった場合にいずれか1つを用いて制御ができるため信頼性の高い制御が実現できる。
ここで、圧縮機温度Tc及び外気温度Toの両方が検出不可能になった場合、圧縮機1の加熱ができなくなる恐れがある。そこで、経過時間計測部33は、圧縮機1を加熱していない時間(Elapse_Time)を計測し、時間比較部34にて予め設定した制限時間Limit_Timeを超過した場合に1を出力して圧縮機1の加熱を開始する。ここで、一日の温度変化は太陽が昇る朝から昼にかけて温度が上昇し、日没から夜にかけて温度が低下するため、おおよそ12時間周期で温度の上昇低下が繰り返される。そのため、例えばLimit_Timeを12時間程度に設定しておけばよい。
なお、Elapse_Timeは圧縮機1への加熱を行った場合にリセット部35にてElapse_Timeを0に設定する。
論理和計算部36は、以上の寝込み判定部32と時間比較部34との出力値の論理和を出力する。寝込み判定部32と時間比較部34との出力値のいずれか一方でも加熱開始を表す1となった場合には、論理和計算部36が1を出力して圧縮機1への加熱を開始させる。
第2論理積計算部37は、第1論理積計算部31と論理和計算部36との出力値の論理積を、加熱判定部12の出力値として出力する。出力値が1の場合には、高周波電圧発生部11を動作させ、圧縮機1の加熱動作を行う。一方、出力値が0の場合には、高周波電圧発生部11を動作させず、圧縮機1の加熱動作をしない、あるいは、高周波電圧発生部11の動作を停止させ、圧縮機1の加熱動作を止める。
第2論理積計算部37で論理積を出力するため、第1論理積計算部31にて圧縮機1への加熱停止の信号0が出力されている場合には、論理和計算部36が加熱開始の信号1が出力されていても、加熱を停止させることができる。そのため、信頼性を確保しつつ、待機中の消費電力を最小限に抑えることが可能なヒートポンプ装置を得ることができる。
なお、寝込み判定部32は、圧縮機温度Tcと外気温度Toとに基づいて、圧縮機1内に液冷媒が滞留した状態を検出するとした。さらに、加熱量判断部38は、圧縮機温度Tcと外気温度Toとから圧縮機1内に滞留した液冷媒の量を特定する。そして加熱量判断部38は、特定した液冷媒の量に応じて、冷媒を圧縮機1の外部へ追い出すのに必要な電圧指令値Vcを計算して出力する。これにより、必要最小限の電力で圧縮機1内に液冷媒が滞留した状態を解消することが可能となり、消費電力削減による地球温暖化への影響を低減することが可能となる。
次に、インバータ制御部10の動作について説明する。
図7は、実施の形態1におけるインバータ制御部10の動作を示すフローチャートである。
(S1:加熱判断ステップ)
加熱判定部12は、圧縮機1の運転停止中に、上述した動作により高周波電圧発生部11を動作させるかを判断する。
高周波電圧発生部11を動作させると加熱判定部12が判断した場合、すなわち加熱判定部12の出力値が1(ON)の場合(S1でYES)、処理をS2へ進め、予熱用のPWM信号を発生させる。一方、高周波電圧発生部11を動作させないと加熱判定部12が判断した場合、すなわち加熱判定部12の出力値が0(OFF)の場合(S1でNO)、所定時間経過後に、再び高周波電圧発生部11を動作させるかを判断する。
(S2:電圧指令値生成ステップ)
選択部23は、電圧指令値V*と回転数指令値ω*とを選択し、積分器24は、選択部23が選択した回転数指令値ω*から電圧位相θを求める。そして、電圧指令生成部25は、選択部23が選択した電圧指令値V*と、積分器24が求めた電圧位相θとに基づき、式(1)〜式(3)により電圧指令値Vu*、Vv*、Vw*を計算し、計算した電圧指令値Vu*、Vv*、Vw*をPWM信号生成部26へ出力する。
(S3:PWM信号生成ステップ)
PWM信号生成部26は、電圧指令生成部25が出力した電圧指令値Vu*、Vv*、Vw*をキャリア信号と比較して、PWM信号UP、VP、WP、UN、VN、WNを得て、インバータ9へ出力する。これにより、インバータ9のスイッチング素子17a〜17fを駆動してモータ8に高周波電圧を印加する。
モータ8に高周波電圧を印加することにより、モータ8の鉄損と、巻線に流れる電流にて発生する銅損とで効率よくモータ8が加熱される。モータ8が加熱されることにより、圧縮機1内に滞留する液冷媒が加熱されて気化し、圧縮機1の外部へと漏出する。
所定の時間経過後、再びS1へ戻りさらに加熱が必要かを判定する。
以上のように、実施の形態1に係るヒートポンプ装置100では、圧縮機1内に液冷媒が滞留した状態である場合に、高周波電圧をモータ8へ印加するため、騒音を抑えつつ、効率的にモータ8を加熱できる。これにより、圧縮機1内に滞留した冷媒を効率的に加熱することができ、滞留した冷媒を圧縮機1の外部へ漏出させることができる。
なお、圧縮動作時の運転周波数以上の高周波電圧をモータ8に印加すれば、モータ8内のロータが周波数に追従できなくなり、回転や振動が発生することが無くなる。そこで、S2において、選択部23は、圧縮動作時の運転周波数以上となる回転数指令ω*を出力するのがよい。
一般に、圧縮動作時の運転周波数は、高々1kHzである。そのため、1kHz以上の高周波電圧をモータ8に印加すればよい。また、14kHz以上の高周波電圧をモータ8に印加すれば、モータ8の鉄心の振動音がほぼ可聴周波数上限に近づくため、騒音の低減にも効果がある。そこで、例えば、選択部23は、20kHz程度の高周波電圧となるような回転数指令ω*を出力する。
但し、高周波電圧の周波数はスイッチング素子17a〜17fの最大定格周波数を超えるとスイッチング素子17a〜17fの破壊による負荷もしくは電源短絡を起こし、発煙や発火に至る可能性がある。そのため、信頼性を確保するため高周波電圧の周波数は最大定格周波数以下にすることが望ましい。
また、近年のヒートポンプ装置用の圧縮機のモータには高効率化のためIPM(Interior Permanent Magnet)構造のモータや、コイルエンドが小さく巻線抵抗の低い集中巻きモータが広く用いられる。集中巻きモータは、巻線抵抗が小さく銅損による発熱量が少ないため、巻線に多量の電流を流す必要がある。巻線に多量の電流を流すと、インバータ9に流れる電流も多くなり、インバータ損失が大きくなる。
そこで、上述した高周波電圧印加による加熱を行うと、高周波数によるインダクタンス成分が大きくなり、巻線インピーダンスが高くなる。そのため、巻線に流れる電流が小さくなり銅損は減るものの、その分高周波電圧印加による鉄損が発生し効果的に加熱することができる。さらに、巻線に流れる電流が小さくなるため、インバータに流れる電流も小さくなり、インバータ9の損失も低減でき、より効率の高い加熱が可能となる。
また、上述した高周波電圧印加による加熱を行うと、圧縮機がIPM構造のモータである場合、高周波磁束が鎖交するロータ表面も発熱部となる。そのため、冷媒接触面増加や圧縮機構への速やかな加熱が実現されるため効率の良い冷媒の加熱が可能となる。
また、インバータ9を構成するスイッチング素子17a〜17fと、これに並列に接続された環流ダイオード18a〜18fには、現在一般的には珪素(Si)を材料とする半導体を用いるのが主流である。しかし、これに代えて、炭化珪素(SiC)や窒化ガリウム(GaN)、ダイヤモンドを材料とするワイドギャップ半導体を用いても良い。
このようなワイドバンドギャップ半導体によって形成されたスイッチング素子やダイオード素子は、耐電圧性が高く、許容電流密度も高い。そのため、スイッチング素子やダイオード素子の小型化が可能であり、これら小型化されたスイッチング素子やダイオード素子を用いることにより、これらの素子を組み込んだ半導体モジュールの小型化が可能となる。
また、このようなワイドバンドギャップ半導体によって形成されたスイッチング素子やダイオード素子は、耐熱性も高い。そのため、ヒートシンクの放熱フィンの小型化や、水冷部の空冷化が可能であるので、半導体モジュールの一層の小型化が可能になる。
さらに、このようなワイドバンドギャップ半導体によって形成されたスイッチング素子やダイオード素子は、電力損失が低い。そのため、スイッチング素子やダイオード素子の高効率化が可能であり、延いては半導体モジュールの高効率化が可能になる。
なお、スイッチング素子及びダイオード素子の両方がワイドバンドギャップ半導体によって形成されていることが望ましいが、いずれか一方の素子がワイドバンドギャップ半導体よって形成されていてもよく、この実施例に記載の効果を得ることができる。
その他、高効率なスイッチング素子として知られているスーパージャンクション構造のMOSFET(Metal−Oxide−Semiconductor Field−Effect Transistor)を用いることでも同様の効果を得ることが可能である。
また、スクロール機構の圧縮機は、圧縮室の高圧リリーフが困難である。そのため、他の方式の圧縮機に比べ、液圧縮した場合に圧縮機構に過大なストレスが掛かり破損する可能性が高い。しかし、実施の形態1のヒートポンプ装置100では、圧縮機1の効率の良い加熱が可能であり、圧縮機1内の液冷媒の滞留を抑制することできる。そのため、液圧縮を防止することができるので、圧縮機1としてスクロール圧縮機を用いた場合にも効果的である。
