WO2013077296A1 - 高純度硫酸ニッケルの製造方法 - Google Patents

高純度硫酸ニッケルの製造方法 Download PDF

Info

Publication number
WO2013077296A1
WO2013077296A1 PCT/JP2012/079985 JP2012079985W WO2013077296A1 WO 2013077296 A1 WO2013077296 A1 WO 2013077296A1 JP 2012079985 W JP2012079985 W JP 2012079985W WO 2013077296 A1 WO2013077296 A1 WO 2013077296A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
nickel sulfate
purity
solution
sulfate
Prior art date
Application number
PCT/JP2012/079985
Other languages
English (en)
French (fr)
Inventor
中井 隆行
達也 檜垣
佳智 尾崎
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CA2856341A priority Critical patent/CA2856341C/en
Priority to US14/359,312 priority patent/US9017640B2/en
Priority to CN201280057314.4A priority patent/CN103946401A/zh
Priority to EP12851102.9A priority patent/EP2784166B1/en
Priority to JP2013545916A priority patent/JP5904459B2/ja
Priority to AU2012341556A priority patent/AU2012341556B2/en
Publication of WO2013077296A1 publication Critical patent/WO2013077296A1/ja
Priority to PH12014501159A priority patent/PH12014501159A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • C22B23/0469Treatment or purification of solutions, e.g. obtained by leaching by chemical methods by chemical substitution, e.g. by cementation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention is a method for producing high-purity nickel sulfate that can be used in the field of obtaining high-purity nickel sulfate that can be used for battery materials that are low in impurities, particularly magnesium, manganese, and calcium, from an acidic solution containing nickel. .
  • Nickel is widely used as a material for stainless steel and corrosion resistant alloys, and recently, it is also widely used as a material for nickel metal hydride batteries and lithium ion batteries used in hybrid electric vehicles, mobile phones, personal computers, and the like. Nickel used for such a material is produced by mining ore existing as sulfide ore or oxide ore and smelting it.
  • one method for treating sulfide ore is to put the ore into a furnace and melt it, to separate impurities as slag to obtain a nickel-concentrated mat, dissolve this mat with sulfuric acid or hydrochloric acid, dissolve it Impurities are separated from the solution to obtain a nickel solution, and nickel salts such as nickel sulfate and nickel oxide are produced by means such as neutralization and crystallization.
  • nickel metal may be produced by performing electrolytic collection or the like.
  • ferronickel which is an alloy of nickel and iron, and used as a raw material for stainless steel. It is.
  • nickel sulfate which is one of nickel salts with high purity
  • nickel is obtained as a metal once by a method such as electrowinning, this metal is dissolved again in sulfuric acid, and then the dissolved liquid is concentrated.
  • a method of crystallizing nickel sulfate is also conceivable.
  • obtaining metal requires a considerable amount of electric power and equipment of an appropriate scale, which is not an advantageous method in view of energy efficiency and cost.
  • nickel-containing minerals often contain cobalt at the same time. Since cobalt is also a valuable metal and does not need to coexist with nickel, it is separated and recovered.
  • Patent Document 1 shows an example in which cobalt is extracted by solvent extraction using a trade name PC88A (manufactured by Daihachi Chemical Industry Co., Ltd.) as an extractant to separate nickel and cobalt.
  • PC88A manufactured by Daihachi Chemical Industry Co., Ltd.
  • Patent Document 2 from an aqueous nickel solution containing calcium, magnesium, cobalt and the like as impurities, an alkylphosphonic acid ester containing nickel or an alkylphosphinic acid is used as an extractant, and the impurities in the aqueous nickel solution are extracted and separated.
  • a method for producing a high-purity nickel aqueous solution that does not contain sodium or ammonia is shown.
  • the nickel-containing material used as a raw material contains a large amount of impurities such as iron and aluminum, a large amount of neutralizing agent is required to separate them by a method such as neutralization, and impurities are further precipitated.
  • valuable materials such as nickel and cobalt may co-precipitate and cause loss, and it has been difficult to operate efficiently.
  • the present invention is a process for obtaining a nickel sulfate solution having a high nickel concentration by solvent extraction using an acidic organic extractant.
  • the present invention provides a production method for obtaining high-purity nickel sulfate having a low metal ion such as magnesium or a chlorinated article.
  • a first invention of the present invention for solving such problems is a high-purity nickel sulfate characterized in that an acidic solution containing nickel is treated through at least the following steps (1) to (4): It is a manufacturing method.
  • Sulfurization process Sulfurization process in which a sulfurizing agent is added to an acidic solution containing nickel to obtain a precipitate of nickel sulfide and a liquid after sulfidation.
  • Remelting step (1) A remelting step of preparing a nickel sulfide slurry obtained in the sulfurization step and adding an oxidizing agent to the slurry to obtain a nickel concentrate.
  • Liquid purification step (2) A liquid purification step in which the nickel concentrate obtained in the re-dissolution step is neutralized by the addition of a neutralizing agent and a neutralized starch produced and a nickel concentrate after deironing are obtained.
  • Solvent extraction step (3) A solvent extraction step in which the nickel concentrate after iron removal obtained in the liquid purification step is subjected to solvent extraction to obtain a reverse extraction solution and a nickel sulfate solution.
  • the second invention of the present invention is a method for producing high-purity nickel sulfate, characterized in that the remelting in the remelting step in the first invention is performed in a temperature range of 60 ° C. or higher and 180 ° C. or lower.
  • the oxidant added in the redissolving step in the first and second aspects is one or more oxidants selected from air, oxygen, hydrogen peroxide solution and ozone gas. This is a method for producing high-purity nickel sulfate.
  • neutralization of the liquid purification process in the first to third inventions is performed by adding an alkali as a neutralizing agent and adjusting the pH to a range of 5.0 or more and 6.0 or less. This is a method for producing high-purity nickel sulfate.
  • the fifth invention of the present invention is characterized in that the solvent extraction of the nickel concentrate after iron removal in the solvent extraction step in the first to fourth inventions is performed using an acidic phosphate ester extractant as the extractant. This is a method for producing high-purity nickel sulfate.
  • the sixth invention of the present invention is a method for producing high purity nickel sulfate, characterized in that the nickel sulfate solution obtained in the solvent extraction step in the first to fifth inventions is converted into nickel sulfate crystals through a crystallization step. is there.
  • the seventh invention of the present invention is a method for producing high-purity nickel sulfate, characterized in that the preliminary sulfidation step of the following step (1a) is performed before the sulfidation step in the first to sixth inventions.
  • the nickel-containing acidic solution (also referred to as nickel-containing acidic solution) in the first to seventh aspects is a nickel oxide ore, nickel matte, nickel sulfide, a mixture of nickel and cobalt. Sulfides, crude nickel sulfate produced in the copper smelting process, as well as nickel oxide, nickel hydroxide, nickel carbonate, nickel powder, nickel metal, nickel metal hydride batteries, lithium ion batteries, and defective or in-process products generated in these manufacturing processes A method for producing high-purity nickel sulfate, which is a solution obtained by leaching nickel by adding sulfuric acid or hydrochloric acid to one or more of the above.
  • FIG. 1 is a process diagram showing an example of a method for producing high-purity nickel sulfate. Usually, the process proceeds from sulfurization by adding a sulfiding agent to nickel-containing nickel solution according to the white arrow 1 to produce a high-purity nickel sulfate solution. Manufactured.
  • the impurity element is removed from the nickel-containing material through the process of the “dashed line” frame and discharged out of the system as wastewater or wastewater starch.
  • the reaction behavior was similar to that of nickel, and removal of magnesium from a solution containing nickel was insufficient.
  • the acidic solution containing nickel as a raw material used in the present invention includes nickel oxide ore, nickel matte, nickel sulfide, mixed sulfide of nickel and cobalt, and crude nickel sulfate produced in the copper smelting process.
  • nickel chemical products such as nickel oxide, nickel hydroxide, nickel carbonate, nickel powder, nickel metal, etc.
