WO2015137397A1 - ワイドバンドギャップ半導体基板の加工方法及びその装置 - Google Patents

ワイドバンドギャップ半導体基板の加工方法及びその装置 Download PDF

Info

Publication number
WO2015137397A1
WO2015137397A1 PCT/JP2015/057156 JP2015057156W WO2015137397A1 WO 2015137397 A1 WO2015137397 A1 WO 2015137397A1 JP 2015057156 W JP2015057156 W JP 2015057156W WO 2015137397 A1 WO2015137397 A1 WO 2015137397A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
workpiece
water
hydrolysis
reference surface
Prior art date
Application number
PCT/JP2015/057156
Other languages
English (en)
French (fr)
Inventor
和人 山内
藍 礒橋
泰久 佐野
Original Assignee
国立大学法人大阪大学
東邦エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 東邦エンジニアリング株式会社 filed Critical 国立大学法人大阪大学
Priority to EP15762449.5A priority Critical patent/EP3142142B1/en
Priority to US15/125,308 priority patent/US10163645B2/en
Publication of WO2015137397A1 publication Critical patent/WO2015137397A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02019Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0475Changing the shape of the semiconductor body, e.g. forming recesses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/67086Apparatus for fluid treatment for etching for wet etching with the semiconductor substrates being dipped in baths or vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Definitions