さらに、周波数10kHz、出力50Wを超える加熱機器の場合、法令による制約を受ける場合もある。そのため、事前に50Wを超えないよう電圧指令値の振幅の調整や、流れる電流や電圧を検出して50W以下となるようフィードバック制御を行うようにしてもよい。
なお、インバータ制御部10は、CPU(Central Processing Unit)やDSP(Digital Signal Processor)、マイクロコンピュータ(マイコン)、電子回路などで構成される。
実施の形態2.
実施の形態2では、高周波電圧の生成方法について説明する。
一般的なインバータの場合、キャリア信号の周波数であるキャリア周波数はインバータのスイッチング素子のスイッチングスピードにより上限が決まっている。そのため、搬送波であるキャリア周波数以上の高周波電圧を出力することは困難である。なお、一般的なIGBT(Insulated Gate Bipolar Transistor)の場合、スイッチングスピードの上限は20kHz程度である。
また、高周波電圧の周波数がキャリア周波数の1/10程度になると、高周波電圧の波形出力精度が悪化し直流成分が重畳するなど悪影響を及ぼす恐れがある。この点を考慮し、キャリア周波数を20kHzとした場合に、高周波電圧の周波数をキャリア周波数の1/10の2kHz以下とすると、高周波電圧の周波数は可聴周波数領域となり、騒音悪化が懸念される。
図8は、実施の形態2におけるインバータ制御部10の構成を示す図である。
実施の形態2におけるインバータ制御部10は、高周波電圧発生部11が、積分器24(図3参照)に代えて、基準位相θfに、選択部23にて切り換えられた位相θpと位相θnを加算して電圧位相θとする加算部39を備えることを除き、図3に示す実施の形態1におけるインバータ制御部10と同じである。そのため、同一の符号を付して説明は省略し、変更点のみ説明する。
実施の形態1では、回転数指令ω*を積分器24にて積分して電圧位相θを求めていた。これに対し、実施の形態2では、選択部23(位相切替部)が、位相θpと、位相θpとほぼ180度異なる位相θnとの2種類の電圧位相を交互に切り換える。そして、加算部39が、基準位相θfに、選択部23が選択した位相θp又は位相θnを加算して電圧位相θとする。
なお、以下の説明では、θp=0[度]、θn=180[度]として説明する。
次に、インバータ制御部10の動作について説明する。
なお、図7に示すS2の動作以外は、実施の形態1におけるインバータ制御部10と同じであるため、説明を省略する。
S2では、選択部23が、キャリア信号の頂(山)又は底(谷)のタイミングで、あるいは、頂及び底のタイミングで、位相θpと位相θnとを交互に切り替える。そして、加算部39が、基準位相θfに、選択部23が選択した位相θp又は位相θnを加算して電圧位相θとして電圧指令生成部25へ出力する。電圧指令生成部25は、電圧位相θと、電圧指令値V*とを用いて式(1)〜式(3)にて電圧指令値Vu*、Vv*、Vw*を得て、PWM信号生成部26へ出力する。
選択部23が位相θpと位相θnとを、キャリア信号の頂もしくは底、頂及び底のタイミングで切り替えることで、キャリア信号に同期したPWM信号を出力することが可能となる。
図9は、選択部23がキャリア信号の頂及び底のタイミングで、位相θpと位相θnとを交互に切り替えた場合のタイミングチャートである。なお、UPとUN、VPとVN、WPとWNはそれぞれオン/オフ状態が逆であり、一方がわかれば他方もわかるため、ここではUP、VP、WPのみを示している。また、ここでは、θf=0[度]としている。
この場合、図9に示すようにPWM信号が変化する。そして、電圧ベクトルはV0(UP=VP=WP=0)、V4(UP=1、VP=WP=0)、V7(UP=VP=WP=1)、V3(UP=0、VP=WP=1)、V0(UP=VP=WP=0)、・・・の順で変化する。
図10は、図9に示す電圧ベクトルの変化の説明図である。なお、図10では、破線で囲まれたスイッチング素子17がオン、破線で囲まれていないスイッチング素子17がオフの状態であることを表している。
図10に示すように、V0ベクトル、V7ベクトル印加時はモータ8の線間が短絡状態となり、電圧が出力されない無通電区間である。この場合、モータ8のインダクタンスに蓄えられたエネルギーが電流となって短絡回路中を流れる。また、V4ベクトル印加時には、U相を介してモータ8へ流入し、V相及びW相を介してモータ8から流出するU相方向の電流(+Iuの電流)が流れ、V3ベクトル印加時には、V相及びW相を介してモータ8へ流入し、U相を介してモータ8から流出する−U相方向の電流(−Iuの電流)がモータ8の巻線に流れる。つまり、V4ベクトル印加時と、V3ベクトル印加時とでは逆方向の電流がモータ8の巻線に流れる。そして、電圧ベクトルがV0、V4、V7、V3、V0、・・・の順で変化するため、+Iuの電流と−Iuの電流とが交互にモータ8の巻線に流れることになる。特に、図9に示すように、V4ベクトルとV3ベクトルとが1キャリア周期(1/fc)の間に現れるため、キャリア周波数fcに同期した交流電圧をモータ8の巻線に印加することが可能となる。
また、V4ベクトル(+Iuの電流)とV3ベクトル(−Iuの電流)とが交互に出力されるため、正逆のトルクが瞬時に切り替わる。そのため、トルクが相殺されることによりロータの振動を抑えた電圧の印加が可能となる。
図11は、選択部23がキャリア信号の底のタイミングで、位相θpと位相θnとを交互に切り替えた場合のタイミングチャートである。
この場合、図11に示すようにPWM信号が変化する。そして、電圧ベクトルはV0、V4、V7、V7、V3、V0、V0、V3、V7、V7、V4、V0、・・・の順で変化する。V4ベクトルとV3ベクトルとが2キャリア周期の間に現れるため、1/2キャリア周波数の交流電圧をモータ8の巻線に印加することが可能となる。
図12は、IPMモータのロータ位置(ロータの停止位置)の説明図である。ここでは、IPMモータのロータ位置φは、ロータのN極の向きがU相方向からずれた角度の大きさによって表される。
図13は、ロータ位置による電流変化を示す図である。IPMモータの場合、巻線インダクタンスはロータ位置に依存する。そのため、電気角周波数ωとインダクタンス値との積で表される巻線インピーダンスは、ロータ位置に応じて変動する。したがって、同一電圧を印加した場合においても、ロータ位置によって、モータ8の巻線に流れる電流が変動してしまい、加熱量が変化してしまう。その結果、ロータ位置によっては、必要な加熱量を得るために、多くの電力が消費される恐れがある。
そこで、時間の経過と共に基準位相θfを変化させ、ロータに満遍なく電圧を印加する。
図14は、θfを時間の経過とともに変化させた場合の印加電圧を示す図である。
ここでは、θfを時間の経過とともに、0度、45度、90度、135度、・・・と45度づつ変化させている。θfが0度であれば、電圧指令値の位相θは0度、180度となり、θfが45度であれば、電圧指令値の位相θは45度、225度となり、θfが90度であれば、電圧指令値の位相θは90度、270度となり、θfが135度であれば、電圧指令値の位相θは135度、315度となる。
つまり、初めに、θfが0度に設定され、所定の時間、電圧指令値の位相θがキャリア信号に同期して0度と180度とで切り替えられる。その後、θfが45度に切り替えられ、所定の時間、電圧指令値の位相θがキャリア信号に同期して45度と225度とで切り替えられる。その後、θfが90度に切り替えられ、・・・というように、所定の時間毎に、0度と180度、45度と225度、90度と270度、135度と315度、・・・と電圧指令値の位相θが切り替えられる。
これにより、時間の経過とともに、高周波交流電圧の通電位相が変化するため、ロータ停止位置によるインダクタンス特性の影響を排除することができ、ロータ位置に依存せず均一な圧縮機1の加熱が可能となる。
図15は、θfが0度(U相(V4)方向が0度)、30度、60度の時のモータ8のUVWの各相に流れる電流を表した図である。
θfが0度の場合には、図9に示すようにV0とV7との間に他の電圧ベクトル(スイッチング素子17a〜17fの正電圧側1つと負電圧側2つ、又は、正電圧側2つと負電圧側1つがオン状態となる電圧ベクトル)が1つのみ発生する。この場合、電流波形は台形状となり高調波成分の少ない電流となる。
しかし、θfが30度の場合には、V0とV7との間に異なる2つの電圧ベクトルが発生する。この場合、電流波形が歪み、高調波成分の多い電流となる。この電流波形の歪みはモータ騒音やモータ軸振動などの悪影響を与える恐れがある。
また、θfが60度の場合も、θfが0度の場合と同様に、V0とV7との間に他の電圧ベクトルが1つのみ発生する。この場合、電流波形は台形状となり、高調波成分が少ない電流となる。