  • batteries such as nickel metal hydride batteries and lithium ion batteries, and batteries such as nickel metal hydride batteries and lithium ion batteries.
  • a solution obtained by leaching nickel by adding a mineral acid such as sulfuric acid or hydrochloric acid to a material containing nickel widely such as surplus products and defective products generated in the process can be used.
  • the solutions obtained by leaching nickel it is particularly effective to use a solution in which magnesium, manganese and calcium are accumulated or concentrated, or a solution thereof as a part of the acidic solution. Furthermore, when the present invention is applied to a solution having a high magnesium, manganese and calcium concentration and a low nickel concentration, the sulfurizing agent for precipitating nickel as a sulfide can be reduced, which is more economical.
  • the present invention is characterized in that it is produced through at least the following steps (1) to (4). Further, depending on the state of the acidic solution of the raw material, when the step (1a) is added, This makes it possible to produce highly efficient high-purity nickel.
  • FIG. 2 is a smelting process diagram of the present invention.
  • Sulfurization step includes description of (1a) preliminary sulfidation step
  • a nickel component in the acidic solution is precipitated as nickel sulfide by adding a sulfiding agent to the acidic solution containing nickel described above and sulfiding.
  • a known method can be used for this sulfurization. For example, it can be carried out by adding a gas or liquid sulfiding agent while measuring the oxidation-reduction potential (ORP) and pH of the acidic solution.
  • ORP oxidation-reduction potential
  • the amount of sulfiding agent added should be limited to the extent that nickel does not precipitate prior to the sulfiding step of sulfiding nickel. Or by applying a preliminary sulfidation step (1a) in which only impurities such as copper, zinc and lead are selectively separated in advance by strictly controlling the oxidation-reduction potential of the acidic solution. Is preferable.
  • nickel when nickel is precipitated as sulfide, magnesium, manganese, calcium, chromium, aluminum, sodium, potassium, etc. do not form sulfide and remain in the solution except for part due to entrainment and adhesion. Therefore, most can be separated from nickel.
  • the sulfurizing agent to be used is not particularly limited, but a hydrogen sulfide gas, sodium hydrosulfide, sodium sulfide and the like which can be easily obtained in large quantities can be used.
  • the sulfiding temperature in the sulfiding step and pre-sulfiding step is not particularly limited, but is preferably 40 to 80 ° C. If it is less than 40 degreeC, reaction time will become long too much and the installation capacity
  • the nickel sulfide and the sulfidized liquid are separated into solid and liquid.
  • the solid-liquid separation method is not particularly limited, and the solid-liquid separation device to be used is not particularly limited, and a pressure filtration device, a suction filtration device, a decanter, and the like can be used.
  • a part of the collected nickel sulfide containing nickel as a main component can be repeated as a seed crystal in the sulfidation step, so that the particle size of the sulfide can be expanded and the adhesion and entrainment of impurities can be suppressed.
  • a pressurized container such as an autoclave and giving a temperature of 160 ° C. or higher, for example, is advantageous because it can dissolve quickly.
  • the sulfur of the sulfide is oxidized to generate sulfuric acid without adding sulfuric acid as described above, and nickel sulfate is easily obtained. be able to.
  • the leaching temperature exceeds 200 ° C. the reaction proceeds more rapidly, and the remaining or mixed iron forms insoluble iron oxide and can be efficiently separated from nickel.
  • a container made of a material that can withstand temperatures exceeding 200 ° C. is extremely expensive, increases investment, and requires cost and labor for heating and maintenance. Therefore, it is desirable to operate at a temperature of about 160 to 180 ° C., which can be handled more inexpensively and easily.
  • the target pH for neutralization is preferably in the range of 5.0 to 6.0. If the pH is less than 5.0, the removal of aluminum is insufficient. On the other hand, if the pH exceeds 6.0, precipitation starts up to nickel, resulting in a loss.
  • the neutralizing agent to be used is not specifically limited, Sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, etc. can be used.
  • the acidic solution obtained by acid leaching of nickel sulfide contains cobalt that is similar in chemical behavior to nickel, but cobalt is still present after the purification step. Therefore, the separation is necessary.
  • the extractant used for solvent extraction an acidic phosphate ester-based extractant can be used.
  • Nickel sulfate can be produced.
  • the high-purity nickel sulfate produced according to the present invention should be provided in the form of a nickel sulfate solution or as nickel sulfate crystals formed using a general crystallization method such as crystallization or spray drying. Can do.
  • the neutralization in the waste water treatment step is preferably adjusted to a pH of about 7.5 to 9.
  • a method of adding an alkali to a post-sulfurization solution obtained after sulfiding an acidic solution, separating impurities that did not produce starch in the sulfidation step, and draining the resulting post-neutralization solution can also be used.
  • nickel sulfide obtained in the sulfiding step (its composition is shown in Table 2) is fractioned at 200 Dry-g, and pure water is added to this to obtain a mixed sulfide slurry having a slurry concentration of about 200 g / L. 1 liter of was prepared.
  • the prepared mixed sulfide slurry was charged into an autoclave apparatus, and stirred from 750 to 1000 revolutions per minute while being heated to maintain the temperature in the container at 160 to 170 ° C., from an oxygen cylinder. Pure oxygen was blown in at a flow rate of 0.43 liters per minute for 4 hours to redissolve the mixed sulfide. A small sample was taken out from the container after 2.5 hours and 3.3 hours had elapsed. After completion of the 4-hour blowing and re-dissolution reaction, the autoclave was cooled, the leached slurry was taken out, filtered through Nutsche, and separated into a leaching residue and a nickel concentrate.
  • the composition of the obtained nickel concentrate was Ni: 120 g / L, Co: 8 g / L, Fe: 210 mg / L.
  • the leaching rate of nickel in the mixed sulfide charged from the analytical value of the residue it was well leached to 99% or more, and 99.9% could be leached especially by leaching at 170 ° C. for 4 hours.
  • Table 3 shows the change in nickel leaching rate depending on the reaction time for each temperature and applied pressure. As shown in Table 3, it can be seen that a nickel leaching rate of 99% or more can be obtained even in about 2.5 to 3.3 hours.
  • the separatory funnel containing the organic solvent and the post-purification liquid was shaken for 10 minutes, allowed to stand, extracted, and then separated into an organic phase and an aqueous phase.
  • components other than nickel, such as magnesium and cobalt are extracted into an organic solvent, and nickel corresponding to that component is transferred to the nickel sulfate solution in advance.
  • Pre-sulfurization process 1800 ml of a nickel-containing sulfuric acid acidic solution containing copper, zinc, and a composition shown in Table 6 was collected, and the liquid temperature was kept at 60 ° C. using a heater. The sulfurizing agent was added while stirring at 300 rpm using a stirrer. Hydrogen sulfide gas was used as the sulfiding agent. A sealed container was used for the reaction.
  • Hydrogen sulfide was added in an amount of 2.3 equivalents with respect to copper and zinc contained in the solution.
  • the slurry after the reaction was sampled, filtered, and quantitative analysis of each element was performed by ICP emission spectrometry.
  • a nickel sulfate solution having a composition shown in Table 6 was prepared by the same procedure as in Example 1.
  • Table 6 shows that a high-purity nickel sulfuric acid solution can be obtained from a nickel-containing acidic solution containing a large amount of raw materials copper and zinc.
  • Example 1 A hydrochloric acid acidic solution obtained by leaching a mixed sulfide obtained by sulfidation roasting of nickel and cobalt with sulfur using chlorine gas, which is a known method, is subjected to a solvent extraction step under the same conditions as in Example 1 and back-extracted. Thus, a nickel sulfate solution having the composition shown in Table 7 was obtained. All impurity grades such as copper, magnesium and chloride ions were higher than in the case of the present invention shown in Table 4.
  • the present invention using the sulfidation process can provide a high-purity nickel sulfate solution with low impurity quality.