  • the present invention relates to a processing method and apparatus for a wide band gap semiconductor substrate, and more particularly, a processing method and apparatus for processing a wide band gap semiconductor substrate such as SiC or GaN with reduced environmental load. It is about.
  • CMP increases the mechanical polishing (surface removal) effect due to the relative movement of the polishing agent and the object to be polished by the surface chemical action of the polishing agent (abrasive grains) itself or the action of chemical components contained in the polishing liquid.
  • This is a technique for obtaining a smooth polished surface.
  • an object to be polished is held by a member called a carrier, pressed against a flat plate (lap) with a polishing cloth or polishing pad, and a slurry containing various chemical components and hard fine abrasive grains is allowed to flow together. Polishing is performed by making the relative movement.
  • the processing speed can be improved as compared with the case of polishing with a single abrasive.
  • the fine scratches on the surface remaining when polishing with a single abrasive and the work-affected layer remaining in the vicinity of the surface are extremely reduced, and an ideal smooth surface can be obtained.
  • fine particles of cerium oxide mainly containing colloidal silica (SiO 2 ), cerium oxide (CeO 2 ), or lanthanum are used as polishing agents for CMP according to the material of the workpiece.
  • the polishing rate (processing rate) of the SiC substrate by conventional CMP is said to be 20 to 60 nm / h.
  • hard diamond abrasive grains are used, the surface remains damaged.
  • Patent Document 1 the present inventor arranges a workpiece in a treatment solution in which a molecule containing a halogen that is not normally soluble in the workpiece is dissolved, and forms a platinum, gold or ceramic solid catalyst.
  • a catalyst composed of the material is placed in contact with or in close proximity to the processing surface of the workpiece, and the halogen compound generated by the chemical reaction between the halogen radicals generated on the surface of the catalyst and the surface atoms of the workpiece is eluted.
  • the processing method based on the catalyst reference surface is an ultra-precision flattening technique named CARE by the present inventor.
  • CARE is a processing technique that does not use abrasives or abrasive grains at all, and is an ideal processing method that does not introduce scratches or work-affected layers at all on the surface to be processed, but a processing solution in which molecules containing halogen are dissolved.
  • a hydrogen fluoride solution is used, airtightness of the processing space and processing equipment for exhaust gas and waste liquid are required, so that there are problems that handling and apparatus costs are higher than CMP.
  • CARE was originally developed for the purpose of processing difficult-to-work materials such as SiC with high efficiency and high accuracy without introducing a work-affected layer.
  • Patent Document 2 uses only ultrapure water except for a small amount of inevitable impurities, and uses an ion reaction function or a catalytic function on a solid surface having a catalytic function disposed in the ultrapure water.
  • the workpiece is immersed in ultrapure water having an increased concentration of hydroxyl groups or hydroxyl ions, the workpiece is used as an anode, or the workpiece is maintained at a high potential.
  • a processing method is disclosed in which hydroxyl ions are attracted to the surface of the substrate and the workpiece is removed or oxidized by a chemical elution reaction or oxidation reaction with hydroxyl groups or hydroxyl ions.
  • the processing method described in Patent Document 2 is basically electrolytic processing in which a high voltage is applied, and a hydroxyl group increasing treatment for increasing the concentration of hydroxyl groups or hydroxyl ions in water is an important requirement.
  • a hydroxyl group increasing treatment a solid surface having an ion exchange function or a catalytic function is used, but there is a problem that the solid surface is damaged by contact with the workpiece and adheres to the workpiece surface. Therefore, basically, the solid surface having an ion exchange function or a catalytic function and the workpiece are in a non-contact state, and the processing proceeds by supplying the hydroxyl group or hydroxyl ions generated on the solid surface to the workpiece surface.
  • this processing method has not been put into practical use because there is no processing reference surface, a highly accurate surface cannot be obtained, and the processing speed is low.
  • Patent Document 3 a solid oxide film in which one or more elements are bonded via oxygen, or a multi-component solid oxide film composed of a plurality of oxide films is used as a workpiece, and A processing method for flattening the surface or processing an arbitrary curved surface, where water molecules are dissociated and the oxygen element and other elements constituting the solid oxide film are cut off and adsorbed and decomposed by hydrolysis.
  • a catalytic substance that helps the generation of as a processing reference surface in the presence of water, the workpiece and the processing reference surface are placed in close contact or in close proximity, and the potential of the processing reference surface includes the natural potential.
  • a solid oxide film processing method characterized in that H 2 and O 2 are not generated, and the decomposition product is removed from the workpiece surface by relatively moving the workpiece and a processing reference surface. It is disclosed.
  • Patent Document 3 does not use any rare earth, abrasives or abrasive grains, and it is difficult to handle hydrogen fluoride or the like, does not use any solution with a large environmental load, and uses only water.
  • CARE Water-CARE
  • JP 2006-114632 A JP-A-10-58236 International Publication No. 2013/084934
  • the present inventors oxidize the surface of a wide band gap semiconductor such as SiC or GaN, and remove the oxide film using Water-CARE described in Patent Document 3. Based on the idea that flattening (polishing) or arbitrary curved surface processing can be performed at a processing speed capable of industrially utilizing SiC, GaN, etc., a processing method capable of obtaining a surface with a higher quality than a CMP finished surface As a result, the present invention has been achieved.
  • the present invention intends to solve a solution that does not use rare earths, does not use any abrasive or abrasive grains, is difficult to handle hydrogen fluoride, and has a large environmental load.
  • a wide band gap semiconductor substrate processing method that can process wide band gap semiconductors such as SiC and GaN at various processing speeds without using them, and has a higher quality surface than the CMP finish surface, and has good compatibility with clean rooms And a device for the same.
  • the present invention uses a single crystal of SiC, GaN, AlGaN, or AlN as a workpiece, and planarizes or arbitrarily curves the surface of the workpiece without using abrasive grains or an abrasive.
  • a catalytic material having a function of promoting the direct hydrolysis of the workpiece or the hydrolysis of the oxide film on the workpiece surface is used as the processing reference surface. Then, the workpiece and the machining reference surface are brought into contact with or in close proximity with a predetermined pressure, and the workpiece and the machining reference surface are moved relative to each other, and the workpiece surface is provided by a catalytic function provided on the machining reference surface.
  • a wide band gap characterized in that direct hydrolysis of the surface of the workpiece or oxidation of the surface of the workpiece and hydrolysis of the oxide film proceed preferentially from the surface convex portion close to the processing reference surface to remove the decomposition products. Processing of semiconductor substrates You configure.
  • the present invention is a processing apparatus that uses a single crystal of SiC, GaN, AlGaN, or AlN as a workpiece, and planarizes or processes the surface of the workpiece into an arbitrary curved surface without using abrasive grains or an abrasive.
  • the catalytic function provided on the processing reference surface preferentially proceeds from the surface convex portion close to the processing reference surface to the direct hydrolysis of the workpiece surface or oxidation of the workpiece surface and the hydrolysis of the oxide film.
  • a wide band gap semiconductor substrate processing apparatus characterized by removing decomposition products.
  • the processing reference surface has a conductive catalyst material at least on the surface, and includes a potential control means for controlling the processing speed by changing the potential of the catalyst material, and the processing reference surface Is more preferably set within a range of ⁇ 1 V with respect to the oxygen generation potential to create a state in which oxygen is adsorbed on the catalyst surface to promote oxidation of the workpiece surface.
  • a catalytic material surface containing a metal element and having an electron d-orbital of the metal element in the vicinity of the Fermi level is a transition metal element.
  • the water may be pure water or ultrapure water mixed with at least one of a pH adjusting solution, a buffer solution, and a complex solution that helps dissolution of decomposition products.
  • the processing reference surface is formed by forming the entire surface or part of the hard surface with the catalyst material, or forming the catalyst material on the entire surface or portion, or the entire surface or portion of the soft surface. It is a concept that includes a catalyst material formed on the entire surface or a part of the catalyst material, or a catalyst material that is kneaded or supported on the base material and the catalyst material appears on at least a part of the surface. . Further, the processing reference surface may be provided with grooves in a radial pattern, a concentric pattern, a spiral pattern, or other patterns.
  • the processing method of the wide band gap semiconductor substrate of the present invention as described above is a method in which a single crystal of SiC, GaN, AlGaN, and AlN is used as a workpiece, and the surface of the workpiece is flattened without using abrasive grains or an abrasive.
  • a catalytic method having a function of promoting direct hydrolysis of a workpiece or hydrolysis of an oxide film on the workpiece surface as a processing reference surface. In the presence of water, the workpiece and the processing reference surface are brought into contact with or in close proximity with a predetermined pressure, and the workpiece and the processing reference surface are moved relative to each other to provide a catalytic function provided on the processing reference surface.
  • the direct hydrolysis of the workpiece surface or the oxidation of the workpiece surface and the hydrolysis of the oxide film proceed preferentially from the surface convex portion close to the processing reference surface, and the decomposition products are removed, so that the flat surface is flat.
  • the present invention is a chemical processing, the surface of the Si substrate can be processed without introducing a work-affected layer, and the processing surface does not use any abrasive or abrasive grains, so the surface roughness Can be made extremely small, and a surface having a higher quality than that of the CMP finished surface can be obtained.
  • the present invention does not use hydrogen fluoride or other difficult-to-handle chemicals or fine particles, the waste liquid treatment is extremely simple and it can be said to be a processing method with less environmental load, and the working environment is greatly improved. There are advantages such as. Furthermore, since no rare earth is used, the running cost can be greatly reduced without being affected by the raw material market. In addition, the present invention can easily control the processing speed, and does not need to change the processing liquid in order to change from rough polishing to precision polishing as in CMP.
  • the processing reference surface has at least a conductive catalyst material on the surface, and has potential control means for controlling the processing speed by changing the potential of the catalyst material, and the potential of the processing reference surface is set to generate oxygen.
  • the potential is set within a range of ⁇ 1 V, it becomes possible to set conditions that promote surface oxidation of wide band gap semiconductor substrates such as difficult-to-process materials such as SiC and GaN, and a significant increase in processing speed is achieved. it can.
  • the catalyst potential the machining conditions can be easily changed from rough machining with a high machining speed to precision machining with a low machining speed by controlling the machining speed in a wide range.
  • the work efficiency is high.
  • conventionally when using the same processing device, it is necessary to interrupt the processing operation and replace the polishing pad, abrasive and abrasive grains, or when using a dedicated device for roughing and precision processing In other words, it was necessary to transfer the work piece between these devices.
  • the surface of the SiC substrate or GaN substrate is oxidized by the catalytic function provided on the processing reference surface. Then, water molecules are dissociated on the oxide film formed on the substrate surface by the catalytic function provided on the processing reference surface, and the back bonds between the oxygen element and the constituent elements of the substrate are cut and adsorbed to remove decomposition products due to hydrolysis. As a result, processing proceeds.
  • etching is preferentially performed from the convex portion of the oxide film of the SiC substrate or the GaN substrate, the function of transferring the pad surface on average is realized in the same manner as in CMP, and without using abrasive grains or abrasives. Since the surface is processed by a pure chemical action, a surface with a higher quality than the CMP finish surface can be obtained.
  • the action of depriving the electron from the water molecule is large, thereby dissociating the water molecule.
  • the back bond between the oxygen element and the other element constituting the oxide film is cut and adsorbed, and the action of assisting the generation of decomposition products by hydrolysis is increased, and the processing speed can be increased.
  • the metal element is a transition metal element, the action is remarkable.
  • the processing reference surface has at least a conductive catalyst material on the surface, the distance between the workpiece and the catalyst material can be reduced, the free electrons of the catalyst material can dissociate water molecules, and the back bond of the oxide film can be loose.
  • the processing efficiency can be increased to the extent that it can be used industrially, and the catalytic substance becomes the processing reference surface, so that the accuracy of the process can be improved. High processing can be done.
  • FIG. 1 is a simplified perspective view showing a first embodiment (planarization processing apparatus) of a processing apparatus of the present invention. It is a simplified perspective view which shows 2nd Embodiment (planarization processing apparatus) of the processing apparatus of this invention. It is a simplified sectional view showing a 3rd embodiment (local processing device) of a processing device of the present invention.
  • the surface state of the 4H—SiC substrate before and after flattening is shown, (a) is an AFM image before processing, and (b) is an AFM image after processing.
  • 4A and 4B show changes in the surface state in flattening processing of a 4H—SiC substrate,
  • (a) is an AFM image before processing
  • (b) is an AFM image after processing for 1 minute
  • (c) is an AFM image after processing for 2 minutes.
  • Image (d) is an AFM image after processing for 3 minutes.
  • the surface state change in the planarization process of a GaN substrate is shown,
  • (a) is a phase shift interference microscope image before processing,
  • (b) is a phase shift interference microscope image after processing for 60 minutes, and
  • (c) is before processing.
