WO2010090124A1 - 薄膜固体リチウムイオン二次電池及びその製造方法 - Google Patents

薄膜固体リチウムイオン二次電池及びその製造方法 Download PDF

Info

Publication number
WO2010090124A1
WO2010090124A1 PCT/JP2010/051126 JP2010051126W WO2010090124A1 WO 2010090124 A1 WO2010090124 A1 WO 2010090124A1 JP 2010051126 W JP2010051126 W JP 2010051126W WO 2010090124 A1 WO2010090124 A1 WO 2010090124A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
current collector
substrate
lithium ion
insulating film
Prior art date
Application number
PCT/JP2010/051126
Other languages
English (en)
French (fr)
Inventor
裕一 佐飛
龍也 古谷
克典 高原
宏之 守岡
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN2010800057601A priority Critical patent/CN102301519A/zh
Priority to US13/146,594 priority patent/US20110287296A1/en
Publication of WO2010090124A1 publication Critical patent/WO2010090124A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/141Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against humidity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Definitions

  • the present invention relates to a lithium ion battery, and more particularly, to a thin film solid lithium ion secondary battery in which all layers formed on a substrate and constituting the battery can be formed by a dry process, and a method for manufacturing the same.
  • Lithium ion secondary batteries have a higher energy density than other secondary batteries, have excellent charge / discharge cycle characteristics, and are widely used as power sources for portable electronic devices.
  • Lithium ion secondary batteries using an electrolytic solution as an electrolyte have limitations in miniaturization and thickness reduction, and polymer batteries using a gel electrolyte and thin film solid batteries using a solid electrolyte have been developed.
  • a polymer battery using a gel electrolyte can be made thinner and smaller than a battery using an electrolyte solution, but there is a limit to making the gel electrolyte thinner and smaller in order to securely seal the gel electrolyte. .
  • a thin-film solid battery using a solid electrolyte is composed of a layer formed on a substrate, that is, a negative electrode current collector film, a negative electrode active material film, a solid electrolyte film, a positive electrode active material film, and a positive electrode current collector film.
  • a thin solid electrolyte film as a substrate, it is possible to further reduce the thickness and size.
  • a solid non-aqueous electrolyte can be used as an electrolyte, and all layers constituting the battery can be made solid, and there is no possibility of deterioration due to liquid leakage, such as a polymer battery using a gel electrolyte.
  • the manufacturing process can be simplified and the safety is high.
  • thin-film solid-state batteries can be incorporated on an electric circuit board on-chip, and if a thin-film solid-state battery is formed on a polymer substrate as an electric circuit board, it can be bent A flexible battery that can be used is also possible. For example, it can be incorporated into a card-type electronic money, an RF tag, or the like.
  • Patent Document 1 entitled “Semiconductor Substrate Mounted Secondary Battery” has the following description.
  • an insulating film is formed on a silicon substrate, a wiring electrode is formed thereon, and a positive electrode and a negative electrode are arranged on the wiring electrode. That is, the positive electrode and the negative electrode are not laminated.
  • the thickness of the battery itself can be made thinner.
  • the substrate can be changed to an insulator.
  • Patent Document 2 described later entitled “Thin-film solid secondary battery and composite device including the same” has the following description.
  • the lithium ion thin film solid secondary battery of Patent Document 2 has a positive electrode side current collector layer (positive electrode current collector layer), a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode side current collector on a substrate.
  • An electric current layer (negative electrode current collector layer) and a moisture prevention film are sequentially laminated.
  • the order of stacking on the substrate may be the order of the current collector layer on the negative electrode side, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, the current collector layer on the positive electrode side, and the moisture prevention film. .
  • the substrate glass, semiconductor silicon, ceramic, stainless steel, a resin substrate, or the like can be used.
  • the resin substrate polyimide, PET, or the like can be used.
  • a thin film that can be bent on the substrate can be used as long as it can be handled without losing its shape. It is more preferable that these substrates have additional characteristics such as increasing transparency, preventing diffusion of alkali elements such as Na, increasing heat resistance, and providing gas barrier properties.
  • a substrate on which a thin film such as SiO 2 or TiO 2 is formed on the surface by sputtering or the like may be used.
  • Patent Document 3 titled “All-solid-state lithium secondary battery manufacturing method and all-solid-state lithium secondary battery” avoids a short circuit between the positive electrode film and the negative electrode film at the battery edge. There is a description of an all solid-state lithium secondary battery capable of producing
  • Non-Patent Document 1 described later has a description regarding the production of a Li battery using a thin film formed by a sputtering method.
  • JP 2008-226728 A paragraphs 0024 to 0025, FIG. 1
  • JP 2008-282687 A paragraphs 0017 to 0027
  • Non-Patent Document 1 can not only form a thin film by a sputtering method, but also functions in an amorphous state, and therefore does not require crystallization by annealing.
  • Li-containing metal oxide crystals such as LiCoO 2 , LiMn 2 O 4 , LiFePO 4 , LiNiO 2, and the like. Since these are usually used in a crystalline phase, when a film is formed by a thin film forming process such as a sputtering method, conventionally, substrate heating during film formation and post-annealing after film formation are necessary. For this reason, a material having high heat resistance is used for the substrate, and there is a problem that the cost becomes high. In addition, the heating process decreases the takt time, and further causes the oxidation of the electrode and causes a short circuit between the electrodes due to a structural change when the positive electrode material is crystallized, which causes a decrease in yield.
  • Li-containing metal oxide crystals such as LiCoO 2 , LiMn 2 O 4 , LiFePO 4 , LiNiO 2, and the like. Since these are usually used in a crystalline phase, when a film is formed by a thin film forming process such as a
  • a plastic substrate From the viewpoint of battery manufacturing cost, it is preferable to use a plastic substrate, and it is also preferable to use a plastic substrate from the viewpoint of using a flexible substrate.
  • LiCoO 2 , LiMn 2 O 4 , LiFePO 4 , LiNiO 2 or the like used for the positive electrode is preferably formed on a plastic substrate at room temperature without post-annealing from the viewpoint of battery manufacturing cost.
  • the charge / discharge experiment of the manufactured battery is performed in a dry room or an inert gas such as Ar or nitrogen. Is running in an enclosed environment.
  • the reason for conducting charge / discharge experiments on batteries manufactured in an inert gas environment is that each layer and substrate constituting the battery are easily affected by moisture contained in the atmosphere, and are rapidly deteriorated based on moisture. As it is, it is not practical.
  • the present invention has been made in order to solve the above-described problems.
  • the object of the present invention is to realize charge / discharge in the atmosphere even when the film constituting the battery is formed of an amorphous film. It is an object of the present invention to provide a high-performance and inexpensive thin-film solid lithium ion secondary battery that can be stably driven and can be manufactured stably and with high yield, and a method for manufacturing the same.
  • the present invention provides an electrically insulating substrate formed of an organic resin, an insulating film formed of an inorganic material on the surface of the electrically insulating substrate, a current collector film, an active material film, a solid electrolyte film, And a current collector film is formed on the surface of the insulating film, and relates to a thin-film solid lithium ion secondary battery.
  • the present invention also includes a step of forming an insulating film with an inorganic material on the surface of an electrically insulating substrate formed of an organic resin, and a positive current collector film and / or a negative current collector film on the surface of the insulating film. And a process for forming a thin film solid lithium ion secondary battery.
  • an insulating film formed of an inorganic material is provided on the surface of the electrically insulating substrate, and the current collector film is formed in close contact with the surface of the insulating film. Even when the films are formed as amorphous, these films are formed above the insulating film. Therefore, charging / discharging in the atmosphere can be realized, stable driving can be performed, durability can be improved, and a high-performance and inexpensive thin-film solid lithium ion secondary battery can be provided.
  • the step of forming an insulating film with an inorganic material on the surface of the electrically insulating substrate formed of an organic resin, and the positive electrode side current collector film and / or the negative electrode side current collector on the surface of the insulating film A positive electrode side current collector film or / and a negative electrode side current collector film are formed in close contact with the surface of the insulating film to form a positive electrode active material film, a solid electrolyte film, and a negative electrode active material. Even when the films are formed as amorphous, these films are formed above the insulating film. Therefore, charging / discharging in the atmosphere can be realized, stable driving is possible, durability can be improved, manufacturing yield can be improved and stable manufacturing can be achieved, high performance and low cost.
  • a thin film solid lithium ion secondary battery manufacturing method can be provided.
  • the current collector film includes a positive electrode side current collector film and a negative electrode side current collector film
  • the active material film includes a positive electrode active material film and a negative electrode active material film
  • the side current collector film and / or the negative electrode side current collector film is preferably formed on the surface of the insulating film.
  • the positive electrode side current collector film and / or the negative electrode side current collector film are formed in close contact with the surface of the insulating film, the positive electrode Even when the active material film, the solid electrolyte film, and the negative electrode active material film are formed as amorphous, these films are formed above the insulating film. Therefore, charging / discharging in the atmosphere can be realized, stable driving can be performed, durability can be improved, and a high-performance and inexpensive thin-film solid lithium ion secondary battery can be provided.
  • the area of the insulating film is larger than the area of the positive electrode side current collector film or the negative electrode side current collector film or the total area of the positive electrode side current collector film and the negative electrode side current collector film. It is good. Since the area of the insulating film is larger than the area of the positive current collector film or the negative current collector film, or the total area of the positive current collector film and the negative current collector film, Moisture that permeates the substrate can be suppressed by the insulating film. Therefore, the influence of moisture on the positive electrode side current collector film, the positive electrode active material film, the solid electrolyte film, the negative electrode active material film, and the negative electrode side current collector film constituting the battery can be suppressed, and durability can be improved. It is possible to provide a high-performance and inexpensive thin-film solid lithium ion secondary battery.
  • the inorganic material includes at least one of oxide, nitride, or sulfide containing any of Si, Al, Cr, Zr, Ta, Ti, Mn, Mg, and Zn. Is good. Moisture permeating the electrically insulating substrate can be suppressed by the insulating film, so that the positive electrode side current collector film, positive electrode active material film, solid electrolyte film, negative electrode active material film, negative electrode side current collector film constituting the battery The influence of moisture on can be suppressed. Therefore, durability can be improved, and a high-performance and inexpensive thin-film solid lithium ion secondary battery can be provided.
  • the insulating film has a thickness of 5 nm to 500 nm. Since the thickness of the insulating film is not less than 5 nm and not more than 500 nm, the insulating film can prevent an initial short circuit of the battery and can prevent a short circuit due to repeated charge / discharge of the battery. In addition, since it can withstand bending and impact of an electrically insulating substrate and does not generate cracks, it can prevent short-circuiting, improve durability, and is a high-performance and inexpensive thin-film solid lithium ion secondary battery. Can be provided.
  • the thickness of the insulating film be 10 nm or more and 200 nm or less. Since the film thickness of the insulating film is 10 nm or more and 200 nm or less, a sufficient film thickness can be obtained more stably, the defect rate due to the initial short circuit can be further reduced, and the battery can be obtained even when the electrically insulating substrate is bent. The function can be maintained.
  • the electrically insulating substrate has a flexible structure. Since the electrically insulating substrate has flexibility, it is possible to provide a thin film solid lithium ion secondary battery that can be suitably used for portable electronic devices and thin electronic devices.