Abstract

 酸性有機抽出剤を用いた溶媒抽出により高ニッケル濃度の硫酸ニッケル溶液を得る工程において、抽出剤の濃度と処理時のpH濃度を調整する事で、不純物、特にマグネシウムや塩化物品位が低く、高純度な硫酸ニッケルを得る製造方法の提供を目的とする。 ニッケルを含有する酸性溶液を、ニッケルを含有する酸性溶液に硫化剤を添加し、ニッケル硫化物の沈澱と硫化後液とを得る硫化工程、硫化工程で得たニッケル硫化物のスラリーを作製し、前記スラリーに酸化剤を添加して、ニッケル濃縮液を得る再溶解工程、再溶解工程で得たニッケル濃縮液に、中和剤の添加による中和を施して生成する中和澱物と脱鉄後ニッケル濃縮液を得る浄液工程、浄液工程で得た脱鉄後ニッケル濃縮液を溶媒抽出し、逆抽液と硫酸ニッケル溶液とを得る溶媒抽出工程の各工程を少なくとも経て処理することを特徴とする高純度硫酸ニッケルの製造方法。

Description

高純度硫酸ニッケルの製造方法
 本発明は、ニッケルを含有する酸性溶液から、不純物、特にマグネシウム、マンガン、カルシウムが少ない電池材料に使用できる高純度な硫酸ニッケルを得ようとする分野に利用できる高純度硫酸ニッケルの製造方法である。
 ニッケルは、ステンレスや耐蝕合金の材料として広く用いられるほか、最近ではハイブリッド電気自動車、携帯電話、パソコンなどに用いられるニッケル水素電池やリチウムイオン電池の材料としても多く使われている。
 このような材料に用いられるニッケルは、硫化物鉱や酸化物鉱として存在する鉱石を採掘し、製錬して製造される。
 例えば、硫化鉱石を処理する場合の一つの方法として、鉱石を炉に入れて熔融し、スラグとして不純物を分離してニッケルを濃縮したマットを得、このマットを硫酸や塩酸で溶解し、その溶解溶液から不純物を分離してニッケル溶液を得、中和や晶析等の手段によって硫酸ニッケルや酸化ニッケルなどのニッケル塩類を製造する。あるいは、電解採取等を行ったりしてニッケルメタルを製造する場合がある。
 一方、酸化鉱石を処理する場合の一つの方法として、例えばコークスなどの還元剤と共に加熱熔融してスラグと分離し、ニッケルと鉄の合金であるフェロニッケルを得てステンレスの原料とすることが行なわれている。
 しかし、このような製錬方法は、いずれも多量のエネルギーを必要とし、不純物の分離に多くのコストと手間を要する。
 特に、高品質な鉱石が枯渇しつつある近年は、その確保が困難となり、その結果入手できる鉱石中のニッケル品位は低下傾向となり、これらの低品位原料からニッケルを得るのには、さらにコストと手間を要するようになってきた。
 そこで、最近は従来には原料に用いられなかった低品位の酸化鉱石を高温加圧下で酸浸出し、その浸出溶液を消石灰等のアルカリで中和してニッケル塩類やニッケルメタルを得る方法が開発されてきた。
 この方法は、低品位の資源を有効かつ比較的少ないエネルギーで有効に利用できる技術であるが、上記のようなニッケル塩類を得ようとする場合、従来の製錬方法では見られなかった新たな課題も生じてきている。
 例えば、鉱石に含有されるマグネシウムやマンガン等は、上記の炉を用いた製錬方法では、大部分がスラグに分配され、マットへの分配は少なくなる。その結果、ニッケル塩類への混入はごくわずかな量にとどまり、ほとんど問題にならなかった。
 これに対して、高温加圧浸出を用いた製錬方法では、マグネシウムやマンガンは酸によってよく浸出され、その結果ニッケル塩類への混入も増加する。また高温加圧浸出では、得た浸出スラリーにアルカリを添加してpHを調整する操作が行われるが、中和剤に使われるカルシウムのニッケル塩類への混入の影響も無視できない。
 特に、ニッケルをリチウムイオン電池やニッケル水素電池の材料に用いる場合、マグネシウムやカルシウムや塩化物イオンが共存すると、製品に仕上げた電池の特性に大きく影響するため、ニッケル塩を製造する段階から混入をできるだけ排除した高純度ニッケル塩が望ましいとされる。
 ところで、ニッケル塩の一つである硫酸ニッケルを高純度で得るには、例えばニッケルを電解採取などの方法によって一度メタルとして得、このメタルを再度硫酸に溶解し、次いで溶解した液を濃縮するなどして硫酸ニッケルを晶析させる方法も考えられる。しかし、メタルを得るには相当な電力と相応の規模の設備を必要とし、エネルギー効率やコストを考えると有利な方法ではない。
 さらに、ニッケルを含む鉱物には同時にコバルトも含有する場合が多い。コバルトも有価金属であり、ニッケルと共存する必要はないので、分離してそれぞれを回収することが行なわれる。
 硫酸溶液中のニッケルとコバルトとを分離する効率的かつ実用的な方法として、溶媒抽出が用いられることが多い。例えば、特許文献1には、商品名PC88A(大八化学工業株式会社製)を抽出剤に用いた溶媒抽出によってコバルトを抽出し、ニッケルとコバルトとを分離する例が示されている。
 この抽出剤にPC88Aを用いた場合、マグネシウムやカルシウムの抽出挙動も、ニッケルの挙動に類似する。このため、ニッケルが高濃度で含有される溶液を溶媒抽出に付した場合、マグネシウムやカルシウムの抽出率が低下するなどマグネシウムやカルシウムを分離する効率が低下する問題を生じてしまう。
 一方、特許文献2には、カルシウム、マグネシウム、コバルト等を不純物として含むニッケル水溶液から、ニッケルを含有するアルキルホスホン酸エステルまたはアルキルホスフィン酸を抽出剤として用い、ニッケル水溶液中の不純物を抽出分離し、かつナトリウムやアンモニアを含まない高純度ニッケル水溶液を製造する方法が示されている。
 特許文献2に提案される予め高いpHでニッケルを有機溶媒中へ抽出し、このニッケルを抽出した有機溶媒と不純物を含むニッケル溶液を接触させる方法によって、ニッケルより抽出されやすい元素が有機相へ、有機中のニッケルが水相側へ移行する交換反応が起こり、ニッケル溶液中の不純物を除去することができる。
 また、pH調整剤に含まれるナトリウムなどの不純物元素がニッケル溶液へ混入し、製品を汚染することを防止する方法としても有効である。
 しかしながら、特許文献2に提案される硫酸ニッケルの浄液工程においても、溶液中のマグネシウムは、ニッケルと似た挙動を持ち、マグネシウムを除去することは困難であった。
 また、原料となるニッケル含有物に鉄やアルミニウムなどの不純物が大量に含有されている場合、これらを中和などの方法で分離するには大量の中和剤を必要とし、さらに不純物が沈澱する際にニッケルやコバルトなどの有価物も共沈してロスとなるなどの可能性もあり、効率的な操業を行なうことは容易でなかった。
 このような理由により、マグネシウムなどの金属イオンや塩化物イオンが多く含有される硫酸酸性溶液からマグネシウムや塩化物品位が低く、電池原料に使用できる高純度な硫酸ニッケルを効率よく得られる実用的な方法が望まれていた。
特開平10-310437号公報 特開平10-30135号公報
 このような状況に鑑み本発明は、酸性有機抽出剤を用いた溶媒抽出により高ニッケル濃度の硫酸ニッケル溶液を得る工程において、抽出剤の濃度と処理時のpH濃度を調整する事で、不純物、特にマグネシウムなどの金属イオンや塩化物品位が低く、高純度な硫酸ニッケルを得る製造方法を提供するものである。
 このような課題を解決するための本発明の第1の発明は、ニッケルを含有する酸性溶液を、下記(1)~(4)の工程を少なくとも経て処理することを特徴とする高純度硫酸ニッケルの製造方法である。
[工程]
(1)硫化工程
 ニッケルを含有する酸性溶液に硫化剤を添加し、ニッケル硫化物の沈澱と硫化後液とを得る硫化工程。
(2)再溶解工程
 (1)硫化工程で得たニッケル硫化物のスラリーを作製し、前記スラリーに酸化剤を添加して、ニッケル濃縮液を得る再溶解工程。
(3)浄液工程
 (2)再溶解工程で得たニッケル濃縮液に、中和剤の添加による中和を施して生成した中和澱物と脱鉄後ニッケル濃縮液を得る浄液工程。
(4)溶媒抽出工程
 (3)浄液工程で得た脱鉄後ニッケル濃縮液を溶媒抽出し、逆抽液と硫酸ニッケル溶液とを得る溶媒抽出工程。
 本発明の第2の発明は、第1の発明における再溶解工程の再溶解が、60℃以上、180℃以下の温度範囲で行われることを特徴とする高純度硫酸ニッケルの製造方法である。
 本発明の第3の発明は、第1及び第2の発明における再溶解工程で添加される酸化剤が、空気、酸素、過酸化水素溶液およびオゾンガスから選択される1種類以上の酸化剤であることを特徴とする高純度硫酸ニッケルの製造方法である。