このように、基準位相θfが60度のn倍(nは0以上の整数)の場合には、電圧位相θが60度の倍数となるため(ここでは、θp=0[度]、θn=180[度]である)、V0とV7との間に他の電圧ベクトルが1つのみ発生する。一方、基準位相θfが60度のn倍以外の場合には、電圧位相θが60度の倍数とならないため、V0とV7との間に他の電圧ベクトルが2つ発生してしまう。V0とV7との間に他の電圧ベクトルが2つ発生してしまうと、電流波形が歪み、高調波成分の多い電流となり、モータ騒音やモータ軸振動などの悪影響を与える恐れがある。したがって、基準位相θfは、0度、60度、・・・のように60度刻みで変化させることが望ましい。
以上のように、実施の形態2に係るヒートポンプ装置100では、位相θ1と、位相θ1とほぼ180度異なる位相θ2との二種類の位相をキャリア信号に同期させて交互に切り換えて、電圧指令値の位相とした。これにより、キャリア周波数に同期した高周波電圧をモータ8の巻線へ印加することができる。
また、実施の形態2に係るヒートポンプ装置100では、基準位相θfを時間の経過とともに変化させた。これにより、時間の経過とともに、高周波交流電圧の通電位相が変化するため、ロータ位置に依存せず均一な圧縮機1の加熱が可能となる。
実施の形態3.
実施の形態3では、高周波交流電圧を発生させた場合において、製造ばらつきや環境ばらつきによる影響によらず、圧縮機の加熱量を一定に保つ方法について説明する。
図16は、実施の形態3におけるインバータ制御部10の構成を示す図である。
実施の形態3におけるインバータ制御部10は、高周波電流検出部40を備えることを除き、図8に示す実施の形態2におけるインバータ制御部10と同じである。そのため、同一の符号を付して説明は省略し、変更点のみ説明する。
実施の形態2では、電流検出部20が検出した電流値Iを入力として、加熱判定部12が動作していた。これに対し、実施の形態3では、電流検出部20が検出した電流値Iを、高周波電流検出部40が所定のタイミングにおいて取得し、高周波電流値Ihとして出力する。そして、高周波電流検出部40が出力した高周波電流値Ihを入力として、加熱判定部12が動作する。
電流検出部20が検出した電流値Iを、高周波電流検出部40が取得するタイミングについて説明する。
図17は、図9に示すタイミングチャートに、モータ8に流れる電圧・電流を示した図である。
モータ電流波形のV4ベクトルの区間ではモータ電圧は正となるため、モータ電流は負から正に流れる。続いてV7ベクトルの区間では、モータ電圧はゼロとなり、モータ8の線間が短絡されるよう動作するため、モータ8のインダクタンスに蓄えられたエネルギーがモータ8の抵抗成分とインダクタンス成分から求まる時定数にて減衰する。その後、V3ベクトルの区間ではモータ電圧が負となるため、正から負のモータ電流が流れ、V0ベクトルの区間では再びモータ8の線間が短絡されるよう動作するため、前述の時定数で減衰する。
前述の時定数は概ね数msec程度であり、出力周波数を20kHzとした場合の周期50μsecに対して十分長い。そのため、V0ベクトル及びV7ベクトルの区間では、V4ベクトル及びV3ベクトルの区間で発生した電流を保持するよう動作する。
ここで、電流検出部20は、モータ8へ流れる電流を検出しているためモータ8に実際に流れる電流と同等の電流が検出可能である。しかし、インバータ制御部10は、一般的にCPU(Central Processing Unit)やDSP(Digital Signal Processor)、マイクロコンピュータ(マイコン)などが用いられている。そのため、インバータ制御部10は、電流の検出に関しては電流センサなどで電圧に変換され、その後アナログ値からデジタル値へ変換するA/D変換を行う。一般に、これらの変換等には時間がかかる。特に、安価なCPU等でインバータ制御部10を構成した場合は時間がかかる。したがって、インバータ制御部10は、電流が高周波数の場合、正確な電流検出が困難である。
また、一般的に、インバータ制御部10はキャリア信号の一周期に1回、もしくはキャリアの底から頂と頂から底の各一回ずつ電流検出を行うことが多い。そのため、電流検出のタイミングを誤ると所望の電流値(一般的には、ピーク値)を検出することができない。
そこで、高周波電流検出部40は、電流がピーク付近で比較的安定している部分(図17における電流検出部20の出力電流中に破線で示した部分)を電流検出可能区間(検出区間)とし、このタイミングで電流検出部20が検出した電流値を取得する。これにより、高周波電流検出部40は、モータ電流の略ピーク値を検出することが可能となる。
この電流検出可能区間は、モータ電圧の出力終了直前から、モータ電圧のゼロ区間を経て、モータ電圧の出力開始直後までの区間である。つまり、図17では、電流検出可能区間は、V4ベクトルの出力終了直前から、V7ベクトルの区間を経て、V3ベクトルの出力開始直後までと、V3ベクトルの出力終了直前から、V0ベクトル区間を経て、V4ベクトルの出力開始直後までとなる。
ここでは、モータ8の特定の一相分を説明しているが、多相についても同様の手法で高周波電流値を検出することが可能である。三相(UVW相)のうち二相が検出できれば、UVW相に流れる電流Iu、Iv、Iwの和が0になるキルヒホッフの法則により、検出していない残りの一相の電流を求めることが可能である。
なお、前述した電流検出可能区間での検出タイミングを計ることが難しい場合には、例えばキャリア信号の頂を基準として、0[μs]後、5[μs]後、・・・のように、周期に対して非常に短い間隔で検出し、キャリア信号数周期分の電流の平均を取るようにしてもよい。これにより、多少の誤差は発生するが高周波電流の値を確実に検出することができる。正の値と負の値とを別々に平均をとることで、正の電流値と負の電流値とを得ることができる。
図18は、実施の形態3における加熱判定部12の構成を示す図である。
実施の形態3における加熱判定部12は、加熱量調整部41を備えることを除き、図6に示す実施の形態1における加熱判定部12と同じである。そのため、同一の符号を付して説明は省略し、変更点のみ説明する。
実施の形態2では、加熱量判断部38は、特定した液冷媒の量に応じて、冷媒を圧縮機1の外部へ追い出すのに必要な電圧指令値Vcを計算して出力していた。これに対し、実施の形態3では、加熱量判断部38は、特定した液冷媒の量に応じて、冷媒を圧縮機1の外部へ追い出すのに必要な電力(熱量)を算出する。そして、加熱量調整部41は、算出された電力を得ることが可能な電圧指令値Vcを、高周波電流値Ihに基づいて計算して出力する。
図19は、圧縮機1に滞留した液冷媒を漏出させるために必要な電力と、電力を得るのに必要な電流値との関係を示す図である。
加熱量調整部41は、図18に示すように必要な電力と、その電力を得るのに必要な電流値との関係を予め求めておき、メモリに記憶しておく。そして、加熱量調整部41は、加熱量判断部38が算出した電力を得るのに必要な電流値と、高周波電流Ihとが一致するような電圧指令値Vcを計算する。
これにより、図13に示すように、製造ばらつきや環境ばらつきによる影響によらず、圧縮機1の加熱量を一定に保つことが可能となる。
なお、図13に示すように、基準位相θfを固定とした場合、電流が流れやすいロータ位置φや、電流が流れにくいロータ位置φがある。ロータ位置φを固定とし、基準位相θfを可変とした場合にも同様に、電流が流れやすい基準位相θfや、電流が流れにくい基準位相θfがある。ここで、電流が流れやすいロータ位置φもしくは基準位相θfは、少ない電圧で大きな電流を流すことができるため効率よく圧縮機1を加熱できる。
そこで、ロータ位置φもしくは基準位相θfを変化させ、ロータ位置φもしくは基準位相θf毎の高周波電流Ihを把握して、最も電流が大きくなるロータ位置φもしくは基準位相θfで動作させる。これにより、効率良く圧縮機1の加熱が可能となる。
また、実施の形態2では、図8に示すように、電圧指令生成部25は、電圧指令値V*と電圧位相θとを入力として、電圧指令値Vu*、Vv*、Vw*を生成していた。実施の形態3では、図16に示すように、高周波電流検出部40は、取得した高周波電流値Ihから電流に重畳している直流オフセット値Ih_offsetを計算して出力する。そして、電圧指令値V*と電圧位相θとに加えて、高周波電流検出部40が出力した直流オフセット値Ih_offsetを入力として、電圧指令生成部25が電圧指令値Vu*、Vv*、Vw*を生成する。
図20は、モータ電流に直流オフセットが重畳した場合の処理の説明図である。図20では、初めはモータ電流に直流オフセットが重畳しているが、電圧指令値Vu*、Vv*、Vw*を調整することにより、直流オフセットが徐々になくなるように補正される様子を示している。
