WO2013084934A1 - 固体酸化物の加工方法及びその装置 - Google Patents

固体酸化物の加工方法及びその装置 Download PDF

Info

Publication number
WO2013084934A1
WO2013084934A1 PCT/JP2012/081504 JP2012081504W WO2013084934A1 WO 2013084934 A1 WO2013084934 A1 WO 2013084934A1 JP 2012081504 W JP2012081504 W JP 2012081504W WO 2013084934 A1 WO2013084934 A1 WO 2013084934A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
water
workpiece
solid oxide
reference surface
Prior art date
Application number
PCT/JP2012/081504
Other languages
English (en)
French (fr)
Inventor
和人 山内
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to EP12855467.2A priority Critical patent/EP2789420B1/en
Priority to KR1020167006013A priority patent/KR101833196B1/ko
Priority to JP2013548265A priority patent/JP5754754B2/ja
Priority to KR1020147015929A priority patent/KR101613066B1/ko
Priority to US14/363,090 priority patent/US11220757B2/en
Priority to CN201280060235.9A priority patent/CN104023889B/zh
Publication of WO2013084934A1 publication Critical patent/WO2013084934A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/046Lapping machines or devices; Accessories designed for working plane surfaces using electric current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals
    • C25F3/26Polishing of heavy metals of refractory metals
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides

