KR101484845B1 - 리튬 이온 이동로가 구비된 고체 전해질을 포함하는 이차전지, 및 그의 제조방법 - Google Patents

리튬 이온 이동로가 구비된 고체 전해질을 포함하는 이차전지, 및 그의 제조방법 Download PDF

Info

Publication number
KR101484845B1
KR101484845B1 KR20130048004A KR20130048004A KR101484845B1 KR 101484845 B1 KR101484845 B1 KR 101484845B1 KR 20130048004 A KR20130048004 A KR 20130048004A KR 20130048004 A KR20130048004 A KR 20130048004A KR 101484845 B1 KR101484845 B1 KR 101484845B1
Authority
KR
South Korea
Prior art keywords
solid electrolyte
lithium metal
lithium ion
metal layer
oxide
Prior art date
Application number
KR20130048004A
Other languages
English (en)
Other versions
KR20130122578A (ko
Inventor
윤재식
최승돈
전호진
박성준
박정호
강혜진
박용팔
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20130122578A publication Critical patent/KR20130122578A/ko
Application granted granted Critical
Publication of KR101484845B1 publication Critical patent/KR101484845B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 리튬 이온 이동로가 구비된 고체 전해질 전지, 및 그의 제조방법에 관한 것으로서, 더 상세하게는, 리튬 금속층 및 상기 리튬 금속층과 일체로 형성된 침상의 리튬 금속 산화물의 리튬 이온 이동로가 구비된 무기계 고체 전해질 이차 전지이다. 본 발명의 고체 전해질 전지는 전극 재료와 고체 전해질 사이의 계면을 손상시키지 않으면서도, 이온 전도도가 향상된 효과가 있다.