インバータ制御部10は、一般的にCPUやDSP、マイクロコンピュータに代表される離散システムを用いて構成され、演算上の誤差も無視できない場合がある。そのため、図20に示すようにモータ電流に直流オフセットが重畳する恐れがある。直流オフセットが重畳した状態で、高周波電圧を印加した場合、インバータ9を構成するスイッチング素子の損失が大きく発熱する。そのため、長時間運転を続けた場合、熱破壊に至る恐れがある。また、近年のモータ8の設計では巻線抵抗による損失を低減するため、低い巻線抵抗設計となっており、わずかでも直流オフセットが生じると直流電流による過大な電流が流れる恐れがある。
そこで、高周波電流検出部40は、高周波電流の正のピーク値Ihp[n]及び負のピーク値Ihn[n]を検出する。そして、高周波電流検出部40は、1回目の検出値Ihp[1]及びIhn[1]の平均値を直流オフセット量Ih_offsetとして計算する。
電圧指令生成部25は、計算されたオフセット量Ih_offsetに基づき、電圧指令値Vu*、Vv*、Vw*を調整する。例えば、U相の電流に正方向の直流オフセットが重畳しているなら、電圧指令生成部25は、電圧指令値Vu*を負の方向に徐々にずらすように調整する。逆に、U相の電流に負方向の直流オフセットが重畳しているなら、電圧指令生成部25は、電圧指令値Vu*を正の方向に徐々にずらすように調整する。V相、W相についても同様である。これにより、直流オフセット量が0になるように制御することが可能となる。
ここで、電流のピーク値に関してはノイズ等の影響によりバラツキが生じる恐れがある。そのため、1回目の検出値Ihp[1]及びIhn[1]の平均値を直流オフセット量Ih_offsetとするのではなく、1回目からn回目(nは2以上の整数)までの検出値を用いて直流オフセット量Ih_offsetを計算してもよい。例えば、1回目からn回目(nは2以上の整数)までの検出値について、LPF(Low Pass Filter)、移動平均等の一般的に広く用いられる方法を用いて、バラツキが小さくなるよう平均化して行ってもよい。
また、上記説明では、モータ電流のピーク値(高周波電流値Ih)を検出することについて説明した。しかし、モータ電流のピーク値からモータ電流の平均値を計算することもできる。
図17に示す通り、V4ベクトルおよびV3ベクトルの区間中はモータ電流の電流極性が変化し、V0ベクトルとV7ベクトルの区間はモータ電流のピーク値を維持するよう動作する。そして、電流波形は略台形状となる。そのため、上底をV7ベクトルの区間の長さ、下底をキャリアの半周期、高さを高周波電流検出部40により検出した高周波電流Ihとすれば、台形の面積の公式にて電流波形の面積が求まる。この面積を時間で割ることにより、面積の時間についての平均値を求めることで、モータ電流の平均値が得られる。
モータ電流のピーク値に代えて、モータ電流の平均値を用いることで、より正確な制御が可能となる場合がある。例えば、加熱量調整部41は、加熱量判断部38が算出した電力を得るのに必要な電流値と、モータ電流の平均値とが一致するような電圧指令値Vcを計算してもよい。
また、例えば、モータ8を単相で考えた場合、モータ8は巻線抵抗Rと巻線インダクタンスLの回路である。そのため、高周波電流検出部40により検出した高周波電流Ihを用いることで、V=(R+jωL)Iよりモータ8の巻線抵抗Rを推定することが可能である。ここで、巻線抵抗Rは温度変化により線形的に変化し、巻線温度が高いときに巻線抵抗Rも高くなる傾向がある。例えば、基準温度20℃の時の巻線抵抗Rの値を記憶しておき、記憶した値と前述の推定した巻線抵抗Rとの差から現在の巻線温度を推定することが可能である。
例えば、外気温度と推定した巻線温度との関係から、加熱判定部12は加熱動作をするか否か(ON/OFF)を判定することや、推定した巻線温度が低い場合には、加熱判定部12は出力する電圧指令値Vcを大きくしてもよい。このような制御を行うことで、確実に圧縮機1に滞留した液冷媒を漏出することが可能となる。また、推定した巻線温度が非常に高く(例えば100℃以上)なった場合には、危険状態と判断して加熱判定部12の出力であるON/OFF状態をOFFにすることも考えられる。これにより、信頼性の高いヒートポンプ装置100を得ることが可能となる。
以上のように、実施の形態3に係るヒートポンプ装置100では、電流検出可能区間においてインバータ9に流れる電流値を検出した。これにより、電流のピーク値を正確に検出することが可能となる。そして、電流のピーク値を正確に検出することにより、圧縮機1の加熱量を一定に保つことができる。また、電流のピーク値を正確に検出することにより、その他の様々な制御を正確に行うことができる。そのため、信頼性の高いヒートポンプ装置100を得ることができる。
特に、インバータ制御部10を構成するCPU等に安価なものを採用した場合においても、電流のピーク値を正確に検出することが可能となる。したがって、ヒートポンプ装置100の低コスト化が可能となる。
実施の形態4.
実施の形態1−3では、インバータ9からモータ8へ流れる電流から高周波電流Ihを検出した。実施の形態4では、インバータ9の直流電流から高周波電流Ihを検出する構成について説明する。
図21は、実施の形態4におけるインバータ9の構成を示す図である。
実施の形態4におけるインバータ9は、電流検出部20に代え、直流電流検出部42を備える点を除き、図2に示す実施の形態1におけるインバータ9と同じである。そのため、同一の符号を付して説明は省略し、変更点のみ説明する。
直流電流検出部42は、インバータ9におけるインバータ部分(直列接続部)を並列に接続する部分に設けられる。そして、直流電流検出部42は、インバータ9の直流電流を検出して、インバータ制御部10へ出力する。
図22は、図9に示すタイミングチャートに、モータ8に流れる電圧・電流と、直流電流検出部42が検出する電流とを示した図である。
図5に示すスイッチングパターンのV0ベクトルの区間とV7ベクトルの区間とでは、実施の形態3で説明したように、モータ電圧はゼロとなり、モータ8の線間が短絡されるよう動作する。そのため、直流電流検出部42には電流が流れない。したがって、V1〜V6ベクトルの区間でのみ、直流電流検出部42に電流が流れる。
そこで、高周波電流検出部40は、モータ電流の出力開始直後又はモータ電流のモータ電流の出力終了直前を電流検出可能区間とし、このタイミングで直流電流検出部42が検出した電流値を取得する。これにより、高周波電流検出部40は、モータ電流の略ピーク値を検出することが可能となる。
この電流検出可能区間は、言い換えると、モータ電圧のゼロ区間の終了直後、又は、モータ電圧のゼロ区間の開始直前である。つまり、電流検出可能区間は、図22では、V4ベクトル及びV3ベクトルの出力開始直後(V0又はV7ベクトルの区間の終了直後)、又は、V4ベクトル及びV3ベクトルの出力終了直前(V0又はV7ベクトルの区間の開始直前)である。
以上のように、実施の形態4におけるヒートポンプ装置100では、電流検出部20に代えて、直流電流検出部42を用いる。この場合、単一のセンサで電流を検出することが可能となる。そのため、部品点数削減による信頼性向上及びコスト削減を実現したヒートポンプ装置100を得ることが可能となる。
実施の形態5.
実施の形態4では、インバータ9の直流電流から高周波電流Ihを検出した。実施の形態5では、インバータ9のインバータ部分に流れる電流から高周波電流Ihを検出する構成について説明する。
図23は、実施の形態5におけるインバータ9の構成を示す図である。
実施の形態5におけるインバータ9は、直流電流検出部42に代え、インバータ電流検出部43を備える点を除き、図21に示す実施の形態4におけるインバータ9と同じである。そのため、同一の符号を付して説明は省略し、変更点のみ説明する。
インバータ電流検出部43は、インバータ9におけるインバータ部分の負電圧側のスイッチング素子17d,17e,17fの直下に設けられる。そして、インバータ電流検出部43は、インバータ部分に流れる電流を検出して、インバータ制御部10へ出力する。
図24は、図9に示すタイミングチャートに、モータ8に流れる電圧・電流と、インバータ電流検出部43が検出する電流とを示した図である。
高周波電流検出部40は、電流がピーク付近で比較的安定している部分(図24におけるインバータ電流検出部43の出力電流中に破線で示した部分)を電流検出可能区間とし、このタイミングでインバータ電流検出部43が検出した電流値を取得する。これにより、高周波電流検出部40は、モータ電流の略ピーク値を検出することが可能となる。
この電流検出可能区間は、モータ電圧の出力開始直後(モータ電圧のゼロ区間の終了直後)と、モータ電圧の出力終了直前(モータ電圧のゼロ区間の開始直前)からモータ電圧のゼロ区間の終了までの区間とである。つまり、図24では、V3ベクトルの出力開始直後と、V3ベクトルの出力終了直前からV0ベクトルの区間の終了までとなる。
