WO2013065093A1 - 繰り返し充放電できる量子電池 - Google Patents
繰り返し充放電できる量子電池 Download PDFInfo
- Publication number
- WO2013065093A1 WO2013065093A1 PCT/JP2011/075011 JP2011075011W WO2013065093A1 WO 2013065093 A1 WO2013065093 A1 WO 2013065093A1 JP 2011075011 W JP2011075011 W JP 2011075011W WO 2013065093 A1 WO2013065093 A1 WO 2013065093A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- quantum battery
- metal
- electrode
- passive
- layer
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 130
- 239000002184 metal Substances 0.000 claims abstract description 130
- 239000004065 semiconductor Substances 0.000 claims abstract description 40
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 39
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 39
- 239000011810 insulating material Substances 0.000 claims abstract description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical group O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 56
- 239000007769 metal material Substances 0.000 claims description 35
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 29
- 229910052802 copper Inorganic materials 0.000 claims description 29
- 239000010949 copper Substances 0.000 claims description 29
- 239000004408 titanium dioxide Substances 0.000 claims description 28
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 26
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 19
- 229910052804 chromium Inorganic materials 0.000 claims description 19
- 239000011651 chromium Substances 0.000 claims description 19
- 230000001443 photoexcitation Effects 0.000 claims description 14
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 13
- 239000003963 antioxidant agent Substances 0.000 claims description 13
- 230000003078 antioxidant effect Effects 0.000 claims description 13
- 229910052750 molybdenum Inorganic materials 0.000 claims description 13
- 229910052759 nickel Inorganic materials 0.000 claims description 13
- 229910052719 titanium Inorganic materials 0.000 claims description 13
- 239000010936 titanium Substances 0.000 claims description 13
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 12
- 239000011733 molybdenum Substances 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 8
- 238000010030 laminating Methods 0.000 claims description 7
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 7
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical group [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 7
- 229920005989 resin Polymers 0.000 claims description 5
- 239000011347 resin Substances 0.000 claims description 5
- UNRNJMFGIMDYKL-UHFFFAOYSA-N aluminum copper oxygen(2-) Chemical compound [O-2].[Al+3].[Cu+2] UNRNJMFGIMDYKL-UHFFFAOYSA-N 0.000 claims description 2
- 239000012212 insulator Substances 0.000 claims description 2
- 238000007254 oxidation reaction Methods 0.000 abstract description 23
- 230000003647 oxidation Effects 0.000 abstract description 22
- 230000008859 change Effects 0.000 abstract description 20
- 230000032683 aging Effects 0.000 abstract description 4
- 150000002739 metals Chemical class 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 117
- 229920001296 polysiloxane Polymers 0.000 description 20
- 238000004519 manufacturing process Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000006866 deterioration Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000007599 discharging Methods 0.000 description 5
- 229910000881 Cu alloy Inorganic materials 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- -1 carbon Chemical compound 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 4
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000011255 nonaqueous electrolyte Substances 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 230000005641 tunneling Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 239000003574 free electron Substances 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 229920005597 polymer membrane Polymers 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229920003180 amino resin Polymers 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229940116318 copper carbonate Drugs 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 1
- GEZOTWYUIKXWOA-UHFFFAOYSA-L copper;carbonate Chemical compound [Cu+2].[O-]C([O-])=O GEZOTWYUIKXWOA-UHFFFAOYSA-L 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- 229940112669 cuprous oxide Drugs 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 230000005264 electron capture Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000005300 metallic glass Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N99/00—Subject matter not provided for in other groups of this subclass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M14/00—Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
- H01M14/005—Photoelectrochemical storage cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/46—Accumulators structurally combined with charging apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/46—Accumulators structurally combined with charging apparatus
- H01M10/465—Accumulators structurally combined with charging apparatus with solar battery as charging system
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M14/00—Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/32—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from a charging set comprising a non-electric prime mover rotating at constant speed
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention uses a photoexcitation structure change of a metal oxide due to ultraviolet irradiation to form a new energy level in the band gap and charge by capturing electrons in the energy level in the band gap.
- the present invention relates to an electrode of a quantum battery based on an operation principle.
- Secondary batteries are widely used from mobile terminals such as mobile phones and laptop computers to electric vehicles, and are used repeatedly after charging and discharging.
- electrode deterioration occurs due to repeated charging and discharging with high power and large capacity, and the characteristics of the battery also deteriorate due to deterioration over time and electrode oxidation. Doing so is a factor that hinders longevity.
- the oxidation of the electrode includes an essential problem depending on the charging principle of each secondary battery.
- Lithium batteries use lithium-containing metal oxide for the positive electrode, while using a material that can accept and release lithium, such as carbon, for the negative electrode. Impregnated with an electrolyte composed of an organic solvent.
- an electrode for such a lithium battery a carbon electrode using graphite powder improved for high performance and large capacity is disclosed (for example, refer to Patent Document 1, Patent Document 2, etc.).
- a non-aqueous electrolyte secondary battery comprising a negative electrode containing silicone as a negative electrode active material, a positive electrode containing a positive electrode active material, and a non-aqueous electrolyte
- the silicone in the negative electrode or on the surface of the negative electrode is not exposed to
- an additive for suppressing oxidation and including a film forming agent for forming a film on the surface of the negative electrode in the non-aqueous electrolyte (see, for example, Patent Document 3).
- a large number of cells are stacked with a cell having a solid polymer membrane sandwiched between separators as a unit.
- a separator sandwiching a solid polymer membrane has good conductivity.
- a graphite separator has been conventionally used.
- the graphite separator is brittle, so instead of graphite, stainless steel is used as the separator, and the steel plate is made of a passive film formed from oxides and hydroxides of Cr, Mo, Fe, etc., which are constituents of stainless steel. The surface is covered, and the anticorrosion effect of the base steel is obtained by the barrier effect of this passive film (see, for example, Patent Documents 4 and 5).
- JP 2002-124256 A Japanese Patent Laid-Open No. 11-73964 JP 2006-286314 A JP 2009-107778 A JP 2009-107778 A
- the present invention changes the photogap structure of a conductive first electrode and an n-type metal oxide semiconductor covered with an insulating material to change the band gap. It is intended for a quantum battery that is a secondary battery formed by laminating a charge layer that forms an energy level therein and captures electrons, a p-type semiconductor layer, and a conductive second electrode (PCT). / JP2010 / 067643).