Description

리튬 이온 이동로가 구비된 고체 전해질을 포함하는 이차전지, 및 그의 제조방법{SECONDARY BATTERY COMPRISING SOLID ELECTROLYTE BATTERY HAVING A LITHIUM ION-PATH, METHOD FOR PRODUCING THE SAME}
본 발명은 리튬 이온 이동로가 구비된 고체 전해질을 포함하는 이차전지, 및 그의 제조방법에 관한 것이다.
최근 전기 자동차 내지는 하이브리드카의 제품이 출시되면서, 대용량 이차 전지에 대한 수요가 증가하고 있는데, 자동차 등에 탑재되는 이차 전지는 용량 및 충·방전 사이클 특성도 중요하지만, 자동차의 특성상 전지의 안정성 확보 및 내구성 향상이 필수적이다.
종래의 유기 전해액을 활용한 기존의 리튬 이온 이차전지는 충전 과다 또는 차량 사고 등에 의해 내부 합선 등의 이상 발생 시에, 전해액이 고온화되어 휘발하기 때문에, 화재 또는 폭발의 위험성이 있는 문제점이 있다.
이러한 문제점을 해결하기 위하여, 여러 방면의 기술이 개발되고 있지만, 전해질로서 액체 대신 고체를 사용한 전지, 즉, 고체 전해질 전지가 가장 유력한 대안이 되고 있다.
또한, PDA, 디지털카메라, 노트북 컴퓨터, 휴대전화 등 전자기기의 소형화·경량화·휴대화 경향에 따라, 소자의 크기가 작아진 것에 부합되는 초소형 전지의 필요성이 날로 증대되고 있는데, 초소형 시스템의 전원으로 사용되는 박막전지의 모든 구성 요소는 고체이고, 전해질 역시 고체 전해질을 사용한다.
이처럼 전지의 전해액을 대신한 고체 전해질에 대한 수요와 관심은 점차 증대되고 있는 추세이다.
리튬 이온 이차 전지의 전해질로서 고체 전해질을 사용하는 연구는 비교적 일찍부터 시작되었는데, 1973년에 D. E. fenton 등이 고분자에 리튬염을 용해시키면 이온 전도체로 기능함을 보고하였고, 1997년에는 A. D. Robertson 등이 세라믹에서도 리튬 이온 이동성을 갖는 재료가 있음을 보고하였다.
고체 전해질 전지에 대한 더 상세한 종래의 기술은 하기 특허문헌 1 내지 과 비특허문헌 1 같은 것을 참조하여 이해할 수 있다. 이로써, 특허문헌 1 내지 3, 및 비특허문헌 1의 내용 전부는, 본 명세서상의 내용으로서 인용된다.
한국 등록특허 10-0687159 호 한국 등록특허 10-1047865 호 한국 등록특허 10-0858418 호
金村 聖志, "全固リチウムイオン二次電池の開發狀況と課題", 「電氣化學および工業物理化學(Electrochemistry)(日本)」, 78(4), 2010, pp.276∼282.
상술한 바와 같이, 고체 전해질을 포함하는 이차전지의 경우, 안전성 측면과 박막화 측면에서 매우 큰 장점은 있지만, 상기 고체 전해질의 경우 리튬의 확산 속도 즉, 이온 전도도가 액체 전해액의 그것보다 낮은 문제점이 있다.
또한, 고체 전해질을 이차 전지에 활용하여 높은 성능을 얻으려면 전극 재료와 고체 전해질 사이에 양호한 계면을 형성해 주는 것이 매우 중요하다 (즉, 고체 전해질과 전극 재료를 단순히 쌓기만 하는 방식은 고체 전해질과 전극 재료의 계면이 접점으로 작용하여 계면 저항이 커지기 때문에 전지의 성능이 좋지 않게 된다).
따라서, 전극 재료와 고체 전해질 사이의 계면을 손상시키지 않으면서도, 이온 전도도를 향상시키는 기술이 요구된다.
본 발명은 이러한 기술적 요구를 해결하기 위하여, 리튬 이온 이동로(ion path)가 구비된 고체 전해질을 포함하는 이차전지, 및 그의 제조방법을 제공한다.