  • the positive electrode active material film be formed of an oxide containing Li and at least one of Mn, Co, Fe, P, Ni, and Si. Since the positive electrode active material film is made of an oxide containing at least one of Mn, Co, Fe, P, Ni, and Si and Li, a thin film solid lithium ion secondary battery having a large discharge capacity is provided. can do.
  • thin film lithium ion secondary battery may be abbreviated as “solid lithium ion battery”, “thin film lithium ion battery”, or the like.
  • a thin film solid lithium ion secondary battery includes an electrically insulating substrate formed of an organic resin, an insulating film formed of an inorganic material on the surface of the substrate, a positive-side current collector film, and a positive-electrode active material. It has a material film, a solid electrolyte film, a negative electrode active material film, and a negative electrode side current collector film, and a positive electrode side current collector film or / and a negative electrode side current collector film are formed on the surface of the insulating film.
  • the thin film solid lithium ion secondary battery has a thickness of 5 nm or more and 500 nm or less.
  • the area of the insulating film is larger than the area of the positive current collector film or the negative current collector film, or the total area of the positive current collector film and the negative current collector film.
  • the inorganic material contains at least one of oxide, nitride, and sulfide.
  • a plastic substrate is used, a thin-film solid lithium ion secondary battery is formed on the substrate, and an inorganic insulating film is formed on at least the surface of the substrate where the substrate is in contact with the positive electrode active material film, Even if the solid electrolyte film and the negative electrode active material film are formed of an amorphous film, these films are formed above the inorganic insulating film provided on the surface of the substrate. Therefore, charging / discharging in the atmosphere can be realized, stable driving can be performed, and high manufacturing yield and high repeated charging / discharging characteristics can be realized.
  • the positive electrode side current collector film and / or the negative electrode side current collector film are formed on the surface of the plastic substrate.
  • the adhesion is not sufficient, and moisture permeation from the substrate causes a defect.
  • the positive electrode side current collector film and / or the negative electrode side current collector film can be formed in close contact with the surface of the inorganic insulating film.
  • moisture from the atmosphere on which the substrate on which the battery is mounted is placed can be blocked.
  • the probability of causing a short circuit (simply referred to as an initial short circuit) caused by charging / discharging performed immediately after manufacturing is reduced, and the manufacturing yield is improved. Furthermore, since the probability of causing a short circuit when charging / discharging is repeated decreases, the defect rate decreases. Moreover, the improvement of a charge / discharge characteristic is realizable.
  • the inorganic insulating film is a simple substance of oxide, nitride or sulfide of Si, Cr, Zr, Al, Ta, Ti, Mn, Mg, Zn, or a mixture thereof, more specifically, Si. 3 N 4 , SiO 2 , Cr 2 O 3 , ZrO 2 , Al 2 O 3 , TaO 2 , TiO 2 , Mn 2 O 3 , MgO, ZnS, etc., or a mixture thereof.
  • the inorganic insulating film formed on the substrate was invented by finding that the positive electrode material and the current collector are different in area and shape, and that short-circuiting often occurs from the edge of the thin film constituting the battery. It has been done. That is, it is effective to form an inorganic insulating film on the substrate so that all parts of the material constituting the battery are covered.
  • this inorganic insulating film must be dense and uniform, and the surface of the inorganic insulating film must be as smooth as the substrate surface. Since a sufficient film thickness is required for the inorganic insulating film, the thickness is preferably 5 nm or more. If it is too thick, the internal stress of the inorganic insulating film is high, and thus the film is liable to be peeled or cracked. In such a case, since such cracks are likely to occur when the substrate is bent, the film thickness is preferably 500 nm or less.
  • the battery is formed on the inorganic insulating film provided on the surface of the substrate. Therefore, it is possible to provide a thin film solid lithium ion secondary battery that can realize charge and discharge in the atmosphere, enable stable driving, and improve durability.
  • FIG. 1A and 1B are diagrams for explaining a schematic structure of a solid lithium ion battery according to an embodiment (part 1) of the present invention.
  • FIG. 1A is a plan view and
  • FIG. 1C is a YY sectional view.
  • the solid lithium ion battery has an inorganic insulating film 20 formed on the surface of a substrate (organic insulating substrate) 10, and a positive current collector film 30 on the inorganic insulating film 20.
  • the positive electrode active material film 40, the solid electrolyte film 50, the negative electrode active material film 60, and the negative electrode side current collector film 70 have a laminated body formed in order.
  • An overall protective film 80 made of, for example, an ultraviolet curable resin is formed so as to cover the entire laminate and the inorganic insulating film 20.
  • the film structure of the battery shown in FIG. 1 is substrate / inorganic insulating film / positive electrode side current collector film / positive electrode active material film / solid electrolyte film / negative electrode active material film / negative electrode side current collector film / overall protective film.
  • a plurality of the laminated bodies described above may be sequentially laminated on the inorganic insulating film 20, electrically connected in series, and covered with the entire protective film 80.
  • a plurality of the above-described stacked bodies may be formed side by side on the inorganic insulating film 20, electrically connected in parallel or in series, and covered with the entire protective film 80.
  • the negative electrode current collector film 70, the negative electrode active material layer 60, the solid electrolyte film 50, the positive electrode active material film 40, and the positive electrode side current collector film 30 are sequentially formed. It can also be formed on top. That is, the battery film configuration may be substrate / inorganic insulating film / negative electrode side current collector film / negative electrode active material layer / solid electrolyte film / positive electrode active material film / positive electrode side current collector film / overall protective film. .
  • FIG. 2A and 2B are diagrams for explaining a schematic structure of a solid lithium ion battery according to an embodiment (part 2) of the present invention.
  • FIG. 2A is a plan view and FIG. 2B is a cross-sectional view taken along line XX. It is.
  • the solid lithium ion battery has an inorganic insulating film 20 formed on the surface of a substrate (organic insulating substrate) 10, and a positive-side current collector film 30 on the inorganic insulating film 20. And a positive electrode active material film 40, and a negative electrode side current collector film 70 and a negative electrode active material film 60.
  • a solid electrolyte film 50 is formed so as to cover the whole of the two laminated bodies formed side by side on the inorganic insulating film 20, and, for example, an ultraviolet curable resin is used so as to cover the whole of the solid electrolyte film 50.
  • An overall protective film 80 is formed.
  • a plurality of sets of the above two laminates may be formed side by side on the inorganic insulating film 20, electrically connected in parallel or in series, and covered with the entire protective film 80. it can.
  • FIG. 3 is a diagram for explaining the outline of the manufacturing process of the solid lithium ion battery in the embodiment of the present invention.
  • an inorganic insulating film 20 is formed on the surface of the substrate (organic insulating substrate) 10.
  • a positive electrode side current collector film 30, a positive electrode active material film 40, a solid electrolyte film 50, a negative electrode active material film 60, and a negative electrode side current collector film 70 are sequentially formed and laminated on the inorganic insulating film 20.
  • the body is formed.
  • an overall protective film 80 made of, for example, an ultraviolet curable resin is formed on the substrate (organic insulating substrate) 10 so as to cover the entire laminate and the inorganic insulating film 20. In this way, the solid lithium ion battery shown in FIG. 1 can be produced.
  • the solid lithium ion battery shown in FIG. 2 can be produced as follows. First, the inorganic insulating film 20 is formed on the surface of the substrate (organic insulating substrate) 10. Next, a laminate in which the positive electrode side current collector film 30 and the positive electrode active material film 40 are sequentially formed on the inorganic insulating film 20, and the negative electrode side current collector film 70 and the negative electrode active material film 60 are sequentially formed. The formed laminates are formed side by side. Next, the solid electrolyte membrane 50 is formed so as to cover the whole of the two laminated bodies formed side by side on the inorganic insulating film 20. Finally, an entire protective film 80 made of, for example, an ultraviolet curable resin is formed on the inorganic insulating film 20 so as to cover the entire solid electrolyte film 50.
  • an entire protective film 80 made of, for example, an ultraviolet curable resin is formed on the inorganic insulating film 20 so as to cover the entire solid electrolyte film 50.
  • the following materials can be used as materials constituting the solid lithium ion battery.
  • lithium phosphate (Li 3 PO 4), nitrogen Li 3 PO 4 N x (typically with the addition of lithium phosphate (Li 3 PO 4), are called LiPON.
  • LiBO 2 N x , Li 4 SiO 4 —Li 3 PO 4 , Li 4 SiO 4 —Li 3 VO 4, etc. can be used.
  • the material forming the positive electrode active material film 40 may be any material that can easily release and adsorb lithium ions and can release and occlude many lithium ions in the positive electrode active material film.
  • examples of such materials include lithium-manganese oxides such as LiMnO 2 (lithium manganate), LiMn 2 O 4 and Li 2 Mn 2 O 4 , lithium-cobalts such as LiCoO 2 (lithium cobaltate) and LiCo 2 O 4.
  • LiNiO 2 lithium nickelate
  • LiNi 2 O 4 lithium-manganese-cobalt oxides
  • LiMnCoO 4 Li 2 MnCoO 4
  • Li 4 Ti 5 O 12 LiTi 2 O lithium
  • LiFePO 4 lithium iron phosphate
  • TiS 2 titanium sulfide
  • MoS 2 molybdenum sulfide
  • FeS, FeS 2 iron sulfide
  • CuS copper sulfide
  • Ni 3 S 2 bismuth oxide
  • Bi 2 Pb 2 O 5 copper oxide
  • CuO copper oxide
  • V 6 O 13 Vanadium
  • the material constituting the negative electrode active material film 60 may be any material that can easily adsorb and desorb lithium ions and can absorb and desorb a large amount of lithium ions in the negative electrode active material film.
  • materials Sn, Si, Al, Ge, Sb, Ag, Ga, In, Fe, Co, Ni, Ti, Mn, Ca, Ba, La, Zr, Ce, Cu, Mg, Sr, Cr, Any oxide such as Mo, Nb, V, and Zn can be used. Moreover, these oxides can also be mixed and used.
  • the material of the negative electrode active material film 60 is, for example, a silicon-manganese alloy (Si—Mn), a silicon-cobalt alloy (Si—Co), a silicon-nickel alloy (Si—Ni), or niobium pentoxide (Nb).
  • Si—Mn silicon-manganese alloy
  • Si—Co silicon-cobalt alloy
  • Si—Ni silicon-nickel alloy
  • Nb niobium pentoxide
  • V 2 O 5 vanadium pentoxide
  • TiO 2 titanium oxide
  • In 2 O 3 indium oxide
  • zinc oxide (ZnO) zinc oxide
  • NiO nickel oxide
  • ITO indium oxide
  • ITO indium oxide
  • ZO zinc oxide
  • GZO zinc oxide
  • GZO zinc oxide
  • ATO tin oxide
  • FTO fluorine Tin oxide
  • the positive electrode side current collector film 30 and the negative electrode side current collector 70 As materials constituting the positive electrode side current collector film 30 and the negative electrode side current collector 70, Cu, Mg, Ti, Fe, Co, Ni, Zn, Al, Ge, In, Au, Pt, Ag, Pd, etc., or An alloy containing any of these can be used.
  • the material constituting the inorganic insulating film 20 may be any material that can form a film having low moisture absorption and moisture resistance.
  • a material an oxide or nitride or sulfide of Si, Cr, Zr, Al, Ta, Ti, Mn, Mg, Zn, or a mixture thereof can be used. More specifically, Si 3 N 4 , SiO 2 , Cr 2 O 3 , ZrO 2 , Al 2 O 3 , TaO 2 , TiO 2 , Mn 2 O 3 , MgO, ZnS, or a mixture thereof is used. can do.
  • Each of the solid electrolyte film 50, the positive electrode active material film 40, the negative electrode active material film 60, the positive electrode side current collector film 30, the negative electrode side current collector 70, and the inorganic insulating film 20 described above is formed by sputtering or electron beam evaporation. It can form by dry processes, such as a method and a heat evaporation method.
  • polycarbonate (PC) resin substrate fluororesin substrate
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PI polyimide
  • PA polyamide
  • PES polysulfone
  • PES polyethersulfone
  • PES polyphenylene sulfide
  • PEEK polyetheretherketone
  • the material constituting the entire protective film 80 may be any material that can form a film having low moisture absorption and moisture resistance.
  • a material an acrylic ultraviolet curable resin, an epoxy ultraviolet curable resin, or the like can be used.
  • the whole protective film can also be formed by vapor deposition of a parylene resin film.
  • FIG. 4 is a diagram for explaining the configuration of each layer of the solid lithium ion battery in the examples and comparative examples of the present invention.
  • the material and thickness of each layer of the solid lithium ion battery described below are shown in FIG. Examples and (B) comparative examples are shown respectively.
  • FIG. 5 is a diagram for explaining the initial short-circuit occurrence frequency of the solid lithium ion battery in Examples and Comparative Examples of the present invention.
