WO2013069484A1 - 溶接方法および溶接継手 - Google Patents

溶接方法および溶接継手 Download PDF

Info

Publication number
WO2013069484A1
WO2013069484A1 PCT/JP2012/077790 JP2012077790W WO2013069484A1 WO 2013069484 A1 WO2013069484 A1 WO 2013069484A1 JP 2012077790 W JP2012077790 W JP 2012077790W WO 2013069484 A1 WO2013069484 A1 WO 2013069484A1
Authority
WO
WIPO (PCT)
Prior art keywords
bead
welding
gusset plate
welded
corner
Prior art date
Application number
PCT/JP2012/077790
Other languages
English (en)
French (fr)
Inventor
千晃 志賀
平岡 和雄
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to US14/357,097 priority Critical patent/US20140301776A1/en
Priority to CN201280054756.3A priority patent/CN103917327B/zh
Priority to EP12847482.2A priority patent/EP2777865B1/en
Priority to KR1020147014630A priority patent/KR20140093971A/ko
Publication of WO2013069484A1 publication Critical patent/WO2013069484A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B5/00Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
    • F16B5/08Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of welds or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/0026Arc welding or cutting specially adapted for particular articles or work
    • B23K9/0043Locally welding a thin plate to a thick piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/025Seam welding; Backing means; Inserts for rectilinear seams
    • B23K9/0256Seam welding; Backing means; Inserts for rectilinear seams for welding ribs on plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to a welding method when a gusset plate is angularly welded to a high-strength steel in a welded structure using high-strength steel.
  • the fatigue strength represented by the fatigue life and fatigue limit of the base metal is also improved in proportion to the increase in the tensile strength, but the fatigue strength is not improved for the welded portion as long as the conventional welding technique is used.
  • welds such as butt welds, fillet welds, and corner welds, but the corner weld when welding gusset plates to high-strength steel as the base material is the most. Since the fatigue strength is low (about 1/7 as compared with the base metal), the design load (allowable load) of the welded structure is determined by this rounding weld.
  • the cause of the decrease in fatigue strength at the corner-welded welds of conventional gusset plates is the generation of tensile residual stress due to welding thermal stress in addition to the large stress concentration due to cross-sectional shape change at the weld toe. There is also an adverse effect due to the fact that the tensile force is locally very high at the weld toe.
  • FIG. 11 is a perspective view showing a state of a tensile force generated on a flat plate when a tensile force is applied with the gusset plate attached.
  • 10 is a flat plate which is a base material
  • 20 is a gusset plate.
  • the gusset plate 20 is welded to the flat plate 10 at the lower side surface portion 21 and the lower toe portion 22 to form a welded portion 31 on the lower side surface and a corner welded portion 32.
  • F is a tensile force acting in the longitudinal direction of the flat plate 10
  • 90 is along the short side direction (width direction) passing through the weld toe portion 33 of the angularly welded portion 32 generated in the flat plate 10 by this tensile force.
  • 9 shows the distribution of the tensile force, 91 is the stress at the end face of the flat plate 10 in the short side direction, and 92 is the stress at the center.
  • the stress generated in the flat plate 10 becomes the largest at the weld toe 33 of the corner welding portion 32 of the lower toe 22 of the gusset plate 20.
  • the gusset plate 20 expands by heating during welding and contracts by subsequent cooling. However, since the expansion and contraction of the flat plate 10 are smaller than the expansion and contraction of the gusset plate 20, the welded portion 31 of the gusset plate 20, The tensile residual stress caused by the welding thermal stress is generated in 32, and this tensile residual stress is also turned around and becomes maximum at the weld toe portion 33 of the welded portion 32.
  • the present invention provides a welding method capable of dramatically improving the fatigue strength of a corner-welded portion between a gusset plate and high-tensile steel, and welding that is welded by the welding method. It is an object to provide a joint.
  • the present inventor has conducted intensive research on solving the above-mentioned problems, paying attention to the length of the bead from the end of the gusset plate in the corner-turned weld, and performing the usual corner-turn weld with a bead length of 7 mm generally called a leg length
  • an extension bead having various lengths was provided at the tip of the corner welding portion, and an experiment was conducted on the relationship between the length of the extension bead and the stress concentration at the tip of the extension bead.
  • the main experimental conditions at this time are as follows. That is, 800 MPa high-tensile steel (size: width 200 ⁇ length 1000 ⁇ thickness 20 mm) was used as a base material, and 800 MPa high-tensile steel (size: width 50 ⁇ length 200 ⁇ thickness 20 mm) was used as a gusset plate. .
  • the vertical axis represents the stress concentration degree
  • the horizontal axis represents the length of the extended bead that is rotated from the tip of the welded portion.
  • the stress concentration degree is shown as a ratio to the stress at the toe position of the welded portion in the case of normal corner welding in which no extension bead is provided.
  • the stress concentration rapidly decreases in the region where the extension bead is short, and if the extension bead is 7 mm, the stress concentration decreases to about 0.4, and 10 mm sufficiently decreases to about 0.3. I understand that.
  • it can be seen that it is stable at a little less than 0.2 at 20 mm or more.
  • the stress concentration is sufficiently relaxed by providing the extended bead of 10 mm or more, and as a result, the fatigue strength in the corner-welded portion is improved.
  • the present inventor conducted an experiment on the relationship between the tensile residual stress caused by the welding thermal stress, the length of the extension bead, and the type of the welding material. That is, using conventional welding materials and weld metal with a low transformation point welding material having a martensite transformation start temperature (Ms temperature) of 350 ° C. or less, after normal round welding (bead length (leg length) 10 mm), The tensile residual stress at the surface position of the extended bead tip and at a depth of 5 mm was measured while changing the length.
  • Ms temperature martensite transformation start temperature
  • the said low transformation point welding material points out the welding material with which Ms temperature of the weld metal formed by welding with to-be-welded material is 350 degrees C or less, and Ms temperature of welding material itself is 250 degrees or less.
  • the main experimental conditions at this time are as follows. That is, 800 MPa high-tensile steel (size: width 200 ⁇ length 1000 ⁇ thickness 20 mm) was used as a base material, and 800 MPa high-tensile steel (size: width 50 ⁇ length 200 ⁇ thickness 20 mm) was used as a gusset plate. .
  • the chemical composition of the conventional welding material is C0.12 wt%, Ni 1.5 wt%, and Mo 0.5 wt%
  • the chemical composition of the low transformation point welding material is C 0.05 wt%, Cr 14 wt%, and Ni 9 wt%.
  • the measurement results are shown in FIG. In FIG. 7, the vertical axis represents the residual stress, and the horizontal axis represents the bead length from the end portion of the gusset plate (the bead length of the cornering welded portion).
  • the residual stress at the surface position of the conventional welding material (indicated as “conventional material” in FIG. 7) is indicated by ⁇ , the residual stress at the depth of 5 mm is indicated by ⁇ , and the low transformation point welding material (in FIG.
  • the residual stress at the surface position of the “melting material” is indicated by ⁇ , and the residual stress at the depth of 5 mm is indicated by ⁇ .
  • the tensile residual stress is indicated by a positive value, and the compressive residual stress is indicated by a negative value.
  • the tensile residual stress at the time of cornering welding (bead length (leg length) 10 mm) is 300 MPa at a depth of 5 mm, The tensile residual stress disappears at a position of a length of 17 mm (extension bead length of 7 mm).
  • extension bead length of 7 mm extension bead length of 7 mm.
  • a compressive residual stress of about 170 MPa has already occurred when cornering welding is performed, and a compressive residual stress of about 580 MPa has been generated at a position where the bead length is 80 mm.
  • the length of the elongated bead of 7 mm is a length that can sufficiently reduce the stress concentration in FIG. 6 as described above.
  • the elongation of the bead length has an adverse effect on the residual stress.
  • the gusset plate end it was found that by providing a bead having a length of 17 mm or more, compressive residual stress is surely generated, so that the fatigue strength at the corner welded portion can be greatly improved.
  • the bead length from the end of the gusset plate is 17 mm or more in parallel with the gusset plate using a low transformation point welding material in which the Ms temperature of the weld metal is 350 degrees or less.
  • the bead length from the end of the gusset plate is 17 mm in parallel with the gusset plate using the low transformation point welding material whose Ms temperature of the weld metal is 350 degrees or less. Even if an extension bead is provided as described above, the fatigue strength can be greatly improved.