Definitions

  • the present invention relates to a solid oxide processing method and apparatus, and more particularly, to a solid oxide processing method and apparatus having a low environmental load.
  • CMP is firmly established as an essential polishing means.
  • CMP increases the mechanical polishing (surface removal) effect due to the relative movement of the polishing agent and the object to be polished by the surface chemical action of the polishing agent (abrasive grains) itself or the action of chemical components contained in the polishing liquid.
  • This is a technique for obtaining a smooth polished surface.
  • an object to be polished is held by a member called a carrier, pressed against a flat plate (lap) with a polishing cloth or polishing pad, and a slurry containing various chemical components and hard fine abrasive grains is allowed to flow together. Polishing is performed by making the relative movement.
  • the processing speed can be improved as compared with the case of polishing with a single abrasive.
  • the fine scratches on the surface remaining when polishing with a single abrasive and the work-affected layer remaining in the vicinity of the surface are extremely reduced, and an ideal smooth surface can be obtained.
  • cerium oxide fine particles mainly containing cerium oxide (CeO 2 ) or lanthanum are used as the polishing agent for CMP, but the price of cerium, which is a rare earth, has increased in recent years, and there is a problem in obtaining it. It has come to occur.
  • Patent Document 1 the present inventor arranges a workpiece in a treatment solution in which a molecule containing a halogen that is not normally soluble in the workpiece is dissolved, and forms a platinum, gold or ceramic solid catalyst.
  • a catalyst composed of the above material is placed in contact with or in close proximity to the processed surface of the workpiece, and the halogen compound generated by the chemical reaction between the halogen radicals generated on the surface of the catalyst and the surface atoms of the workpiece is eluted.
  • the processing method based on the catalyst reference surface is an ultra-precision flattening technique named CARE by the present inventor.
  • CARE is a processing technique that does not use abrasives or abrasive grains at all, and is an ideal processing method that does not introduce scratches or work-affected layers at all on the surface to be processed, but a processing solution in which molecules containing halogen are dissolved.
  • a hydrogen fluoride solution since a hydrogen fluoride solution is used, airtightness of the processing space and processing equipment for exhaust gas and waste liquid are required, so that there are problems that handling and apparatus costs are higher than CMP.
  • Patent Document 2 discloses a substrate surface of a compound semiconductor containing any of Ga, Al, and In in the presence of weakly acidic water, water in which air is dissolved, or electrolytic ion water, and at least the surface of the surface.
  • a polishing method has been proposed in which the surface of the polishing pad having a conductive member at a portion in contact with the substrate is moved relative to each other while being in contact with each other to polish the surface of the substrate.
  • the conductive member is a noble metal, a transition metal, graphite, a conductive resin, a conductive rubber, or a conductive organic substance.
  • a voltage is applied between the polishing pad and the substrate, and etching pits are formed on the surface.
  • the pH of the weakly acidic water or water in which air is dissolved is 3.5 to 6.0, and the pH of the electrolytic ion water is 3.5 to 6.0 or 8.0 or more. Is disclosed.
  • the polishing mechanism of Patent Document 2 is such that distortion occurs at the contact portion between the surface of the substrate and a conductive member such as platinum on the polishing pad, and valence band electrons are excited to the conduction band so that electron-hole pairs are generated. Then, the electrons excited to the conduction band move to a conductive member such as platinum (having a large work function), and OH - ions or H 2 O molecules in water act on the holes remaining on the substrate surface. As a result, only the contact portion is oxidized, and the oxide of Ga, Al, In formed in the contact portion is soluble in a weak acid or weak alkali such as a carbon dioxide solution. It is removed from the surface.
  • Patent Document 3 uses only ultrapure water except for a small amount of inevitable impurities, and uses an ion reaction function or a catalytic function on a solid surface having a catalytic function disposed in ultrapure water.
  • the workpiece is immersed in ultrapure water having an increased concentration of hydroxyl groups or hydroxyl ions, the workpiece is used as an anode, or the workpiece is maintained at a high potential.
  • a processing method is disclosed in which hydroxyl ions are attracted to the surface of the substrate and the workpiece is removed or oxidized by a chemical elution reaction or oxidation reaction with hydroxyl groups or hydroxyl ions.
  • the processing method described in Patent Document 3 is basically electrolytic processing in which a high voltage is applied, and a hydroxyl group increasing treatment for increasing the concentration of hydroxyl groups or hydroxyl ions in water is an important requirement.
  • a hydroxyl group increasing treatment for increasing the concentration of hydroxyl groups or hydroxyl ions in water is an important requirement.
  • a solid surface having an ion exchange function or a catalytic function is used, but there is a problem that the solid surface is damaged by contact with the workpiece and adheres to the workpiece surface. Therefore, basically, the solid surface having an ion exchange function or a catalytic function and the workpiece are in a non-contact state, and the processing proceeds by supplying the hydroxyl group or hydroxyl ions generated on the solid surface to the workpiece surface.
  • examples of the hydroxyl group increasing treatment include electrolytic treatment (see Patent Document 4), high-temperature and high-pressure treatment, and water plasma treatment (see Patent Document 5).
  • electrolytic treatment see Patent Document 4
  • water plasma treatment see Patent Document 5
  • the electrolytic treatment is used in combination, there are problems such as variations in the processing speed due to bubbles generated on the workpiece and the electrode surface, and a reduction in the processing speed.
  • High temperature and high pressure treatment is not suitable for industrial processing. And since water plasma processing generates a plasma with generation
  • the present invention intends to solve a solution that does not use any rare earth, abrasives or abrasive grains, is difficult to handle such as hydrogen fluoride, and has a large environmental load.
  • the object is to provide a solid oxide processing method and apparatus capable of processing a solid oxide such as an optical material without introducing a work-affected layer.
  • the present invention uses a solid oxide in which one or more elements are bonded via oxygen, or a multi-component solid oxide composed of a plurality of oxides as a workpiece.
  • a processing method for flattening the surface of the workpiece or processing into an arbitrary curved surface, wherein water molecules dissociate and adsorb by cutting back bonds of oxygen elements and other elements constituting the solid oxide A catalytic substance that assists in the generation of decomposition products by hydrolysis is used as a processing reference plane, and in the presence of water, the workpiece and the processing reference plane are placed in close contact with each other, and the potential of the processing reference plane is set. Is a range that includes a natural potential and in which H 2 and O 2 are not generated, and the workpiece and the machining reference surface are moved relative to each other to remove the decomposition product from the workpiece surface.
  • An oxide processing method was configured.
  • the present invention uses a solid oxide in which one or more elements are bonded via oxygen or a multi-component solid oxide composed of a plurality of oxides as a workpiece,
  • a processing device for processing the surface a vessel that holds water, and a water product dissociates and breaks back bonds between oxygen elements and other elements that constitute the solid oxide and adsorbs, and is a decomposition product by hydrolysis.
  • the potential of natural electricity The range of H 2 and O 2 is not generated include, eluting the decomposition products in water, or the removing the decomposition product by the relative movement between the workpiece and the machining reference surface from the workpiece surface
  • a solid oxide processing apparatus characterized by processing the surface of the workpiece is configured.
  • the present invention uses a solid oxide in which one or more elements are bonded via oxygen or a multi-component solid oxide composed of a plurality of oxides as a workpiece, It is a processing device that processes the surface, and a catalytic substance that aids in the generation of decomposition products by hydrolysis by adsorbing water molecules by dissociating and adsorbing by cutting back bonds between oxygen elements and other elements constituting the solid oxide.
  • a machining head having a machining reference surface on the surface, a workpiece holder for holding the workpiece so as to face the machining reference surface, and a machining reference surface of the machining head and the workpiece holder.
  • a drive mechanism for moving the workpiece relative to each other while making contact with or in close proximity to the workpiece water supply means for supplying water between the machining reference surface of the machining head and the workpiece held by the workpiece holder,
  • the processing base The potential of the surface, the range of H 2 and O 2 contains a natural potential is not generated, eluting the decomposition products in water, or the the relative movement between the workpiece and the machining reference surface the degradation products to be
  • a solid oxide processing apparatus is formed which processes the surface of the workpiece.
  • the processing reference surface it is preferable to use a catalytic material surface containing a metal element and having a d orbital of electrons of the metal element near the Fermi level as the processing reference surface.
  • the metal element is more preferably a transition metal element.
  • the processing reference surface has a conductive catalyst material at least on the surface, and the processing speed is controlled by changing the potential of the catalyst material.
  • the water is H 2 purge water using pure water or ultrapure water, and it is also preferable to perform the processing in a state where hydrogen is adsorbed on the catalyst material on the processing reference surface.
  • the water is preferably pure water or ultrapure water mixed with a complex that helps dissolve the decomposition product.
  • the processing reference surface is formed by forming the entire surface or part of the hard surface with the catalyst material, or forming the catalyst material on the entire surface or portion, or the entire surface or portion of the soft surface. It is a concept that includes a catalyst material formed on the entire surface or a part of the catalyst material, or a catalyst material that is kneaded or supported on the base material and the catalyst material appears on at least a part of the surface. .
  • the method and apparatus for processing a solid oxide of the present invention as described above is a solid oxide in which one or more elements are bonded via oxygen, or a multi-component solid oxide comprising a plurality of oxides.
  • the object In the presence of water, the object is treated as a work piece, water molecules dissociate and the oxygen element constituting the solid oxide and the other elements are adsorbed by cutting back bonds, and decomposition by hydrolysis
  • a processing reference surface having at least a catalyst substance that assists in the production of a product is placed in contact or in close proximity, and the potential of the processing reference surface is within a range that includes natural potential and does not generate H 2 and O 2.
  • the surface of the workpiece is processed by removing the decomposition product from the surface of the workpiece by relatively moving the workpiece and the processing reference surface, and thus has the following effects. Since it is a chemical process, the surface of solid oxides such as optical materials can be processed without introducing a work-affected layer, and the processed surface does not use any abrasive or abrasive grains, so the surface roughness is reduced. Can be very small. In addition, since hydrogen fluoride and other difficult chemicals and fine particles are not used, it can be said that the processing of the waste liquid is extremely simple and has a low environmental impact, and the work environment is greatly improved. is there. Furthermore, since no rare earth is used, the running cost can be greatly reduced without being affected by the raw material market.
  • the action of depriving the electron from the water molecule is large, thereby dissociating the water molecule.
  • the back-bonding of oxygen element and other elements constituting the solid oxide is cut and adsorbed to increase the action of assisting the generation of decomposition products by hydrolysis, and the processing speed can be increased.
  • the metal element is a transition metal element, the action is remarkable.
  • the processing reference surface has at least a conductive catalyst material on the surface
  • the distance between the workpiece and the catalyst material is set, the free electrons of the catalyst material are dissociated from water molecules, and the back bonds of solid oxide are loose.
  • the processing efficiency can be increased to the extent that it can be used industrially, and the catalytic substance becomes the processing reference surface, so the accuracy is high. High processing.
  • the machining speed can be controlled by adjusting the potential of the catalyst material forming the machining reference plane within a range that includes the natural potential and does not generate H 2 and O 2. Machining conditions can be easily changed, from precision machining to slow machining speed.
  • the work efficiency is high.
  • conventionally when using the same processing device, it is necessary to interrupt the processing operation and replace the polishing pad, abrasive and abrasive grains, or when using a dedicated device for roughing and precision processing In other words, it was necessary to transfer the work piece between these devices.
  • FIG. 1 is a simplified perspective view showing a first embodiment (planarization processing apparatus) of a processing apparatus of the present invention. It is a simplified perspective view which shows 2nd Embodiment (planarization processing apparatus) of the processing apparatus of this invention. It is a simplified explanatory view of a water circulation system for producing H 2 purge water.
  • the phase shift interference microscope image and AFM image of the surface before and after the planarization process of optical glass are shown.
  • the phase shift interference microscope image and AFM image of the surface before and behind the planarization process of optical glass (lanthanum system) are shown.
  • the phase shift interference microscope image and AFM image of the surface before and after flattening processing of quartz glass are shown.
  • the phase shift interference microscope image and AFM image of the surface before and behind planarization processing of sapphire are shown.
  • the AFM image of the surface before and behind the planarization process of ZnO is shown.
  • It is a simplified sectional view showing a 3rd embodiment (local processing device) of a processing device of the present invention. It is a graph which shows the contact pressure dependence of processing speed. It is a graph which shows the processing speed of quartz glass with respect to various catalyst substances (catalyst metal).
  • pH1 is a graph showing the catalytic potential dependence of the processing rate under (HNO 3 aqueous solution).
  • pH3 is a graph showing the catalytic potential dependence of the processing rate under (HNO 3 aqueous solution).
  • the solid oxide processing method of the present invention uses a solid oxide in which one or more elements are bonded through oxygen, or a multi-component solid oxide composed of a plurality of oxides as a workpiece.
  • a catalytic substance is used as a processing reference surface that dissociates water molecules and adsorbs by cutting back bonds between oxygen and other elements that constitute the solid oxide, and helps to generate decomposition products by hydrolysis.
  • the workpiece and the machining reference surface are arranged in contact with or in close proximity to each other, and the potential of the machining reference surface is set to a range that includes natural potential and does not generate H 2 and O 2.
  • the decomposition product is removed from the surface of the workpiece by moving relative to the reference surface, and the surface of the workpiece is flattened or processed into an arbitrary curved surface.
  • processing generally called polishing or cleaning is also a category of the processing of the present invention.
  • the polishing corresponds to a flattening process
  • the cleaning corresponds to a minute process for removing impurities and foreign substances from the surface while minimizing the processing amount.
  • an oxide is a compound composed of oxygen and other elements. Oxygen produces almost all elements and oxides, oxides of metal elements are basic oxides, oxides of nonmetallic elements are acidic oxides, and oxides of intermediate elements are amphoteric oxides. There are many.
  • the present invention is intended for solid oxides that are normally solid among oxides and in which one or more elements are bonded via oxygen, or multi-component solid oxides composed of a plurality of oxides. It is said.
  • the present invention can be applied well to ultra-precision processing and polishing of optical glass materials. Further, the present invention can be applied to processing of glass ceramics which are essentially composed of a solid oxide and have a substantially zero thermal expansion coefficient in which amorphous and crystalline materials are mixed.
  • This glass ceramic is used for a glass substrate used for a hard disk recording medium, a glass substrate for mask blanks of an EUV exposure apparatus, and other optical / mechanical parts that require high precision. Furthermore, general oxide-based ceramics are also objects of processing. Further, the solid oxide does not have to be bulk, and may be a thin film.
  • metal oxides have various electrical characteristics, and are insulators, electronic conductors having the same conductivity as metals, ionic conductors, superconductors (high-temperature oxide superconductors), thermoelectric conversion elements. , Ferroelectric and ferromagnetic materials.
  • superconductors high-temperature oxide superconductors
  • thermoelectric conversion elements thermoelectric conversion elements.
  • Ferroelectric and ferromagnetic materials Recently, strongly correlated electron-based oxides have attracted attention and have been actively studied in various fields for practical application, but they are also considered to be applicable to this processing. Thus, since the properties of oxides are diverse, it is necessary to optimize the processing conditions depending on the type of oxide.
  • Water element dissociates and adsorbs by cutting back bonds between oxygen and other elements that constitute the solid oxide and assists in the generation of decomposition products by hydrolysis. It is preferable to use the surface of the catalyst material whose d orbital is near the Fermi level. In the present invention, since a solution reactive with a metal element is not used, various metal elements can be used, but it is particularly preferable to use a transition metal element that is hard and has a stable shape, and has a large work function. In addition to Pt, Au, Ag, Cu, Ni, Cr, Mo, or the like can be used. Further, the catalyst material serving as the processing reference surface may be a metal element alone or an alloy composed of a plurality of metal elements.
  • a carbon material such as graphite or graphene can be used although the processing speed is low.
  • the catalyst material used as the processing reference surface is exposed to water, an acidic solution or a basic solution, and therefore a catalyst material having a stable surface state is preferable.
  • the processing reference surface is formed of a catalyst material that dissociates water molecules and adsorbs by cutting back bonds between the oxygen element constituting the solid oxide and other elements and assists in the generation of decomposition products by hydrolysis. . Since the processing reference surface is literally a processing reference surface, the shape should not change during processing. In addition, since the surface state of the processing reference surface is transferred to the surface of the workpiece, it is preferable that the processing reference surface be formed with as low a surface roughness as possible and high flatness. In addition, since the surface roughness and flatness of the processing reference surface are averaged by moving the processing reference surface and the workpiece relative to each other, the surface of the workpiece becomes a surface with higher accuracy than the processing reference surface. .
  • the processing reference surface is formed of a conductive catalyst material
  • the surface potential can be controlled from the outside.
  • the catalyst material does not need to be a bulk, and may be a thin film formed by vapor deposition, sputtering, electroplating or the like of a metal or a transition metal on the surface of a base material that is inexpensive and has good shape stability.
  • the base material on which the catalyst material is deposited may be a hard elastic material, and for example, a fluorine rubber material can be used.
  • pure water or ultrapure water which has few impurities and constant characteristics, in order to realize a pure processing environment and to accurately control processing conditions.
  • pure water has an electrical resistivity of about 1 to 10 M ⁇ ⁇ cm
  • ultrapure water has an electrical resistivity of 15 M ⁇ ⁇ cm or more, but there is no boundary between them.
  • water in which pure water or ultrapure water is mixed with a complex that aids dissolution of decomposition products it is necessary to use pure water or ultrapure water, which has few impurities and constant characteristics, in order to realize a pure processing environment and to accurately control processing conditions.
  • pure water has an electrical resistivity of about 1 to 10 M ⁇ ⁇ cm
  • ultrapure water has an electrical resistivity of 15 M ⁇ ⁇ cm or more, but there is no boundary between them.
  • the complex acts to promote the dissolution of the decomposition product and to form a complex ion and maintain it stably in water.
