JP2005288580A - 電解加工方法及び装置 - Google Patents

電解加工方法及び装置 Download PDF

Info

Publication number
JP2005288580A
JP2005288580A JP2004104531A JP2004104531A JP2005288580A JP 2005288580 A JP2005288580 A JP 2005288580A JP 2004104531 A JP2004104531 A JP 2004104531A JP 2004104531 A JP2004104531 A JP 2004104531A JP 2005288580 A JP2005288580 A JP 2005288580A
Authority
JP
Japan
Prior art keywords
electrode
processing
action
electrolytic
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004104531A
Other languages
English (en)
Inventor
Tsukuru Suzuki
作 鈴木
Takayuki Saito
孝行 斎藤
Yasushi Taima
康 當間
Akira Kodera
章 小寺
Ikutaro Nomichi
郁太郎 野路
Hozumi Yasuda
穂積 安田
Takeshi Iiizumi
健 飯泉
Itsuki Obata
厳貴 小畠
Masayuki Kumegawa
正行 粂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2004104531A priority Critical patent/JP2005288580A/ja
Publication of JP2005288580A publication Critical patent/JP2005288580A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Weting (AREA)

Abstract

【課題】 加工中の被加工面に酸化皮膜や水酸化物皮膜、または還元析出金属のような不要物が不可避的に生成されても、ピットや表面荒れが少ない均一な加工ができるようにする。
【解決手段】 陰極とした加工電極28と、被加工面に対して還元作用及び/または酸化皮膜除去作用を施した被加工物Wとを液体14の存在下で互いに近接させつつ相対運動させて、還元及び/または酸化皮膜を除去した被加工面を加工電極28の電気化学的酸化作用で電解加工する。
【選択図】 図1