  • FIG. 6 is a diagram for explaining the occurrence frequency of the initial short circuit of the solid lithium ion battery in the examples and comparative examples of the present invention.
  • Example 1 A solid lithium ion battery having the configuration shown in FIG. 1 was prepared.
  • a polycarbonate (PC) substrate having a thickness of 1.1 mm was used as the substrate 10.
  • a substrate made of a glass material, acrylic, or the like can be used as long as it is sufficiently flat depending on the film thickness of the battery without conductivity and having a smooth surface.
  • An Si 3 N 4 film having a thickness of 200 nm was formed as an inorganic insulating film 20 on the entire surface of the substrate 10.
  • a metal mask is disposed on the inorganic insulating film 20, and the positive electrode side current collector film 30, the positive electrode active material film 40, the solid electrolyte film 50, the negative electrode active material film 60, and the negative electrode side current collector.
  • the body film 70 was formed in this order to form a laminate. However, this order is the reverse order, that is, the negative electrode side current collector film 70, the negative electrode active material film 60, the solid electrolyte film 50, the positive electrode active material film 40, and the positive electrode side current collector film 30 in this order. It can also be deposited on top.
  • a 500 ⁇ m stainless steel mask is used as the metal mask, but a pattern can also be formed using a lithography technique. In any case, all the films constituting the laminate are formed on the inorganic insulating film.
  • Ti was used as the positive electrode side and negative positive electrode side current collector films 30 and 70, and the film thickness was 100 nm or 200 nm. As long as the positive electrode side and negative positive electrode side current collector films 30 and 70 are conductive and have excellent durability, other materials can be used as well. Specifically, Au, Pt, Cu, or a metal material containing these alloys is used. This metal material may contain an additive for enhancing durability and conductivity.
  • LiMn 2 O 4 was used as the positive electrode active material film 40, and the film thickness was 125 nm.
  • the film formation method of the positive electrode active material film 40 is based on a sputtering method, and the substrate 10 is in an amorphous state because it is formed at a room temperature and without post-annealing.
  • the positive electrode active material film 40 can be formed of other materials, and well-known materials such as LiCoO 2 , LiFePO 4 , and LiNiO 2 can also be used.
  • the film thickness of the positive electrode active material film 40 there is nothing special to mention except that the thicker the battery capacity is, the capacity in Example 1 is 7.4 ⁇ Ah, which shows the effect of the present invention. The amount is sufficient.
  • the film thickness of the positive electrode active material film 40 can be adjusted according to the application / use.
  • Example 1 it goes without saying that further excellent characteristics can be obtained if the positive electrode active material film 40 is annealed.
  • the inorganic insulating film 20 has a low light absorptance, there is no direct temperature rise due to light irradiation, and since the thermal conductivity is relatively high, there is also an effect of suppressing deterioration of the plastic substrate during laser annealing.
  • Li 3 PO 4 N x was used for the solid electrolyte membrane 50.
  • the deposition conditions of the solid electrolyte film 50 are also the conditions in which the temperature of the substrate 10 during sputtering is room temperature and no post-annealing, and the formed solid electrolyte film 50 is in an amorphous state. Since the composition x of nitrogen in the formed solid electrolyte membrane 50 is based on reactive sputtering of nitrogen in the sputtering gas, the exact numerical value is unknown, but is considered to be the same as in Non-Patent Document 1.
  • Example 1 it is clear that the same effect can be obtained even when other solid electrolyte membrane materials are used, and well-known materials such as LiBO 2 N x , Li 4 SiO 4 —Li 3 PO 4 are used. Li 4 SiO 4 —Li 3 VO 4 or the like can also be used.
  • the film thickness of the solid electrolyte membrane 50 it is necessary to have sufficient insulation, and if it is too thin, there is a possibility of causing a short circuit in the initial stage or charging / discharging process.
  • the substrate current collector material, film forming method, and charge / discharge speed, there are cases where a thicker thickness is more preferable in terms of durability.
  • the thickness of the solid electrolyte membrane 50 is too large, for example, if it is 500 nm or more, the ionic conductivity of the solid electrolyte membrane 50 is often lower than that of the liquid electrolyte.
  • the solid electrolyte film 50 is formed by sputtering, if the film thickness is too thick, the sputtering time is increased and the tact time is increased, so that the sputtering chamber must be multi-channeled. It is not preferable.
  • the thickness of the solid electrolyte membrane 50 was 145 nm.
  • An ITO film was used for the negative electrode active material film 60, and the film thickness was 20 nm.
  • the negative electrode side current collector film 70 and the positive electrode side current collector film 30 were made of Ti and the film thickness was 200 nm.
  • the entire protective film 80 was formed using an ultraviolet curable resin.
  • the entire protective film 80 functions as a protective film against moisture intrusion from the surface opposite to the substrate 10. At the same time, it is protected from scratches during handling.
  • the UV curable resin used for forming the entire protective film 80 the one with model number SK3200 manufactured by Sony Chemical & Information Device was used, but other UV curable resin such as model number SK5110 manufactured by the company, for example, should also be used. The same effect can be expected.
  • the material used for forming the entire protective film is particularly preferably a material having a high water-resistant protective effect.
  • the battery film structure is polycarbonate substrate / Si 3 N 4 (200 nm) / Ti (100 nm) / LiMn 2 O 4 (125 nm) / Li 3 PO 4 N x (145 nm) / ITO (20 nm) / Ti (200 nm) / ultraviolet curable resin (20 ⁇ m) (see FIG. 4A).
  • each of the above-described films constituting the battery was formed by sputtering.
  • methods such as vapor deposition, plating, spray coating, etc. can be used.
  • LiMn 2 O 4 and Li 3 PO 4 N x SMO-01 special model manufactured by ULVAC, Inc. was used.
  • the target size is ⁇ 4 inches.
  • the sputtering conditions for each layer are as follows.
  • Ti film formation target composition Ti Sputtering gas: Ar 70 sccm, 0.45 Pa Sputtering power: 1000 W (DC) (2) LiMn 2 O 4 film formation Sputtering gas: (Ar 80% + O 2 20% mixed gas) 20 sccm, 0.20 Pa Sputtering power: 300W (RF) (3) Li 3 PO 4 N x film formation target composition: Li 3 PO 4 Sputtering gas: Ar20 sccm + N 2 20 sccm, 0.26 Pa Sputtering power: 300W (RF) (4) Formation of ITO Film
  • C-3103 manufactured by Anelva Corporation is used, and the target size is ⁇ 6 inches.
  • the sputtering conditions are as follows.
  • Target composition ITO (In 2 O 3 90 wt.% + SnO 2 10 wt.%)
  • Sputtering gas Ar 120 sccm + (Ar 80% + O 2 20% mixed gas) 30 sccm, 0.10 Pa
  • Sputtering power 1000 W (DC) The sputtering time was adjusted to obtain a desired film thickness.
  • the charge / discharge curve was measured using a Keithley 2400, and the charge / discharge rate was set to 1C (current value corresponding to completion of charge / discharge in one hour).
  • the charge / discharge current value in Example 1 is 8 ⁇ A.
  • the sputtering conditions in forming each film were completely the same, and 10 batteries having the same configuration were produced by simultaneous sputtering. This was performed for 5 cycles to obtain a total of 50 samples.
  • the initial short-circuit is due to the positive electrode-side current collector and the negative-electrode-side current collector being conductive for some reason, but as is apparent from the configuration shown in FIG. 1, the inorganic insulating film 20 is ideally formed. If so, there is essentially no reason to conduct. That is, the inorganic insulating film 20 is formed in a range wider than the vertical and horizontal widths of the positive electrode side current collector film 30, and further, the negative electrode side current collector film 70 is formed thereon with a vertical and horizontal width narrower than that of the inorganic insulating film 20. Therefore, the current collectors of the positive electrode side and negative electrode side current collector films 30 and 70 should not be in direct contact with each other.
  • the initial failure occurs because the positive electrode active material film 40 having a surface in contact with the substrate 10 deteriorates, and the solid electrolyte film 50 in the helicopter portion of the positive electrode current collector film 30 is swollen. This is presumed to be due to contact with the negative electrode current collector film 70.
  • the thin film Li battery having the configuration according to Example 1 has an effect of improving the manufacturing yield and the repeated charge / discharge characteristics.
  • Example 2 Next, SCZ (a mixture of SiO 2 , Cr 2 O 3 , and ZrO 2 ) was formed to a thickness of 50 nm as an inorganic insulating film, and a battery similar to that in Example 1 was produced. Film structure of the battery, a polycarbonate substrate / SCZ (50nm) / Ti ( 100nm) / LiMn 2 O 4 (125nm) / Li 3 PO 4 N x (145nm) / ITO (20nm) / Ti (200nm) / ultraviolet curing resin (20 ⁇ m) (see FIG. 4A).
  • SCZ a mixture of SiO 2 , Cr 2 O 3 , and ZrO 2
  • SCZ film formation uses C-3103 made by Anelva, and the target size is ⁇ 6 inches.
  • the sputtering conditions are as follows.
  • Targeting composition SCZ (SiO 2 35 at.% + Cr 2 O 3 30 at.% + ZrO 2 35 at.%)
  • Sputtering gas Ar 100 sccm, 0.13 Pa
  • Sputtering power 1000 W (RF)
  • 50 identical samples were prepared, and when the initial conduction state was examined, there were 3 defectives (see FIGS. 5 and 6).
  • the charge / discharge characteristics are almost the same as in Example 1, and the configuration in which an inorganic insulating film is provided and a battery is mounted thereon is very effective.
  • a battery having a SCZ film thickness of 5 nm (the battery film structure is polycarbonate substrate / SCZ (5 nm) / Ti (100 nm) / LiMn 2 O 4 (125 nm) / Li 3 PO 4 N x (145 nm) / ITO (20 nm) / Ti (200 nm) / UV curable resin (20 ⁇ m)), the initial failure was 1 out of 10.
  • the battery film structure is polycarbonate substrate / SCZ (5 nm) / Ti (100 nm) / LiMn 2 O 4 (125 nm) / Li 3 PO 4 N x (145 nm) / ITO (20 nm) / Ti (200 nm) / UV curable resin (20 ⁇ m)
  • a battery having a film thickness of SCZ of 4 nm (the film structure of the battery is polycarbonate substrate / SCZ (4 nm) / Ti (100 nm) / LiMn 2 O 4 (125 nm) / Li 3 PO 4 N x (145 nm) / ITO
  • the initial failure rate increases to 2 out of 10 and the charge / discharge is repeated for those that did not cause the initial failure. Most of the samples caused short circuit in 10 cycles or less, resulting in defective products.
  • the thickness of the SCZ film becomes thin, such as 4 nm, the film thickness is not formed uniformly and becomes an island shape. Therefore, the function as a protective film constituting the battery cannot be obtained. For this reason, the initial defect rate is increased, and it is considered that a defect is caused by repeated charge and discharge.
  • the thickness of the inorganic insulating film 20 is preferably 5 nm or more.
  • Example 3 As the inorganic insulating film 20, Si 3 N 4 having a thickness of 500 nm was formed, and the same battery as in Example 1 was produced.
  • the film structure of the battery was polycarbonate substrate / Si 3 N 4 (500 nm) / Ti (100 nm) / LiMn 2 O 4 (125 nm) / Li 3 PO 4 N x (145 nm) / ITO (20 nm) / Ti (200 nm) / It is an ultraviolet curable resin (20 ⁇ m) (see FIG. 4A). In the battery of this configuration, there were no problems in the initial charge / discharge characteristics and repeated charge / discharge characteristics.
  • the film is susceptible to bending and impact, and cracks are likely to occur in the film.
  • the cracked sample caused a short circuit and became defective. It is considered that this is because the inorganic insulating film 20 cracks due to the internal stress of the inorganic insulating film 20, and accordingly, the battery mounted on the inorganic insulating film 20 is also affected, causing a short circuit.
  • the thickness of the inorganic insulating film 20 is preferably 500 nm or less.
  • the occurrence frequency of the initial short circuit of the battery decreases as the thickness of the inorganic insulating film 20 increases.
  • the thickness of the inorganic insulating film 20 is preferably 5 nm or more and 500 nm or less.
  • the thickness be 10 nm or more and 500 nm or less so that a sufficient film thickness can be obtained more stably.
  • the thickness of the inorganic insulating film 20 is 10 nm or more and 200 nm or less.
  • the defect rate due to the initial short circuit can be reduced to 10% or less, and the battery function can be maintained even when the substrate 10 is bent.
  • the thickness of the inorganic insulating film 20 is 50 nm or more and 200 nm or less, the defect rate due to the initial short circuit can be reduced to several percent or less.
  • the film thickness of the inorganic insulating film 20 is 200 nm or less, it does not require a long time for film formation, and a high-speed tact time similar to that of an optical disk can be realized.
  • the battery is mounted on the inorganic insulating film provided on the surface of the substrate.
  • High-performance and inexpensive thin-film solid-state lithium-ion secondary battery that can achieve stable driving, improve durability, improve manufacturing yield, and can be manufactured stably Can be provided.
  • the present invention can provide a thin film lithium battery that can be operated in the atmosphere, can be driven stably, can improve the manufacturing yield, and is high-performance and inexpensive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