- This quantum battery has a structure in which a stacked charging layer and a p-type semiconductor layer are sandwiched between electrodes from both sides, and a metal material is used as an electrode material.
- the metal electrode is oxidized when the charge layer is formed on one electrode or the other electrode is formed on the P-type semiconductor layer due to heat generated in the thermal process during battery manufacture.
- the adhesion with the charge layer and the p-type metal oxide semiconductor layer is lowered, and in the case of remarkable, there is a problem such as peeling of the electrode.
- the present invention relates to a quantum battery in which an electron capture level is formed in a band gap by changing the photoexcitation structure of an n-type metal oxide semiconductor, and charging is performed by capturing an electron in the capture level.
- An object of the present invention is to provide a quantum battery that can be used for a long period of time by solving the problem of electrode peeling in a thermal process.
- the quantum battery according to the present invention is a charge that captures electrons by forming an energy level in a band gap by changing the photoexcitation structure of the first metal electrode and an n-type metal oxide semiconductor covered with an insulating material.
- One of the first metal electrode and the second metal electrode is a metal electrode having an antioxidant function.
- Both the first metal electrode and the second metal electrode may be metal electrodes having an antioxidant function.
- the metal electrode having an antioxidant function is a passive metal layer having passive characteristics. A plurality of the passive metal layers may be provided.
- first metal electrode or the second metal electrode may be a metal electrode formed by laminating a metal electrode made of a conductive metal layer and a metal electrode having an antioxidant function.
- first metal electrode and the second metal electrode may be a metal electrode formed by laminating a metal electrode made of a conductive metal layer and a metal electrode having an antioxidant function.
- the metal electrode having an antioxidant function may be a passive metal layer having passive characteristics, and the passive metal layer may be a plurality of passive metal layers.
- nickel oxide or copper aluminum oxide is effective as the p-type metal oxide semiconductor, but other p-type semiconductors can also be used.
- the n-type metal oxide semiconductor in the charge layer is made of any one of stannic oxide, titanium dioxide, zinc oxide, or a combination of these, and the photoexcited structure is changed by irradiation with ultraviolet rays, so that the charge function It is a composite with
- the insulating material covering the n-type metal oxide semiconductor is an insulating resin or an inorganic insulator.
- the metal material of the passive metal layer is at least one of chromium, nickel, titanium, and molybdenum. Furthermore, the metal material of the passive metal layer may be an alloy containing at least one of chromium, nickel, titanium, and molybdenum. Furthermore, the metal material of the passive metal layer may be an alloy containing at least one of chromium, nickel, titanium, and molybdenum in copper.
- copper is used as the metal material of the conductive metal layer, and a flexible insulating sheet can be used as the substrate.
- the problem of electrode peeling due to oxidation of the metal electrode in the thermal process at the time of manufacture is prevented, and the deterioration and peeling are prevented by suppressing the oxidation of the electrode due to secular change, over a long period of time.
- a stable quantum battery that can be repeatedly charged and discharged can be provided.
- Explanatory drawing of the quantum battery which inserted the n-type metal oxide semiconductor layer Explanatory drawing of the quantum battery which uses the metal material which has a passive characteristic only for a 2nd electrode.
- Explanatory drawing of the quantum battery which uses the metal material which has a passive characteristic only for a 1st electrode Explanatory drawing of the quantum battery which used the metal material which has a passive characteristic only for a 1st electrode, and provided the board
- the present invention is directed to a quantum battery used as a secondary battery based on a new charging principle adopting a photoexcitation structure change technology in a charge layer, and is deteriorated due to oxidation of an electrode caused by a thermal process at the time of battery manufacture or aging.
- a metal layer having passive characteristics is provided.
- FIG. 1 is a diagram showing a cross-sectional structure of a quantum battery 10 that can be repeatedly charged and discharged according to the present invention.
- a quantum battery 10 includes a conductive first electrode 12 using a metal material having passive characteristics, a charging layer 14 for charging energy, a p-type metal oxide semiconductor layer 16, a first electrode 12, Similarly, a conductive second electrode 18 using a metal material having passive characteristics is laminated.
- the first electrode 12 and the second electrode 18 may be functionally provided with a conductive film, and may be made of a highly conductive metal such as copper, copper alloy, nickel, aluminum, silver, gold, zinc or tin. It is possible to use. Of these, copper is inexpensive and suitable as an electrode material.
- the quantum battery 10 has a problem that the first electrode 12 may be oxidized when the charge layer 14 is formed.
- Passivity refers to the state of a metal that corrodes at an extremely slow rate despite the fact that the electrochemical column of the metal is in a base (active) position, and is a property that underlies the corrosion resistance of metal materials.
- the corrosion region can be examined by an anodic polarization curve in which a potential is applied to the electrode in the positive direction so that an oxidation reaction occurs.
- a potential is applied to the electrode in the positive direction so that an oxidation reaction occurs.
- the current increases with the potential, and when exceeding a certain potential, the current rapidly decreases and continues in a certain potential range, and then rises again.
- the potential region where the initial current rises is called the active region
- the potential region where the current is held at a low value is called the passive region
- the potential region where the current increases again is called the hyperpassive region.
- a protective nano-passive oxide film is produced.
- the current decreases, that is, the conductivity is impaired.
- the electrode is protected to prevent contact with the atmosphere, and the oxidation of the electrode This occurs locally. Therefore, it is possible to provide a quantum battery that can be used for a long period of time even when repeatedly charged and discharged by suppressing oxidation locally to prevent electrode deterioration.
- the metal material having passive characteristics include chromium, nickel, titanium, molybdenum and the like, or an alloy containing at least one kind of chromium, nickel, titanium, molybdenum and the like.
- FIG. 2 is a diagram illustrating a charge layer of a quantum battery to which the present invention is applied.
- the charging layer 14 uses silicone as the insulating coating 22 and titanium dioxide as the n-type metal oxide semiconductor 20, and covers the atomized titanium dioxide with silicone so that the charging layer 14 is filled. It has become.
- titanium dioxide is irradiated with ultraviolet rays to cause a photoexcitation structure change, it has a function of storing energy.
- the material of the n-type metal oxide semiconductor 20 used for the charging layer 14 includes titanium dioxide, stannic oxide, and zinc oxide, which are manufactured by decomposing a metal aliphatic acid salt. For this reason, a metal aliphatic acid salt that can be converted into a metal oxide by combustion in an oxidizing atmosphere is used. By using a material having passive characteristics as the metal electrode, oxidation due to combustion can be prevented.