  • the pH of water is preferably adjusted in the range of 2-12. Even if the pH is smaller (strongly acidic) or larger (strongly alkaline) than this range, the processing speed is reduced. Since the properties of oxides to be processed are diverse and decomposition products generated in the processing process are various, it is desirable to adjust the pH accordingly. For adjusting the pH, for example, HNO 3 is added in the acidic region and KOH is added in the alkaline region.
  • the pH of the processing liquid may be 7 (neutral: water remains), and in that case, it can be applied to various oxide processing in general.
  • the processing mechanism of the present invention is considered as follows from a phenomenological viewpoint.
  • a processing reference surface having a catalytic material having at least a d-electron orbital near the Fermi level contacts or comes close to the surface of a solid oxide in which one or more elements are bonded via oxygen, that is, a solid
  • the d-electron orbit approaches the surface of the oxide.
  • the d electrons act to lower the barrier of reaction against both the dissociation of water molecules and the phenomenon when the oxide backbond becomes loose.
  • the catalyst material approaches the oxide, the bond strength of the back bond between the oxygen element constituting the oxide and the other element is weakened, and the water molecules are dissociated to form the oxygen element of the oxide.
  • the back bonds of other elements are cut and adsorbed to produce decomposition products by hydrolysis. And it is a principle that a decomposition product elutes in a processing liquid.
  • the processing reference surface having the catalyst substance is brought into contact with the surface of the solid oxide and rubbed to give a mechanical force to the decomposition product, thereby promoting elution into water. Further, even if the surface of the solid oxide and the processing reference surface do not contact each other, there is an action of promoting the elution of the decomposition product into the water by the flow of water caused by the relative movement of both.
  • the processing speed can be controlled by adjusting the potential of the catalyst substance.
  • the oxidation-reduction potential changes the property that the surface of a conductive substance (eg, Pt) “extracts” and “gives” electrons from the oxide side.
  • the electric potential of the conductive material is a parameter for changing to an optimum processing speed in accordance with the accuracy to be finally aimed.
  • the potential of the conductive substance is increased positively, O 2 is generated, and if it is negatively increased, H 2 is generated, and bubbles interfere with processing. Therefore, adjustment is made within a range in which H 2 and O 2 are not generated. And the potential control range is about 1.6V.
  • a silicon dioxide (SiO 2 ) crystal has a structure in which Si is located at the center of a regular tetrahedron and O is bonded to four vertices, and Si is three-dimensionally bonded through O, In the processing, Si—O—Si bonds are broken, and H 2 O is hydrolyzed to become Si—OH and OH—Si.
  • silicic acid ⁇ [SiO x (OH) 4-2x ] n ⁇ is generated by hydrolysis.
  • the processing apparatus A according to the first embodiment shown in FIG. 1 has a structure in which processing is performed in a state where a workpiece and a processing reference surface are immersed in water.
  • the processing apparatus A includes a container 2 that holds water 1, a processing reference surface 3 that has at least a catalytic substance on the surface, a processing head 4 that is immersed in water 1 and disposed in the container 2, and the workpiece A workpiece holder 6 which is held in the container 2 while being held in the water 1 while being held in the water 1 while being held in contact with or close to the processing reference surface 3, the processing head 4 and the workpiece holder 6 And a voltage applying means 8 for adjusting the potential of the catalytic material forming the processing reference surface 3 within a range where H 2 and O 2 are not generated, and water
  • the surface of the workpiece is processed by dissociating molecules and adsorbing them by cutting back bonds between the oxygen element constituting the solid oxide and other elements and eluting the hydrolysis products into water.
  • a water circulation system 9 is provided to purify the water 1 in the container 2 and keep the water level constant.
  • the water circulation system 9 includes a supply pipe 9A, a drain pipe 9B, a treatment liquid purifier (not shown), a buffer tank, a pump, and the like.
  • the voltage application means 8 sets the potential of the catalyst material forming the processing reference surface 3 in the range of about ⁇ 0.4 to +1.4 V (including zero).
  • the processing head 4 is a disk-shaped rotating surface plate, and the workpiece holder 6 and the processing head 4 holding the workpiece 5 having a smaller area than the surface plate are connected to each other.
  • the rotating shaft is parallel and eccentric, and is rotated at a predetermined speed.
  • the workpiece holder 6 can adjust the contact pressure of the workpiece 5 with respect to the machining reference surface 3 by adjusting the load.
  • the processing reference surface 3 is made narrower than the surface of the workpiece 5
  • the position and stay time of the small processing head 4 with respect to the surface of the workpiece 5 are controlled, and the local processing amount of the surface of the workpiece 5 is controlled. In other words, local processing by numerical control can be performed.
  • the processing apparatus B of 2nd Embodiment shown in FIG. 2 is a structure which processes while supplying the water dripped between the to-be-processed object and the process reference plane.
  • the processing apparatus B includes a processing head 11 having a processing reference surface 10 having at least a catalytic substance on the surface, a workpiece holder 13 that holds the workpiece 12 so as to face the processing reference surface 10, and the processing head.
  • a container 18 is provided around the processing head 11 so that water does not scatter.
  • this processing apparatus B can be configured not only to smooth a flat surface but also to perform numerical control processing of an arbitrary curved surface, as with the processing apparatus A described above. Furthermore, it is also preferable to irradiate the surface of the workpiece with excitation light having a specific wavelength and to process the surface while activating it.
  • a gas-liquid mixer 20 is provided in the water circulation system 9, and water and hydrogen gas are mixed in the gas-liquid mixer 20 while water is circulated by the pump 21. It is preferable to supply water to the processing surface from the supply pipe 9A or the water supply means 16. Of course, a gas other than hydrogen can be dissolved if necessary.
  • the processing apparatus A using Pt as a catalyst material for forming the processing reference surface is used to form optical glass and quartz glass (pure SiO 2 ), single crystal sapphire ( ⁇ -Al 2 O 3 ), and ZnO single crystals as solid oxides.
  • the results of experimental processing of the crystals are shown in FIGS.
  • Optical glasses used for the test processing are fluorine-based optical glass (S-FPL51: manufactured by OHARA INC.) And lanthanum-based optical glass (S-LAH55: manufactured by OHARA INC.) Used for general optical lenses and the like. Quartz glass used a CMP surface as a pre-processed surface.
  • Optical glass, quartz glass, and ZnO single crystal were evaluated for processing characteristics by observing the surface before and after processing with a phase shift interference microscope (Zygo, NewView) and an atomic force microscope (AFM).
  • Zygo, NewView phase shift interference microscope
  • AFM atomic force microscope
  • FIG. 4 shows the result of flattening processing of optical glass (fluorine-based). Processing pressure: 200 hPa, rotation speed: 10 rpm, solution: ultrapure water, processing time: 1 hour. The processing speed was 6751 nm / h. In the phase shift interference microscope image by processing, rms: 0.879 nm before processing becomes rms: 0.385 nm after processing, and in the AFM image, rms: 1.861 nm before processing is rms: 0.371 nm after processing. Improved surface roughness. It should be noted that the processing speed is as high as 6.7 ⁇ m / h, and it was proved that it can be industrially processed sufficiently with only ultrapure water.
  • the fluorine-based optical glass used here is a fluorophosphate-based optical glass, and is generally a glass type in which the bonds in the glass are not covalent bonds such as Si—O but strong ionic bonds. Its composition is mainly composed of oxides of P, Al, Ba, Gd, Nb and F, and in addition, Y, La, Yb, Ta, Lu, Ti, Zr, W, Bi, Mg, Ca, Sr, Zn A small amount of oxides such as Li, Na, K, Cs, Tl, Si, B, and Sb are selectively distributed.
  • FIG. 5 shows the result of flattening processing of the optical glass (lanthanum system). Processing pressure: 200 hPa, rotation speed: 10 rpm, solution: ultrapure water, processing time: 1 hour. The processing speed was 5977 nm / h. In the phase shift interference microscope image by processing, rms: 0.232 nm before processing becomes rms: 0.476 nm after processing, and in the AFM image, rms: 0.408 nm before processing and rms: 0.828 nm after processing. Roughness deteriorated.
  • the lanthanum optical glass used here is a lanthanum borosilicate optical glass, and includes oxides such as Si, B, La, Y, Gd, Zr, Nb, Zn, Sr, Ba, Li, Sb, and As. It has a composition.
  • FIG. 6 shows the result of flattening processing of quartz glass (SiO 2 ). Processing pressure: 200 hPa, rotation speed: 10 rpm, solution: ultrapure water, processing time: 1 hour. The processing speed was 831 nm / h.
  • rms: 0.338 nm before processing is rms: 0.147 nm after processing, and the surface roughness is greatly improved.
  • rms: 1.455 nm before processing was greatly improved to rms: 0.103 nm after processing, and scratches were confirmed on the surface before processing, but such scratches were removed, It was found to have a smooth surface at the atomic level.
  • FIG. 7 shows the result of planarization of single crystal sapphire ( ⁇ -Al 2 O 3 ).
  • a 2-inch sapphire substrate (0001) surface was used as a sample.
  • the processing speed was 3 nm / h.
  • rms: 0.164 nm before processing becomes rms: 0.151 nm after processing and in the AFM image, rms: 0.122 nm before processing becomes rms: 0.122 nm after processing.
  • the crystal structure was improved although there was almost no change.
  • flatness is maintained before and after processing.
  • step terrace structure is confirmed before processing, but the step end has a wavy shape.
  • the surface subjected to the processing of the present invention has a step terrace structure having a linear step shape.
  • the step height was about 0.3 nm corresponding to one bilayer, and it was revealed that the processed surface of the present invention has a step terrace structure without step bunching.
  • FIG. 8 shows the result of planarization of the ZnO single crystal.
  • a 2-inch ZnO substrate (0001) surface treated by CMP was used as a sample. Processing pressure: 200 hPa, rotation speed: 10 rpm, solution: pure water, processing time: 10 minutes. The processing speed was 126.1 nm / h.
  • the pre-processed surface of the ZnO single crystal is a precisely polished surface by CMP
  • a crystallographic surface superior to CMP can be obtained by the processing method of the present invention. It can be seen that the processing method of the present invention can be used as precision cleaning if the processing time is shortened.
  • optical glass as a solid oxide can be planarized with sufficient accuracy by the processing method and processing apparatus of the present invention.
  • optical glass it is not a simple oxide but a composite of many kinds of oxides, and the processing speed differs depending on the oxide constituting the optical glass. Since it is the processing of the image to be transferred, in principle, it is possible to planarize with sufficient accuracy even with such a complex of various kinds of oxides.
  • the difference in the results of the surface roughness after processing between the two types of optical glasses described above is considered to be due to the difference in glass type.
  • quartz glass is a single type of oxide of SiO 2
  • ZnO single crystal is also a single type of oxide, so that the processing speed is the same everywhere on the surface.
  • An ultra-precision flat surface was obtained by the chemical processing. In this processing test, no special measures are taken to optimize the processing conditions or increase the flatness. By performing these tests, the surface roughness can be further improved and the processing speed can be increased. In order to improve the final surface roughness, it is effective to perform finishing at a reduced processing speed.
  • the processing speed when a glass substrate for a liquid crystal display or a hard disk recording medium is polished by CMP using a CeO 2 abrasive is about 0.4 ⁇ m / min (24 ⁇ m / h).
  • the processing speed according to the present invention for the above-mentioned fluorinated optical glass was 6.7 ⁇ m / h.
  • the processing speed according to the present invention is 1 ⁇ 4 to 3 of the processing speed of CMP using CeO 2 , but this is a surprising result as a processing method using only water.
  • a processing speed comparable to CMP can be obtained.
  • the processing speed is significantly increased, and the processing speed is also increased by increasing the rotational speed.
  • FIG. 9 shows a local processing apparatus C, which is an apparatus capable of numerically controlling an arbitrary curved surface in principle. This apparatus is not intended for flattening, and only a partial region of the workpiece is processed by bringing the rotating body of the catalyst material into contact with the workpiece surface while rotating.
  • the local processing device C holds a workpiece 33 in pure water 32 stored in a water tank 31, and a catalytic material ball 36 attached to the tip of a vertical rotating shaft 35 connected to a stepping motor 34 in the water. It is an apparatus that rotates and processes the surface of the work piece 33 while contacting it with a constant contact pressure. More specifically, the water tank 31 and the XY stage 39 are fixed on a horizontal plate 38 provided on the Z stage 37, and a workpiece holder 40 driven by the XY stage 39 extends to the inside of the water tank 31. The workpiece 33 is held.
  • the rotary shaft 35 is fixed by double bearings 41, 41, and the connecting portion with the head portion 42 to which the catalyst material sphere 36 is attached is tapered so that it is attached every time desorption is performed. The generated positional deviation is suppressed.
  • a predetermined catalyst material was formed on the surface of an O-ring.
  • the O-ring a P44 standard size (outer diameter 50.7 mm, thickness 3.5 mm) made of fluororubber was used.
  • the stepping motor 34, the rotary shaft 35, and the bearings 41, 41 are attached to the same vertical plate 43, the upper end of the vertical plate 43 is connected to the gantry 44 by a plate spring 45, and the balance-type balancer 46 is used to The verticality is adjusted.
  • the workpiece 33 By operating the X stage, the workpiece 33 can be moved by an arbitrary amount in the direction of the catalyst material sphere 36, and the workpiece 33 can be controlled by controlling the movement amount of the rotary shaft 35 using an electric micrometer.
  • the contact pressure between the surface of the catalyst and the catalyst material ball 36 is adjusted.
  • the catalytic metal on the catalytic material sphere 36 is electrically connected to a potentiostat through a rotary joint 47, and constitutes a three-electrode system cell to perform potential control. In the present invention, it is necessary to accurately control the potential of the catalyst metal.
  • the catalyst material sphere 36 is used as a working electrode, a reference electrode 48 and a counter electrode 49 are arranged, and these three electrodes and a potentiostat are combined to form a three-electrode cell. Most of the current flows to the counter electrode 49, and a minute current flows to the reference electrode 48 to determine the potential of the working electrode (catalyst material sphere 36). At this time, the potential is automatically controlled by a potentiostat (not shown).
  • a silver-silver chloride electrode was employed as the reference electrode 48.
  • the local processing apparatus C shown in FIG. 9 is driven by numerically controlling each stage and moving the unit processing trace by changing the relative position of the workpiece 33 and the catalyst material sphere 36 to thereby generate a catalyst.
  • the NC processing apparatus can create an arbitrary curved surface smaller than the curvature of the material sphere 36.
  • quartz glass was processed using Pt as a catalyst metal.
  • the contact pressure is about 1000 hPa
  • the rotation speed is 24 rpm
  • the working fluid is pure water
  • the potential of Pt is a natural potential. Only the elliptical region in contact with Pt is processed, and the result of examining the contact pressure dependence of the processing speed with the maximum depth at the processing mark as the processing amount is shown in FIG. It can be seen that the machining amount increases as the pressure increases.
  • quartz glass was processed under the same processing conditions using the catalyst material spheres 36 on which various types of catalytic metals were formed, with a contact pressure of about 1000 hPa, a rotation speed of 24 rpm, and a processing liquid of pure water.
  • the potential of the catalytic metal is a natural potential. It is known that the ease of dissociative adsorption to the catalytic metal can be qualitatively arranged by the degree of electron non-occupancy of d orbitals and can be grouped as follows.
  • Group A is a group 4, 5, 6, or 8 element such as Cr, Fe, or Mo having many d orbital vacancies.
  • Group B1 is a group 9 or 10 element made of Ni or Co having 1 to 3 vacancy d orbitals.
  • Group B2 is a group 9 or 10 element such as Pt or Pd.
  • Group C is a group 7 or 11 element made of Cu or Mn.
  • Group D is a group 11 element made of Au in which d orbitals are occupied.
  • Group E is a group 11 or 12 element such as Ag or Zn. It is known that the chemisorption characteristics become smaller in the order of groups A, B1, B2, C, D, and E.
  • quartz glass was processed by selecting one element from each group as the catalyst metal.
  • the result of the dependence of the processing speed on the catalytic metal is shown in FIG.
  • the processing speed when Cr (group A) or Ni (group B1) is used is higher than when Pt (group B2) is used. It turned out to be up to an order of magnitude larger.
  • Au or Ag belonging to the group D or E since the d orbit is occupied by electrons, the processing hardly proceeds. From the above results, it became clear that the catalytic metal promotes dissociation of H 2 O molecules in the present invention.
  • metals of group A, B1, and B2 as the catalyst metal composed of a single element from the viewpoint of processing speed, and more practically relatively inexpensive and easy to handle.
  • metals of group A, B1, and B2 it is preferable to use as the catalyst metal composed of a single element from the viewpoint of processing speed, and more practically relatively inexpensive and easy to handle.
  • Cu since the d orbital of Cu is occupied by electrons, Cu itself has a low processing speed, but CuO has a catalytic function even if it is insulative.
  • FIG. 16 compares the peak potential of the processing speed at each pH and the position of the natural potential. As the pH moves to the alkali side, the peak potential becomes negative. This can be understood that at higher pH, the adsorption of hydroxyl groups or oxygen to the catalytic metal becomes significant, and a more negative potential is required to desorb them. Conversely, at pH 1, hydrogen is excessively adsorbed, and the maximum processing speed can be obtained by setting the potential to the positive side of the natural potential.
  • the lower straight line in FIG. 16 indicates the generation limit of H 2
  • the upper straight line indicates the generation limit of O 2 , and the potential is controlled between the upper and lower straight lines.
  • FIG. 17 shows the maximum processing speed at each solution pH. It is the solution pH dependence of the processing speed, excluding the influence of the adsorption state on the Pt surface.
  • the processing speed is maximum, followed by a basic solution and a neutral solution.
  • H atoms are first dissociated from the H 2 O molecules by the action of the catalyst in the etching process, and the generated hydroxyl groups are adsorbed on the Si atoms. Subsequently, H atoms are adsorbed on the O atoms, but it is considered that not only the H atoms on the catalyst dissociated from the H 2 O molecules but also the hydrogen ions in the solution move. Therefore, the processing speed is large in an acidic solution.
  • the reason why the processing rate in the basic solution is larger than that in the neutral solution is considered to be that the dissolution rate of the processed product Si (OH) x is basic and maximum.
  • FIG. 18 shows the result of processing quartz glass by changing the applied voltage using Pt as the processing reference surface in hydrogen water.
  • the natural potential of Pt in hydrogen water is ⁇ 0.40 V vs Ag / AgCl.
  • the processing speed was 0 nm / h. This is thought to be because the Pt surface was covered with excess hydrogen, so that the distance at which the H 2 O molecules interacted could not be approached. From the above, it has been clarified that the processing does not proceed with only the hydrogen produced on the catalyst, and that the influence of the adsorption state on the catalyst surface on the processing is extremely large.
  • FIG. 19 is a graph showing the relationship between pH and processing speed when quartz glass is processed under a natural potential without potential control by a local processing apparatus using catalyst material balls made of Pt.
  • Processing conditions are: processing pressure: 200 hPa, rotational speed: 10 rpm, processing liquid: HNO 3 aqueous solution (pH 0-4), KOH aqueous solution (pH 10-13). Processing time is 30 minutes each. As a result, it can be seen that the processing speed has a peak near pH3.
  • the machining mechanism of the present invention has many parts that have not yet been elucidated, but it is clear that the machining speed can be controlled by changing the potential of the machining reference plane. In addition, the processing speed can be controlled by changing the pH of the processing liquid. In the case of numerically controlling the surface of the solid oxide into an arbitrary shape, it is important that the processing speed can be controlled. According to the present invention, quartz glass, various optical glasses, and metal oxides having various electrical characteristics can be precisely processed. Further, in the processing method of the present invention, it is possible to disperse metal fine particles in water, and it is also possible to perform processing in combination with an abrasive used in conventional CMP.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Catalysts (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Surface Treatment Of Glass (AREA)
  • Weting (AREA)