  • a high fatigue strength can be stably obtained by providing a bead of 17 mm or more using a low transformation point welding material in which the Ms temperature of the weld metal is 350 degrees or less. it can.
  • the method for forming the bead is a bead forming method in which an extended bead is further formed at a bead tip portion of a longitudinal end portion of the gusset plate formed by corner welding after corner welding.
  • the invention according to claim 3 2.
  • the welding method according to claim 1, wherein the method of forming the bead is a bead forming method of forming a bead having a length of 17 mm or more at a longitudinal end portion of the gusset plate at the time of cornering welding. It is.
  • the present invention further has the following characteristics.
  • the bead with a length of 17 mm or more is formed in the longitudinal direction of the gusset plate.
  • the bead width is not particularly limited as long as it is not less than the width (D) of the welded weld shown in FIG. 8, but from the viewpoint of relaxation of stress concentration and generation of compressive residual stress, as shown in FIG. It is preferable that it is larger than the width (D).
  • the extension bead is provided at the tip of the bead portion formed by normal corner welding, but it may be provided from the end of the gusset plate so as to cover the corner welding.
  • the fatigue strength can be further improved by forming the elongated bead with a smooth shape without providing a step at the connection portion with the end portion of the gusset plate. it can.
  • the fatigue strength can be further improved by forming the bead with a smooth shape without providing a step at the connection with the end of the gusset plate. Can do.
  • the extension bead is usually provided in a state of being overlapped with a part of the tip of the corner welding. Also in this case, it is preferable from the viewpoint of improving the fatigue strength to provide the elongated bead with a smooth shape without providing a step at the connection portion between the corner welding portion and the elongated bead.
  • a welded joint welded using the above welding method is provided as a welded joint with sufficiently improved fatigue strength because stress concentration is greatly relieved and large compressive residual stress is generated. Can do.
  • the welding method according to the present invention is very effective in extending the fatigue life and fracture life of existing steel structures.
  • cracks due to fatigue (fatigue cracks) 40 may occur in the corner turning welds 32 of the steel structure due to long-term use.
  • the fatigue crack 40 has been repaired by performing repair welding to form a repair weld 34 as shown in FIG.
  • the present invention is applied, and the end of the gusset plate of the round welded part is used with a welding material having a martensitic transformation start point of the weld metal of 350 ° C. or less.
  • the formation of the elongated bead according to the present invention does not require the formation of repair welds in advance, and even if applied to existing steel structures that have previously formed repair welds, fatigue life and fracture Demonstrate the life extension effect.
  • the bead In forming the bead, as described above, it is preferable to form the bead with a bead width larger than the width of the welded portion of the corner-turned weld, and the connection portion of the corner-welded portion with the bead tip portion is preferably formed. It is more preferable to form it in a smooth shape.
  • Fig. 10 (d) shows a specific example of the repair method.
  • the repair weld portion 34 in addition to the formation of the repair weld portion 34, the repair weld portion 34 is covered, and the length of the end portion of the gusset plate 20 of the corner weld portion is 17 mm or longer.
  • An extended bead 35 having a bead width larger than the width of the corner welded portion is formed.
  • a welding method for repairing or reinforcing a corner-turn weld made of gusset and base metal in an existing steel structure by welding Using a welding material having a martensitic transformation start point of the weld metal of 350 ° C. or less, the length of the bead portion from the end portion of the gusset plate is 17 mm in the longitudinal direction of the end portion of the gusset plate of the corner welding portion.
  • a welding method is characterized in that a bead is formed as described above.
  • the invention according to claim 9 is: The welding method according to claim 8, wherein the bead is formed after repair welding or reinforcement welding is formed at a tip end of the bead turning portion.
  • the invention according to claim 10 is 10.
  • the invention of claim 11 is The welding method according to any one of claims 8 to 10, wherein the bead is formed while a connecting portion with a longitudinal end portion of the gusset plate is formed in a smooth shape.
  • the present invention it is possible to dramatically improve the fatigue strength of the corner-welded portion between the gusset plate and the high-strength steel, so that the allowable load of the welded structure can be improved, and the high tensile strength of the welded structure. Will greatly expand. As a result, it is possible to greatly contribute to the needs for a low-carbon society through weight reduction, etc., and further lead to safety improvement due to an increase in allowable stress.
  • the life of the welded structure can be extended significantly, there is an advantage from the viewpoint of repair and reinforcement of the structure.
  • Many structures that have been built after the war and have passed 40 years or more will reach the end of their life in the last 10 years.
  • the present invention can also exert a great effect in terms of extending the life by repair and reinforcement.
  • FIG. 1 shows a welded joint produced by a welding method according to the present invention
  • FIG. 2 shows a welded joint produced by a conventional welding method. 1 and 2, (a) is a plan view and (b) is a side view, respectively.
  • the base plate 10 and the gusset plate 20 are welded to each other by using the conventional corner welding, and the welded portion 31 and the corner welding on the lower side surface of the gusset plate 20 are welded.
  • a portion 32 is formed.
  • an extended bead 35 is further formed at the tip of the corner-welded portion 32 so that the bead length from the end of the gusset plate is 17 mm or more.
  • the fatigue strength is greatly improved as described above.
  • the bead of a predetermined length is formed by turning the connecting portion in a smooth shape from the vicinity of the tip portion of the bead of the corner-welded portion 32 to form the elongated bead 35 with the same width as the width of the welded portion.
  • the extended bead 35 is provided with a width larger than the width of the welded portion from the end of the gusset plate while covering the entire bead of the corner welded portion 32.
  • a long bead is formed at a time larger than the width of the welded part by turning from the end of the gusset plate at the time of cornering welding. Also in this case, it is preferable to form the bead with a smooth shape without providing a step at the connection portion with the end portion of the gusset plate.
  • a load having a stress range of 150 MPa (load of ⁇ 150 MPa) was repeatedly applied 10 times / second, and the number of repetitions (the number of fatigue ruptures) was measured.
  • the same measurement was carried out by carrying out normal cornering welding using a conventional welding material.
  • the bead length (leg length) in cornering welding was set to 7 mm, which is a general bead length.
  • 800 MPa high-tensile steel size: width 200 ⁇ length 1000 ⁇ thickness 20 mm
  • 800 MPa high-tensile steel size: height 50 ⁇ length 200 ⁇ thickness
  • the measurement results are also shown in Table 1.
  • the stress concentration is shown as a relative value where the stress concentration in the welded joint shown in FIG. 2 manufactured using each welding material, that is, a welded joint not provided with an extension bead, is 1. The higher the value, the higher the stress concentration.
  • residual stress + indicates tensile residual stress and-indicates compressive residual stress.
  • the fatigue strength is shown based on the number of fatigue fractures ⁇ in the welded joint of FIG. 2 manufactured using a conventional welding material.
  • This ⁇ depends on the shape of the test body. For example, in the case of a base material of width 70 ⁇ length 1000 ⁇ thickness 12 mm and gusset plate of height 50 ⁇ length 100 ⁇ thickness 12 mm, 5 million times In the case of a base material of width 160 ⁇ length 1000 ⁇ thickness 20 mm and a gusset plate of height 50 ⁇ length 150 ⁇ thickness 20 mm, it is about 300,000 times.
  • the fatigue strength can be drastically improved by forming an extended bead of 10 mm or more, that is, a bead of 17 mm or more from the end of the gusset plate, using a low transformation point welding material. And even if an elongated bead of 40 mm or more is formed, the effect of improving fatigue strength is saturated, so the formation of an elongated bead using a low transformation point welding material is 40 mm, that is, a 47 mm bead from the end of the gusset plate. It can be seen that forming is most preferred.
  • the fatigue strength can be drastically improved by the reduction of the stress concentration degree and the generation of compressive residual stress.
  • a 40 mm long bead 35 is formed using a low transformation point welding material so as to cover the repair weld 34, and the stress concentration of the weld toe The residual stress at the surface position and depth of 5 mm and the fatigue strength were determined.
  • Table 2 also shows the results when an elongated bead is formed in the same manner as in the repair for the reinforcement process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)