  • An AFM image is an AFM image after processing for 30 minutes
  • (e) is an AFM image after processing for 60 minutes.
  • FIG. 7 shows changes in the surface state of the GaN substrate in flattening processing with ultraviolet irradiation, (a) and (b) are phase shift interference microscope images after 30 minutes of processing, and (c) and (d) are Phase shift interference microscope images after processing for 60 minutes, and (e) and (f), respectively, are phase shift interference microscope images after 90 minutes of processing. 7 shows the surface state after the planarization of the GaN substrate of FIG. 7, (a) and (b) are phase shift interference microscope images after processing for 120 minutes, and (c) and (d) are processing for 120 minutes, respectively.
  • 6 is a graph showing the catalyst potential dependence of the processing speed of a 4H—SiC substrate at pH 3 (HNO 3 aqueous solution).
  • 4 is a graph showing the catalyst potential dependence of the processing speed of a 4H—SiC substrate at pH 7 (phosphate buffer).
  • 4 is a graph showing the catalyst potential dependence of the processing speed of a 4H—SiC substrate at pH 11 (KOH aqueous solution).
  • FIG. 17 is an explanatory diagram summarizing the dependence of the processing speed on the catalyst potential in FIGS. 14 to 16; It is a graph which shows the catalyst dependence of processing speed.
  • the wide band gap semiconductor targeted by the present invention is a single crystal (workpiece) such as SiC, GaN, AlGaN, or AlN.
  • the band gap of each semiconductor is 3.3 eV for 4H—SiC, 3.4 eV for GaN, 3.4 to 6.2 eV for AlGaN, and 6.2 eV for AlN.
  • the form of the workpiece may be a wafer (substrate) used for manufacturing a semiconductor device including a power electronics device or a block shape used for various precision parts.
  • the processing method of the wide band gap semiconductor substrate of the present invention uses a single crystal of SiC, GaN, AlGaN, or AlN as a workpiece, and planarizes or arbitrarily processes the surface of the workpiece without using abrasive grains or an abrasive.
  • the workpiece and the machining reference plane are brought into contact with or in close proximity to each other at a predetermined pressure, and the workpiece and the machining reference plane are moved relative to each other by the catalytic function provided on the machining reference plane.
  • Direct hydrolysis of the surface or oxidation of the surface of the workpiece and hydrolysis of the oxide film are preferentially advanced from the surface convex portion close to the processing reference surface to remove the decomposition products.
  • the flattening process is equivalent to a process generally called mirror polishing.
  • Water-CARE is a mixture of at least one of a pH adjusting solution, a buffer solution, and a complex solution that assists in dissolving decomposition products, in addition to a processing solution that uses only pure water or ultrapure water.
  • a broad concept including Of course, the ideal is literally processing with only water using a neutral processing liquid with pure water or ultrapure water only.
  • the processing reference plane promotes the direct hydrolysis of a workpiece such as a SiC substrate or a GaN substrate, or the hydrolysis of an oxide film (SiO 2 , Ga 2 O 3, etc.) on the workpiece surface.
  • a workpiece such as a SiC substrate or a GaN substrate
  • an oxide film SiO 2 , Ga 2 O 3, etc.
  • the processing reference surface is literally a processing reference surface, the shape should not change during processing.
  • the processing reference surface since the surface state of the processing reference surface is transferred to the surface of the workpiece, it is preferable that the processing reference surface be formed with as low a surface roughness as possible and high flatness.
  • the surface roughness and flatness of the processing reference surface are averaged by moving the processing reference surface and the workpiece relative to each other, the surface of the workpiece becomes a surface with higher accuracy than the processing reference surface. .
  • the processing reference surface may be provided with grooves in a radial pattern, a concentric pattern, a spiral pattern, or other patterns.
  • a large number of through holes may be opened in the processing reference surface.
  • the processing method of the present invention uses a catalytic material that promotes both oxidation of the workpiece and hydrolysis of the oxide film, oxidizes the surface of the workpiece that contacts the catalytic material, and further dissociates water molecules.
  • the oxygen element and other elements constituting the oxide film are cut off and adsorbed to elute the production of decomposition products by hydrolysis.
  • the processing speed can be controlled in a wide range by controlling the catalyst potential.
  • the processing reference surface is flat, for example, a disk shape, flattening can be performed, and if the processing reference surface is spherical or ring-shaped, curved surface processing can be performed.
  • processing generally called polishing or cleaning is also a category of the processing of the present invention. In other words, the polishing corresponds to a flattening process, and the cleaning corresponds to a minute process for removing impurities and foreign substances from the surface while minimizing the processing amount.
  • a catalyst material surface containing a metal element as the catalyst material and having an electron d orbit of the metal element in the vicinity of the Fermi level.
  • various metal elements can be used, but it is particularly preferable to use a transition metal element that is hard and has a stable shape,
  • Pd, Ru, Ni, Co, Cr, Mo, or the like can be used.
  • the catalyst material serving as the processing reference surface may be a metal element alone or an alloy composed of a plurality of metal elements.
  • a catalytic material that is a compound containing a metal element and is insulative can be used satisfactorily if the d-orbit of the electron of the metal element is a catalytic material near the Fermi level. In this case, the potential of the machining reference plane is kept at a natural potential.
  • a carbon material such as graphite or graphene can be used although the processing speed is low. The catalyst material used as the processing reference surface is exposed to water, an acidic solution or a basic solution, and therefore a catalyst material having a stable surface state is preferable.
  • the machining reference plane is literally the reference plane for machining, the shape must not change during machining.
  • the processing reference surface be formed with as low a surface roughness as possible and high flatness.
  • the entire surface is in close contact.
  • the surface roughness and flatness of the processing reference surface are averaged by moving the processing reference surface and the workpiece relative to each other, the surface of the workpiece becomes a surface with higher accuracy than the processing reference surface. .
  • the processing reference surface is formed of a conductive catalyst material, the surface potential can be controlled from the outside.
  • the catalyst material does not need to be a bulk, and may be a thin film formed by vapor deposition, sputtering, electroplating or the like of a metal or a transition metal on the surface of a base material that is inexpensive and has good shape stability.
  • the base material on which the catalyst material is deposited may be a hard elastic material, and for example, a fluorine rubber material can be used.
  • pure water or ultrapure water which has few impurities and constant characteristics, in order to realize a pure processing environment and to accurately control processing conditions.
  • pure water has an electrical resistivity of about 1 to 10 M ⁇ ⁇ cm
  • ultrapure water has an electrical resistivity of 15 M ⁇ ⁇ cm or more, but there is no boundary between them.
  • water in which pure water or ultrapure water is mixed with a complex that aids dissolution of decomposition products it is necessary to use pure water or ultrapure water, which has few impurities and constant characteristics, in order to realize a pure processing environment and to accurately control processing conditions.
  • pure water has an electrical resistivity of about 1 to 10 M ⁇ ⁇ cm
  • ultrapure water has an electrical resistivity of 15 M ⁇ ⁇ cm or more, but there is no boundary between them.
  • the complex acts to promote the dissolution of the decomposition product and to form a complex ion and maintain it stably in water.
  • the pH of water is preferably adjusted in the range of 2-12. Even if the pH is smaller (strongly acidic) or larger (strongly alkaline) than this range, the processing speed is reduced. Since the properties of the oxide film to be processed are various and the decomposition products generated in the processing process are also various, it is desirable to adjust the pH accordingly.
  • HNO 3 is added in the acidic region and KOH is added in the alkaline region.
  • the pH of the processing liquid may be set to 7 (neutral: water), and in that case, it can be applied to various oxide film processings.
  • the processing mechanism of the present invention is considered as follows from a phenomenological viewpoint.
  • a processing reference surface having a catalytic material having at least a d-electron orbit near the Fermi level contacts or comes close to the surface of the workpiece
  • the d-electron orbit approaches the surface of the workpiece.
  • the d electrons act to lower the barrier of reaction against both the phenomenon of dissociation of water molecules and the phenomenon that the back bond of the oxide film becomes loose.
  • the processing speed can be controlled by adjusting the potential of the catalyst substance.
  • the oxidation-reduction potential changes the property that the surface of a conductive substance (for example, Pt) “extracts” and “gives” electrons from the oxide film side.
  • the electric potential of the conductive material is a parameter for changing to an optimum processing speed in accordance with the accuracy to be finally aimed.
  • the potential of the conductive material is increased positively, O 2 is generated, and if it is negatively increased, H 2 is generated, and bubbles interfere with processing. Therefore, adjustment is made within a range in which H 2 and O 2 are not generated. And the potential control range is about 1.6V.
  • an oxide film (SiO 2 ) formed on the surface is broken by Si—O—Si bonds by hydrolysis of H 2 O, and becomes Si—OH and OH—Si.
  • silicic acid ⁇ [SiO x (OH) 4-2x ] n ⁇ is generated as a decomposition product by hydrolysis.
  • the processing apparatus A according to the first embodiment shown in FIG. 1 has a structure in which processing is performed in a state where a workpiece and a processing reference surface are immersed in water.
  • the processing apparatus A includes a container 2 for holding water 1, a processing reference surface 3 having a catalytic substance at least on its surface, a processing pad 4 that is immersed in water 1 and disposed in the container 2, and the processing target A workpiece holder 6 that is held in the container 2 while being held in the water 1 while being held in the water 1 while being held in contact with or in close proximity to the processing reference surface 3, the processing pad 4, and the workpiece holder 6 And a voltage applying means 8 for adjusting the potential of the catalytic material forming the processing reference surface 3 within a predetermined range, and the water molecules are dissociated and solid oxidation occurs.
  • the back-bonding of oxygen element and other elements constituting the film is cut and adsorbed, the decomposition product by hydrolysis is eluted in water, and the surface of the workpiece is processed. Further, a water circulation system 9 is provided to purify the water 1 in the container 2 and keep the water level constant.
  • the water circulation system 9 includes a supply pipe 9A, a drain pipe 9B, a treatment liquid purifier (not shown), a buffer tank, a pump, and the like.
  • the processing pad 4 is a disk-shaped rotary surface plate, and the workpiece holder 6 and the processing pad 4 holding the workpiece 5 having a smaller area than the surface plate are connected to each other.
  • the rotating shaft is parallel and eccentric, and is rotated at a predetermined speed.
  • the workpiece holder 6 can adjust the contact pressure of the workpiece 5 with respect to the machining reference surface 3 by adjusting the load.
  • the processing reference plane 3 is made narrower than the surface of the workpiece 5
  • the position and stay time of the small processing pad 4 with respect to the surface of the workpiece 5 are controlled, and the amount of local processing on the surface of the workpiece 5 is controlled. In other words, local processing by numerical control can be performed.
  • the processing apparatus B of the second embodiment shown in FIG. 2 has a structure that performs processing while supplying water dropped between the workpiece and the processing reference surface.
  • the processing apparatus B includes a processing pad 11 having a processing reference surface 10 having at least a catalyst material on the surface, a workpiece holder 13 that holds the workpiece 12 facing the processing reference surface 10, and the processing pad.
  • a container 18 is provided around the processing pad 11 so that water does not scatter.
  • this processing apparatus B can be configured not only to smooth a flat surface but also to perform numerical control processing of an arbitrary curved surface, as with the processing apparatus A described above. Furthermore, it is also preferable to irradiate the surface of the workpiece with excitation light having a specific wavelength and to process the surface while activating.
  • FIG. 3 shows a local processing apparatus C, which is an apparatus capable of numerically controlling an arbitrary curved surface in principle. This apparatus is not intended for flattening, and only a partial region of the workpiece is processed by bringing the rotating body of the catalyst material into contact with the workpiece surface while rotating.
  • the local processing device C holds a workpiece 33 in pure water 32 stored in a water tank 31, and a catalytic material ball 36 attached to the tip of a vertical rotating shaft 35 connected to a stepping motor 34 in the water. It is an apparatus that rotates and processes the surface of the work piece 33 while contacting it with a constant contact pressure. More specifically, the water tank 31 and the XY stage 39 are fixed on a horizontal plate 38 provided on the Z stage 37, and a workpiece holder 40 driven by the XY stage 39 extends to the inside of the water tank 31. The workpiece 33 is held.
  • the rotary shaft 35 is fixed by double bearings 41, 41, and the connecting portion with the head portion 42 to which the catalyst material sphere 36 is attached is tapered so that it is attached every time desorption is performed. The generated positional deviation is suppressed.
  • a predetermined catalyst material was formed on the surface of an O-ring.
  • the O-ring a P44 standard size (outer diameter 50.7 mm, thickness 3.5 mm) made of fluororubber was used.
  • the stepping motor 34, the rotary shaft 35, and the bearings 41, 41 are attached to the same vertical plate 43, and the upper end of the vertical plate 43 is connected to the gantry 44 by a plate spring 45. The verticality is adjusted.
  • the workpiece 33 By operating the X stage, the workpiece 33 can be moved by an arbitrary amount in the direction of the catalyst material sphere 36, and the workpiece 33 can be controlled by controlling the movement amount of the rotary shaft 35 using an electric micrometer.
  • the contact pressure between the surface of the catalyst and the catalyst material sphere 36 is adjusted.
  • the catalytic metal on the catalytic material sphere 36 is electrically connected to a potentiostat through a rotary joint 47, and constitutes a three-electrode system cell to perform potential control. In the present invention, it is necessary to accurately control the potential of the catalyst metal.
  • the catalyst material sphere 36 is used as a working electrode, a reference electrode 48 and a counter electrode 49 are arranged, and these three electrodes and a potentiostat are combined to form a three-electrode cell. Most of the current flows to the counter electrode 49, and a minute current flows to the reference electrode 48 to determine the potential of the working electrode (catalyst material sphere 36). At this time, the potential is automatically controlled by a potentiostat (not shown).