Abstract

 レアアースをはじめ、研磨剤や砥粒を一切使用せず、またフッ化水素等の取り扱いが難しく、環境負荷の大きな溶液を一切使用せず、光学ガラス材料などの固体酸化物を、加工変質層を導入することなく加工することが可能な固体酸化物の加工方法及びその装置を提供する。 水1の存在下で、酸素を介して1種又は以上の元素が結合した固体酸化物を被加工物とし、水分子が解離して固体酸化物を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を助ける触媒物質を加工基準面(3)として用い、水の存在下で、被加工物(5)と加工基準面とを接触若しくは極接近させて配し、加工基準面の電位をH2及びO2 が発生しない範囲とし、被加工物と加工基準面とを相対運動させて、分解生成物を被加工物表面から除去する。

Description

固体酸化物の加工方法及びその装置
 本発明は、固体酸化物の加工方法及びその装置に係わり、更に詳しくは環境負荷の少ない固体酸化物の加工方法及びその装置に関するものである。
 従来から、被加工物の表面を平坦化加工若しくは研磨する方法は各種提供されている。代表的には、CMP(Chemical Mechanical Polishing)があり、最近ではCARE(CAtalyst-Referred Etching)が提案されている。
 一方、光学分野や半導体デバイスの製造分野では、CMPが必須の研磨手段として確固たる地位を固めている。CMPは、研磨剤(砥粒)自体が有する表面化学作用又は研磨液に含まれる化学成分の作用によって、研磨剤と研磨対象物の相対運動による機械的研磨(表面除去)効果を増大させ、高速かつ平滑な研磨面を得る技術である。一般には、研磨対象物をキャリアと呼ばれる部材で保持し、研磨布または研磨パッドを張った平板(ラップ)に押し付けて、各種化学成分および硬質の微細な砥粒を含んだスラリーを流しながら、一緒に相対運動させることで研磨を行う。化学成分が研磨対象物の表面を変化させることで、研磨剤単体で研磨する場合に比べて加工速度を向上することができる。また、研磨剤単体で研磨する場合に残る表面の微細な傷や表面付近に残る加工変質層がきわめて少なくなり、理想的な平滑面を得ることができる。ここで、CMP用の研磨剤には、主に酸化セリウム(CeO2)若しくはランタンを含む酸化セリウムの微粒子を用いているが、レアアースであるセリウムは近年価格が高騰し、また入手にも支障が生じるようになっている。
 本発明者は、特許文献1によって、被加工物に対して常態では溶解性を示さないハロゲンを含む分子が溶けた処理液中に該被加工物を配し、白金、金又はセラミックス系固体触媒からなる触媒を被加工物の加工面に接触若しくは極接近させて配し、前記触媒の表面で生成したハロゲンラジカルと被加工物の表面原子との化学反応で生成したハロゲン化合物を、溶出させることによって被加工物を加工することを特徴とする触媒支援型化学加工方法を提案している。具体的には、ハロゲンを含む分子が溶けた処理液として、フッ化水素溶液又は塩化水素溶液を用いて、Si、SiC、サファイア等を加工する例が示されている。
 この触媒基準面に基づく加工方法は、本発明者によってCAREと命名された超精密な平坦化技術である。CAREは、研磨剤や砥粒を全く使用しない加工技術であり、加工によって被加工面にスクラッチや加工変質層を全く導入しない理想的な加工方法であるが、ハロゲンを含む分子が溶けた処理液、特にフッ化水素溶液を用いるので、処理空間の気密性や排気ガスや廃液の処理設備が必要になるので、CMPよりも取り扱いと装置コストが高くなるといった問題がある。
 また、特許文献2には、弱酸性の水または空気が溶解した水、または電解イオン水の存在下で、Ga,Al及びInのいずれかを含有する化合物半導体の基板表面と、表面の少なくとも前記基板と接触する部位に導電性部材を有する研磨パッドの該表面とを互いに接触させつつ相対運動させて、前記基板表面を研磨することを特徴とする研磨方法が提案されている。ここで、前記導電性部材は、貴金属、遷移金属、グラファイト、導電性樹脂、導電性ゴムまたは導電性有機物であり、前記研磨パッドと前記基板との間に電圧を印加して、表面にエッチングピッドを生成させた後、電圧の印加を停止し、それから研磨パッドで研磨することにより研磨レートを高めることが開示されている。また、前記弱酸性の水または空気が溶解した水のpHは、3.5~6.0であり、前記電解イオン水のpHは、3.5~6.0または8.0以上であることが開示されている。
 この特許文献2の研磨のメカニズムは、基板の表面と研磨パッドの白金等の導電性部材の接触部でひずみが発生し、価電子帯電子が伝導帯へと励起されて電子・正孔対が生成され、次に、伝導帯に励起した電子は(仕事関数が大きい)白金等の導電性部材に移動し、基板表面に残った正孔に水中のOH-イオンまたはH2O分子が作用し、この結果、接触部のみが酸化され、接触部に形成されたGa,Al,Inの酸化物が二酸化炭素溶液等の弱酸や弱アルカリに可溶なため、水の内部に溶解して基板の表面から除去されるというものである。つまり、先ず導電性部材と接触した基板表面を酸化させ、それを弱酸性の水または空気が溶解した水に溶出させるというものであり、最初から酸化物となっている被加工物に対して適用できる理論ではない。従って、特許文献2に記載の発明では、固体酸化物の研磨若しくは加工は全く想定していないのである。
 一方、特許文献3には、微量の不可避不純物を除き超純水のみを用い、超純水中に配設したイオン交換機能又は触媒機能を有する固体表面での電気化学反応を利用してイオン積を増大させ、この水酸基又は水酸基イオンの濃度が増大した超純水中に被加工物を浸漬し、該被加工物を陽極とし、又は被加工物の電位を高く維持して、該被加工物の表面に水酸基イオンを引き寄せて、被加工物を水酸基又は水酸基イオンによる化学的溶出反応若しくは酸化反応によって除去加工若しくは酸化被膜形成加工する加工方法が開示されている。
 この特許文献3に記載の加工方法は、基本的には高電圧を印加する電解加工であり、水中の水酸基又は水酸基イオンの濃度を増大させる水酸基増加処理が重要な要件となっている。この水酸基増加処理として、イオン交換機能又は触媒機能を有する固体表面を用いるが、被加工物と接触して損傷し、被加工物表面に付着するなどの問題があった。そのため、基本的にはイオン交換機能又は触媒機能を有する固体表面と被加工物は非接触状態で、固体表面で生成した水酸基又は水酸基イオンを被加工物表面に供給して加工を進行させるのであるが、この加工方法には加工基準面が存在せず、精度の高い表面が得られない、加工速度が遅いなどの理由で実用化に至ってない。また、水酸基増加処理として、その他に電解処理(特許文献4参照)、高温高圧処理、水プラズマ処理(特許文献5参照)が挙げられている。電解処理を併用する場合は、被加工物や電極表面で発生した気泡により、加工速度にバラツキが生じたり、加工速度の低下を来たすなどの課題があった。高温高圧処理は、工業的な加工には向かない。そして、水プラズマ処理は、水中で激しい気泡の発生を伴ってプラズマを発生させるので、被加工物表面が荒れる原因になる。
特開2006-114632号公報 特開2011-146695号公報 特許第3837783号公報 特開2006-176885号公報 特許第4337827号公報
 これまで、強烈なフッ化水素溶液や研磨剤を用いたガラスやサファイアの加工はあったが、光学材料をはじめ固体酸化物一般の加工においてフッ化水素溶液や研磨剤を全く使用しない実用的な加工方法はなかった。
 そこで、本発明が前述の状況に鑑み、解決しようとするところは、レアアースをはじめ、研磨剤や砥粒を一切使用せず、またフッ化水素等の取り扱いが難しく、環境負荷の大きな溶液を一切使用せず、光学材料などの固体酸化物を、加工変質層を導入することなく加工することが可能な固体酸化物の加工方法及びその装置を提供する点にある。
 本発明は、前述の課題解決のために、酸素を介して1種又は2種以上の元素が結合した固体酸化物、あるいは複数の酸化物からなる多成分系の固体酸化物を被加工物とし、該被加工物の表面を平坦化加工又は任意曲面に加工する加工方法であって、水分子が解離して固体酸化物を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を助ける触媒物質を加工基準面として用い、水の存在下で、前記被加工物と加工基準面とを接触若しくは極接近させて配し、前記加工基準面の電位を、自然電位を含みH2及びO2が発生しない範囲とし、前記被加工物と加工基準面とを相対運動させて、前記分解生成物を被加工物表面から除去することを特徴とする固体酸化物の加工方法を構成した。
 また、本発明は、酸素を介して1種又は2種以上の元素が結合した固体酸化物、あるいは複数の酸化物からなる多成分系の固体酸化物を被加工物とし、該被加工物の表面を加工する加工装置であって、水を保持する容器と、水分子が解離して固体酸化物を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を助ける触媒物質を少なくとも表面に有する加工基準面を備え、水に浸漬させて前記容器内に配置される加工ヘッドと、前記被加工物を保持して水に浸漬させ、前記加工基準面と接触若しくは極接近させて前記容器内に配置される被加工物ホルダと、前記加工ヘッドと被加工物ホルダとを接触若しくは極接近させながら相対運動させる駆動機構と、よりなり、前記加工基準面の電位を、自然電位を含みH2及びO2が発生しない範囲とし、前記分解生成物を水中に溶出させ、あるいは前記被加工物と加工基準面との相対運動により前記分解生成物を被加工物表面から除去することで、前記被加工物表面を加工することを特徴とする固体酸化物の加工装置を構成した。
 また、本発明は、酸素を介して1種又は2種以上の元素が結合した固体酸化物、あるいは複数の酸化物からなる多成分系の固体酸化物を被加工物とし、該被加工物の表面を加工する加工装置であって、水分子が解離して固体酸化物を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を助ける触媒物質を少なくとも表面に有する加工基準面を備えた加工ヘッドと、前記被加工物を前記加工基準面に対面させて保持する被加工物ホルダと、前記加工ヘッドの加工基準面と被加工物ホルダに保持された被加工物とを接触若しくは極接近させながら相対運動させる駆動機構と、前記加工ヘッドの加工基準面と被加工物ホルダに保持された被加工物の間に水を供給する水供給手段と、よりなり、前記加工基準面の電位を、自然電位を含みH2及びO2が発生しない範囲とし、前記分解生成物を水中に溶出させ、あるいは前記被加工物と加工基準面との相対運動により前記分解生成物を被加工物表面から除去することで、前記被加工物表面を加工することを特徴とする固体酸化物の加工装置を構成した。
 そして、これらの発明において、前記加工基準面として、金属元素を含み、金属元素の電子のd軌道がフェルミレベル近傍の触媒物質表面を用いることが好ましい。ここで、前記金属元素が、遷移金属元素であるとより好ましい。更に、前記加工基準面が、少なくとも表面に導電性の触媒物質を有し、該触媒物質の電位を変化させて加工速度を制御することが特に好ましい。
 また、前記水は、純水又は超純水を用いたH2パージ水であり、前記加工基準面の触媒物質に水素を吸着させた状態で加工を行うことも好ましい。
 また、前記水は、純水又は超純水に分解生成物の溶解を助ける錯体を混合したものであることも好ましい。
 更に、前記分解生成物に応じて、水のpHを2~11の範囲で調整することも好ましい。
 ここで、本発明において前記加工基準面は、硬い面の表面の全面又は部分を触媒物質で形成するもの、あるいは全面又は部分に触媒物質を成膜するもの、柔らかい面の表面の全面又は部分を触媒物質で形成する、あるいは全面又は部分に触媒物質を成膜するもの、ベース材料に触媒物質を練り込む、若しくは担持させ、表面の少なくとも一部に触媒物質が現れているものを含む概念である。
 以上にしてなる本発明の固体酸化物の加工方法及びその装置は、酸素を介して1種又は2種以上の元素が結合した固体酸化物、あるいは複数の酸化物からなる多成分系の固体酸化物を被加工物とし、水の存在下で、前記被加工物と、水分子が解離して固体酸化物を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を助ける触媒物質を少なくとも表面に有する加工基準面とを、接触若しくは極接近させて配し、前記加工基準面の電位を、自然電位を含みH2及びO2が発生しない範囲とし、前記被加工物と加工基準面とを相対運動させて、前記分解生成物を被加工物表面から除去することにより、前記被加工物表面を加工するので、次のような効果を奏する。化学的な加工であるので、加工変質層を導入することなく、光学材料などの固体酸化物の表面を加工することができ、加工面は研磨剤や砥粒を一切使用しないので表面粗さを極めて小さくできる。また、フッ化水素や他の取り扱いが難しい化学薬品や微粒子を使用しないので、廃液の処理が極めて簡単であり、環境負荷が少ない加工方法と言え、更に作業環境が大幅に改善されるといった利点がある。更に、レアアースを一切使用しないので、原料市況に影響されず、ランニングコストを大幅に低減することができる。
 そして、前記加工基準面として、金属元素を含み、金属元素の電子のd軌道がフェルミレベル近傍の触媒物質表面を用いると、水分子から電子を奪い共有する作用が大きく、それにより水分子が解離して固体酸化物を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を助ける作用が大きくなり、加工速度を高めることができる。特に、前記金属元素が、遷移金属元素であるとその作用が顕著である。
 加工基準面が、少なくとも表面に導電性の触媒物質を有する場合には、被加工物と触媒物質との間隔を、触媒物質の自由電子が水分子の解離や、固体酸化物のバックボンドがルーズになる際の両方の現象に対して反応の障壁を下げる作用をする程度に近づけることで、工業的に利用できる程度に加工能率を高めることができるとともに、触媒物質が加工基準面となるので精度の高い加工をすることができる。更に、本発明は、加工基準面を形成する触媒物質の電位を、自然電位を含みH2及びO2が発生しない範囲で調整することにより、加工速度を制御できるので、加工速度の速い粗加工から加工速度の遅い精密加工まで加工条件を簡単に変えることができる。つまり、本発明は、被加工物を加工装置にセットしたまま、導電性の触媒物質の電位を変えるだけで、粗加工から精密加工までの一連の加工を行うことができるので作業効率が高い。それに対して、従来は、同じ加工装置を用いる場合は、加工作業を中断し、研磨パット、研磨剤や砥粒を交換する必要があり、あるいは粗加工装置と精密加工装置の専用装置を用いる場合には、それらの装置の間で被加工物を移し変える必要があった。
 本発明の加工方法では、高い電界によりイオンを被加工物に供給するなどといった気泡発生の原因となる手段を用いないので、高精度の加工を実現できる。
本発明の加工装置の第1実施形態(平坦化加工装置)を示す簡略斜視図である。 本発明の加工装置の第2実施形態(平坦化加工装置)を示す簡略斜視図である。 2パージ水を作る水循環系の簡略説明図である。 光学ガラス(フッ素系)の平坦化加工前後の表面の位相シフト干渉顕微鏡像とAFM像を示す。 光学ガラス(ランタン系)の平坦化加工前後の表面の位相シフト干渉顕微鏡像とAFM像を示す。 石英ガラスの平坦化加工前後の表面の位相シフト干渉顕微鏡像とAFM像を示す。 サファイアの平坦化加工前後の表面の位相シフト干渉顕微鏡像とAFM像を示す。 ZnOの平坦化加工前後の表面のAFM像を示す。 本発明の加工装置の第3実施形態(局所加工装置)を示す簡略断面図である。 加工速度の接触圧依存性を示すグラフである。 各種の触媒物質(触媒金属)に対する石英ガラスの加工速度を示すグラフでる。 pH1(HNO3水溶液)での加工速度の触媒電位依存性を示すグラフである。 pH3(HNO3水溶液)での加工速度の触媒電位依存性を示すグラフである。 pH7(リン酸緩衝液)での加工速度の触媒電位依存性を示すグラフである。 pH11(KOH水溶液)での加工速度の触媒電位依存性を示すグラフである。 各pHにおける自然電位と加工速度のピーク位置の関係を示したグラフである。 各溶液pHにおける加工速度の最大値を示したグラフである。 水素水中で石英ガラスを平坦化加工したときの電位と加工速度の関係のグラフである。 局所加工装置を用いた自然電位下での石英ガラスの加工におけるpHと加工速度の関係のグラフである。