Abstract

 ガセット板と高張力鋼の角廻し溶接部の疲労強度を飛躍的に向上させることができる溶接方法および溶接継手を提供する。 ガセット板を高張力鋼に角廻し溶接により溶接する溶接方法であって、溶接金属のマルテンサイト変態開始点が350℃以下の溶接材料を用いて、ガセット板の端部の長手方向に17mm以上の長さのビードを形成する溶接方法。前記溶接方法を用いて、ガセット板が高張力鋼に溶接されている溶接継手。既存の鋼構造物におけるガセットと母材からなる角廻し溶接部を溶接により補修または補強する溶接方法であって、溶接金属のマルテンサイト変態開始点が350℃以下の溶接材料を用いて、角廻し溶接部のガセット板の端部の長手方向に、ガセット板の端部からのビード部の長さが17mm以上となるようにビードを形成する溶接方法。

Description

溶接方法および溶接継手
 本発明は、高張力鋼を用いた溶接構造物においてガセット板を高張力鋼に角廻し溶接する際の溶接方法に関する。
 船舶、海洋構造物、橋梁等の溶接構造物の大型化とそれに伴う軽量化や安全性を目的として、近年では、抗張力が従来の500MPaから1000MPaにまで高められた高張力鋼が使用されるようになってきている。
 高張力化に比例して母材の疲労寿命や疲労限度で代表される疲労強度も向上するが、溶接部については、従来の溶接技術を用いている限り、疲労強度は向上しない。
 溶接部には、突き合わせ溶接部、隅肉溶接部、角廻し溶接部など種々の溶接部があるが、なかでも母材の高張力鋼にガセット板を溶接する際の角廻し溶接部は、最も疲労強度が低い(母材に比べて1/7程度)ため、溶接構造物の設計荷重(許容荷重)はこの角廻し溶接部により決まることになる。
 しかし、このガセット板の角廻し溶接部について従来の溶接技術を用いている場合、前記した通り、溶接部の疲労強度が向上しないため、前記した近年の高張力化した高張力鋼を使用することによる軽量化や安全性の利点を充分に引き出せない。
 従来のガセット板の角廻し溶接部において疲労強度が低下する原因は、溶接止端部において断面形状変化に起因する応力集中度が大きいことに加えて、溶接熱応力に起因する引張残留応力の生成による悪影響も重なって溶接止端部において引張力が局部的に非常に高くなることにある。
 この点について図11を用いて説明する。図11は、ガセット板が取り付けられている状態で引張力を加えた際に平板に生じる引張力の様子を示す斜視図である。図11において、10は母材である平板、20はガセット板である。ガセット板20は下部側面部21および下部止端部22で平板10に溶接されて、下部側面の溶接部31および角廻し溶接部32を形成している。
 また、Fは平板10の長手方向に作用する引張力であり、90はこの引張力で平板10に発生する角廻し溶接部32の溶接止端部33を通る短辺方向(幅方向)に沿った引張力の分布を示し、91は平板10の短辺方向の端面部の応力であり、92は中央部の応力である。
 図11に示すように、平板10に発生する応力は、ガセット板20の下部止端部22の角廻し溶接部32の溶接止端部33で最も大きくなる。
 また、ガセット板20は、溶接時の加熱で膨張し、その後の冷却により収縮するが、平板10の膨張と収縮は、ガセット板20の膨張、収縮より小さいため、ガセット板20の溶接部31、32に溶接熱応力に起因する引張残留応力が発生し、この引張残留応力も角廻し溶接部32の溶接止端部33で最大となる。
 以上のため、ガセット板の角廻し溶接部において疲労強度が大きく低下する。
 疲労強度を向上させる技術として、古くより、溶接部にハンマーピーニング処理やレーザピーニング処理を施す技術が開発されているが、作業負荷が大きいため、現状、汎用的には普及していない。
 また、この10年、溶接金属のマルテンサイト変態点を低下させて、低温域でマルテンサイト変態を起こさせ、変態膨張によって溶接部の残留引張応力を軽減させたり、若干の圧縮応力を導入する低変態点溶接材料や、このような溶接材料を用いた溶接施工法が開発されている(特許文献1~6)。しかし、このような技術を用いても、溶接部の疲労寿命の向上は高々従来の1.5~2倍程度に留まっている。
特開平11-138290号公報 特開2000-288728号公報 特開2000-17380号公報 特開2002-113577号公報 特開2003-275890号公報 特開2003-290972号公報
 前記の従来技術の問題点に鑑み、本発明は、ガセット板と高張力鋼の角廻し溶接部の疲労強度を飛躍的に向上させることができる溶接方法、および前記溶接方法により溶接されている溶接継手を提供することを課題とする。
 本発明者は、上記課題の解決につき鋭意研究する中で、角廻し溶接部におけるガセット板端部からのビードの長さに着目し、通常の角廻し溶接を一般に脚長と呼ばれるビード長7mmで行った後、この角廻し溶接部の先端に種々の長さの伸長ビードを設けて、伸長ビードの長さと伸長ビード先端部の応力集中度との関係について実験を行った。
 このときの主要な実験条件は次の通りである。即ち、母材として800MPaの高張力鋼(サイズ:幅200×長さ1000×厚さ20mm)、ガセット板として800MPaの高張力鋼(サイズ:幅50×長さ200×厚さ20mm)を用いた。
 実験結果を図6に示す。図6において、縦軸は応力集中度であり、横軸は角廻し溶接部の先端から伸長させた伸長ビードの長さである。なお、応力集中度は、伸長ビードが設けられていない通常の角廻し溶接の場合における溶接部止端位置の応力に対する比率で示してある。図6より、伸長ビードが短い領域において応力集中度が急激に低下し、伸長ビードが7mmあれば応力集中度が0.4程度まで低下し、10mmで0.3程度まで充分に低下していることが分かる。また、20mm以上では0.2弱で安定していることが分かる。
 このように、伸張ビードを10mm以上設けることにより応力集中が充分に緩和され、その結果、角廻し溶接部における疲労強度が向上する。
 本発明者は、次に、溶接熱応力に起因する引張残留応力と伸長ビードの長さ、および溶接材料の種類の関係について実験を行った。即ち、従来溶接材料および溶接金属のマルテンサイト変態開始温度(Ms温度)が350℃以下の低変態点溶接材料を用いて、通常の角廻し溶接(ビード長(脚長)10mm)後、伸長ビードの長さを変化させて伸長ビード先端部の表面位置および深さ5mmの位置における引張残留応力を測定した。
 なお、前記の低変態点溶接材料は、被溶接材料との溶接により形成された溶接金属のMs温度が350℃以下の溶接材料を指し、溶接材料自体のMs温度は250度以下である。