Description

本発明は、電解加工方法及び装置に係り、特に、半導体ウエハ等の基板の表面に形成された導電性材料を加工したり、真空機器や高圧機器等の高精度の仕上げが要求される金属材料等を加工したりするのに使用される電解加工方法及び装置に関する。
近年、半導体ウエハ等の基板上に回路を形成するための配線材料として、アルミニウムまたはアルミニウム合金に代えて、電気抵抗率が低くエレクトロマイグレーション耐性が高い銅(Cu)を用いる動きが顕著になっている。この種の銅配線は、基板の表面に設けた微細凹みの内部に銅を埋め込むことによって一般に形成される。この銅配線を形成する方法としては、化学気相成長法(CVD)、スパッタリング及びめっきといった手法があるが、いずれにしても、基板のほぼ全表面に銅を成膜して、化学機械的研磨(CMP)により不要の銅を除去するようにしている。
一般的なCMPでは、半導体ウエハなどの被加工物の表面(被加工面)に、シリカや酸化セリウム等の研磨剤粒子を懸濁させたスラリーを供給しながら、被加工面を研磨パッド(樹脂パッド)に機械的に押圧し、同時に被加工物と研磨パッドとをそれぞれ回転運動させることによって被加工面に形成されている段差を解消し、被加工面を平坦化するようにしている。近年の半導体産業の分野では、半導体デバイスの高集積化に伴い、機械的強度が脆弱なLow-k材膜を絶縁膜として使う傾向にある。このような機械的強度が極めて弱い絶縁膜(Low-k材膜)は、CMP加工時に加えられる研磨パッドの押圧力によって容易に破壊されてしまう。
また、近年、あらゆる機器の構成要素において微細化かつ高精度化が進み、サブミクロン領域での物作りや高い仕上げ精度が要求されるにつれて、加工法自体が材料の特性に与える影響は益々大きくなっている。このような状況下においては、従来の機械加工のように、工具が被加工物を物理的に破壊しながら除去していく加工法では、加工によって被加工物に多くの欠陥を生み出してしまうため、被加工物の特性が劣化する。従って、いかに材料の特性を損なうことなく加工を行うことができるかが問題となってくる。
この問題を解決する手段として開発された特殊加工法に、化学研磨や電解加工、電解研磨がある。これらの加工法は、従来の物理的な加工とは対照的に、化学的溶解反応を起こすことによって、除去加工等を行うものである。従って、塑性変形による加工変質層や転位等の欠陥は発生せず、前述の材料の特性を損なわずに加工を行うといった課題が達成される。
一般的な電解加工や電解研磨では、加工に際して電解液(リン酸、硫酸、硝酸、塩化ナトリウムまたは炭酸ナトリウム等の水溶液)が用いられる。電解液を用いると、被加工物が電解液で汚染されるため、被加工物の洗浄処理に時間がかかり、廃液処理に負荷がかかる場合がある。
最近では、環境負荷、加工される製品の汚染または作業中の危険性などを改善させた金属の電解加工が提案されている(例えば、特許文献1及び2参照)。これらの電解加工は、純水または超純水を使用して電解加工を行う方法である。純水または超純水は、電気を殆ど通さないため、この純水または超純水を用いた電解加工方法では、陽極となる被加工物と陰極となる加工電極との間にイオン交換体を配置して被加工物の電解加工が行われる。被加工物、イオン交換体及び加工電極は、全て純水または超純水下に置かれるので、環境負荷の問題及び被加工物の汚染の問題が著しく改善される。また、被加工物である金属は、電解反応により金属イオンとして除去されてイオン交換体に捕捉される。このように、加工除去された金属イオンがイオン交換体に捕捉されるため、被加工物及び液体(純水または超純水)自体の汚染を更に低減させることができる。
上述したように、イオン交換体を配置した状態で超純水や純水を供給しつつ被加工物を加工する電解加工方法によれば、被加工物の汚染が防止され、環境負荷を著しく低減させることができる。また、この電解加工方法によれば、各種金属部品の表面に光沢を与えることができ、更には、従来の金属機械加工の仕上げに必要とされる切削油、研磨剤を含むスラリー、電解液などを不要とすることができる。
特開2000−52235号公報 特開2003−145354号公報
しかしながら、イオン交換体を配置した状態で超純水や純水を供給しつつ被加工物を加工する電解加工では、被加工物の種類や条件によっては、加工面が荒れたり、加工面にピットが発生したり、更には加工面にくすみが生じたりする場合がある。例えば、イオン交換体を用いた超純水による銅の電解加工の場合、一般に中性領域での加工となるため、銅表面に酸化皮膜を形成しつつ加工が進む。このため、加工中に銅表面に形成される酸化皮膜を効率よく除去しなければ、よりきれいで、均一な加工を施した加工面を得ることができない。また、ステンレス鋼、Ti、Ta等、金属の種類によっては、表面に酸化皮膜が形成されることによって加工レートが低下し、更に酸化が進み不働態膜が形成されて加工が進まなくなる場合がある。
一方、SiやAl及びそれらの酸化物や透明導電性膜(SnO,In,ITO等)等のイオン交換体を用いた超純水による電解加工では、加工除去した被加工物成分を適切に排出し、かつ電解加工時に供給する電圧または電流を厳密にコントロールする必要があり、これらが十分に行われないと、金属成分の還元析出が起こり、更に水素気泡の発生を伴うために加工面が不均一となる場合がある。
本発明は上記事情に鑑みてなされたもので、加工中の被加工面に酸化皮膜や水酸化物皮膜、または還元析出金属のような不要物が不可避的に生成されても、ピットや表面荒れが少ない均一な加工ができるようにした電解加工方法及び装置を提供することを目的とする。
請求項1に記載の発明は、陰極とした加工電極と、被加工面に対して還元作用及び/または酸化皮膜除去作用を施した被加工物とを液体の存在下で互いに近接させつつ相対運動させて、還元及び/または酸化皮膜を除去した被加工面を前記加工電極の電気化学的酸化作用で電解加工することを特徴とする電解加工方法である。
加工電極を陰極とし、被加工物を陽極として電解加工を行うと、加工条件により被加工物の表面(被加工面)に酸化物皮膜や水酸化物皮膜が生成され均一な加工に悪影響を与える。本発明によれば、還元作用により酸化を抑制したり、酸化皮膜を除去したりしながら被加工面の電解加工を行うことにより、ピットや表面荒れが少なく仕上がりのよい加工を行うことができる。
請求項2に記載の発明は、被加工面に化学的添加剤を接触させて該被加工面に対する還元作用及び/または酸化皮膜除去作用を施すことを特徴とする請求項1記載の電解加工方法である。
この化学的添加剤としては、例えば、リン酸、炭酸、硫酸、次亜リン酸、スルファミン酸、ギ酸、酢酸、乳酸、クエン酸、グリコール酸、リンゴ酸、シュウ酸、グルコン酸、チオグリコール酸及びアスコルビン酸等の酸、及び硫酸ナトリウム、亜硫酸ナトリウム、グルコース及びヒドロキノン等の還元剤より選択される少なくとも1種類、または活性水素を含んだ液体を挙げることができる。
請求項3に記載の発明は、前記化学的添加剤は、酸及び/または還元剤を含み、pHがpH2〜pH7の範囲にあることを特徴とする請求項2記載の電解加工方法である。
化学的添加剤のpHが高いと、酸化物や水酸化物が生成され、加工表面に生成物が析出して、光沢がなくなるばかりでなく、表面が荒れてしまう。逆に、pHが低いと、析出物がなく綺麗な光沢面が得られるが、表面が荒れてしまうことがある。このため、化学的添加剤のpHは、pH2〜pH7であることが好ましく、pH3〜pH5であることが更に好ましい。
請求項4に記載の発明は、陽極とした加工電極と、被加工面に対して酸化作用及び/または還元による生成物除去作用を施した被加工物とを液体の存在下で互いに近接させつつ相対運動させて、酸化及び/または還元による生成物を除去した被加工面を前記加工電極の電気化学的還元作用で電解加工することを特徴とする電解加工方法である。
加工電極を陽極とし、被加工物を陰極として電解加工を行うと、加工条件により被加工物の表面(被加工面)に被加工物の金属イオンが還元し析出して加工の均一性が損なわれることがある。本発明によれば、酸化作用により金属イオンの還元を抑制したり、還元性析出部を除去したりしながら被加工面の電解加工を行うことにより、ピットや表面荒れが少なく仕上がりのよい加工を行うことができる。
請求項5に記載の発明は、被加工面に化学的添加剤を接触させて該加工面に対する酸化作用及び/または還元による生成物除去作用を施すことを特徴とする請求項4記載の電解加工方法である。
この化学的添加剤としては、例えば、リン酸、硝酸、硫酸、酢酸、シュウ酸及びクロム酸等の酸から選択される少なくとも1種類、または活性酸素を含んだ液体を挙げることができる。
請求項6に記載の発明は、前記加工電極と対極となる給電電極を被加工面に近接させつつ、前記加工電極と少なくとも被加工面上で重複する移動軌跡を描くように、被加工面に対して相対運動させることを特徴とする請求項1または4記載の電解加工方法である。
被加工物を電気化学的酸化作用により加工する場合は、加工電極を陰極とし、給電電極を陽極として、両電極が被加工面上を重複した軌跡を描くように、両電極と被加工物とを相対運動させることにより、被加工面に給電電極による還元作用を施しつつ、加工電極による電解加工を行うことができる。また、被加工物を電気化学的還元作用により加工する場合は、加工電極を陽極とし、給電電極を陰極として、両電極が被加工面上を重複した軌跡を描くように、両電極と被加工物とを相対運動させることにより、被加工面に給電電極による酸化作用を施しつつ、加工電極による電解加工を行うことができる。