 本発明の第4の発明は、第1から第3の発明における浄液工程の中和が、中和剤のアルカリを添加して、そのpHを5.0以上6.0以下の範囲に調整して行われることを特徴とする高純度硫酸ニッケルの製造方法である。
 本発明の第5の発明は、第1から第4の発明における溶媒抽出工程の脱鉄後ニッケル濃縮液に対する溶媒抽出が、抽出剤に酸性燐酸エステル系抽出剤を用いて行われることを特徴とする高純度硫酸ニッケルの製造方法である。
 本発明の第6の発明は、第1から第5の発明における溶媒抽出工程で得た硫酸ニッケル溶液を晶析工程を経て硫酸ニッケル結晶とすることを特徴とする高純度硫酸ニッケルの製造方法である。
 本発明の第7の発明は、第1から第6の発明における硫化工程を施す前に、下記工程(1a)の予備硫化工程を施すことを特徴とする高純度硫酸ニッケルの製造方法である。
 工程(1a);ニッケルを含有する酸性溶液に硫化剤を添加し、ニッケルより硫化しやすい不純物を予め硫化して分離する予備硫化工程。
 本発明の第8の発明は、第1から第7の発明におけるニッケルを含有する酸性溶液(ニッケル含有酸性溶液とも称す。)が、ニッケル酸化鉱、ニッケルマット、ニッケル硫化物、ニッケルとコバルトの混合硫化物、銅製錬工程で産出する粗硫酸ニッケル、並びに酸化ニッケル、水酸化ニッケル、炭酸ニッケル、ニッケル粉、ニッケルメタル、ニッケル水素電池、リチウムイオン電池およびこれらの製造工程で発生した不良品あるいは仕掛品のいずれか1種類以上のものに、硫酸もしくは塩酸を加えてニッケルを浸出して得られた溶液であることを特徴とする高純度硫酸ニッケルの製造方法である。
(a)二次電池の原料に適正なマグネシウム品位の低い硫酸ニッケルを得ることができる。
(b)ニッケル酸化鉱石を酸浸出して得た酸性溶液からも高純度な硫酸ニッケルを直接得ることができる。
(c)原料品位や操業負荷が変動しても得られる硫酸ニッケルの品質が安定する。
高純度硫酸ニッケルの製造方法の一例を示す工程図である。 本発明における硫酸ニッケルの製造工程を示す製錬工程図である。
 以下に、本発明の高純度硫酸ニッケルの製造方法を説明する。
 本発明は、ニッケルやマグネシウムなどの金属イオンを含有する硫化物からニッケル水素電池やリチウムイオン電池の原材料にも使用できる高純度な硫酸ニッケルを得るものである。
 図1は、高純度硫酸ニッケルの製造方法の一例を示す工程図で、ニッケルを含むニッケル溶液への硫化剤添加による硫化から通常、白抜き矢印1に従って工程が進行して高純度硫酸ニッケル溶液が製造される。その製造過程中において、不純物元素は「破線」枠の工程を経ることによって、ニッケル含有物から除去され、排水若しくは排水澱物として系外に排出されるが、不純物元素の中のマグネシウムは、溶液中ではニッケルと反応挙動が似ており、ニッケルを含む溶液からのマグネシウムの除去は不十分な状況であった。
 そのような中で、本発明で用いる原料となるニッケルを含有する酸性溶液には、ニッケル酸化鉱、ニッケルマット、ニッケル硫化物、ニッケルとコバルトの混合硫化物、銅製錬工程で産出した粗硫酸ニッケル、並びに酸化ニッケル、水酸化ニッケル、炭酸ニッケル、ニッケル粉などのニッケル化成品、ニッケルメタルなど、さらにニッケル水素電池やリチウムイオン電池などの電池、およびニッケル水素電池やリチウムイオン電池などの電池を製造する工程で発生した余剰品や不良品など幅広くニッケルを含有する材料に、硫酸や塩酸などの鉱酸を加えてニッケルを浸出して得られた溶液を用いることができる。
 これらのニッケルを浸出して得られた溶液のなかでも、特にマグネシウム、マンガン、カルシウムが蓄積あるいは濃縮した溶液、またはその溶液を酸性溶液の一部に用いると効果的である。
 さらに、マグネシウム、マンガン、カルシウム濃度が高く、ニッケル濃度が低い溶液に、本発明を適用するほうが、ニッケルを硫化物として沈殿させるための硫化剤の低減が図れ、経済的でもある。
 本発明は、以下の(1)から(4)の工程を少なくとも経て、製造されることを特徴とするもので、さらに原料の酸性溶液の状態によっては、(1a)の工程を加えると、さらに効率性の高い高純度ニッケルの製造を可能とするものである。
[製造工程]
(1)硫化工程
 ニッケルを含有する酸性溶液に硫化剤を添加し、ニッケル硫化物の沈澱と硫化後液とを得る硫化工程。
(2)再溶解工程
 (1)の硫化工程で得たニッケル硫化物のスラリーを作製し、前記スラリーに酸化剤を添加して、ニッケル濃縮液を得る再溶解工程。
(3)浄液工程
 (2)の再溶解工程で得たニッケル濃縮液に、中和剤の添加による中和工程を施して生成する中和澱物と脱鉄後ニッケル濃縮液を得る浄液工程。
(4)溶媒抽出工程
 (3)の浄液工程で得た脱鉄後ニッケル濃縮液を溶媒抽出し、逆抽液と硫酸ニッケル溶液とを得る溶媒抽出工程。
(1a)予備硫化工程
 ニッケルを含有する酸性溶液に硫化剤を添加し、ニッケルより硫化しやすい不純物を予め硫化して分離する予備硫化工程。
 以下、各製造工程の詳細を、図2を用いて説明する。図2は、本発明の製錬工程図である。
(1)硫化工程[(1a)予備硫化工程の説明を含む]
 第1の硫化工程では、先に示したニッケルを含む酸性溶液に、硫化剤を添加して硫化することで、酸性溶液中のニッケル成分を硫化ニッケルとして沈殿させる。
 この硫化は、公知の方法を用いることができる。例えば酸性溶液の酸化還元電位(ORP)とpHを測定しながらガスあるいは液状の硫化剤を添加することで行なうことができる。
 このとき、コバルト、亜鉛、銅、鉛など硫化物を形成しやすいものはニッケルと同じように硫化物を生成して沈殿する。そのため、特に銅、亜鉛、鉛などの不純物を多く含有する酸性溶液をスタート原料に用いる場合には、ニッケルを硫化する硫化工程に先立って、ニッケルが沈澱しない程度に硫化剤の添加量を制限したり、酸性溶液の酸化還元電位を厳密に制御するなどして銅、亜鉛、鉛などの不純物だけを事前に選択的に分離する予備硫化工程(1a)を施すことで、以後の工程での負荷が軽減できて好ましい。
 なお、ニッケルを硫化物として沈澱させた場合、マグネシウム、マンガン、カルシウム、クロム、アルミニウム、ナトリウム、カリウムなどは硫化物を形成せず、巻き込みや付着に起因する一部を除いて溶液中に残留するため、大部分はニッケルと分離できる。
 使用する硫化剤は、特に限定はないが、硫化水素ガス、水硫化ソーダ、硫化ナトリウムなど大量かつ容易に入手できるものを用いることができる。
 硫化工程、予備硫化工程の硫化温度は、特に限定はされないが、40~80℃が好ましい。
 40℃未満では反応時間が長くなりすぎ、必要な処理量を確保するための設備容量が増加する。また、80℃を超えると反応容器や配管に用いられる塩ビやFRPなど樹脂系の材料が使用できないため、設備の材質が制限され、設備投資が増加する。
 硫化終了後、ニッケル硫化物と硫化後液とを固液分離する。
 この固液分離の方法は、特に限定せず、使用する固液分離装置は、特に限定されるものではなく、加圧濾過装置、吸引濾過装置、デカンターなどを用いることができる。
 回収されたニッケルを主成分とするニッケル硫化物の一部は、硫化工程に種晶として繰り返すことで、硫化物の粒径を拡大し、不純物の付着や巻き込みを抑制することができる。
(2)再溶解工程
 次に、(1)硫化工程で得た硫化物に、塩酸や硫酸などの鉱酸を加え、スラリー化した後、酸化剤を添加し、ニッケルを再び酸溶解して浸出する。この浸出する際は、例えば硫酸を濃度100~300g/lとなるように調整した溶液に硫化物を入れてスラリーを作製し、そのスラリーに酸化剤を添加しながら60~100℃に加熱することで行うことができる。
 また、オートクレーブなどの加圧容器を使用して、例えば160℃以上の温度を与えると、迅速に溶解することができ有利である。また、加圧容器を使用して100℃以上の温度で浸出する場合、上記のような硫酸を添加しなくても、硫化物の硫黄が酸化されて硫酸を生成し、容易に硫酸ニッケルを得ることができる。
 浸出温度は、高いほうが迅速に反応を進行させる。さらに浸出する温度が200℃を超えると、より迅速に反応が進行し、かつ残存あるいは混入する鉄が不溶性の酸化鉄を生成してニッケルと効率よく分離できる。
 しかし、200℃を越える温度に耐える材質の容器は、きわめて高価で投資を増加させ、かつ加熱に要するコストや維持整備に費用と手間を要する。したがって、より安価手軽に取り扱える160~180℃程度の温度で操業することが望ましい。