  • a silver-silver chloride electrode was employed as the reference electrode 48.
  • the local processing apparatus C shown in FIG. 3 is driven by numerically controlling each stage and moving the unit processing trace by changing the relative position of the workpiece 33 and the catalyst material sphere 36 to thereby generate a catalyst.
  • the numerical control (NC) processing apparatus can create an arbitrary curved surface smaller than the curvature of the material sphere 36.
  • FIGS. 4 to 9 show the results of experimentally processing SiC and GaN by the processing apparatus A using Pt as a catalyst material for forming the processing reference surface.
  • a Pt film having a thickness of 100 nm was formed on the surface of the rubber pad and held on the surface of the rotating platen. There was no adjustment of the potential of the catalyst, and all processing was performed under natural potential.
  • the surface before and after processing was observed with a phase shift interference microscope (Zygo, NewView) and an atomic force microscope (AFM) to evaluate the processing characteristics.
  • Zygo, NewView phase shift interference microscope
  • AFM atomic force microscope
  • FIG. 4 shows a test process using a 2 inch n-type 4H—SiC (0001) on-axis wafer. Processing conditions are catalyst: Pt, processing liquid: ultrapure water, processing pressure: 400 hPa, and rotation speed: 10 rpm.
  • FIG. 4A shows an AFM image before processing
  • FIG. 4B shows an AFM image after processing. The surface state clearly changes before and after processing. A clear step terrace structure could be confirmed on the SiC substrate after processing. This result indicates that the SiC substrate can be processed by Water-CARE.
  • the processing speed in this case was about 3 nm / h.
  • FIG. 5 shows test processing using a 3 inch n-type 4H—SiC (0001) 4 ° off epitaxial wafer. Processing conditions are catalyst: Pt, processing liquid: ultrapure water, processing pressure: 900 hPa, and rotation speed: 30 rpm.
  • 5A is an AFM image before processing
  • FIG. 5B is an AFM image after processing for 1 minute
  • FIG. 5C is an AFM image after processing for 2 minutes
  • FIG. 5D is 3 minutes.
  • 2 shows an AFM image after processing. It can be seen that the surface roughness before processing was rms: 0.218 nm, but it was greatly improved to rms: 0.055 nm after processing for 3 minutes.
  • rms is a root mean square roughness (Root Mean Square), and rms is expressed as Rq in JIS.
  • This epitaxial wafer undergoes step bunching after undergoing the epitaxial growth and heat treatment steps after the flattening process, and the flatness deteriorates again, as shown in FIG. 5 (a).
  • the conventional polishing method using abrasive grains is used. Is difficult to apply to these device processes.
  • the step bunching has been completely removed by the flattening process for 3 minutes.
  • the present invention can be sufficiently applied to bunching removal after epitaxial growth even in the current process efficiency in the device process.
  • FIG. 6 shows test processing using a 2 inch n-type GaN (0001) wafer.
  • the processing conditions are catalyst: Pt, processing liquid: pure water, processing pressure: 400 hPa, rotation speed: 10 rpm.
  • 6A is a phase shift interference microscope image before processing
  • FIG. 6B is a phase shift interference microscope image after processing for 60 minutes.
  • FIG. 6C shows an AFM image before processing
  • FIG. 6D shows an AFM image after processing for 30 minutes
  • FIG. 6E shows an AFM image after processing for 60 minutes.
  • the surface roughness before processing was rms: 0.324 nm, but after processing was improved to rms: 0.106 nm, the step terrace structure was observed from the AFM image, and an atomically flat surface was obtained. Yes.
  • the processing speed tends to decrease from 30 nm / h to less than 1 nm / h as the processing proceeds.
  • FIGS. 7 to 9 show results of using a 2-inch n-type GaN (0001) wafer, first performing roughing by PEC-CARE with the aid of ultraviolet irradiation, and then performing finish flattening by Water-CARE.
  • PEC means Photo-electochemical.
  • the processing conditions of PEC-CARE are catalyst: Pt, processing solution: phosphate buffer solution of pH 7, processing pressure: 200 hPa, rotation speed: 10 rpm.
  • an Hg-Xe lamp (wavelength 365 nm: about 3.4 eV) is arranged below a quartz glass rotating platen, and a number of through holes are formed in a rubber pad with a Pt film on the platen. A structure holding the formed one was adopted. Ultraviolet light was applied to the surface of the GaN substrate through the quartz glass and through the through hole of the pad.
  • FIG. 7 shows the surface state of the GaN substrate before processing
  • FIGS. 7A and 7B show phase shift interference microscope images
  • FIGS. 7C and 7D show AFM images. The image is a difference in scale. In the AFM image, the step-terrace structure is not seen.
  • FIG. 8 shows changes with the passage of the processing time of the surface of the GaN substrate processed by PEC-CARE
  • FIGS. 8A and 8B are phase-shift interference microscope images after processing for 30 minutes
  • FIGS. 8C and 8D are phase shift interference microscope images after processing for 60 minutes
  • FIGS. 8E and 8F are phase shift interference microscope images after 90 minutes processing.
  • damage forms that were considered to be due to the work-affected layer were observed. However, when the processing was continued, damage was caused as shown in FIGS. 8 (e) and 8 (f). Part was removed. However, a morphology due to crystallinity was observed.
  • FIG. 9 shows the result of finishing flattening by Water-CARE
  • FIGS. 9A and 9B are phase-shift interference microscope images after processing for 120 minutes, respectively, FIGS. 9C and 9D.
  • Each shows an AFM image after 120 minutes of processing, and the upper and lower images are different in scale.
  • the processing conditions of Water-CARE are catalyst: Pt, processing liquid: pure water, processing pressure: 200 hPa, and rotation speed: 10 rpm. It can be seen that the surface of the GaN substrate after processing by Water-CARE has a step-terrace structure, and a flat surface at the atomic level is obtained.
  • the oxide film is etched.
  • the oxide film is Ga 2 O 3 , but since this oxide film does not elute into a neutral solution, it is removed by hydrolysis from the top layer in contact with the processing reference surface of the catalyst. . Since the oxidation of the workpiece is promoted by ultraviolet irradiation, the processing speed is increased, but the uniform oxidation does not contribute to the smoothing process.
  • FIG. 10 shows the relationship between the ultraviolet intensity and the processing speed in PEC-CARE with respect to the GaN substrate, and shows the tendency that the processing speed increases as the ultraviolet intensity increases. It has been confirmed that the processing speed of the SiC substrate and the GaN substrate increases by about one digit by ultraviolet irradiation.
  • FIG. 11 shows the processing pressure dependency
  • FIG. 12 shows the rotation speed dependency.
  • the processing pressure dependence was performed under the processing conditions of catalyst: Pt, processing liquid: pure water, processing pressure of 100 to 1000 hPa, and rotation speed: 10 rpm.
  • the rotation speed dependency was measured under the processing conditions of catalyst: Pt, processing liquid: pure water, processing pressure 400 hPa, and rotation speed: 5 to 25 rpm.
  • the potential of Pt is a natural potential.
  • FIG. 13 shows the results of evaluating the processing speed by changing the pH of the solution. It became clear that the processing speed became maximum when weak acid was used, and increased about 4 times compared to when pure water was used. In addition, the dotted line in FIG.
  • FIG. 14 is a graph showing the catalyst potential dependence of the processing speed of a 4H—SiC substrate at pH 3 (HNO 3 aqueous solution).
  • FIG. 15 is a graph showing the catalyst potential dependence of the processing speed of a 4H—SiC substrate at pH 7 (phosphate buffer solution).
  • FIG. 16 is a graph showing the catalyst potential dependence of the processing speed of a 4H—SiC substrate at pH 11 (KOH aqueous solution).
  • FIG. 17 is an enlarged view of a part of FIG.
  • the hydrolysis proceeds from the surface convex portion of the workpiece that is in contact with the processing reference surface, and therefore, the etching proceeds from the convex portion on the surface as in the conventional CMP, and flattening can be realized.
  • the oxidation of the surface of the workpiece by the catalyst seems to proceed from the convex portion of the surface that contacts the processing reference surface, and the planarization process also works by this selective oxidation action.
  • FIG. 18 shows a potential-pH diagram (Pourbaille diagram) of Pt in water.
  • the dotted lines are theoretical potentials at which hydrogen and oxygen are generated in water electrolysis (upper side is hydrogen generation potential, lower side is oxygen generation). Potential).
  • the potential difference is 1.23 V and the slope is -59 mV.
  • the natural potential in each solution is indicated by white circles.
  • FIG. 19 is a cyclic voltammogram obtained at a potential scanning speed of 50 mV / s using a Pt electrode in sulfuric acid at pH 0.
  • the potential control changes the adsorption state of the electrode surface.
  • the oxygen generation potential E O2 (V) is expressed as follows from the Nernst equation.
  • the processing speed decreases as the oxygen generation potential and the hydrogen generation potential are approached. It can be seen that in the potential region between the oxygen generation potential and the hydrogen generation potential, the peak potential of the processing speed corresponds to a state in which the bare surface is exposed without adsorption on the Pt surface. However, it becomes clear that there is another peak in the processing speed when the oxygen generation potential is exceeded, and the rate of increase in the processing speed is also large. In particular, in the solutions of pH 7 and pH 11, the processing speed at the point where the oxygen generation potential is exceeded is much higher than the peak of the processing speed in the potential range between the oxygen generation potential and the hydrogen generation potential. 14 to 16, the first peak is represented by a dotted line, and the second peak is represented by a solid line. However, a clear first peak is not seen in FIG.
  • the processing speed is improved again by increasing the catalyst surface potential, which is different from the quartz glass substrate.
  • the potential at which the processing speed is improved as is apparent from the cyclic voltammogram shown in FIG. 19, the adsorption of atomic oxygen proceeds.
  • the Pt surface is in an unstable oxidation state and is expected to promote the oxidation reaction on the SiC surface.
  • the fact that this tendency was confirmed in the SiC substrate instead of the quartz substrate, which is an oxide, suggests that the oxidation action contributes to the improvement of the processing speed. In other words, it is considered that the formation and removal of the oxide film are alternately performed to contribute to the improvement of the processing speed.
  • the workpiece is a 4H—SiC (0001) 4 ° off substrate.
  • the processing conditions are catalyst: Au, processing liquid: nitric acid (pH 3), contact pressure: 2000 hPa, and rotation speed is 24 rpm.
  • the processing time is 2 hours when the voltage application means is a closed circuit and 1 hour at 1.5 V (vs. SHE). In the case of an open circuit, machining could not be confirmed.
  • vs. SHE a potential of 1.5 V
  • the processing speed was 60 nm / h. From the above results, it can be said that by applying a potential slightly higher than the oxygen generation potential, the surface of the SiC substrate was oxidized and the processing speed was improved.
  • FIG. 20 shows the cyclic voltammograms measured in each solution and the catalyst potential dependence of the processing speed.
  • the first peak is represented by a dotted line and the second peak is represented by a solid line in the same manner as described above, corresponding to the graph of the dependence of the processing speed on the catalyst potential.
  • the correspondence with the state of the platinum surface in each cyclic voltammogram is also shown.
  • the peak potential corresponds to a state in which oxygen adsorption proceeds in any solution. Therefore, it is considered that a large amount of oxygen adsorbed unstablely on the Pt surface is present at the second peak position, and it is expected that CARE processing using oxidation reaction in addition to hydrolysis proceeds at the second peak. .
  • control potential E (V) is set in the range of E O2 ⁇ 1V. That is, the range of the control potential E (V) is expressed by the following formula.
  • the processing speed can be controlled in a wide range.
  • the processing speed can be controlled in a wider range.
  • the processing solution is a neutral solution with pH 7 and an appropriate buffer solution is used.
  • the catalyst potential at the processing reference plane is 1V. It can be set to ⁇ 0.3 V (vs. SHE). In this case, there is no environmental load, the handling of the machining fluid is extremely easy, no abrasives or abrasive grains are used, and it is clean and low in running cost, and the work to be cleaned after machining is easy. Become. Further, since the deterioration of the catalyst metal is suppressed, the selection range for the catalyst substance is expanded and the durability is improved.
  • the processing target is a 4H—SiC (0001) wafer.
  • the processing conditions are catalyst: various metals, processing liquid: pure water, contact pressure: 2000 hPa, and the rotation speed is 24 rpm.
  • the potential of the catalytic metal is a natural potential.
  • Ni, Pt, Cu, and Au were tried as catalyst metals.
  • Each catalyst metal was deposited on the surface of the rubber ring by sputtering deposition. The result is shown in FIG.
  • Ni has a processing speed 13 times as high as that of Pt, and it is considered that the processing speed can be further improved by selecting a catalyst material.
  • the dependence of the catalyst metal on the processing speed has the same tendency in GaN (0001).
  • water is basically used as the processing liquid, so that the number of applicable catalysts increases.
  • Group A is a group 4, 5, 6, or 8 element such as Cr, Fe, or Mo having many d orbital vacancies.
  • Group B1 is a group 9 or 10 element made of Ni or Co having 1 to 3 vacancy d orbitals.
  • Group B2 is a group 9 or 10 element such as Pt or Pd.
  • Group C is a group 7 or 11 element made of Cu or Mn.
  • Group D is a group 11 element made of Au in which d orbitals are occupied.
  • Group E is a group 11 or 12 element such as Ag or Zn. It is known that the chemisorption characteristics become smaller in the order of groups A, B1, B2, C, D, and E.
  • metals of group A, B1, and B2 as the catalyst metal composed of a single element from the viewpoint of processing speed, and more practically relatively inexpensive and easy to handle.
  • CuO since the d orbital of Cu is occupied by electrons, Cu itself has a low processing speed, but CuO has a catalytic function even if it is insulative.
  • the molecule dissociates and the oxide film is formed. It functions as a catalytic substance that cuts and adsorbs back-bonds of the oxygen element and other elements to assist in the generation of decomposition products by hydrolysis.
  • the present invention can control the machining speed by changing the potential of the machining reference plane.
  • the processing speed can be controlled by changing the pH of the processing liquid.
  • a wide range of processing speeds and surface flatness can be realized by controlling the processing pressure and rotation speed and further using ultraviolet irradiation.
  • the surface of the workpiece is numerically controlled to an arbitrary shape, it is important to be able to control the processing speed.
  • a wide band gap semiconductor can be precisely processed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Weting (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