ここでは、モータ8の特定の一相分を説明しているが、多相についても同様の手法で高周波電流値を検出することが可能である。三相(UVW相)のうち二相が検出できれば、UVW相に流れる電流Iu、Iv、Iwの和が0になるキルヒホッフの法則により、検出していない残りの一相の電流を求めることが可能である。
以上のように、実施の形態5におけるヒートポンプ装置100では、直流電流検出部42に代えて、負電圧側スイッチング素子の直下に設けられたインバータ電流検出部43を用いる。一般的に、インバータ電流検出部43の片側がグランドになる。そのため、特別なセンサを用いることなく、抵抗などを設置し両端の電位差を検出することで、抵抗値と電位差とから流れる電流が検出可能となる。したがって、コスト削減を実現したヒートポンプ装置100を得ることが可能となる。
実施の形態6.
実施の形態6では、ヒートポンプ装置100の回路構成の一例について説明する。
なお、例えば、図1では、圧縮機1と、四方弁2と、熱交換器3と、膨張機構4と、熱交換器5とが配管により順次接続されたヒートポンプ装置100について示した。実施の形態6では、より具体的な構成のヒートポンプ装置100について説明する。
図25は、実施の形態6に係るヒートポンプ装置100の回路構成図である。
図26は、図25に示すヒートポンプ装置100の冷媒の状態についてのモリエル線図である。図26において、横軸は比エンタルピ、縦軸は冷媒圧力を示す。
ヒートポンプ装置100は、圧縮機51と、熱交換器52と、膨張機構53と、レシーバ54と、内部熱交換器55と、膨張機構56と、熱交換器57とが配管により順次接続され、冷媒が循環する主冷媒回路58を備える。なお、主冷媒回路58において、圧縮機51の吐出側には、四方弁59が設けられ、冷媒の循環方向が切り替え可能となっている。また、熱交換器57の近傍には、ファン60が設けられる。また、圧縮機51は、上記実施の形態で説明した圧縮機1であり、インバータ9によって駆動されるモータ8と圧縮機構7とを有する圧縮機である。
さらに、ヒートポンプ装置100は、レシーバ54と内部熱交換器55との間から、圧縮機51のインジェクションパイプまでを配管により繋ぐインジェクション回路62を備える。インジェクション回路62には、膨張機構61、内部熱交換器55が順次接続される。
熱交換器52には、水が循環する水回路63が接続される。なお、水回路63には、給湯器、ラジエータや床暖房等の放熱器等の水を利用する装置が接続される。
まず、ヒートポンプ装置100の暖房運転時の動作について説明する。暖房運転時には、四方弁59は実線方向に設定される。なお、この暖房運転とは、空調で使われる暖房だけでなく、水に熱を与えて温水を作る給湯も含む。
圧縮機51で高温高圧となった気相冷媒(図26の点1)は、圧縮機51から吐出され、凝縮器であり放熱器となる熱交換器52で熱交換されて液化する(図26の点2)。このとき、冷媒から放熱された熱により、水回路63を循環する水が温められ、暖房や給湯に利用される。
熱交換器52で液化された液相冷媒は、膨張機構53で減圧され、気液二相状態になる(図26の点3)。膨張機構53で気液二相状態になった冷媒は、レシーバ54で圧縮機51へ吸入される冷媒と熱交換され、冷却されて液化される(図26の点4)。レシーバ54で液化された液相冷媒は、主冷媒回路58と、インジェクション回路62とに分岐して流れる。
主冷媒回路58を流れる液相冷媒は、膨張機構61で減圧され気液二相状態となったインジェクション回路62を流れる冷媒と内部熱交換器55で熱交換されて、さらに冷却される(図26の点5)。内部熱交換器55で冷却された液相冷媒は、膨張機構56で減圧されて気液二相状態になる(図26の点6)。膨張機構56で気液二相状態になった冷媒は、蒸発器となる熱交換器57で外気と熱交換され、加熱される(図26の点7)。そして、熱交換器57で加熱された冷媒は、レシーバ54でさらに加熱され(図26の点8)、圧縮機51に吸入される。
一方、インジェクション回路62を流れる冷媒は、上述したように、膨張機構61で減圧されて(図26の点9)、内部熱交換器55で熱交換される(図26の点10)。内部熱交換器55で熱交換された気液二相状態の冷媒(インジェクション冷媒)は、気液二相状態のまま圧縮機51のインジェクションパイプから圧縮機51内へ流入する。
圧縮機51では、主冷媒回路58から吸入された冷媒(図26の点8)が、中間圧まで圧縮、加熱される(図26の点11)。中間圧まで圧縮、加熱された冷媒(図26の点11)に、インジェクション冷媒(図26の点10)が合流して、温度が低下する(図26の点12)。そして、温度が低下した冷媒(図26の点12)が、さらに圧縮、加熱され高温高圧となり、吐出される(図26の点1)。
なお、インジェクション運転を行わない場合には、膨張機構61の開度を全閉にする。つまり、インジェクション運転を行う場合には、膨張機構61の開度が所定の開度よりも大きくなっているが、インジェクション運転を行わない際には、膨張機構61の開度を所定の開度より小さくする。これにより、圧縮機51のインジェクションパイプへ冷媒が流入しない。
ここで、膨張機構61の開度は、マイクロコンピュータ等の制御部により電子制御により制御される。
次に、ヒートポンプ装置100の冷房運転時の動作について説明する。冷房運転時には、四方弁59は破線方向に設定される。なお、この冷房運転とは、空調で使われる冷房だけでなく、水から熱を奪って冷水を作ることや、冷凍等も含む。
圧縮機51で高温高圧となった気相冷媒(図26の点1)は、圧縮機51から吐出され、凝縮器であり放熱器となる熱交換器57で熱交換されて液化する(図26の点2)。熱交換器57で液化された液相冷媒は、膨張機構56で減圧され、気液二相状態になる(図26の点3)。膨張機構56で気液二相状態になった冷媒は、内部熱交換器55で熱交換され、冷却され液化される(図26の点4)。内部熱交換器55では、膨張機構56で気液二相状態になった冷媒と、内部熱交換器55で液化された液相冷媒を膨張機構61で減圧させて気液二相状態になった冷媒(図26の点9)とを熱交換させている。内部熱交換器55で熱交換された液相冷媒(図26の点4)は、主冷媒回路58と、インジェクション回路62とに分岐して流れる。
主冷媒回路58を流れる液相冷媒は、レシーバ54で圧縮機51に吸入される冷媒と熱交換されて、さらに冷却される(図26の点5)。レシーバ54で冷却された液相冷媒は、膨張機構53で減圧されて気液二相状態になる(図26の点6)。膨張機構53で気液二相状態になった冷媒は、蒸発器となる熱交換器52で熱交換され、加熱される(図26の点7)。このとき、冷媒が吸熱することにより、水回路63を循環する水が冷やされ、冷房や冷凍に利用される。
そして、熱交換器52で加熱された冷媒は、レシーバ54でさらに加熱され(図26の点8)、圧縮機51に吸入される。
一方、インジェクション回路62を流れる冷媒は、上述したように、膨張機構61で減圧されて(図26の点9)、内部熱交換器55で熱交換される(図26の点10)。内部熱交換器55で熱交換された気液二相状態の冷媒(インジェクション冷媒)は、気液二相状態のまま圧縮機51のインジェクションパイプから流入する。
圧縮機51内での圧縮動作については、暖房運転時と同様である。
なお、インジェクション運転を行わない際には、暖房運転時と同様に、膨張機構61の開度を全閉にして、圧縮機51のインジェクションパイプへ冷媒が流入しないようにする。
また、上記説明では、熱交換器52は、冷媒と、水回路63を循環する水とを熱交換させるプレート式熱交換器のような熱交換器であるとして説明した。熱交換器52は、これに限らず、冷媒と空気を熱交換させるものであってもよい。
また、水回路63は、水が循環する回路ではなく、他の流体が循環する回路であってもよい。
以上のように、ヒートポンプ装置100は、空気調和機、ヒートポンプ給湯機、冷蔵庫、冷凍機等のインバータ圧縮機を用いたヒートポンプ装置に利用することができる。
1 圧縮機、2 四方弁、3 熱交換器、4 膨張機構、5 熱交換器、6 冷媒配管、7 圧縮機構、8 モータ、9 インバータ、10 インバータ制御部、11 高周波電圧発生部、12 加熱判定部、13 交流電源、14 整流器、15 平滑コンデンサ、16 母線電圧検出部、17 スイッチング素子、18 環流ダイオード、19 電圧印加部、20 電流検出部、21 テーブルデータ、22 外部入力部、23 選択部、24 積分器、25 電圧指令生成部、26 PWM信号生成部、27 電流比較部、28 電圧比較部、29 温度検出部、30 温度比較部、31 第1論理積計算部、32 寝込み判定部、33 経過時間計測部、34 時間比較部、35 リセット部、36 論理和計算部、37 第2論理積計算部、38 加熱量判断部、39 加算部、40 高周波電流検出部、41 加熱量調整部、42 直流電流検出部、43 インバータ電流検出部、51 圧縮機、52,57 熱交換器、53,56,61 膨張機構、54 レシーバ、55 内部熱交換器、58 主冷媒回路、59 四方弁、60 ファン、62 インジェクション回路、63 水回路、100 ヒートポンプ装置。