(3)浄液工程
 前工程の(2)再溶解工程では、硫化物に巻き込まれたり、付着したりした不純物も液中へ溶出するが、硫化物は微細なため無視できない量になることが多い。
 そのため固液分離後の不純物を含む液は、アルカリを添加する中和処理により鉄、アルミニウムなどの重金属を中和澱物として沈殿させる浄液工程を施す。
 中和する際に目標とするpHは5.0~6.0の範囲とすることが望ましい。pHが5.0未満ではアルミニウムの除去が不十分であり、一方pH6.0を超えるとニッケルまで沈澱を開始しロスとなるので好ましくない。
 使用する中和剤は特に限定されるものではないが、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウムなどを用いることができる。
(4)溶媒抽出工程
 次に、ニッケル硫化物を酸浸出して得られた酸性溶液にはニッケルと化学的な挙動が類似したコバルトが含有されるが、浄液工程を経た後にもコバルトは存在するため、その分離が必要となる。
 ニッケルとコバルトとの分離は、浄液工程を経た溶液に溶媒抽出を行うのが効果的である。
 溶媒抽出に用いる抽出剤には、酸性燐酸エステル系の抽出剤を用いることができる。
 以上説明した各工程を経ることにより硫酸ニッケルを製造するプロセスの系内からマグネシウム、マンガン、カルシウムを選択的に排出することが可能となり、製造プロセス内での不純物の蓄積を抑制し、高純度の硫酸ニッケルを製造することができる。
 また、本発明により製造される高純度の硫酸ニッケルは、硫酸ニッケル溶液の形での提供や、晶析やスプレードライ等の一般的な結晶化方法を用いて形成した硫酸ニッケル結晶として提供することができる。
 さらに本発明では、(4)溶媒抽出工程における抽残液に、アルカリを加えて中和し、マグネシウムなどの不純物を沈澱させて分離し、その分離後の液をニッケル硫化物を再浸出する工程の原液として、再利用しても良く、そのように不純物を分離した後の液を繰り返し利用することによって、プロセスにおける液量の増加を抑制し、同時に排水処理工程での不純物除去の負荷を軽減できる。
 排水処理工程での中和は、pHを7.5~9程度の範囲に調整することが好ましい。
 また、同様に、酸性溶液を硫化した後に得られる硫化後液にアルカリを添加して、硫化工程で澱物を生成しなかった不純物を分離し、得られた中和後液を排水処理する方法も用いることができる。
 以下、実施例を用いて本発明を説明する。
 [硫化工程]
 表1に示す組成のニッケルを含有する硫酸酸性溶液を400ml分取し、ウォーターバスを用いて液温を40℃に維持した。スターラーを用いて300rpmで撹拌しながら、硫化剤を添加した。なお、硫化剤には硫化ナトリウム9水和物を水に溶解し500g/Lに調整した液を使用した。
 この硫化反応中は、濃度500g/Lの硫酸を添加し、pHを3.0に保持した。次に、硫化ナトリウム溶液を136ml添加し後、攪拌しながらスラリーをサンプリングし、濾過後、ICP発光分光分析法により各元素の定量分析を行なった。
 硫化後液は、表1に示すようにニッケルおよびコバルトが99%以上沈殿したのに対し、マグネシウムやカルシウムが溶液から分離したのは3%未満と少なく、大部分は溶液に残留し、硫化によってマグネシウムやカルシウムと分離できることがわかった。
Figure JPOXMLDOC01-appb-T000001
[再溶解工程]
 次に、硫化工程で得られたニッケル硫化物(その組成を表2に示す。)を200Dry-g分取し、これに純水を加えてスラリー濃度が約200g/Lとなる混合硫化物スラリーを1リットル作製した。
Figure JPOXMLDOC01-appb-T000002
 作製した混合硫化物スラリーを、オートクレーブ装置内に装入し、攪拌機を毎分750~1000回転で撹拌しつつ、加熱して容器内の温度を160~170℃に保持した状態で、酸素ボンベから純酸素を毎分0.43リットルの流量で4時間にわたって吹込み、混合硫化物を再溶解した。途中2.5時間と3.3時間経過後に容器内から少量のサンプルを取り出した。
 4時間の吹き込み、再溶解の反応が終了後、オートクレーブを冷却して浸出スラリーを取り出し、ヌッチェで濾過し、浸出残渣とニッケル濃縮液とに分離した。
 得られたニッケル濃縮液の組成は、Ni:120g/L,Co:8g/L,Fe:210mg/Lであった。
 残渣の分析値から装入した混合硫化物中のニッケルの浸出率を計算するといずれも99%以上とよく浸出されており、特に170℃で4時間浸出することで99.9%を浸出できた。
 なお、表3に反応時間によるニッケル浸出率の変化を温度、付与圧力毎に示す。表3に示されるように、2.5時間から3.3時間程度でも99%以上のニッケル浸出率が得られることがわかる。
Figure JPOXMLDOC01-appb-T000003
[浄液工程]
 次に、得られたニッケル濃縮液に消石灰を添加し、pHを5.0~6.0の範囲に調整して浄液後液とした。この調整後、濾瓶とヌッチェを用いて中和後液(脱鉄後ニッケル濃縮液)と中和澱物とに固液分離し、ICPで分析した。
 表4に、その結果を示すが、中和によりニッケル濃縮液に共存した鉄、クロム、銅、アルミなどを効果的に低減できることが確認できた。
Figure JPOXMLDOC01-appb-T000004
[溶媒抽出工程]
 次いで、pH調整後の浄液後液100mlを分液ロートに分取し、予めニッケルを抽出した有機溶媒を、有機(O)と溶液(A)との体積比率がO/A=3.5となるように添加した。
 なお、上記の有機溶媒は、酸性燐酸エステル系の抽出剤(大八化学工業株式会社製「商品名:PC-88A」)を、希釈剤(JX日鉱日石エネルギー株式会社製「商品名:テクリーンN20」)を体積比で20:80となるように混合し、これを硫酸ニッケル溶液と接触させて有機溶媒中のニッケル濃度が15g/Lになるように調整したものを使用した。
 次に、有機溶媒と浄液後液を入れた分液ロートを10分間振とう、静置、抽出後に、有機相と水相とに分離した。この抽出操作によりマグネシウムやコバルトなどニッケル以外の成分が有機溶媒中に抽出され、それに相当する分の予め有機溶媒中に含有していたニッケルが硫酸ニッケル溶液に移行する。
 引き続き、抽出後有機相にpH4~4.5の範囲に調整した100mlの硫酸溶液を添加して振とうして、有機溶媒中に含有するニッケル以外の成分を逆抽出し、逆抽出後有機溶媒と逆抽液とを得た。
 その結果、表5に示すように、ニッケルに対するマグネシウムの存在量を6分の1に低減した高純度な硫酸ニッケル溶液を得ることができた。
Figure JPOXMLDOC01-appb-T000005
 [予備硫化工程]
 表6に示す組成の銅、亜鉛、含むニッケル含有硫酸酸性溶液を1800ml分取し、ヒーターを用いて液温を60℃に保持した。攪拌機を用いて300rpmで撹拌しながら、硫化剤を添加した。なお、硫化剤には硫化水素ガスを使用した。反応には密閉型容器を使用した。
 硫化水素は溶液に含有する銅、亜鉛に対して2.3当量添加した。反応後のスラリーをサンプリングし、濾過後、ICP発光分光分析法により各元素の定量分析を行なった。
 予備硫化後液は、表6に示すように銅の99%以上、亜鉛の80%以上が沈殿したのに対し、ニッケルは、その大部分が予備硫化後液に残留し、予備硫化によって銅、亜鉛と分離できることがわかった。
Figure JPOXMLDOC01-appb-T000006
 以下、この予備硫化後液をニッケル含有酸性溶液として用い、実施例1と同様の手順によって、表6に併せて組成が示される硫酸ニッケル溶液を作製した。
 表6より、原料の銅、亜鉛を多く含むニッケル含有酸性溶液から高純度のニッケル硫酸溶液が得られることがわかった。
(比較例1)
 ニッケルとコバルトを硫黄と共に硫化焙焼して得た混合硫化物を公知の方法である塩素ガスを用いて浸出した塩酸酸性溶液を、実施例1と同じ条件で溶媒抽出工程に付し、逆抽出して表7に示す組成の硫酸ニッケル溶液を得た。
 銅、マグネシウム、塩化物イオンなどいずれの不純物品位も表4に示す本発明の場合に比べて高くなっていた。
Figure JPOXMLDOC01-appb-T000007
 すなわち硫化工程を用いた本発明により、上記の不純物品位の低い高純度な硫酸ニッケル溶液が得られることがわかった。