본 발명은 고체 전해질 및 상기 고체 전해질의 일면 또는 상기 일면에 대향하는 타면으로부터 내측 방향으로 형성되는 다수의 리튬 이온 이동로 패턴을 포함하는 무기계 고체 전해질을 포함하는 이차 전지를 제공한다.
본 발명의 고체 전해질을 포함하는 이차전지는 전극 재료와 고체 전해질 사이의 계면을 손상시키지 않으면서도, 이온 전도도가 향상된 효과가 있다.
도 1은 본 발명의 고체 전해질을 포함하는 이차전지의 단면을 나타낸 모식도이다.
도 2는 본 발명에 따른 리튬 이온 이동로 패턴의 구조를 도시한 개념도이다.
도 3은 본 발명에 따른 공정에 적용되는 쉐도우마스크 (shadow mask) 패턴의 일예를 도시한 것이다.
도 4는 본 발명에 따른 공정 순서도를 도시한 것이다.
이하에서는 첨부한 도면을 참조하여 본 발명에 따른 구성 및 작용을 구체적으로 설명한다. 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성요소는 동일한 참조부여를 부여하고, 이에 대한 중복설명은 생략하기로 한다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
본 발명은, 리튬 금속층 및 상기 리튬 금속층과 일체로 형성된 침상의 리튬 금속 산화물로 이루어진 리튬 이온 이동로가 구비된 무기계 고체 전해질을 포함하는 이차 전지에 대한 것이다.
도 1은 본 발명에 따른 이차전지의 구조를 도시한 개략적인 개념도이다.
도시된 도면과 같이, 본 발명에 따른 이차전지는, 양극(100), 음극(200) 및 상기 양극(100)과 음극(200) 사이에 배치되는 고체전해질(300)을 포함하는 이차전지의 구조에 있어서, 상기 고체전해질(300) 내에 이온 이동로 패턴(310)을 구비하는 것을 특징으로 한다. 이 경우 상기 이온 이동로 패턴(310)이 상기 고체전해질의 내부 방향으로 다수가 마련되는 것이 바람직하다. 즉, 도 1에 도시된 것과 같이, 미세한 직경을 가지는 돌출형 기둥구조 또는 침상 (針狀) 구조의 패턴이 고체 전해질에 삽입되어, 내부 방향을 향해 다수 배치된 구조를 가질 수 있도록 함이 바람직하다.
상기 이온 이동로 패턴(310)은 고체 전해질 상에 독립적으로 형성 배치되는 구조로 형성될 수도 있고, 또는 도 1의 구조와 같이, 얇은 금속박막층으로 형성된 리튬 금속층(320) 상에 일체형으로 형성되는 구조로 형성될 수도 있다.
본 발명에서 상기 양극(100) 및 음극(200)은 일반적인 이차전지의 전극의 활물질을 포함하는 집전체의 구조를 구비하는 것을 포함하는 개념이다. 이를테면, 상기 양극(100)은 양극 집전체와 상기 양극 집전체 상에 형성된 양극 활물질층을 포함할 수 있다. 양극 집전체의 단부에는 양극 활물질층이 형성되지 않은 부분에 양극 무지부가 형성된다. 양극 무지부에는 양극 집전체에 모인 전자들이 외부회로로 흘러갈 수 있도록 외부 회로와 전기적으로 연결되는 양극 단자가 형성될 수 있다. 양극 활물질층은 리튬 이온이 흡장 또는 탈리할 수 있도록 칼코게나이드(chalcogenide) 화합물이 사용될 수 있으며, 일 예로 LiCoO2, LiMn2O4, LiNiO2, LiNi1-xCoxO2(0<x<1), LiMnO2등의 복합 금속 산화물들을 사용하여 형성될 수 있다. 즉, 양극 활물질층은 코발트산리튬(LiCoO2)과 같은 리튬 금속 산화물에 도전재와 바인더를 혼합하여 형성될 수 있다.