 本発明の固体酸化物の加工方法は、酸素を介して1種又は2種以上の元素が結合した固体酸化物、あるいは複数の酸化物からなる多成分系の固体酸化物を被加工物とし、水分子が解離して固体酸化物を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を助ける触媒物質を加工基準面として用い、水の存在下で、前記被加工物と加工基準面とを接触若しくは極接近させて配し、前記加工基準面の電位を、自然電位を含みH2及びO2が発生しない範囲とし、前記被加工物と加工基準面とを相対運動させて、前記分解生成物を被加工物表面から除去し、被加工物の表面を平坦化加工又は任意曲面に加工するものである。ここで、一般的に研磨や洗浄と呼ばれている処理も、本発明の加工の範疇である。つまり、研磨は平坦化加工に相当し、洗浄は加工量を最小限に抑制して表面から不純物や異物を取り除く微量加工に相当する。
 一般的に、酸化物は、酸素と他の元素からなる化合物である。酸素は、ほとんどすべての元素と酸化物を生成し、金属元素の酸化物は塩基性酸化物、非金属元素の酸化物は酸性酸化物、その中間の元素の酸化物は両性酸化物となることが多い。本発明では、酸化物の中で常態では固体であり、酸素を介して1種又は2種以上の元素が結合した固体酸化物、あるいは複数の酸化物からなる多成分系の固体酸化物を対象としている。特に、本発明は光学ガラス材料の超精密加工、研磨に良好に適用できる。また、本質的に固体酸化物から構成され、非晶質と結晶質が混在した熱膨張率が実質的に零であるガラスセラミックスの加工にも適用可能である。このガラスセラミックスは、ハードディスク記録媒体に用いるガラス基板や、EUV露光装置のマスクブランクス用ガラス基板や、その他高精度が要求される光学・機械部品に使用されている。更に、一般的な酸化物系のセラミックスも加工対象である。また、固体酸化物は、バルクである必要はなく、薄膜であっても良い。
 一般に、金属酸化物は、電気的特性も多様であり、絶縁体、金属と同程度の導電率を有する電子伝導体、イオン伝導体、超伝導体(酸化物高温超伝導体)、熱電変換素子、強誘電体、強磁性体等がある。また最近では、強相関電子系酸化物が注目され、実用化に向けて各方面で活発に研究されてきているが、この加工にも適用できると思われる。このように、酸化物の性質は多様であるので、酸化物の種類によって加工条件を最適にする必要がある。
 水分子が解離して固体酸化物を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を助ける触媒物質として、金属元素を含み、金属元素の電子のd軌道がフェルミレベル近傍の触媒物質表面を用いることが好ましい。本発明では、金属元素と反応性のある溶液は使用しないので、各種の金属元素を用いることができるが、中でも硬く形状が安定している遷移金属元素が用いることが特に好ましく、仕事関数の大きなPtをはじめ、Au、Ag、Cu、Ni、Cr、Mo等を用いることが可能である。更に、加工基準面となる触媒物質は、金属元素単体でも、複数の金属元素からなる合金でもよい。現在、Pt、Au、Ag、Cu、Mo、Ni、Cr、SUS316、Cで加工が可能であることを確かめている。この中で好ましいのは、Pt、Cu、Mo、Ni、Cr、SUS316である。AuやAgは加工速度が遅いことを確かめている。ここで、d電子軌道に空きがある金属を用いると、加工速度において効果が高いことが分かっている。これらの金属は導電性であるが、金属元素含む化合物で絶縁性の触媒物質でも、金属元素の電子のd軌道がフェルミレベル近傍の触媒物質であれば良好に使用できる。この場合、加工基準面の電位は自然電位のままとする。また、前記触媒物質の他の例として、加工速度は遅いが、グラファイト又はグラフェン等の炭素材料を用いることもできる。そして、前記加工基準面として使用する触媒物質は、水、あるいは酸性溶液や塩基性溶液に曝されるので、表面状態が安定である触媒物質が好ましい。
 そして、前記加工基準面は、水分子が解離して固体酸化物を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を助ける触媒物質で形成する。前記加工基準面は、文字通り加工の基準面となるので、加工中に形状が変化してはならない。また、前記加工基準面は、その表面状態が被加工物の表面に転写されるので、できるだけ表面粗さが小さく、高い平坦度に形成されることが望ましい。尚、前記加工基準面と被加工物とを相対運動させることにより、加工基準面の表面粗さや平坦度は平均化されるので、被加工物の表面は加工基準面より精度の高い表面となる。前記加工基準面を導電性の触媒物質で形成した場合には、表面の電位を外部から制御することができる。ここで、前記触媒物質は、バルクである必要はなく、安価で形状安定性のよい母材の表面に、金属、あるいは遷移金属を蒸着、スパッタリング、電気めっき等によって形成した薄膜でも良い。また、前記触媒物質を表面に成膜する母材は、硬質の弾性材でも良く、例えばフッ素系ゴム材を用いることができる。また、高精度に平坦化加工したSiC基板を高温で熱処理し、熱分解法によってSiCの表面に複数層のグラフェンを形成したものを、前記加工基準面として用いることも可能である。
 また、前記水は、不純物が少なく特性が一定である純水又は超純水を用いることが、清純な加工環境を実現し、加工条件の正確な制御において必要である。一般的に、純水は電気抵抗率が1~10MΩ・cm程度、超純水は電気抵抗率が15MΩ・cm以上とされているが、両者に境界があるわけではない。また、本発明では、純水又は超純水に水素をパージした水素水を用い、前記加工基準面の触媒物質に水素を吸着させた状態で加工を行うことが好ましい場合もある。そして、また、前記水は、純水又は超純水に分解生成物の溶解を助ける錯体を混合したものを用いることも好ましい。ここで、前記錯体は、分解生成物の溶解を促進するとともに、錯イオンを作り水中で安定に維持する作用をする。また、水(加工液)のpHは、2~12の範囲で調整することが好ましい。pHがこの範囲よりも小さく(強酸性)ても、大きく(強アルカリ性)ても加工速度が小さくなる。加工対象の酸化物の性質は多様であり、加工過程で生成する分解生成物も多様であるので、それに応じてpHを調整することが望ましい。pHの調整には、例えば酸性領域はHNO3の添加、アルカリ性領域はKOHの添加で行う。勿論、加工液のpHを7(中性:水のまま)としても差し支えなく、その場合、種々の酸化物の加工に汎用的に適用できる。
 本発明の加工メカニズムは、現象論的には以下のようであると考える。酸素を介して1種又は2種以上の元素が結合した固体酸化物の表面に、少なくとも表面にd電子軌道がフェルミレベル近傍にある触媒物質を有する加工基準面が接触若しくは極接近すると、つまり固体酸化物の表面近傍にd電子軌道が近づくことになる。d電子は、水分子の解離や、酸化物のバックボンドがルーズになる際の両方の現象に対して反応の障壁を下げる作用をする。現象論的には、該触媒物質が酸化物に近づくと、酸化物を構成する酸素元素と他の元素とのバックボンドの結合力が弱くなり、水分子が解離して酸化物の酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物を生成する。そして、分解生成物を加工液中に溶出させるという原理である。ここで、固体酸化物の表面に該触媒物質を有する加工基準面を接触させて擦ることにより、分解生成物に機械的な力を与えることで、水中への溶出を促進させるのである。また、固体酸化物の表面と加工基準面が接触しなくても、両者の相対運動によって生じる水の流動によって分解生成物の水中への溶出を促進する作用がある。
 また、加工基準面を形成する該触媒物質が導電性材料であれば、該触媒物質の電位を調整することにより、加工速度を制御することができる。酸化還元電位は、導電性物質(例えばPt)表面が酸化物側から電子を「抜く」、「与える」性質を変えるものである。導電性物質の電位は、最終的に目指したい精度に応じて最適な加工速度に変えるためのパラメータになる。しかし、導電性物質の電位を正に大きくするとO2が発生し、また負に大きくするとH2が発生し、気泡が加工の妨げになるので、H2及びO2が発生しない範囲で調整することが必要であり、電位の制御域は1.6V程度である。
 例えば、二酸化ケイ素(SiO2)の結晶は、正四面体の中心にSiが位置し、4つの頂点にOが結合した構造で、Oを介してSiが三次元的に結合されており、その加工では、Si-O-Siの結合が切れ、H2Oの加水分解によってSi-OH、OH-Siとなる。このように、加水分解によってケイ酸{[SiOx(OH)4?2xn}が生成される。ここで、0<x<2である。代表的には、オルトケイ酸(H4SiO4)、メタケイ酸(H2SiO3)、メタ二ケイ酸(H2Si25)等がある。これらの分解生成物が、水に溶出するのである。
 次に、添付図面に示した実施形態に基づき、本発明を更に詳細に説明する。図1に示した第1実施形態の加工装置Aは、被加工物と加工基準面を水中に浸漬した状態で加工を行う構造である。加工装置Aは、水1を保持する容器2と、少なくとも表面に触媒物質を有する加工基準面3を備え、水1に浸漬させて前記容器2内に配置される加工ヘッド4と、前記被加工物5を保持して水1に浸漬させ、前記加工基準面3と接触若しくは極接近させて前記容器2内に配置される被加工物ホルダ6と、前記加工ヘッド4と被加工物ホルダ6とを接触若しくは極接近させながら相対運動させる駆動機構7と、前記加工基準面3を形成する触媒物質の電位をH2及びO2が発生しない範囲で調整する電圧印加手段8と、よりなり、水分子が解離して固体酸化物を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物を水中に溶出させ、前記被加工物表面を加工するものである。また、前記容器2の水1を浄化し、水位を一定に保つために水循環系9を備えている。この水循環系9は、供給管9Aと排水管9Bと、図示しない処理液精製器、バッファタンク、ポンプ等で構成される。電圧印加手段8によって、前記加工基準面3を形成する触媒物質の電位を約-0.4~+1.4Vの範囲(零を含む)に設定する。
 図示した加工装置Aは、前記加工ヘッド4が、円盤状の回転定盤であり、該定盤よりも小さな面積の被加工物5を保持した前記被加工物ホルダ6と加工ヘッド4を、互いに平行で偏心した回転軸で、所定速度で回転させるようにしている。また、前記被加工物ホルダ6は、荷重を調節して、加工基準面3に対する被加工物5の接触圧力を調節できるようになっている。また、前記加工ヘッド4や被加工物ホルダ6に温度制御機能を内蔵させれば、加工温度を所定温度で一定に維持することができるので望ましい。尚、前記被加工物5の表面より加工基準面3を狭くすれば、小さな加工ヘッド4の被加工物5の表面に対する位置と滞在時間を制御して、被加工物5の表面の局所加工量を制御し、つまり数値制御による局所加工を行うことができる。
 また、図2に示した第2実施形態の加工装置Bは、被加工物と加工基準面との間に滴下した水を供給しながら加工を行う構造である。加工装置Bは、少なくとも表面に触媒物質を有する加工基準面10を備えた加工ヘッド11と、被加工物12を前記加工基準面10に対面させて保持する被加工物ホルダ13と、前記加工ヘッド11の加工基準面10と被加工物ホルダ13に保持された被加工物12とを接触若しくは極接近させながら相対運動させる駆動機構14と、前記加工ヘッド11の加工基準面10と被加工物ホルダ13に保持された被加工物12の間に水15を供給する水供給手段16と、前記加工基準面10を形成する触媒物質の電位をH2及びO2が発生しない範囲で調整する電圧印加手段17と、よりなり、水分子が解離して固体酸化物を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物を水中に溶出させ、前記被加工物表面を加工するものである。ここで、水が飛び散らないように、前記加工ヘッド11の周囲に容器18を設けている。
 また、この加工装置Bも前述の加工装置Aと同様に、平面の平滑化加工のみならず、任意曲面の数値制御加工を行うように構成することが可能である。更に、前記被加工物表面に特定波長の励起光を照射し、表面を活性化しながら加工することも好ましい。
 また、図3に示すように、前記水循環系9に気液混合器20を設け、ポンプ21で水を循環させながら、気液混合器20で水と水素ガスを混合し、水素が溶存した水素水を前記供給管9A、あるいは水供給手段16から加工面に供給することが好ましい。勿論、必要に応じて水素以外のガスを溶存させることができる。
 次に、加工基準面を形成する触媒物質としてPtを用いた加工装置Aによって、固体酸化物として光学ガラスと石英ガラス(純SiO2)、単結晶サファイア(α-Al23)及びZnO単結晶を試験的に加工した結果を図4~図8に示す。試験加工に用いた光学ガラスは、一般光学レンズ等に用いるフッ素系光学ガラス(S-FPL51:株式会社オハラ製)とランタン系光学ガラス(S-LAH55:株式会社オハラ製)である。石英ガラスは、前加工面としてCMP面を用いた。光学ガラス、石英ガラス及びZnO単結晶は、加工前と加工後の表面を位相シフト干渉顕微鏡(Zygo社、NewView)と原子間力顕微鏡(AFM)で観察して加工特性を評価した。
 図4は、光学ガラス(フッ素系)の平坦化加工の結果である。加工圧力:200hPa、回転速度:10rpm、溶液:超純水、加工時間:1時間である。加工速度は、6751nm/hであった。加工によって位相シフト干渉顕微鏡像では、加工前はrms:0.879nmが加工後にrms:0.385nmとなり、AFM像では、加工前はrms:1.861nmが加工後にrms:0.371nmと大幅に表面粗さが改善した。注目すべきは、加工速度が6.7μm/hと高速であることであり、超純水のみで十分に工業的に加工できることが実証された。ここで用いたフッ素系光学ガラスは、弗リン酸塩系の光学ガラスであり、一般的にガラス中の結合がSi-Oのような共有結合性ではなくイオン結合性が強い硝種である。その組成は、P、Al、Ba、Gd、Nb、Fの酸化物を主成分とし、その他、Y、La、Yb、Ta、Lu、Ti、Zr、W、Bi、Mg、Ca、Sr、Zn、Li、Na、K、Cs、Tl、Si、B、Sb等の酸化物が選択的に微量配分されている。
 図5は、光学ガラス(ランタン系)の平坦化加工の結果である。加工圧力:200hPa、回転速度:10rpm、溶液:超純水、加工時間:1時間である。加工速度は、5977nm/hであった。加工によって位相シフト干渉顕微鏡像では、加工前はrms:0.232nmが加工後にrms:0.476nmとなり、AFM像では、加工前はrms:0.408nmが加工後にrms:0.828nmと若干表面粗さが悪化した。ここで用いたランタン系光学ガラスは、硼珪酸ランタン系の光学ガラスであり、Si、B、La、Y、Gd、Zr、Nb、Zn、Sr、Ba、Li、Sb、As等の酸化物を組成としている。