Claims (15)

  1. 冷媒を圧縮する圧縮機構を有する圧縮機と、
    前記圧縮機が有する前記圧縮機構を動作させるモータと、
    前記モータに所定の電圧を印加するインバータと、
    前記インバータから前記モータに印加される電圧が正になる正区間と、前記電圧が負になる負区間との間に、前記電圧がゼロになる無通電区間を有する高周波交流電圧を前記インバータに発生させるインバータ制御部と、
    を備え、
    前記インバータ制御部は、
    前記インバータに流れる電流値であって、前記無通電区間ではゼロ以外の値を維持する傾向の電流値を前記インバータ内の電流検出部から検出する電流値検出部と、
    前記インバータで検出された電源電圧値と前記電流値検出部が検出した電流値とに応じた前記高周波交流電圧を前記インバータに発生させる高周波電圧発生部と、を備えることを特徴とするヒートポンプ装置。
  2. 前記インバータは、正電圧側および負電圧側の2つのスイッチング素子からなる直列接続回路により構成されることを特徴とする請求項1に記載のヒートポンプ装置。
  3. 前記電流値検出部は、前記無通電区間の開始直前から前記無通電区間の終了直後までの間である検出区間に前記インバータに流れる電流値を検出することを特徴とする請求項1に記載のヒートポンプ装置。
  4. 前記電流値検出部は、前記検出区間に前記インバータから前記モータへ流れる電流を検出することを特徴とする請求項3に記載のヒートポンプ装置。
  5. 前記電流値検出部は、前記検出区間のうち、前記無通電区間の開始直前と前記無通電区間の終了直後との少なくともいずれかのタイミングに、前記インバータに流れる直流電流を検出することを特徴とする請求項3に記載のヒートポンプ装置。
  6. 前記インバータは、2つのスイッチング素子が直列に接続された直列接続部を有し、
    前記電流値検出部は、前記検出区間のうち、前記無通電区間の終了直後と、前記無通電区間の開始直前から前記無通電区間の終了までとの少なくともいずれかのタイミングに、前記インバータが有する直列接続部に流れる電流を検出することを特徴とする請求項3に記載のヒートポンプ装置。
  7. 前記電流値検出部は、前記直列接続部の2つのスイッチング素子のうちの負電圧側のスイッチング素子の負電圧側の部分に流れる電流を検出することを特徴とする請求項6に記載のヒートポンプ装置。
  8. 前記インバータは、2つのスイッチング素子の直列接続部を3個並列に接続して構成された三相インバータであり、
    前記無通電区間は、前記三相インバータの正電圧側のスイッチング素子と、負電圧側のスイッチング素子とのうち、一方が全てオンとなり、他方が全てオフとなる区間であることを特徴とする請求項1から7までのいずれか1項に記載のヒートポンプ装置。
  9. 前記高周波電圧発生部は、前記電流値が所定の値になるように振幅を調整した高周波交流電圧を前記インバータに発生させることを特徴とする請求項1から8までのいずれか1項に記載のヒートポンプ装置。
  10. 前記高周波電圧発生部は、前記高周波交流電圧の前記モータへの通電位相について、予め定められた複数の通電位相のうち前記電流値が最も大きくなる通電位相となるように調整した高周波交流電圧を前記インバータに発生させることを特徴とする請求項1から9までのいずれか1項に記載のヒートポンプ装置。
  11. 前記電流値検出部は、前記タイミングにおいて、前記電流値が正になる場合における正電流値と、前記電流値が負になる場合における負電流値とを検出し、
    前記高周波電圧発生部は、前記正電流値と前記負電流値との平均値がゼロに近づくように調整した高周波交流電圧を前記インバータに発生させることを特徴とする請求項5から10までのいずれか1項に記載のヒートポンプ装置。
  12. 前記インバータ制御部は、さらに、
    前記電流値から前記モータの巻線温度を推定し、推定した巻線温度が所定の温度閾値よりも高い場合には、前記高周波電圧発生部が前記インバータに高周波交流電圧を発生させることを止めさせる判定部を備えることを特徴とする請求項1から11までのいずれか1項に記載のヒートポンプ装置。
  13. 前記インバータは、ワイドギャップ半導体により構成されたスイッチング素子またはスーパージャンクション構造のMOSFETの何れかであることを特徴とする請求項1から12までのいずれか1項に記載のヒートポンプ装置。
  14. 冷媒を圧縮する圧縮機構を有する圧縮機と、第1熱交換器と、膨張機構と、第2熱交換器とが配管により順次接続された冷媒回路を備えるヒートポンプ装置と、前記冷媒回路に接続された前記第1熱交換器で冷媒と熱交換された流体を利用する流体利用装置とを備えるヒートポンプシステムであり、
    前記ヒートポンプ装置は、さらに、
    前記圧縮機が有する前記圧縮機構を動作させるモータと、
    前記モータに所定の電圧を印加するインバータと、
    前記インバータから前記モータに印加される電圧が正になる正区間と、前記電圧が負になる負区間との間に、前記電圧がゼロになる無通電区間を有する高周波交流電圧を前記インバータに発生させるインバータ制御部と、
    を備え、
    前記インバータ制御部は、
    前記インバータに流れる電流値であって、前記無通電区間ではゼロ以外の値を維持する傾向の電流値を前記インバータ内の電流検出部から検出する電流値検出部と、
    前記インバータで検出された電源電圧値と前記電流値検出部が検出した電流値とに応じた前記高周波交流電圧を前記インバータに発生させる高周波電圧発生部と、を備えることを特徴とするヒートポンプシステム。
  15. 冷媒を圧縮する圧縮機構を有する圧縮機と、
    前記圧縮機が有する前記圧縮機構を動作させるモータと、
    前記モータに所定の電圧を印加するインバータと、
    を備えるヒートポンプ装置における前記インバータの制御方法であり、
    前記インバータから前記モータに印加される電圧が正になる正区間と、前記電圧が負になる負区間との間に、前記電圧がゼロになる無通電区間を有する高周波交流電圧を前記インバータに発生させる高周波電圧発生工程と、
    前記インバータに流れる電流値であって、前記無通電区間ではゼロ以外の値を維持する傾向の電流値を前記インバータ内の電流検出部から検出する電流値検出工程と、を含み
    前記高周波電圧発生工程では、前記インバータで検出された電源電圧値と前記電流値検出工程で検出された電流値とに応じた前記高周波交流電圧を前記インバータに発生させることを特徴とするインバータの制御方法。
JP2013511846A 2011-04-28 2011-04-28 ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法 Active JP5693714B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/060396 WO2012147192A1 (ja) 2011-04-28 2011-04-28 ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法