- thermoplastic resins such as polyethylene and polypropylene, phenol, etc. may be used as the insulating resin.
- Thermosetting resins such as resins and amino resins may be used.
- the material irradiated with ultraviolet rays forms a new energy level due to the change of the photoexcitation structure.
- the photoexcited structure change is a phenomenon in which the interstitial distance of a substance excited by light irradiation changes, and the n-type metal oxide semiconductor 20 which is an amorphous metal oxide has a property of causing a photoexcited structure change. is doing.
- titanium dioxide is used as the n-type metal oxide semiconductor 20 and silicone is used as the material of the insulating film in the charging layer 14, the formation state of a new energy level due to the photoexcitation structure change will be described below with reference to band diagrams. To do.
- 3A and 3B show a case where a silicone 34 as an insulating coating 22 is present between a metal copper 30 as the first electrode 12 and a titanium dioxide 32 as the n-type metal oxide semiconductor 20. It is a band figure explaining the formation state of the new energy level 44 by photoexcitation structure change. Due to the photoexcited structure change phenomenon, a new energy level 44 is formed in the band gap of the n-type metal oxide semiconductor 20.
- the conduction band 36 has a barrier due to an insulating layer made of silicone 34.
- FIG. 3 (A) shows a state in which an ultraviolet ray 38 is irradiated when an insulating layer made of silicone 34 is provided between titanium dioxide 32 and copper 30.
- the ultraviolet rays 38 are irradiated to the titanium dioxide 32 coated with an insulating film
- the electrons 42 in the valence band 40 of the titanium dioxide 32 are excited to the conduction band 36.
- the electrons 42 pass through the insulating layer of the silicone 34 with a certain probability and temporarily move to the copper 30.
- the photoexcited structural change of the titanium dioxide 32 occurs in the absence of the electrons 42, and the interatomic distance of the site from which the electrons 42 of the valence band 40 are removed changes.
- the energy level 44 has moved to the band gap in the Fermi level 46.
- FIG. 3B shows a state in which the above-described phenomenon occurs repeatedly while the ultraviolet ray 38 is irradiated, and a large number of energy levels 44 are formed in the band gap. However, the electrons 42 to be trapped in these energy levels 44 are excited by the ultraviolet rays 38 and moved to the copper 30. The energy level 44 in the band gap in the absence of electrons thus generated remains even after the ultraviolet irradiation is finished.
- the role of the silicone 34 as an insulating layer is to create a barrier between the copper 30 and the titanium dioxide 32 and allow the excited electrons 42 to pass through the tunnel effect to form an energy level 44 in the band gap in the absence of electrons. It is. The electrons 42 that have moved to the copper 30 remain on the copper 30 due to the charging potential around the silicone 34.
- FIG. 4 is a diagram schematically showing a state in which the titanium dioxide 32 covered with the silicone 34 has undergone a photoexcitation structural change due to ultraviolet irradiation, and the electrons 42 have moved to the copper 30.
- the electrons 42 pass through the barrier due to the silicone 34 by the tunneling effect, move to the copper 30, and remain with a weak trapping force generated by the potential of the silicone 34.
- a p-type metal oxide semiconductor layer 16 is further stacked on the charging layer 14 to form a blocking layer, and a second electrode 18 is provided thereon.
- the principle of the secondary battery having such a structure will be described with reference to the band diagram of FIG.
- FIG. 5A shows that the copper 30 and the second electrode 18 constituting the first electrode 12 are sandwiched between the copper 48 and the silicone 34 and the titanium dioxide 32 in the charging layer 14, and the p-type metal oxide semiconductor.
- the quantum battery 10 composed of the nickel oxide 50 functioning as the layer 16
- a negative voltage is applied to the copper 48 constituting the second electrode 18, and the copper 30 constituting the first electrode 12 is grounded to 0V.
- the electrons 42 of the copper 30 pass through the barrier due to the silicone 34 (tunneling) and move to the titanium dioxide 32. Since the transferred electrons 42 are blocked from further movement to the copper 48 by the nickel oxide 50, they are trapped in the energy level 44 existing between the band gaps of the titanium dioxide 32, thereby storing energy. It is done. That is, it is in a charged state, and the charge layer 14 is filled with electrons 42. Since this state is maintained even after the application of the bias electric field is canceled, it has a function as a secondary battery.
- FIG. 5B is a band diagram in the case of discharging by connecting a load (not shown) to the copper 30 and the copper 48.
- the electrons 42 trapped in the band gap become free electrons in the conduction band 36.
- the free electrons move to the copper 30 and flow to the load. This phenomenon is an energy output state and a discharge state.
- the energy level 44 in the band gap is in a state where no electrons 42 exist, and all the energy is used.
- the energy level formed in the band gap of titanium dioxide is filled with electrons by applying an external voltage, and electrons are released by connecting a load to the electrodes.
- the energy is taken out and it functions as a battery. By repeating this phenomenon, it can be used as a secondary battery.
- This is the basic principle of a quantum battery to which the present invention is applied.
- deterioration due to oxidation of the electrode has a great influence on the quantum battery to which the present invention is applied.
- the electrode By making the electrode a metal having passive characteristics, the deterioration of the electrode is partially affected.
- By limiting the surface oxidation it is possible to prevent long-life quantum cells by preventing oxidation due to thermal processes during manufacturing and aging.
- the second electrode 18 is a stack through the p-type metal oxide semiconductor layer 16, and the problem from the viewpoint of adhesion in the first electrode 12 is small. Is also an important issue.
- the second electrode 18 it is effective means for forming an electrode with a metal material having a passive characteristic to improve adhesion and long life of the quantum battery 10 to which the present invention is applied. Become.
- FIG. 6 shows a case where the present invention is applied to a quantum battery 54 in which an n-type metal oxide semiconductor layer 56 is inserted between the first electrode 12 and the charging layer 14.
- the titanium dioxide 32 of the charging layer 14 has an insulating film formed of silicone 34, but it is not always a uniform film, and the titanium dioxide 32 may be in direct contact with the electrode without forming a film. In such a case, electrons 42 are injected into the titanium dioxide 32 by recombination, the energy level 44 is not formed in the band gap, and the charge capacity decreases. Therefore, in order to suppress a reduction in charging capacity and to obtain a higher performance secondary battery, as shown in FIG. 6, an n-type metal oxide semiconductor layer 56 is formed between the first electrode 12 and the charging layer 14 as a dioxide dioxide. A thin layer of titanium is formed. This thin layer of titanium dioxide serves as an insulating layer, contributes to the improvement of performance, has little variation in element characteristics, and has an effective structure for improving the stability and yield in the production line.