請求項7に記載の発明は、前記給電電極の前記加工電極に対する有効面積比を0.5〜5:1にすることを特徴とする請求項6記載の電解加工方法である。
給電電極の加工電極に対する有効面積比が1:1の時に加工面のピットや表面荒れが最小となる。給電電極の面積をそれ以上大きくしても加工面の表面状態は変わらないが、給電電極の面積比が大きいと加工レートが低下する。一方、給電電極の加工電極に対する有効面積比が小さいと、加工レートが速くなるが、還元作用が不十分となり、均一な表面が得られない。この加工面の表面状態と加工レートを考慮すると、給電電極の加工電極に対する有効断面積比は、例えば0.5〜5:1であることが好ましく、0.75〜1.25:1であることが更に好ましい。
請求項8に記載の発明は、被加工物に近接して配置され、陰極となる加工電極と、前記被加工物と前記加工電極とを相対運動させる駆動部と、前記加工電極と前記被加工物との間に電圧を印加する電源と、前記加工電極と前記被加工物との間に液体を供給する液体供給部と、被加工物の被加工面に対し還元作用及び/または酸化皮膜除去作用を施す手段を有することを特徴とする電解加工装置である。
請求項9に記載の発明は、前記還元作用及び/または酸化皮膜除去作用を施す手段は、被加工面に化学的添加剤を供給する化学的添加剤供給部からなることを特徴とする請求項8記載の電解加工装置である。
請求項10に記載の発明は、前記化学的添加剤は、酸及び/または還元剤を含み、pHがpH2〜pH7の範囲にあることを特徴とする請求項9記載の電解加工装置である。
請求項11に記載の発明は、被加工物に近接して配置され、陽極となる加工電極と、前記被加工物と前記加工電極とを相対運動させる駆動部と、前記加工電極と前記被加工物との間に電圧を印加する電源と、前記加工電極と前記被加工物との間に液体を供給する液体供給部と、被加工物の被加工面に対し酸化作用及び/または還元による生成物除去作用を施す手段を有することを特徴とする電解加工装置である。
請求項12に記載の発明は、前記酸化作用及び/または還元による生成物除去作用を施す手段は、被加工面に化学的添加剤を供給する化学的添加剤供給部からなることを特徴とする請求項11記載の電解加工装置である。
請求項13に記載の発明は、被加工物に近接して配置される加工電極及び該加工電極の対極となる給電電極と、前記加工電極及び前記給電電極を少なくとも被加工面上で重複する移動軌跡を描くように相対運動させる駆動部と、前記加工電極と前記給電電極との間に電圧を印加する電源と、前記加工電極及び前記給電電極と前記被加工物との間に液体を供給する液体供給部を有することを特徴とする電解加工装置である。
請求項14に記載の発明は、前記給電電極の前記加工電極に対する有効面積比を、0.5〜5:1としたことを特徴とする請求項13記載の電解加工装置である。
本発明によれば、導電性物質を電解加工で加工する際に、被加工面に生成される酸化物皮膜や水酸化物皮膜、または還元析出金属のような不要物を除去しながら電解加工を行うことにより、加工面にピットや表面荒れが少ない均一な加工を行うことができる。
以下、本発明の実施の形態を図面を参照して説明する。
図1は、本発明の第1の実施の形態における電解加工装置の概略図を示し、図2は、図1に示す電解加工装置の電極ホルダの底面図を示す。この例の電解加工装置は、電気化学的酸化作用によって、半導体ウエハなどの基板の表面に成膜された銅膜等を加工除去するのに使用される。
図1に示すように、この電解加工装置10は、表面(被加工面)を上向き(フェースアップ)にして、被加工物としての基板Wを着脱自在に吸着保持する基板ホルダ12と、基板Wの表面に、この例では液体としての超純水14を供給する超純水供給ノズル16と、加工後に超純水14が飛散しないように超純水14を保持する加工チャンバ18を有している。この加工チャンバ18の側壁下部には、加工チャンバ18内の超純水14を外部に排出する排水口20が設けられている。
なお、この例では、基板ホルダ12で保持した基板Wの表面に、超純水供給ノズル16から超純水14を供給しながら、基板Wの表面を加工するようにしているが、加工チャンバ18内に超純水14を保持しておき、この加工チャンバ18内に保持した超純水14中に基板ホルダ12で保持した基板Wを浸漬させるようにしてもよい。
基板ホルダ12の上方の該基板ホルダ12で保持した基板Wに対面する位置に、円板状の電極ホルダ22が該基板Wと同心状に配置されている。この電極ホルダ22は、駆動モータ24の出力軸の下端に連結されて、駆動モータ24の駆動に伴って回転するようになっている。電極ホルダ22の下面には、半径方向に直線状に延び、電源26の陰極に接続されて陰極となる加工電極28と、半径方向に直線状に延び、電源26の陽極に接続されて加工電極28と対極の陽極となる給電電極30が該電極ホルダ22の中心を挟んで左右対称位置に配置されている。
この例は、加工電極28を電源26の陰極に、給電電極30を電源26の陽極にそれぞれ接続することで、加工電極28で基板Wの該加工電極28の下面に対面する領域を電解加工し、給電電極30で基板Wの該給電電極30の下面に対面する領域に還元作用を施すようにしている。また、加工電極28と給電電極30を電極ホルダ22の中心を挟んだ左右対称位置に、すなわち加工電極28と給電電極30が直線状に並ぶように配置することで、駆動モータ24を駆動による電極ホルダ22の回転に伴って、加工電極28及び給電電極30が、基板ホルダ12で保持した基板Wの被加工面上を重複した軌跡を描いて該基板Wと相対移動するようになっている。
これにより、被加工面に給電電極30による還元作用を施して酸化を抑制しつつ、加工電極28による電解加工を行うことができる。
加工電極28及び給電電極30の表面(下面)には、例えば強酸性カチオン交換基を付与した不織布からなるイオン交換体32,34がそれぞれ密着して取付けられている。このイオン交換体32,34は、電解加工の際に、この表面(下面)が基板ホルダ12で保持した基板Wの表面に接触乃至近接するようになっている。
イオン交換体32,34は、強酸性カチオン交換基(スルホン酸基)を付与したもの、もしくは強塩基性アニオン交換基(第4級アンモニウム基)を付与したものであるが、例えば弱酸性カチオン交換基(カルボキシル基)を付与したもの、弱塩基性アニオン交換基(第3級以下のアミノ基)を付与したものでもよい。
ここで、例えばイオン交換体32,34を構成する強酸性カチオン交換基を付与した不織布は、繊維径20〜50μm、空隙率が90%のポリオレフィン製の不織布に放射線を照射した後グラフト重合を行う、いわゆる放射線グラフト重合法により、グラフト鎖を導入し、次に、導入したグラフト鎖を、例えば加熱した硫酸で処理してスルホン酸基を導入して作製される。ここでグラフト率は、最大で500%が可能であり、グラフト重合後に導入されるイオン交換基は、最大で5meq/gが可能である。なお、イオン交換体32,34の素材形態としては、不織布の他に織布、シート、多孔質材、短繊維、ネット及びイオン交換膜等が挙げられる。
次に、この電解加工装置10によって、半導体ウエハ等の基板Wの表面に形成した銅膜等の電気化学的酸化作用による電解加工を行う時の操作について説明する。
まず、基板ホルダ12で基板Wをフェースアップで吸着保持し、超純水供給ノズル16から基板Wの表面に向けて超純水14を供給して加工チャンバ18を超純水14で満たし、加工チャンバ18の内部に溜まった超純水14の一部を排水口20から系外に排出しておく。次に、加工電極28及び給電電極30を基板Wの表面に近接させ、加工電極28及び給電電極30に取付けたイオン交換体32,34を基板Wの表面に接触させる。
この状態で、電極ホルダ22を駆動モータ24により加工電極28及び給電電極30と一体に回転させつつ、加工電極28を電源26の陰極に、給電電極30を電源26の陽極にそれぞれ接続する。これにより、固体電解質である強酸性カチオン交換基を付与した不織布等のイオン交換体32,34を介して、基板Wは、給電電極30による還元作用を受けながら、加工電極28による電気化学的な酸化反応により加工される。つまり、基板Wの給電電極30と対向している部位では、電気化学的還元作用により、表面に形成された不要な酸化皮膜が還元されて除去され、基板Wの加工電極28と対向している部位が電気化学的酸化作用により加工される。
基板Wの表面に形成される酸化皮膜は、電解加工の際の抵抗となり、このため、酸化皮膜の有無により加工状態が変わってくる。そして、基板W上に不均一に酸化皮膜が存在すると、加工状態が不均一になり、表面荒れやピット発生の原因となる。この例によれば、不要な酸化皮膜を除去しつつ加工することにより、ピットや表面荒れが少なく仕上がりのよい均一な加工を行うことができる。
電解加工終了後、電源26と加工電極28及び給電電極30との接続を切り、電極ホルダ22の回転を中止させ、加工電極28及び給電電極30を基板ホルダ12で保持した基板Wの上方から除去し、しかる後、基板ホルダ12上にある加工後の基板Wを次工程に搬送する。