 大気中での充放電を実現でき、歩留りよく製造することができ、高性能で安価な薄膜固体リチウムイオン二次電池及びその製造方法を提供する。有機樹脂によって形成された電気絶縁性基板10と、この基板の面に無機材料によって形成された絶縁膜20と、正極側集電体膜30と、正極活物質膜40と、固体電解質膜50と、負極活物質膜60と、負極側集電体膜70とを有し、正極側集電体膜又は/及び負極側集電体膜が上記絶縁膜の面に形成された薄膜固体リチウムイオン二次電池であり、上記絶縁膜の膜厚が10nm以上、200nm以下である。上記絶縁膜の面積は、正極側集電体膜又は負極側集電体膜の面積、或いは、正極側集電体膜と負極側集電体膜の合計面積よりも大であり、上記無機材料は、Si、Al、Cr、Zr、Ta、Ti、Mn、Mg、Znの何れかを含む酸化物又は窒化物又は硫化物のうちの何れかを少なくとも 1つ含む。

Description

薄膜固体リチウムイオン二次電池及びその製造方法
 本発明は、リチウムイオン電池に係り、特に、基板に形成され電池を構成する全ての層が乾式工程によって形成することができる薄膜固体リチウムイオン二次電池及びその製造方法に関するものである。
 リチウムイオン二次電池は他の二次電池と比較してエネルギー密度が大きく、充放電のサイクル特性に優れ、携帯電子機器の電源として広く使用されている。電解質として電解液を用いるリチウムイオン二次電池では、小型化、薄型化に限界があり、ゲル状電解質を用いるポリマー電池、固体電解質を用いる薄膜固体電池が開発されている。
 ゲル状電解質を用いるポリマー電池は、電解液を使用した電池よりは薄型化、小型化が可能であるが、ゲル状電解質の封止を確実に行うために、薄型化、小型化に限界がある。
 固体電解質を用いる薄膜固体電池は、基板に形成された層、即ち、負極集電体膜、負極活物質膜、固体電解質膜、正極活物質膜、正極集電体膜によって構成され、薄い基板又は薄い固体電解質フィルムを基板として使用することによって、より薄型化、小型化を図ることができる。また、薄膜固体電池で、電解質として固体の非水電解質を用い、電池を構成する各層を全て固体とすることができ、液漏れによる劣化の可能性がなく、ゲル状電解質を用いるポリマー電池のように液漏、腐食のための部材を必要としないので、製造工程を簡易することができ、安全性が高いとされる。
 小型化・薄膜化が実現すれば薄膜固体電池は、電気回路基板上にオンチップで組み込むことができ、また、電気回路基板としてポリマー基板を使用しこれに薄膜固体電池を形成すれば、折曲げ可能なフレキシブル電池とすることも可能であり、例えば、カード型電子マネー、RFタグ等に組み込むことが可能となる。
 以上説明した、電池を構成する全層が固体によって形成された薄膜固体リチウムイオン二次電池については、これまで、多数の報告がなされている。
 先ず、「半導体基板搭載型二次電池」と題する後記の特許文献1には、次の記載がある。
 特許文献1の実施の形態においては、シリコン基板上に絶縁膜を形成し、その上に配線電極を形成し、正極と負極をそれぞれ配線電極上に並べて配置している。即ち、正極と負極は積層されていない。このような配置としたことにより、電池自体の厚さをより薄くすることが可能である。また、この実施の形態の場合、基板を絶縁物に変更することも可能である。
 また、「薄膜固体二次電池及びこれを備えた複合型機器」と題する後記の特許文献2には、次の記載がある。
 特許文献2のリチウムイオン薄膜固体二次電池は、基板上に、正極側の集電体層(正極集電体層)、正極活物質層、固体電解質層、負極活物質層、負極側の集電体層(負極集電体層)、水分防止膜が順に積層されて形成されている。なお、基板上への積層順序は、負極側の集電体層、負極活物質層、固体電解質層、正極活物質層、正極側の集電体層、水分防止膜の順であってもよい。
 基板は、ガラス、半導体シリコン、セラミック、ステンレス、樹脂基板等を用いることができる。樹脂基板としては、ポリイミドやPET等を用いることができる。また、形が崩れずに取扱いができるものであれば、基板に折り曲げが可能な薄いフィルムを用いることができる。これらの基板には、例えば透明性を増したり、Naなどのアルカリ元素の拡散を防止したり、耐熱性を増したり、ガスバリア性を持たせるなどの付加特性が備わっていればより好ましく、そのために表面にSiO2、TiO2などの薄膜がスパッタリング法などにより形成された基板であってもよい。
 また、「全固体型リチウム二次電池製造方法及び全固体型リチウム二次電池」と題する後記の特許文献3には、電池エッジ部での正極膜と負極膜との間におけるショートを回避することができる全固体型リチウム二次電池に関する記載がある。
 また、後記の非特許文献1には、スパッタリング法によって成膜された薄膜によるLi電池の作製に関する記載がある。
特開平10-284130号公報(段落0032、図4) 特開2008-226728号公報(段落0024~0025、図1) 特開2008-282687号公報(段落0017~0027)
J. B. Bates et al.,"Thin-Film lithium and lithium-ion batteries", Solid State Ionics, 135, 33-45(2000)(2. Experimental procedures, 3. Resultsand discussion)
 非特許文献1に示された固体電解質は、スパッタリング法によって薄膜を成膜することが可能であるばかりでなく、アモルファスで機能するために、アニーリングによる結晶化が不要である。
 従来のバルクLi電池の正極に用いられる材料の多くはLi含有の金属酸化物の結晶であり、例えば、LiCoO2、LiMn24、LiFePO4、LiNiO2等である。これらは通常結晶相で用いるため、スパッタリング法等の薄膜成膜プロセスにて成膜する場合には、従来は成膜中の基板加熱及び成膜後のポストアニールが必要である。このために、基板には耐熱性の高い材料を用いており、コストが高くなってしまうという問題がある。また、加熱プロセスはタクトタイムを落とし、更に、電極の酸化を起こしたり、正極材料が結晶化する際の構造変化により電極間短絡が生じたりすることが原因となり、歩留り低下の原因となる。
 電池の製造コストの面からは、プラスチック基板を用いることが好ましく、また、可撓性の基板を用いるという観点からも、プラスチック基板の使用が好ましい。正極に用いられる、例えば、LiCoO2、LiMn24、LiFePO4、LiNiO2等を、ポストアニールを行うことなしに室温のプラスッチク基板に形成することが、電池の製造コストの面から好ましい。
 上記の一般的に用いられる正極活物質は何れも水分に対して劣化が激しく、プラスチック基板の吸水率が高い場合、この基板に正極活物質が直接触れる場合、劣化が起こりショートを引き起こし、電池として機能しなくなる、或いは、製造の歩留まりが低くなることを本願発明の発明者は見出した。このような劣化、製造の歩留まり低下は、電池を構成する各層を成膜した後にこれらの各層を保護するための保護膜を形成したとしても、改善できるものではない。
 また、石英ガラス、Siウェーハ等の吸水率の低い基板を用いる場合でも、従来の薄膜電池の報告では何れにおいても、製造された電池の充放電実験はドライルーム又はArや窒素等の不活性ガスが封入された環境下で実行されている。不活性ガスの環境下で製造された電池の充放電実験を行うのは、電池を構成する各層及び基板が、大気に含まれる水分の影響を受け易く、水分に基づく劣化が早いことに起因しており、このままでは実用性がない。
 本発明は、上述したような課題を解決するためになされたものであって、その目的は、電池を構成する膜をアモルファス膜によって形成しても、大気中での充放電を実現することができ安定な駆動を可能とし、安定して歩留りよく製造することができる高性能で安価な薄膜固体リチウムイオン二次電池及びその製造方法を提供することにある。
 即ち、本発明は、有機樹脂によって形成された電気絶縁性基板と、電気絶縁性基板の面に無機材料によって形成された絶縁膜と、集電体膜と、活物質膜と、固体電解質膜とを有し、集電体膜が絶縁膜の面に形成された、薄膜固体リチウムイオン二次電池に係るものである。
 また、本発明は、有機樹脂によって形成された電気絶縁性基板の面に無機材料によって絶縁膜を形成する工程と、絶縁膜の面に正極側集電体膜又は/及び負極側集電体膜を形成する工程とを有する、薄膜固体リチウムイオン二次電池の製造方法に係るものである。
 本発明によれば、電気絶縁性基板の面に無機材料によって形成された絶縁膜を有し、絶縁膜の面に集電体膜が密着して形成されているので、活物質膜、固体電解質膜がアモルファスとして形成されている場合でも、これらの膜が絶縁膜の上方に形成される。そのため、大気中での充放電を実現することができ安定な駆動を可能とし、耐久性を向上させることができ、高性能で安価な薄膜固体リチウムイオン二次電池を提供することができる。
 また、本発明によれば、有機樹脂によって形成された電気絶縁性基板の面に無機材料によって絶縁膜を形成する工程と、絶縁膜の面に正極側集電体膜又は/及び負極側集電体膜を形成する工程とを有するので、絶縁膜の面に正極側集電体膜又は/及び負極側集電体膜が密着して形成され、正極活物質膜、固体電解質膜、負極活物質膜がアモルファスとして形成されている場合でも、これらの膜が絶縁膜の上方に形成される。そのため、大気中での充放電を実現することができ安定な駆動を可能とし、耐久性を向上させることができ、また、製造歩留まりを向上させ安定して製造することができ、高性能で安価な薄膜固体リチウムイオン二次電池の製造方法を提供することができる。
本発明の実施の形態における、固体リチウムイオン電池の概略構造を説明する図である。 同上、固体リチウムイオン電池の概略構造を説明する図である。 同上、固体リチウムイオン電池の製造工程の概略を説明する図である。 本発明の実施例及び比較例における、固体リチウムイオン電池の各層の構成を説明する図である。 同上、固体リチウムイオン電池の初期のショートの発生頻度を説明する図である。 同上、固体リチウムイオン電池の初期のショートの発生頻度を説明する図である。
 本発明の薄膜固体リチウムイオン二次電池では、集電体膜は正極側集電体膜と負極側集電体膜を含み、活物質膜は正極活物質膜と負極活物質膜を含み、正極側集電体膜又は/及び負極側集電体膜が絶縁膜の面に形成された構成とするのがよい。電気絶縁性基板の面に無機材料によって形成された絶縁膜を有し、絶縁膜の面に正極側集電体膜又は/及び負極側集電体膜が密着して形成されているので、正極活物質膜、固体電解質膜、負極活物質膜がアモルファスとして形成されている場合でも、これらの膜が絶縁膜の上方に形成される。そのため、大気中での充放電を実現することができ安定な駆動を可能とし、耐久性を向上させることができ、高性能で安価な薄膜固体リチウムイオン二次電池を提供することができる。