 そして、このときの主要な実験条件は次の通りである。即ち、母材として800MPaの高張力鋼(サイズ:幅200×長さ1000×厚さ20mm)、ガセット板として800MPaの高張力鋼(サイズ:幅50×長さ200×厚さ20mm)を用いた。そして、従来溶接材料の化学組成は、C0.12wt%、Ni1.5wt%、Mo0.5wt%であり、低変態点溶接材料の化学組成は、C0.05wt%、Cr14wt%、Ni9wt%である。
 測定結果を図7に示す。図7において、縦軸は残留応力であり、横軸はガセット板端部からのビード長さ(角廻し溶接部のビード長)である。そして、従来溶接材料(図7では「従来材」と表示)の表面位置における残留応力を●、深さ5mmの位置における残留応力を■で示し、低変態点溶接材料(図7では「低変態溶材」と表示)の表面位置における残留応力を○、深さ5mmの位置における残留応力を□で示している。また、引張残留応力は正の値で示し、圧縮残留応力は負の値で示してある。なお、これらの測定結果は、中性子回折による残留応力測定とFEM有限要素解析の応力解析から得られた結果である。
 図7に示すように、従来溶接材料を用いた場合、角廻し溶接が施された時(ビード長(脚長)10mm)には、表面位置で300MPa程度、深さ5mm位置で680MPa程度の引張残留応力が発生しており、その後、ビード長が長くなるに従っていずれの位置でも引張残留応力が上昇して、ビード長が80mm(伸長ビード長さ:70mm)となった場合には800MPa程度の大きな引張残留応力が発生している。
 これに対して、低変態点溶接材料を用いた場合、角廻し溶接が施された時(ビード長(脚長)10mm)の引張残留応力は、深さ5mm位置の場合、300MPaであるものの、ビード長17mm(伸長ビード長7mm)の位置で引張残留応力が消失している。そして、ビード長が17mm以上になると、逆に圧縮残留応力が発生している。そして、ビード長が長くなるに従って、この圧縮残留応力は大きくなり、最終的には、300MPa程度もの大きな圧縮残留応力が発生している。
 また、表面位置の場合には、角廻し溶接が施された時に、既に170MPa程度の圧縮残留応力が発生しており、ビード長が80mmの位置では580MPa程度の圧縮残留応力が発生している。
 そして、前記の伸長ビードの長さ7mmは、前記した通り、図6において応力集中度を充分に低下させられる長さでもある。
 このように、従来溶接材料と低変態点溶接材料とではビード長の伸長が残留応力に対して逆の影響を及ぼし、低変態点溶接材料の場合、ガセット板の長手方向端部(以下、単に「ガセット板端部」ともいう)から、長さ17mm以上のビードを設けることにより確実に圧縮残留応力が発生するため、角廻し溶接部における疲労強度を大きく向上させることができることが分かった。
 以上より、通常の角廻し溶接後、溶接金属のMs温度が350度以下である低変態点溶接材料を用いて、ガセット板と平行にガセット板端部からのビード長が17mm以上となるように伸長ビードを設けることにより、溶接止端部の幾何学的要因からくる応力集中を緩和することができると共に、大きな圧縮残留応力を発生させることができ、これにより、疲労強度を大きく向上させることができることが分かる。
 そして、従来溶接材料を用いて通常の角廻し溶接後、溶接金属のMs温度が350度以下である低変態点溶接材料を用いて、ガセット板と平行にガセット板端部からのビード長が17mm以上となるように伸長ビードを設けても、同様に、疲労強度を大きく向上させることができる。
 また、ガセット板端部からのビード長が残留応力の内容を大きく支配しているため、前記した長さ17mm以上のビードの形成は、上記のように、通常の角廻し溶接の後に伸長ビードを形成する他に、角廻し溶接時に一度に17mm以上のビードの形成を行っても、同様に、疲労強度を大きく向上させることができる。
 角廻し溶接部における疲労強度を向上させる工夫として、従来より、溶接後、ドレッシングなどの後処理を行うことがなされているが、これらの処理による疲労強度の向上は充分とは言えず、また、その効果も不安定であった。
 これに対して、本発明においては、溶接金属のMs温度が350度以下である低変態点溶接材料を用いて、17mm以上のビードを設けることにより、安定して、高い疲労強度を得ることができる。
 本発明は、これらの知見に基づくものであり、請求項1に記載の発明は、
 ガセット板を高張力鋼に角廻し溶接により溶接する溶接方法であって、
 溶接金属のマルテンサイト変態開始点が350℃以下の溶接材料を用いて、
 前記ガセット板の端部の長手方向に17mm以上の長さのビードを形成する
ことを特徴とする溶接方法である。
 そして、請求項2に記載の発明は、
 前記ビードを形成する方法が、角廻し溶接後、角廻し溶接により形成された前記ガセット板の長手方向端部のビード先端部に、さらに伸長ビードを形成するビード形成方法であることを特徴とする請求項1に記載の溶接方法である。
 また、請求項3に記載の発明は、
 前記ビードを形成する方法が、角廻し溶接時に、前記ガセット板の長手方向端部に17mm以上の長さのビードを形成するビード形成方法であることを特徴とする請求項1に記載の溶接方法である。
 本発明は、さらに以下の特徴を有する。
 前記した長さ17mm以上のビードはガセット板の長手方向に形成される。そして、ビード幅は図8に示す廻し溶接部幅(D)以上であれば特に限定されないが、応力集中の緩和および圧縮残留応力の発生の観点からは、図8に示すように、廻し溶接部幅(D)より大きいことが好ましい。
 即ち、請求項4に記載の発明は、
 前記ビードのビード幅が、廻し溶接部幅より大きいことを特徴とする請求項1ないし請求項3のいずれか1項に記載の溶接方法である。
 次に、伸長ビードは通常の角廻し溶接により形成されたビード部の先端に設けられるが、角廻し溶接部を覆うようにガセット板端部から設けてもよい。この場合、図9に示すように、角廻し溶接後、ガセット板端部との接続部に段差を設けることなく、滑らかな形状で伸長ビードを形成することにより、より疲労強度を向上させることができる。
 同様に、角廻し溶接時に長いビードを形成する際にも、ガセット板端部との接続部に段差を設けることなく、滑らかな形状でビードの形成を行うことにより、より疲労強度を向上させることができる。
 即ち、請求項5に記載の発明は、
 前記ガセット板の長手方向端部との接続部を滑らかな形状にしながら、ビードを形成することを特徴とする請求項1ないし請求項4のいずれか1項に記載の溶接方法である。