【課題】 研磨剤や砥粒、環境負荷の大きな溶液を一切使用せず、SiC、GaN、AlGaN、AlNの単結晶を様々な加工速度で加工でき、CMP仕上げ面よりも高品位の表面が得られ、しかもクリーンルームとの相性が良いワイドバンドギャップ半導体基板の加工方法及びその装置を提供する。 【解決手段】 被加工物5の直接的な加水分解、あるいは被加工物表面の酸化膜の加水分解を促進する機能を備えた触媒物質を加工基準面3として用い、水1の存在下で、被加工物と加工基準面とを所定圧力で接触若しくは極接近させるとともに、被加工物と加工基準面とを相対運動させて、加工基準面に備わった触媒機能によって被加工物表面の直接的な加水分解あるいは被加工物表面の酸化と該酸化膜の加水分解を加工基準面に近い表面凸部から優先的に進行させ、分解生成物を除去する。

Description

ワイドバンドギャップ半導体基板の加工方法及びその装置
 本発明は、ワイドバンドギャップ半導体基板の加工方法及びその装置に係わり、更に詳しくはSiCやGaN等のワイドバンドギャップ半導体基板を、環境負荷を少なくして加工することが可能な加工方法及びその装置に関するものである。
 従来から、半導体デバイスの製造分野では、Siウェハを始めSi基板の表面を、高品位に平坦化加工する方法若しくは研磨する方法(ポリッシング)は各種提供されている。代表的には、CMP(Chemical Mechanical Polishing)がある。また、最近ではSiC等の難加工物や光学ガラス等の固体酸化膜を加工する新たな技術として、CARE(CAtalyst-Referred Etching)が提案されている。
 CMPは、研磨剤(砥粒)自体が有する表面化学作用又は研磨液に含まれる化学成分の作用によって、研磨剤と研磨対象物の相対運動による機械的研磨(表面除去)効果を増大させ、高速かつ平滑な研磨面を得る技術である。一般には、研磨対象物をキャリアと呼ばれる部材で保持し、研磨布または研磨パッドを張った平板(ラップ)に押し付けて、各種化学成分および硬質の微細な砥粒を含んだスラリーを流しながら、一緒に相対運動させることで研磨を行う。化学成分が研磨対象物の表面を変化させることで、研磨剤単体で研磨する場合に比べて加工速度を向上することができる。また、研磨剤単体で研磨する場合に残る表面の微細な傷や表面付近に残る加工変質層がきわめて少なくなり、理想的な平滑面を得ることができる。ここで、CMP用の研磨剤には、主にコロイダルシリカ(SiO)や酸化セリウム(CeO)若しくはランタンを含む酸化セリウムの微粒子を被加工物の材質に応じて用いられる。従来のCMPによるSiC基板の研磨速度(加工速度)は20~60nm/hであるとされているが、硬いダイヤモンド砥粒を使用するので表面にダメージが残っている。
 しかし、レアアースであるセリウムは産出国が偏在しているので、その安定供給には地政学的リスクを伴い、現に近年価格が乱高下して産業界に大きな問題を提起したことは記憶に新しい。また、将来的にはレアアース資源の枯渇化の問題に晒されるのは避けられない。また、CMPはコロイダルシリカ等の微粒子を用いるので、研磨液の処理がコスト高となり、またクリーンルームとの相性が悪い等の問題がある。
 本発明者は、特許文献1によって、被加工物に対して常態では溶解性を示さないハロゲンを含む分子が溶けた処理液中に該被加工物を配し、白金、金又はセラミックス系固体触媒からなる触媒を被加工物の加工面に接触若しくは極接近させて配し、前記触媒の表面で生成したハロゲンラジカルと被加工物の表面原子との化学反応で生成したハロゲン化合物を、溶出させることによって被加工物を加工することを特徴とする触媒支援型化学加工方法を提案している。具体的には、ハロゲンを含む分子が溶けた処理液として、フッ化水素溶液又は塩化水素溶液を用いて、Si、SiC、サファイア等を加工する例が示されている。
 この触媒基準面に基づく加工方法は、本発明者によってCAREと命名された超精密な平坦化技術である。CAREは、研磨剤や砥粒を全く使用しない加工技術であり、加工によって被加工面にスクラッチや加工変質層を全く導入しない理想的な加工方法であるが、ハロゲンを含む分子が溶けた処理液、特にフッ化水素溶液を用いるので、処理空間の気密性や排気ガスや廃液の処理設備が必要になるので、CMPよりも取り扱いと装置コストが高くなるといった問題がある。元々CAREは、SiC等の難加工物を、加工変質層を導入することなく高効率、高精度に加工することを目的に開発された技術である。フッ化水素溶液を用いるCARE(HF-CARE)でSiCやGaNを実用化レベルで高速に加工することができるが、フッ化水素による溶出が表面の凹部でも進むため、表面の粗さはあまり良好ではなかった。しかも、フッ化水素溶液は危険で取り扱い難いので、汎用的にに利用することが難しいといった問題もある。
 一方、特許文献2には、微量の不可避不純物を除き超純水のみを用い、超純水中に配設したイオン交換機能又は触媒機能を有する固体表面での電気化学反応を利用してイオン積を増大させ、この水酸基又は水酸基イオンの濃度が増大した超純水中に被加工物を浸漬し、該被加工物を陽極とし、又は被加工物の電位を高く維持して、該被加工物の表面に水酸基イオンを引き寄せて、被加工物を水酸基又は水酸基イオンによる化学的溶出反応若しくは酸化反応によって除去加工若しくは酸化被膜形成加工する加工方法が開示されている。
 この特許文献2に記載の加工方法は、基本的には高電圧を印加する電解加工であり、水中の水酸基又は水酸基イオンの濃度を増大させる水酸基増加処理が重要な要件となっている。この水酸基増加処理として、イオン交換機能又は触媒機能を有する固体表面を用いるが、被加工物と接触して損傷し、被加工物表面に付着するなどの問題があった。そのため、基本的にはイオン交換機能又は触媒機能を有する固体表面と被加工物は非接触状態で、固体表面で生成した水酸基又は水酸基イオンを被加工物表面に供給して加工を進行させるのであるが、この加工方法には加工基準面が存在せず、精度の高い表面が得られない、加工速度が遅いなどの理由で実用化に至ってない。
 特許文献3には、酸素を介して1種又は2種以上の元素が結合した固体酸化膜、あるいは複数の酸化膜からなる多成分系の固体酸化膜を被加工物とし、該被加工物の表面を平坦化加工又は任意曲面に加工する加工方法であって、水分子が解離して固体酸化膜を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を助ける触媒物質を加工基準面として用い、水の存在下で、前記被加工物と加工基準面とを接触若しくは極接近させて配し、前記加工基準面の電位を、自然電位を含みH及びOが発生しない範囲とし、前記被加工物と加工基準面とを相対運動させて、前記分解生成物を被加工物表面から除去することを特徴とする固体酸化膜の加工方法が開示されている。
 特許文献3に記載の加工方法は、レアアースを始め、研磨剤や砥粒を一切使用せず、またフッ化水素等の取り扱いが難しく、環境負荷の大きな溶液を一切使用せず、水のみを用いるCARE(Water-CARE)であり、光学材料などの固体酸化膜を、加工変質層を導入することなく加工することが可能な画期的なものであった。
特開2006-114632号公報 特開平10-58236号公報 国際公開第2013/084934号公報
 本発明者らは、脱レアアースの要請に応えるため、SiC、GaN等のワイドバンドギャップ半導体の表面を酸化させれば、特許文献3に記載のWater-CAREを利用してその酸化膜を除去し、それによりSiC、GaN等を工業的に利用できる程度の加工速度で平坦化加工(研磨)又は任意曲面加工ができるとの着想に基づき、CMP仕上げ面よりも高品位の表面が得られる加工方法を検討し、本発明に至った。
 つまり、本発明が前述の状況に鑑み、解決しようとするところは、レアアースを始め、研磨剤や砥粒を一切使用せず、またフッ化水素等の取り扱いが難しく、環境負荷の大きな溶液を一切使用せず、SiC、GaN等のワイドバンドギャップ半導体を様々な加工速度で加工でき、CMP仕上げ面よりも高品位の表面が得られ、しかもクリーンルームとの相性が良いワイドバンドギャップ半導体基板の加工方法及びその装置を提供する点にある。
 本発明は、前述の課題解決のために、SiC、GaN、AlGaN、AlNの単結晶を被加工物とし、該被加工物の表面を砥粒や研磨剤を用いずに平坦化加工又は任意曲面に加工する加工方法であって、被加工物の直接的な加水分解、あるいは被加工物表面の酸化膜の加水分解を促進する機能を備えた触媒物質を加工基準面として用い、水の存在下で、前記被加工物と加工基準面とを所定圧力で接触若しくは極接近させるとともに、該被加工物と加工基準面とを相対運動させて、加工基準面に備わった触媒機能によって被加工物表面の直接的な加水分解あるいは被加工物表面の酸化と該酸化膜の加水分解を加工基準面に近い表面凸部から優先的に進行させ、分解生成物を除去することを特徴とするワイドバンドギャップ半導体基板の加工方法を構成した。
 また、本発明は、SiC、GaN、AlGaN、AlNの単結晶を被加工物とし、該被加工物の表面を砥粒や研磨剤を用いずに平坦化加工又は任意曲面に加工する加工装置であって、水を保持する容器と、被加工物の直接的な加水分解、あるいは被加工物表面の酸化膜の加水分解を促進する機能を備えた触媒物質を表面に形成した加工基準面を備え、水に浸漬させて前記容器内に配置される加工パットと、前記被加工物を保持して水に浸漬させ、前記加工基準面と接触させて前記容器内に配置されるホルダと、前記加工パットとホルダとを所定圧力で接触させながら相対運動させる駆動機構と、よりなり、水の存在下で、前記被加工物と加工基準面とを所定圧力で接触若しくは極接近させるとともに、該被加工物と加工基準面とを相対運動させて、加工基準面に備わった触媒機能によって被加工物表面の直接的な加水分解あるいは被加工物表面の酸化と該酸化膜の加水分解を加工基準面に近い表面凸部から優先的に進行させ、分解生成物を除去することを特徴とするワイドバンドギャップ半導体基板の加工装置を構成した。
 また、これらの本発明において、前記加工基準面が、少なくとも表面に導電性の触媒物質を有し、該触媒物質の電位を変化させて加工速度を制御する電位制御手段を備え、前記加工基準面の電位を、酸素発生電位を基準として±1Vの範囲に設定して触媒表面に酸素が吸着した状態を作り、被加工物表面の酸化を促進させることがより好ましい。
 そして、前記加工基準面として、金属元素を含み、金属元素の電子のd軌道がフェルミレベル近傍の触媒物質表面を用いること、特に前記金属元素が遷移金属元素であることがより好ましい。また、前記水は、純水又は超純水に、pH調整液、緩衝液、分解生成物の溶解を助ける錯体溶液の少なくとも1種を混合したものを用いても良い。
 ここで、本発明において前記加工基準面は、硬い面の表面の全面又は部分を触媒物質で形成するもの、あるいは全面又は部分に触媒物質を成膜するもの、柔らかい面の表面の全面又は部分を触媒物質で形成する、あるいは全面又は部分に触媒物質を成膜するもの、ベース材料に触媒物質を練り込む、若しくは担持させ、表面の少なくとも一部に触媒物質が現れているものを含む概念である。また、前記加工基準面には、放射状、同心円状、螺旋状、その他のパターンに溝が形成されていても構わない。
 以上にしてなる本発明のワイドバンドギャップ半導体基板の加工方法は、SiC、GaN、AlGaN、AlNの単結晶を被加工物とし、該被加工物の表面を砥粒や研磨剤を用いずに平坦化加工又は任意曲面に加工する加工方法であって、被加工物の直接的な加水分解、あるいは被加工物表面の酸化膜の加水分解を促進する機能を備えた触媒物質を加工基準面として用い、水の存在下で、前記被加工物と加工基準面とを所定圧力で接触若しくは極接近させるとともに、該被加工物と加工基準面とを相対運動させて、加工基準面に備わった触媒機能によって被加工物表面の直接的な加水分解あるいは被加工物表面の酸化と該酸化膜の加水分解を加工基準面に近い表面凸部から優先的に進行させ、分解生成物を除去するので、平坦化加工若しくは任意曲面に加工することができ、クリーンルームとの相性が良く、半導体デバイスの製造工程への適用が容易である。また、本発明は、化学的な加工であるので、加工変質層を導入することなく、Si基板の表面を加工することができ、加工面は研磨剤や砥粒を一切使用しないので表面粗さを極めて小さくでき、CMP仕上げ面よりも高品位の表面が得られるのである。更に、本発明は、フッ化水素や他の取り扱いが難しい化学薬品や微粒子を使用しないので、廃液の処理が極めて簡単であり、環境負荷が少ない加工方法と言え、作業環境が大幅に改善されるといった利点がある。更に、レアアースを一切使用しないので、原料市況に影響されず、ランニングコストを大幅に低減することができる。その上、本発明は、加工速度の制御が容易であり、CMPのように粗研磨から精密研磨に変更するために加工液を交換する必要もない。
 また、前記加工基準面が、少なくとも表面に導電性の触媒物質を有し、該触媒物質の電位を変化させて加工速度を制御する電位制御手段を備え、前記加工基準面の電位を、酸素発生電位を基準として±1Vの範囲に設定すると、難加工材料であるSiCやGaNといったワイドバンドギャップ半導体基板の表面酸化を促進させる条件に設定することが可能になり、加工速度の大幅な増加が達成できる。また、触媒電位を制御することにより、加工速度を広い範囲で制御して加工速度の速い粗加工から加工速度の遅い精密加工まで加工条件を簡単に変えることができる。つまり、本発明は、被加工物を加工装置にセットしたまま、触媒物質の電位を変えるだけで、粗加工から精密加工までの一連の加工を行うことができるので作業効率が高い。それに対して、従来は、同じ加工装置を用いる場合は、加工作業を中断し、研磨パット、研磨剤や砥粒を交換する必要があり、あるいは粗加工装置と精密加工装置の専用装置を用いる場合には、それらの装置の間で被加工物を移し変える必要があった。
 SiC基板やGaN基板の表面は、加工基準面に備わった触媒機能によって酸化される。そして、基板表面に形成された酸化膜に、加工基準面に備わった触媒機能によって水分子が解離して酸素元素と基板構成元素のバックボンドを切って吸着し、加水分解による分解生成物が除去されることにより加工が進行する。ここで、SiC基板やGaN基板の酸化膜の凸部から優先的にエッチングされるので、CMPと同様にパット面を平均的に転写する機能が実現され、しかも砥粒や研磨剤を用いず、純粋に化学的な作用によって加工するので、CMP仕上げ面よりも高品位な表面が得られるのである。
 そして、前記加工基準面として、金属元素を含み、金属元素の電子のd軌道がフェルミレベル近傍の触媒物質表面を用いると、水分子から電子を奪い共有する作用が大きく、それにより水分子が解離して酸化膜を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を助ける作用が大きくなり、加工速度を高めることができる。特に、前記金属元素が、遷移金属元素であるとその作用が顕著である。
 加工基準面が、少なくとも表面に導電性の触媒物質を有する場合には、被加工物と触媒物質との間隔を、触媒物質の自由電子が水分子の解離や、酸化膜のバックボンドがルーズになる際の両方の現象に対して反応の障壁を下げる作用をする程度に近づけることで、工業的に利用できる程度に加工能率を高めることができるとともに、触媒物質が加工基準面となるので精度の高い加工をすることができる。
本発明の加工装置の第1実施形態(平坦化加工装置)を示す簡略斜視図である。 本発明の加工装置の第2実施形態(平坦化加工装置)を示す簡略斜視図である。 本発明の加工装置の第3実施形態(局所加工装置)を示す簡略断面図である。 4H-SiC基板の平坦化加工前後の表面状態を示し、(a)は加工前のAFM像、(b)は加工後のAFM像である。 4H-SiC基板の平坦化加工における表面状態の変化を示し、(a)は加工前のAFM像、(b)は1分間の加工後のAFM像、(c)は2分間の加工後のAFM像、(d)は3分間の加工後のAFM像である。 GaN基板の平坦化加工における表面状態の変化を示し、(a)は加工前の位相シフト干渉顕微鏡像、(b)は60分間の加工後の位相シフト干渉顕微鏡像、(c)は加工前のAFM像、(d)は30分間の加工後のAFM像、(e)は60分間の加工後のAFM像である。 GaN基板の加工前の表面状態を示し、(a),(b)はそれぞれ位相シフト干渉顕微鏡像、(c),(d)はそれぞれAFM像である。 図7のGaN基板の紫外線照射を伴う平坦化加工における表面状態の変化を示し、(a),(b)はそれぞれ30分間の加工後の位相シフト干渉顕微鏡像、(c),(d)はそれぞれ60分間の加工後の位相シフト干渉顕微鏡像、(e),(f)はそれぞれ90分間の加工後の位相シフト干渉顕微鏡像である。 図7のGaN基板の平坦化加工後の表面状態を示し、(a),(b)はそれぞれ120分間の加工後の位相シフト干渉顕微鏡像、(c),(d)はそれぞれ120分間の加工後のAFM像である。 紫外線強度と加工速度の関係を示すグラフである。 加工速度の加工圧力依存性を示すグラフである。 加工速度の回転速度依存性を示すグラフである。 加工液のpHに対する加工速度比を示すグラフである。 4H-SiC基板のpH3(HNO水溶液)での加工速度の触媒電位依存性を示すグラフである。 4H-SiC基板のpH7(リン酸緩衝液)での加工速度の触媒電位依存性を示すグラフである。 4H-SiC基板のpH11(KOH水溶液)での加工速度の触媒電位依存性を示すグラフである。 図16の一部を拡大したグラフである。 水中におけるPtの電位-pH図(プールベダイアグラム)である。 pH0の硫酸中においてPt電極を用いて電位走査速度50mV/sで得られたサイクリックボルタモグラフである。 図14~図16の加工速度の触媒電位依存性のまとめの説明図である。 加工速度の触媒依存性を示すグラフである。
 本発明で対象とするワイドバンドギャップ半導体は、SiC、GaN、AlGaN、AlN等の単結晶(被加工物)である。各半導体のバンドギャプは、4H-SiCで3.3eV、GaNで3.4eV、AlGaNで3.4~6.2eV、AlNで6.2eVである。被加工物の形態は、パワーエレクトロニクスデバイスを始め半導体デバイス作製に用いるウェハ(基板)でも、各種精密部品に用いるブロック状でも良い。