 また、絶縁膜の面積が、正極側集電体膜又は負極側集電体膜の面積、或いは、正極側集電体膜と負極側集電体膜の合計面積よりも大である構成とするのがよい。絶縁膜の面積が、正極側集電体膜又は負極側集電体膜の面積、或いは、正極側集電体膜と負極側集電体膜の合計面積よりも大であるので、電気絶縁性基板を透過する水分を絶縁膜によって抑止することができる。よって、電池を構成する正極側集電体膜、正極活物質膜、固体電解質膜、負極活物質膜、負極側集電体膜に対する水分の影響を抑えることができ、耐久性を向上させることができ、高性能で安価な薄膜固体リチウムイオン二次電池を提供することができる。
 また、無機材料が、Si、Al、Cr、Zr、Ta、Ti、Mn、Mg、Znの何れかを含む酸化物又は窒化物又は硫化物のうちの何れかを少なくとも1つ含む構成とするのがよい。電気絶縁性基板を透過する水分を絶縁膜によって抑止することができるので、電池を構成する正極側集電体膜、正極活物質膜、固体電解質膜、負極活物質膜、負極側集電体膜に対する水分の影響を抑えることができる。よって、耐久性を向上させることができ、高性能で安価な薄膜固体リチウムイオン二次電池を提供することができる。
 また、絶縁膜の膜厚が5nm以上、500nm以下である構成とするのがよい。絶縁膜の膜厚が5nm以上、500nm以下であるので、絶縁膜は、電池の初期のショートの発生を防止すると共に、電池の充放電の繰返しによるショートを防止することができる。また、電気絶縁性基板の曲げ、衝撃に耐えることができクラックを発生しないので、ショートを防止することができ、耐久性を向上させることができ、高性能で安価な薄膜固体リチウムイオン二次電池を提供することができる。
 また、絶縁膜の膜厚が10nm以上、200nm以下である構成とするのがよい。絶縁膜の膜厚が10nm以上、200nm以下であるので、より安定して十分な膜厚が得られ、初期のショートによる不良率をより低下させることができ、電気絶縁性基板を曲げても電池としての機能を保持することができる。
 また、電気絶縁性基板は可撓性を有する構成とするのがよい。電気絶縁性基板は可撓性を有するので、携帯用の電子デバイス、薄型の電子デバイスに好適に使用することができる薄膜固体リチウムイオン二次電池を提供することができる。
 また、正極活物質膜が、Mn、Co、Fe、P、Ni、Siの少なくとも1つ、及び、Liを含む酸化物から形成された構成とするのがよい。正極活物質膜が、Mn、Co、Fe、P、Ni、Siの少なくとも1つ、及び、Liを含む酸化物から形成されているので、大きな放電容量を有する薄膜固体リチウムイオン二次電池を提供することができる。
 なお、以下の説明では、「薄膜固体リチウムイオン二次電池」を「固体リチウムイオン電池」、「薄膜リチウムイオン電池」等に略記することもある。
 本発明に基づく薄膜固体リチウムイオン二次電池は、有機樹脂によって形成された電気絶縁性基板と、この基板の面に無機材料によって形成された絶縁膜と、正極側集電体膜と、正極活物質膜と、固体電解質膜と、負極活物質膜と、負極側集電体膜とを有し、正極側集電体膜又は/及び負極側集電体膜が上記絶縁膜の面に形成された薄膜固体リチウムイオン二次電池であり、上記絶縁膜の膜厚が5nm以上、500nm以下である。
 上記絶縁膜の面積は、正極側集電体膜又は負極側集電体膜の面積、或いは、正極側集電体膜と負極側集電体膜の合計面積よりも大である。上記無機材料は、酸化物、窒化物、硫化物のうちの何れかを少なくとも1つ含む。薄膜固体リチウムイオン二次電池は大気中で充放電でき高性能であり、歩留りよく安価で製造することができる。
 本発明では、プラスチック基板が使用され、この基板に薄膜固体リチウムイオン二次電池が形成され、少なくとも基板と電池が接する部分の基板の面に無機絶縁膜を形成することにより、正極活物質膜、固体電解質膜、負極活物質膜をアモルファス膜によって形成しても、これらの膜が基板の面に設けられた無機絶縁膜の上方に形成される。よって、大気中での充放電を実現することができ安定な駆動を可能とし、高い製造歩留りと高い繰返し充放電特性を実現することができる。
 プラスチック基板として、例えば、ポリカーボネ―ト(PC)基板等の水分透過度の高い有機絶縁基板を用いた場合には、プラスチック基板の面に正極側集電体膜又は/及び負極側集電体膜を形成すると密着性が十分ではなく、また、基板からの水分透過が不良の原因となる。しかし、有機絶縁基板の少なくとも電池が接する領域に無機絶縁膜を設けることによって、この無機絶縁膜の面に正極側集電体膜又は/及び負極側集電体膜を密着して形成することができ、また、電池が搭載された基板が置かれる雰囲気からの水分を遮断することができる。
 無機絶縁膜を基板の面に形成することにより、製造直後に行う充放電で生じるショート(単に、初期のショートとも言う。)を起こす確率が低減し、製造歩留まりが向上する。更に、充放電を繰返した際のショートを起こす確率も低下するため、不良率が低下する。また、充放電特性の向上を実現することができる。
 上記無機絶縁膜は、Si、Cr、Zr、Al、Ta、Ti、Mn、Mg、Znの酸化物又は窒化物又は硫化物の単体、或いは、これらの混合物であり、より具体的には、Si34、SiO2、Cr23、ZrO2、Al23、TaO2、TiO2、Mn23、MgO、ZnS等、或いは、これらの混合物である。
 基板上に形成する無機絶縁膜は、正極材料と集電体とは面積、形状が異なること、ショートが起こるのは電池を構成する薄膜のエッジ部分から生ずることが多いことを見出したことにより発案されたものである。つまり、電池を構成する材料の全ての部位がカバーされるよう、基板上に無機絶縁膜を形成することが有効である。
 薄膜電池であるが故に、この無機絶縁膜は緻密で一様であり、無機絶縁膜の表面が基板表面と同程度に滑らかでなければならない。無機絶縁膜として十分な膜厚が必要であるために5nm以上であることが好ましく、厚すぎると無機絶縁膜の内部応力が高いために膜はがれやクラックが生じやすく、特に可撓性を有する基板である場合には、基板を曲げた際にこのようなクラックが生じやすいため、膜厚は500nm以下であることが好ましい。
 本発明によれば、電池を構成する膜をアモルファス膜によって形成しても、基板の面に設けられた無機絶縁膜に電池が形成される。従って、大気中での充放電を実現することができ安定な駆動を可能とし、耐久性を向上させることができる薄膜固体リチウムイオン二次電池を提供することができる。
 以下、図面を参照しながら本発明の実施の形態について詳細に説明する。
 <実施の形態(その1)>
 図1は、本発明の実施の形態(その1)における、固体リチウムイオン電池の概略構造を説明する図であり、図1(A)は平面図、図1(B)はX-X断面図、図1(C)はY-Y断面図である。
 図1に示すように、固体リチウムイオン電池は、基板(有機絶縁基板)10の面に形成された無機絶縁膜20を有し、この無機絶縁膜20の上に、正極側集電体膜30、正極活物質膜40、固体電解質膜50、負極活物質膜60、負極側集電体膜70が、順次、形成された積層体を有している。この積層体及び無機絶縁膜20の全体を覆うように、例えば、紫外線硬化樹脂からなる全体保護膜80が形成されている。
 図1に示す電池の膜構成は、基板/無機絶縁膜/正極側集電体膜/正極活物質膜/固体電解質膜/負極活物質膜/負極側集電体膜/全体保護膜である。
 なお、無機絶縁膜20の上に、上記の積層体の複数が、順次、積層されて形成され、直列に電気的に接続され、全体保護膜80によって被覆された構成とすることもできる。また、無機絶縁膜20の上に、上記の積層体の複数が並置されて形成され、並列又は直列に電気的に接続され、全体保護膜80によって被覆された構成とすることもできる。
 また、上記の積層体の形成において、負極側集電体膜70、負極活物質層60、固体電解質膜50、正極活物質膜40、正極側集電体膜30の順に、無機絶縁膜20の上に形成することもできる。即ち、電池の膜構成を、基板/無機絶縁膜/負極側集電体膜/負極活物質層/固体電解質膜/正極活物質膜/正極側集電体膜/全体保護膜とすることもできる。
 <実施の形態(その2)>
 図2は、本発明の実施の形態(その2)における、固体リチウムイオン電池の概略構造を説明する図であり、図2(A)は平面図、図2(B)はX-X断面図である。
 図2に示すように、固体リチウムイオン電池は、基板(有機絶縁基板)10の面に形成された無機絶縁膜20を有し、この無機絶縁膜20の上に、正極側集電体膜30と正極活物質膜40からなる積層体、及び、負極側集電体膜70と負極活物質膜60からなる積層体を有している。無機絶縁膜20の上に並置して形成された上記の2つの積層体の全体を覆うように固体電解質膜50が形成され、固体電解質膜50の全体を覆うように、例えば、紫外線硬化樹脂からなる全体保護膜80が形成されている。
 なお、上記の2つの積層体の組の複数が、無機絶縁膜20の上に並置して形成され、並列又は直列に電気的に接続され、全体保護膜80によって被覆された構成とすることもできる。
 [固体リチウムイオン電池の製造工程]
 図3は、本発明の実施の形態における、固体リチウムイオン電池の製造工程の概略を説明する図である。
 図3に示すように、先ず、基板(有機絶縁基板)10の面に無機絶縁膜20が形成される。次に、無機絶縁膜20の上に、正極側集電体膜30、正極活物質膜40、固体電解質膜50、負極活物質膜60、負極側集電体膜70が、順次、形成され積層体が形成される。最後に、この積層体及び無機絶縁膜20の全体を覆うように、例えば、紫外線硬化樹脂からなる全体保護膜80が、基板(有機絶縁基板)10の上に形成される。このようにして、図1に示す固体リチウムイオン電池を作製することができる。
 なお、図2に示す固体リチウムイオン電池は図示しないが次のようにして作成することができる。先ず、基板(有機絶縁基板)10の面に無機絶縁膜20が形成される。次に、無機絶縁膜20の上に、正極側集電体膜30と正極活物質膜40が順次形成されてなる積層体、及び、負極側集電体膜70と負極活物質膜60が順次形成されてなる積層体が並置してそれぞれ形成される。次に、無機絶縁膜20の上に並置して形成された上記の2つの積層体の全体を覆うように固体電解質膜50が形成される。最後に、固体電解質膜50の全体を覆うように、例えば、紫外線硬化樹脂からなる全体保護膜80が、無機絶縁膜20の上に形成される。