- the present invention can also be applied to the quantum battery 54 in which the n-type metal oxide semiconductor layer 56 is formed between the first electrode 12 and the charging layer 14, and even if charging and discharging are repeated, the effect of the electrode is small and effective. Yes.
- FIG. 7 shows an example of a quantum battery 60 using a metal material having passive characteristics only for the second electrode 18.
- a structure in which the substrate 64 is provided on the first electrode 12 side using a metal material that does not have passive characteristics to suppress oxidation of the electrode can be used.
- FIG. 9 shows a quantum battery 68 using a metal material having passive characteristics for the first electrode 12
- FIG. 10 shows an example of a quantum battery 70 in which a substrate 64 is provided on the second electrode 18.
- the case where a metal material having passive characteristics is used for the first electrode 12 and the second electrode 18 has been described.
- the first electrode 12 and the second electrode 18 are connected to a conductive metal layer having conductivity.
- a laminated structure of passive metal layers having passive characteristics can be obtained.
- FIG. 11 shows a quantum battery 72 in which the first electrode 12 and the second electrode 18 are stacked.
- the first electrode 12 has a laminated structure of a first conductive metal layer 74 and a first passive metal layer 76.
- the first passive metal layer 76 is provided on the charging layer 14 side.
- the second electrode 18 has a laminated structure of the second conductive metal layer 80 and the second passive metal layer 78, and the second passive metal layer 78 is provided on the p-type metal oxide semiconductor layer 16 side. .
- a metal material similar to the material used for the electrode can be used as the metal material having passive characteristics. That is, chromium, nickel, titanium, molybdenum, or the like, or an alloy containing at least one kind of chromium, nickel, titanium, molybdenum, or the like may be used.
- FIG. 12 shows the first electrode 12 and the second electrode 18 as a laminated structure, and the first conductive metal layer 74 and the second conductive metal layer 80 shown in FIG. 11 as a metal material having passive characteristics.
- a quantum battery 82 having a third passive metal layer 84 and a fourth passive metal layer 86 is shown. Since the metal material having passive characteristics has a laminated structure, it is possible to further improve the effect of preventing oxidation of the electrode.
- the metal material having passive characteristics is chromium, nickel, titanium, molybdenum or the like, or any one of alloys containing at least one kind of chromium, nickel, titanium, molybdenum and the like is used.
- the first passive metal layer 76, the second passive metal layer 78, the third passive metal layer 84, and the fourth passive metal layer 86 do not need to use the same metal material, and these passive characteristics are not necessary.
- the metal material having the above can be used in various combinations, and these passive metal layers may be a plurality of layers.
- an electrode having a metal material laminated structure with passive characteristics is one electrode and the other is a single layer, and only one of them is a metal material laminated structure having passive characteristics.
- Various combinations are possible, and an example is shown below.
- FIG. 13 shows a structure in which the third passive metal layer 84 is stacked on the first conductive metal layer 74 and the fourth passive metal layer 86 is stacked on the second conductive metal layer 80 in the quantum battery 82 of FIG. This is an example of the quantum battery 88.
- the first electrode 12 is composed of a passive metal material
- the second electrode 18 is a laminate of a second metal passivation layer 78, a second conductive metal layer 80, and a fourth passive metal layer 86. This is an example of the quantum battery 90.
- the second electrode 18 has a laminated structure of a second metal passivation layer 78, a second conductive metal layer 80, and a fourth passivation metal layer 86, and a substrate 64 is provided on the first electrode 12 side.
- This is an example of the quantum battery 92.
- Example 1 An example of a quantum battery that was actually prototyped will be described.
- FIG. 16 shows an example in which a quantum battery 100 according to the present invention is prototyped on a glass using a polyimide film 94 as a substrate 64.
- the polyimide film 94 has a thickness of 4 ⁇ m, and a chromium 96 having a passive characteristic and a copper 30 layer of 300 nm are laminated thereon. Further, chromium 96 is laminated to 50 nm. In the manufacturing process for manufacturing the charge layer 14, heat of about 300 degrees is generated.
- the charging layer 14 is irradiated with ultraviolet rays 38 to change the photoexcitation structure of the titanium dioxide 32 to form a new energy level 44.
- nickel oxide 50 was further formed to 150 nm
- chromium 96 was laminated to 50 nm
- copper 48 was laminated to 300 nm to complete quantum battery 100.
- examples of a method for forming each layer include vapor phase film formation methods such as sputtering, ion plating, electron beam evaporation, vacuum evaporation, and chemical vapor deposition.
- the metal electrode can be formed by an electrolytic plating method, an electroless plating method, or the like.
- FIG. 17 is an example of a quantum battery 102 that is experimentally manufactured using an alloy as a metal material.
- the polyimide film 94 has a thickness of 4 ⁇ m, and a chromium 96 having a passivating characteristic is laminated thereon with a thickness of 50 nm, and an aluminum copper alloy 104 having the same passivating characteristic is laminated with a thickness of 300 nm. Further, chromium 96 is laminated by 50 nm, and titanium dioxide 32 is laminated thereon by 50 nm as an n-type metal semiconductor layer. Next, the titanium dioxide 32 that is atomized and coated with the silicone 34 is laminated by 1000 nm or more to form the charging layer 14. Even in this case, as in the first embodiment, about 300 degrees of heat is generated in the manufacturing process for manufacturing the charging layer 14.
- the charging layer 14 is irradiated with ultraviolet rays to change the photoexcitation structure of titanium dioxide to form a new energy level.
- the quantum battery 102 was completed by laminating nickel oxide 50 of 150 nm, chromium 96 of 50 nm, and aluminum copper alloy 104 of 300 nm.