この例では、基板Wと加工電極28及び給電電極30との間に、電気伝導度が0.1μS/cm以下の超純水を供給した例を示しているが、電気伝導度が10μS/cm以下の純水を使用してもよい。このように、電解質を含まない純水または超純水を使用して電解加工を行うことで、基板Wの表面に電解質等の余分な不純物が付着したり、残留したりすることをなくすことができる。更に、電解によって溶解したイオン等が、イオン交換体32,34にイオン交換反応で即座に捕捉されるため、溶解したイオン等が基板Wの他の部分に析出したり、酸化されて微粒子となり基板Wの表面を汚染したりすることがない。この超純水または純水の代わりに、純水または超純水に界面活性剤等を添加して、電気伝導度を500μS/cm以下、好ましくは50μS/cm以下、より好ましくは0.1μS/cm以下にした液体を使用しても、電解液を使用してもよい。
また、前述のように、加工電極28と給電電極30を、基板Wに対して重複する移動軌跡を描くように、つまり基板Wの表面上の加工電極28が移動した領域と基板Wの表面上の給電電極30が移動した領域が互いに一致し、しかも給電電極30が通過した基板Wの部位上を加工電極28が通過するようにすることで、給電電極30により還元領域と加工電極28による加工領域を一致させ、しかも、給電電極30の還元作用によって酸化皮膜の除去を行った直後に、加工電極28の酸化作用による加工を行うことができる。
なお、電極と基板の相対運動は、回転運動の他に、回転往復運動、偏心回転またはスクロール運動の少なくとも1つ、または任意の運動の組み合わせから適宜選択できる。
被加工部の範囲が広い場合は、加工電極28及び給電電極30の面積を大きくすることが好ましい。加工電極と給電電極の有効面積比を1:1とした時にピットや表面荒れが最小となる。給電電極に対して加工電極の有効面積を大きくすると、加工レートが速くなるが、還元作用が不十分となり、均一な表面が得られない。逆に、給電電極の加工電極に対する有効面積比を1:1より大きくしても、ピットや表面荒れの抑制に変化はなく、加工レートが低下してしまう。従って、給電電極の加工電極に対する有効面積比は、0.5〜5:1であることが好ましく、0.75〜1.25:1であることが更に好ましい。この有効面積比は、必要とする加工レートと要求される表面状態により適宜決めればよい。
図3は、本発明の第2の実施の形態の電解加工装置の概略図を示す。この例の電解加工装置も、前述の例と同様に、電気化学的酸化作用によって、半導体ウエハなどの基板の表面に成膜された銅膜等を加工除去するのに使用される。図1及び図2に示す例と異なる点は、以下の通りである。
すなわち、この例の電解加工装置10aは、電極ホルダ22の下面周縁部に、電源26の陽極に接続される給電電極36を取付け、電解加工を行う際に、この給電電極36の下面が基板ホルダ12で保持した基板Wの周縁部に接触乃至近接するようにしている。更に、加工チャンバ18の内部に、基板ホルダ12で保持した基板Wに向けて、基板Wの表面(被加工面)に対する還元作用及び/または酸化皮膜除去作用を施すための化学的添加剤38を供給する化学的添加剤供給ノズル40を配置している。この化学的添加剤供給ノズル40は、加工電極28と対面する加工部位の電極ホルダ22の下流側で基板Wの被加工面に化学的添加剤38を供給する位置に配置されている。これによって、化学的添加剤供給ノズル40から化学的添加剤38が供給された直後に、この化学的添加剤38が供給された部位の上方を加工電極28が通過するようになっている。その他の構成は、図1及び図2に示す例と同様である。
この電解加工装置10aにあっては、基板ホルダ12で基板Wをフェースアップで吸着保持し、超純水供給ノズル16から基板Wに向けて超純水を供給し、加工チャンバ18の内部に溜まった超純水の一部を排水口20から系外に排出しておく。この状態で、給電電極36を基板Wの表面に近接乃至接触させ、加工電極28に取付けたイオン交換体32を基板Wの表面に接触させる。この状態で電極ホルダ22を駆動モータ24により加工電極28及び給電電極36と一体に回転させつつ、電源26の陰極を加工電極28に、陽極を給電電極36にそれぞれ接続する。同時に、化学的添加剤供給ノズル40から化学的添加剤38を基板Wに向けて供給する。これにより、加工電極28の下方を通過して加工される直前の基板Wの一部に化学的添加剤38を接触させ、この化学的添加剤38との接触部位に位置する酸化皮膜を化学的添加剤38との化学反応により除去し、速やかに化学的添加剤38を基板の表面から除去しつつ、酸化皮膜を除去した表面の加工電極28の電気化学的酸化作用による電解加工を行う。
なお、加工チャンバ18内に超純水を保持しておき、この加工チャンバ18内の超純水中に基板ホルダ12に保持した基板Wを浸漬させ、この加工チャンバ18内の超純水に化学的添加剤を添加して電解加工を行うようにしてもよい。
電気化学的酸化作用により加工を行う場合、還元作用及び/または酸化皮膜除去をするための化学的添加剤は、例えば、リン酸、炭酸、硫酸、次亜リン酸、スルファミン酸、ギ酸、酢酸、乳酸、クエン酸、グリコール酸、リンゴ酸、シュウ酸、グルコン酸、チオグリコール酸及びアスコルビン酸等の酸、及び硫酸ナトリウム、亜硫酸ナトリウム、グルコース及びヒドロキノン等の還元剤より選択される少なくとも1種類であることが好ましい。活性水素を含んだ液体を用いることもできる。
例えば、銅のように電気化学的酸化作用により加工を行う場合、還元作用及び/または酸化皮膜を除去する化学的添加剤として、pHが高いものを使用すると、酸化物や水酸化物が生成され、加工面に生成物が析出して、光沢がなくなるばかりでなく、表面が荒れてしまう。また、pHが低いものを使用すると、析出物がなく綺麗な光沢面が得られるが、表面が荒れてしまうことがある。この場合の表面荒れは、加工対象が半導体基材のように高精度の仕上げが要求されるもので、SEMやレーザー顕微鏡の観察により見られるものである。従って、化学的添加剤のpHは、好ましくはpH2〜pH7で、更に好ましくはpH3〜pH5である。この化学的添加剤のpHは、被加工物の種類と加工対象の目的により適宜決めればよい。
この実施の形態の電解加工装置10aでは、次のような運転条件が理想的である。つまり、加工電極28に化学的添加剤供給ノズル40を一体化して備えるか、または加工電極28の運動に追従するように化学的添加剤供給ノズル40を配置して、加工電極28が基板Wの表面の被加工部位を通過する直前に化学的添加剤38を加工面に供給する。そして、速やかに、化学的添加剤38の供給を止め、超純水供給ノズル16から加工電極28と被加工部位との間に超純水14を供給して電解加工を行う。
更に、電源26として、ON、OFFのパルス電源を用い、化学的添加剤を供給し該化学的添加剤に接触させて、被加工面に還元作用及び/または酸化被膜除去作用を施す時は電源26をOFFとし、加工電極28と被加工部位との間に超純水14を供給して電解加工を行う時は電源26をONとする運転パターンとすることが好ましい。このようにすれば、化学的添加剤を含む超純水中で加工を行う場合に比べ、化学的添加剤を接触させつつ通電することによる荒れや汚染も少なく、加工後の洗浄も容易となる。
図4は、本発明の第3の実施の形態の電解加工装置の概略図を示す。この電解加工装置は、電気化学的還元作用によって、半導体ウエハやガラス基板等の基板の表面に成膜されたSiやAl及びそれらの酸化物や透明導電性膜(SnO,In,ITO等)を加工除去するのに使用される。図3に示す例と異なる点は、以下の通りである。
つまり、図3に示す例において、加工電極28は電源26の陰極に、給電電極36は電源26の陽極にそれぞれ接続されるが、この例の電解加工装置10bでは、加工電極28は電源26の陽極に、給電電極36は電源26の陰極にそれぞれ接続される。更に、化学的添加剤供給ノズル40から、基板Wの表面(被加工面)に対する酸化作用及び/または還元による生成物除去作用を施すための化学的添加剤42が基板Wの表面に供給される。
この例の電解加工装置10bは、加工電極28を電源26の陽極に、給電電極36を電源26の陰極にそれぞれ接続し、例えば基板Wの表面に形成された酸化錫膜(SnO)を陰極として、陽極とした加工電極28で酸化錫膜(SnO)等を加工する。この時、酸化作用及/または還元による生成物除去作用を施すための化学的添加剤42を基板Wの表面に供給する。その他は、前述の図3に示す例と同様である。
この例によれば、加工電極28が基板W上を通過し加工する直前に、化学的添加剤供給ノズル40により化学的添加剤42を供給し加工電極28が通過する部位に接触させることで、接触部位の表面の還元析出物や生成物を化学的添加剤42との化学反応により除去し、速やかに化学的添加剤42を基板の表面から除去しつつ、還元析出物や生成物を除去した表面の加工電極28の電気化学的還元作用による電解加工を行うことができる。
電気化学的還元作用により加工を行う場合、酸化作用及び/または還元析出物除去のための化学的添加剤42は、リン酸、硝酸、硫酸、酢酸、シュウ酸、クロム酸 等の酸から選択される少なくとも1種類であることが好ましい。活性酸素を含んだ液体を用いるようにしてもよい。この化学的添加剤は、被加工物の種類、電解の電流、電圧条件により適宜決めればよい。
図5は、本発明の第4の実施の形態の電解加工装置の概要を示す。この例の電解加工装置は、電気化学的酸化作用によって、半導体ウエハなどの基板の表面に成膜された銅膜等を加工除去するのに使用される。