상기 음극(200)은 음극은 화학 반응에 의해 발생한 전자를 모으는 음극 집전체, 상기 음극 집전체의 상부에 형성된 음극 활물질층을 포함할 수 있다. 음극 집전체의 단부에는 음극 활물질층이 형성되지 않은 음극 무지부가 형성될 수 있다. 음극 무지부에는 음극 집전체에 모인 전자들이 외부 회로로 흘러갈 수 있도록 외부 회로와 전지적으로 연결되는 음극 단자가 부착되어 있다. 음극 집전체는 전기전도도가 우수한 구리(Cu) 또는 니켈(Ni)로 형성되며, 음극 단자는 니켈로 형성될 수 있다. 음극 활물질층은 리튬 이온이 흡장, 탈리할 수 있도록 탄소(C) 계열의 물질, 규소(Si), 주석(Sn), 주석 산화물(Tin Oxide), 주석 합금 복합체(Tin Alloy Composite), 전이 금속 산화물, 리튬 금속 나이트라이드 또는 리튬 금속 산화물 등의 물질로 형성될 수 있다. 즉, 음극 활물질층은 탄소 재료 등에 도전재, 및 바인더를 혼합하여 형성될 수 있다.
본 발명의 고체 전해질을 포함하는 이차 전지는, 도 1에 도시한 바와 같이, 고체 전해질(300) 내에 리튬 금속층(320), 및 상기 리튬 금속층과 일체로 형성된 침상의 리튬 금속 산화물로 이루어진 이온 이동로 패턴(310)을 구비할 수 있다.
이 경우 상기 리튬 금속층(320)은 상술한 양극 및 음극을 구성하는 전극 재료(전극의 활물질, 바인더, 도전재 등이 혼합된 것)와 계면 특성을 양호하게 할 수 있으며, 특히, 이온 이동로 패턴(310)을 리튬 금속 산화물로 구현하는 경우 고체 전해질과의 접촉 면을 크게 하여, 이온이 원활하게 이동될 수 있게 하는 통로 역할을 한다.
상기 무기계 고체 전해질(300)은, 재료에 있어서 특별히 제한되는 것은 아니지만, 산화물계 또는 황화물계인 것을 사용하는 것이 바람직하다. 예컨대, 상기 무기계 고체 전해질은 몰리브덴 옥사이드, 티타늄(Ti) 옥사이드, 바나듐(V) 옥사이드, 크롬(Cr) 옥사이드, 탄탈(Ta) 옥사이드, 지르코늄(Zr) 옥사이드, 하프늄(Hf) 옥사이드, 니오븀(Nb) 옥사이드 및 텅스텐(W) 옥사이드로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물인 것이 적당하다.
도 2는 본 발명에 따른 고체전해질(300)과 리튬 이온 이동로 패턴(310)의 구조를 도시한 개념도이다.
본 발명에 따른 리튬 이온 이동로 패턴(310)은 상술한 것과 같이, 고체전해질(300)의 내부로 삽입되는 구조로 구현되는 것이 바람직하다. 특히, 이 경우에는 도 2의 (a)에 도시된 것과 같이, 리튬 금속층(320)을 먼저 박막증착법 등의 공정으로 형성한 후, 도 3에 제시한 것과 같이 소정 형상의 개구부(S1)를 구비한 쉐도우마스크(S)를 이용하여 돌출형 패턴 또는 침상의 패턴을 이루도록 다시 한 번 증착을 수행하여 리튬 이온 이동로 패턴(310)을 금속층(320) 상에 형성할 수 있다. 이후, 그 상부에 고체전해질을 형성하여 구현할 수 있다.
또는, 도 2의 (b)에 도시된 것과 같이, 리튬 금속층의 없는 상태로 리튬 이온 이동로 패턴(310)만을 증착 등의 공정을 통해 구현한 후, 고체전해질(300)을 형성하는 공정을 구현하는 것도 가능하다.
이러한 박막의 증착이나 쉐도우마스크를 이용한 리튬 이온 이동로 패턴의 증착공정에 이용되는 공정은 RF 스퍼터 증착, DC 스퍼터 증착, 화학 기상 증착, 및 펄스 레이저 증착 중 어느 하나의 공정이 이용될 수 있다.
물론, 본 발명에서는 리튬 이온 이동로 패턴의 형성을 쉐도우마스크를 이용한 공정을 통해 구현하는 증착 공정을 들어 설명하였으나, 이러한 돌출형 미세패턴을 구현하는 다양한 공정이 적용될 수 있음은 물론이다.