- this invention includes the appropriate deformation
- Quantum battery 12 First electrode 14 Charging layer 16 P-type metal oxide semiconductor layer 18 Second electrode 20 N-type metal Oxide semiconductor 22 Insulating coating 30, 48 Copper 32 Titanium dioxide 34 Silicone 36 conduction band 38 ultraviolet ray 40 valence band 42 electron 44 energy level 46 Fermi level 50 nickel oxide 64 substrate 74 first conductive metal layer 76 first passive metal layer 78 second passive metal layer 80 second conductive metal Layer 84 Third passive metal layer 86 Fourth passive metal layer 94 Polyimide film 96 Chrome 104 Aluminum copper alloy
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Secondary Cells (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
(実施例1)
(実施例2)
12 第1電極
14 充電層
16 p型金属酸化物半導体層
18 第2電極
20 n型金属酸化物半導体
22 絶縁被膜
30,48 銅
32 二酸化チタン
34 シリコーン
36 伝導帯
38 紫外線
40 価電子帯
42 電子
44 エネルギー準位
46 フェルミレベル
50 酸化ニッケル
64 基板
74 第1導電性金属層
76 第1不動態金属層
78 第2不動態金属層
80 第2導電性金属層
84 第3不動態金属層
86 第4不動態金属層
94 ポリイミドフィルム
96 クロム
104 アルミニウム銅合金
Claims (17)
- 第1の金属電極と、
絶縁性物質で覆われたn型金属酸化物半導体を光励起構造変化させることによりバンドギャップ中にエネルギー準位を形成して電子を捕獲する充電層と、
p型金属酸化物半導体層と、
第2の金属電極と、
を積層して構成され、
前記第1の金属電極と前記第2の金属電極のいずれか一方が、酸化防止機能を有する金属電極であること、
を特徴とする量子電池。
- 請求項1記載の量子電池において、
前記第1の金属電極と前記第2の金属電極のいずれもが、酸化防止機能を有する金属電極であること、
を特徴とする量子電池。
- 請求項1乃至2のいずれかに記載の量子電池において、
酸化防止機能を有する金属電極は、不動態特性を有する不動態金属層であること、
を特徴とする量子電池。
- 請求項3に記載の量子電池において、
酸化防止機能を有する前記金属電極は、不動態特性を有する不動態金属層を複数層備えたこと、
を特徴とする量子電池。
- 請求項1乃至2のいずれかに記載の量子電池において、
前記第1の金属電極と前記第二の金属電極のいずれか一方が、導電性金属層からなる金属電極と酸化防止機能を有する金属電極を積層して構成された金属電極であること、
を特徴とする量子電池。
- 請求項2に記載の量子電池において、
前記第1の金属電極と前記第2の金属電極のいずれもが、導電性金属層からなる金属電極と酸化防止機能を有する金属電極を積層して構成された金属電極であること、
を特徴とする量子電池。
- 請求項5乃至6のいずれかに記載の量子電池において、
酸化防止機能を有する金属電極は、不動態特性を有する不動態金属層であること、
を特徴とする量子電池。
- 請求項7に記載の量子電池において、
前記不動態金属層は、複数の不動態金属層であること、
を特徴とする量子電池。
- 請求項1乃至2に記載の量子電池において、
前記充電層は、p型金属酸化物半導体層と接する反対側にn型金属酸化物半導体層を設けたこと、
を特徴とする量子電池。
- 請求項9に記載の量子電池において、
前記n型金属酸化物半導体層は、二酸化チタンであること、
を特徴とする量子電池。
- 請求項1乃至2のいずれかに記載の量子電池において、
前記p型金属酸化物半導体層は、酸化ニッケル又は銅アルミ酸化物であること、
を特徴とする量子電池。
- 請求項1乃至2のいずれかに記載の量子電池において、
前記n型金属酸化物半導体を覆う絶縁性物質は、絶縁性樹脂又は無機絶縁物であること、
を特徴とする量子電池。
- 請求項3乃至4および請求項7乃至8のいずれかに記載の量子電池において、
前記不動態金属層の金属材料は、少なくともクロム、ニッケル、チタン、モリブデンのいずれか1種であること、
を特徴とする量子電池。
- 請求項3乃至4および請求項7乃至8のいずれかに記載の量子電池において、
前記不動態金属層の金属材料は、少なくともクロム、ニッケル、チタン、モリブデンのいずれか1種が含まれる合金であること、
を特徴とする量子電池。
- 請求項3乃至4および請求項7乃至8のいずれかに記載の量子電池において、
前記不動態金属層の金属材料は、少なくとも銅にクロム、ニッケル、チタン、モリブデンのいずれか1種を含ませた合金であること、
を特徴とする量子電池。
- 請求項5乃至6に記載の量子電池において、
導電性金属層の金属材料は銅であること、
を特徴とする量子電池。
- 請求項1乃至2のいずれかに記載の量子電池において、
フレキシブルな絶縁性のシートを基板とすること、
を特徴とする量子電池。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180074544.7A CN104025329B (zh) | 2011-10-30 | 2011-10-30 | 可反复充放电的量子电池 |
PCT/JP2011/075011 WO2013065093A1 (ja) | 2011-10-30 | 2011-10-30 | 繰り返し充放電できる量子電池 |
JP2013541486A JP5963765B2 (ja) | 2011-10-30 | 2011-10-30 | 繰り返し充放電できる量子電池 |
CA2853599A CA2853599C (en) | 2011-10-30 | 2011-10-30 | Repeatedly chargeable and dischargeable quantum battery |
KR1020147014418A KR101654114B1 (ko) | 2011-10-30 | 2011-10-30 | 반복 충방전 가능한 양자 전지 |
EP11874894.6A EP2787546B1 (en) | 2011-10-30 | 2011-10-30 | Repeatedly chargeable and dischargeable quantum battery |
US14/355,509 US9859596B2 (en) | 2011-10-30 | 2011-10-30 | Repeatedly chargeable and dischargeable quantum battery |
TW101111413A TWI530007B (zh) | 2011-10-30 | 2012-03-30 | 可反覆充放電之量子電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/075011 WO2013065093A1 (ja) | 2011-10-30 | 2011-10-30 | 繰り返し充放電できる量子電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013065093A1 true WO2013065093A1 (ja) | 2013-05-10 |
Family
ID=48191489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/075011 WO2013065093A1 (ja) | 2011-10-30 | 2011-10-30 | 繰り返し充放電できる量子電池 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9859596B2 (ja) |
EP (1) | EP2787546B1 (ja) |
JP (1) | JP5963765B2 (ja) |
KR (1) | KR101654114B1 (ja) |
CN (1) | CN104025329B (ja) |
CA (1) | CA2853599C (ja) |
TW (1) | TWI530007B (ja) |
WO (1) | WO2013065093A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015129051A1 (ja) | 2014-02-25 | 2015-09-03 | 株式会社日本マイクロニクス | 二次電池搭載回路チップ及びその製造方法 |