 本発明のワイドバンドギャップ半導体基板の加工方法は、SiC、GaN、AlGaN、AlNの単結晶を被加工物とし、該被加工物の表面を砥粒や研磨剤を用いずに平坦化加工又は任意曲面に加工する加工方法であって、被加工物の直接的な加水分解、あるいは被加工物表面の酸化膜の加水分解を促進する機能を備えた触媒物質を加工基準面として用い、水の存在下で、前記被加工物と加工基準面とを所定圧力で接触若しくは極接近させるとともに、該被加工物と加工基準面とを相対運動させて、加工基準面に備わった触媒機能によって被加工物表面の直接的な加水分解あるいは被加工物表面の酸化と該酸化膜の加水分解を加工基準面に近い表面凸部から優先的に進行させ、分解生成物を除去するものである。本発明において、平坦化加工は一般的に鏡面研磨と呼ばれている処理と同等である。本発明において、Water-CAREとは、加工液に純水や超純水のみを用いるもの以外に、pH調整液、緩衝液、分解生成物の溶解を助ける錯体溶液の少なくとも1種を混合したものも含む広い概念としている。勿論、理想は純水や超純水のみ中性加工液を用いる文字通り水のみによる加工である。
 そして、前記加工基準面は、SiC基板やGaN基板等の被加工物の直接的な加水分解、あるいは被加工物表面の酸化膜(SiO、Ga等)の加水分解を促進する機能を備えた触媒物質で作製する。前記加工基準面は、文字通り加工の基準面となるので、加工中に形状が変化してはならない。また、前記加工基準面は、その表面状態が被加工物の表面に転写されるので、できるだけ表面粗さが小さく、高い平坦度に形成されることが望ましい。尚、前記加工基準面と被加工物とを相対運動させることにより、加工基準面の表面粗さや平坦度は平均化されるので、被加工物の表面は加工基準面より精度の高い表面となる。また、前記加工基準面には、放射状、同心円状、螺旋状、その他のパターンに溝が形成されていても構わない。また、被加工物の表面に紫外線を照射するために加工基準面に多数の貫通孔が開いていても構わない。
 本発明の加工方法は、被加工物の酸化と酸化膜の加水分解の双方を促進する触媒物質を用いて、触媒物質に接触する被加工物の表面を酸化させ、更に水分子が解離して酸化膜を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を水中に溶出させるものである。この際、触媒電位を制御することによって加工速度を広いレンジで制御することができる。加工基準面を平面状、例えば円盤状とすれば、平坦化加工ができ、加工基準面を球状、リング状とすれば曲面加工ができる。ここで、一般的に研磨や洗浄と呼ばれている処理も、本発明の加工の範疇である。つまり、研磨は平坦化加工に相当し、洗浄は加工量を最小限に抑制して表面から不純物や異物を取り除く微量加工に相当する。
 触媒物質として、金属元素を含み、金属元素の電子のd軌道がフェルミレベル近傍の触媒物質表面を用いることが好ましい。本発明では、HFのような金属元素と反応性のある溶液は使用しないので、各種の金属元素を用いることができるが、中でも硬く形状が安定している遷移金属元素が用いることが特に好ましく、仕事関数の大きなPtをはじめ、Pd、Ru、Ni、Co、Cr、Mo等を用いることが可能である。更に、加工基準面となる触媒物質は、金属元素単体でも、複数の金属元素からなる合金でもよい。これらの金属は導電性であるが、金属元素含む化合物で絶縁性の触媒物質でも、金属元素の電子のd軌道がフェルミレベル近傍の触媒物質であれば良好に使用できる。この場合、加工基準面の電位は自然電位のままとする。また、前記触媒物質の他の例として、加工速度は遅いが、グラファイト又はグラフェン等の炭素材料を用いることもできる。そして、前記加工基準面として使用する触媒物質は、水、あるいは酸性溶液や塩基性溶液に曝されるので、表面状態が安定である触媒物質が好ましい。
 前記加工基準面は、文字通り加工の基準面となるので、加工中に形状が変化してはならない。また、前記加工基準面は、その表面状態が被加工物の表面に転写されるので、できるだけ表面粗さが小さく、高い平坦度に形成されることが望ましい。但し、加工基準面と被加工物の界面に加工液が浸入する必要があるので、全面が密着することは好ましくない。尚、前記加工基準面と被加工物とを相対運動させることにより、加工基準面の表面粗さや平坦度は平均化されるので、被加工物の表面は加工基準面より精度の高い表面となる。前記加工基準面を導電性の触媒物質で形成した場合には、表面の電位を外部から制御することができる。ここで、前記触媒物質は、バルクである必要はなく、安価で形状安定性のよい母材の表面に、金属、あるいは遷移金属を蒸着、スパッタリング、電気めっき等によって形成した薄膜でも良い。また、前記触媒物質を表面に成膜する母材は、硬質の弾性材でも良く、例えばフッ素系ゴム材を用いることができる。また、高精度に平坦化加工したSiC基板を高温で熱処理し、熱分解法によってSiCの表面に複数層のグラフェンを形成したものを、前記加工基準面として用いることも可能である。
 また、前記水は、不純物が少なく特性が一定である純水又は超純水を用いることが、清純な加工環境を実現し、加工条件の正確な制御において必要である。一般的に、純水は電気抵抗率が1~10MΩ・cm程度、超純水は電気抵抗率が15MΩ・cm以上とされているが、両者に境界があるわけではない。また、本発明では、純水又は超純水に水素をパージした水素水を用い、前記加工基準面の触媒物質に水素を吸着させた状態で加工を行うことが好ましい場合もある。そして、また、前記水は、純水又は超純水に分解生成物の溶解を助ける錯体を混合したものを用いることも好ましい。ここで、前記錯体は、分解生成物の溶解を促進するとともに、錯イオンを作り水中で安定に維持する作用をする。また、水(加工液)のpHは、2~12の範囲で調整することが好ましい。pHがこの範囲よりも小さく(強酸性)ても、大きく(強アルカリ性)ても加工速度が小さくなる。加工対象の酸化膜の性質は多様であり、加工過程で生成する分解生成物も多様であるので、それに応じてpHを調整することが望ましい。pHの調整には、例えば酸性領域はHNOの添加、アルカリ性領域はKOHの添加で行う。勿論、加工液のpHを7(中性:水のまま)としても差し支えなく、その場合、種々の酸化膜の加工に汎用的に適用できる。
 本発明の加工メカニズムは、現象論的には以下のようであると考える。被加工物の表面に、少なくとも表面にd電子軌道がフェルミレベル近傍にある触媒物質を有する加工基準面が接触若しくは極接近すると、つまり被加工物の表面近傍にd電子軌道が近づくことになる。d電子は、水分子の解離や、酸化膜のバックボンドがルーズになる際の両方の現象に対して反応の障壁を下げる作用をする。現象論的には、該触媒物質が酸化膜に近づくと、酸化膜を構成する酸素元素と他の元素とのバックボンドの結合力が弱くなり、水分子が解離して酸化膜の酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物を生成する。また、触媒物質が被加工物表面に近づくと、表面を直接的に加水分解する現象も起こる。そして、加水分解によって生成した分解生成物を加工液中に溶出させるという原理である。ここで、被加工物の表面に該触媒物質を有する加工基準面を接触させて擦ることにより、分解生成物に機械的な力を与え、水中への溶出を促進させるのである。また、固体酸化膜の表面と加工基準面が接触しなくても、両者の相対運動によって生じる水の流動によって分解生成物の水中への溶出を促進する作用がある。
 また、加工基準面を形成する該触媒物質が導電性材料であれば、該触媒物質の電位を調整することにより、加工速度を制御することができる。酸化還元電位は、導電性物質(例えばPt)表面が酸化膜側から電子を「抜く」、「与える」性質を変えるものである。導電性物質の電位は、最終的に目指したい精度に応じて最適な加工速度に変えるためのパラメータになる。しかし、導電性物質の電位を正に大きくするとOが発生し、また負に大きくするとHが発生し、気泡が加工の妨げになるので、H及びOが発生しない範囲で調整することが必要であり、電位の制御域は1.6V程度である。
 例えば、SiCの加工では、表面に形成され酸化膜(SiO)がHOの加水分解によって、Si-O-Siの結合が切れ、Si-OH、OH-Siとなる。このように、加水分解によって分解生成物としてケイ酸{[SiO(OH)4?2x}が生成される。ここで、0<x<2である。これらの分解生成物が、水に溶出するのである。
 次に、添付図面に示した実施形態に基づき、本発明を更に詳細に説明する。図1に示した第1実施形態の加工装置Aは、被加工物と加工基準面を水中に浸漬した状態で加工を行う構造である。加工装置Aは、水1を保持する容器2と、少なくとも表面に触媒物質を有する加工基準面3を備え、水1に浸漬させて前記容器2内に配置される加工パッド4と、前記被加工物5を保持して水1に浸漬させ、前記加工基準面3と接触若しくは極接近させて前記容器2内に配置される被加工物ホルダ6と、前記加工パッド4と被加工物ホルダ6とを接触若しくは極接近させながら相対運動させる駆動機構7と、前記加工基準面3を形成する触媒物質の電位を所定範囲で調整する電圧印加手段8と、よりなり、水分子が解離して固体酸化膜を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物を水中に溶出させ、前記被加工物表面を加工するものである。また、前記容器2の水1を浄化し、水位を一定に保つために水循環系9を備えている。この水循環系9は、供給管9Aと排水管9Bと、図示しない処理液精製器、バッファタンク、ポンプ等で構成される。
 図示した加工装置Aは、前記加工パッド4が、円盤状の回転定盤であり、該定盤よりも小さな面積の被加工物5を保持した前記被加工物ホルダ6と加工パッド4を、互いに平行で偏心した回転軸で、所定速度で回転させるようにしている。また、前記被加工物ホルダ6は、荷重を調節して、加工基準面3に対する被加工物5の接触圧力を調節できるようになっている。また、前記加工パッド4や被加工物ホルダ6に温度制御機能を内蔵させれば、加工温度を所定温度で一定に維持することができるので望ましい。尚、前記被加工物5の表面より加工基準面3を狭くすれば、小さな加工パッド4の被加工物5の表面に対する位置と滞在時間を制御して、被加工物5の表面の局所加工量を制御し、つまり数値制御による局所加工を行うことができる。
 また、図2に示した第2実施形態の加工装置Bは、被加工物と加工基準面との間に滴下した水を供給しながら加工を行う構造である。加工装置Bは、少なくとも表面に触媒物質を有する加工基準面10を備えた加工パッド11と、被加工物12を前記加工基準面10に対面させて保持する被加工物ホルダ13と、前記加工パッド11の加工基準面10と被加工物ホルダ13に保持された被加工物12とを接触若しくは極接近させながら相対運動させる駆動機構14と、前記加工パッド11の加工基準面10と被加工物ホルダ13に保持された被加工物12の間に水15を供給する水供給手段16と、前記加工基準面10を形成する触媒物質の電位を所定範囲で調整する電圧印加手段17と、よりなり、水分子が解離して固体酸化膜を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物を水中に溶出させ、前記被加工物表面を加工するものである。ここで、水が飛び散らないように、前記加工パッド11の周囲に容器18を設けている。
 また、この加工装置Bも前述の加工装置Aと同様に、平面の平滑化加工のみならず、任意曲面の数値制御加工を行うように構成することが可能である。更に、前記被加工物表面に特定波長の励起光を照射し、表面を活性化しながら加工することも好ましい。
 図3は、局所加工装置Cを示し、原理的に任意曲面を数値制御加工できる装置となる。本装置は平坦化を目的としておらず、触媒物質の回転体を回転させながら被加工物表面に接触させることで、被加工物の一部領域のみを加工するものである。
 局所加工装置Cは、水槽31に溜めた純水32中に被加工物33を保持し、ステッピングモータ34に連結した鉛直方向の回転軸35の先端に取付けた触媒物質球36を、水中で前記被加工物33の表面に一定の接触圧で接触させながら回転させて加工する装置である。更に詳しくは、Zステージ37の上に設けた水平板38の上に、前記水槽31とXYステージ39が固定され、該XYステージ39で駆動させる被加工物ホルダ40が前記水槽31の内部まで延び、前記被加工物33を保持している。振れを最小限にするために前記回転軸35は2重のベアリング41,41によって固定されており、前記触媒物質球36を取り付けるヘッド部42との接続部分はテーパー形状とすることで脱着ごとに発生する位置ずれを抑制している。前記触媒物質球36は、Oリングの表面に所定の触媒物質を成膜したものを用いた。Oリングは、フッ素ゴム製のP44規格サイズ(外径50.7mm,太さ3.5mm)を用いた。前記ステッピングモータ34、回転軸35及びベアリング41,41は同一の垂直板43に取付けられ、該垂直板43の上端を架台44に板バネ45で連結され、天秤型のバランサー46により回転軸35の鉛直性を調整するようになっている。
 Xステージを操作することで被加工物33を触媒物質球36の方向に任意量移動させることが可能であり、電気マイクロメータを用いて回転軸35の移動量を制御することで被加工物33の表面と触媒物質球36間の接触圧を調整する。触媒物質球36上の触媒金属は、ロータリージョイント47を介して電気的にポテンショスタットへと接続されており、三電極系セルを構成して電位制御を行っている。本発明では、触媒金属の電位を精度良く制御する必要がある。前記水槽31の中に前記触媒物質球36を作用電極とし、更に基準電極48と対向電極49を配置し、これら3つの電極とポテンショスタットを組み合わせて三電極系セルとした。電流の大部分は対向電極49へ流し,基準電極48へは微小電流を流して作用電極(触媒物質球36)の電位を定める。このとき電位の制御を図示しないポテンショスタットで自動的に行う。前記基準電極48としては銀-塩化銀電極を採用した。
 図3に示した局所加工装置Cは、各ステージを数値制御して駆動し、前記被加工物33と前記触媒物質球36の相対位置を変化させることにより、単位加工痕を移動させて、触媒物質球36の曲率より小さな任意曲面を創出することができる数値制御(NC)加工装置となる。
 次に、加工基準面を形成する触媒物質としてPtを用いた加工装置Aによって、SiC、GaNを試験的に加工した結果を図4~図9に示す。加工基準面には、ラバーパッドの表面に100nmの厚さのPt膜を成膜し、それを回転定盤の表面に保持したものを用いた。触媒の電位調整はなく、全て自然電位下で加工を行った。加工前と加工後の表面を位相シフト干渉顕微鏡(Zygo社、NewView)と原子間力顕微鏡(AFM)で観察して加工特性を評価した。
 図4は、2inchのn型4H-SiC(0001)on axisウェハを用いた試験加工を示す。加工条件は、触媒:Pt、加工液:超純水、加工圧力:400hPa、回転速度:10rpmである。図4(a)は加工前のAFM像、図4(b)は加工後のAFM像を示し、加工前後で明らかに表面状態に変化が表れている。加工後SiC基板上には明瞭なステップテラス構造を確認することができた。この結果は、Water-CAREによってSiC基板の加工が可能であることを示すものである。この場合の加工速度は、約3nm/hであった。
 また、図5は、3inchのn型4H-SiC(0001)4°offエピタキシャルウェハを用いた試験加工を示す。加工条件は、触媒:Pt、加工液:超純水、加工圧力:900hPa、回転速度:30rpmである。図5(a)は加工前のAFM像、図5(b)は1分間の加工後のAFM像、図5(c)は2分間の加工後のAFM像、図5(d)は3分間の加工後のAFM像を示している。加工前の表面粗さがrms:0.218nmであったのが、3分間の加工後にはrms:0.055nmと大幅に改善されていることが分かる。ここで、rmsは二乗平均平方根粗さ(Root Mean Square)のことであり、rmsはJISではRqと表される。このエピタキシャルウェハは、平坦化加工後、エピタキシャル成長、熱処理と工程を経ることでステップバンチングが生じ、再び平坦度は悪化し、図5(a)のようになるが、砥粒を用いる従来の研磨手法はこれらデバイスプロセスに適用することは困難である。本発明では、3分間の平坦化加工によってステップバンチングを完全に除去することに成功した。本発明は、デバイスプロセスにおいて、現状の加工能率においても、エピタキシャル成長後のバンチング除去へ適用が十分に可能である。
 図6は、2inchのn型GaN(0001)ウェハを用いた試験加工を示す。加工条件は、触媒:Pt、加工液:純水、加工圧力:400hPa、回転速度:10rpmである。図6(a)は加工前の位相シフト干渉顕微鏡像、図6(b)は60分間の加工後の位相シフト干渉顕微鏡像である。また、図6(c)は加工前のAFM像、図6(d)は30分間の加工後のAFM像、図6(e)は60分間の加工後のAFM像を示している。加工前に表面粗さがrms:0.324nmであったのが、加工後にはrms:0.106nmに改善され、ステップテラス構造がAFM像から観察され、原子的に平坦な表面が得られている。ただ、加工速度は、加工が進行するにつれて30nm/hから1nm/h未満に低下する傾向である。
 図7~図9は、2inchのn型GaN(0001)ウェハを用い、最初に紫外線照射を援用したPEC-CAREにより粗加工を実行し、その後Water-CAREにより仕上げ平坦化加工を行った結果である。ここで、PECはPhoto-electo chemicalのことを意味する。先ず、PEC-CAREの加工条件は、触媒:Pt、加工液:pH7のリン酸緩衝液、加工圧力:200hPa、回転速度:10rpmである。紫外線照射には、Hg-Xeランプ(波長365nm:約3.4eV)を石英ガラス製の回転定盤の下方に配置し、該定盤の上にPt膜付きのラバーパッドに多数の貫通孔を形成したものを保持した構造を採用した。紫外線は石英ガラスを通し、パッドの貫通孔を通してGaN基板の表面に照射した。