図5に示すように、この電解加工装置10cは、表面を下向き(フェースダウン)にして吸着保持する上下動自在な基板ホルダ50と、基板ホルダ50を回転駆動する駆動モータ52と、基板ホルダ50の下方に配置された矩形状の電極ホルダ54を有している。電極ホルダ54の表面(上面)には、電源56の陰極に接続されて陰極となる加工電極58と、電源56の陽極に接続されて加工電極58と対極の陽極となる給電電極60が、基板ホルダ50で保持した基板Wの直径方向に沿って延びるように、所定間隔離間して直線状に配置されている。
この電極ホルダ54は、ばね等からなるフローティング機構62を介して、排水口64を有する加工チャンバ66内にフローティング支持されている。これによって、基板ホルダ50で保持した基板Wを加工電極58及び給電電極60に向けて押圧した時、基板Wに一定の押圧力が作用するようになっている。加工チャンバ66の内部には、基板ホルダ50で保持した基板Wの表面(被加工面)に向けて、この例では液体としての超純水を供給する超純水供給ノズル68が配置され、加工チャンバ66は、加工後に超純水が飛散しないように超純水を保持するようになっている。
加工電極58及び給電電極60の表面(上面)には、例えば、不織布状のイオン交換体とフィルム状のイオン交換体とを積層した積層イオン交換体からなるイオン交換体70,72が取付けられている。更に、図示の例では、加工電極58及び給電電極60の両側方に、電源56の陽極に接続される一対の矩形状の給電電極74を配置して、給電電極60,74の基板Wと対面する総面積が加工電極58の基板Wと対面する面積の50倍となるようにした状態を示している。この各給電電極74の表面(上面)にも、前述と同様な構成のイオン交換体76が取付けられている。
なお、一対の給電電極74の一方を除去すると、給電電極60,74の基板Wと対面する総面積が加工電極58の基板Wと対面する面積の25倍となり、双方を除去すると、給電電極60の基板Wと対面する面積が加工電極58の基板Wと対面する面積の1倍となるように構成されている。
この例では、前述の各例とほぼ同様に、まず、基板ホルダ50で基板Wをフェースダウンで吸着保持する。一方、超純水供給ノズル68から加工チャンバ66内に超純水を供給して加工チャンバ66内を超純水14で満たし、加工チャンバ66の内部に溜まった超純水の一部を排水口64から系外に排出しておく。次に、基板ホルダ50を下降させ、基板ホルダ50で保持した基板Wの表面(下面)に加工電極58及び給電電極60,74に取付けたイオン交換体70,72,76を、フローティング機構62を介して一定の圧力で接触させる。
この状態で、基板ホルダ50を駆動モータ52により基板Wと一体に回転させつつ、電源56の陰極を加工電極58に、陽極を給電電極60,74にそれぞれ接続する。これにより、固体電解質である強酸性カチオン交換基を付与した不織布等のイオン交換体70,72,76を介して、基板Wは、給電電極60,74による還元作用を受けながら、加工電極58による電気化学的な酸化反応により加工される。
この時、図示のように、加工電極58及び給電電極60の両側方に一対の給電電極74を配置した場合は、給電電極60,74の基板Wと対面する総面積が加工電極58の基板Wと対面する面積の50倍となる。一対の給電電極74の一方を除去すると、給電電極60,74の基板Wと対面する総面積が加工電極58の基板Wと対面する面積の25倍となり、一対の給電電極74の双方を除去すると、給電電極60の基板Wと対面する面積が加工電極58の基板Wと対面する面積の1倍となる。
図6は、本発明の第5の実施の形態の電解加工装置の概要を、図7は、図6に示す電解加工装置の電極ホルダの断面図をそれぞれ示す。この電解加工装置は、電気化学的還元作用によって、例えば半導体ウエハやガラス基板等の矩形状の基板表面に、所定のピッチで直線状に並列的に成膜されたSiやAl及びそれらの酸化物や透明導電性膜(SnO,In,ITO等)を加工除去するのに使用される。
図6に示すように、この電解加工装置10dは、表面を下向き(フェースダウン)にして基板Wを着脱自在に吸着保持する上下動自在な基板ホルダ80と、基板ホルダ80の下方に配置された矩形状の電極ホルダ82を有している。この例では、基板ホルダ80として、矩形状の基板Wを保持するのに適した矩形状のものを使用している。電極ホルダ82の表面(上面)には、電源84の陽極に接続されて陽極となる加工電極86と、電源84の陰極に接続される給電電極88とを、絶縁体90を介して互いに絶縁して交互に直列に配列したライン電極92が、例えば基板Wの表面に成膜されたラインパターン形状に合わせて、複数列(図示では5列)に亘って平行に配置されている。
電極ホルダ82は、図示しない水平運動機構によって、前述のライン電極92の長手方向に沿って往復直線運動にするように構成され、排水口94を有する加工チャンバ96の内部に配置されている。加工チャンバ96には、基板ホルダ80で保持した基板Wとライン電極92との間に、液体としての超純水を供給する超純水供給ノズル98が配置され、加工チャンバ96は、加工後に超純水が飛散しないように超純水を保持するようになっている。
加工電極86及び給電電極88の露出表面(上面)は、イオン交換体100,102で覆われており、このイオン交換体100,102は、ライン電極92の両側に配置した固定部材104を介して固定されている。
この例では、前述の各例とほぼ同様に、まず、基板ホルダ80で基板Wをフェースダウンで吸着保持する。一方、超純水供給ノズル98から加工チャンバ96内に超純水を供給して加工チャンバ96内を超純水で満たし、加工チャンバ96の内部に溜まった超純水の一部を排水口94から系外に排出しておく。次に、基板ホルダ80を下降させ、基板ホルダ80で保持した基板Wの表面(下面)に加工電極86及び給電電極88に取付けたイオン交換体100,102を接触させる。
この状態で、電極ホルダ82を加工電極86及び給電電極88と一体に往復直線運動させつつ、電源84の陽極を加工電極86に、陰極を給電電極88にそれぞれ接続する。これにより、イオン交換体100,102を介して、基板Wは、給電電極88による酸化作用を受けながら、加工電極86による電気化学的な還元反応により加工される。
以下、本発明の実施例を説明するが、本発明はこれに限定されるものではないことは勿論である。
図1及び図2に示す電解加工装置10により基板Wの表面に成膜した銅膜の除去加工を行った。ここで、加工電極28及び給電電極30の表面を覆うイオン交換体32,34として、ポリエチレン不織布からなる基材にグラフト重合によりスルホン酸基のイオン交換基を付けた不織布状のイオン交換体と、ナフィオン117(デュポン社製、以下同じ)からなるフィルム状のイオン交換体を積層したものを使用した。また、基板Wの表面に供給する液体(電解液)として、比抵抗が18MΩ・cmの超純水を使用した。そして、電極ホルダ22を駆動モータ24により500rpmで回転させながら、加工電極28及び給電電極30を電源26に接続し、定電流0.3Aで90秒間、銅膜の電解加工を行った。
ここで、給電電極30側のイオン交換体34と接する部位における還元効果を確認するために、図8(a)に示すように加工電極28と給電電極30を平行にかつ中心位置をずらして電極ホルダ22に配置し、加工電極28に比べ給電電極30側のイオン交換体34が通過する部位が大きくなるようにして、給電電極30に通電した電解加工と、通電せずに膜の接触のみの加工を行った。
また、図8(b)に示すように、加工電極28と給電電極30を平行にかつ中心位置をずらして電極ホルダ22に配置し、給電電極30に比べ加工電極28の通過する部位が大きくなるようにして、同様の加工を行った。
図9は、図8(a)に示す電極配置で、給電電極側のイオン交換体と接する部位における還元効果を確認するために行った銅の表面酸化状態を示すXPSスペクトルである。図9から、給電電極に通電することなく加工を行った場合と、給電電極に通電して電解加工を行った場合とを比較すると、給電電極に通電した場合、CuOのサテライトピークがなくなりCuまたはCuOに還元されていることが明らかである。この図9より、給電電極側に還元効果があることが判る。
図10(a)は、図8(b)に示す電極配置で銅の電解加工を行った時の加工電極のみが通過した部分(加工面)の表面状態を示すレーザー顕微鏡画像で、図10(b)は、図2に示す電極配置で銅の電解加工を行った時の、給電電極と加工電極との移動軌跡を重複させて加工した部分(加工面)の表面状態のレーザー顕微鏡画像である。図10(a)と図10(b)とを比べると、加工電極と給電電極の軌跡を重複させて電解加工を行った場合は、加工状態が均一でピットの少ない加工表面が得られることが判る。
図5に示す電解加工装置10cで、電極ホルダ54の表面(上面)に、加工電極58及び給電電極60のみを3mmの間隔を空けて直列に配置して、つまり一対の給電電極74を備えることなく、基板の表面に成膜した銅膜の除去加工を行った。ここで、加工電極28及び給電電極30を覆うイオン交換体32,34として、前述と同様に、ポリエチレン不織布からなる基材にグラフト重合によりスルホン酸基のイオン交換基を付けたイオン交換体と、ナフィオン117からなるフィルム状のイオン交換体とを積層したものを使用した。また、基板Wの表面に供給する液体(電解液)として、比抵抗が18MΩ・cmの超純水を使用した。そして、基板ホルダ50を駆動モータ52により200rpmで回転させ、加工電極58及び給電電極60を電源56に接続し、定電流0.36Aで180秒間、銅膜の電解加工を行った。