특히, 도 2에 도시된 것과 같이, 리튬 금속층과 리튬 이온 이동로 패턴(310)의 전체 두께(T2)는 기본적으로 고체 전해질(300)의 전체 두께(T3)이하로 형성됨이 바람직하며, 구체적으로 리튬 이온 이동로 패턴(310)의 두께 (T1)는 10∼20㎛ 인 것이 바람직하다. 만약, 상기 리튬 이온 이동로 패턴(310)의 두께(T1)가 상기 범위보다 얇을 경우, 저항 접촉(ohmic contact)으로 인해 전도성 물질이 되어 충방전에 어려움이 있을 수 있다. 또한, 상기 리튬 이온 이동로 패턴(310)의 두께(T1)가 상기 범위보다 두꺼울 경우, 리튬 금속의 이동이 영역이 커지게 되어 저항이 크게 작용할 수가 있다.
본 발명에 있어서, 상기 리튬 이온 이동로 패턴(310)은 단위 면적당 10∼200 개 범위 이내인 것이 바람직하다.
아울러, 본 발명에 있어서, 상기 리튬 금속층(320)은 두께가 10∼30㎛ 범위 이내인 것이 바람직하다.
본 발명의 고체 전해질 전지는 도 4에 도시된 것과 같이, 하기와 같은 단계를 거쳐 제조될 수 있다.
우선 전극 재료상에 리튬 금속층을 형성한다. 리튬 금속층은 박막 증착법에 의해 형성될 수 있다. 구체적으로, 상기 리튬 금속층은 상온의 진공상태(10 내지 3torr) 에서 리튬 소오스를 30W로 20분간 증착하여 형성할 수 있다.
다음으로, 쉐도우마스크를 사용하여, 상기 기 형성된 리튬 금속층 상에 침상의 리튬 금속패턴(리튬 이온 이동로 패턴)을 형성한다.
이때, '침상(針狀)'이란 돌출형 패턴의 일 종류를 의미하는 것으로, 도 3에서 시사한 쉐도우마스크의 개구부(S1)를 통해 증착될 수 있으며, 이러한 정사각형 구조의 바늘 모양 패턴, 또는 이 외에 돌출형 원기둥 모양, 각뿔 구조 등 다양한 돌출 구조 등의 패턴으로 구현할 수 있음은 물론이다.
구체적으로, 상기 리튬 금속 패턴은 기 형성된 리튬 금속층 위에 소정의 패턴 모양의 개구부를 구비한 쉐도우마스크를 고정한 후, 상온의 진공상태(10 내지 3torr) 에서 리튬 소오스를 30W로 5분간 증착하여 형성할 수 있다.
이어서, 쉐도우마스크를 제거한 후, 침상의 리튬 금속 패턴과 리튬 금속층을 모두 덮도록 박막 증착법을 이용해 고체 전해질을 증착한다.
상기 박막 증착법은, 특별히 제한되지는 않지만, RF 스퍼터 증착, DC 스퍼터 증착, 화학 기상 증착, 및 펄스 레이저 증착에서 선택되는 하나 이상의 방법인 것을 사용할 수 있다. 구체적으로, 상기 고체 전해질은 O2분위기의 100∼150℃에서 고체 전해질 소오스를 30W로 증착하여 형성할 수 있다.
이상의 제조방법에 대해서는 본 발명의 일 구현예를 설명한 것이며, 고체전해질에 본 발명에 따른 리튬 이온이동로 패턴 구조가 삽입되는 형상을 구현하는 방법은 다양하게 변형되어 구현될 수 있다. 즉, 리튬 이온 이동로 패턴에 대한 패터닝 공정을 스크린인쇄, 포토리소그라피 등의 방법을 적용하는 것도 가능하다.
전술한 바와 같은 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였다. 그러나 본 발명의 범주에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능하다. 본 발명의 기술적 사상은 본 발명의 기술한 실시예에 국한되어 정해져서는 안 되며, 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
100: 양극
200: 음극
300: 고체전해질
310: 리튬 이온 이동로 패턴
320: 리튬 금속층