Claims (8)

  1.  ニッケルを含有する酸性溶液を下記(1)~(4)の工程を少なくとも経て処理することを特徴とする高純度硫酸ニッケルの製造方法。
    [工程]
    (1)硫化工程
     ニッケルを含有する酸性溶液に硫化剤を添加し、ニッケル硫化物の沈澱と硫化後液とを得る硫化工程。
    (2)再溶解工程
     (1)の硫化工程で得たニッケル硫化物のスラリーを作製し、前記スラリーに酸化剤を添加して、ニッケル濃縮液を得る再溶解工程。
    (3)浄液工程
     (2)の再溶解工程で得たニッケル濃縮液に、中和剤の添加による中和を施して生成する中和澱物と脱鉄後ニッケル濃縮液を得る浄液工程。
    (4)溶媒抽出工程
     (3)の浄液工程で得た脱鉄後ニッケル濃縮液を溶媒抽出し、逆抽液と硫酸ニッケル溶液とを得る溶媒抽出工程。
  2.  (2)の再溶解工程における再溶解が、60℃以上、180℃以下の温度範囲で行われることを特徴とする請求項1記載の高純度硫酸ニッケルの製造方法。
  3.  (2)の再溶解工程で添加される酸化剤が、空気、酸素、過酸化水素溶液およびオゾンガスから選択される1種類以上の酸化剤であることを特徴とする請求項1又は2に記載の高純度硫酸ニッケルの製造方法。
  4.  (3)の浄液工程における中和が、中和剤のアルカリを添加してpHを5.0以上、6.0以下の範囲に調整して行われることを特徴とする請求項1~3のいずれか1項に記載の高純度硫酸ニッケルの製造方法。
  5.  工程(4)の溶媒抽出工程における脱鉄後ニッケル濃縮液に対する溶媒抽出が、抽出剤に酸性燐酸エステル系抽出剤を用いて行われることを特徴とする請求項1~4のいずれか1項に記載の高純度硫酸ニッケルの製造方法。
  6.  工程(4)の溶媒抽出工程で得た硫酸ニッケル溶液を、晶析工程を経て硫酸ニッケル結晶とすることを特徴とする請求項1~5のいずれか1項に記載の高純度硫酸ニッケルの製造方法。
  7.  工程(1)の硫化工程を施す前に、下記工程(1a)の予備硫化工程を施すことを特徴とする請求項1~6のいずれか1項に記載の高純度硫酸ニッケルの製造方法。
     工程(1a);ニッケルを含有する酸性溶液に硫化剤を添加し、ニッケルより硫化しやすい不純物を予め硫化して分離する予備硫化工程。
  8.  前記ニッケルを含有する酸性溶液が、ニッケル酸化鉱、ニッケルマット、ニッケル硫化物、ニッケルとコバルトの混合硫化物、銅製錬工程で産出する粗硫酸ニッケル、並びに酸化ニッケル、水酸化ニッケル、炭酸ニッケル、ニッケル粉、ニッケルメタル、ニッケル水素電池、リチウムイオン電池およびこれらの製造工程で発生した不良品あるいは仕掛品のいずれか1種類以上のものに、硫酸もしくは塩酸を加えてニッケルを浸出して得られた溶液であることを特徴とする請求項1~7のいずれか1項に記載の高純度硫酸ニッケルの製造方法。
PCT/JP2012/079985 2011-11-22 2012-11-19 高純度硫酸ニッケルの製造方法 WO2013077296A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2856341A CA2856341C (en) 2011-11-22 2012-11-19 Method for producing high-purity nickel sulfate
US14/359,312 US9017640B2 (en) 2011-11-22 2012-11-19 Method for producing high-purity nickel surface
CN201280057314.4A CN103946401A (zh) 2011-11-22 2012-11-19 高纯度硫酸镍的制造方法
EP12851102.9A EP2784166B1 (en) 2011-11-22 2012-11-19 Method for producing high-purity nickel sulfate
JP2013545916A JP5904459B2 (ja) 2011-11-22 2012-11-19 高純度硫酸ニッケルの製造方法
AU2012341556A AU2012341556B2 (en) 2011-11-22 2012-11-19 Method for producing high-purity nickel sulfate
PH12014501159A PH12014501159A1 (en) 2011-11-22 2014-05-22 Method for producing high-purity nickel sulfate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-255547 2011-11-22
JP2011255547 2011-11-22