 次に、角廻し溶接後、角廻し溶接により形成されたビード部の先端に伸長ビードを設ける場合、伸長ビードは、通常、角廻し溶接部の先端の一部に重ねた状態で設けられる。この場合においても、角廻し溶接部と伸長ビードとの接続部に段差を設けることなく、滑らかな形状で伸長ビードを設けることが、疲労強度の向上の観点から好ましい。
 即ち、請求項6に記載の発明は、
 前記角廻し溶接により形成されたビード溶接部との接続部を滑らかな形状にしながら、伸長ビードを形成することを特徴とする請求項1または請求項2に記載の溶接方法である。
 以上のような溶接方法を用いて溶接された溶接継手は、応力集中が大きく緩和され、さらに、大きな圧縮残留応力が発生しているため、疲労強度が充分に向上された溶接継手として提供することができる。
 即ち、請求項7に記載の発明は、
 請求項1ないし請求項6のいずれか1項に記載の溶接方法を用いて、ガセット板が高張力鋼に溶接されていることを特徴とする溶接継手である。
 次に、本発明に係る溶接方法は、既存の鋼構造物における疲労寿命や破壊寿命の延長に大きな効果を発揮する。
 即ち、現在、世界のインフラ構造物である例えば橋や高速道路等の鋼構造物においては、角廻し溶接部について定期的に補修や補強が行われて、疲労寿命や破壊寿命の延長が図られている。また、造船やタンクなどの乗り物や圧力容器等においても、同様に検査や処理が行われて、疲労寿命や破壊寿命の延長が図られている。
 例えば、図10(a)およびその拡大図(b)に示すように、鋼構造物の角廻し溶接部32には、長時間の使用により疲労によるクラック(疲労クラック)40が発生する場合がある。この疲労クラック40に対して、従来は、(c)に示すように、補修溶接を行って補修溶接部34を形成することにより補修を行っていた。
 しかし、従来の補修方法の場合、補修溶接部34の長さが短いため、応力集中を充分に緩和することができず、疲労寿命や破壊寿命を充分に延長することができなかった。
 これに対して、予め従来の補修溶接部を形成した後、本発明を適用し、溶接金属のマルテンサイト変態開始点が350℃以下の溶接材料を用いて、角廻し溶接部のガセット板の端部の長手方向に、ビード長が17mm以上となるように伸長ビードを形成して補修した場合には、前記したように、疲労寿命や破壊寿命を充分に延長することが可能となる。
 なお、本発明に基づく伸長ビードの形成は、事前に補修溶接部を形成しなくても、また、かって補修溶接部を形成した既存の鋼構造物に対して適用しても、疲労寿命や破壊寿命の延長効果を発揮する。
 また、クラックが発生している場合の補修に限られず、事前の予防としての補強についても、本発明を適用することによる効果を発揮させることができ、同様に、疲労寿命や破壊寿命を大幅に延長することが可能となる。この結果、定期検査の期間を大幅に伸ばすことができ、メインテナンス費用の大幅な削減を図ることが可能となる。
 なお、前記ビードの形成に際しては、前記した通り、角廻し溶接部の廻し溶接部幅より大きなビード幅でビードを形成することが好ましく、また、角廻し溶接部のビード先端部との接続部を滑らかな形状にしながら形成するとより好ましい。
 図10(d)に補修方法の具体的な例を示す。図10(d)においては、補修溶接部34の形成に加えて、補修溶接部34を覆う形で、角廻し溶接部のガセット板20の端部の長手方向に、17mm以上の長さで、角廻し溶接部の廻し溶接部幅より大きなビード幅の伸長ビード35を形成している。
 即ち、請求項8に記載の発明は、
 既存の鋼構造物におけるガセットと母材からなる角廻し溶接部を溶接により補修または補強する溶接方法であって、
 溶接金属のマルテンサイト変態開始点が350℃以下の溶接材料を用いて、前記角廻し溶接部のガセット板の端部の長手方向に、前記ガセット板の端部からのビード部の長さが17mm以上となるようにビードを形成する
ことを特徴とする溶接方法である。
 そして、請求項9に記載の発明は、
 前記角廻し溶接部のビード先端部に補修溶接または補強溶接を形成した後に、前記ビードが形成されることを特徴とする請求項8に記載の溶接方法である。
 また、請求項10に記載の発明は、
 前記ビードのビード幅が、廻し溶接部幅より大きいことを特徴とする請求項8または請求項9に記載の溶接方法である。
 さらに、請求項11に記載の発明は、
 前記ガセット板の長手方向端部との接続部を滑らかな形状にしながら、前記ビードを形成することを特徴とする請求項8ないし請求項10のいずれか1項に記載の溶接方法である。
 本発明によれば、ガセット板と高張力鋼の角廻し溶接部の疲労強度を飛躍的に向上させることができるため、溶接構造物の許容荷重を向上させることができ、溶接構造物の高張力化が大きく拡大する。その結果、重量軽減等による低炭素化社会ニーズへ大きく貢献することが可能となり、さらには許容応力上昇による安全性向上にもつながる。
 また、溶接構造物の寿命を著しく延命させることが可能となるため、構造物の補修や補強の観点からも利点がある。戦後、建設され、40年以上経過する構造物が、この10年で多くが寿命を迎えるが、本発明は補修や補強による寿命延長の面でも大きな効果を発揮することができる。
本発明に係る溶接方法で作製された溶接継手の概要を示す(a)平面図、および(b)側面図である。 従来の溶接方法で作製された溶接継手の概要を示す(a)平面図、および(b)側面図である。 本発明に係る溶接方法で作製された溶接継手の他の一例の概要を示す(a)平面図、および(b)側面図である。 本発明に係る溶接方法で作製された溶接継手の他の一例の概要を示す(a)平面図、および(b)側面図である。 本発明に係る溶接方法で作製された溶接継手の他の一例の概要を示す(a)平面図、および(b)側面図である。 伸長ビードの長さと応力集中度の関係を示す図である。 角廻し溶接部に形成されたビードの長さと残留応力の関係を示す図である。 本発明に係る溶接継手の他の例の概要を示す平面図である。 本発明に係る溶接継手の他の例の概要を示す(a)平面図、および(b)側面図である。 本発明に係る溶接方法を補修に適用した例を説明する図である。 ガセット板が取り付けられている状態で引張力を加えた際に平板に生じる引張力の様子を示す斜視図である。
 以下、本発明を実施の形態に基づいて説明する。なお、本発明は、以下の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。
 はじめに、本発明の溶接継手の概要と、従来の溶接継手の概要とを図面を用いて説明する。図1に本発明に係る溶接方法で作製された溶接継手を、また、図2に従来の溶接方法で作製された溶接継手を示す。図1、2において、それぞれ(a)は平面図、(b)は側面図である。