Publications (2)

Publication Number Publication Date
JPWO2012147192A1 JPWO2012147192A1 (ja) 2014-07-28
JP5693714B2 true JP5693714B2 (ja) 2015-04-01

Family

ID=47071733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013511846A Active JP5693714B2 (ja) 2011-04-28 2011-04-28 ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法

Country Status (7)

Country Link
US (1) US9829226B2 (ja)
EP (1) EP2703748B1 (ja)
JP (1) JP5693714B2 (ja)
CN (1) CN103314265B (ja)
AU (1) AU2011366351B2 (ja)
ES (1) ES2811754T3 (ja)
WO (1) WO2012147192A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5398571B2 (ja) * 2010-02-15 2014-01-29 三菱重工業株式会社 空気調和装置
AU2010365997B2 (en) * 2010-12-21 2015-03-26 Mitsubishi Electric Corporation Heat pump device, heat pump system, and method for controlling three-phase inverter
JP5790390B2 (ja) * 2011-10-07 2015-10-07 アイシン精機株式会社 交流モータの制御装置および制御方法
AU2013390196B2 (en) 2013-05-23 2016-09-15 Mitsubishi Electric Corporation Heat pump device, and air conditioner, heat pump water heater, refrigerator, and freezer comprising same
JP5959500B2 (ja) * 2013-12-27 2016-08-02 三菱電機株式会社 空気調和機及び空気調和機の制御方法
JP5902781B1 (ja) * 2014-09-18 2016-04-13 東芝シュネデール・インバータ株式会社 永久磁石同期電動機駆動装置
WO2016046993A1 (ja) * 2014-09-26 2016-03-31 三菱電機株式会社 ヒートポンプ装置ならびに、それを備えた空気調和機、ヒートポンプ給湯機、冷蔵庫、および冷凍機
CN105571044A (zh) * 2014-10-09 2016-05-11 青岛海尔空调电子有限公司 一种变频空调的控制方法
JP6351480B2 (ja) * 2014-10-28 2018-07-04 三菱電機株式会社 系統連系インバータ装置
US10277115B2 (en) 2016-04-15 2019-04-30 Emerson Climate Technologies, Inc. Filtering systems and methods for voltage control
US11387729B2 (en) 2016-04-15 2022-07-12 Emerson Climate Technologies, Inc. Buck-converter-based drive circuits for driving motors of compressors and condenser fans
US10656026B2 (en) 2016-04-15 2020-05-19 Emerson Climate Technologies, Inc. Temperature sensing circuit for transmitting data across isolation barrier
US9933842B2 (en) 2016-04-15 2018-04-03 Emerson Climate Technologies, Inc. Microcontroller architecture for power factor correction converter
US10763740B2 (en) 2016-04-15 2020-09-01 Emerson Climate Technologies, Inc. Switch off time control systems and methods
US10284132B2 (en) 2016-04-15 2019-05-07 Emerson Climate Technologies, Inc. Driver for high-frequency switching voltage converters
US10305373B2 (en) 2016-04-15 2019-05-28 Emerson Climate Technologies, Inc. Input reference signal generation systems and methods
WO2018067843A1 (en) 2016-10-05 2018-04-12 Johnson Controls Technology Company Variable speed drive for a hvac&r system
CA3039076C (en) * 2016-10-19 2020-03-24 Imalog Inc. Hybrid rectifier
US10465949B2 (en) * 2017-07-05 2019-11-05 Lennox Industries Inc. HVAC systems and methods with multiple-path expansion device subsystems
JP6963495B2 (ja) * 2017-12-22 2021-11-10 サンデンホールディングス株式会社 電力変換装置
CN109067303B (zh) * 2018-09-27 2021-01-26 深圳市英威腾电气股份有限公司 一种电机的加热方法、装置及变频器
US11971200B2 (en) 2020-01-15 2024-04-30 Mitsubishi Electric Corporation Heat pump apparatus with compressor heating control