WO2015141107A1 (ja) * | 2014-03-18 | 2015-09-24 | 株式会社日本マイクロニクス | 電池 |
CN104953180A (zh) * | 2014-03-24 | 2015-09-30 | 松下知识产权经营株式会社 | 蓄电元件以及蓄电元件的制造方法 |
CN104952962A (zh) * | 2014-03-24 | 2015-09-30 | 松下知识产权经营株式会社 | 蓄电元件以及蓄电元件的制造方法 |
JP2017050341A (ja) * | 2015-08-31 | 2017-03-09 | 株式会社日本マイクロニクス | 酸化物半導体二次電池、及びその製造方法 |
WO2017199618A1 (ja) * | 2016-05-19 | 2017-11-23 | 株式会社日本マイクロニクス | 二次電池の製造方法 |
JP2018037261A (ja) * | 2016-08-31 | 2018-03-08 | 株式会社日本マイクロニクス | 二次電池 |
KR20180025938A (ko) | 2015-07-02 | 2018-03-09 | 가부시키가이샤 니혼 마이크로닉스 | 배터리 및 배터리 충전 및 방전 방법 |
WO2018101114A1 (ja) | 2016-11-30 | 2018-06-07 | 株式会社日本マイクロニクス | スクリーニング方法、スクリーニング装置、及び二次電池の製造方法 |
WO2019082421A1 (ja) | 2017-10-27 | 2019-05-02 | 株式会社日本マイクロニクス | 蓄電デバイス |
JP2021089901A (ja) * | 2021-03-10 | 2021-06-10 | 株式会社日本マイクロニクス | 二次電池 |
JP2023505997A (ja) * | 2019-12-11 | 2023-02-14 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | 超音波センサのためのダイアフラムの製造方法および超音波変換器のためのダイアフラム |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103140933B (zh) * | 2010-10-07 | 2016-09-21 | 刮拉技术有限公司 | 二次电池 |
KR101727204B1 (ko) * | 2010-10-07 | 2017-04-14 | 구엘라 테크놀로지 가부시키가이샤 | 태양 전지 |
US20180164241A1 (en) * | 2015-06-11 | 2018-06-14 | Dan Haronian | Micro-electromechanical device, system and method for energy harvesting and sensing |
US12003197B2 (en) | 2015-06-11 | 2024-06-04 | Enervibe Ltd. | Micro-electromechanical device for energy harvesting |
JP6572015B2 (ja) * | 2015-06-25 | 2019-09-04 | 株式会社日本マイクロニクス | 二次電池の製造方法 |
JP6502200B2 (ja) * | 2015-07-22 | 2019-04-17 | 株式会社日本マイクロニクス | 二次電池用中間構造体、及び二次電池の製造方法 |
JP6468966B2 (ja) * | 2015-07-31 | 2019-02-13 | 株式会社日本マイクロニクス | 二次電池搭載チップの製造方法 |
JP2017059524A (ja) * | 2015-09-18 | 2017-03-23 | パナソニックIpマネジメント株式会社 | 蓄電素子およびその製造方法 |
JP6813982B2 (ja) * | 2016-08-01 | 2021-01-13 | 株式会社日本マイクロニクス | 二次電池 |
JP7075717B2 (ja) * | 2017-03-15 | 2022-05-26 | 株式会社日本マイクロニクス | 蓄電デバイス |
TWI743861B (zh) * | 2020-06-30 | 2021-10-21 | 行政院原子能委員會核能研究所 | 核殼粒子儲能方法、儲電層製造方法、量子電池及其製造方法 |
CN115548564A (zh) * | 2022-11-30 | 2022-12-30 | 国能世界(北京)科技有限公司 | 一种量子芯片电池储能模块 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05210122A (ja) * | 1992-01-31 | 1993-08-20 | Ricoh Co Ltd | 液晶表示装置における非線形能動素子の構造及びその製造方法 |
JPH1173964A (ja) | 1997-08-29 | 1999-03-16 | Ricoh Co Ltd | 非水電解質二次電池 |
JP2002124256A (ja) | 2000-10-12 | 2002-04-26 | Mitsubishi Gas Chem Co Inc | 非水溶媒二次電池 |
JP2006286314A (ja) | 2005-03-31 | 2006-10-19 | Sanyo Electric Co Ltd | 非水電解液二次電池 |
WO2008053561A1 (fr) * | 2006-11-02 | 2008-05-08 | Shinoda Plasma Co., Ltd. | Élément de étection de champ électrique et dispositif d'affichage utilisant celui-ci |
JP2009107778A (ja) | 2007-10-30 | 2009-05-21 | Daifuku Co Ltd | クリーンルーム用搬送設備 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4888062A (en) * | 1987-08-31 | 1989-12-19 | Canon Kabushiki Kaisha | Pin junction photovoltaic element having I-type semiconductor layer comprising non-single crystal material containing at least Zn, Se and H in an amount of 1 to 4 atomic % |
JP2846651B2 (ja) | 1989-03-31 | 1999-01-13 | 三洋電機株式会社 | 光起電力装置 |
EP0831538A3 (en) * | 1996-09-19 | 1999-07-14 | Canon Kabushiki Kaisha | Photovoltaic element having a specific doped layer |
JP3616824B2 (ja) | 1999-08-06 | 2005-02-02 | スター精密株式会社 | pin型光電変換素子及び製造方法 |
JP2001167808A (ja) * | 1999-12-09 | 2001-06-22 | Fuji Photo Film Co Ltd | 光電変換素子および光電池 |
RU2357313C2 (ru) * | 2002-07-01 | 2009-05-27 | Рольф АЙСЕНРИНГ | Способ изготовления суперконденсаторов или квантовых аккумуляторов и суперконденсатор или квантовый аккумулятор |
JP2007027032A (ja) | 2005-07-21 | 2007-02-01 | Nisshin Steel Co Ltd | 固体高分子型燃料電池用ステンレス鋼製セパレータ及び燃料電池 |
US20070137693A1 (en) * | 2005-12-16 | 2007-06-21 | Forrest Stephen R | Intermediate-band photosensitive device with quantum dots having tunneling barrier embedded in inorganic matrix |
KR101308096B1 (ko) * | 2006-06-20 | 2013-09-12 | 강원대학교산학협력단 | 리튬 이차 박막 전지용 음극, 이의 제조방법 및 이를포함하는 리튬 이차 박막 전지 |
US8440908B2 (en) * | 2007-07-25 | 2013-05-14 | Polymers Crc Ltd. | Solar cell and method for preparation thereof |