なお、給電電極の面積を増やした場合と比較するため、図5に示す一対の給電電極74の一方を備えて、給電電極60、74の基板Wと対面する面積が加工電極58の基板Wと対面する面積の25倍とした時と、一対の給電電極74の双方を備えて、給電電極60、74の基板Wと対面する面積が加工電極58の基板Wと対面する面積の50倍とした時で、同様な電解加工を行った。
図11(a)、(b)、(c)に、給電電極の基板Wと対面する面積を加工電極の基板Wと対面する面積の1倍、25倍、50倍としてそれぞれ電解加工を行った時の表面状態のレーザー顕微鏡画像を示す。また、図12に給電電極の基板Wと対面する面積を加工電極の基板Wと対面する面積の1倍として電解加工を行った場合と、50倍として電解加工を行った場合の加工プロファイルを比較して示す。図11より、加工後の表面状態については、いずれもピットや表面荒れが見られないが、図12より、給電電極の基板Wと対面する面積を大きくすると、加工レートが低下することが判る。
図3に示す電解加工装置10aにより基板の表面に成膜した銅膜の除去加工を行った。ここで、加工電極28の表面を覆うイオン交換体32として、前述と同様に、ポリエチレン不織布からなる基材にグラフト重合によりスルホン酸基のイオン交換基を付けたイオン交換体と、ナフィオン117からなるフィルム状のイオン交換体とを積層したものを使用した。また、基板Wの表面に供給する液体(電解液)として、比抵抗が18MΩ・cmの超純水を、化学的添加剤38として、リン酸及びアスコルビン酸をそれぞれ使用した。そして、加工チャンバ18内に、超純水にこの化学的添加剤を加えた液体を保持し、この液体中に基板ホルダ12に保持した基板Wを浸漬させ、電極ホルダ22を駆動モータ24により100rpmで回転させ、加工電極28及び給電電極30を電源26に接続し、定電流0.2Aで60秒間、銅膜の電解加工を行った。
表1は、化学的添加剤の酸化皮膜除去効果を確認するために、超純水にリン酸を加え、pHをpH5.4,pH3.5及びpH2.2とした液体、及び超純水にアスコルビン酸を加えpHをpH2.2とした液体に、酸化した銅膜の基板を60秒間浸漬させて処理した時の基板の表面状態を示す。
Figure 2005288580
この表1は、目視による光沢の変化とXPSによるCuOからCuもしくはCuOへの還元及び/または酸化皮膜除去効果についてまとめたものである。
この表1から、pHが高い場合は光沢面が得られず、XPSで評価した酸化皮膜除去または還元効果も小さいが、pHが低いと光沢面が得られ効果的であることが判る。
図13(a)、(b)、(c)は、上述した条件で、液体として、超純水のみ、超純水にリン酸を加えてpHを5.4及びpHを2.2とした液体をそれぞれ使用し電解加工を行った場合の表面状態のレーザー顕微鏡画像を示す。図13(a)及び(b)に示す超純水のみを使用して電解加工を行った場合と、pHを5.4とした液体を使用して電解加工を行った場合は、表面の荒れが大きく、大きなピットが見られる。図示していないが、超純水にアスコルビン酸を加えてpH2.2とした液体を使用した場合は、超純水のみや、pH5.4の場合に比べると均一な表面が得られるものの、やや荒れた表面となってしまったが、図13(c)に示す超純水に化学的添加剤としてリン酸を加えてpHを2.2とした液体を使用して電解加工を行った場合は、ピットが減少し、表面の荒れが最も小さくなる。
図3に示す電解加工装置10aにより基板の表面に成膜した銅膜の除去加工を行った。ここで、加工電極28の表面を覆うイオン交換体32として、前述と同様に、ポリエチレン不織布からなる基材にグラフト重合によりスルホン酸基のイオン交換基を付けたイオン交換体と、ナフィオン117からなるフィルム状のイオン交換体とを積層したものを使用した。また、基板Wの表面に供給する液体(電解液)として、比抵抗が18MΩ・cmの超純水を、化学的添加剤38として、pH3のリン酸を用いた。
そして、化学的添加剤供給ノズル40を加工電極28の運動に追従させ、加工電極28が被加工部位を通過する直前に化学的添加剤38を加工面に供給し、超純水供給ノズル16から加工電極28と被加工部位との間に超純水を供給した。この時、加工電極28及び給電電極30を、パルス波形を出力するように設定した電源26に接続し、1Hzの周期でONとOFFを繰り返し、電源OFFのとき化学的添加剤38を加工面に供給して接触させるようにした。そして、電極ホルダ22を駆動モータ24により50rpmで回転させ、定電流0.2Aで120秒間、銅膜の電解加工を行った。この結果、化学的添加剤を加えることなく電解加工を行った場合に比べ、ピット及び表面荒れの少ない表面が得られた。
図6及び図7に示す電解加工装置10dにより、シリカコートされたガラス基板上に5mm間隔でライン状に成膜した酸化錫膜の電解加工を行った。ここで、加工電極86及び給電電極88を覆うイオン交換体100,102として、ポリエチレン不織布からなる基材にグラフト重合により第4級アンモニウム基のイオン交換基を付けたものを積層して用いた。供給する液体(電解液)として、比抵抗が18MΩ・cmの超純水を使用した。
そして、超純水供給ノズル98から超純水を供給して加工チャンバ96を超純水で満たし、加工チャンバ96の内部に溜まった超純水の一部を排水口94から系外に排出しておきながら、基板ホルダ80を下降させ、基板ホルダ80で保持した基板Wを、イオン交換体100,102と接触させ、加工電極86及び給電電極88を電源84に接続し、電極ホルダ82を50mm/sで往復直線運動させ、定電流0.36Aで2分間、酸化錫膜の電解加工を行った。
また、比較として電源84の陰極端子と基板Wの酸化錫のパターンに直接接続し、加工電極86を電源84の陽極端子に接続した場合について同様の加工を行った。加工後における酸化錫膜の残膜の表面粗さ(算術平均粗さRa)を測定したところ、加工前は0.01μm、酸化錫に直接給電し酸化作用を施すことなく電解加工を行った場合は0.05μm、酸化作用を施して電解加工を行った場合は0.03μmであった。酸化作用を施して電解加工を行うことで、加工前の表面粗さは得られなかったが、酸化作用を施すことなく電解加工を行う場合に比べ、均一な加工面が得られた。
本発明の第1の実施の形態の電解加工装置を模式的に示す斜視図である。 図1に示す電解加工装置の電極ホルダの裏面図である。 本発明の第2の実施の形態の電解加工装置を模式的に示す斜視図である。 本発明の第3の実施の形態の電解加工装置を模式的に示す斜視図である。 本発明の第4の実施の形態の電解加工装置を模式的に示す斜視図である。 本発明の第5の実施の形態の電解加工装置を模式的に示す斜視図である。 図6に示す電解加工装置の電極ホルダの断面図である。 図1に示す電解加工装置における電極ホルダのそれぞれ異なる電極の配置状態を示す底面図である。 実施例1において、図8(a)に示す電極配置で、給電電極側のイオン交換体と接する部位における還元効果を確認するために行った銅の表面酸化状態を示すXPSナロースペクトルである。 (a)は、実施例1において、図8(b)に示す電極配置で銅の電解加工を行った時の加工電極のみが通過した部分(加工面)の表面状態のレーザー顕微鏡画像で、(b)は、実施例1において、図2に示す電極配置で銅の電解加工を行った時の給電電極と加工電極との移動軌跡を重複させて加工した部分(加工面)の表面状態のレーザー顕微鏡画像である。 (a)は、実施例2において、給電電極の基板と対面する面積を加工電極の基板と対面する面積の1倍として電解加工を行った時の表面状態のレーザー顕微鏡画像で、(b)は、実施例2において、給電電極の基板と対面する面積を加工電極の基板と対面する面積の25倍として電解加工を行った時の表面状態のレーザー顕微鏡画像で、(c)は、実施例2において、給電電極の基板と対面する面積を加工電極の基板と対面する面積の50倍として電解加工を行った時の表面状態のレーザー顕微鏡画像である。 実施例2において、給電電極の面積を加工電極の1倍として電解加工を行った場合と、50倍として電解加工を行った場合の加工プロファイルの比較して示す図である。 (a)は、実施例3において、液体として、超純水のみを使用し電解加工を行った場合の表面状態のレーザー顕微鏡画像で、(b)は、実施例3において、液体として、超純水にリン酸を加えてpHを5.4とした液体を使用し電解加工を行った場合の表面状態のレーザー顕微鏡画像で、(c)は、実施例3において、液体として、超純水にリン酸を加えてpHを2.2とした液体を使用し電解加工を行った場合の表面状態のレーザー顕微鏡画像である。
符号の説明
10,10a,10b,10c,10d 電解加工装置
12,50,80 基板ホルダ
14 超純水
16,68,98 超純水供給ノズル
18,66,96 加工チャンバ
22,54,82 電極ホルダ
26,56,84 電源
28,58,86 加工電極
30,36,60,74,88 給電電極
32,34,70,72,76,100,102 イオン交換体
38,42 化学的添加剤
40 化学的添加剤供給ノズル
62 フローティング機構
90 絶縁体
92 ライン電極