 図6は、石英ガラス(SiO2)の平坦化加工の結果である。加工圧力:200hPa、回転速度:10rpm、溶液:超純水、加工時間:1時間である。加工速度は、831nm/hであった。加工によって位相シフト干渉顕微鏡像では、加工前はrms:0.338nmが加工後にrms:0.147nmとなり表面粗さが大幅に改善している。AFM像では、加工前はrms:1.455nmが加工後にrms:0.103nmと大幅に表面粗さが改善し、加工前表面にはスクラッチが確認されたが、このようなスクラッチは除去され、原子レベルで平滑な表面を有していることがわかった。
 図7は、単結晶サファイア(α-Al23)の平坦化加工の結果である。試料には、2インチサファイア基板 (0001) 面を用いた。加工圧力:200hPa、回転速度:10rpm、溶液:純水、加工時間:3時間である。加工速度は、3nm/hであった。加工によって位相シフト干渉顕微鏡像では、加工前はrms:0.164nmが加工後にrms:0.151nmとなり、AFM像では、加工前はrms:0.122nmが加工後にrms:0.122nmと表面粗さは殆ど変化なかったが、結晶構造が改善した。位相シフト干渉顕微鏡観察領域において、加工前後で平坦性が維持されている。またAFM観察において、加工前にはステップテラス構造が確認されるもののステップ端は波打った形状である。一方、本発明の加工を行った表面は直線的なステップ形状を有するステップテラス構造を持つことが分かった。また、ステップ高さは1バイレイヤーに相当する約0.3 nmであり、本発明の加工後表面はステップバンチングのないステップテラス構造を有することが明らかとなった。
 図8は、ZnO単結晶の平坦化加工の結果である。試料にはCMPによって処理された2インチZnO基板 (0001) 面を用いた。加工圧力:200hPa、回転速度:10rpm、溶液:純水、加工時間:10分間である。加工速度は、126.1nm/hであった。加工によってAFM像では、加工前はrms:0.161nm(1×1μm2領域)が、加工後にrms:0.163nm(1×1μm2領域)、rms:0.164nm(5×5μm2領域)と表面粗さはあまり変化がなかったが、加工後にはステップテラス構造が明確に観察できるようになり、結晶学的に優れた表面が得られた。因みに、干渉顕微鏡で観察した結果は、観察領域で加工前後ともにrms:0.1nm前後で変化がなかった。ZnO単結晶の前加工面は、CMPによって精密研磨した表面であることを考えれば、本発明の加工方法によってCMPよりも更に優れた結晶学的表面が得られることが実証できた。本発明の加工方法は、加工時間を短くすれば、精密洗浄として利用することも可能であることが分かる。
 これらの加工試験によって、本発明の加工方法及び加工装置で、固体酸化物として光学ガラスの平坦化加工を十分な精度で行えることが実証できた。光学ガラスの場合、単純な酸化物ではなく、多種類の酸化物の複合体であり、それを構成する酸化物毎に加工速度が異なるが、本発明では加工基準面を用い、その平坦性を転写するイメージの加工であるから、原理的にこのような多種類の酸化物の複合体でも十分な精度で平坦化加工することができるのである。前述の2種類の光学ガラスで加工後の表面粗さの結果が異なったのは、硝種の違いによるものと考える。それに対して、石英ガラスはSiO2の単一種類の酸化物であり、ZnO単結晶も単一種類の酸化物であるので、表面の至る場所で加工速度が同じであるため、本発明の平坦化加工によって超精密な平坦面が得られたのである。この加工試験では、加工条件の最適化や平坦性を高める工夫は特に行ってないので、それらを行うことにより、更に表面粗さを改善することができ、加工速度も高めることができる。最終的な表面粗さの改善には、加工速度を落とした仕上げ加工をすることが効果的である。
 因みに、液晶ディスプレイやハードディスク記録媒体用のガラス基板を、CeO2研磨剤を用いたCMPにより研磨した場合の加工速度は、約0.4μm/min(24μm/h)であるとされる。それに対して、前述のフッ素系光学ガラスに対する本発明による加工速度は6.7μm/hであった。この場合、本発明による加工速度は、CeO2を用いるCMPの加工速度の1/4~1/3となるが、水だけを用いる加工方法としては驚くべき結果である。今後、加工条件を最適化することにより、CMPに匹敵する加工速度が得られるものと確信する。例えば、Ptに代えて被加工物に最適な他の遷移金属を用いることにより、加工速度は大幅に早くなり、また回転速度を高めることによっても加工速度は早くなる。
 図9は、局所加工装置Cを示し、原理的に任意曲面を数値制御加工できる装置となる。本装置は平坦化を目的としておらず、触媒物質の回転体を回転させながら被加工物表面に接触させることで、被加工物の一部領域のみを加工するものである。
 局所加工装置Cは、水槽31に溜めた純水32中に被加工物33を保持し、ステッピングモータ34に連結した鉛直方向の回転軸35の先端に取付けた触媒物質球36を、水中で前記被加工物33の表面に一定の接触圧で接触させながら回転させて加工する装置である。更に詳しくは、Zステージ37の上に設けた水平板38の上に、前記水槽31とXYステージ39が固定され、該XYステージ39で駆動させる被加工物ホルダ40が前記水槽31の内部まで延び、前記被加工物33を保持している。振れを最小限にするために前記回転軸35は2重のベアリング41,41によって固定されており、前記触媒物質球36を取り付けるヘッド部42との接続部分はテーパー形状とすることで脱着ごとに発生する位置ずれを抑制している。前記触媒物質球36は、Oリングの表面に所定の触媒物質を成膜したものを用いた。Oリングは、フッ素ゴム製のP44規格サイズ(外径50.7mm,太さ3.5mm)を用いた。前記ステッピングモータ34、回転軸35及びベアリング41,41は同一の垂直板43に取付けられ、該垂直板43の上端を架台44に板バネ45で連結され、天秤型のバランサー46により回転軸35の鉛直性を調整するようになっている。
 Xステージを操作することで被加工物33を触媒物質球36の方向に任意量移動させることが可能であり、電気マイクロメータを用いて回転軸35の移動量を制御することで被加工物33の表面と触媒物質球36間の接触圧を調整する。触媒物質球36上の触媒金属は、ロータリージョイント47を介して電気的にポテンショスタットへと接続されており、三電極系セルを構成して電位制御を行っている。本発明では、触媒金属の電位を精度良く制御する必要がある。前記水槽31の中に前記触媒物質球36を作用電極とし、更に基準電極48と対向電極49を配置し、これら3つの電極とポテンショスタットを組み合わせて三電極系セルとした。電流の大部分は対向電極49へ流し,基準電極48へは微小電流を流して作用電極(触媒物質球36)の電位を定める。このとき電位の制御を図示しないポテンショスタットで自動的に行う。前記基準電極48としては銀-塩化銀電極を採用した。
 図9に示した局所加工装置Cは、各ステージを数値制御して駆動し、前記被加工物33と前記触媒物質球36の相対位置を変化させることにより、単位加工痕を移動させて、触媒物質球36の曲率より小さな任意曲面を創出することができるNC加工装置となる。
 前記局所加工装置Cを用いて加工速度の制御性を調べた。先ず、触媒金属としてPtを用いて石英ガラスを加工した。接触圧力は約1000hPa、回転速度は24rpm、加工液は純水であり、Ptの電位は自然電位である。Ptが接触した楕円形の領域のみが加工され、その加工痕における最大深さを加工量として、加工速度の接触圧力依存性を調べた結果を図10に示す。圧力が大きくなるとともに加工量が増加することがわかる。
 次に、各種の触媒金属を成膜した触媒物質球36を用いて、接触圧力は約1000hPa、回転速度は24rpm、加工液は純水とし、同一加工条件で石英ガラスを加工した。触媒金属の電位は自然電位である。触媒金属に対する解離吸着の起こりやすさはd軌道の電子非占有度によって定性的に整理でき、以下のようにグループ分けできることが知られている。グループAは、d軌道の空位軌道が多いCr、Fe、Moなどの4,5,6,8族元素である。グループB1は、1から3の空位d軌道が存在するNi、Coからなる9、10族元素である。グループB2は、Pt、Pdなどの9、10族元素である。グループCは、Cu、Mnからなる7、11族元素である。グループDは、d軌道が占有されているAuからなる11族元素である。グループEは、Ag、Znなどの11、12族元素である。化学吸着特性は、グループA、B1、B2、C、D、Eの順で小さくなることが知られている。
 そこで、各グループから1元素ずつ触媒金属として選んで石英ガラスを加工した。その加工速度の触媒金属依存性の結果を図11に示した。この結果、化学吸着特性と加工速度の間には明らかな相関があり,Cr(グループA)やNi(グループB1)を用いた場合の加工速度はPt(グループB2)を用いた場合に比べて最大で1桁大きいことがわかった。また、グループD又はEに属するAuやAgを使用した場合は、d軌道が電子で占有されているので加工が殆ど進行しない。以上の結果から、本発明において触媒金属はH2O分子の解離を促進していることが明らかとなった。ここで、触媒金属としてステンレススチール(SUS316)を用いた場合も大きな加工速度が得られた。SUS316には、Niが10~14重量%、Crが16~18重量%、Moが2~3重量%、その他の元素も含まれているが、主にCr、Niが加工に寄与しているものと考えている。また、触媒物質としてグラファイトを用いた場合も加工できるが、加工速度はAuやAgと同レベルと遅かった。
 この結果、単一元素からなる触媒金属としては、グループA、B1、B2の金属を用いることが、加工速度の面で好ましく、更に実用的には比較的安価で取扱いが容易なものを選択して使用する。この場合、金属元素単体の他に、複数の金属元素からなる合金を用いることも好ましい。また、Cuはd軌道が電子で占有されているので、それ自体では加工速度が遅いが、CuOとなると絶縁性でも触媒機能が備わる。このように、触媒機能に乏しい金属であっても化合物となることにより、金属元素の電子のd軌道がフェルミレベル近傍になって、それが表面に現れれば、水分子が解離して固体酸化物を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を助ける触媒物質として機能する。
 次に、前記局所加工装置Cを用いて、石英ガラス基板における加工速度の触媒電位依存を、pH1, 3, 7, 11の各溶液を用いて調べた。溶液にはHNO3水溶液、リン酸緩衝液、KOH水溶液を用いて、それぞれのpHに調整した。加工条件として、触媒金属はPt、接触圧力は約1000hPa、回転速度は24rpm、加工液は純水である。尚、自然電位(開回路電位)の実測値は、pH1, 3, 7, 11でそれぞれ0.68, 0.57, 0.32, 0.17V vs. Ag/AgClであった。各溶液における加工結果を図12~図15に示す。全ての溶液において加工速度が触媒電位に依存して変化することが明らかとなった。図15に示すpH11のKOH溶液を用いた際の加工結果を例にとり考察を行う。加工速度のピークがおよそ-0.7V vs. Ag/AgCl付近に存在しており、0.5V以上または-1.5V vs. Ag/AgCl以下の電位では加工速度はほぼ0であった。これは正負の向きについて電位を走査すると、それぞれ生成した酸素と水素が吸着するためであり、吸着量が過剰な場合は全く加工が進行しないことを示している。一方、ピーク値周辺ではPt表面の被吸着量が最小量であると考えられ、電圧非印加時に比べて約3倍の加工速度であった。この結果、加工基準面を構成する触媒物質の電位を制御することによって、加工速度を制御できることを示している。
 各pHにおける加工速度のピーク電位と自然電位の位置を比較して図16に示す。pHがアルカリ側に移動するにつれてピーク電位は負になっている。これは、より高いpHでは水酸基あるいは酸素の触媒金属への吸着が顕著になり、それらを脱離させるためにより負の電位が必要であると理解できる。逆にpH1では水素が過剰に吸着しており、自然電位より正側の電位に設定することで最大の加工速度が得られる。図16の下側の直線は、H2の発生限界、上側の直線はO2の発生限界を示し、上下の直線の間で電位を制御することになる。
 図17に各溶液pHにおける加工速度の最大値を示している。Pt表面の吸着状態が与える影響を排除した、加工速度の溶液pH依存である。酸性溶液を用いた場合に加工速度が最大であり、続いて塩基性溶液、中性溶液と続く。この結果を考察すると、エッチング過程においてまずH2O分子から触媒の作用によってH原子が解離し、生成した水酸基がSi原子に吸着する。続いてO原子にはH原子が吸着するが、このH原子はH2O分子から解離した触媒上のH原子だけではなく、溶液中の水素イオンが移動してくるものと考えられる。そのため酸性溶液中では加工速度が大きい。一方、塩基性溶液中での加工速度が中性溶液に比べて大きいのは、加工生成物であるSi(OH)xの溶解速度は塩基性で最大であることが原因だと考えられる。
 図18は、水素水中で加工基準面にPtを用い、印加電圧を変化させて石英ガラスを加工した結果を示している。水素水中でのPtの自然電位は、-0.40V vs Ag/AgClである。水素水中で印加電圧0Vの場合、つまり加工基準面の電位が-0.40Vの場合、加工速度は0nm/hであった。これは、Pt表面が過剰な水素によって覆われたため、H2O分子が相互作用を及ぼす距離まで接近できなくなったためだと考えられる。以上のことから、触媒上に生成された水素のみでは加工は進行しないこと、そして触媒表面の吸着状態が加工に与える影響は極めて大きいことが明らかとなった。それから、印加電圧を増加させて加工基準面の電位を増加させると、電位が約0.4V vs Ag/AgClで加工速度がピークの約500nm/hとなった後、電位が1.3V vs Ag/AgClで加工速度が約50nm/hになるまで遅くなる。
 図19は、Ptからなる触媒物質球を用いた局所加工装置により、電位制御は行わず自然電位下で石英ガラスを加工した場合におけるpHと加工速度の関係のグラフである。加工条件は、加工圧力:200hPa、回転速度:10rpm、加工液:HNO3水溶液(pH0-4)、KOH水溶液(pH10-13)である。加工時間は各30分である。この結果、pH3付近に加工速度のピークを持つことが分かる。
 本発明の加工メカニズムは、未だ解明されていない部分が多いが、加工基準面の電位を変化させることにより、加工速度を制御できることは明らかである。また、加工液のpHを変化させても加工速度を制御できる。固体酸化物の表面を任意形状に数値制御加工する場合には、加工速度を制御できることは重要である。本発明により、石英ガラスや各種光学ガラス等、また各種電気的特性の金属酸化物を精密に加工できるようになる。また、本発明の加工方法において、水中に金属微粒子を分散させて加工することも可能と思われ、更に従来のCMPで使用されている研磨剤を併用して加工することも可能と思われる。
A 加工装置、     B 加工装置、
1 水、        2 容器、
3 加工基準面、    4 加工ヘッド、
5 被加工物、     6 被加工物ホルダ、
7 駆動機構、     8 電圧印加手段、
9 水循環系、     9A 供給管、
9B 排水管、     10 加工基準面、
11 加工ヘッド、   12 被加工物、
13 被加工物ホルダ、 14 駆動機構、
15 水、       16 水供給手段、
17 電圧印加手段、  18 容器、
20 気液混合器、   21 ポンプ、
30 局所加工装置、  31 水槽、
32 純水、      33 ガラス、
34 モータ、     35 回転軸、
36 触媒物質球、   37 Zステージ、
38 水平板、     39 XYステージ、
40 被加工物ホルダ、 41 ベアリング、
42 ヘッド部、    43 垂直板、
44 架台、      45 板バネ、
46 バランサー、   47 ロータリージョイント、
48 基準電極、    49 対向電極。