Publications (1)

Publication Number Publication Date
WO2013077296A1 true WO2013077296A1 (ja) 2013-05-30

Family

ID=48469740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079985 WO2013077296A1 (ja) 2011-11-22 2012-11-19 高純度硫酸ニッケルの製造方法

Country Status (7)

Country Link
US (1) US9017640B2 (ja)
EP (1) EP2784166B1 (ja)
JP (1) JP5904459B2 (ja)
CN (2) CN107032417A (ja)
CA (1) CA2856341C (ja)
PH (1) PH12014501159A1 (ja)
WO (1) WO2013077296A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137383A (ja) * 2014-01-21 2015-07-30 住友金属鉱山株式会社 金属硫化物のスラリー化方法
JP2015218075A (ja) * 2014-05-15 2015-12-07 住友金属鉱山株式会社 高純度硫酸ニッケル水溶液の製造方法
JP2016141594A (ja) * 2015-02-02 2016-08-08 住友金属鉱山株式会社 硫酸ニッケルの製造方法
JP2016210648A (ja) * 2015-05-08 2016-12-15 住友金属鉱山株式会社 硫酸ニッケルの製造方法
JP2017025367A (ja) * 2015-07-21 2017-02-02 住友金属鉱山株式会社 高純度硫酸ニッケル水溶液の製造方法
JP2017149609A (ja) * 2016-02-25 2017-08-31 住友金属鉱山株式会社 ニッケル水溶液の製造方法
JP2018193588A (ja) * 2017-05-18 2018-12-06 住友金属鉱山株式会社 硫化物の浸出方法
CN109706319A (zh) * 2018-12-30 2019-05-03 温贵能 从电镀污泥中低成本回收金属并生产精制硫酸镍的方法
WO2019124015A1 (ja) * 2017-12-18 2019-06-27 住友金属鉱山株式会社 銅とニッケルおよびコバルトの分離方法
CN112573592A (zh) * 2021-01-30 2021-03-30 浙江博瓦德新材料科技有限公司 一种高纯度氧化亚镍的制备方法
CN113528818A (zh) * 2021-06-22 2021-10-22 江门市长优实业有限公司 一种硫酸镍溶液除杂的方法
US11959151B2 (en) 2017-09-29 2024-04-16 Sumitomo Metal Mining Co., Ltd. Method for separating copper from nickel and cobalt

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2731457A1 (fr) * 2011-02-04 2012-08-04 Institut National De La Recherche Scientifique (Inrs) Procede de production d'un sel de sulfate double de nickel et d'ammonium a partir de plantes hyperaccumulatrices
JP6222141B2 (ja) * 2015-03-05 2017-11-01 住友金属鉱山株式会社 ニッケル硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法
JP6610425B2 (ja) * 2015-08-31 2019-11-27 住友金属鉱山株式会社 ニッケル粉の製造方法
WO2018167224A1 (en) * 2017-03-15 2018-09-20 Umicore Nitrate process for manufacturing transition metal hydroxide precursors
EP3596015A1 (en) * 2017-03-15 2020-01-22 Umicore Nitrate process for manufacturing transition metal hydroxide precursors
CN107459164A (zh) * 2017-07-31 2017-12-12 浙江奇彩环境科技股份有限公司 一种催化湿式氧化废水中催化剂的回收方法
KR101950314B1 (ko) * 2017-08-31 2019-02-20 고려아연 주식회사 니켈 산화광으로부터 습식 및 건식 공정을 조합한 경제적 니켈 제련 공법
KR101979419B1 (ko) * 2017-12-26 2019-08-28 케이지에너켐(주) 칼슘 고함량의 니켈, 코발트 및 망간 혼합 수산화물 원료로 제조되는 고순도 황산니켈의 제조방법
CN108199106B (zh) * 2017-12-27 2020-07-31 广东佳纳能源科技有限公司 一种镍钴锰三元前驱体生产过程废料的回收工艺
CN108423716A (zh) * 2018-03-28 2018-08-21 湖南邦普循环科技有限公司 一种以还原镍粉为原料制备精制镍盐的方法及其镍盐
CN109279667A (zh) * 2018-10-09 2019-01-29 金川集团股份有限公司 一种以氧化镍为原料生产电池级硫酸镍的方法
US20220154308A1 (en) * 2019-03-26 2022-05-19 Sumitomo Metal Mining Co., Ltd. Method for manufacturing nickel and cobalt-containing solution from hydroxide containing nickel and cobalt
CN109897955A (zh) * 2019-04-17 2019-06-18 江西铜业股份有限公司 一种硫酸镍溶液深度净化的方法
CN110436533A (zh) * 2019-08-19 2019-11-12 江苏荣信环保科技有限公司 含镍废硫酸制成工业硫酸镍
CN110931768B (zh) * 2019-11-17 2022-08-09 新乡天力锂能股份有限公司 一种高镍类单晶锂离子电池正极材料及制备方法
AU2021378828A1 (en) * 2020-11-12 2023-06-22 Hatch Ltd. Processes and methods for production of crystallized metal sulfates
CN113957264A (zh) * 2021-09-13 2022-01-21 广东邦普循环科技有限公司 一种由低冰镍制备硫酸镍的方法
WO2023118037A1 (en) 2021-12-20 2023-06-29 Umicore Process for preparing a high-purity nickel sulphate solution
WO2023237713A1 (en) * 2022-06-10 2023-12-14 Umicore Sulphidation of a solid metal feed comprising ni and/or co
WO2024042115A1 (en) 2022-08-24 2024-02-29 Umicore Process for preparing a high-purity nickel sulphate solution