Claims (14)

  1. 陰極とした加工電極と、被加工面に対して還元作用及び/または酸化皮膜除去作用を施した被加工物とを液体の存在下で互いに近接させつつ相対運動させて、還元及び/または酸化皮膜を除去した被加工面を前記加工電極の電気化学的酸化作用で電解加工することを特徴とする電解加工方法。
  2. 被加工面に化学的添加剤を接触させて該被加工面に対する還元作用及び/または酸化皮膜除去作用を施すことを特徴とする請求項1記載の電解加工方法。
  3. 前記化学的添加剤は、酸及び/または還元剤を含み、pHがpH2〜pH7の範囲にあることを特徴とする請求項2記載の電解加工方法。
  4. 陽極とした加工電極と、被加工面に対して酸化作用及び/または還元による生成物除去作用を施した被加工物とを液体の存在下で互いに近接させつつ相対運動させて、酸化及び/または還元による生成物を除去した被加工面を前記加工電極の電気化学的還元作用で電解加工することを特徴とする電解加工方法。
  5. 被加工面に化学的添加剤を接触させて該加工面に対する酸化作用及び/または還元による生成物除去作用を施すことを特徴とする請求項4記載の電解加工方法。
  6. 前記加工電極と対極となる給電電極を被加工面に近接させつつ、前記加工電極と少なくとも被加工面上で重複する移動軌跡を描くように、被加工面に対して相対運動させることを特徴とする請求項1または4記載の電解加工方法。
  7. 前記給電電極の前記加工電極に対する有効面積比を0.5〜5:1にすることを特徴とする請求項6記載の電解加工方法。
  8. 被加工物に近接して配置され、陰極となる加工電極と、
    前記被加工物と前記加工電極とを相対運動させる駆動部と、
    前記加工電極と前記被加工物との間に電圧を印加する電源と、
    前記加工電極と前記被加工物との間に液体を供給する液体供給部と、
    被加工物の被加工面に対し還元作用及び/または酸化皮膜除去作用を施す手段を有することを特徴とする電解加工装置。
  9. 前記還元作用及び/または酸化皮膜除去作用を施す手段は、被加工面に化学的添加剤を供給する化学的添加剤供給部からなることを特徴とする請求項8記載の電解加工装置。
  10. 前記化学的添加剤は、酸及び/または還元剤を含み、pHがpH2〜pH7の範囲にあることを特徴とする請求項9記載の電解加工装置。
  11. 被加工物に近接して配置され、陽極となる加工電極と、
    前記被加工物と前記加工電極とを相対運動させる駆動部と、
    前記加工電極と前記被加工物との間に電圧を印加する電源と、
    前記加工電極と前記被加工物との間に液体を供給する液体供給部と、
    被加工物の被加工面に対し酸化作用及び/または還元による生成物除去作用を施す手段を有することを特徴とする電解加工装置。
  12. 前記酸化作用及び/または還元による生成物除去作用を施す手段は、被加工面に化学的添加剤を供給する化学的添加剤供給部からなることを特徴とする請求項11記載の電解加工装置。
  13. 被加工物に近接して配置される加工電極及び該加工電極の対極となる給電電極と、
    前記加工電極及び前記給電電極を少なくとも被加工面上で重複する移動軌跡を描くように相対運動させる駆動部と、
    前記加工電極と前記給電電極との間に電圧を印加する電源と、
    前記加工電極及び前記給電電極と前記被加工物との間に液体を供給する液体供給部を有することを特徴とする電解加工装置。
  14. 前記給電電極の前記加工電極に対する有効面積比を、0.5〜5:1としたことを特徴とする請求項13記載の電解加工装置。
JP2004104531A 2004-03-31 2004-03-31 電解加工方法及び装置 Withdrawn JP2005288580A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004104531A JP2005288580A (ja) 2004-03-31 2004-03-31 電解加工方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004104531A JP2005288580A (ja) 2004-03-31 2004-03-31 電解加工方法及び装置