 以上説明した実施の形態において、固体リチウムイオン電池を構成する材料として以下のものを使用することができる。
 固体電解質膜50を構成する材料として、リン酸リチウム(Li3PO4)、リン酸リチウム(Li3PO4)に窒素を添加したLi3PO4x(一般に、LiPONと呼ばれている。)、LiBO2x、Li4SiO4-Li3PO4、Li4SiO4-Li3VO4等を使用することができる。
 正極活物質膜40を構成する材料は、リチウムイオンを離脱、吸着させ易く、正極活物質膜に多くのリチウムイオンを離脱、吸蔵させることが可能な材料であればよい。このような材料として、LiMnO2(マンガン酸リチウム)、LiMn24、Li2Mn24等のリチウム-マンガン酸化物、LiCoO2(コバルト酸リチウム)、LiCo24等のリチウム-コバルト酸化物、LiNiO2(ニッケル酸リチウム)、LiNi24等のリチウム-ニッケル酸化物、LiMnCoO4、Li2MnCoO4等のリチウム-マンガン-コバルト酸化物、Li4Ti512、LiTi24等のリチウム-チタン酸化物、その他、LiFePO4(リン酸鉄リチウム)、硫化チタン(TiS2)、硫化モリブデン(MoS2)、硫化鉄(FeS、FeS2)、硫化銅(CuS)及び硫化ニッケル(Ni32)、酸化ビスマス(Bi23)、鉛酸ビスマス(Bi2Pb25)、酸化銅(CuO)、酸化バナジウム(V613)、セレン化ニオブ(NbSe3)等を使用することができる。また、これらを混合して用いることも可能である。
 負極活物質膜60を構成する材料は、リチウムイオンを吸着、離脱させ易く、負極活物質膜に多くのリチウムイオンを吸蔵、離脱させることが可能な材料であればよい。このような材料として、Sn、Si、Al、Ge、Sb、Ag、Ga、In、Fe、Co、Ni、Ti、Mn、Ca、Ba、La、Zr、Ce、Cu、Mg、Sr、Cr、Mo、Nb、V、Zn等の何れかの酸化物を使用することができる。また、これら酸化物を混合して用いることもできる。
 負極活物質膜60の材料は具体的には、例えば、シリコン-マンガン合金(Si-Mn)、シリコン-コバルト合金(Si-Co)、シリコン-ニッケル合金(Si-Ni)、五酸化ニオブ(Nb25)、五酸化バナジウム(V25)、酸化チタン(TiO2)、酸化インジウム(In23)、酸化亜鉛(ZnO)、酸化スズ(SnO2)、酸化ニッケル(NiO)、Snが添加された酸化インジウム(ITO)、Alが添加された酸化亜鉛(AZO)、Gaが添加された酸化亜鉛(GZO)、Snが添加された酸化スズ(ATO)、F(フッ素)が添加された酸化スズ(FTO)等である。また、これらを混合して用いることもできる。
 正極側集電体膜30、負極側集電体70を構成する材料として、Cu、Mg、Ti、Fe、Co、Ni、Zn、Al、Ge、In、Au、Pt、Ag、Pd等、又は、これらの何れかを含む合金を使用することができる。
 無機絶縁膜20を構成する材料は、吸湿性が低く耐湿性を有する膜を形成することができる材料であればよい。このような材料として、Si、Cr、Zr、Al、Ta、Ti、Mn、Mg、Znの酸化物又は窒化物又は硫化物の単体、或いは、これらの混合物を使用することができる。より具体的には、Si34、SiO2、Cr23、ZrO2、Al23、TaO2、TiO2、Mn23、MgO、ZnS等、或いは、これらの混合物を使用することができる。
 以上説明した固体電解質膜50、正極活物質膜40、負極活物質膜60、正極側集電体膜30、負極側集電体70、無機絶縁膜20の各膜は、スパッタリング法、電子ビーム蒸着法、加熱蒸着法等の乾式工程によって形成することができる。
 有機絶縁性基板10として、ポリカーボネート(PC)樹脂基板、フッ素樹脂基板、ポリエチレンテレフタレート(PET)基板、ポリブチレンテレフタレート(PBT)基板、ポリイミド(PI)基板、ポリアミド(PA)基板、ポリスルホン(PSF)基板、ポリエーテルスルホン(PES)基板、ポリフェニレンスルフィド(PPS)基板、ポリエーテルエーテルケトン(PEEK)基板等を使用することができる。この基板の材質は特に限定されるものではないが、吸湿性が低く耐湿性を有する基板がより好ましい。
 全体保護膜80を構成する材料は、吸湿性が低く耐湿性を有する膜を形成することができる材料であればよい。このような材料として、アクリル系紫外線硬化樹脂、エポキシ系紫外線硬化樹脂等を使用することができる。全体保護膜をパリレン樹脂膜の蒸着によって形成することもできる。
 <実施例及び比較例>
 [実施例及び比較例における構成、並びに、これらにおける初期ショートの発生頻度]
 図4は、本発明の実施例及び比較例における、固体リチウムイオン電池の各層の構成を説明する図であり、以下で説明する固体リチウムイオン電池の各層の材質及びその厚さを、(A)実施例、(B)比較例に関してそれぞれ示している。
 図5は、本発明の実施例及び比較例における、固体リチウムイオン電池の初期のショートの発生頻度を説明する図である。
 図6は、本発明の実施例及び比較例における、固体リチウムイオン電池の初期のショートの発生頻度を説明する図である。
 [実施例1]
 図1に示す構成を有する固体リチウムイオン電池を作成した。量産性、コストを勘案して、基板10として厚さ1.1mmのポリカーボネート(PC)基板を用いた。この他にもガラス材、アクリル等からなる基板を使用することができ、導電性がなく表面の平滑性が作成する電池の膜厚に応じて十分平坦であればよい。基板10の上に全面に無機絶縁膜20としてSi34を厚さ200nmで成膜した。
 無機絶縁膜20の上に図1に示すように、金属マスクを配して、正極側集電体膜30、正極活物質膜40、固体電解質膜50、負極活物質膜60、負極側集電体膜70の順に成膜し積層体を形成した。但し、この順は反対の順、即ち、負極側集電体膜70、負極活物質膜60、固体電解質膜50、正極活物質膜40、正極側集電体膜30の順に無機絶縁膜20の上に堆積することもできる。
 金属マスクとして、ここでは500μmのステンレスマスクを用いたが、リソグラフィー技術を用いてパターンを形成することもできる。何れにしても、上記の積層体を構成する膜は全て無機絶縁膜の上に形成される。
 正極側及び負正極側集電体膜30、70としてTiを用い、膜厚は100nm又は200nmとした。正極側及び負正極側集電体膜30、70は導電性があり、且つ、耐久性に優れた材料であれば他の材料でも同様に利用することができる。具体的には、Au、Pt、Cuなど、若しくは、これら合金を含む金属材料が用いられる。この金属材料は耐久性や導電性を高めるための添加物を含んでもよい。
 正極活物質膜40としてLiMn24を用い、膜厚は125nmとした。正極活物質膜40の成膜方法は、スパッタリング法によるもので、基板10の温度は室温とし、ポストアニールなしの条件で作成したため、アモルファスの状態である。正極活物質膜40を他の材料で形成することもでき、よく知られている材料、LiCoO2、LiFePO4、LiNiO2等を使用することもできる。
 正極活物質膜40の膜厚に関しては、厚いほど電池容量が高いこと以外には特筆すべき点はないが、実施例1での容量は7.4μAhとなっており、本発明の効果を示すのに十分な量となっている。アプリケーション・用途に応じて、正極活物質膜40の膜厚を調整することが可能である。
 なお、実施例1において、正極活物質膜40をアニールすれば、更に、良好な特性が得られることは言うまでもない。プラスチック基板を用いる場合には、レーザーアニールを用い、電池を構成する各層の材料のみをそれぞれ高温にすることも可能である。その際に、実施例1における無機絶縁膜20は電池材料に接していながら十分な耐熱性を示すため、電池を構成する各層を保護する機能を損なわれることはない。
 更に、無機絶縁膜20は光吸収率が低いため光照射による直接的温度上昇がなく、熱伝導率が比較的高いため、レーザーアニールの際にプラスチック基板の劣化を抑える効果もある。
 固体電解質膜50には、Li3PO4xを用いた。この固体電解質膜50の成膜条件もスパッタリング中の基板10の温度が室温、ポストアニールなしの条件であり、形成された固体電解質膜50はアモルファス状態となっている。形成された固体電解質膜50における窒素の組成xは、スパッタリングガス中の窒素の反応性スパッタリングによるため、正確な数値は不明であるが、非特許文献1と同様のものと考えられる。
 実施例1では、この他の固体電解質膜材料を用いても、同様の効果が得られることは明らかであり、よく知られている材料、LiBO2x、Li4SiO4-Li3PO4、Li4SiO4-Li3VO4等を使用することもできる。
 固体電解質膜50の膜厚に関しては、絶縁性が充分とれる必要があるため、薄すぎると初期若しくは充放電の過程でショートを起こす可能性があるため、例えば、50nm以上が好ましいが、これは正極の膜厚、膜質だけでなく、基板、集電体材料や成膜方法、充放電速度に依存して耐久性の面でこれよりも厚い方がより好ましいケースがある。
 逆に、固体電解質膜50の膜厚が厚すぎると、例えば、500nm以上である場合、固体電解質膜50のイオン導電率が液体電解質と比べると低いことが多いため、充放電に問題が起こる。また、固体電解質膜50をスパッタリングにより成膜する場合は、膜厚が厚すぎると、スパッタリング時間がかかるためにタクトタイムが伸び、スパッタリングチャンバーをマルチチャンネル化しなければならないことから、設備投資がかかるために好ましくない。
 従って、これらの条件を勘案して、固体電解質膜50の膜厚を適切な値にすることが肝要であるが、この膜厚自体は本発明の効果とは関係がない。ここでは固体電解質膜50の膜厚を145nmとした。
 負極活物質膜60にはITO膜を用い、膜厚は20nmとした。
 負極側集電体膜70、正極側集電体膜30にはTiを用い、膜厚は200nmとした。
 最後に、全体保護膜80を、紫外線硬化樹脂を用いて形成した。全体保護膜80は、基板10と反対側の面からの水分の侵入に対する保護膜として機能している。また、同時に、取扱いの際のキズからも保護されている。
 全体保護膜80の形成に使用される紫外線硬化樹脂として、ソニーケミカル&インフォメーションデバイス製の型番SK3200のものを使用したが、例えば、同社製の型番SK5110等の他のもの紫外線硬化樹脂も使用することができ、同様の効果が期待できる。全体の保護膜の形成に使用する材料は、特に、耐水保護効果の高い材料が好ましい。
 なお、正極側及び負極側集電体30、70を被覆する紫外線硬化樹脂の一部を剥がし、集電体30、70のTi金属面だけが露出している部分とし、この部分を電極接続端子とし、電池の耐久性に影響が出ないようにした。