 図7は、加工前のGaN基板の表面状態を示し、図7(a),(b)はそれぞれ位相シフト干渉顕微鏡像、図7(c),(d)はそれぞれAFM像を示し、上下の像はスケールの違いである。AFM像では、ステップ-テラス構造は見られない。図8は、PEC-CAREにより加工したGaN基板の表面の加工時間の経過に伴う変化を示し、図8(a),(b)は30分間の加工後の位相シフト干渉顕微鏡像、図8(c),(d)は60分間の加工後の位相シフト干渉顕微鏡像、図8(e),(f)は90分間の加工後の位相シフト干渉顕微鏡像である。図8(c),(d)に示すように、加工変質層の影響と思われる損傷形態が観察されたが、処理を継続すると、図8(e),(f)に示すように、損傷部分が除去された。しかしながら、結晶性に起因する形態が観察された。
 図9は、Water-CAREにより仕上げ平坦化加工を行った結果を示し、図9(a),(b)はそれぞれ120分間の加工後の位相シフト干渉顕微鏡像、図9(c),(d)はそれぞれ120分間の加工後のAFM像を示し、上下の像はスケールの違いである。Water-CAREの加工条件は、触媒:Pt、加工液:純水、加工圧力:200hPa、回転速度:10rpmである。Water-CAREによる加工後のGaN基板の表面は、ステップ-テラス構造が見られ、原子レベルの平坦面が得られていることが分かる。
 バンドギャプよりも高いエネルギーの紫外線照射によって、被加工物の表面近傍の電子は原子価バンドから伝導帯まで上がり、それに対となって正孔が生じ、正孔は酸化に関与する。そして、酸化膜はエッチングされる。GaN基板の場合、酸化膜はGaであるが、この酸化膜は中性の溶液には溶出しないので、触媒の加工基準面に接触した一番上の層から加水分解によって除去される。紫外線照射によって被加工物の酸化が促進されるので加工速度は増加するが、一様酸化なので平滑化プロセスには寄与しない。図10に、GaN基板に対するPEC-CAREにおける紫外線強度と加工速度の関係を示し、紫外線強度の増加につれて加工速度が速くなる傾向が示されている。紫外線照射によって、SiC基板、GaN基板の加工速度は、約1桁上がることが確認されている。
 これらの加工試験によって、本発明の加工方法及び加工装置で、SiCやGaNのような難加工物の平坦化加工を十分な精度で行えることが実証できた。GaNと同じ窒化物であるAlGaNやAlNも同様に加工できる。また、4H-SiC以外の結晶構造のSiCも同様に加工することができる。
 次に、前記局所加工装置Cを用いて加工速度の制御性を調べた。先ず、加工速度の加工圧力依存性と回転速度依存性を、4H-SiC基板を用いて調べた。図11は加工圧力依存性、図12は回転速度依存性をそれぞれ示している。加工圧力依存性は、触媒:Pt、加工液:純水、加工圧力100~1000hPa、回転速度:10rpmの加工条件で行った。また、回転速度依存性は、触媒:Pt、加工液:純水、加工圧力400hPa、回転速度:5~25rpmの加工条件で行った。Ptの電位は自然電位である。Ptが接触した楕円形の領域のみが加工され、その加工痕における最大深さを加工量として、加工速度を測定した。これらの結果は、加工速度が加工圧力及び回転速度に比例して増加することを示し、これらを調整すれば原理的に加工速度を1桁以上増加させることが可能である。但し、加工速度が依存するのは、被加工物と接触する位置での周速度であるが、同一の加工装置を用いて特性を調べているのであるから、便宜上回転速度を加工条件のパラメータとして扱っている。GaNにおいてもSiCと同様な加工圧力依存性、回転速度依存性があるものと推測する。
 次に、前記局所加工装置Cを用いて、4H-SiC基板における加工速度の触媒電位依存を、pH1~13の各溶液を用いて調べた。溶液にはHNO水溶液、リン酸緩衝液、KOH水溶液を用いて、それぞれのpHに調整した。加工条件は、触媒:Pt、加工液:純水+pH調整液、接触圧力:2000hPa、回転速度は24rpmである。加工時間は60分である。溶液のpHを変化させ,加工速度の評価を行った結果を図13に示す。加工速度は弱酸を用いた時に最大となり,純水使用時に比べ約4倍に増加することが明らかとなった。尚、図13中の点線は、石英ガラスにおける加工速度の溶液pH依存性の傾向を示している。酸性溶液を用いた場合に加工速度が最大であり、続いて塩基性溶液、中性溶液と続く。この結果を考察すると、酸化膜のエッチング過程においてまずHO分子から触媒の作用によってH原子が解離し、生成した水酸基がSi原子に吸着する。続いてO原子にはH原子が吸着するが、このH原子はHO分子から解離した触媒上のH原子だけではなく、溶液中の水素イオンが移動してくるものと考えられる。そのため酸性溶液中では加工速度が大きい。一方、塩基性溶液中での加工速度が中性溶液に比べて大きいのは、加工生成物であるSi(OH)xの溶解速度が塩基性で最大であることが原因だと考えられる。
 加工溶液を変化させると、液中のイオン濃度だけでなく,触媒の表面電位も変化するため、pH3,7,11の溶液中で電位のみを制御し、加工速度の評価を行った結果を図14~図16に示す。図14は、4H-SiC基板のpH3(HNO水溶液)での加工速度の触媒電位依存性を示すグラフである。図15は、4H-SiC基板のpH7(リン酸緩衝液)での加工速度の触媒電位依存性を示すグラフである。図16は、4H-SiC基板のpH11(KOH水溶液)での加工速度の触媒電位依存性を示すグラフである。尚、図17は図16の一部を拡大したものである。この結果、SiC基板でも石英ガラス等の金属酸化物と同様に、加工速度は触媒電位に依存して大きく変化することが明らかになった。このことから、加工速度の触媒電位による制御が可能であることを示している。また、図13~図16から、SiC基板の加工と特許文献3に記載された石英ガラスの加工とは、多くの類似点があることが分かり、SiC基板の表面酸化膜への水の解離吸着、つまり加水分解による分解生成物の選択された溶出により加工が進行すると言える。
 ところが、SiC基板の加工の場合、図14~図16に示されているように、触媒電位が酸素発生電位付近からその電位を超えたところで、加工速度の急激な増大が観察された。これは、触媒によるSiC基板の表面酸化が、触媒電位が酸素発生電位の付近からその電位を超えた範囲で表面酸化が大幅に促進されるためと推測できる。この点は後述するが、SiC基板の加工には、触媒の作用による表面の直接的な加水分解と、触媒の作用による表面の酸化とその酸化膜の加水分解の二種類の作用が寄与していることを発見した。何れの場合も、加工基準面と接触する被加工物の表面凸部から加水分解は進行するので、従来のCMPと同様に表面の凸部からエッチングが進行して平坦化が実現できる。また、触媒による被加工物表面の酸化も加工基準面と接触する表面の凸部から進行すると思われ、この選択的な酸化作用によっても平坦化プロセスが働くのである。
 図18は、水中におけるPtの電位-pH図(プールベダイアグラム)を示し、点線は水の電気分解での水素と酸素がそれぞれ発生する理論上の電位(上側が水素発生電位、下側が酸素発生電位)を示したものである。ネルンストの式より導出した水素と酸素の発生電位において、電位差は1.23V、傾きはともに-59mVである。各溶液中における自然電位は白丸で示している。
 図19は、pH0の硫酸中においてPt電極を用いて電位走査速度50mV/sで得られたサイクリックボルタモグラフである。電位を負に走査することにより水素吸着や水素発生、電位を正に走査することにより酸化被膜の生成や酸素発生に起因する電流応答が確認でき、電位制御により電極表面の吸着状態が変化していることが分かる。ここで、酸素発生電位EO2(V)は、ネルンストの式より以下のように表される。
Figure JPOXMLDOC01-appb-M000001
 図14~図16の結果から、SiC基板の加工において、酸素発生電位と水素発生電位に近付くにつれて加工速度が低下していることが分かる。酸素発生電位と水素発生電位の中間の電位領域では、加工速度のピーク電位がPt表面に吸着がなく、ベアな表面が露出した状態に対応することが分かる。ところが、酸素発生電位を超えたところで加工速度にもう一つのピークがあることが明らかとなり、その加工速度の上昇の割合も大きい。特に、pH7、pH11の溶液では、酸素発生電位と水素発生電位の中間の電位領域での加工速度のピークよりも、酸素発生電位を超えたところでの加工速度は遥かに大きくなる。図14~図16には、第1ピークは点線、第2ピークは実線で表している。但し、pH11の場合の図16には明確な第1ピークは見られない。
 何れのpHの加工液を用いても、触媒表面電位を高くすることで加工速度は再び向上するという、石英ガラス基板とは異なった傾向を示すことが確認できる。加工速度が向上している電位では図19に示したサイクリックボルタモグラムから分かるように、原子状酸素の吸着が進行している。このような電位では、Pt表面が不安定な酸化状態にあり、SiC表面の酸化反応を促進すると予想される。酸化物である石英基板ではなくSiC基板においてこの傾向が確認されたことも、酸化作用が加工速度向上に寄与していることを示唆している。つまり、酸化膜の形成、除去が交互に進行することが加工速度向上の一因を担っていると考えられる。
 これを検証するため、Ptと比較し、加工速度の著しく劣るAuを触媒とし、加工を行った。被加工物は4H-SiC(0001)4°off基板である。加工条件は、触媒:Au、加工液:硝酸(pH3)、接触圧力:2000hPa、回転速度は24rpmである。加工時間は電圧印加手段が閉回路で2時間、1.5V(vs.SHE)で1時間である。開回路の場合では加工を確認することはできなかった。一方、1.5V(vs.SHE)の電位をかけた場合では加工速度が60nm/hという結果を得た。以上の結果より、酸素発生電位よりも若干高電位を印加することで、SiC基板の表面が酸化され、加工速度が向上したといえる。
 それぞれの溶液中で測定したサイクリックボルタモグラムと加工速度の触媒電位依存性をまとめて図20に示す。加工速度の触媒電位依存性のグラフと対応させ、前記同様に第1ピークは点線、第2ピークは実線で表している。また、それぞれのサイクリックボルタモグラムにおける白金表面の状態との対応も併せて表している。
 先ず、第1ピーク(点線)の電位に関して、これらの対応性から、加工溶液の液性によってPtの表面状態が異なることが分かる。Water-CAREでは加水分解反応によって加工が進行していると推察しており、石英、SiCともに第1ピークが確認されていたため、この電位では直接的な加水分解反応に関係した依存性を示していると考える。先ず、中性溶液(pH7)中では、触媒であるPtが露出することのみに起因した依存性が観察できる。一方、酸性(pH3)、塩基性(pH1)の溶液では、それぞれ酸素吸着状態、水素吸着状態にある電位に第1ピークが存在することが分かる。酸性側を例にとれば、加水分解反応では、第一に水分子を解離させる必要があるが、酸性、つまり水素イオンが多く存在する雰囲気下で、Pt表面に酸素が吸着することで水分子の解離と同等の条件が整い、加工が進行し易くなっていると考えられる。一方、塩基性溶液ではこれと反対の現象が起こると考えられる。自然電位での加工は、この加工メカニズムである。
 次に、第2ピーク(実線)の電位に関して、何れの溶液中においてもピーク電位は酸素吸着が進行している状態に当たる。そのため,第2ピーク位置ではPt表面上に不安定に吸着した酸素が多く存在すると考えられ、第2ピークにおいては加水分解に加え、酸化反応を援用したCARE加工が進行していると予想される。
 以上のように、4H-SiCの加工実験では、Pt触媒電位が酸素発生,水素発生電位に近付くにつれて加工速度が低下した後、Pt触媒電位が酸素発生電位付近から酸素発生電位を超えた範囲で加工速度の急増が確認できた。これは、Pt触媒に接触した部分での4H-SiCの表面酸化が促進されて加工速度が大きくなったものと考える。Pt触媒電位が酸素発生,水素発生電位に近付くにつれて加工速度が低下する傾向は、石英ガラス(SiO)等の金属酸化物の加工と同様であるが、酸素発生電位を超えてから加工速度が増大する傾向はこれまで知られていなかった。この触媒電位の制御領域を積極的に使用すれば加工速度の大幅な向上が期待できる。特に、pH7の中性加工液での加工は、真のWater-CAREと言える。しかし、触媒電位が高くなり過ぎると酸素発生量が増加し、被加工物と触媒間に滞留して触媒効果を損ね、あるいは平坦化プロセスに支障を来すので、上限を酸素発生電位より1V高い範囲までとした。そこで本発明では、制御電位E(V)をEO2±1Vの範囲に設定する。つまり、制御電位E(V)の範囲は以下の式で表される。
Figure JPOXMLDOC01-appb-M000002
 触媒電位を[数2]の式で表される範囲で制御することにより、加工速度を広いレンジで制御することができ、またその他の加工パラメータを制御することにより更に広いレンジで加工速度を制御でき、更に紫外線照射を組み合わせれば、粗加工から原子レベルの仕上げ加工まで一台の加工装置で行うことができる。
 真のWater-CAREを実現するには、加工液をpH7の中性溶液とし、適宜緩衝液を加えたものを使用し、4H-SiC基板を加工する場合には加工基準面における触媒電位を1V±0.3V(vs.SHE)に設定すれば良いことになる。この場合、環境負荷が全くなく、加工液の取り扱いが極めて容易になり、研磨材や砥粒を一切使用しないので、クリーンでランニングコストも安く、しかも加工後の被加工物の洗浄作業も簡単になる。また、触媒金属の劣化も抑制されるので、触媒物質に対する選択範囲が広がり、また耐久性も向上する。
 最後に、各種の触媒金属を成膜した触媒物質球36を用いて、加工速度の触媒依存性を調べた。加工対象は4H-SiC(0001)ウェハである。加工条件は、触媒:各種金属、加工液:純水、接触圧力:2000hPa、回転速度は24rpmである。触媒金属の電位は自然電位である。触媒金属として、Ni、Pt、Cu、Auを試した。各触媒金属は、ゴムリングの表面にスパッタリング蒸着によって成膜した。その結果を図21に示す。NiはPtの13倍もの加工速度になり、触媒物質の選定によって更に加工速度を向上させることができるものと考える。この加工速度に対する触媒金属の依存性は、GaN(0001)においても同様な傾向があった。本発明では加工液として基本的に水を用いるので、適用可能な触媒の種類も多くなる。
 ここで、触媒金属に対する解離吸着の起こりやすさはd軌道の電子非占有度によって定性的に整理でき、以下のようにグループ分けできることが知られている。グループAは、d軌道の空位軌道が多いCr、Fe、Moなどの4,5,6,8族元素である。グループB1は、1から3の空位d軌道が存在するNi、Coからなる9、10族元素である。グループB2は、Pt、Pdなどの9、10族元素である。グループCは、Cu、Mnからなる7、11族元素である。グループDは、d軌道が占有されているAuからなる11族元素である。グループEは、Ag、Znなどの11、12族元素である。化学吸着特性は、グループA、B1、B2、C、D、Eの順で小さくなることが知られている。
 この結果、化学吸着特性と加工速度の間には明らかな相関があり、Ni(グループB1)を用いた場合の加工速度はPt(グループB2)を用いた場合に比べて最大で1桁大きいことがわかった。しかし、Cr(グループA)に関しては、表面状態が不安定なためか、芳しくない結果になった。また、グループD又はEに属するAuやAgを使用した場合は、d軌道が電子で占有されているので加工が殆ど進行しない。
 この結果、単一元素からなる触媒金属としては、グループA、B1、B2の金属を用いることが、加工速度の面で好ましく、更に実用的には比較的安価で取扱いが容易なものを選択して使用する。この場合、金属元素単体の他に、複数の金属元素からなる合金を用いることも好ましい。また、Cuはd軌道が電子で占有されているので、それ自体では加工速度が遅いが、CuOとなると絶縁性でも触媒機能が備わる。このように、触媒機能に乏しい金属であっても化合物となることにより、金属元素の電子のd軌道がフェルミレベル近傍になって、それが表面に現れれば、水分子が解離して酸化膜を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を助ける触媒物質として機能する。
 以上により本発明は、加工基準面の電位を変化させて、加工速度を制御できることは明らかである。また、加工液のpHを変化させても加工速度を制御できる。更に、加工圧力や回転速度を制御し、更に紫外線照射を援用することで幅広い加工速度と表面平坦度を実現できる。被加工物の表面を任意形状に数値制御加工する場合には、加工速度を制御できることは重要である。本発明により、ワイドバンドギャプ半導体を精密に加工できるようになる。
A 加工装置、     B 加工装置、
1 水、        2 容器、
3 加工基準面、    4 加工パッド、
5 被加工物、     6 被加工物ホルダ、
7 駆動機構、     8 電圧印加手段、
9 水循環系、     9A 供給管、
9B 排水管、     10 加工基準面、
11 加工パッド、   12 被加工物、
13 被加工物ホルダ、 14 駆動機構、
15 水、       16 水供給手段、
17 電圧印加手段、  18 容器、
30 局所加工装置、  31 水槽、
32 純水、      33 ガラス、
34 モータ、     35 回転軸、
36 触媒物質球、   37 Zステージ、
38 水平板、     39 XYステージ、
40 被加工物ホルダ、 41 ベアリング、
42 ヘッド部、    43 垂直板、
44 架台、      45 板バネ、
46 バランサー、   47 ロータリージョイント、
48 基準電極、    49 対向電極。