Claims (15)

  1. 고체 전해질; 및
    상기 고체 전해질의 일면 또는 상기 일면에 대향하는 타면으로부터 내측 방향으로 형성되는 다수의 리튬 이온 이동로 패턴을 포함하고, 상기 리튬 이온 이동로 패턴은 상기 고체 전해질 내부에 삽입되는 구조로 형성되어 있으며,
    상기 리튬 이온 이동로 패턴은 상기 고체 전해질의 두께 이하의 길이로 형성되는 것을 특징으로 하는 무기계 고체 전해질 이차 전지.
  2. 삭제
  3. 삭제
  4. 청구항 1에 있어서,
    상기 리튬 이온 이동로 패턴은 리튬 금속 산화물로 형성된 침상(針狀)의 패턴이 이격되어 배치된 것을 특징으로 하는 무기계 고체 전해질 이차 전지.
  5. 청구항 1에 있어서,
    상기 리튬 이온 이동로 패턴은 상기 고체전해질의 일면 또는 상기 타면에 형성되는 리튬 금속층과 상기 리튬 금속층 상에 형성되어 상호 이격 배치된 다수의 돌출형 패턴을 포함하는 것을 특징으로 하는 무기계 고체 전해질 이차 전지.
  6. 청구항 5에 있어서,
    상기 리튬 이온 이동로 패턴은 상기 리튬 금속층의 단위면적당 10∼200개인 것을 특징으로 하는 무기계 고체 전해질 이차 전지.
  7. 청구항 6에 있어서,
    상기 리튬 이온 이동로 패턴은 돌출형 패턴의 길이가 10㎛∼20㎛인 것을 특징으로 하는 무기계 고체 전해질 이차 전지.
  8. 청구항 6에 있어서,
    상기 리튬 금속층은 두께가 10㎛∼30㎛인 것을 특징으로 하는 무기계 고체 전해질 이차 전지.
  9. 청구항 1에 있어서,
    상기 고체 전해질은 산화물계 또는 황화물계 고체 전해질인 것을 특징으로 하는 무기계 고체 전해질 이차 전지.
  10. 청구항 1 또는 청구항 9에 있어서,
    상기 고체 전해질은 몰리브덴 옥사이드, 티타늄(Ti) 옥사이드, 바나듐(V) 옥사이드, 크롬(Cr) 옥사이드, 탄탈(Ta) 옥사이드, 지르코늄(Zr) 옥사이드, 하프늄(Hf) 옥사이드, 니오븀(Nb) 옥사이드 및 텅스텐(W) 옥사이드로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물인 것을 특징으로 하는 무기계 고체 전해질 이차 전지.
  11. 전극 상에 리튬 금속층을 형성하는 단계;
    상기 리튬 금속층 상에 쉐도우마스크(Shadow mask)를 이용하여 돌출형 패턴 구조의 리튬 금속을 형성하는 단계; 및
    상기 리튬 금속층 및 상기 돌출형 패턴 구조의 리튬 금속상에 고체 전해질을 형성하는 단계;를 포함하는 것을 특징으로 하는 리튬 금속 이온 이동로가 형성된 무기계 고체 전해질 이차 전지의 제조방법.
  12. 청구항 11에 있어서,
    상기 리튬 금속층을 형성하는 단계 또는 돌출형 패턴 구조의 리튬 금속을 형성하는 단계는 박막증착법에 의해 수행되는 것을 특징으로 하는 리튬 금속 이온 이동로가 형성된 무기계 고체 전해질 이차 전지의 제조방법.
  13. 청구항 12에 있어서,
    상기 박막 증착법은 RF 스퍼터 증착법, DC 스퍼터 증착법, 화학 기상 증착법, 및 펄스 레이저 증착법으로 이루어진 군으로부터 선택된 방법인 것을 특징으로 하는 리튬 금속 이온 이동로가 형성된 무기계 고체 전해질 이차 전지의 제조방법.
  14. 청구항 11에 있어서,
    상기 고체 전해질은 박막 증착법에 의해 형성되는 것을 특징으로 하는 리튬 금속 이온 이동로가 형성된 무기계 고체 전해질 이차 전지의 제조방법.
  15. 청구항 14에 있어서,
    상기 박막 증착법은 RF 스퍼터 증착법, DC 스퍼터 증착법, 화학 기상 증착법, 및 펄스 레이저 증착법으로 이루어진 군으로부터 선택된 방법인 것을 특징으로 하는 리튬 금속 이온 이동로가 형성된 무기계 고체 전해질 이차 전지의 제조방법.