Claims (15)

  1.  酸素を介して1種又は2種以上の元素が結合した固体酸化物、あるいは複数の酸化物からなる多成分系の固体酸化物を被加工物とし、該被加工物の表面を平坦化加工又は任意曲面に加工する加工方法であって、
     水分子が解離して固体酸化物を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を助ける触媒物質を加工基準面として用い、水の存在下で、前記被加工物と加工基準面とを接触若しくは極接近させて配し、前記加工基準面の電位を、自然電位を含みH2及びO2が発生しない範囲とし、前記被加工物と加工基準面とを相対運動させて、前記分解生成物を被加工物表面から除去することを特徴とする固体酸化物の加工方法。
  2.  前記加工基準面として、金属元素を含み、金属元素の電子のd軌道がフェルミレベル近傍の触媒物質表面を用いる請求項1記載の固体酸化物の加工方法。
  3.  前記金属元素が、遷移金属元素である請求項2記載の固体酸化物の加工方法。
  4.  前記加工基準面が、少なくとも表面に導電性の触媒物質を有し、該触媒物質の電位を変化させて加工速度を制御する請求項1~3何れか1項に記載の固体酸化物の加工方法。
  5.  前記水は、純水又は超純水を用いたH2パージ水であり、前記加工基準面の触媒物質に水素を吸着させた状態で加工を行う請求項4記載の固体酸化物の加工方法。
  6.  前記水は、純水又は超純水に分解生成物の溶解を助ける錯体を混合したものである請求項1~5何れか1項に記載の固体酸化物の加工方法。
  7.  前記分解生成物に応じて、水のpHを2~12の範囲で調整する請求項1~6何れか1項に記載の固体酸化物の加工方法。
  8.  酸素を介して1種又は2種以上の元素が結合した固体酸化物、あるいは複数の酸化物からなる多成分系の固体酸化物を被加工物とし、該被加工物の表面を加工する加工装置であって、
     水を保持する容器と、
     水分子が解離して固体酸化物を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を助ける触媒物質を少なくとも表面に有する加工基準面を備え、水に浸漬させて前記容器内に配置される加工ヘッドと、
     前記被加工物を保持して水に浸漬させ、前記加工基準面と接触若しくは極接近させて前記容器内に配置される被加工物ホルダと、
     前記加工ヘッドと被加工物ホルダとを接触若しくは極接近させながら相対運動させる駆動機構と、
     よりなり、前記加工基準面の電位を、自然電位を含みH2及びO2が発生しない範囲とし、前記分解生成物を水中に溶出させ、あるいは前記被加工物と加工基準面との相対運動により前記分解生成物を被加工物表面から除去することで、前記被加工物表面を加工することを特徴とする固体酸化物の加工装置。
  9.  酸素を介して1種又は2種以上の元素が結合した固体酸化物、あるいは複数の酸化物からなる多成分系の固体酸化物を被加工物とし、該被加工物の表面を加工する加工装置であって、
     水分子が解離して固体酸化物を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を助ける触媒物質を少なくとも表面に有する加工基準面を備えた加工ヘッドと、
     前記被加工物を前記加工基準面に対面させて保持する被加工物ホルダと、
     前記加工ヘッドの加工基準面と被加工物ホルダに保持された被加工物とを接触若しくは極接近させながら相対運動させる駆動機構と、
     前記加工ヘッドの加工基準面と被加工物ホルダに保持された被加工物の間に水を供給する水供給手段と、
     よりなり、前記加工基準面の電位を、自然電位を含みH2及びO2が発生しない範囲とし、前記分解生成物を水中に溶出させ、あるいは前記被加工物と加工基準面との相対運動により前記分解生成物を被加工物表面から除去することで、前記被加工物表面を加工することを特徴とする固体酸化物の加工装置。
  10.  前記加工基準面として、金属元素を含み、金属元素の電子のd軌道がフェルミレベル近傍の触媒物質表面を用いる請求項8又は9記載の固体酸化物の加工装置。
  11.  前記金属元素が、遷移金属元素である請求項10記載の固体酸化物の加工装置。
  12.  前記加工基準面が、少なくとも表面に導電性の触媒物質を有し、該触媒物質の電位を変化させて加工速度を制御する電位制御手段を更に備えてなる請求項8~11何れか1項に記載の固体酸化物の加工装置。
  13.  前記水は、純水又は超純水を用いたH2パージ水であり、前記加工基準面の触媒物質に水素を吸着させた状態で加工を行う請求項12記載の固体酸化物の加工装置。
  14.  前記水は、純水又は超純水に分解生成物の溶解を助ける錯体を混合したものである請求項8~13何れか1項に記載の固体酸化物の加工装置。
  15.  前記分解生成物に応じて、水のpHを2~12の範囲で調整する請求項8~14何れか1項に記載の固体酸化物の加工装置。
PCT/JP2012/081504 2011-12-06 2012-12-05 固体酸化物の加工方法及びその装置 WO2013084934A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12855467.2A EP2789420B1 (en) 2011-12-06 2012-12-05 Method for manufacturing solid oxide and device therefor
KR1020167006013A KR101833196B1 (ko) 2011-12-06 2012-12-05 글래스 재료의 가공방법
JP2013548265A JP5754754B2 (ja) 2011-12-06 2012-12-05 固体酸化物の加工方法及びその装置
KR1020147015929A KR101613066B1 (ko) 2011-12-06 2012-12-05 고체산화물의 가공방법
US14/363,090 US11220757B2 (en) 2011-12-06 2012-12-05 Method for manufacturing solid oxide and device therefor
CN201280060235.9A CN104023889B (zh) 2011-12-06 2012-12-05 固体氧化物的加工方法及其装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011266659 2011-12-06
JP2011-266659 2011-12-06

Publications (1)

Publication Number Publication Date
WO2013084934A1 true WO2013084934A1 (ja) 2013-06-13

Family

ID=48574292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081504 WO2013084934A1 (ja) 2011-12-06 2012-12-05 固体酸化物の加工方法及びその装置

Country Status (7)