 以上をまとめると、電池の膜構成は、ポリカーボネート基板/Si34(200nm)/Ti(100nm)/LiMn24(125nm)/Li3PO4x(145nm)/ITO(20nm)/Ti(200nm)/紫外線硬化樹脂(20μm)である(図4(A)を参照。)。
 なお、ここではマスクによる形状を無視し、電池の機能部分のみについて示したが、電池の構成上、LiMn24がSi34に直接触れる部分が存在する。
 ここでは、電池を構成する上記の各膜を、スパッタリングによって成膜したが、電池薄膜として同様の膜質を有するものが形成できれば、蒸着、メッキ、噴射塗布などの方法を用いることもできる。
 ここでスパッタリング法による成膜の詳細を次に示す。
 Ti、LiMn24、Li3PO4xの成膜にはアルバック社製、SMO-01特型を用いた。ターゲットサイズはφ4インチである。各層のスパッタリング条件を次に示す。
 (1)Ti膜の形成
ターゲット組成:Ti
スパッタリングガス:Ar70sccm、0.45Pa
スパッタリングパワー:1000W(DC)
 (2)LiMn24膜の形成
スパッタリングガス:(Ar80%+O2 20%混合ガス)20sccm、0.20Pa
スパッタリングパワー:300W(RF)
 (3)Li3PO4x膜の形成
ターゲット組成:Li3PO4
スパッタリングガス:Ar20sccm+N2 20sccm、0.26Pa
スパッタリングパワー:300W(RF)
 (4)ITO膜の形成
 ここでは、アネルバ社製C-3103を用い、ターゲットサイズはφ6インチである。
スパッタリング条件を次に示す。
ターゲット組成:ITO(In2390wt.%+SnO2 10wt.%)
スパッタリングガス:Ar120sccm+(Ar 80%+O2 20%混合ガス)30sccm、0.10Pa
スパッタリングパワー:1000W(DC)
 なお、スパッタリング時間に関しては、所望の膜厚が得られるよう調整した。
 Keithley2400を用いて充放電カーブを測定し、充放電速度は何れも1Cとした(1時間で充放電完了に相当する電流値)。実施例1での充放電電流値は、8μAである。
 各膜の成膜におけるスパッタリング条件を全く同一として、同一構成を有する電池を、同時スパッタリングによって10個作成した。これを5サイクル行い、合計50個のサンプルを得た。
 50個のサンプルの全数について、初期の導通状況を調べたところ、50個中、2個が初期のショートを起こしており、不良品であった。
 [比較例1]
 比較のために、無機絶縁膜20がない以外は全て実施例1と同一の構成を有する電池を同時スパッタリングにより10個作成した。電池の膜構成は、ポリカーボネート基板/Ti(100nm)/LiMn24(125nm)/Li3PO4x(145nm)/ITO(20nm)/Ti(200nm)/紫外線硬化樹脂(20μm)である(図4(B)を参照。)。この10個の全数について初期の導通状況を調べたところ、10個中、5個が初期のショートを起こしていた。
 以上のように、無機絶縁膜20は、このように電池作成の歩留まりを劇的に向上することが確認できた(図5、図6を参照。)。
 初期のショートとは、正極側集電体と負極側集電体が何らかの理由で導通していることによるが、図1に示す構成から明らかなように、理想的に無機絶縁膜20が形成されていれば、本来は導通する理由がない。つまり、正極側集電体膜30の縦横の幅よりも広い範囲に無機絶縁膜20が形成され、更に、その上方に無機絶縁膜20より狭い縦横の幅で負極側集電体膜70が形成されているため、正極側及び負極側集電体膜30、70の集電体同士は直接接触しないはずである。
 しかし、初期の不良(初期のショート)が起こるのは、基板10と接する面をもつ正極活物質膜40が劣化し、正極集電体膜30のヘリの部分の固体電解質膜50をつきやぶることで負極集電体膜70と接触するためと推定される。
 次に、無機絶縁膜20を形成した実施例1による電池のうちの良品2個について、繰返し充放電を行ったところ、何れも50回のサイクルは問題なく電池として駆動することができた。
 一方、無機絶縁膜を形成しなかった比較例1の電池のうちの良品2個について、繰返し充放電を行ったところ、1個は3回目の充電時、他の1個は1回目の充電時にそれぞれショートを起こし、不良品となった。この不良も、充放電を繰返すことによる膜厚の収縮や、Liの移動による膜質の変化により、特に正極側集電体30のへりの部分の正極活物質膜40が劣化し、固体電解質膜50を突き破ることによりショートを起こしたものと推定される。
 即ち、実施例1による構成の薄膜Li電池は、製造歩留まりを改善し、繰返し充放電特性を改善する効果があることが、明確に示された。
 [実施例2]
 次に、無機絶縁膜としてSCZ(SiO2、Cr23、ZrO2の混合物である。)を50nm形成して実施例1と同様の電池を作成した。電池の膜構成は、ポリカーボネート基板/SCZ(50nm)/Ti(100nm)/LiMn24(125nm)/Li3PO4x(145nm)/ITO(20nm)/Ti(200nm)/紫外線硬化樹脂(20μm)である(図4(A)を参照。)。
 SCZの成膜にはアネルバ社製C-3103を用い、ターゲットサイズはφ6インチである。スパッタリング条件を次に示す。
ターゲットリング組成:SCZ(SiO235at.%+Cr23 30at.%+ZrO2 35at.%)
スパッタリングガス:Ar100sccm、0.13Pa
スパッタリングパワー:1000W(RF)
 実施例1と同様にして、同一の試料50個を作成し、初期の導通状態を調べたところ不良であったのは3個であった(図5、図6を参照。)。また、充放電特性は実施例1とほぼ同等であり、無機絶縁膜を設けこの上に電池を搭載する構成は非常に有効である。
 また、SCZの膜厚を5nmとした電池(電池の膜構成は、ポリカーボネート基板/SCZ(5nm)/Ti(100nm)/LiMn24(125nm)/Li3PO4x(145nm)/ITO(20nm)/Ti(200nm)/紫外線硬化樹脂(20μm)である)では、初期の不良は、10個のうち1個であった。初期の不良を生じなかったものについて充放電を繰返すと3個は数回のうちにショートを起こし、不良となった。
 また、SCZの膜厚を4nmとした電池(電池の膜構成は、ポリカーボネート基板/SCZ(4nm)/Ti(100nm)/LiMn24(125nm)/Li3PO4x(145nm)/ITO(20nm)/Ti(200nm)/紫外線硬化樹脂(20μm)である)では、初期の不良は、10個のうち2個と不良率が上がり、初期の不良を生じなかったものについて充放電を繰返すと殆どのサンプルが10回以下のサイクルでショートを起こし、不良品となった。
 SCZの膜厚が4nmのように膜厚が薄くなると、膜厚が均一に形成されず、アイランド状になることが知られており、そのために電池を構成する保護膜としての機能が得られなかったことが原因となって、初期の不良率が上がり、更に、充放電の繰返しにおける不良を生じたものと考えられる。
 従って、無機絶縁膜20の膜厚が薄すぎると不良となる確率があがり、無機絶縁膜20の膜厚は5nm以上であることが好ましい。
 [実施例3]
 無機絶縁膜20として、Si34を500nm形成して実施例1と同様の電池を作成した。電池の膜構成は、ポリカーボネート基板/Si34(500nm)/Ti(100nm)/LiMn24(125nm)/Li3PO4x(145nm)/ITO(20nm)/Ti(200nm)/紫外線硬化樹脂(20μm)である(図4(A)を参照。)。この構成の電池では、初期の充放電、繰返し充放電特性は問題なかった。
 しかし、基板の曲げ、衝撃に弱く、膜にクラックが生じやすいことがわかった。クラックの生じたサンプルはショートを起こし、不良となった。これは、無機絶縁膜20の内部応力により無機絶縁膜20がクラックを生じ、それに伴い、無機絶縁膜20の上部に搭載された電池にも影響し、ショートを起こしたものと考えられる。
 従って、無機絶縁膜20の膜厚が厚すぎると不具合を起こし、無機絶縁膜20の膜厚が500nm以下であることが好ましい。
 [ポリカーボネート基板の曲げと電池の機能の関係]
 基板10としてポリカーボネート基板を用い、無機絶縁膜20としてSiO2、SCZを用いた場合には、無機絶縁膜20の膜厚が500nmを超えるとポリカーボネート基板を曲率半径30cm程度に曲げると、電池を構成する膜のクラックが観測された。
 また、同じようにポリカーボネート基板を曲率半径30cm程度に曲げると、無機絶縁膜20としてSi34を用いた場合には、無機絶縁膜20の膜厚が300nm以上でクラックが生じ、電池として機能しなくなった。無機絶縁膜20の膜厚が300nm未満の場合には、ポリカーボネート基板を曲率半径30cm程度に曲げても、電池としての機能は保持された。
 [無機絶縁膜の膜厚の好ましい範囲]
 図6に示すように、電池の初期のショートの発生頻度は、無機絶縁膜20の膜厚の増加と共に低下する。電池の初期のショートによる不良率(発生頻度)を10%以下にするためには、無機絶縁膜20の膜厚が5nm以上、500nm以下とするのが好ましい。
 無機絶縁膜20の成膜時における膜厚の揺らぎを勘案し、より安定して十分な膜厚が得られるようには、10nm以上、500nm以下とするのがより好ましい。
 無機絶縁膜20の成膜に要する時間、上述したポリカーボネート基板の曲げと電池の機能の関係を考慮すると、無機絶縁膜20の膜厚を10nm以上、200nm以下とするのが更に好ましく、より安定して十分な膜厚が得られ、初期のショートによる不良率を10%以下とすることができ、基板10を曲げても電池としての機能を保持することができる。なお、無機絶縁膜20の膜厚を50nm以上、200nm以下とすれば、初期のショートによる不良率を数%以下とすることができる。無機絶縁膜20の膜厚が200nm以下であれば、成膜に長時間を必要とせず、光ディスク並みの高速なタクトタイムを実現することができる。
 以上説明したように本発明によれば、電池を構成する膜をアモルファス膜によって形成しても、基板の面に設けられた無機絶縁膜上に電池が搭載されるので、大気中での充放電を実現することができ安定な駆動を可能とし、耐久性を向上させることができ、また、製造歩留まりを向上させ安定して製造することができ、高性能で安価な薄膜固体リチウムイオン二次電池を提供することができる。
 以上、本発明を実施の形態について説明したが、本発明は上述の実施の形態、実施例に限定されるものではなく、本発明の技術的思想に基づいて各種の変形が可能である。
 本発明は、大気中での動作を可能とし安定な駆動を可能とし、製造歩留まりを向上させることができ、高性能で安価な薄膜リチウム電池を提供することができる。