KR20130048004A 2012-04-30 2013-04-30 리튬 이온 이동로가 구비된 고체 전해질을 포함하는 이차전지, 및 그의 제조방법 KR101484845B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120045470 2012-04-30
KR1020120045470 2012-04-30

Publications (2)

Publication Number Publication Date
KR20130122578A KR20130122578A (ko) 2013-11-07
KR101484845B1 true KR101484845B1 (ko) 2015-01-22

Family

ID=49852320

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130048004A KR101484845B1 (ko) 2012-04-30 2013-04-30 리튬 이온 이동로가 구비된 고체 전해질을 포함하는 이차전지, 및 그의 제조방법

Country Status (1)

Country Link
KR (1) KR101484845B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11843104B2 (en) 2017-05-18 2023-12-12 Lg Energy Solution, Ltd. Method for manufacturing anode for lithium secondary battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101600476B1 (ko) 2014-06-16 2016-03-08 한국과학기술연구원 리튬 전이금속 산화물을 포함하는 코어와 이의 전체 또는 일부에 코팅된 산화물계 고체 전해질로 이루어진 양극 활물질 및 이를 포함하는 리튬 이온 전지
KR102168331B1 (ko) * 2017-01-16 2020-10-22 주식회사 엘지화학 미세 패턴을 갖는 리튬 금속층 및 그 보호층으로 이루어진 이차전지용 음극 및 이의 제조방법
KR102204304B1 (ko) * 2017-12-27 2021-01-18 주식회사 엘지화학 리튬 메탈 이차전지 및 그 제조 방법
DE102018221164A1 (de) * 2018-12-06 2020-06-10 Volkswagen Aktiengesellschaft Schutzschicht für eine Lithium-Metall-Anode einer Festkörperbatterie

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204511A (ja) * 2010-03-26 2011-10-13 Kyocera Corp 全固体型リチウムイオン二次電池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204511A (ja) * 2010-03-26 2011-10-13 Kyocera Corp 全固体型リチウムイオン二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11843104B2 (en) 2017-05-18 2023-12-12 Lg Energy Solution, Ltd. Method for manufacturing anode for lithium secondary battery

Also Published As

Publication number Publication date
KR20130122578A (ko) 2013-11-07

Similar Documents

Publication Publication Date Title
JP7389649B2 (ja) 固体状電解質との間に簡易リチウム金属アノード界面を形成するためのシステム及び方法
JP6069821B2 (ja) リチウムイオン二次電池
US9673478B2 (en) Multi-layer coatings for bipolar rechargeable batteries with enhanced terminal voltage
CN100486001C (zh) 负极、其制造方法及电池
US20210110979A1 (en) Ultra-high power hybrid cell design with uniform thermal distribution
JP2005196971A (ja) リチウム二次電池用負極とその製造方法ならびにリチウム二次電池
US20210110980A1 (en) Voltage-modified hybrid electrochemical cell design
KR101484845B1 (ko) 리튬 이온 이동로가 구비된 고체 전해질을 포함하는 이차전지, 및 그의 제조방법
JP7326923B2 (ja) 固体電池
CN108886150B (zh) 包含具有精细图案的锂金属层及其保护层的二次电池用负极、以及所述负极的制造方法
US20100291444A1 (en) Multilayer coatings for rechargeable batteries
US9979043B2 (en) Three dimensional secondary battery including elastic member and method of fabricating the same
US20210399337A1 (en) Solid electrolyte material with improved chemical stability
US10186731B2 (en) Battery
US10381627B2 (en) Battery structure and method of manufacturing the same
JP2009076278A (ja) 正極電極体およびリチウム二次電池
US10388946B2 (en) Electrode, method for manufacturing the same, electrode manufactured by the method, and secondary battery comprising the same
JP5058381B1 (ja) 集電体及び電極、これを用いた蓄電素子
KR20040100906A (ko) 부극 및 그것을 이용한 전지
JP5504765B2 (ja) 全固体型リチウム二次電池
US10720670B2 (en) Self-aligned 3D solid state thin film battery
KR101113350B1 (ko) 부극 및 그를 이용한 전지
CN111033855A (zh) 锂离子二次电池、锂离子二次电池的正极
CN111129433A (zh) 用于从电化学电池中除去可能形成氢的化合物的方法
KR20120134234A (ko) 수명 특성이 우수한 박막전지 및 그 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190107

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 6