 図2に示す従来の溶接継手においては、従来の角廻し溶接を用いて、母材である平板10とガセット板20とが溶接されて、ガセット板20の下部側面の溶接部31および角廻し溶接部32が形成されている。
 そして、図1に示す本発明の溶接継手においては、角廻し溶接部32の先端に、ガセット板端部からのビード長さが17mm以上となるように、さらに伸長ビード35が形成されている。このように溶接継手を作製することにより、前記したように、疲労強度が大きく向上する。なお、伸長ビード35の形成は、先に形成された角廻し溶接部32のビード温度がMs点まで冷却する前に行うことが好ましい。Ms点まで冷却した後、伸長ビード35を設けようとすると、再加熱により、表面の一部に変態しない領域ができて、変態領域との境に引張り応力が生じるため好ましくない。
 次に、図1に示したビード形成方法以外の好ましい形態について図3~図5に基づいて説明する。
 図3の場合は、角廻し溶接部32のビードの先端部近くから、接続部を滑らかな形状にしながら廻し溶接部幅と同じ幅で伸長ビード35を形成して、所定の長さのビードを設けている。
 図4の場合は、角廻し溶接部32のビード全体を覆う状態で、ガセット板端部から廻し溶接部幅より大きな幅で伸長ビード35を設けている。この場合、ガセット板端部との接続部に段差を設けることなく、滑らかな形状でビードを形成することが好ましい。
 また、図5の場合は、角廻し溶接時に一度に長いビードを、ガセット板端部から廻し溶接部幅より大きな幅で形成している。この場合も、ガセット板端部との接続部に段差を設けることなく、滑らかな形状でビードを形成することが好ましい。
(実験-1)
 次に、本発明の優れた効果を示すために行った実験結果を示す。実験は、溶接材料として、(C0.1wt%以下、Cr8~13wt%、Ni5~12wt%をベースとする化学組成であって、溶接金属のMs温度350℃以下の溶接材料)を用い、通常の角廻し溶接を行った後、同じ溶接材料を用いて表1に示す長さの各伸長ビードを形成し、各伸長ビード先端部における応力集中度および残留応力の大きさを測定すると共に、疲労強度として、応力範囲150MPaの荷重(±150MPaの荷重)を10回/秒繰り返し掛け、破断した時の繰り返し回数(疲労破断回数)を測定した。そして、比較のために、従来溶接材料を用いて通常の角廻し溶接を行い、同様の測定を行った。
 なお、角廻し溶接におけるビード長(脚長)は一般的なビード長である7mmに設定した。また、母材としては800MPaの高張力鋼(サイズ:幅200×長さ1000×厚さ20mm)を、またガセット板としては800MPaの高張力鋼(サイズ:高さ50×長さ200×厚さ20mm)を用いた。
 測定結果を、表1に併せて示す。なお、表1において、応力集中度は、各溶接材料を用いて作製された図2の溶接継手、即ち、伸長ビードが設けられていない溶接継手における応力集中度を1とした相対値で示しており、数値が高いほど応力集中度が高いことを示している。また、残留応力については、+が引張残留応力、-が圧縮残留応力であることを示している。
 また、疲労強度は従来溶接材料を用いて作製された図2の溶接継手における疲労破断回数δを基準として示している。なお、このδは試験体の形状に依存し、例えば、幅70×長さ1000×厚さ12mmの母材および高さ50×長さ100×厚さ12mmのガセット板の場合には500万回程度、幅160×長さ1000×厚さ20mmの母材および高さ50×長さ150×厚さ20mmのガセット板の場合には30万回程度である。
Figure JPOXMLDOC01-appb-T000001
 表1より、10mmの伸長ビード、即ち、長さ17mmのビードを形成することにより、応力集中度が1から0.4まで急激に低下しており、40mm以上の伸長ビードでは0.2に安定していることが分かる。
 また、角廻し溶接部のみで伸長ビードを設けない場合(実験例1-1)には、表面では圧縮残留応力が発生しているものの、深さ5mmの位置ではまだ引張残留応力が発生しているため、疲労強度は従来の1.5倍に留まっている。しかし、10mmの伸長ビードを形成することにより、深さ5mmの位置にも圧縮残留応力が発生し、表面の圧縮残留応力の増大とも相俟って、疲労強度は3倍にまで向上している(実験例1-2)。さらに、40mm以上の伸長ビードでは、表面、深さ5mmいずれも圧縮残留応力が増大して、疲労強度は15倍にまで大きく向上している(実験例1-4~1-6)。
 なお、上記の実験においては、角廻し溶接後、伸長ビードの形成を行っているが、角廻し溶接時に長いビードを形成しても、同様の効果を得ることができる。
 以上より、低変態点溶接材料を用いて、10mm以上の伸長ビード、即ち、ガセット板端部から17mm以上のビードを形成することにより、疲労強度を飛躍的に向上させることができることが分かる。そして、40mm以上の伸長ビードを形成させても、疲労強度を向上させる効果は飽和するため、低変態点溶接材料を用いた伸長ビードの形成は40mm、即ち、ガセット板端部から47mmのビードを形成することが最も好ましいことが分かる。
 このように、本発明によれば、応力集中度の低下と圧縮残留応力の発生により、疲労強度の飛躍的な向上を図ることができる。
(実験-2)
 以下においては、既存の鋼構造物における角廻し溶接部の補修、補強における本発明の効果を確認した。
 具体的には、図10(d)に示すように、補修溶接部34を覆う形で、低変態点溶接材料を用いて40mm長さの伸長ビード35を形成させ、溶接止端の応力集中度、表面位置および深さ5mmでの残留応力、および疲労強度を求めた。
 結果を表2に示す。なお、表2には、補強処理のために、補修の場合と同様に伸長ビードを形成させた時の結果も示している。
Figure JPOXMLDOC01-appb-T000002
 表2より、補修、補強のいずれの場合においても、本発明を適用して、伸長ビードを設けることにより、疲労強度を大幅に改善でき、疲労寿命や破壊寿命を大幅に延長することが可能となることが分かる。
10  平板
20  ガセット板
21  ガセット板の下部側面部
22  ガセット板の下部止端部
31  ガセット板の下部側面の溶接部
32  角廻し溶接部
33  角廻し溶接部の溶接止端部
34  補修溶接部
35  伸長ビード
40  疲労クラック
90  引張力の分布
91  平板の短辺方向の端面部の応力
92  平板の短辺方向の中央部の応力