Claims (9)

  1.  有機樹脂によって形成された電気絶縁性基板と、
     前記電気絶縁性基板の面に無機材料によって形成された絶縁膜と、
     集電体膜と、
     活物質膜と、
     固体電解質膜と
    を有し、前記集電体膜が前記絶縁膜の面に形成された、薄膜固体リチウムイオン二次電池。
  2.  前記集電体膜は正極側集電体膜と負極側集電体膜を含み、前記活物質膜は正極活物質膜と負極活物質膜を含み、前記正極側集電体膜又は/及び前記負極側集電体膜が前記絶縁膜の面に形成された、請求項1に記載の薄膜固体リチウムイオン二次電池。
  3.  前記絶縁膜の面積が、前記正極側集電体膜又は前記負極側集電体膜の面積、或いは、前記正極側集電体膜と前記負極側集電体膜の合計面積よりも大である、請求項2に記載の薄膜固体リチウムイオン二次電池。
  4.  前記無機材料が、Si、Al、Cr、Zr、Ta、Ti、Mn、Mg、Znの何れかを含む酸化物又は窒化物又は硫化物のうちの何れかを少なくとも1つ含む、請求項2に記載の薄膜固体リチウムイオン二次電池。
  5.  前記絶縁膜の膜厚が5nm以上、500nm以下である、請求項2に記載の薄膜固体リチウムイオン二次電池。
  6.  前記絶縁膜の膜厚が10nm以上、200nm以下である、請求項2に記載の薄膜固体リチウムイオン二次電池。
  7.  前記電気絶縁性基板は可撓性を有する、請求項2に記載の薄膜固体リチウムイオン二次電池。
  8.  前記正極活物質膜が、Mn、Co、Fe、P、Ni、Siの少なくとも1つ、及び、Liを含む酸化物から形成された、請求項2に記載の薄膜固体リチウムイオン二次電池。
  9.  有機樹脂によって形成された電気絶縁性基板の面に無機材料によって絶縁膜を形成す る工程と、
     前記絶縁膜の面に正極側集電体膜又は/及び負極側集電体膜を形成する工程と
    を有する、薄膜固体リチウムイオン二次電池の製造方法。
     
PCT/JP2010/051126 2009-02-03 2010-01-28 薄膜固体リチウムイオン二次電池及びその製造方法 WO2010090124A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800057601A CN102301519A (zh) 2009-02-03 2010-01-28 薄膜固态锂离子二次电池及其制造方法
US13/146,594 US20110287296A1 (en) 2009-02-03 2010-01-28 Thin film solid state lithium ion secondary battery and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009022595A JP5515307B2 (ja) 2009-02-03 2009-02-03 薄膜固体リチウムイオン二次電池
JP2009-022595 2009-09-08

Publications (1)

Publication Number Publication Date
WO2010090124A1 true WO2010090124A1 (ja) 2010-08-12

Family

ID=42542022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051126 WO2010090124A1 (ja) 2009-02-03 2010-01-28 薄膜固体リチウムイオン二次電池及びその製造方法

Country Status (4)

Country Link
US (1) US20110287296A1 (ja)
JP (1) JP5515307B2 (ja)
CN (1) CN102301519A (ja)
WO (1) WO2010090124A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104037455A (zh) * 2014-05-23 2014-09-10 鸿源控股有限公司 动力锂离子聚合物电池的制作方法
EP2660922A4 (en) * 2010-12-27 2016-12-14 Baba Mamoru METHOD OF MANUFACTURING A THIN-LAYER LITHIUM CYBER BATTERY AND THIN-LAYER LITHIUM CYBER BATTERY
WO2023047795A1 (ja) * 2021-09-22 2023-03-30 東レエンジニアリング株式会社 バリア膜付きリチウムイオン電池およびバリア膜付きリチウムイオン電池の製造方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5821270B2 (ja) 2011-05-16 2015-11-24 ソニー株式会社 固体電解質電池および正極活物質
CN102306778B (zh) * 2011-09-02 2013-10-16 惠州市惠德瑞锂电科技有限公司 一种非水性电化学电池及其制备方法
EP2639876B1 (en) * 2012-03-15 2015-11-18 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
US9070950B2 (en) 2012-03-26 2015-06-30 Semiconductor Energy Laboratory Co., Ltd. Power storage element, manufacturing method thereof, and power storage device
KR101941452B1 (ko) * 2012-09-19 2019-01-23 엘지디스플레이 주식회사 박막 전지 및 그 제조 방법
JP2016501439A (ja) * 2012-12-19 2016-01-18 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 垂直薄膜電池のマスクレス製造
CN103258992B (zh) * 2013-04-28 2016-02-24 浙江大学 一种首次库仑效率高的锂离子电池负极材料的制备方法
JP2015060720A (ja) * 2013-09-19 2015-03-30 株式会社村田製作所 固体電池
US9718997B2 (en) * 2013-11-13 2017-08-01 R.R. Donnelley & Sons Company Battery
CN104134816A (zh) * 2014-08-05 2014-11-05 厦门大学 一种采用倒金字塔阵列结构的三维全固态微型薄膜锂电池
JP6323873B2 (ja) * 2014-08-13 2018-05-16 国立研究開発法人産業技術総合研究所 軟x線を用いた二次電池オペランド測定用電極
US9455437B2 (en) 2014-10-08 2016-09-27 Intermolecular, Inc. Solid-state batteries utilizing template layers for electrode formation and methods for forming the same
TW201711261A (zh) * 2015-04-28 2017-03-16 應用材料股份有限公司 用於製造具有台面結構的電池之方法與設備及包含台面結構的電池
KR101829761B1 (ko) * 2015-12-17 2018-02-19 재단법인 포항산업과학연구원 박막형 리튬 이차 전지
CN106264849A (zh) * 2016-08-18 2017-01-04 孟玲 一种充电性可循环加热暖水宝
CN107799836A (zh) * 2016-09-07 2018-03-13 中兴通讯股份有限公司 固态电池制作方法、固态电池及终端
JP7192866B2 (ja) * 2018-08-10 2022-12-20 株式会社村田製作所 固体電池
CN109148894A (zh) * 2018-09-05 2019-01-04 天津瑞晟晖能科技有限公司 锂离子电池正极、全固态锂离子电池及其制备方法与用电器件
US11811063B2 (en) 2020-01-27 2023-11-07 Apple Inc. Cathode for solid-state electrochemical cell having elemental dopant in grain boundaries

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065573A1 (fr) * 2001-02-15 2002-08-22 Matsushita Electric Industrial Co., Ltd. Cellule d'electrolyse solide et procede de production de cette derniere
JP2003132941A (ja) * 2001-10-29 2003-05-09 Matsushita Electric Ind Co Ltd コンデンサ一体型の固体電解質二次電池
JP2005519425A (ja) * 2002-02-28 2005-06-30 フロント エッジ テクノロジー,インコーポレイテッド 透過性アノード電流コレクタを持つ二次電池
JP2006216336A (ja) * 2005-02-02 2006-08-17 Geomatec Co Ltd 薄膜固体二次電池
JP2006351326A (ja) * 2005-06-15 2006-12-28 Matsushita Electric Ind Co Ltd 固体電池
JP2007103130A (ja) * 2005-10-03 2007-04-19 Geomatec Co Ltd 薄膜固体二次電池および薄膜固体二次電池の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3116857B2 (ja) * 1997-04-04 2000-12-11 日本電気株式会社 半導体基板搭載型二次電池
JP4076749B2 (ja) * 2001-10-15 2008-04-16 富士フイルム株式会社 導電性有機化合物及び電子素子
DE602004032023D1 (de) * 2003-04-04 2011-05-12 Panasonic Corp Integrierte schaltung mit darauf angebrachter batterie
US20040258984A1 (en) * 2003-04-14 2004-12-23 Massachusetts Institute Of Technology Integrated thin film batteries on silicon integrated circuits
CA2432397A1 (fr) * 2003-06-25 2004-12-25 Hydro-Quebec Procede de preparation d'electrode a partir d'un silicium poreux, electrode ainsi obtenue et systeme electrochimique contenant au moins une telle electrode
JP2005027017A (ja) * 2003-07-02 2005-01-27 Ricoh Co Ltd 画像処理装置
WO2008011061A1 (en) * 2006-07-18 2008-01-24 Cymbet Corporation Method and apparatus for solid-state microbattery photolithographic manufacture, singulation and passivation
JP5217195B2 (ja) * 2007-03-14 2013-06-19 ジオマテック株式会社 薄膜固体リチウムイオン二次電池及びこれを備えた複合型機器
US20090202899A1 (en) * 2008-02-11 2009-08-13 Pyszczek Michael F Electrical apparatus with integral thin film solid state battery and methods of manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065573A1 (fr) * 2001-02-15 2002-08-22 Matsushita Electric Industrial Co., Ltd. Cellule d'electrolyse solide et procede de production de cette derniere
JP2003132941A (ja) * 2001-10-29 2003-05-09 Matsushita Electric Ind Co Ltd コンデンサ一体型の固体電解質二次電池
JP2005519425A (ja) * 2002-02-28 2005-06-30 フロント エッジ テクノロジー,インコーポレイテッド 透過性アノード電流コレクタを持つ二次電池
JP2006216336A (ja) * 2005-02-02 2006-08-17 Geomatec Co Ltd 薄膜固体二次電池
JP2006351326A (ja) * 2005-06-15 2006-12-28 Matsushita Electric Ind Co Ltd 固体電池
JP2007103130A (ja) * 2005-10-03 2007-04-19 Geomatec Co Ltd 薄膜固体二次電池および薄膜固体二次電池の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2660922A4 (en) * 2010-12-27 2016-12-14 Baba Mamoru METHOD OF MANUFACTURING A THIN-LAYER LITHIUM CYBER BATTERY AND THIN-LAYER LITHIUM CYBER BATTERY
CN104037455A (zh) * 2014-05-23 2014-09-10 鸿源控股有限公司 动力锂离子聚合物电池的制作方法
WO2023047795A1 (ja) * 2021-09-22 2023-03-30 東レエンジニアリング株式会社 バリア膜付きリチウムイオン電池およびバリア膜付きリチウムイオン電池の製造方法

Also Published As

Publication number Publication date
CN102301519A (zh) 2011-12-28
US20110287296A1 (en) 2011-11-24
JP5515307B2 (ja) 2014-06-11
JP2010182447A (ja) 2010-08-19

Similar Documents

Publication Publication Date Title
JP5515307B2 (ja) 薄膜固体リチウムイオン二次電池
JP5515308B2 (ja) 薄膜固体リチウムイオン二次電池及びその製造方法
JP5540643B2 (ja) 薄膜固体リチウムイオン二次電池及びその製造方法
JP4043296B2 (ja) 全固体電池
JP5549192B2 (ja) 固体電解質電池および正極活物質
JP2007103129A (ja) 薄膜固体二次電池および薄膜固体二次電池の製造方法
JP5640587B2 (ja) 固体電解質電池
JP6171980B2 (ja) 電池および電子機器
US9520615B2 (en) Thin film battery having improved battery performance through substrate surface treatment and method for manufacturing same
JP2006179241A (ja) 固体電池
JP5415099B2 (ja) 薄膜固体二次電池の製造方法
WO2012111783A1 (ja) 固体電解質電池
KR20060124978A (ko) 박막 전지 및 그 제조 방법
JP2012038433A (ja) 薄膜固体二次電池及び薄膜固体二次電池の製造方法
KR101941452B1 (ko) 박막 전지 및 그 제조 방법
JP5209527B2 (ja) 薄膜固体二次電池および薄膜固体二次電池の製造法
KR20200050270A (ko) 다층 구조의 고체 전해질 및 이를 포함하는 전고체 박막 전지
JP2017152415A (ja) 電池および電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080005760.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738458

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13146594

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10738458

Country of ref document: EP

Kind code of ref document: A1