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030135A (ja) 1996-07-18 1998-02-03 Sumitomo Metal Mining Co Ltd 高純度ニッケル水溶液の製造方法
JPH1060552A (ja) * 1996-08-20 1998-03-03 Sumitomo Metal Mining Co Ltd 高純度ニッケル水溶液の製造方法
JPH10310437A (ja) 1997-04-30 1998-11-24 Sumitomo Metal Mining Co Ltd コバルトを含む硫酸ニッケルの精製方法
JP2002121624A (ja) * 2000-10-13 2002-04-26 Sumitomo Metal Mining Co Ltd 硫酸ニッケル溶液からの亜鉛の分離除去方法
JP2002326820A (ja) * 2001-05-02 2002-11-12 Sumitomo Metal Mining Co Ltd 高純度硫酸ニッケル水溶液の製造方法
JP2004307270A (ja) * 2003-04-08 2004-11-04 Sumitomo Metal Mining Co Ltd コバルトとカルシウムを含む硫酸ニッケル水溶液の精製方法
JP2005350766A (ja) * 2004-05-13 2005-12-22 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650057A (en) * 1993-07-29 1997-07-22 Cominco Engineering Services Ltd. Chloride assisted hydrometallurgical extraction of metal
JP3546912B2 (ja) * 1997-04-30 2004-07-28 住友金属鉱山株式会社 酸性有機抽出剤による硫酸ニッケルの精製方法
JP3546911B2 (ja) * 1997-04-30 2004-07-28 住友金属鉱山株式会社 高純度硫酸ニッケルの精製方法
JP3867871B2 (ja) * 1997-04-30 2007-01-17 住友金属鉱山株式会社 硫酸ニッケルの溶媒抽出方法
CN1236079C (zh) * 2003-05-24 2006-01-11 北京科技大学 一种硫化物矿全湿法浸出方法
CN1243838C (zh) * 2003-11-13 2006-03-01 吉林吉恩镍业股份有限公司 水淬高冰镍硫酸选择性浸出制取电池级高纯硫酸镍工艺
US7799296B2 (en) * 2003-12-04 2010-09-21 Ovonic Battery Company, Inc. Method of producing a nickel salt solution
JP2005239493A (ja) * 2004-02-27 2005-09-08 Sumitomo Metal Mining Co Ltd 硫酸ニッケル水溶液からの塩素イオン除去方法
JP2008013387A (ja) * 2006-07-04 2008-01-24 Sumitomo Metal Mining Co Ltd 高純度硫酸ニッケル水溶液の製造方法
CN101298638B (zh) * 2008-06-27 2010-06-02 中南大学 一种从红土镍矿浸出液分离富集镍钴的方法
JP5245768B2 (ja) * 2008-11-28 2013-07-24 住友金属鉱山株式会社 ニッケル及びコバルトを含む硫化物の製造方法
CN101824550B (zh) * 2009-03-02 2012-05-23 姚龚斌 高纯镍萃取提纯工艺
JP2011032149A (ja) * 2009-08-06 2011-02-17 Sumitomo Metal Mining Co Ltd 粗硫酸ニッケル溶液の製造方法
CN102040252A (zh) * 2009-10-16 2011-05-04 中科铜都粉体新材料股份有限公司 一种利用电解液生产电池级精制硫酸镍的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030135A (ja) 1996-07-18 1998-02-03 Sumitomo Metal Mining Co Ltd 高純度ニッケル水溶液の製造方法
JPH1060552A (ja) * 1996-08-20 1998-03-03 Sumitomo Metal Mining Co Ltd 高純度ニッケル水溶液の製造方法
JPH10310437A (ja) 1997-04-30 1998-11-24 Sumitomo Metal Mining Co Ltd コバルトを含む硫酸ニッケルの精製方法
JP2002121624A (ja) * 2000-10-13 2002-04-26 Sumitomo Metal Mining Co Ltd 硫酸ニッケル溶液からの亜鉛の分離除去方法
JP2002326820A (ja) * 2001-05-02 2002-11-12 Sumitomo Metal Mining Co Ltd 高純度硫酸ニッケル水溶液の製造方法
JP2004307270A (ja) * 2003-04-08 2004-11-04 Sumitomo Metal Mining Co Ltd コバルトとカルシウムを含む硫酸ニッケル水溶液の精製方法
JP2005350766A (ja) * 2004-05-13 2005-12-22 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2784166A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137383A (ja) * 2014-01-21 2015-07-30 住友金属鉱山株式会社 金属硫化物のスラリー化方法
JP2015218075A (ja) * 2014-05-15 2015-12-07 住友金属鉱山株式会社 高純度硫酸ニッケル水溶液の製造方法
JP2016141594A (ja) * 2015-02-02 2016-08-08 住友金属鉱山株式会社 硫酸ニッケルの製造方法
JP2016210648A (ja) * 2015-05-08 2016-12-15 住友金属鉱山株式会社 硫酸ニッケルの製造方法
JP2017025367A (ja) * 2015-07-21 2017-02-02 住友金属鉱山株式会社 高純度硫酸ニッケル水溶液の製造方法
JP2017149609A (ja) * 2016-02-25 2017-08-31 住友金属鉱山株式会社 ニッケル水溶液の製造方法
JP2018193588A (ja) * 2017-05-18 2018-12-06 住友金属鉱山株式会社 硫化物の浸出方法
US11959151B2 (en) 2017-09-29 2024-04-16 Sumitomo Metal Mining Co., Ltd. Method for separating copper from nickel and cobalt
WO2019124015A1 (ja) * 2017-12-18 2019-06-27 住友金属鉱山株式会社 銅とニッケルおよびコバルトの分離方法
JP2019108586A (ja) * 2017-12-18 2019-07-04 住友金属鉱山株式会社 銅とニッケルおよびコバルトの分離方法
US11718894B2 (en) 2017-12-18 2023-08-08 Sumitomo Metal Mining Co., Ltd. Method for separating copper, and nickel and cobalt
CN109706319A (zh) * 2018-12-30 2019-05-03 温贵能 从电镀污泥中低成本回收金属并生产精制硫酸镍的方法
CN112573592A (zh) * 2021-01-30 2021-03-30 浙江博瓦德新材料科技有限公司 一种高纯度氧化亚镍的制备方法
CN113528818A (zh) * 2021-06-22 2021-10-22 江门市长优实业有限公司 一种硫酸镍溶液除杂的方法
CN113528818B (zh) * 2021-06-22 2022-11-29 江门市长优实业有限公司 一种硫酸镍溶液除杂的方法

Also Published As

Publication number Publication date
EP2784166B1 (en) 2019-05-22
EP2784166A4 (en) 2015-08-12
JP5904459B2 (ja) 2016-04-13
EP2784166A1 (en) 2014-10-01
AU2012341556A1 (en) 2014-06-05
CN107032417A (zh) 2017-08-11
CA2856341C (en) 2016-08-09
PH12014501159B1 (en) 2014-08-11
JPWO2013077296A1 (ja) 2015-04-27
CN103946401A (zh) 2014-07-23
US9017640B2 (en) 2015-04-28
PH12014501159A1 (en) 2014-08-11
US20140322109A1 (en) 2014-10-30
CA2856341A1 (en) 2013-05-30

Similar Documents

Publication Publication Date Title
JP5904459B2 (ja) 高純度硫酸ニッケルの製造方法
JP5967284B2 (ja) 高純度スカンジウムの回収方法
AU2013238535B2 (en) Method for producing high-purity nickel sulfate
CN113710824A (zh) 用于制备电池前体的方法
JP5686258B2 (ja) 高純度硫酸ニッケルを得るための溶媒抽出方法
CN106119560B (zh) 一种锌钴分离方法
FI125216B (en) Process for the recovery of metals
JP6798078B2 (ja) イオン交換処理方法、スカンジウムの回収方法
JP2016180151A (ja) スカンジウムの回収方法
WO2017104629A1 (ja) スカンジウムの回収方法
JP6256491B2 (ja) スカンジウムの回収方法
JP2013112538A (ja) 高純度硫酸ニッケルの製造方法、及びニッケルを含む溶液からの不純物元素除去方法
WO2016084830A1 (ja) 高純度スカンジウムの回収方法
JP5423592B2 (ja) 低塩素硫酸ニッケル/コバルト溶液の製造方法
WO2021059942A1 (ja) スカンジウムの回収方法
JP2021127514A (ja) スカンジウムの回収方法
JP2023145408A (ja) コバルト・ニッケルの回収方法
WO2016208489A1 (ja) 酸化スカンジウムの製造方法
JPS59137307A (ja) テルルを含む鉛、亜鉛製錬中間物からの高純度テルルの回収方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851102

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013545916

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2856341

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14359312

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12014501159

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2012851102

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012341556

Country of ref document: AU

Date of ref document: 20121119

Kind code of ref document: A