Claims (10)

  1.  SiC、GaN、AlGaN、AlNの単結晶を被加工物とし、該被加工物の表面を砥粒や研磨剤を用いずに平坦化加工又は任意曲面に加工する加工方法であって、
     被加工物の直接的な加水分解、あるいは被加工物表面の酸化膜の加水分解を促進する機能を備えた触媒物質を加工基準面として用い、水の存在下で、前記被加工物と加工基準面とを所定圧力で接触若しくは極接近させるとともに、該被加工物と加工基準面とを相対運動させて、加工基準面に備わった触媒機能によって被加工物表面の直接的な加水分解あるいは被加工物表面の酸化と該酸化膜の加水分解を加工基準面に近い表面凸部から優先的に進行させ、分解生成物を除去することを特徴とするワイドバンドギャップ半導体基板の加工方法。
  2.  SiC、GaN、AlGaN、AlNの単結晶を被加工物とし、該被加工物の表面を砥粒や研磨剤を用いずに平坦化加工又は任意曲面に加工する加工方法であって、
     被加工物の直接的な加水分解、あるいは被加工物表面の酸化膜の加水分解を促進する機能を備えた触媒物質を加工基準面として用い、水の存在下で、前記被加工物と加工基準面とを所定圧力で接触若しくは極接近させて配し、前記加工基準面の電位を、酸素発生電位を基準として±1Vの範囲に設定して触媒表面に酸素が吸着した状態を作り、前記被加工物と加工基準面とを相対運動させて、加工基準面に備わった触媒機能によって被加工物表面の直接的な加水分解あるいは被加工物表面の酸化と該酸化膜の加水分解を加工基準面に近い表面凸部から優先的に進行させ、分解生成物を除去することを特徴とするワイドバンドギャップ半導体基板の加工方法。
  3.  前記加工基準面として、金属元素を含み、金属元素の電子のd軌道がフェルミレベル近傍の触媒物質表面を用いる請求項1又は2記載のワイドバンドギャップ半導体基板の加工方法。
  4.  前記金属元素が、遷移金属元素である請求項3記載のワイドバンドギャップ半導体基板の加工方法。
  5.  前記水は、純水又は超純水に、pH調整液、緩衝液、分解生成物の溶解を助ける錯体溶液の少なくとも1種を混合したものである請求項1~4何れか1項に記載のワイドバンドギャップ半導体基板の加工方法。
  6.  SiC、GaN、AlGaN、AlNの単結晶を被加工物とし、該被加工物の表面を砥粒や研磨剤を用いずに平坦化加工又は任意曲面に加工する加工装置であって、
     水を保持する容器と、
     被加工物の直接的な加水分解、あるいは被加工物表面の酸化膜の加水分解を促進する機能を備えた触媒物質を表面に形成した加工基準面を備え、水に浸漬させて前記容器内に配置される加工パットと、
     前記被加工物を保持して水に浸漬させ、前記加工基準面と接触させて前記容器内に配置されるホルダと、
     前記加工パットとホルダとを所定圧力で接触させながら相対運動させる駆動機構と、
     よりなり、水の存在下で、前記被加工物と加工基準面とを所定圧力で接触若しくは極接近させるとともに、該被加工物と加工基準面とを相対運動させて、加工基準面に備わった触媒機能によって被加工物表面の直接的な加水分解あるいは被加工物表面の酸化と該酸化膜の加水分解を加工基準面に近い表面凸部から優先的に進行させ、分解生成物を除去することを特徴とするワイドバンドギャップ半導体基板の加工装置。
  7.  SiC、GaN、AlGaN、AlNの単結晶を被加工物とし、該被加工物の表面を砥粒や研磨剤を用いずに平坦化加工又は任意曲面に加工する加工装置であって、
     水を保持する容器と、
     被加工物の直接的な加水分解、あるいは被加工物表面の酸化膜の加水分解を促進する機能を備えた触媒物質を表面に形成した加工基準面を備え、水に浸漬させて前記容器内に配置される加工パットと、
     前記被加工物を保持して水に浸漬させ、前記加工基準面と接触させて前記容器内に配置されるホルダと、
     前記加工パットとホルダとを所定圧力で接触させながら相対運動させる駆動機構と、
     前記加工基準面が、少なくとも表面に導電性の触媒物質を有し、該触媒物質の電位を変化させて加工速度を制御する電位制御手段と、
     よりなり、水の存在下で、前記被加工物と加工基準面とを所定圧力で接触若しくは極接近させて配し、前記加工基準面の電位を、酸素発生電位を基準として±1Vの範囲に設定して触媒表面に酸素が吸着した状態を作り、前記被加工物と加工基準面とを相対運動させて、加工基準面に備わった触媒機能によって被加工物表面の直接的な加水分解あるいは被加工物表面の酸化と該酸化膜の加水分解を加工基準面に近い表面凸部から優先的に進行させ、分解生成物を除去することを特徴とするワイドバンドギャップ半導体基板の加工装置。
  8.  前記加工基準面として、金属元素を含み、金属元素の電子のd軌道がフェルミレベル近傍の触媒物質表面を用いる請求項6又は7記載のワイドバンドギャップ半導体基板の加工装置。
  9.  前記金属元素が、遷移金属元素である請求項8記載のワイドバンドギャップ半導体基板の加工装置。
  10.  前記水は、純水又は超純水に、pH調整液、緩衝液、分解生成物の溶解を助ける錯体溶液の少なくとも1種を混合したものである請求項6~9何れか1項に記載のワイドバンドギャップ半導体基板の加工装置。
PCT/JP2015/057156 2014-03-12 2015-03-11 ワイドバンドギャップ半導体基板の加工方法及びその装置 WO2015137397A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15762449.5A EP3142142B1 (en) 2014-03-12 2015-03-11 Method for processing wide-bandgap semiconductor substrate
US15/125,308 US10163645B2 (en) 2014-03-12 2015-03-11 Method for processing wide-bandgap semiconductor substrate and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014049071A JP6206847B2 (ja) 2014-03-12 2014-03-12 ワイドバンドギャップ半導体基板の加工方法及びその装置
JP2014-049071 2014-03-12

Publications (1)

Publication Number Publication Date
WO2015137397A1 true WO2015137397A1 (ja) 2015-09-17

Family

ID=54071839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057156 WO2015137397A1 (ja) 2014-03-12 2015-03-11 ワイドバンドギャップ半導体基板の加工方法及びその装置

Country Status (4)

Country Link
US (1) US10163645B2 (ja)
EP (1) EP3142142B1 (ja)
JP (1) JP6206847B2 (ja)
WO (1) WO2015137397A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113366A (ja) * 2017-01-12 2018-07-19 国立大学法人大阪大学 触媒表面基準エッチング方法及びその装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015002319T5 (de) 2014-12-31 2017-02-09 Osaka University Planarisierungsbearbeitungsverfahren und Planarisierungsbearbeitungsvorrichtung
JP6187948B1 (ja) 2016-03-11 2017-08-30 東邦エンジニアリング株式会社 平坦加工装置、その動作方法および加工物の製造方法
JP6818614B2 (ja) * 2017-03-31 2021-01-20 株式会社荏原製作所 基板処理装置および基板処理装置を含む基板処理システム
JP7106209B2 (ja) * 2018-04-05 2022-07-26 株式会社ディスコ SiC基板の研磨方法
JP6547146B1 (ja) * 2018-05-11 2019-07-24 東邦エンジニアリング株式会社 加工装置
JP2020035987A (ja) * 2018-08-31 2020-03-05 東邦エンジニアリング株式会社 被加工物の加工方法及び加工装置
CN109571269A (zh) * 2018-12-18 2019-04-05 福建福晶科技股份有限公司 一种去除亚表面损伤层的加工方法
JP6620291B2 (ja) * 2019-04-23 2019-12-18 東邦エンジニアリング株式会社 加工装置
CN117733663B (zh) * 2024-02-20 2024-04-23 浙江大学 一种光电流场驱动团簇催化原子级确定性加工方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146695A (ja) * 2009-12-15 2011-07-28 Osaka Univ 研磨方法及び研磨装置
JP2012064972A (ja) * 2007-10-15 2012-03-29 Ebara Corp 平坦化方法
WO2013084934A1 (ja) * 2011-12-06 2013-06-13 国立大学法人大阪大学 固体酸化物の加工方法及びその装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3837783B2 (ja) 1996-08-12 2006-10-25 森 勇蔵 超純水中の水酸基による加工方法
JP4506399B2 (ja) 2004-10-13 2010-07-21 株式会社荏原製作所 触媒支援型化学加工方法
JP2008136983A (ja) * 2006-12-05 2008-06-19 Osaka Univ 触媒支援型化学加工方法及び加工装置
JP2008081389A (ja) * 2006-08-28 2008-04-10 Osaka Univ 触媒支援型化学加工方法及び装置
EP1894900A3 (en) * 2006-08-28 2010-02-24 Osaka University Catalyst-aided chemical processing method and apparatus
JP5007384B2 (ja) * 2006-10-18 2012-08-22 株式会社荏原製作所 触媒支援型化学加工方法及び装置
US8734661B2 (en) * 2007-10-15 2014-05-27 Ebara Corporation Flattening method and flattening apparatus
JP2013017925A (ja) * 2011-07-08 2013-01-31 Hitachi Cable Ltd 光触媒反応型化学的加工方法及び装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064972A (ja) * 2007-10-15 2012-03-29 Ebara Corp 平坦化方法
JP2011146695A (ja) * 2009-12-15 2011-07-28 Osaka Univ 研磨方法及び研磨装置
WO2013084934A1 (ja) * 2011-12-06 2013-06-13 国立大学法人大阪大学 固体酸化物の加工方法及びその装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J.MURATA ET AL.: "Atomically Smooth Gallium Nitride Surfaces Preparedby Chemical Etching with Platinum Catalyst in Water", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 159, no. 4, 30 January 2012 (2012-01-30), pages H417 - H420, XP055223767 *
See also references of EP3142142A4 *
Y.SANO ET AL.: "Planarization of SiC and GaN Wafers Using Polishing Technique Utilizing Catalyst Surface Reaction", ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, vol. 2, no. 8, 19 June 2013 (2013-06-19), pages N3028 - N3035, XP055196865 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113366A (ja) * 2017-01-12 2018-07-19 国立大学法人大阪大学 触媒表面基準エッチング方法及びその装置

Also Published As

Publication number Publication date
US10163645B2 (en) 2018-12-25
EP3142142A4 (en) 2017-11-08
EP3142142B1 (en) 2023-12-13
JP2015173216A (ja) 2015-10-01
EP3142142C0 (en) 2023-12-13
EP3142142A1 (en) 2017-03-15
US20170069506A1 (en) 2017-03-09
JP6206847B2 (ja) 2017-10-04

Similar Documents

Publication Publication Date Title
JP5963223B2 (ja) ガラス材料の加工方法及びその装置
JP6206847B2 (ja) ワイドバンドギャップ半導体基板の加工方法及びその装置
JP5007384B2 (ja) 触媒支援型化学加工方法及び装置
US7651625B2 (en) Catalyst-aided chemical processing method and apparatus
JP4506399B2 (ja) 触媒支援型化学加工方法
JP7095765B2 (ja) 炭化珪素基板およびその製造方法
JP4982742B2 (ja) 磁性微粒子を用いた触媒化学加工方法及び装置
JP2008081389A (ja) 触媒支援型化学加工方法及び装置
KR20120102109A (ko) 연마 방법, 연마 장치, 및 연마 공구
KR20120009468A (ko) 폴리싱방법, 폴리싱장치 및 GaN 웨이퍼
JP6188152B2 (ja) Si基板の平坦化加工方法及びその装置
JP6797409B2 (ja) 触媒表面基準エッチング方法及びその装置
WO2023136040A1 (ja) 半導体ウェハの表面加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15762449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15125308

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015762449

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015762449

Country of ref document: EP