Claims (11)

  1.  ガセット板を高張力鋼に角廻し溶接により溶接する溶接方法であって、
     溶接金属のマルテンサイト変態開始点が350℃以下の溶接材料を用いて、
     前記ガセット板の端部の長手方向に17mm以上の長さのビードを形成する
    ことを特徴とする溶接方法。
  2.  前記ビードを形成する方法が、角廻し溶接後、角廻し溶接により形成された前記ガセット板の長手方向端部のビード先端部に、さらに伸長ビードを形成するビード形成方法であることを特徴とする請求項1に記載の溶接方法。
  3.  前記ビードを形成する方法が、角廻し溶接時に、前記ガセット板の長手方向端部に17mm以上の長さのビードを形成するビード形成方法であることを特徴とする請求項1に記載の溶接方法。
  4.  前記ビードのビード幅が、廻し溶接部幅より大きいことを特徴とする請求項1ないし請求項3のいずれか1項に記載の溶接方法。
  5.  前記ガセット板の長手方向端部との接続部を滑らかな形状にしながら、ビードを形成することを特徴とする請求項1ないし請求項4のいずれか1項に記載の溶接方法。
  6.  前記角廻し溶接により形成されたビード溶接部との接続部を滑らかな形状にしながら、伸長ビードを形成することを特徴とする請求項1または請求項2に記載の溶接方法。
  7.  請求項1ないし請求項6のいずれか1項に記載の溶接方法を用いて、ガセット板が高張力鋼に溶接されていることを特徴とする溶接継手。
  8.  既存の鋼構造物におけるガセットと母材からなる角廻し溶接部を溶接により補修または補強する溶接方法であって、
     溶接金属のマルテンサイト変態開始点が350℃以下の溶接材料を用いて、前記角廻し溶接部のガセット板の端部の長手方向に、前記ガセット板の端部からのビード部の長さが17mm以上となるようにビードを形成する
    ことを特徴とする溶接方法。
  9.  前記角廻し溶接部のビード先端部に補修溶接または補強溶接を形成した後に、前記ビードが形成されることを特徴とする請求項8に記載の溶接方法。
  10.  前記ビードのビード幅が、廻し溶接部幅より大きいことを特徴とする請求項8または請求項9に記載の溶接方法。
  11.  前記ガセット板の長手方向端部との接続部を滑らかな形状にしながら、前記ビードを形成することを特徴とする請求項8ないし請求項10のいずれか1項に記載の溶接方法。
PCT/JP2012/077790 2011-11-09 2012-10-26 溶接方法および溶接継手 WO2013069484A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/357,097 US20140301776A1 (en) 2011-11-09 2012-10-26 Welding method and weld joint
CN201280054756.3A CN103917327B (zh) 2011-11-09 2012-10-26 焊接方法及焊接接头
EP12847482.2A EP2777865B1 (en) 2011-11-09 2012-10-26 Welding method and weld joint
KR1020147014630A KR20140093971A (ko) 2011-11-09 2012-10-26 용접 방법 및 용접 이음부

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011245441A JP5881055B2 (ja) 2011-11-09 2011-11-09 溶接方法および溶接継手
JP2011-245441 2011-11-09

Publications (1)

Publication Number Publication Date
WO2013069484A1 true WO2013069484A1 (ja) 2013-05-16

Family

ID=48289863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077790 WO2013069484A1 (ja) 2011-11-09 2012-10-26 溶接方法および溶接継手

Country Status (6)