Publications (1)

Publication Number Publication Date
JP2005288580A true JP2005288580A (ja) 2005-10-20

Family

ID=35322114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004104531A Withdrawn JP2005288580A (ja) 2004-03-31 2004-03-31 電解加工方法及び装置

Country Status (1)

Country Link
JP (1) JP2005288580A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131949A (ja) * 2007-11-30 2009-06-18 Samsung Electro-Mechanics Co Ltd 金属製品の電解加工用電解液
JP2010538851A (ja) * 2007-09-14 2010-12-16 イクストルード ホーン ゲーエムベーハー 電気化学処理用のデバイスおよび方法
JPWO2013084934A1 (ja) * 2011-12-06 2015-04-27 国立大学法人大阪大学 固体酸化物の加工方法及びその装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538851A (ja) * 2007-09-14 2010-12-16 イクストルード ホーン ゲーエムベーハー 電気化学処理用のデバイスおよび方法
JP2009131949A (ja) * 2007-11-30 2009-06-18 Samsung Electro-Mechanics Co Ltd 金属製品の電解加工用電解液
JPWO2013084934A1 (ja) * 2011-12-06 2015-04-27 国立大学法人大阪大学 固体酸化物の加工方法及びその装置

Similar Documents

Publication Publication Date Title
KR100804136B1 (ko) 전기화학적 가공 방법 및 장치
US7655118B2 (en) Electrolytic processing apparatus and method
KR100849202B1 (ko) 전해처리장치 및 기판처리장치
KR20050004156A (ko) 기판처리장치 및 기판처리방법
US20060144711A1 (en) Electrochemical machining device and electrochemical machining method
JP2006502310A (ja) 電解加工装置
JP2005288580A (ja) 電解加工方法及び装置
JP2003205428A (ja) 電解加工装置及び方法
JP2008524434A (ja) 平坦化方法及び平坦化装置
JP2008160134A (ja) 基板処理方法
US20040256237A1 (en) Electrolytic processing apparatus and method
WO2005006425A1 (en) Electrolytic processing apparatus and electrolytic processing method
JP4310085B2 (ja) 電解加工方法及び装置
JP3995463B2 (ja) 電解加工方法
JP2004216542A (ja) 電解加工装置及び電解加工方法
US7563356B2 (en) Composite processing apparatus and method
JP4233331B2 (ja) 電解加工方法及び装置
JP3960803B2 (ja) 電解加工方法及び装置
JP4127361B2 (ja) 電解加工装置
JP2004255479A (ja) 電解加工方法及び電解加工装置
JP4274714B2 (ja) 加工装置及び加工方法
JP2006128576A (ja) 電解加工装置及び電解加工方法
JP2004084054A (ja) 電解加工方法及び装置
JP2005199401A (ja) 電解加工装置及び方法
JP2005264304A (ja) 電解加工装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090807