JP2009076714A (ja) * | 2007-09-21 | 2009-04-09 | Fuji Electric Holdings Co Ltd | 薄膜太陽電池の製造方法 |
JP2009167486A (ja) | 2008-01-18 | 2009-07-30 | Nisshin Steel Co Ltd | 電池構成部材用フェライト系ステンレス鋼 |
JP2010146600A (ja) * | 2008-12-16 | 2010-07-01 | Hitachi Global Storage Technologies Netherlands Bv | 垂直磁気記録ヘッド、その製造方法及び磁気記録再生装置 |
JP2009065216A (ja) * | 2008-12-22 | 2009-03-26 | Seiko Epson Corp | 光電変換素子 |
TWI419341B (zh) | 2009-05-18 | 2013-12-11 | Ind Tech Res Inst | 量子點薄膜太陽能電池 |
JP2011176225A (ja) * | 2010-02-25 | 2011-09-08 | Seiko Epson Corp | 光学変換装置及び同装置を含む電子機器 |
CN103140933B (zh) * | 2010-10-07 | 2016-09-21 | 刮拉技术有限公司 | 二次电池 |
KR101727204B1 (ko) * | 2010-10-07 | 2017-04-14 | 구엘라 테크놀로지 가부시키가이샤 | 태양 전지 |
US8981207B1 (en) * | 2012-01-05 | 2015-03-17 | Magnolia Solar, Inc. | High efficiency quantum dot sensitized thin film solar cell with absorber layer |
-
2011
- 2011-10-30 CN CN201180074544.7A patent/CN104025329B/zh not_active Expired - Fee Related
- 2011-10-30 JP JP2013541486A patent/JP5963765B2/ja not_active Expired - Fee Related
- 2011-10-30 WO PCT/JP2011/075011 patent/WO2013065093A1/ja active Application Filing
- 2011-10-30 KR KR1020147014418A patent/KR101654114B1/ko active IP Right Grant
- 2011-10-30 EP EP11874894.6A patent/EP2787546B1/en not_active Not-in-force
- 2011-10-30 CA CA2853599A patent/CA2853599C/en not_active Expired - Fee Related
- 2011-10-30 US US14/355,509 patent/US9859596B2/en not_active Expired - Fee Related
-
2012
- 2012-03-30 TW TW101111413A patent/TWI530007B/zh not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05210122A (ja) * | 1992-01-31 | 1993-08-20 | Ricoh Co Ltd | 液晶表示装置における非線形能動素子の構造及びその製造方法 |
JPH1173964A (ja) | 1997-08-29 | 1999-03-16 | Ricoh Co Ltd | 非水電解質二次電池 |
JP2002124256A (ja) | 2000-10-12 | 2002-04-26 | Mitsubishi Gas Chem Co Inc | 非水溶媒二次電池 |
JP2006286314A (ja) | 2005-03-31 | 2006-10-19 | Sanyo Electric Co Ltd | 非水電解液二次電池 |
WO2008053561A1 (fr) * | 2006-11-02 | 2008-05-08 | Shinoda Plasma Co., Ltd. | Élément de étection de champ électrique et dispositif d'affichage utilisant celui-ci |
JP2009107778A (ja) | 2007-10-30 | 2009-05-21 | Daifuku Co Ltd | クリーンルーム用搬送設備 |
Non-Patent Citations (2)
Title |
---|
HIROSHI KAJIYAMA: "Handotai Niji Denchi (Guala Battery) no Shinki Kaihatsu", 29 November 2010 (2010-11-29), XP055136324, Retrieved from the Internet <URL:http://133.41.4.55/upload/83/riezon/2010/hp/a-2kajiyama> [retrieved on 20111028] * |
See also references of EP2787546A4 |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101835459B1 (ko) * | 2014-02-25 | 2018-03-08 | 가부시키가이샤 니혼 마이크로닉스 | 2차 전지 탑재 회로 칩 및 그 제조 방법 |
WO2015129051A1 (ja) | 2014-02-25 | 2015-09-03 | 株式会社日本マイクロニクス | 二次電池搭載回路チップ及びその製造方法 |
TWI568043B (zh) * | 2014-03-18 | 2017-01-21 | 日本麥克隆尼股份有限公司 | 電池 |
WO2015141107A1 (ja) * | 2014-03-18 | 2015-09-24 | 株式会社日本マイクロニクス | 電池 |
KR101877151B1 (ko) * | 2014-03-18 | 2018-07-10 | 가부시키가이샤 니혼 마이크로닉스 | 전지 |
EP3076449A4 (en) * | 2014-03-18 | 2017-09-06 | Kabushiki Kaisha Nihon Micronics | Battery |
JPWO2015141107A1 (ja) * | 2014-03-18 | 2017-04-06 | 株式会社日本マイクロニクス | 電池 |
CN106463617A (zh) * | 2014-03-18 | 2017-02-22 | 日本麦可罗尼克斯股份有限公司 | 电池 |
KR20160107266A (ko) | 2014-03-18 | 2016-09-13 | 가부시키가이샤 니혼 마이크로닉스 | 전지 |
JP2015195335A (ja) * | 2014-03-24 | 2015-11-05 | パナソニックIpマネジメント株式会社 | 蓄電素子及び蓄電素子の製造方法 |
CN104952962A (zh) * | 2014-03-24 | 2015-09-30 | 松下知识产权经营株式会社 | 蓄电元件以及蓄电元件的制造方法 |
CN104953180A (zh) * | 2014-03-24 | 2015-09-30 | 松下知识产权经营株式会社 | 蓄电元件以及蓄电元件的制造方法 |
US9640606B2 (en) | 2014-03-24 | 2017-05-02 | Panasonic Intellectual Property Management Co., Ltd. | Electricity storage device and method for manufacturing electricity storage device |
EP2924798A1 (en) | 2014-03-24 | 2015-09-30 | Panasonic Intellectual Property Management Co., Ltd. | Electricity storage device and method for manufacturing electricity storage device |
JP2016028408A (ja) * | 2014-03-24 | 2016-02-25 | パナソニックIpマネジメント株式会社 | 蓄電素子及び蓄電素子の製造方法 |
EP2924766A2 (en) | 2014-03-24 | 2015-09-30 | Panasonic Intellectual Property Management Co., Ltd. | Electrical storage device and method for manufacturing electrical storage devices |