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11275869A (ja) * 1998-03-19 1999-10-08 Mitsubishi Electric Corp 電動機の駆動装置及びその装置を用いた圧縮機
JP2006118731A (ja) * 2004-10-19 2006-05-11 Matsushita Electric Ind Co Ltd 空気調和機
JP2007259629A (ja) * 2006-03-24 2007-10-04 Mitsubishi Electric Corp 電動機駆動用電源装置および空気調和装置
JP2008057870A (ja) * 2006-08-31 2008-03-13 Daikin Ind Ltd 冷凍装置
JP2009106036A (ja) * 2007-10-22 2009-05-14 Toshiba Carrier Corp インバータおよび冷凍サイクル装置
WO2009151033A1 (ja) * 2008-06-09 2009-12-17 ダイキン工業株式会社 空気調和機、空気調和機の製造方法及び、圧縮機
WO2010082472A1 (ja) * 2009-01-14 2010-07-22 パナソニック株式会社 モータ駆動装置およびこれを用いた電気機器
WO2011013277A1 (ja) * 2009-07-27 2011-02-03 三菱電機株式会社 空気調和機

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6016837B2 (ja) * 1978-10-04 1985-04-27 株式会社日立製作所 他励式インバ−タ装置の制御装置
JPS56117578A (en) * 1980-02-20 1981-09-16 Toshiba Corp Controller for current of current type inverter
JPS6068341U (ja) 1983-10-19 1985-05-15 株式会社東芝 ヒ−トポンプ式空気調和機
JPS6191445A (ja) 1984-10-12 1986-05-09 Matsushita Electric Ind Co Ltd 空気調和機の圧縮機駆動装置
KR930010466B1 (ko) 1991-02-26 1993-10-25 삼성전자 주식회사 냉난방겸용 공조기의 콤프레셔 기동 제어방법
JPH08223989A (ja) 1995-02-13 1996-08-30 Mitsubishi Electric Corp 空気調和機の制御装置
JPH08226714A (ja) 1995-02-23 1996-09-03 Matsushita Electric Ind Co Ltd 空気調和機
MY122977A (en) 1995-03-14 2006-05-31 Panasonic Corp Refrigerating apparatus, and refrigerator control and brushless motor starter used in same
JPH1114124A (ja) * 1997-06-20 1999-01-22 Sharp Corp 空気調和機
JPH11159467A (ja) 1997-11-28 1999-06-15 Zexel:Kk 電動機予熱装置における通電制御方法及び電動機予熱装置
JPH11324934A (ja) 1998-05-13 1999-11-26 Matsushita Electric Ind Co Ltd 空気調和機の圧縮機駆動装置
DE10037972B4 (de) 1999-08-05 2005-09-15 Sharp K.K. Vorrichtung und Verfahren zur Elektromotorsteuerung
JP3955287B2 (ja) 2003-04-03 2007-08-08 松下電器産業株式会社 モータ駆動用インバータ制御装置および空気調和機
KR100889823B1 (ko) 2003-09-04 2009-03-20 삼성전자주식회사 압축기의 제어장치, 공기조화기 및 그 제어방법
KR100566437B1 (ko) 2003-11-11 2006-03-31 엘에스산전 주식회사 위상천이를 이용한 인버터 고장 검출 장치 및 방법
ES2249181B1 (es) 2004-09-14 2007-04-16 Appliances Components Companies Spain, S.A. Metodo y sistema de control.
US20080041081A1 (en) 2006-08-15 2008-02-21 Bristol Compressors, Inc. System and method for compressor capacity modulation in a heat pump
JP2007336634A (ja) 2006-06-13 2007-12-27 Oriental Motor Co Ltd 多軸駆動システムの洩れ電流抑制装置および方法
JP4457124B2 (ja) 2007-04-06 2010-04-28 日立アプライアンス株式会社 コンバータ・インバータ装置
JP4471027B2 (ja) 2008-08-21 2010-06-02 ダイキン工業株式会社 直接形変換装置及びその制御方法並びに制御信号生成装置
JP5308109B2 (ja) 2008-09-17 2013-10-09 ルネサスエレクトロニクス株式会社 同期電動機の駆動システム
JP5535493B2 (ja) * 2009-02-19 2014-07-02 三菱重工業株式会社 車載用電動圧縮機
JP2010216686A (ja) * 2009-03-13 2010-09-30 Daikin Ind Ltd ヒートポンプシステム
JP4931970B2 (ja) 2009-08-10 2012-05-16 三菱電機株式会社 空気調和機
EP2613106B1 (en) 2010-08-30 2015-09-23 Mitsubishi Electric Corporation Heat pump device, heat pump system and three-phase inverter control method
JP5490249B2 (ja) 2010-10-15 2014-05-14 三菱電機株式会社 ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11275869A (ja) * 1998-03-19 1999-10-08 Mitsubishi Electric Corp 電動機の駆動装置及びその装置を用いた圧縮機
JP2006118731A (ja) * 2004-10-19 2006-05-11 Matsushita Electric Ind Co Ltd 空気調和機
JP2007259629A (ja) * 2006-03-24 2007-10-04 Mitsubishi Electric Corp 電動機駆動用電源装置および空気調和装置
JP2008057870A (ja) * 2006-08-31 2008-03-13 Daikin Ind Ltd 冷凍装置
JP2009106036A (ja) * 2007-10-22 2009-05-14 Toshiba Carrier Corp インバータおよび冷凍サイクル装置
WO2009151033A1 (ja) * 2008-06-09 2009-12-17 ダイキン工業株式会社 空気調和機、空気調和機の製造方法及び、圧縮機
WO2010082472A1 (ja) * 2009-01-14 2010-07-22 パナソニック株式会社 モータ駆動装置およびこれを用いた電気機器
WO2011013277A1 (ja) * 2009-07-27 2011-02-03 三菱電機株式会社 空気調和機

Also Published As

Publication number Publication date
JPWO2012147192A1 (ja) 2014-07-28
US9829226B2 (en) 2017-11-28
EP2703748A1 (en) 2014-03-05
EP2703748A4 (en) 2015-02-25
WO2012147192A1 (ja) 2012-11-01
US20130269370A1 (en) 2013-10-17
EP2703748B1 (en) 2020-07-29
CN103314265A (zh) 2013-09-18
CN103314265B (zh) 2016-06-22
ES2811754T3 (es) 2021-03-15
AU2011366351A1 (en) 2013-05-02
AU2011366351B2 (en) 2015-04-23

Similar Documents

Publication Publication Date Title
JP5693714B2 (ja) ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法
JP5490249B2 (ja) ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法
JP5490260B2 (ja) ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法
JP5638699B2 (ja) ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法
JP5460876B2 (ja) ヒートポンプ装置、ヒートポンプシステム及び三相インバータの制御方法
JP5693617B2 (ja) ヒートポンプ装置、ヒートポンプシステム及び三相インバータの制御方法
JP6619329B2 (ja) ヒートポンプ装置およびヒートポンプシステム
JP6444463B2 (ja) ヒートポンプ装置
WO2016046993A1 (ja) ヒートポンプ装置ならびに、それを備えた空気調和機、ヒートポンプ給湯機、冷蔵庫、および冷凍機
WO2023062682A1 (ja) ヒートポンプ装置
JP7175389B2 (ja) ヒートポンプ装置、ヒートポンプシステム、空気調和機および冷凍機

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150203

R150 Certificate of patent or registration of utility model

Ref document number: 5693714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250