Country Link
US (1) US11220757B2 (ja)
EP (1) EP2789420B1 (ja)
JP (2) JP5754754B2 (ja)
KR (2) KR101833196B1 (ja)
CN (1) CN104023889B (ja)
TW (1) TWI570800B (ja)
WO (1) WO2013084934A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014235406A (ja) * 2013-06-05 2014-12-15 キヤノン株式会社 部品の製造方法および加工装置
JP2015028627A (ja) * 2013-07-05 2015-02-12 Hoya株式会社 基板の製造方法、多層反射膜付き基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法、及び基板加工装置
JP2015028628A (ja) * 2013-07-03 2015-02-12 Hoya株式会社 基板の製造方法、多層反射膜付き基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法、及び基板加工装置
JP2015028626A (ja) * 2013-07-03 2015-02-12 Hoya株式会社 基板の製造方法、多層反射膜付き基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法、及び基板加工装置
JP2015028629A (ja) * 2013-07-04 2015-02-12 Hoya株式会社 基板の製造方法、マスクブランク用基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法、及び基板製造装置
JP2015034982A (ja) * 2013-07-12 2015-02-19 Hoya株式会社 基板の製造方法、マスクブランク用基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法、及び基板製造装置
JP2015045847A (ja) * 2013-07-29 2015-03-12 Hoya株式会社 基板の製造方法、マスクブランク用基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法、及び基板製造装置
JP2015114356A (ja) * 2013-12-09 2015-06-22 Hoya株式会社 機能膜付き基板の製造方法、多層膜付き基板の製造方法、マスクブランクの製造方法、及び転写用マスクの製造方法
WO2015129765A1 (ja) * 2014-02-27 2015-09-03 国立大学法人大阪大学 Si基板の平坦化加工方法及びその装置
WO2015137397A1 (ja) * 2014-03-12 2015-09-17 国立大学法人大阪大学 ワイドバンドギャップ半導体基板の加工方法及びその装置
WO2015159973A1 (ja) * 2014-04-18 2015-10-22 株式会社荏原製作所 基板処理装置、基板処理システム、および基板処理方法
US20150355537A1 (en) * 2013-01-18 2015-12-10 Hoya Corporation Method for manufacturing mask blank substrate, method for manufacturing mask blank and method for manufacturing transfer mask
JP2016072441A (ja) * 2014-09-30 2016-05-09 Hoya株式会社 基板の製造方法、多層反射膜付き基板の製造方法、マスクブランクの製造方法、及び転写用マスクの製造方法
JP2016145927A (ja) * 2015-02-09 2016-08-12 Hoya株式会社 マスクブランク用基板の製造方法、多層膜付き基板の製造方法、マスクブランクの製造方法、及び転写用マスクの製造方法
JP2016221603A (ja) * 2015-05-28 2016-12-28 国立大学法人大阪大学 機能性精密部品の製造方法及び機能性精密部品
JP2017156762A (ja) * 2017-04-19 2017-09-07 Hoya株式会社 マスクブランク用基板の製造方法、多層膜付き基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法、及びマスクブランク用基板製造装置
JP2019199391A (ja) * 2018-05-18 2019-11-21 Agc株式会社 ガラス基板およびガラス基板の製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150097484A (ko) * 2012-12-27 2015-08-26 호야 가부시키가이샤 마스크 블랭크용 기판처리장치, 마스크 블랭크용 기판처리방법, 마스크 블랭크용 기판의 제조방법, 마스크 블랭크의 제조방법 및 전사용 마스크의 제조방법
US10113249B2 (en) 2014-10-23 2018-10-30 Sumitomo Electric Industries, Ltd. Silicon carbide substrate and method for manufacturing the same
JP2016132083A (ja) * 2015-01-22 2016-07-25 国立大学法人大阪大学 加工装置、加工方法、および部品の製造方法
JP2016150415A (ja) * 2015-02-18 2016-08-22 国立大学法人大阪大学 加工装置、加工方法、および部品の製造方法
JP6510348B2 (ja) * 2015-07-23 2019-05-08 株式会社荏原製作所 基板処理装置、基板処理システム、および基板処理方法
JP6873758B2 (ja) * 2016-03-28 2021-05-19 Hoya株式会社 基板の製造方法、多層反射膜付き基板の製造方法、マスクブランクの製造方法、及び転写用マスクの製造方法
KR101708757B1 (ko) 2016-04-06 2017-02-21 김재범 어레이 안테나가 구비되는 알에프 무선 전력 전송 시스템
JP6818614B2 (ja) * 2017-03-31 2021-01-20 株式会社荏原製作所 基板処理装置および基板処理装置を含む基板処理システム
KR102306095B1 (ko) * 2021-06-28 2021-09-28 국방과학연구소 표면 가공 장치
CN114700871B (zh) * 2022-03-11 2023-11-24 上海致领半导体科技发展有限公司 一种第三代半导体化学机械抛光装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003225830A (ja) * 2002-01-31 2003-08-12 Ebara Corp 電解加工装置および方法
JP2006114632A (ja) 2004-10-13 2006-04-27 Kazuto Yamauchi 触媒支援型化学加工方法
JP2006176885A (ja) 2006-02-09 2006-07-06 Yuzo Mori 超純水中の水酸基による加工方法
JP3837783B2 (ja) 1996-08-12 2006-10-25 森 勇蔵 超純水中の水酸基による加工方法
JP2008198673A (ja) * 2007-02-09 2008-08-28 Ebara Corp 複合電解研磨装置
JP4337827B2 (ja) 2006-02-09 2009-09-30 森 勇蔵 超純水中の水酸基による加工方法
JP2011146695A (ja) 2009-12-15 2011-07-28 Osaka Univ 研磨方法及び研磨装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4313803A (en) * 1980-04-01 1982-02-02 The Standard Oil Company Electrochemical maintenance of optimum catalytic activity in copper-catalyzed nitrile hydrolysis processes
JPS58157998A (ja) * 1982-03-12 1983-09-20 Toshiba Corp 電解研磨除染方法
US5035769A (en) * 1989-10-04 1991-07-30 The United States Of America As Represented By The United States Department Of Energy Nondestructive method for chemically machining crucibles or molds from their enclosed ingots and castings
JP4141114B2 (ja) * 2000-07-05 2008-08-27 株式会社荏原製作所 電解加工方法及び装置
KR100389917B1 (ko) * 2000-09-06 2003-07-04 삼성전자주식회사 산화성 물질을 포함하는 아노드 수 및/또는 환원성 물질을포함하는 캐소드 수를 사용하는 반도체 제조를 위한 습식공정 및 이 공정에 사용되는 아노드수 및/또는 캐소드수
CN1646649A (zh) * 2002-02-26 2005-07-27 应用材料股份有限公司 研磨基材的方法及组合物
US20040072445A1 (en) * 2002-07-11 2004-04-15 Applied Materials, Inc. Effective method to improve surface finish in electrochemically assisted CMP
JP2005288580A (ja) * 2004-03-31 2005-10-20 Ebara Corp 電解加工方法及び装置
US20060163083A1 (en) * 2005-01-21 2006-07-27 International Business Machines Corporation Method and composition for electro-chemical-mechanical polishing
WO2006138070A1 (en) * 2005-06-15 2006-12-28 Ati Properties, Inc. Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
DE102006030323A1 (de) * 2006-04-21 2007-10-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Oberflächenbehandlung einer metallischen Substratoberfläche
US7422982B2 (en) * 2006-07-07 2008-09-09 Applied Materials, Inc. Method and apparatus for electroprocessing a substrate with edge profile control
EP2381008A2 (en) * 2006-08-28 2011-10-26 Osaka University Catalyst-aided chemical processing method and apparatus
JP2008136983A (ja) * 2006-12-05 2008-06-19 Osaka Univ 触媒支援型化学加工方法及び加工装置
JP5007384B2 (ja) 2006-10-18 2012-08-22 株式会社荏原製作所 触媒支援型化学加工方法及び装置
JP2008081389A (ja) * 2006-08-28 2008-04-10 Osaka Univ 触媒支援型化学加工方法及び装置
US20080188162A1 (en) * 2007-02-06 2008-08-07 Itsuki Kobata Electrochemical mechanical polishing apparatus conditioning method, and conditioning solution
US8734661B2 (en) * 2007-10-15 2014-05-27 Ebara Corporation Flattening method and flattening apparatus
JP4887266B2 (ja) * 2007-10-15 2012-02-29 株式会社荏原製作所 平坦化方法
JP2009263177A (ja) 2008-04-25 2009-11-12 Sharp Corp ガラスの加工方法およびガラスの加工装置並びに配線基板の製造方法
KR101754550B1 (ko) * 2009-12-15 2017-07-05 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 연마 공구 및 연마 장치
CN101880907B (zh) * 2010-07-07 2012-04-25 厦门大学 纳米精度的电化学整平和抛光加工方法及其装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3837783B2 (ja) 1996-08-12 2006-10-25 森 勇蔵 超純水中の水酸基による加工方法
JP2003225830A (ja) * 2002-01-31 2003-08-12 Ebara Corp 電解加工装置および方法
JP2006114632A (ja) 2004-10-13 2006-04-27 Kazuto Yamauchi 触媒支援型化学加工方法
JP2006176885A (ja) 2006-02-09 2006-07-06 Yuzo Mori 超純水中の水酸基による加工方法
JP4337827B2 (ja) 2006-02-09 2009-09-30 森 勇蔵 超純水中の水酸基による加工方法
JP2008198673A (ja) * 2007-02-09 2008-08-28 Ebara Corp 複合電解研磨装置
JP2011146695A (ja) 2009-12-15 2011-07-28 Osaka Univ 研磨方法及び研磨装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2789420A4

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150355537A1 (en) * 2013-01-18 2015-12-10 Hoya Corporation Method for manufacturing mask blank substrate, method for manufacturing mask blank and method for manufacturing transfer mask
JP2014235406A (ja) * 2013-06-05 2014-12-15 キヤノン株式会社 部品の製造方法および加工装置
JP2015028628A (ja) * 2013-07-03 2015-02-12 Hoya株式会社 基板の製造方法、多層反射膜付き基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法、及び基板加工装置
JP2015028626A (ja) * 2013-07-03 2015-02-12 Hoya株式会社 基板の製造方法、多層反射膜付き基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法、及び基板加工装置
JP2015028629A (ja) * 2013-07-04 2015-02-12 Hoya株式会社 基板の製造方法、マスクブランク用基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法、及び基板製造装置
JP2018077542A (ja) * 2013-07-04 2018-05-17 Hoya株式会社 基板の製造方法、マスクブランク用基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法、及び基板製造装置
JP2015028627A (ja) * 2013-07-05 2015-02-12 Hoya株式会社 基板の製造方法、多層反射膜付き基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法、及び基板加工装置
JP2015034982A (ja) * 2013-07-12 2015-02-19 Hoya株式会社 基板の製造方法、マスクブランク用基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法、及び基板製造装置
JP2015045847A (ja) * 2013-07-29 2015-03-12 Hoya株式会社 基板の製造方法、マスクブランク用基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法、及び基板製造装置
JP2015114356A (ja) * 2013-12-09 2015-06-22 Hoya株式会社 機能膜付き基板の製造方法、多層膜付き基板の製造方法、マスクブランクの製造方法、及び転写用マスクの製造方法
JP2015162600A (ja) * 2014-02-27 2015-09-07 国立大学法人大阪大学 Si基板の平坦化加工方法及びその装置
WO2015129765A1 (ja) * 2014-02-27 2015-09-03 国立大学法人大阪大学 Si基板の平坦化加工方法及びその装置
WO2015137397A1 (ja) * 2014-03-12 2015-09-17 国立大学法人大阪大学 ワイドバンドギャップ半導体基板の加工方法及びその装置
JP2015173216A (ja) * 2014-03-12 2015-10-01 国立大学法人大阪大学 ワイドバンドギャップ半導体基板の加工方法及びその装置
US10163645B2 (en) 2014-03-12 2018-12-25 Osaka University Method for processing wide-bandgap semiconductor substrate and apparatus therefor
KR20160143649A (ko) 2014-04-18 2016-12-14 가부시키가이샤 에바라 세이사꾸쇼 기판 처리 장치, 기판 처리 시스템 및 기판 처리 방법
CN111584355A (zh) * 2014-04-18 2020-08-25 株式会社荏原制作所 基板处理装置及基板处理系统
CN106256016A (zh) * 2014-04-18 2016-12-21 株式会社荏原制作所 基板处理装置、基板处理系统及基板处理方法
US11450544B2 (en) 2014-04-18 2022-09-20 Ebara Corporation Substrate processing apparatus, substrate processing system, and substrate processing method
JPWO2015159973A1 (ja) * 2014-04-18 2017-04-13 株式会社荏原製作所 基板処理装置、基板処理システム、および基板処理方法
CN111584355B (zh) * 2014-04-18 2021-07-13 株式会社荏原制作所 基板处理装置及基板处理系统
KR102193334B1 (ko) 2014-04-18 2020-12-22 가부시키가이샤 에바라 세이사꾸쇼 기판 처리 장치, 기판 처리 시스템 및 기판 처리 방법
WO2015159973A1 (ja) * 2014-04-18 2015-10-22 株式会社荏原製作所 基板処理装置、基板処理システム、および基板処理方法
KR102193325B1 (ko) 2014-04-18 2020-12-22 가부시키가이샤 에바라 세이사꾸쇼 기판 처리 장치, 기판 처리 시스템 및 기판 처리 방법
KR102120687B1 (ko) 2014-04-18 2020-06-09 가부시키가이샤 에바라 세이사꾸쇼 기판 처리 장치, 기판 처리 시스템 및 기판 처리 방법
KR20200067909A (ko) 2014-04-18 2020-06-12 가부시키가이샤 에바라 세이사꾸쇼 기판 처리 장치, 기판 처리 시스템 및 기판 처리 방법
KR20200067910A (ko) 2014-04-18 2020-06-12 가부시키가이샤 에바라 세이사꾸쇼 기판 처리 장치, 기판 처리 시스템 및 기판 처리 방법
CN106256016B (zh) * 2014-04-18 2020-06-23 株式会社荏原制作所 基板处理装置、基板处理系统
KR20200142120A (ko) 2014-04-18 2020-12-21 가부시키가이샤 에바라 세이사꾸쇼 기판 처리 장치 및 기판 처리 방법
JP2016072441A (ja) * 2014-09-30 2016-05-09 Hoya株式会社 基板の製造方法、多層反射膜付き基板の製造方法、マスクブランクの製造方法、及び転写用マスクの製造方法
JP2016145927A (ja) * 2015-02-09 2016-08-12 Hoya株式会社 マスクブランク用基板の製造方法、多層膜付き基板の製造方法、マスクブランクの製造方法、及び転写用マスクの製造方法
JP2016221603A (ja) * 2015-05-28 2016-12-28 国立大学法人大阪大学 機能性精密部品の製造方法及び機能性精密部品
JP2017156762A (ja) * 2017-04-19 2017-09-07 Hoya株式会社 マスクブランク用基板の製造方法、多層膜付き基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法、及びマスクブランク用基板製造装置
JP2019199391A (ja) * 2018-05-18 2019-11-21 Agc株式会社 ガラス基板およびガラス基板の製造方法
JP7059794B2 (ja) 2018-05-18 2022-04-26 Agc株式会社 ガラス基板およびガラス基板の製造方法

Also Published As

Publication number Publication date
US11220757B2 (en) 2022-01-11
US20140326612A1 (en) 2014-11-06
KR20140098129A (ko) 2014-08-07
JP2015231939A (ja) 2015-12-24
KR101613066B1 (ko) 2016-04-29
JP5754754B2 (ja) 2015-07-29
CN104023889A (zh) 2014-09-03
EP2789420A1 (en) 2014-10-15
EP2789420B1 (en) 2022-04-20
TW201338032A (zh) 2013-09-16
JPWO2013084934A1 (ja) 2015-04-27
CN104023889B (zh) 2017-04-12
EP2789420A4 (en) 2015-08-05
JP5963223B2 (ja) 2016-08-03
TWI570800B (zh) 2017-02-11
KR101833196B1 (ko) 2018-02-28
KR20160032259A (ko) 2016-03-23

Similar Documents

Publication Publication Date Title
JP5963223B2 (ja) ガラス材料の加工方法及びその装置
JP6206847B2 (ja) ワイドバンドギャップ半導体基板の加工方法及びその装置
US7651625B2 (en) Catalyst-aided chemical processing method and apparatus
JP4982742B2 (ja) 磁性微粒子を用いた触媒化学加工方法及び装置
JP5007384B2 (ja) 触媒支援型化学加工方法及び装置
US5639363A (en) Apparatus and method for mirror surface grinding and grinding wheel therefore
JP4873694B2 (ja) 触媒支援型化学加工方法
JP2008081389A (ja) 触媒支援型化学加工方法及び装置
KR20120102109A (ko) 연마 방법, 연마 장치, 및 연마 공구
TW200540240A (en) Chemical-mechanical polishing composition and method for using the same
JP2008136983A (ja) 触媒支援型化学加工方法及び加工装置
JP6188152B2 (ja) Si基板の平坦化加工方法及びその装置
JP2006502310A (ja) 電解加工装置
JP6797409B2 (ja) 触媒表面基準エッチング方法及びその装置
Zeng et al. Recent Advances in Chemical Mechanical Polishing Technologies of Silicon Carbide
JP2007160496A (ja) ワーク研磨装置およびワーク研磨方法
WO2023238608A1 (ja) 表面加工方法
WO2023136040A1 (ja) 半導体ウェハの表面加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548265

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147015929

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012855467

Country of ref document: EP