KR20180025938A (ko) | 2015-07-02 | 2018-03-09 | 가부시키가이샤 니혼 마이크로닉스 | 배터리 및 배터리 충전 및 방전 방법 |
JP2017050341A (ja) * | 2015-08-31 | 2017-03-09 | 株式会社日本マイクロニクス | 酸化物半導体二次電池、及びその製造方法 |
WO2017038008A1 (ja) * | 2015-08-31 | 2017-03-09 | 株式会社日本マイクロニクス | 酸化物半導体二次電池、及びその製造方法 |
WO2017199618A1 (ja) * | 2016-05-19 | 2017-11-23 | 株式会社日本マイクロニクス | 二次電池の製造方法 |
KR102310986B1 (ko) | 2016-05-19 | 2021-10-07 | 가부시키가이샤 니혼 마이크로닉스 | 2차 전지의 제조 방법 |
JP2017212430A (ja) * | 2016-05-19 | 2017-11-30 | 株式会社日本マイクロニクス | 二次電池の製造方法 |
KR20200141544A (ko) * | 2016-05-19 | 2020-12-18 | 가부시키가이샤 니혼 마이크로닉스 | 2차 전지의 제조 방법 |
TWI658618B (zh) * | 2016-05-19 | 2019-05-01 | Kabushiki Kaisha Nihon Micronics | 二次電池之製造方法 |
JP2018037261A (ja) * | 2016-08-31 | 2018-03-08 | 株式会社日本マイクロニクス | 二次電池 |
CN109643829A (zh) * | 2016-08-31 | 2019-04-16 | 日本麦可罗尼克斯股份有限公司 | 二次电池 |
WO2018042945A1 (ja) * | 2016-08-31 | 2018-03-08 | 株式会社日本マイクロニクス | 二次電池 |
CN109643829B (zh) * | 2016-08-31 | 2021-12-14 | 日本麦可罗尼克斯股份有限公司 | 二次电池 |
US11245113B2 (en) | 2016-08-31 | 2022-02-08 | Kabushiki Kaisha Nihon Micronics | Secondary battery |
WO2018101114A1 (ja) | 2016-11-30 | 2018-06-07 | 株式会社日本マイクロニクス | スクリーニング方法、スクリーニング装置、及び二次電池の製造方法 |
WO2019082421A1 (ja) | 2017-10-27 | 2019-05-02 | 株式会社日本マイクロニクス | 蓄電デバイス |
KR20200065082A (ko) | 2017-10-27 | 2020-06-08 | 가부시키가이샤 니혼 마이크로닉스 | 축전 디바이스 |
JP2023505997A (ja) * | 2019-12-11 | 2023-02-14 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | 超音波センサのためのダイアフラムの製造方法および超音波変換器のためのダイアフラム |
JP7418582B2 (ja) | 2019-12-11 | 2024-01-19 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | 超音波センサのためのダイアフラムの製造方法および超音波変換器のためのダイアフラム |
JP2021089901A (ja) * | 2021-03-10 | 2021-06-10 | 株式会社日本マイクロニクス | 二次電池 |
JP7100170B2 (ja) | 2021-03-10 | 2022-07-12 | 株式会社日本マイクロニクス | 二次電池 |
Also Published As
Publication number | Publication date |
---|---|
CA2853599A1 (en) | 2013-05-10 |
KR20140095071A (ko) | 2014-07-31 |
EP2787546A4 (en) | 2015-09-23 |
KR101654114B1 (ko) | 2016-09-05 |
CN104025329A (zh) | 2014-09-03 |
TW201318255A (zh) | 2013-05-01 |
US20140352775A1 (en) | 2014-12-04 |
TWI530007B (zh) | 2016-04-11 |
US9859596B2 (en) | 2018-01-02 |
CN104025329B (zh) | 2017-07-04 |
JPWO2013065093A1 (ja) | 2015-04-02 |
JP5963765B2 (ja) | 2016-08-03 |
EP2787546B1 (en) | 2018-05-02 |
CA2853599C (en) | 2017-07-04 |
EP2787546A1 (en) | 2014-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5963765B2 (ja) | 繰り返し充放電できる量子電池 | |
RU2482573C1 (ru) | Токосъемник для вторичной батареи и вторичная батарея с его использованием | |
JP5590576B2 (ja) | 蓄電デバイス用電極の製造方法、および、蓄電デバイス | |
US8449628B2 (en) | Lithium battery and manufacturing method thereof | |
WO2010090126A1 (ja) | 薄膜固体リチウムイオン二次電池及びその製造方法 | |
TWI528619B (zh) | 金屬鋰極板 | |
US20110281159A1 (en) | Multi-layer coatings for bipolar rechargeable batteries with enhanced terminal voltage | |
WO2010090124A1 (ja) | 薄膜固体リチウムイオン二次電池及びその製造方法 | |
WO2013183132A1 (ja) | 固体型二次電池の電極構造 | |
JP5640587B2 (ja) | 固体電解質電池 | |
JP2009163942A (ja) | 非水系二次電池およびその製造方法 | |
EP3327837A1 (en) | Li-ion based electrochemical energy storage cell | |
EP2975671B1 (en) | Thin film battery structure and manufacturing method thereof | |
JP2008112635A (ja) | 全固体リチウムイオン電池およびその製造方法 | |
KR101484845B1 (ko) | 리튬 이온 이동로가 구비된 고체 전해질을 포함하는 이차전지, 및 그의 제조방법 | |
CN211088417U (zh) | 袋状二次电池和包括该袋状二次电池的装置 | |
JP2014010948A (ja) | 全固体リチウムイオン二次電池 | |
JP2008077847A (ja) | 非水二次電池用負極材料及びそれを用いた非水二次電池 | |
JP5504765B2 (ja) | 全固体型リチウム二次電池 | |
JP7432858B2 (ja) | 電池 | |
KR20200065948A (ko) | 압전 소자 및 열전 소자를 포함하는 원통형 이차 전지 | |
WO2022210191A1 (ja) | リチウム二次電池 | |
US20220407120A1 (en) | Battery | |
CN117063323A (zh) | 锂二次电池 | |
CN111033856A (zh) | 锂离子二次电池、锂离子二次电池的层叠结构、锂离子二次电池的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11874894 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013541486 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2853599 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147014418 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14355509 Country of ref document: US |