Country Link
US (1) US20140301776A1 (ja)
EP (1) EP2777865B1 (ja)
JP (1) JP5881055B2 (ja)
KR (1) KR20140093971A (ja)
CN (1) CN103917327B (ja)
WO (1) WO2013069484A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113932074A (zh) * 2021-10-29 2022-01-14 临海伟星新型建材有限公司 一种钢丝网增强复合管高压连接接头及其制造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084317A1 (ja) * 2012-11-29 2014-06-05 新日鐵住金株式会社 隅肉アーク溶接継手の形成方法及び隅肉アーク溶接継手
CN105069183B (zh) * 2015-07-10 2017-12-26 厦门理工学院 一种焊接的模拟方法和装置
JP6740805B2 (ja) * 2016-08-23 2020-08-19 国立大学法人大阪大学 溶接方法、溶接継手の製造方法および溶接継手
CN107414331B (zh) * 2017-08-29 2020-04-21 广船国际有限公司 一种间断式角焊方法
CN109604851A (zh) * 2018-12-19 2019-04-12 内蒙古北方重型汽车股份有限公司 矿车车厢铰接支架角焊缝的焊接方法
JP7406795B2 (ja) * 2020-01-28 2023-12-28 国立大学法人大阪大学 溶接方法および溶接構造物
CN113145980B (zh) * 2021-04-30 2022-07-26 广船国际有限公司 一种包角焊接工艺
JP7468460B2 (ja) 2021-06-09 2024-04-16 Jfeスチール株式会社 疲労強度に優れた回し溶接継手および回し溶接方法
CN113857728B (zh) * 2021-10-25 2023-11-07 江南造船(集团)有限责任公司 船舶组立件焊接的焊接方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724570A (ja) * 1993-07-09 1995-01-27 Mitsui Eng & Shipbuild Co Ltd すみ肉溶接方法
JPH09253843A (ja) * 1996-03-21 1997-09-30 Kawasaki Heavy Ind Ltd 応力緩和溶接ビード構造
JPH11138290A (ja) 1996-12-27 1999-05-25 Kawasaki Steel Corp 溶接方法および溶接材料
JP2000017380A (ja) 1997-10-29 2000-01-18 Nippon Steel Corp 溶接用鋼および溶接ワイヤおよび溶接方法
JP2000288728A (ja) 1999-04-07 2000-10-17 Nippon Steel Corp 高疲労強度溶接継手
JP2002113577A (ja) 2000-10-05 2002-04-16 Nippon Steel Corp 低温変態溶材を用いた溶接施工方法および鋼構造物
JP2003275890A (ja) 2002-03-18 2003-09-30 Nippon Steel Corp 疲労寿命向上処理方法およびそれによる長寿命溶接継手
JP2003290972A (ja) 2002-04-08 2003-10-14 Nippon Steel Corp 超低温変態溶材を用いた溶接施工方法および高疲労強度継手ならびに超低温変態溶材
JP2008023570A (ja) * 2006-07-24 2008-02-07 Toshiba Corp 炉心シュラウドの溶接方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1540846A1 (de) * 1965-03-04 1970-07-02 Ishikawajima Harima Jokugyo Ka Schweissverfahren fuer Stahl von hoher Zugfestigkeit
JPS56134067A (en) * 1980-03-22 1981-10-20 Nippon Steel Corp Fillet build-up welding method
JPS5966619A (ja) * 1982-10-06 1984-04-16 Hitachi Ltd ガスタ−ビン燃焼器
US5233149A (en) * 1991-08-02 1993-08-03 Eaton Corporation Reprocessing weld and method
EP0850719B1 (en) * 1996-12-27 2003-09-03 Kawasaki Steel Corporation Welding method
US6336583B1 (en) * 1999-03-23 2002-01-08 Exxonmobil Upstream Research Company Welding process and welded joints
JP3937389B2 (ja) * 2000-09-29 2007-06-27 Jfeスチール株式会社 構造部材の溶接方法および溶接接合部
JP4926353B2 (ja) * 2001-09-27 2012-05-09 新日本製鐵株式会社 溶接継手の製造方法
JP2003251489A (ja) * 2002-02-27 2003-09-09 Jfe Steel Kk 低合金鉄鋼材料の溶接継手及びその溶接方法
US20050252888A1 (en) * 2002-09-09 2005-11-17 Akihiko Ohta Welding method using welding material of low transformation temperature
AU2003901595A0 (en) * 2003-04-08 2003-05-01 Onesteel Trading Pty Limited Welded connections
JP4571432B2 (ja) * 2004-02-17 2010-10-27 株式会社アークリエイト 鉄骨構造物柱梁接合部の梁と内ダイアフラム直結工法
CN101340997A (zh) * 2005-12-22 2009-01-07 埃克森美孚上游研究公司 增强应变性能的管道焊接
CN1916225A (zh) * 2006-09-06 2007-02-21 天津大学 一种改善焊接结构的疲劳性能的相变喷熔方法
CN102554507A (zh) * 2012-02-01 2012-07-11 天津大学 一种产生残余压缩应力的实芯焊丝及其在不锈钢焊接中的应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724570A (ja) * 1993-07-09 1995-01-27 Mitsui Eng & Shipbuild Co Ltd すみ肉溶接方法
JPH09253843A (ja) * 1996-03-21 1997-09-30 Kawasaki Heavy Ind Ltd 応力緩和溶接ビード構造
JPH11138290A (ja) 1996-12-27 1999-05-25 Kawasaki Steel Corp 溶接方法および溶接材料
JP2000017380A (ja) 1997-10-29 2000-01-18 Nippon Steel Corp 溶接用鋼および溶接ワイヤおよび溶接方法
JP2000288728A (ja) 1999-04-07 2000-10-17 Nippon Steel Corp 高疲労強度溶接継手
JP2002113577A (ja) 2000-10-05 2002-04-16 Nippon Steel Corp 低温変態溶材を用いた溶接施工方法および鋼構造物
JP2003275890A (ja) 2002-03-18 2003-09-30 Nippon Steel Corp 疲労寿命向上処理方法およびそれによる長寿命溶接継手
JP2003290972A (ja) 2002-04-08 2003-10-14 Nippon Steel Corp 超低温変態溶材を用いた溶接施工方法および高疲労強度継手ならびに超低温変態溶材
JP2008023570A (ja) * 2006-07-24 2008-02-07 Toshiba Corp 炉心シュラウドの溶接方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2777865A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113932074A (zh) * 2021-10-29 2022-01-14 临海伟星新型建材有限公司 一种钢丝网增强复合管高压连接接头及其制造方法
CN113932074B (zh) * 2021-10-29 2022-07-15 临海伟星新型建材有限公司 一种钢丝网增强复合管高压连接接头及其制造方法

Also Published As

Publication number Publication date
EP2777865A4 (en) 2015-09-02
US20140301776A1 (en) 2014-10-09
EP2777865B1 (en) 2017-02-22
JP5881055B2 (ja) 2016-03-09
JP2013099764A (ja) 2013-05-23
CN103917327B (zh) 2017-09-29
EP2777865A1 (en) 2014-09-17
KR20140093971A (ko) 2014-07-29
CN103917327A (zh) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5881055B2 (ja) 溶接方法および溶接継手
CN104014914B (zh) 船体结构中高强度钢的焊接方法
KR101308773B1 (ko) 면외 거싯 용접 조인트 및 그 제작 방법
KR101504242B1 (ko) 용접 구조체
KR102385019B1 (ko) 후강판의 취성 균열 전파 정지 성능의 평가 방법
JP5364981B2 (ja) 疲労耐久性に優れた船舶および船舶の疲労耐久性向上方法
JP6319022B2 (ja) 鉄道車両用台車枠及びその製造方法
CN102712063B (zh) 具有抗脆性裂纹扩展性的焊接结构体
JP4757697B2 (ja) 隅肉溶接部の疲労性能向上方法
JP6021467B2 (ja) 溶接方法、金属部材補修方法及び台座部形成方法
JP2013071140A (ja) 耐疲労特性に優れた溶接継手及びその製造方法
JP5052976B2 (ja) 耐脆性き裂伝播特性に優れた多層盛突合せ溶接継手及び溶接構造体
JP2019203356A (ja) 鋼床版および鋼床版の製造方法
JP6314670B2 (ja) 疲労特性に優れた構造物
JP6740805B2 (ja) 溶接方法、溶接継手の製造方法および溶接継手
JP2014233747A (ja) ガセット板の溶接方法
JP7468461B2 (ja) 疲労強度に優れた回し溶接継手および回し溶接方法
JP7406795B2 (ja) 溶接方法および溶接構造物
JP2012223818A (ja) 疲労特性に優れた構造物
WO2024090319A1 (ja) 低温ガス用タンク、低温ガス用タンクの製造方法
JP2005144503A (ja) 耐疲労溶接継手およびその溶接方法
JP2022188324A (ja) 疲労強度に優れた回し溶接継手および回し溶接方法
JP4304892B2 (ja) 溶接継手
JP5055758B2 (ja) ステンレス鋼の溶接継手
JP2004337938A (ja) 疲労強度の高い溶接継手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847482

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14357097

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012847482

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012847482

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147014630

Country of ref document: KR

Kind code of ref document: A